-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_SLTTK.py
521 lines (439 loc) · 22.8 KB
/
train_SLTTK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import datetime
import os
import time
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.cuda import amp
from models import spiking_resnet_imagenet, spiking_resnet, spiking_vgg_bn
from modules import neuron
import argparse
from spikingjelly.clock_driven import functional
from spikingjelly.clock_driven import surrogate as surrogate_sj
from modules import surrogate as surrogate_self
from utils import Bar, Logger, AverageMeter, accuracy
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torchtoolbox.transform import Cutout
from utils.cifar10_dvs import CIFAR10DVS
from spikingjelly.datasets.dvs128_gesture import DVS128Gesture
from utils.augmentation import ToPILImage, Resize, ToTensor
import collections
import random
import numpy as np
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main():
parser = argparse.ArgumentParser(description='SNN training')
parser.add_argument('-seed', default=2022, type=int)
parser.add_argument('-name', default='', type=str, help='specify a name for the checkpoint and log files')
parser.add_argument('-T', default=6, type=int, help='simulating time-steps')
parser.add_argument('-tau', default=1.1, type=float, help='a hyperparameter for the LIF model')
parser.add_argument('-b', default=128, type=int, help='batch size')
parser.add_argument('-epochs', default=300, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-j', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)')
parser.add_argument('-data_dir', type=str, default='./data', help='directory of the used dataset')
parser.add_argument('-dataset', default='cifar10', type=str, help='should be cifar10, cifar100, DVSCIFAR10, dvsgesture, or imagenet')
parser.add_argument('-out_dir', type=str, default='./logs', help='root dir for saving logs and checkpoint')
parser.add_argument('-surrogate', default='triangle', type=str, help='used surrogate function. should be sigmoid, rectangle, or triangle')
parser.add_argument('-resume', type=str, help='resume from the checkpoint path')
parser.add_argument('-pre_train', type=str, help='load a pretrained model. used for imagenet')
parser.add_argument('-amp', action='store_true', help='automatic mixed precision training')
parser.add_argument('-opt', type=str, help='use which optimizer. SGD or AdamW', default='SGD')
parser.add_argument('-lr', default=0.1, type=float, help='learning rate')
parser.add_argument('-momentum', default=0.9, type=float, help='momentum for SGD')
parser.add_argument('-lr_scheduler', default='CosALR', type=str, help='use which schedule. StepLR or CosALR')
parser.add_argument('-step_size', default=100, type=float, help='step_size for StepLR')
parser.add_argument('-gamma', default=0.1, type=float, help='gamma for StepLR')
parser.add_argument('-T_max', default=300, type=int, help='T_max for CosineAnnealingLR')
parser.add_argument('-model', type=str, default='spiking_vgg11_bn', help='use which SNN model')
parser.add_argument('-drop_rate', type=float, default=0.0, help='dropout rate. used for DVSCIFAR10 and dvsgesture')
parser.add_argument('-weight_decay', type=float, default=0)
parser.add_argument('-loss_lambda', type=float, default=0.05, help='the scaling factor for the MSE term in the loss')
parser.add_argument('-mse_n_reg', action='store_true', help='loss function setting')
parser.add_argument('-loss_means', type=float, default=1.0, help='used in the loss function when mse_n_reg=False')
parser.add_argument('-save_init', action='store_true', help='save the initialization of parameters')
parser.add_argument('-K', default=2, type=int, help='the number of trained time steps')
args = parser.parse_args()
print(args)
_seed_ = args.seed
random.seed(_seed_)
torch.manual_seed(_seed_) # use torch.manual_seed() to seed the RNG for all devices (both CPU and CUDA)
torch.cuda.manual_seed_all(_seed_)
np.random.seed(_seed_)
########################################################
# data preparing
########################################################
if args.dataset == 'cifar10' or args.dataset == 'cifar100':
c_in = 3
if args.dataset == 'cifar10':
dataloader = datasets.CIFAR10
num_classes = 10
normalization_mean = (0.4914, 0.4822, 0.4465)
normalization_std = (0.2023, 0.1994, 0.2010)
elif args.dataset == 'cifar100':
dataloader = datasets.CIFAR100
num_classes = 100
normalization_mean = (0.5071, 0.4867, 0.4408)
normalization_std = (0.2675, 0.2565, 0.2761)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
Cutout(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(normalization_mean, normalization_std),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(normalization_mean, normalization_std),
])
trainset = dataloader(root=args.data_dir, train=True, download=True, transform=transform_train)
train_data_loader = data.DataLoader(trainset, batch_size=args.b, shuffle=True, num_workers=args.j)
testset = dataloader(root=args.data_dir, train=False, download=False, transform=transform_test)
test_data_loader = data.DataLoader(testset, batch_size=args.b, shuffle=False, num_workers=args.j)
elif args.dataset == 'DVSCIFAR10':
c_in = 2
num_classes = 10
transform_train = transforms.Compose([
ToPILImage(),
Resize(48),
ToTensor(),
])
transform_test = transforms.Compose([
ToPILImage(),
Resize(48),
ToTensor(),
])
trainset = CIFAR10DVS(args.data_dir, train=True, use_frame=True, frames_num=args.T, split_by='number', normalization=None, transform=transform_train)
train_data_loader = data.DataLoader(trainset, batch_size=args.b, shuffle=True, num_workers=args.j)
testset = CIFAR10DVS(args.data_dir, train=False, use_frame=True, frames_num=args.T, split_by='number', normalization=None, transform=transform_test)
test_data_loader = data.DataLoader(testset, batch_size=args.b, shuffle=False, num_workers=args.j)
elif args.dataset == 'dvsgesture':
c_in = 2
num_classes = 11
trainset = DVS128Gesture(root=args.data_dir, train=True, data_type='frame', frames_number=args.T, split_by='number')
train_data_loader = data.DataLoader(trainset, batch_size=args.b, shuffle=True, num_workers=args.j, drop_last=True, pin_memory=True)
testset = DVS128Gesture(root=args.data_dir, train=False, data_type='frame', frames_number=args.T, split_by='number')
test_data_loader = data.DataLoader(testset, batch_size=args.b, shuffle=False, num_workers=args.j, drop_last=False, pin_memory=True)
elif args.dataset == 'imagenet':
num_classes = 1000
traindir = os.path.join(args.data_dir, 'train')
valdir = os.path.join(args.data_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_data_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=args.b, shuffle=True,
num_workers=args.j, pin_memory=True)
test_data_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.b, shuffle=False,
num_workers=args.j, pin_memory=True)
else:
raise NotImplementedError
##########################################################
# model preparing
##########################################################
if args.surrogate == 'sigmoid':
surrogate_function = surrogate_sj.Sigmoid()
elif args.surrogate == 'rectangle':
surrogate_function = surrogate_self.Rectangle()
elif args.surrogate == 'triangle':
surrogate_function = surrogate_sj.PiecewiseQuadratic()
neuron_model = neuron.SLTTNeuron
if args.dataset == 'cifar10' or args.dataset == 'cifar100':
net = spiking_resnet.__dict__[args.model](neuron=neuron_model, num_classes=num_classes, neuron_dropout=args.drop_rate,
tau=args.tau, surrogate_function=surrogate_function, c_in=c_in, fc_hw=1)
print('using Resnet model.')
elif args.dataset == 'imagenet':
net = spiking_resnet_imagenet.__dict__[args.model](neuron=neuron_model, num_classes=num_classes, neuron_dropout=args.drop_rate,
tau=args.tau, surrogate_function=surrogate_function, c_in=3)
print('using NF-Resnet model.')
elif args.dataset == 'DVSCIFAR10' or args.dataset == 'dvsgesture':
net = spiking_vgg_bn.__dict__[args.model](neuron=neuron_model, num_classes=num_classes, neuron_dropout=args.drop_rate,
tau=args.tau, surrogate_function=surrogate_function, c_in=c_in, fc_hw=1)
print('using VGG model.')
else:
raise NotImplementedError
print('Total Parameters: %.2fM' % (sum(p.numel() for p in net.parameters()) / 1000000.0))
net.cuda()
##########################################################
# optimizer preparing
##########################################################
if args.opt == 'SGD':
optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.opt == 'AdamW':
optimizer = torch.optim.AdamW(net.parameters(), lr=args.lr, weight_decay=args.weight_decay)
else:
raise NotImplementedError(args.opt)
if args.lr_scheduler == 'StepLR':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
elif args.lr_scheduler == 'CosALR':
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.T_max)
else:
raise NotImplementedError(args.lr_scheduler)
scaler = None
if args.amp:
scaler = amp.GradScaler()
##########################################################
# loading models from checkpoint
##########################################################
start_epoch = 0
max_test_acc = 0
if args.resume:
print('resuming...')
checkpoint = torch.load(args.resume, map_location='cpu')
net.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch'] + 1
max_test_acc = checkpoint['max_test_acc']
print('start epoch:', start_epoch, ', max test acc:', max_test_acc)
if args.pre_train:
checkpoint = torch.load(args.pre_train, map_location='cpu')
state_dict2 = collections.OrderedDict([(k, v) for k, v in checkpoint['net'].items()])
net.load_state_dict(state_dict2)
print('use pre-trained model, max test acc:', checkpoint['max_test_acc'])
##########################################################
# output setting
##########################################################
out_dir = os.path.join(args.out_dir, f'SLTTK{args.K}_{args.dataset}_{args.model}_{args.name}_T{args.T}_tau{args.tau}_e{args.epochs}_bs{args.b}_{args.opt}_lr{args.lr}_wd{args.weight_decay}_SG_{args.surrogate}_drop{args.drop_rate}_losslamb{args.loss_lambda}_')
if args.lr_scheduler == 'CosALR':
out_dir += f'CosALR_{args.T_max}'
elif args.lr_scheduler == 'StepLR':
out_dir += f'StepLR_{args.step_size}_{args.gamma}'
else:
raise NotImplementedError(args.lr_scheduler)
if args.amp:
out_dir += '_amp'
if not os.path.exists(out_dir):
os.makedirs(out_dir)
print(f'Mkdir {out_dir}.')
else:
print('out dir already exists:', out_dir)
# save the initialization of parameters
if args.save_init:
checkpoint = {
'net': net.state_dict(),
'epoch': 0,
'max_test_acc': 0.0
}
torch.save(checkpoint, os.path.join(out_dir, 'checkpoint_0.pth'))
with open(os.path.join(out_dir, 'args.txt'), 'w', encoding='utf-8') as args_txt:
args_txt.write(str(args))
writer = SummaryWriter(os.path.join(out_dir, 'logs'), purge_step=start_epoch)
##########################################################
# training and testing
##########################################################
criterion_mse = nn.MSELoss()
for epoch in range(start_epoch, args.epochs):
############### training ###############
start_time = time.time()
net.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(train_data_loader))
train_loss = 0
train_acc = 0
train_samples = 0
batch_idx = 0
for frame, label in train_data_loader:
batch_idx += 1
if args.dataset != 'DVSCIFAR10':
frame = frame.float().cuda()
if args.dataset == 'dvsgesture':
frame = frame.transpose(0, 1)
t_step = args.T
train_step = torch.randperm(args.T)[:args.K]
label = label.cuda()
batch_loss = 0
optimizer.zero_grad()
for t in range(t_step):
if args.dataset == 'DVSCIFAR10':
input_frame = frame[t].float().cuda()
elif args.dataset == 'dvsgesture':
input_frame = frame[t]
else:
input_frame = frame
if args.amp:
if t in train_step:
with amp.autocast():
if t == 0:
out_fr = net(input_frame)
total_fr = out_fr.clone().detach()
else:
out_fr = net(input_frame)
total_fr += out_fr.clone().detach()
# Calculate the loss
if args.loss_lambda > 0.0: # the loss is a cross entropy term plus a mse term
if args.mse_n_reg: # the mse term is not treated as a regularizer
label_one_hot = F.one_hot(label, num_classes).float()
else:
label_one_hot = torch.zeros_like(out_fr).fill_(args.loss_means).to(out_fr.device)
mse_loss = criterion_mse(out_fr, label_one_hot)
loss = ((1 - args.loss_lambda) * F.cross_entropy(out_fr, label) + args.loss_lambda * mse_loss) / t_step
else: # the loss is just a cross entropy term
loss = F.cross_entropy(out_fr, label) / t_step
scaler.scale(loss).backward()
batch_loss += loss.item()
train_loss += loss.item() * label.numel()
else:
with amp.autocast():
with torch.no_grad():
if t == 0:
out_fr = net(input_frame)
total_fr = out_fr.clone().detach()
else:
out_fr = net(input_frame)
total_fr += out_fr.clone().detach()
else:
raise NotImplementedError('Please use amp.')
if args.amp:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
# measure accuracy and record loss
prec1, prec5 = accuracy(total_fr.data, label.data, topk=(1, 5))
losses.update(batch_loss, input_frame.size(0))
top1.update(prec1.item(), input_frame.size(0))
top5.update(prec5.item(), input_frame.size(0))
train_samples += label.numel()
train_acc += (total_fr.argmax(1) == label).float().sum().item()
functional.reset_net(net)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx,
size=len(train_data_loader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
train_loss /= train_samples
train_acc /= train_samples
writer.add_scalar('train_loss', train_loss, epoch)
writer.add_scalar('train_acc', train_acc, epoch)
lr_scheduler.step()
############### testing ###############
net.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(test_data_loader))
test_loss = 0
test_acc = 0
test_samples = 0
batch_idx = 0
with torch.no_grad():
for frame, label in test_data_loader:
batch_idx += 1
if args.dataset != 'DVSCIFAR10':
frame = frame.float().cuda()
if args.dataset == 'dvsgesture':
frame = frame.transpose(0, 1)
label = label.cuda()
t_step = args.T
total_loss = 0
for t in range(t_step):
if args.dataset == 'DVSCIFAR10':
input_frame = frame[t].float().cuda()
elif args.dataset == 'dvsgesture':
input_frame = frame[t]
else:
input_frame = frame
if t == 0:
out_fr = net(input_frame)
total_fr = out_fr.clone().detach()
else:
out_fr = net(input_frame)
total_fr += out_fr.clone().detach()
# Calculate the loss
if args.loss_lambda > 0.0: # the loss is a cross entropy term plus a mse term
if args.mse_n_reg: # the mse term is not treated as a regularizer
label_one_hot = F.one_hot(label, num_classes).float()
else:
label_one_hot = torch.zeros_like(out_fr).fill_(args.loss_means).to(out_fr.device)
mse_loss = criterion_mse(out_fr, label_one_hot)
loss = ((1 - args.loss_lambda) * F.cross_entropy(out_fr, label) + args.loss_lambda * mse_loss) / t_step
else: # the loss is just a cross entropy term
loss = F.cross_entropy(out_fr, label) / t_step
total_loss += loss
test_samples += label.numel()
test_loss += total_loss.item() * label.numel()
test_acc += (total_fr.argmax(1) == label).float().sum().item()
functional.reset_net(net)
# measure accuracy and record loss
prec1, prec5 = accuracy(total_fr.data, label.data, topk=(1, 5))
losses.update(total_loss, input_frame.size(0))
top1.update(prec1.item(), input_frame.size(0))
top5.update(prec5.item(), input_frame.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx,
size=len(test_data_loader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
test_loss /= test_samples
test_acc /= test_samples
writer.add_scalar('test_loss', test_loss, epoch)
writer.add_scalar('test_acc', test_acc, epoch)
############### saving checkpoint ###############
save_max = False
if test_acc > max_test_acc:
max_test_acc = test_acc
save_max = True
checkpoint = {
'net': net.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'max_test_acc': max_test_acc
}
if save_max:
torch.save(checkpoint, os.path.join(out_dir, 'checkpoint_max.pth'))
torch.save(checkpoint, os.path.join(out_dir, 'checkpoint_latest.pth'))
total_time = time.time() - start_time
print(f'epoch={epoch}, train_loss={train_loss}, train_acc={train_acc}, test_loss={test_loss}, test_acc={test_acc}, max_test_acc={max_test_acc}, total_time={total_time}, escape_time={(datetime.datetime.now()+datetime.timedelta(seconds=total_time * (args.epochs - epoch))).strftime("%Y-%m-%d %H:%M:%S")}')
print("after one epoch: %fGB" % (torch.cuda.max_memory_cached(0) / 1024 / 1024 / 1024))
if __name__ == '__main__':
main()