-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
214 lines (176 loc) · 9.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import copy
import os
import sys
import time, datetime
import json
import numpy as np
import logging
import argparse
import torch
import torch.nn.functional as F
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from sklearn import metrics
from model import Model
from preprocess import load_data, numpy_to_torch
"""
Train the discovered architectures
"""
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=0.005, help='learning rate')
parser.add_argument('--alr', type=float, default=3e-4, help='learning rate for architecture parameters')
parser.add_argument('--wd', type=float, default=0.001, help='weight decay')
parser.add_argument('--n_hid', type=int, default=64, help='hidden dimension')
parser.add_argument('--dataset', type=str, default='amazon', help='The dataset name. [yelp, amazon, mimic]')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--epochs', type=int, default=50, help='maximum number of training epochs')
parser.add_argument('--dropout', type=float, default=0.3)
parser.add_argument('--seed', type=int, default=24)
parser.add_argument('--no_norm', action='store_true', default=False, help='disable layer norm')
parser.add_argument('--in_nl', action='store_true', default=False, help='non-linearity after projection')
args = parser.parse_args()
prefix = "lr" + str(args.lr) + "_wd" + str(args.wd) + "_h" + str(args.n_hid) + \
"_drop" + str(args.dropout) + "_epoch" + str(args.epochs) + "_cuda" + str(args.gpu) + "_seed" + str(args.seed)
if args.no_norm is True:
prefix += "_noLN"
if args.in_nl is True:
prefix += "_nl"
logdir = os.path.join("log/eval", args.dataset)
if not os.path.exists(logdir):
os.makedirs(logdir)
# load meta-graph
f2 = open('arch.json', 'r')
info_data = json.load(f2)
meta_template = copy.deepcopy(info_data[args.dataset])
steps = [len(meta) for meta in meta_template[0]]
prefix += "_s" + str(steps)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(logdir, prefix + ".txt"))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info(args)
def main():
torch.cuda.set_device(args.gpu)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
global meta_template
steps = [len(meta) for meta in meta_template[0]]
print("Steps: {}".format(steps))
datadir = "data/"
prefix = os.path.join(datadir)
#* load data
adjs_pt, node_feats, labels = load_data(prefix, args.dataset)
node_types = np.zeros((adjs_pt[0].shape[0],), dtype=np.int32)
num_node_types = node_types.max() + 1
node_types = torch.from_numpy(node_types).cuda()
logging.info("Arch {}".format(meta_template))
#* load labels
if args.dataset == 'yelp':
index = np.arange(len(labels))
train_idx, rest_idx, train_target, rest_target = train_test_split(index, labels, stratify=labels,
train_size=0.4, random_state=2, shuffle=True)
valid_idx, test_idx, valid_target, test_target = train_test_split(rest_idx, rest_target, stratify=rest_target,
test_size=0.67, random_state=2, shuffle=True)
elif args.dataset == 'amazon':
# 0-3304 are unlabeled nodes
index = np.arange(3305, len(labels))
train_idx, rest_idx, train_target, rest_target = train_test_split(index, labels[3305:], stratify=labels[3305:],
train_size=0.4, random_state=2, shuffle=True)
valid_idx, test_idx, valid_target, test_target = train_test_split(rest_idx, rest_target, stratify=rest_target,
test_size=0.67, random_state=2, shuffle=True)
pos_ratio = train_target[train_target == 1].shape[0] / len(train_idx)
logging.info("Pos_ratio %.4f" % pos_ratio)
train_idx, valid_idx, test_idx, train_target, valid_target, test_target = numpy_to_torch(
train_idx, valid_idx, test_idx, train_target, valid_target, test_target
)
n_classes = train_target.max().item() + 1
print("Number of classes: {}".format(n_classes), "Number of node types: {}".format(num_node_types))
model = Model(node_feats.size(1), args.n_hid, num_node_types, n_classes, steps, dropout=args.dropout, use_norm=not args.no_norm, in_nl=args.in_nl).cuda()
model.init_index(train_idx, train_target, valid_idx, valid_target)
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.lr,
weight_decay=args.wd
)
timestamp = time.time()
timestamp = datetime.datetime.fromtimestamp(int(timestamp)).strftime('%Y-%m-%d %H-%M-%S')
dir_saver = './checkpoint/' + timestamp
path_saver = os.path.join(dir_saver, '{}_{}.pkl'.format(args.dataset, 'darts'))
best_val = None
final = None
anchor = None
patience = 0
for epoch in range(args.epochs):
train_loss = train(node_feats, node_types, adjs_pt, train_idx, train_target, model, optimizer)
val_loss, f1_val, test_score, test_score_ad = infer(
node_feats, node_types, adjs_pt, valid_idx, valid_target, test_idx, test_target, model)
logging.info("Epoch {}; Train err {}; Val err {}\n".format(epoch + 1, train_loss, val_loss))
if best_val is None or val_loss < best_val:
best_val = val_loss
final = test_score
final_ad = test_score_ad
if not os.path.exists(dir_saver):
os.mkdir(dir_saver)
print(' Saving model ...')
torch.save(model.state_dict(), path_saver)
anchor = epoch + 1
patience = 0
else:
patience += 1
if patience == 50 and epoch >= 100:
#pass
break
logging.info("Best val {} at epoch {}; Test score: F1-macro {}, AUC {}, GMean {}".format(
best_val, anchor, final[0], final[1], final[2]))
logging.info("True Positive Rate {}; True Negative Rate {}".format(final[3], final[4]))
logging.info("Threshold = 0.2: F1-macro {}, GMean {}".format(final_ad[0], final_ad[1]))
logging.info("True Positive Rate {}; True Negative Rate {}".format(final_ad[2], final_ad[3]))
print('Test score: F1-macro %.5f, AUC %.5f, GMean %.5f' % (final[0], final[1], final[2]))
print("True Positive Rate %.5f; True Negative Rate %.5f" % (final[3], final[4]))
print("Threshold = 0.2: F1-macro %.5f, GMean %.5f" % (final_ad[0], final_ad[1]))
print("True Positive Rate %.5f; True Negative Rate %.5f" % (final_ad[2], final_ad[3]))
def train(node_feats, node_types, adjs, train_idx, train_target, model, optimizer):
model.train()
optimizer.zero_grad()
out = model(node_feats, node_types, adjs, meta_template[0], meta_template[1])
loss = F.cross_entropy(out[train_idx], train_target)
loss.backward()
optimizer.step()
return loss.item()
def infer(node_feats, node_types, adjs, valid_idx, valid_target, test_idx, test_target, model):
model.eval()
with torch.no_grad():
out = model(node_feats, node_types, adjs, meta_template[0], meta_template[1])
loss = F.cross_entropy(out[valid_idx], valid_target)
f1_val = f1_score(valid_target.cpu().numpy(), torch.argmax(out[valid_idx], dim=-1).cpu().numpy(), average='macro')
f1_test = f1_score(test_target.cpu().numpy(), torch.argmax(out[test_idx], dim=-1).cpu().numpy(), average='macro')
prob = F.softmax(out, dim=1).detach().cpu().numpy()
pos_prob = np.array(prob[:, 0])
fpr, tpr, thresholds = metrics.roc_curve(test_target.cpu().numpy(), pos_prob[test_idx.cpu()], pos_label=0)
auc = metrics.auc(fpr, tpr)
confusion_m = metrics.confusion_matrix(test_target.cpu().numpy(), torch.argmax(out[test_idx], dim=-1).cpu().numpy())
tn, fp, fn, tp = confusion_m.ravel()
tpr = tp / (tp + fn)
tnr = tn / (tn + fp)
gmean = (tp * tn / ((tp + fn) * (tn + fp))) ** 0.5
logging.info("In test set: %d, %d, %d, %d" % (tn, fp, fn, tp))
logging.info("True Positive Rate {}; True Negative Rate {}".format(tpr, tnr))
logging.info("Test score: F1-macro {}, GMean {}" .format(f1_test, gmean))
# 调整分类阈值
preds_ad = np.array(prob[:, 1])
preds_ad = torch.IntTensor(preds_ad > 0.2)
f1_ad = f1_score(test_target.cpu().numpy(), preds_ad[test_idx], average="macro")
conf_ad = metrics.confusion_matrix(test_target.cpu().numpy(), preds_ad[test_idx])
tn_ad, fp_ad, fn_ad, tp_ad = conf_ad.ravel()
tpr_ad = tp_ad / (tp_ad + fn_ad)
tnr_ad = tn_ad / (tn_ad + fp_ad)
gmean_ad = (tp_ad * tn_ad / ((tp_ad + fn_ad) * (tn_ad + fp_ad))) ** 0.5
logging.info("Adjust the threshold:")
logging.info("In test set: %d, %d, %d, %d" % (tn_ad, fp_ad, fn_ad, tp_ad))
logging.info("True Positive Rate {}; True Negative Rate {}".format(tpr_ad, tnr_ad))
logging.info("Test score: F1-macro {}, GMean {}".format(f1_ad, gmean_ad))
return loss.item(), f1_val, (f1_test, auc, gmean, tpr, tnr), (f1_ad, gmean_ad, tpr_ad, tnr_ad)
if __name__ == '__main__':
main()