diff --git a/.github/workflows/test-eynollah.yml b/.github/workflows/test-eynollah.yml index 3a33dcf..8a6941f 100644 --- a/.github/workflows/test-eynollah.yml +++ b/.github/workflows/test-eynollah.yml @@ -14,6 +14,12 @@ jobs: python-version: ['3.8', '3.9', '3.10', '3.11'] steps: + - name: clean up + run: | + sudo rm -rf /usr/share/dotnet + sudo rm -rf /opt/ghc + sudo rm -rf "/usr/local/share/boost" + sudo rm -rf "$AGENT_TOOLSDIRECTORY" - uses: actions/checkout@v4 - uses: actions/cache@v4 id: model_cache diff --git a/Makefile b/Makefile index a3b7b95..506fcf7 100644 --- a/Makefile +++ b/Makefile @@ -32,9 +32,9 @@ models_eynollah: models_eynollah.tar.gz models_eynollah.tar.gz: # wget 'https://qurator-data.de/eynollah/2021-04-25/models_eynollah.tar.gz' # wget 'https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed.tar.gz' - # wget 'https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed_savedmodel.tar.gz' + wget 'https://qurator-data.de/eynollah/2022-04-05/models_eynollah.tar.gz' # wget 'https://github.com/qurator-spk/eynollah/releases/download/v0.3.0/models_eynollah.tar.gz' - wget 'https://github.com/qurator-spk/eynollah/releases/download/v0.3.1/models_eynollah.tar.gz' + # wget 'https://github.com/qurator-spk/eynollah/releases/download/v0.3.1/models_eynollah.tar.gz' # Install with pip install: @@ -45,7 +45,7 @@ install-dev: pip install -e . smoke-test: - eynollah -i tests/resources/kant_aufklaerung_1784_0020.tif -o . -m $(PWD)/models_eynollah + eynollah layout -i tests/resources/kant_aufklaerung_1784_0020.tif -o . -m $(PWD)/models_eynollah # Run unit tests test: diff --git a/pyproject.toml b/pyproject.toml index 67a420d..b056cb7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -28,6 +28,7 @@ classifiers = [ [project.scripts] eynollah = "eynollah.cli:main" ocrd-eynollah-segment = "eynollah.ocrd_cli:main" +ocrd-sbb-binarize = "eynollah.ocrd_cli_binarization:cli" [project.urls] Homepage = "https://github.com/qurator-spk/eynollah" diff --git a/requirements.txt b/requirements.txt index f01d319..02450aa 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,7 +2,10 @@ ocrd >= 2.23.3 numpy <1.24.0 scikit-learn >= 0.23.2 -tensorflow == 2.12.1 +tensorflow < 2.13 imutils >= 0.5.3 matplotlib setuptools >= 50 +transformers <= 4.30.2 +torch <= 2.0.1 +numba <= 0.58.1 diff --git a/src/eynollah/cli.py b/src/eynollah/cli.py index 564b8b0..4bf5257 100644 --- a/src/eynollah/cli.py +++ b/src/eynollah/cli.py @@ -1,16 +1,95 @@ import sys import click from ocrd_utils import initLogging, setOverrideLogLevel -from eynollah.eynollah import Eynollah +from eynollah.eynollah import Eynollah, Eynollah_ocr +from eynollah.sbb_binarize import SbbBinarizer +@click.group() +def main(): + pass -@click.command() +@main.command() +@click.option( + "--dir_xml", + "-dx", + help="directory of GT page-xml files", + type=click.Path(exists=True, file_okay=False), +) + +@click.option( + "--dir_out_modal_image", + "-domi", + help="directory where ground truth images would be written", + type=click.Path(exists=True, file_okay=False), +) + +@click.option( + "--dir_out_classes", + "-docl", + help="directory where ground truth classes would be written", + type=click.Path(exists=True, file_okay=False), +) + +@click.option( + "--input_height", + "-ih", + help="input height", +) +@click.option( + "--input_width", + "-iw", + help="input width", +) +@click.option( + "--min_area_size", + "-min", + help="min area size of regions considered for reading order training.", +) + +def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width, min_area_size): + xml_files_ind = os.listdir(dir_xml) + +@main.command() +@click.option('--patches/--no-patches', default=True, help='by enabling this parameter you let the model to see the image in patches.') + +@click.option('--model_dir', '-m', type=click.Path(exists=True, file_okay=False), required=True, help='directory containing models for prediction') + +@click.argument('input_image') + +@click.argument('output_image') +@click.option( + "--dir_in", + "-di", + help="directory of images", + type=click.Path(exists=True, file_okay=False), +) +@click.option( + "--dir_out", + "-do", + help="directory where the binarized images will be written", + type=click.Path(exists=True, file_okay=False), +) + +def binarization(patches, model_dir, input_image, output_image, dir_in, dir_out): + if not dir_out and (dir_in): + print("Error: You used -di but did not set -do") + sys.exit(1) + elif dir_out and not (dir_in): + print("Error: You used -do to write out binarized images but have not set -di") + sys.exit(1) + SbbBinarizer(model_dir).run(image_path=input_image, use_patches=patches, save=output_image, dir_in=dir_in, dir_out=dir_out) + + + + +@main.command() @click.option( "--image", "-i", help="image filename", type=click.Path(exists=True, dir_okay=False), ) + @click.option( "--out", "-o", @@ -140,36 +219,41 @@ help="if this parameter set to true, this tool would ignore page extraction", ) @click.option( - "--log-level", + "--reading_order_machine_based/--heuristic_reading_order", + "-romb/-hro", + is_flag=True, + help="if this parameter set to true, this tool would apply machine based reading order detection", +) +@click.option( + "--do_ocr", + "-ocr/-noocr", + is_flag=True, + help="if this parameter set to true, this tool will try to do ocr", +) +@click.option( + "--num_col_upper", + "-ncu", + help="lower limit of columns in document image", +) +@click.option( + "--num_col_lower", + "-ncl", + help="upper limit of columns in document image", +) +@click.option( + "--skip_layout_and_reading_order", + "-slro/-noslro", + is_flag=True, + help="if this parameter set to true, this tool will ignore layout detection and reading order. It means that textline detection will be done within printspace and contours of textline will be written in xml output file.", +) +@click.option( + "--log_level", "-l", type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']), help="Override log level globally to this", ) -def main( - image, - out, - dir_in, - model, - save_images, - save_layout, - save_deskewed, - save_all, - extract_only_images, - save_page, - enable_plotting, - allow_enhancement, - curved_line, - textline_light, - full_layout, - tables, - right2left, - input_binary, - allow_scaling, - headers_off, - light_version, - ignore_page_extraction, - log_level -): + +def layout(image, out, dir_in, model, save_images, save_layout, save_deskewed, save_all, extract_only_images, save_page, enable_plotting, allow_enhancement, curved_line, textline_light, full_layout, tables, right2left, input_binary, allow_scaling, headers_off, light_version, reading_order_machine_based, do_ocr, num_col_upper, num_col_lower, skip_layout_and_reading_order, ignore_page_extraction, log_level): if log_level: setOverrideLogLevel(log_level) initLogging() @@ -182,6 +266,8 @@ def main( if textline_light and not light_version: print('Error: You used -tll to enable light textline detection but -light is not enabled') sys.exit(1) + if light_version and not textline_light: + print('Error: You used -light without -tll. Light version need light textline to be enabled.') if extract_only_images and (allow_enhancement or allow_scaling or light_version or curved_line or textline_light or full_layout or tables or right2left or headers_off) : print('Error: You used -eoi which can not be enabled alongside light_version -light or allow_scaling -as or allow_enhancement -ae or curved_line -cl or textline_light -tll or full_layout -fl or tables -tab or right2left -r2l or headers_off -ho') sys.exit(1) @@ -208,12 +294,71 @@ def main( headers_off=headers_off, light_version=light_version, ignore_page_extraction=ignore_page_extraction, + reading_order_machine_based=reading_order_machine_based, + do_ocr=do_ocr, + num_col_upper=num_col_upper, + num_col_lower=num_col_lower, + skip_layout_and_reading_order=skip_layout_and_reading_order, ) if dir_in: eynollah.run() else: pcgts = eynollah.run() eynollah.writer.write_pagexml(pcgts) + + +@main.command() +@click.option( + "--dir_in", + "-di", + help="directory of images", + type=click.Path(exists=True, file_okay=False), +) +@click.option( + "--out", + "-o", + help="directory to write output xml data", + type=click.Path(exists=True, file_okay=False), + required=True, +) +@click.option( + "--dir_xmls", + "-dx", + help="directory of xmls", + type=click.Path(exists=True, file_okay=False), +) +@click.option( + "--model", + "-m", + help="directory of models", + type=click.Path(exists=True, file_okay=False), + required=True, +) +@click.option( + "--tr_ocr", + "-trocr/-notrocr", + is_flag=True, + help="if this parameter set to true, transformer ocr will be applied, otherwise cnn_rnn model.", +) +@click.option( + "--log_level", + "-l", + type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']), + help="Override log level globally to this", +) + +def ocr(dir_in, out, dir_xmls, model, tr_ocr, log_level): + if log_level: + setOverrideLogLevel(log_level) + initLogging() + eynollah_ocr = Eynollah_ocr( + dir_xmls=dir_xmls, + dir_in=dir_in, + dir_out=out, + dir_models=model, + tr_ocr=tr_ocr, + ) + eynollah_ocr.run() if __name__ == "__main__": main() diff --git a/src/eynollah/eynollah.py b/src/eynollah/eynollah.py index 511e994..1bc837b 100644 --- a/src/eynollah/eynollah.py +++ b/src/eynollah/eynollah.py @@ -17,7 +17,18 @@ from ocrd_utils import getLogger import cv2 import numpy as np +from transformers import TrOCRProcessor +from PIL import Image +import torch +from difflib import SequenceMatcher as sq +from transformers import VisionEncoderDecoderModel +from numba import cuda +import copy +from scipy.signal import find_peaks +from scipy.ndimage import gaussian_filter1d + os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" +#os.environ['CUDA_VISIBLE_DEVICES'] = '-1' stderr = sys.stderr sys.stderr = open(os.devnull, "w") import tensorflow as tf @@ -26,12 +37,13 @@ sys.stderr = stderr tf.get_logger().setLevel("ERROR") warnings.filterwarnings("ignore") -from scipy.signal import find_peaks import matplotlib.pyplot as plt -from scipy.ndimage import gaussian_filter1d # use tf1 compatibility for keras backend from tensorflow.compat.v1.keras.backend import set_session from tensorflow.keras import layers +import json +import xml.etree.ElementTree as ET +from tensorflow.keras.layers import StringLookup from .utils.contour import ( filter_contours_area_of_image, @@ -79,6 +91,7 @@ from .plot import EynollahPlotter from .writer import EynollahXmlWriter +MIN_AREA_REGION = 0.000001 SLOPE_THRESHOLD = 0.13 RATIO_OF_TWO_MODEL_THRESHOLD = 95.50 #98.45: DPI_THRESHOLD = 298 @@ -166,10 +179,16 @@ def __init__( headers_off=False, light_version=False, ignore_page_extraction=False, + reading_order_machine_based=False, + do_ocr=False, + num_col_upper=None, + num_col_lower=None, + skip_layout_and_reading_order = False, override_dpi=None, logger=None, pcgts=None, ): + self.light_version = light_version if not dir_in: if image_pil: self._imgs = self._cache_images(image_pil=image_pil) @@ -182,6 +201,7 @@ def __init__( self.dir_in = dir_in self.dir_of_all = dir_of_all self.dir_save_page = dir_save_page + self.reading_order_machine_based = reading_order_machine_based self.dir_of_deskewed = dir_of_deskewed self.dir_of_deskewed = dir_of_deskewed self.dir_of_cropped_images=dir_of_cropped_images @@ -199,6 +219,16 @@ def __init__( self.light_version = light_version self.extract_only_images = extract_only_images self.ignore_page_extraction = ignore_page_extraction + self.skip_layout_and_reading_order = skip_layout_and_reading_order + self.ocr = do_ocr + if num_col_upper: + self.num_col_upper = int(num_col_upper) + else: + self.num_col_upper = num_col_upper + if num_col_lower: + self.num_col_lower = int(num_col_lower) + else: + self.num_col_lower = num_col_lower self.pcgts = pcgts if not dir_in: self.plotter = None if not enable_plotting else EynollahPlotter( @@ -217,23 +247,33 @@ def __init__( pcgts=pcgts) self.logger = logger if logger else getLogger('eynollah') self.dir_models = dir_models - self.model_dir_of_enhancement = dir_models + "/eynollah-enhancement_20210425" self.model_dir_of_binarization = dir_models + "/eynollah-binarization_20210425" self.model_dir_of_col_classifier = dir_models + "/eynollah-column-classifier_20210425" self.model_region_dir_p = dir_models + "/eynollah-main-regions-aug-scaling_20210425" self.model_region_dir_p2 = dir_models + "/eynollah-main-regions-aug-rotation_20210425" - self.model_region_dir_fully_np = dir_models + "/eynollah-full-regions-1column_20210425" - self.model_region_dir_fully = dir_models + "/eynollah-full-regions-3+column_20210425" + self.model_region_dir_fully_np = dir_models + "/modelens_full_lay_1__4_3_091124"#"/modelens_full_lay_1_3_031124"#"/modelens_full_lay_13__3_19_241024"#"/model_full_lay_13_241024"#"/modelens_full_lay_13_17_231024"#"/modelens_full_lay_1_2_221024"#"/eynollah-full-regions-1column_20210425" + #self.model_region_dir_fully = dir_models + "/eynollah-full-regions-3+column_20210425" self.model_page_dir = dir_models + "/eynollah-page-extraction_20210425" self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425" self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314" self.model_region_dir_p_ens_light_only_images_extraction = dir_models + "/eynollah-main-regions_20231127_672_org_ens_11_13_16_17_18" + self.model_reading_order_machine_dir = dir_models + "/model_ens_reading_order_machine_based" + self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_e_l_all_sp_0_1_2_3_4_171024"#"/modelens_12sp_elay_0_3_4__3_6_n"#"/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_early12_sp_2_3_5_6_7_8_9_10_12_14_15_16_18"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige" + ##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans" + self.model_region_dir_fully = dir_models + "/modelens_full_lay_1__4_3_091124"#"/modelens_full_lay_1_3_031124"#"/modelens_full_lay_13__3_19_241024"#"/model_full_lay_13_241024"#"/modelens_full_lay_13_17_231024"#"/modelens_full_lay_1_2_221024"#"/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans" if self.textline_light: - self.model_textline_dir = dir_models + "/eynollah-textline_light_20210425" + self.model_textline_dir = dir_models + "/modelens_textline_0_1__2_4_16092024"#"/modelens_textline_1_4_16092024"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_1_3_4_20240915"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_9_12_13_14_15"#"/eynollah-textline_light_20210425"# else: - self.model_textline_dir = dir_models + "/eynollah-textline_20210425" - self.model_tables = dir_models + "/eynollah-tables_20210319" + self.model_textline_dir = dir_models + "/modelens_textline_0_1__2_4_16092024"#"/eynollah-textline_20210425" + if self.ocr: + self.model_ocr_dir = dir_models + "/trocr_model_ens_of_3_checkpoints_201124" + + if self.tables: + if self.light_version: + self.model_table_dir = dir_models + "/modelens_table_0t4_201124" + else: + self.model_table_dir = dir_models + "/eynollah-tables_20210319" self.models = {} @@ -248,8 +288,18 @@ def __init__( self.model_bin = self.our_load_model(self.model_dir_of_binarization) self.model_textline = self.our_load_model(self.model_textline_dir) self.model_region = self.our_load_model(self.model_region_dir_p_ens_light) + self.model_region_1_2 = self.our_load_model(self.model_region_dir_p_1_2_sp_np) + ###self.model_region_fl_new = self.our_load_model(self.model_region_dir_fully_new) self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np) self.model_region_fl = self.our_load_model(self.model_region_dir_fully) + self.model_reading_order_machine = self.our_load_model(self.model_reading_order_machine_dir) + if self.ocr: + self.model_ocr = VisionEncoderDecoderModel.from_pretrained(self.model_ocr_dir) + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + self.processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")#("microsoft/trocr-base-printed")#("microsoft/trocr-base-handwritten") + if self.tables: + self.model_table = self.our_load_model(self.model_table_dir) + self.ls_imgs = os.listdir(self.dir_in) @@ -284,23 +334,36 @@ def __init__( self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np) self.model_region_fl = self.our_load_model(self.model_region_dir_fully) self.model_enhancement = self.our_load_model(self.model_dir_of_enhancement) - + self.model_reading_order_machine = self.our_load_model(self.model_reading_order_machine_dir) + if self.tables: + self.model_table = self.our_load_model(self.model_table_dir) + self.ls_imgs = os.listdir(self.dir_in) + + def _cache_images(self, image_filename=None, image_pil=None): ret = {} + t_c0 = time.time() if image_filename: ret['img'] = cv2.imread(image_filename) - self.dpi = check_dpi(image_filename) + if self.light_version: + self.dpi = 100 + else: + self.dpi = check_dpi(image_filename) else: ret['img'] = pil2cv(image_pil) - self.dpi = check_dpi(image_pil) + if self.light_version: + self.dpi = 100 + else: + self.dpi = check_dpi(image_pil) ret['img_grayscale'] = cv2.cvtColor(ret['img'], cv2.COLOR_BGR2GRAY) for prefix in ('', '_grayscale'): ret[f'img{prefix}_uint8'] = ret[f'img{prefix}'].astype(np.uint8) return ret def reset_file_name_dir(self, image_filename): + t_c = time.time() self._imgs = self._cache_images(image_filename=image_filename) self.image_filename = image_filename @@ -474,7 +537,30 @@ def calculate_width_height_by_columns(self, img, num_col, width_early, label_p_p if label_p_pred[0][int(num_col - 1)] < 0.9 and img_w_new < width_early: img_new = np.copy(img) num_column_is_classified = False - elif label_p_pred[0][int(num_col - 1)] < 0.8 and img_h_new >= 8000: + #elif label_p_pred[0][int(num_col - 1)] < 0.8 and img_h_new >= 8000: + elif img_h_new >= 8000: + img_new = np.copy(img) + num_column_is_classified = False + else: + img_new = resize_image(img, img_h_new, img_w_new) + num_column_is_classified = True + + return img_new, num_column_is_classified + + def calculate_width_height_by_columns_1_2(self, img, num_col, width_early, label_p_pred): + self.logger.debug("enter calculate_width_height_by_columns") + if num_col == 1: + img_w_new = 1000 + img_h_new = int(img.shape[0] / float(img.shape[1]) * 1000) + else: + img_w_new = 1300 + img_h_new = int(img.shape[0] / float(img.shape[1]) * 1300) + + if label_p_pred[0][int(num_col - 1)] < 0.9 and img_w_new < width_early: + img_new = np.copy(img) + num_column_is_classified = False + #elif label_p_pred[0][int(num_col - 1)] < 0.8 and img_h_new >= 8000: + elif img_h_new >= 8000: img_new = np.copy(img) num_column_is_classified = False else: @@ -512,6 +598,7 @@ def resize_image_with_column_classifier(self, is_image_enhanced, img_bin): img = self.imread() _, page_coord = self.early_page_for_num_of_column_classification(img) + if not self.dir_in: model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier) if self.input_binary: @@ -560,11 +647,11 @@ def resize_and_enhance_image_with_column_classifier(self,light_version): if self.input_binary: img = self.imread() if self.dir_in: - prediction_bin = self.do_prediction(True, img, self.model_bin) + prediction_bin = self.do_prediction(True, img, self.model_bin, n_batch_inference=5) else: model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) - prediction_bin = self.do_prediction(True, img, model_bin) + prediction_bin = self.do_prediction(True, img, model_bin, n_batch_inference=5) prediction_bin=prediction_bin[:,:,0] prediction_bin = (prediction_bin[:,:]==0)*1 @@ -578,51 +665,107 @@ def resize_and_enhance_image_with_column_classifier(self,light_version): else: img = self.imread() img_bin = None - + + width_early = img.shape[1] t1 = time.time() _, page_coord = self.early_page_for_num_of_column_classification(img_bin) + + self.image_page_org_size = img[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3], :] + self.page_coord = page_coord + if not self.dir_in: model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier) - if self.input_binary: - img_in = np.copy(img) - width_early = img_in.shape[1] - img_in = img_in / 255.0 - img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST) - img_in = img_in.reshape(1, 448, 448, 3) - else: - img_1ch = self.imread(grayscale=True) - width_early = img_1ch.shape[1] - img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] + if self.num_col_upper and not self.num_col_lower: + num_col = self.num_col_upper + label_p_pred = [np.ones(6)] + elif self.num_col_lower and not self.num_col_upper: + num_col = self.num_col_lower + label_p_pred = [np.ones(6)] + + elif (not self.num_col_upper and not self.num_col_lower): + if self.input_binary: + img_in = np.copy(img) + img_in = img_in / 255.0 + img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST) + img_in = img_in.reshape(1, 448, 448, 3) + else: + img_1ch = self.imread(grayscale=True) + width_early = img_1ch.shape[1] + img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] - img_1ch = img_1ch / 255.0 - img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) - img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) - img_in[0, :, :, 0] = img_1ch[:, :] - img_in[0, :, :, 1] = img_1ch[:, :] - img_in[0, :, :, 2] = img_1ch[:, :] + img_1ch = img_1ch / 255.0 + img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) + img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) + img_in[0, :, :, 0] = img_1ch[:, :] + img_in[0, :, :, 1] = img_1ch[:, :] + img_in[0, :, :, 2] = img_1ch[:, :] - if self.dir_in: - label_p_pred = self.model_classifier.predict(img_in, verbose=0) + if self.dir_in: + label_p_pred = self.model_classifier.predict(img_in, verbose=0) + else: + label_p_pred = model_num_classifier.predict(img_in, verbose=0) + num_col = np.argmax(label_p_pred[0]) + 1 + elif (self.num_col_upper and self.num_col_lower) and (self.num_col_upper!=self.num_col_lower): + if self.input_binary: + img_in = np.copy(img) + img_in = img_in / 255.0 + img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST) + img_in = img_in.reshape(1, 448, 448, 3) + else: + img_1ch = self.imread(grayscale=True) + width_early = img_1ch.shape[1] + img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] + + img_1ch = img_1ch / 255.0 + img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) + img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) + img_in[0, :, :, 0] = img_1ch[:, :] + img_in[0, :, :, 1] = img_1ch[:, :] + img_in[0, :, :, 2] = img_1ch[:, :] + + + if self.dir_in: + label_p_pred = self.model_classifier.predict(img_in, verbose=0) + else: + label_p_pred = model_num_classifier.predict(img_in, verbose=0) + num_col = np.argmax(label_p_pred[0]) + 1 + + if num_col > self.num_col_upper: + num_col = self.num_col_upper + label_p_pred = [np.ones(6)] + if num_col < self.num_col_lower: + num_col = self.num_col_lower + label_p_pred = [np.ones(6)] + else: - label_p_pred = model_num_classifier.predict(img_in, verbose=0) - num_col = np.argmax(label_p_pred[0]) + 1 + num_col = self.num_col_upper + label_p_pred = [np.ones(6)] + self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5)) if not self.extract_only_images: if dpi < DPI_THRESHOLD: - img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred) + if light_version and num_col in (1,2): + img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(img, num_col, width_early, label_p_pred) + else: + img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred) if light_version: image_res = np.copy(img_new) else: image_res = self.predict_enhancement(img_new) is_image_enhanced = True else: - num_column_is_classified = True - image_res = np.copy(img) - is_image_enhanced = False + if light_version and num_col in (1,2): + img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(img, num_col, width_early, label_p_pred) + image_res = np.copy(img_new) + is_image_enhanced = True + else: + num_column_is_classified = True + image_res = np.copy(img) + is_image_enhanced = False else: num_column_is_classified = True image_res = np.copy(img) @@ -720,7 +863,7 @@ def start_new_session_and_model(self, model_dir): return model, None - def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): + def do_prediction(self, patches, img, model, n_batch_inference=1, marginal_of_patch_percent=0.1, thresholding_for_some_classes_in_light_version=False, thresholding_for_artificial_class_in_light_version=False): self.logger.debug("enter do_prediction") img_height_model = model.layers[len(model.layers) - 1].output_shape[1] @@ -736,6 +879,14 @@ def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): verbose=0) seg = np.argmax(label_p_pred, axis=3)[0] + + if thresholding_for_artificial_class_in_light_version: + seg_art = label_p_pred[0,:,:,2] + + seg_art[seg_art<0.2] = 0 + seg_art[seg_art>0] =1 + + seg[seg_art==1]=2 seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) prediction_true = resize_image(seg_color, img_h_page, img_w_page) prediction_true = prediction_true.astype(np.uint8) @@ -753,7 +904,7 @@ def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): width_mid = img_width_model - 2 * margin height_mid = img_height_model - 2 * margin img = img / float(255.0) - img = img.astype(np.float16) + #img = img.astype(np.float16) img_h = img.shape[0] img_w = img.shape[1] prediction_true = np.zeros((img_h, img_w, 3)) @@ -762,7 +913,17 @@ def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): nyf = img_h / float(height_mid) nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf) nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf) - + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + + img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) for i in range(nxf): for j in range(nyf): if i == 0: @@ -783,64 +944,318 @@ def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): if index_y_u > img_h: index_y_u = img_h index_y_d = img_h - img_height_model + + list_i_s.append(i) + list_j_s.append(j) + list_x_u.append(index_x_u) + list_x_d.append(index_x_d) + list_y_d.append(index_y_d) + list_y_u.append(index_y_u) + - img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] - label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), - verbose=0) - seg = np.argmax(label_p_pred, axis=3)[0] - seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) - - if i == 0 and j == 0: - seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] - #seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] - #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg - prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color - elif i == nxf - 1 and j == nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] - #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] - #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg - prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color - elif i == 0 and j == nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] - #seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] - #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color - elif i == nxf - 1 and j == 0: - seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] - #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] - #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg - prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color - elif i == 0 and j != 0 and j != nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] - #seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] - #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color - elif i == nxf - 1 and j != 0 and j != nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] - #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] - #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg - prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color - elif i != 0 and i != nxf - 1 and j == 0: - seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] - #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] - #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg - prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color - elif i != 0 and i != nxf - 1 and j == nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] - #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] - #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color - else: - seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] - #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] - #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color - + img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :] + + batch_indexer = batch_indexer + 1 + + if batch_indexer == n_batch_inference: + label_p_pred = model.predict(img_patch,verbose=0) + + seg = np.argmax(label_p_pred, axis=3) + + if thresholding_for_some_classes_in_light_version: + seg_not_base = label_p_pred[:,:,:,4] + seg_not_base[seg_not_base>0.03] =1 + seg_not_base[seg_not_base<1] =0 + + seg_line = label_p_pred[:,:,:,3] + seg_line[seg_line>0.1] =1 + seg_line[seg_line<1] =0 + + seg_background = label_p_pred[:,:,:,0] + seg_background[seg_background>0.25] =1 + seg_background[seg_background<1] =0 + + seg[seg_not_base==1]=4 + seg[seg_background==1]=0 + seg[(seg_line==1) & (seg==0)]=3 + if thresholding_for_artificial_class_in_light_version: + seg_art = label_p_pred[:,:,:,2] + + seg_art[seg_art<0.2] = 0 + seg_art[seg_art>0] =1 + + seg[seg_art==1]=2 + + indexer_inside_batch = 0 + for i_batch, j_batch in zip(list_i_s, list_j_s): + seg_in = seg[indexer_inside_batch,:,:] + seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) + + index_y_u_in = list_y_u[indexer_inside_batch] + index_y_d_in = list_y_d[indexer_inside_batch] + + index_x_u_in = list_x_u[indexer_inside_batch] + index_x_d_in = list_x_d[indexer_inside_batch] + + if i_batch == 0 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + else: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + + indexer_inside_batch = indexer_inside_batch +1 + + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + + img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) + + elif i==(nxf-1) and j==(nyf-1): + label_p_pred = model.predict(img_patch,verbose=0) + + seg = np.argmax(label_p_pred, axis=3) + if thresholding_for_some_classes_in_light_version: + seg_not_base = label_p_pred[:,:,:,4] + seg_not_base[seg_not_base>0.03] =1 + seg_not_base[seg_not_base<1] =0 + + seg_line = label_p_pred[:,:,:,3] + seg_line[seg_line>0.1] =1 + seg_line[seg_line<1] =0 + + seg_background = label_p_pred[:,:,:,0] + seg_background[seg_background>0.25] =1 + seg_background[seg_background<1] =0 + + seg[seg_not_base==1]=4 + seg[seg_background==1]=0 + seg[(seg_line==1) & (seg==0)]=3 + + if thresholding_for_artificial_class_in_light_version: + seg_art = label_p_pred[:,:,:,2] + + seg_art[seg_art<0.2] = 0 + seg_art[seg_art>0] =1 + + seg[seg_art==1]=2 + + indexer_inside_batch = 0 + for i_batch, j_batch in zip(list_i_s, list_j_s): + seg_in = seg[indexer_inside_batch,:,:] + seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) + + index_y_u_in = list_y_u[indexer_inside_batch] + index_y_d_in = list_y_d[indexer_inside_batch] + + index_x_u_in = list_x_u[indexer_inside_batch] + index_x_d_in = list_x_d[indexer_inside_batch] + + if i_batch == 0 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + else: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + + indexer_inside_batch = indexer_inside_batch +1 + + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + + img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) + prediction_true = prediction_true.astype(np.uint8) #del model #gc.collect() return prediction_true - def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_percent=0.1): + def do_padding_with_scale(self,img, scale): + h_n = int(img.shape[0]*scale) + w_n = int(img.shape[1]*scale) + + channel0_avg = int( np.mean(img[:,:,0]) ) + channel1_avg = int( np.mean(img[:,:,1]) ) + channel2_avg = int( np.mean(img[:,:,2]) ) + + h_diff = img.shape[0] - h_n + w_diff = img.shape[1] - w_n + + h_start = int(h_diff / 2.) + w_start = int(w_diff / 2.) + + img_res = resize_image(img, h_n, w_n) + #label_res = resize_image(label, h_n, w_n) + + img_scaled_padded = np.copy(img) + + #label_scaled_padded = np.zeros(label.shape) + + img_scaled_padded[:,:,0] = channel0_avg + img_scaled_padded[:,:,1] = channel1_avg + img_scaled_padded[:,:,2] = channel2_avg + + img_scaled_padded[h_start:h_start+h_n, w_start:w_start+w_n,:] = img_res[:,:,:] + #label_scaled_padded[h_start:h_start+h_n, w_start:w_start+w_n,:] = label_res[:,:,:] + + return img_scaled_padded#, label_scaled_padded + + def do_prediction_new_concept_scatter_nd(self, patches, img, model, n_batch_inference=1, marginal_of_patch_percent=0.1, thresholding_for_some_classes_in_light_version=False, thresholding_for_artificial_class_in_light_version=False): + self.logger.debug("enter do_prediction_new_concept") + + img_height_model = model.layers[-1].output_shape[1] + img_width_model = model.layers[-1].output_shape[2] + + if not patches: + img_h_page = img.shape[0] + img_w_page = img.shape[1] + img = img / 255.0 + img = resize_image(img, img_height_model, img_width_model) + + label_p_pred = model.predict(img[np.newaxis], verbose=0) + seg = np.argmax(label_p_pred, axis=3)[0] + + if thresholding_for_artificial_class_in_light_version: + #seg_text = label_p_pred[0,:,:,1] + #seg_text[seg_text<0.2] =0 + #seg_text[seg_text>0] =1 + #seg[seg_text==1]=1 + + seg_art = label_p_pred[0,:,:,4] + seg_art[seg_art<0.2] =0 + seg_art[seg_art>0] =1 + seg[seg_art==1]=4 + + + seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) + prediction_true = resize_image(seg_color, img_h_page, img_w_page) + prediction_true = prediction_true.astype(np.uint8) + return prediction_true + + if img.shape[0] < img_height_model: + img = resize_image(img, img_height_model, img.shape[1]) + + if img.shape[1] < img_width_model: + img = resize_image(img, img.shape[0], img_width_model) + + self.logger.debug("Patch size: %sx%s", img_height_model, img_width_model) + ##margin = int(marginal_of_patch_percent * img_height_model) + #width_mid = img_width_model - 2 * margin + #height_mid = img_height_model - 2 * margin + img = img / float(255.0) + + img = img.astype(np.float16) + img_h = img.shape[0] + img_w = img.shape[1] + + stride_x = img_width_model - 100 + stride_y = img_height_model - 100 + + one_tensor = tf.ones_like(img) + img_patches = tf.image.extract_patches(images=[img,one_tensor], + sizes=[1, img_height_model, img_width_model, 1], + strides=[1, stride_y, stride_x, 1], + rates=[1, 1, 1, 1], + padding='SAME') + + one_patches = img_patches[1] + img_patches = img_patches[0] + img_patches = tf.squeeze(img_patches) + + img_patches_resh = tf.reshape(img_patches, shape = (img_patches.shape[0]*img_patches.shape[1], img_height_model, img_width_model, 3)) + + pred_patches = model.predict(img_patches_resh, batch_size=n_batch_inference) + + one_patches = tf.squeeze(one_patches) + one_patches = tf.reshape(one_patches, [img_patches.shape[0]*img_patches.shape[1],img_height_model,img_width_model,3]) + + x = tf.range(img.shape[1]) + y = tf.range(img.shape[0]) + x, y = tf.meshgrid(x, y) + indices = tf.stack([y, x], axis=-1) + + indices_patches = tf.image.extract_patches(images=tf.expand_dims(indices, axis=0), sizes=[1, img_height_model, img_width_model, 1], strides=[1, stride_y, stride_x, 1], rates=[1, 1, 1, 1], padding='SAME') + indices_patches = tf.squeeze(indices_patches) + indices_patches = tf.reshape(indices_patches, [img_patches.shape[0]*img_patches.shape[1],img_height_model, img_width_model,2]) + + margin_y = int( (img_height_model - stride_y)/2. ) + margin_x = int( (img_width_model - stride_x)/2. ) + + mask_margin = np.zeros((img_height_model, img_width_model)) + + mask_margin[margin_y:img_height_model-margin_y, margin_x:img_width_model-margin_x] = 1 + + indices_patches_array = indices_patches.numpy() + + for i in range(indices_patches_array.shape[0]): + indices_patches_array[i,:,:,0] = indices_patches_array[i,:,:,0]*mask_margin + indices_patches_array[i,:,:,1] = indices_patches_array[i,:,:,1]*mask_margin + + reconstructed = tf.scatter_nd(indices=indices_patches_array, updates=pred_patches, shape=(img.shape[0],img.shape[1],pred_patches.shape[-1])) + reconstructed_argmax = reconstructed.numpy() + + prediction_true = np.argmax(reconstructed_argmax, axis=2) + prediction_true = prediction_true.astype(np.uint8) + + gc.collect() + return np.repeat(prediction_true[:, :, np.newaxis], 3, axis=2) + + def do_prediction_new_concept(self, patches, img, model, n_batch_inference=1, marginal_of_patch_percent=0.1, thresholding_for_some_classes_in_light_version=False, thresholding_for_artificial_class_in_light_version=False): self.logger.debug("enter do_prediction") img_height_model = model.layers[len(model.layers) - 1].output_shape[1] @@ -849,13 +1264,24 @@ def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_perce if not patches: img_h_page = img.shape[0] img_w_page = img.shape[1] - img = img / float(255.0) + img = img / 255.0 img = resize_image(img, img_height_model, img_width_model) - label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2])) - - + label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]), verbose=0) seg = np.argmax(label_p_pred, axis=3)[0] + + if thresholding_for_artificial_class_in_light_version: + #seg_text = label_p_pred[0,:,:,1] + #seg_text[seg_text<0.2] =0 + #seg_text[seg_text>0] =1 + #seg[seg_text==1]=1 + + seg_art = label_p_pred[0,:,:,4] + seg_art[seg_art<0.2] =0 + seg_art[seg_art>0] =1 + seg[seg_art==1]=4 + + seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) prediction_true = resize_image(seg_color, img_h_page, img_w_page) prediction_true = prediction_true.astype(np.uint8) @@ -882,6 +1308,16 @@ def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_perce nyf = img_h / float(height_mid) nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf) nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf) + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) for i in range(nxf): for j in range(nyf): @@ -903,108 +1339,171 @@ def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_perce if index_y_u > img_h: index_y_u = img_h index_y_d = img_h - img_height_model - - img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] - label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), - verbose=0) - seg = np.argmax(label_p_pred, axis=3)[0] - + + + list_i_s.append(i) + list_j_s.append(j) + list_x_u.append(index_x_u) + list_x_d.append(index_x_d) + list_y_d.append(index_y_d) + list_y_u.append(index_y_u) - seg_not_base = label_p_pred[0,:,:,4] - ##seg2 = -label_p_pred[0,:,:,2] + + img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :] - if self.extract_only_images: - #seg_not_base[seg_not_base>0.3] =1 - seg_not_base[seg_not_base>0.5] =1 - seg_not_base[seg_not_base<1] =0 - else: - seg_not_base[seg_not_base>0.03] =1 - seg_not_base[seg_not_base<1] =0 - - - - seg_test = label_p_pred[0,:,:,1] - ##seg2 = -label_p_pred[0,:,:,2] - - - seg_test[seg_test>0.75] =1 - seg_test[seg_test<1] =0 - - - seg_line = label_p_pred[0,:,:,3] - ##seg2 = -label_p_pred[0,:,:,2] - - - seg_line[seg_line>0.1] =1 - seg_line[seg_line<1] =0 - - if not self.extract_only_images: - seg_background = label_p_pred[0,:,:,0] - seg_background[seg_background>0.25] =1 - seg_background[seg_background<1] =0 - ##seg = seg+seg2 - #seg = label_p_pred[0,:,:,2] - #seg[seg>0.4] =1 - #seg[seg<1] =0 - - ##plt.imshow(seg_test) - ##plt.show() - - ##plt.imshow(seg_background) - ##plt.show() - #seg[seg==1]=0 - #seg[seg_test==1]=1 - ###seg[seg_not_base==1]=4 - if not self.extract_only_images: - seg[seg_background==1]=0 - seg[(seg_line==1) & (seg==0)]=3 - seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) - - if i == 0 and j == 0: - seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] - seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] - mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg - prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color - elif i == nxf - 1 and j == nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] - seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] - mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg - prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color - elif i == 0 and j == nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] - seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] - mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color - elif i == nxf - 1 and j == 0: - seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] - seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] - mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg - prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color - elif i == 0 and j != 0 and j != nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] - seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] - mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color - elif i == nxf - 1 and j != 0 and j != nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] - seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] - mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg - prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color - elif i != 0 and i != nxf - 1 and j == 0: - seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] - seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] - mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg - prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color - elif i != 0 and i != nxf - 1 and j == nyf - 1: - seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] - seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] - mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color - else: - seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] - seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] - mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg - prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color + batch_indexer = batch_indexer + 1 + + if batch_indexer == n_batch_inference: + label_p_pred = model.predict(img_patch,verbose=0) + + seg = np.argmax(label_p_pred, axis=3) + + if thresholding_for_some_classes_in_light_version: + seg_art = label_p_pred[:,:,:,4] + seg_art[seg_art<0.2] =0 + seg_art[seg_art>0] =1 + + seg_line = label_p_pred[:,:,:,3] + seg_line[seg_line>0.1] =1 + seg_line[seg_line<1] =0 + + seg[seg_art==1]=4 + seg[(seg_line==1) & (seg==0)]=3 + if thresholding_for_artificial_class_in_light_version: + seg_art = label_p_pred[:,:,:,2] + + seg_art[seg_art<0.2] = 0 + seg_art[seg_art>0] =1 + + seg[seg_art==1]=2 + + indexer_inside_batch = 0 + for i_batch, j_batch in zip(list_i_s, list_j_s): + seg_in = seg[indexer_inside_batch,:,:] + seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) + + index_y_u_in = list_y_u[indexer_inside_batch] + index_y_d_in = list_y_d[indexer_inside_batch] + + index_x_u_in = list_x_u[indexer_inside_batch] + index_x_d_in = list_x_d[indexer_inside_batch] + + if i_batch == 0 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + else: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + + indexer_inside_batch = indexer_inside_batch +1 + + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + + img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) + + elif i==(nxf-1) and j==(nyf-1): + label_p_pred = model.predict(img_patch,verbose=0) + + seg = np.argmax(label_p_pred, axis=3) + if thresholding_for_some_classes_in_light_version: + seg_art = label_p_pred[:,:,:,4] + seg_art[seg_art<0.2] =0 + seg_art[seg_art>0] =1 + + seg_line = label_p_pred[:,:,:,3] + seg_line[seg_line>0.1] =1 + seg_line[seg_line<1] =0 + + seg[seg_art==1]=4 + seg[(seg_line==1) & (seg==0)]=3 + + if thresholding_for_artificial_class_in_light_version: + seg_art = label_p_pred[:,:,:,2] + + seg_art[seg_art<0.2] = 0 + seg_art[seg_art>0] =1 + + seg[seg_art==1]=2 + + indexer_inside_batch = 0 + for i_batch, j_batch in zip(list_i_s, list_j_s): + seg_in = seg[indexer_inside_batch,:,:] + seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) + + index_y_u_in = list_y_u[indexer_inside_batch] + index_y_d_in = list_y_d[indexer_inside_batch] + + index_x_u_in = list_x_u[indexer_inside_batch] + index_x_d_in = list_x_d[indexer_inside_batch] + + if i_batch == 0 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + else: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + + indexer_inside_batch = indexer_inside_batch +1 + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3)) prediction_true = prediction_true.astype(np.uint8) return prediction_true @@ -1092,6 +1591,90 @@ def early_page_for_num_of_column_classification(self,img_bin): croped_page, page_coord = crop_image_inside_box(box, img) return croped_page, page_coord + def extract_text_regions_new(self, img, patches, cols): + self.logger.debug("enter extract_text_regions") + img_height_h = img.shape[0] + img_width_h = img.shape[1] + if not self.dir_in: + model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully if patches else self.model_region_dir_fully_np) + else: + model_region = self.model_region_fl if patches else self.model_region_fl_np + + if not patches: + if self.light_version: + pass + else: + img = otsu_copy_binary(img) + #img = img.astype(np.uint8) + prediction_regions2 = None + else: + if cols == 1: + if self.light_version: + pass + else: + img = otsu_copy_binary(img) + img = img.astype(np.uint8) + + img = resize_image(img, int(img_height_h * 1000 / float(img_width_h)), 1000) + img = img.astype(np.uint8) + + if cols == 2: + if self.light_version: + pass + else: + img = otsu_copy_binary(img) + img = img.astype(np.uint8) + img = resize_image(img, int(img_height_h * 1300 / float(img_width_h)), 1300) + img = img.astype(np.uint8) + + if cols == 3: + if self.light_version: + pass + else: + img = otsu_copy_binary(img) + img = img.astype(np.uint8) + img = resize_image(img, int(img_height_h * 1600 / float(img_width_h)), 1600) + img = img.astype(np.uint8) + + if cols == 4: + if self.light_version: + pass + else: + img = otsu_copy_binary(img) + img = img.astype(np.uint8) + img = resize_image(img, int(img_height_h * 1900 / float(img_width_h)), 1900) + img = img.astype(np.uint8) + + if cols == 5: + if self.light_version: + pass + else: + img = otsu_copy_binary(img) + img = img.astype(np.uint8) + img = resize_image(img, int(img_height_h * 2200 / float(img_width_h)), 2200) + img = img.astype(np.uint8) + + if cols >= 6: + if self.light_version: + pass + else: + img = otsu_copy_binary(img) + img = img.astype(np.uint8) + img = resize_image(img, int(img_height_h * 2500 / float(img_width_h)), 2500) + img = img.astype(np.uint8) + + marginal_of_patch_percent = 0.1 + + prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent=marginal_of_patch_percent, n_batch_inference=3) + + + ##prediction_regions = self.do_prediction(False, img, model_region, marginal_of_patch_percent=marginal_of_patch_percent, n_batch_inference=3) + + prediction_regions = resize_image(prediction_regions, img_height_h, img_width_h) + self.logger.debug("exit extract_text_regions") + return prediction_regions, prediction_regions + + def extract_text_regions(self, img, patches, cols): self.logger.debug("enter extract_text_regions") img_height_h = img.shape[0] @@ -1111,7 +1694,7 @@ def extract_text_regions(self, img, patches, cols): img2 = img2.astype(np.uint8) img2 = resize_image(img2, int(img_height_h * 0.7), int(img_width_h * 0.7)) marginal_of_patch_percent = 0.1 - prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent) + prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent=marginal_of_patch_percent) prediction_regions2 = resize_image(prediction_regions2, img_height_h, img_width_h) if cols == 2: @@ -1119,7 +1702,7 @@ def extract_text_regions(self, img, patches, cols): img2 = img2.astype(np.uint8) img2 = resize_image(img2, int(img_height_h * 0.4), int(img_width_h * 0.4)) marginal_of_patch_percent = 0.1 - prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent) + prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent=marginal_of_patch_percent) prediction_regions2 = resize_image(prediction_regions2, img_height_h, img_width_h) elif cols > 2: @@ -1127,7 +1710,7 @@ def extract_text_regions(self, img, patches, cols): img2 = img2.astype(np.uint8) img2 = resize_image(img2, int(img_height_h * 0.3), int(img_width_h * 0.3)) marginal_of_patch_percent = 0.1 - prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent) + prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent=marginal_of_patch_percent) prediction_regions2 = resize_image(prediction_regions2, img_height_h, img_width_h) if cols == 2: @@ -1183,14 +1766,48 @@ def extract_text_regions(self, img, patches, cols): img= resize_image(img, int(img_height_h * 0.9), int(img_width_h * 0.9)) marginal_of_patch_percent = 0.1 - prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent) + prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent=marginal_of_patch_percent) prediction_regions = resize_image(prediction_regions, img_height_h, img_width_h) self.logger.debug("exit extract_text_regions") return prediction_regions, prediction_regions2 - def get_slopes_and_deskew_new_light(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew): + def get_slopes_and_deskew_new_light2(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew): + + polygons_of_textlines = return_contours_of_interested_region(textline_mask_tot,1,0.00001) + + + M_main_tot = [cv2.moments(polygons_of_textlines[j]) for j in range(len(polygons_of_textlines))] + cx_main_tot = [(M_main_tot[j]["m10"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))] + cy_main_tot = [(M_main_tot[j]["m01"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))] + + args_textlines = np.array(range(len(polygons_of_textlines))) + all_found_textline_polygons = [] + slopes = [] + all_box_coord =[] + + for index, con_region_ind in enumerate(contours_par): + results = [cv2.pointPolygonTest(con_region_ind, (cx_main_tot[ind], cy_main_tot[ind]), False) for ind in args_textlines ] + results = np.array(results) + + indexes_in = args_textlines[results==1] + + textlines_ins = [polygons_of_textlines[ind] for ind in indexes_in] + + all_found_textline_polygons.append(textlines_ins) + slopes.append(0) + + _, crop_coor = crop_image_inside_box(boxes[index],image_page_rotated) + + all_box_coord.append(crop_coor) + + return slopes, all_found_textline_polygons, boxes, contours, contours_par, all_box_coord, np.array(range(len(contours_par))) + + def get_slopes_and_deskew_new_light(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew): self.logger.debug("enter get_slopes_and_deskew_new") - num_cores = cpu_count() + if len(contours)>15: + num_cores = cpu_count() + else: + num_cores = 1 queue_of_all_params = Queue() processes = [] @@ -1464,8 +2081,6 @@ def do_work_of_slopes_new_light(self, queue_of_all_params, boxes_text, textline_ mask_only_con_region = np.zeros(textline_mask_tot_ea.shape) mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contours_par_per_process[mv]], color=(1, 1, 1)) - # plt.imshow(mask_only_con_region) - # plt.show() if self.textline_light: all_text_region_raw = np.copy(textline_mask_tot_ea) @@ -1561,31 +2176,67 @@ def do_work_of_slopes_new(self, queue_of_all_params, boxes_text, textline_mask_t all_box_coord_per_process.append(crop_coor) queue_of_all_params.put([slopes_per_each_subprocess, textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours]) - def textline_contours(self, img, patches, scaler_h, scaler_w): + def textline_contours(self, img, patches, scaler_h, scaler_w, num_col_classifier=None): self.logger.debug('enter textline_contours') + if self.textline_light: + thresholding_for_artificial_class_in_light_version = True#False + else: + thresholding_for_artificial_class_in_light_version = False if not self.dir_in: - model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir if patches else self.model_textline_dir_np) - img = img.astype(np.uint8) + model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir) + #img = img.astype(np.uint8) img_org = np.copy(img) img_h = img_org.shape[0] img_w = img_org.shape[1] img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w)) + if not self.dir_in: - prediction_textline = self.do_prediction(patches, img, model_textline) + prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3, thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version) + + ###prediction_textline = self.do_prediction_new_concept_scatter_nd(patches, img, model_textline, n_batch_inference=3) + + #if not thresholding_for_artificial_class_in_light_version: + #if num_col_classifier==1: + #prediction_textline_nopatch = self.do_prediction(False, img, model_textline) + #prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0 else: - prediction_textline = self.do_prediction(patches, img, self.model_textline) + prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3,thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version) + + ##prediction_textline = self.do_prediction_new_concept_scatter_nd(patches, img, self.model_textline, n_batch_inference=3) + #if not thresholding_for_artificial_class_in_light_version: + #if num_col_classifier==1: + #prediction_textline_nopatch = self.do_prediction(False, img, model_textline) + #prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0 prediction_textline = resize_image(prediction_textline, img_h, img_w) + + textline_mask_tot_ea_art = (prediction_textline[:,:]==2)*1 + + old_art = np.copy(textline_mask_tot_ea_art) + + if not thresholding_for_artificial_class_in_light_version: + textline_mask_tot_ea_art = textline_mask_tot_ea_art.astype('uint8') + #textline_mask_tot_ea_art = cv2.dilate(textline_mask_tot_ea_art, KERNEL, iterations=1) + + prediction_textline[:,:][textline_mask_tot_ea_art[:,:]==1]=2 + + textline_mask_tot_ea_lines = (prediction_textline[:,:]==1)*1 + textline_mask_tot_ea_lines = textline_mask_tot_ea_lines.astype('uint8') + + if not thresholding_for_artificial_class_in_light_version: + textline_mask_tot_ea_lines = cv2.dilate(textline_mask_tot_ea_lines, KERNEL, iterations=1) + + prediction_textline[:,:][textline_mask_tot_ea_lines[:,:]==1]=1 + + if not thresholding_for_artificial_class_in_light_version: + prediction_textline[:,:][old_art[:,:]==1]=2 + if not self.dir_in: prediction_textline_longshot = self.do_prediction(False, img, model_textline) else: prediction_textline_longshot = self.do_prediction(False, img, self.model_textline) prediction_textline_longshot_true_size = resize_image(prediction_textline_longshot, img_h, img_w) - - if self.textline_light: - return (prediction_textline[:, :, 0]==1)*1, (prediction_textline_longshot_true_size[:, :, 0]==1)*1 - else: - return prediction_textline[:, :, 0], prediction_textline_longshot_true_size[:, :, 0] + return ((prediction_textline[:, :, 0]==1)*1).astype('uint8'), ((prediction_textline_longshot_true_size[:, :, 0]==1)*1).astype('uint8') def do_work_of_slopes(self, q, poly, box_sub, boxes_per_process, textline_mask_tot, contours_per_process): @@ -1653,9 +2304,6 @@ def get_regions_light_v_extract_only_images(self,img,is_image_enhanced, num_col_ else: prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region) - #plt.imshow(prediction_regions_org[:,:,0]) - #plt.show() - prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h ) image_page, page_coord, cont_page = self.extract_page() @@ -1704,8 +2352,6 @@ def get_regions_light_v_extract_only_images(self,img,is_image_enhanced, num_col_ ###image_boundary_of_doc[:, :6] = 1 ###image_boundary_of_doc[:, text_regions_p_true.shape[1]-6:text_regions_p_true.shape[1]] = 1 - #plt.imshow(image_boundary_of_doc) - #plt.show() polygons_of_images_fin = [] for ploy_img_ind in polygons_of_images: @@ -1739,8 +2385,10 @@ def get_regions_light_v_extract_only_images(self,img,is_image_enhanced, num_col_ polygons_of_images_fin.append(np.array([[page_coord_img[2], page_coord_img[0]], [page_coord_img[3], page_coord_img[0]], [page_coord_img[3], page_coord_img[1]], [page_coord_img[2], page_coord_img[1]]]) ) return text_regions_p_true, erosion_hurts, polygons_lines_xml, polygons_of_images_fin, image_page, page_coord, cont_page - def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier): + + def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier, skip_layout_and_reading_order=False): self.logger.debug("enter get_regions_light_v") + t_in = time.time() erosion_hurts = False img_org = np.copy(img) img_height_h = img_org.shape[0] @@ -1748,14 +2396,14 @@ def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier): #model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) - + #print(num_col_classifier,'num_col_classifier') if num_col_classifier == 1: img_w_new = 1000 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) elif num_col_classifier == 2: - img_w_new = 1500 + img_w_new = 1500#1500 img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) elif num_col_classifier == 3: @@ -1773,62 +2421,183 @@ def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier): img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) img_resized = resize_image(img,img_h_new, img_w_new ) - if not self.dir_in: - model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) - prediction_bin = self.do_prediction(True, img_resized, model_bin) - else: - prediction_bin = self.do_prediction(True, img_resized, self.model_bin) - prediction_bin=prediction_bin[:,:,0] - prediction_bin = (prediction_bin[:,:]==0)*1 - prediction_bin = prediction_bin*255 - - prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) - - prediction_bin = prediction_bin.astype(np.uint16) - #img= np.copy(prediction_bin) - img_bin = np.copy(prediction_bin) - - + t_bin = time.time() - textline_mask_tot_ea = self.run_textline(img_bin) - - if not self.dir_in: - model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light) - prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region) - else: - prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region) + #if (not self.input_binary) or self.full_layout: + #if self.input_binary: + #img_bin = np.copy(img_resized) + ###if (not self.input_binary and self.full_layout) or (not self.input_binary and num_col_classifier >= 30): + ###if not self.dir_in: + ###model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) + ###prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5) + ###else: + ###prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5) + + ####print("inside bin ", time.time()-t_bin) + ###prediction_bin=prediction_bin[:,:,0] + ###prediction_bin = (prediction_bin[:,:]==0)*1 + ###prediction_bin = prediction_bin*255 - #plt.imshow(prediction_regions_org[:,:,0]) - #plt.show() + ###prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) - prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h ) - textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_height_h, img_width_h ) - - prediction_regions_org=prediction_regions_org[:,:,0] + ###prediction_bin = prediction_bin.astype(np.uint16) + ####img= np.copy(prediction_bin) + ###img_bin = np.copy(prediction_bin) + ###else: + ###img_bin = np.copy(img_resized) + if self.ocr and not self.input_binary: + if not self.dir_in: + model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) + prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5) + else: + prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5) + prediction_bin=prediction_bin[:,:,0] + prediction_bin = (prediction_bin[:,:]==0)*1 + prediction_bin = prediction_bin*255 - mask_lines_only = (prediction_regions_org[:,:] ==3)*1 - - mask_texts_only = (prediction_regions_org[:,:] ==1)*1 - - mask_images_only=(prediction_regions_org[:,:] ==2)*1 - - polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only) - polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001) - - - polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001) + prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) + + prediction_bin = prediction_bin.astype(np.uint16) + #img= np.copy(prediction_bin) + img_bin = np.copy(prediction_bin) + else: + img_bin = np.copy(img_resized) + #print("inside 1 ", time.time()-t_in) - polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001) + ###textline_mask_tot_ea = self.run_textline(img_bin) + textline_mask_tot_ea = self.run_textline(img_resized, num_col_classifier) - text_regions_p_true = np.zeros(prediction_regions_org.shape) - text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3)) + textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_height_h, img_width_h ) - text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2 - text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1)) + #print(self.image_org.shape) + #cv2.imwrite('out_13.png', self.image_page_org_size) - return text_regions_p_true, erosion_hurts, polygons_lines_xml, textline_mask_tot_ea + #plt.imshwo(self.image_page_org_size) + #plt.show() + if not skip_layout_and_reading_order: + #print("inside 2 ", time.time()-t_in) + if not self.dir_in: + if num_col_classifier == 1 or num_col_classifier == 2: + model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np) + if self.image_org.shape[0]/self.image_org.shape[1] > 2.5: + ##prediction_regions_org = self.do_prediction_new_concept_scatter_nd(True, img_resized, model_region, n_batch_inference=1, thresholding_for_some_classes_in_light_version = True) + prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region, n_batch_inference=1, thresholding_for_some_classes_in_light_version = True) + else: + prediction_regions_org = np.zeros((self.image_org.shape[0], self.image_org.shape[1], 3)) + ###prediction_regions_page = self.do_prediction_new_concept_scatter_nd(False, self.image_page_org_size, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True) + prediction_regions_page = self.do_prediction_new_concept(False, self.image_page_org_size, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True) + prediction_regions_org[self.page_coord[0] : self.page_coord[1], self.page_coord[2] : self.page_coord[3],:] = prediction_regions_page + else: + model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np) + prediction_regions_org = self.do_prediction_new_concept(True, resize_image(img_bin, int( (900+ (num_col_classifier-3)*100) *(img_bin.shape[0]/img_bin.shape[1]) ), 900+ (num_col_classifier-3)*100), model_region, n_batch_inference=2, thresholding_for_some_classes_in_light_version=True) + ###prediction_regions_org = self.do_prediction_new_concept_scatter_nd(True, resize_image(img_bin, int( (900+ (num_col_classifier-3)*100) *(img_bin.shape[0]/img_bin.shape[1]) ), 900+ (num_col_classifier-3)*100), model_region, n_batch_inference=2, thresholding_for_some_classes_in_light_version=True) + ##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light) + ##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True) + else: + if num_col_classifier == 1 or num_col_classifier == 2: + if self.image_org.shape[0]/self.image_org.shape[1] > 2.5: + prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region_1_2, n_batch_inference=1, thresholding_for_some_classes_in_light_version=True) + else: + prediction_regions_org = np.zeros((self.image_org.shape[0], self.image_org.shape[1], 3)) + prediction_regions_page = self.do_prediction_new_concept(False, self.image_page_org_size, self.model_region_1_2, n_batch_inference=1, thresholding_for_artificial_class_in_light_version=True) + prediction_regions_org[self.page_coord[0] : self.page_coord[1], self.page_coord[2] : self.page_coord[3],:] = prediction_regions_page + else: + prediction_regions_org = self.do_prediction_new_concept(True, resize_image(img_bin, int( (900+ (num_col_classifier-3)*100) *(img_bin.shape[0]/img_bin.shape[1]) ), 900+ (num_col_classifier-3)*100), self.model_region_1_2, n_batch_inference=2, thresholding_for_some_classes_in_light_version=True) + ###prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True) + + #print("inside 3 ", time.time()-t_in) + + #plt.imshow(prediction_regions_org[:,:,0]) + #plt.show() + + + prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h ) + + img_bin = resize_image(img_bin,img_height_h, img_width_h ) + + prediction_regions_org=prediction_regions_org[:,:,0] + + + mask_lines_only = (prediction_regions_org[:,:] ==3)*1 + + + + mask_texts_only = (prediction_regions_org[:,:] ==1)*1 + + mask_texts_only = mask_texts_only.astype('uint8') + + ##if num_col_classifier == 1 or num_col_classifier == 2: + ###mask_texts_only = cv2.erode(mask_texts_only, KERNEL, iterations=1) + ##mask_texts_only = cv2.dilate(mask_texts_only, KERNEL, iterations=1) + + mask_texts_only = cv2.dilate(mask_texts_only, kernel=np.ones((2,2), np.uint8), iterations=1) + + + mask_images_only=(prediction_regions_org[:,:] ==2)*1 + + polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only) + + + test_khat = np.zeros(prediction_regions_org.shape) + + test_khat = cv2.fillPoly(test_khat, pts = polygons_lines_xml, color=(1,1,1)) + + + #plt.imshow(test_khat[:,:]) + #plt.show() + + #for jv in range(1): + #print(jv, hir_lines_xml[0][232][3]) + #test_khat = np.zeros(prediction_regions_org.shape) + + #test_khat = cv2.fillPoly(test_khat, pts = [polygons_lines_xml[232]], color=(1,1,1)) + + + #plt.imshow(test_khat[:,:]) + #plt.show() + + + polygons_lines_xml = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001) + + + test_khat = np.zeros(prediction_regions_org.shape) + + test_khat = cv2.fillPoly(test_khat, pts = polygons_lines_xml, color=(1,1,1)) + + + #plt.imshow(test_khat[:,:]) + #plt.show() + #sys.exit() + + polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001) + + ##polygons_of_only_texts = self.dilate_textregions_contours(polygons_of_only_texts) + + + polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001) + + text_regions_p_true = np.zeros(prediction_regions_org.shape) + + text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3)) + + text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2 + + text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1)) + + #plt.imshow(textline_mask_tot_ea) + #plt.show() + + textline_mask_tot_ea[(text_regions_p_true==0) | (text_regions_p_true==4) ] = 0 + + #plt.imshow(textline_mask_tot_ea) + #plt.show() + #print("inside 4 ", time.time()-t_in) + return text_regions_p_true, erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin + else: + img_bin = resize_image(img_bin,img_height_h, img_width_h ) + return None, erosion_hurts, None, textline_mask_tot_ea, img_bin def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): self.logger.debug("enter get_regions_from_xy_2models") @@ -1882,9 +2651,9 @@ def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): img = resize_image(img_org, int(img_org.shape[0]), int(img_org.shape[1])) if self.dir_in: - prediction_regions_org2 = self.do_prediction(True, img, self.model_region_p2, 0.2) + prediction_regions_org2 = self.do_prediction(True, img, self.model_region_p2, marginal_of_patch_percent=0.2) else: - prediction_regions_org2 = self.do_prediction(True, img, model_region, 0.2) + prediction_regions_org2 = self.do_prediction(True, img, model_region, marginal_of_patch_percent=0.2) prediction_regions_org2=resize_image(prediction_regions_org2, img_height_h, img_width_h ) @@ -1917,9 +2686,9 @@ def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): else: if not self.dir_in: model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) - prediction_bin = self.do_prediction(True, img_org, model_bin) + prediction_bin = self.do_prediction(True, img_org, model_bin, n_batch_inference=5) else: - prediction_bin = self.do_prediction(True, img_org, self.model_bin) + prediction_bin = self.do_prediction(True, img_org, self.model_bin, n_batch_inference=5) prediction_bin = resize_image(prediction_bin, img_height_h, img_width_h ) prediction_bin=prediction_bin[:,:,0] @@ -1951,7 +2720,7 @@ def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only) - polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001) + polygons_lines_xml = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001) polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only, 1, 0.00001) polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only, 1, 0.00001) @@ -1970,9 +2739,9 @@ def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): if not self.dir_in: model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) - prediction_bin = self.do_prediction(True, img_org, model_bin) + prediction_bin = self.do_prediction(True, img_org, model_bin, n_batch_inference=5) else: - prediction_bin = self.do_prediction(True, img_org, self.model_bin) + prediction_bin = self.do_prediction(True, img_org, self.model_bin, n_batch_inference=5) prediction_bin = resize_image(prediction_bin, img_height_h, img_width_h ) prediction_bin=prediction_bin[:,:,0] @@ -2019,7 +2788,7 @@ def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): mask_images_only=(prediction_regions_org[:,:] ==2)*1 polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only) - polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001) + polygons_lines_xml = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001) polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001) @@ -2046,17 +2815,29 @@ def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_on try: arg_text_con = [] for ii in range(len(cx_text_only)): + check_if_textregion_located_in_a_box = False for jj in range(len(boxes)): if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]: arg_text_con.append(jj) + check_if_textregion_located_in_a_box = True break + if not check_if_textregion_located_in_a_box: + dists_tr_from_box = [math.sqrt((cx_text_only[ii] - boxes[jj][1]) ** 2 + (cy_text_only[ii] - boxes[jj][2]) ** 2) for jj in range(len(boxes))] + ind_min = np.argmin(dists_tr_from_box) + arg_text_con.append(ind_min) args_contours = np.array(range(len(arg_text_con))) arg_text_con_h = [] for ii in range(len(cx_text_only_h)): + check_if_textregion_located_in_a_box = False for jj in range(len(boxes)): if (x_min_text_only_h[ii] + 80) >= boxes[jj][0] and (x_min_text_only_h[ii] + 80) < boxes[jj][1] and y_cor_x_min_main_h[ii] >= boxes[jj][2] and y_cor_x_min_main_h[ii] < boxes[jj][3]: arg_text_con_h.append(jj) + check_if_textregion_located_in_a_box = True break + if not check_if_textregion_located_in_a_box: + dists_tr_from_box = [math.sqrt((cx_text_only_h[ii] - boxes[jj][1]) ** 2 + (cy_text_only_h[ii] - boxes[jj][2]) ** 2) for jj in range(len(boxes))] + ind_min = np.argmin(dists_tr_from_box) + arg_text_con_h.append(ind_min) args_contours_h = np.array(range(len(arg_text_con_h))) order_by_con_head = np.zeros(len(arg_text_con_h)) @@ -2110,15 +2891,22 @@ def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_on order_text_new = [] for iii in range(len(order_of_texts_tot)): order_text_new.append(np.where(np.array(order_of_texts_tot) == iii)[0][0]) - + except Exception as why: self.logger.error(why) arg_text_con = [] for ii in range(len(cx_text_only)): + check_if_textregion_located_in_a_box = False for jj in range(len(boxes)): if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located arg_text_con.append(jj) + check_if_textregion_located_in_a_box = True break + + if not check_if_textregion_located_in_a_box: + dists_tr_from_box = [math.sqrt((cx_text_only[ii] - boxes[jj][1]) ** 2 + (cy_text_only[ii] - boxes[jj][2]) ** 2) for jj in range(len(boxes))] + ind_min = np.argmin(dists_tr_from_box) + arg_text_con.append(ind_min) args_contours = np.array(range(len(arg_text_con))) order_by_con_main = np.zeros(len(arg_text_con)) @@ -2127,10 +2915,16 @@ def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_on arg_text_con_h = [] for ii in range(len(cx_text_only_h)): + check_if_textregion_located_in_a_box = False for jj in range(len(boxes)): if cx_text_only_h[ii] >= boxes[jj][0] and cx_text_only_h[ii] < boxes[jj][1] and cy_text_only_h[ii] >= boxes[jj][2] and cy_text_only_h[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located arg_text_con_h.append(jj) + check_if_textregion_located_in_a_box = True break + if not check_if_textregion_located_in_a_box: + dists_tr_from_box = [math.sqrt((cx_text_only_h[ii] - boxes[jj][1]) ** 2 + (cy_text_only_h[ii] - boxes[jj][2]) ** 2) for jj in range(len(boxes))] + ind_min = np.argmin(dists_tr_from_box) + arg_text_con_h.append(ind_min) args_contours_h = np.array(range(len(arg_text_con_h))) order_by_con_head = np.zeros(len(arg_text_con_h)) @@ -2182,6 +2976,7 @@ def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_on order_text_new = [] for iii in range(len(order_of_texts_tot)): order_text_new.append(np.where(np.array(order_of_texts_tot) == iii)[0][0]) + return order_text_new, id_of_texts_tot def do_order_of_regions_no_full_layout(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot): @@ -2191,10 +2986,16 @@ def do_order_of_regions_no_full_layout(self, contours_only_text_parent, contours try: arg_text_con = [] for ii in range(len(cx_text_only)): + check_if_textregion_located_in_a_box = False for jj in range(len(boxes)): if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]: arg_text_con.append(jj) + check_if_textregion_located_in_a_box = True break + if not check_if_textregion_located_in_a_box: + dists_tr_from_box = [math.sqrt((cx_text_only[ii] - boxes[jj][1]) ** 2 + (cy_text_only[ii] - boxes[jj][2]) ** 2) for jj in range(len(boxes))] + ind_min = np.argmin(dists_tr_from_box) + arg_text_con.append(ind_min) args_contours = np.array(range(len(arg_text_con))) order_by_con_main = np.zeros(len(arg_text_con)) @@ -2236,10 +3037,16 @@ def do_order_of_regions_no_full_layout(self, contours_only_text_parent, contours self.logger.error(why) arg_text_con = [] for ii in range(len(cx_text_only)): + check_if_textregion_located_in_a_box = False for jj in range(len(boxes)): if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located arg_text_con.append(jj) + check_if_textregion_located_in_a_box = True break + if not check_if_textregion_located_in_a_box: + dists_tr_from_box = [math.sqrt((cx_text_only[ii] - boxes[jj][1]) ** 2 + (cy_text_only[ii] - boxes[jj][2]) ** 2) for jj in range(len(boxes))] + ind_min = np.argmin(dists_tr_from_box) + arg_text_con.append(ind_min) args_contours = np.array(range(len(arg_text_con))) order_by_con_main = np.zeros(len(arg_text_con)) @@ -2505,93 +3312,106 @@ def get_tables_from_model(self, img, num_col_classifier): img_height_h = img_org.shape[0] img_width_h = img_org.shape[1] - model_region, session_region = self.start_new_session_and_model(self.model_tables) - patches = False - if num_col_classifier < 4 and num_col_classifier > 2: - prediction_table = self.do_prediction(patches, img, model_region) - pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), model_region) - pre_updown = cv2.flip(pre_updown, -1) - - prediction_table[:,:,0][pre_updown[:,:,0]==1]=1 - prediction_table = prediction_table.astype(np.int16) - - elif num_col_classifier ==2: - height_ext = 0#int( img.shape[0]/4. ) - h_start = int(height_ext/2.) - width_ext = int( img.shape[1]/8. ) - w_start = int(width_ext/2.) + if self.dir_in: + pass + else: + self.model_table, _ = self.start_new_session_and_model(self.model_table_dir) - height_new = img.shape[0]+height_ext - width_new = img.shape[1]+width_ext - - img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 - img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] - - prediction_ext = self.do_prediction(patches, img_new, model_region) - pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), model_region) - pre_updown = cv2.flip(pre_updown, -1) - - prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] - prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] - - prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 - prediction_table = prediction_table.astype(np.int16) - - elif num_col_classifier ==1: - height_ext = 0# int( img.shape[0]/4. ) - h_start = int(height_ext/2.) - width_ext = int( img.shape[1]/4. ) - w_start = int(width_ext/2.) + patches = False - height_new = img.shape[0]+height_ext - width_new = img.shape[1]+width_ext + if self.light_version: + prediction_table = self.do_prediction_new_concept(patches, img, self.model_table) + prediction_table = prediction_table.astype(np.int16) + return prediction_table[:,:,0] + else: + if num_col_classifier < 4 and num_col_classifier > 2: + prediction_table = self.do_prediction(patches, img, self.model_table) + pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), self.model_table) + pre_updown = cv2.flip(pre_updown, -1) + + prediction_table[:,:,0][pre_updown[:,:,0]==1]=1 + prediction_table = prediction_table.astype(np.int16) + + elif num_col_classifier ==2: + height_ext = 0#int( img.shape[0]/4. ) + h_start = int(height_ext/2.) + width_ext = int( img.shape[1]/8. ) + w_start = int(width_ext/2.) - img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 - img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] + height_new = img.shape[0]+height_ext + width_new = img.shape[1]+width_ext + + img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 + img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] - prediction_ext = self.do_prediction(patches, img_new, model_region) - pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), model_region) - pre_updown = cv2.flip(pre_updown, -1) - - prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] - prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] + prediction_ext = self.do_prediction(patches, img_new, self.model_table) + pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), self.model_table) + pre_updown = cv2.flip(pre_updown, -1) + + prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] + prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] + + prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 + prediction_table = prediction_table.astype(np.int16) + + elif num_col_classifier ==1: + height_ext = 0# int( img.shape[0]/4. ) + h_start = int(height_ext/2.) + width_ext = int( img.shape[1]/4. ) + w_start = int(width_ext/2.) - prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 - prediction_table = prediction_table.astype(np.int16) + height_new = img.shape[0]+height_ext + width_new = img.shape[1]+width_ext + + img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 + img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] - else: - prediction_table = np.zeros(img.shape) - img_w_half = int(img.shape[1]/2.) + prediction_ext = self.do_prediction(patches, img_new, self.model_table) + pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), self.model_table) + pre_updown = cv2.flip(pre_updown, -1) + + prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] + prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] + + prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 + prediction_table = prediction_table.astype(np.int16) - pre1 = self.do_prediction(patches, img[:,0:img_w_half,:], model_region) - pre2 = self.do_prediction(patches, img[:,img_w_half:,:], model_region) - pre_full = self.do_prediction(patches, img[:,:,:], model_region) - pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), model_region) - pre_updown = cv2.flip(pre_updown, -1) - - prediction_table_full_erode = cv2.erode(pre_full[:,:,0], KERNEL, iterations=4) - prediction_table_full_erode = cv2.dilate(prediction_table_full_erode, KERNEL, iterations=4) - - prediction_table_full_updown_erode = cv2.erode(pre_updown[:,:,0], KERNEL, iterations=4) - prediction_table_full_updown_erode = cv2.dilate(prediction_table_full_updown_erode, KERNEL, iterations=4) + else: + prediction_table = np.zeros(img.shape) + img_w_half = int(img.shape[1]/2.) + + pre1 = self.do_prediction(patches, img[:,0:img_w_half,:], self.model_table) + pre2 = self.do_prediction(patches, img[:,img_w_half:,:], self.model_table) + pre_full = self.do_prediction(patches, img[:,:,:], self.model_table) + pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), self.model_table) + pre_updown = cv2.flip(pre_updown, -1) + + prediction_table_full_erode = cv2.erode(pre_full[:,:,0], KERNEL, iterations=4) + prediction_table_full_erode = cv2.dilate(prediction_table_full_erode, KERNEL, iterations=4) + + prediction_table_full_updown_erode = cv2.erode(pre_updown[:,:,0], KERNEL, iterations=4) + prediction_table_full_updown_erode = cv2.dilate(prediction_table_full_updown_erode, KERNEL, iterations=4) - prediction_table[:,0:img_w_half,:] = pre1[:,:,:] - prediction_table[:,img_w_half:,:] = pre2[:,:,:] - - prediction_table[:,:,0][prediction_table_full_erode[:,:]==1]=1 - prediction_table[:,:,0][prediction_table_full_updown_erode[:,:]==1]=1 - prediction_table = prediction_table.astype(np.int16) + prediction_table[:,0:img_w_half,:] = pre1[:,:,:] + prediction_table[:,img_w_half:,:] = pre2[:,:,:] + + prediction_table[:,:,0][prediction_table_full_erode[:,:]==1]=1 + prediction_table[:,:,0][prediction_table_full_updown_erode[:,:]==1]=1 + prediction_table = prediction_table.astype(np.int16) + + #prediction_table_erode = cv2.erode(prediction_table[:,:,0], self.kernel, iterations=6) + #prediction_table_erode = cv2.dilate(prediction_table_erode, self.kernel, iterations=6) - #prediction_table_erode = cv2.erode(prediction_table[:,:,0], self.kernel, iterations=6) - #prediction_table_erode = cv2.dilate(prediction_table_erode, self.kernel, iterations=6) - - prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20) - prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20) - return prediction_table_erode.astype(np.int16) - - def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts): + prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20) + prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20) + return prediction_table_erode.astype(np.int16) + + def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light): + #print(text_regions_p_1.shape, 'text_regions_p_1 shape run graphics') + #print(erosion_hurts, 'erosion_hurts') + t_in_gr = time.time() img_g = self.imread(grayscale=True, uint8=True) img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3)) @@ -2601,7 +3421,7 @@ def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, img_g3[:, :, 2] = img_g[:, :] image_page, page_coord, cont_page = self.extract_page() - + #print("inside graphics 1 ", time.time() - t_in_gr) if self.tables: table_prediction = self.get_tables_from_model(image_page, num_col_classifier) else: @@ -2612,6 +3432,9 @@ def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, text_regions_p_1 = text_regions_p_1[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] textline_mask_tot_ea = textline_mask_tot_ea[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] + + img_bin_light = img_bin_light[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] + mask_images = (text_regions_p_1[:, :] == 2) * 1 mask_images = mask_images.astype(np.uint8) mask_images = cv2.erode(mask_images[:, :], KERNEL, iterations=10) @@ -2620,7 +3443,7 @@ def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, img_only_regions_with_sep = ((text_regions_p_1[:, :] != 3) & (text_regions_p_1[:, :] != 0)) * 1 img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8) - + #print("inside graphics 2 ", time.time() - t_in_gr) if erosion_hurts: img_only_regions = np.copy(img_only_regions_with_sep[:,:]) else: @@ -2638,8 +3461,32 @@ def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, except Exception as why: self.logger.error(why) num_col = None - return num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea + #print("inside graphics 3 ", time.time() - t_in_gr) + return num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea, img_bin_light + + def run_graphics_and_columns_without_layout(self, textline_mask_tot_ea, img_bin_light): + + #print(text_regions_p_1.shape, 'text_regions_p_1 shape run graphics') + #print(erosion_hurts, 'erosion_hurts') + t_in_gr = time.time() + img_g = self.imread(grayscale=True, uint8=True) + + img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3)) + img_g3 = img_g3.astype(np.uint8) + img_g3[:, :, 0] = img_g[:, :] + img_g3[:, :, 1] = img_g[:, :] + img_g3[:, :, 2] = img_g[:, :] + + image_page, page_coord, cont_page = self.extract_page() + #print("inside graphics 1 ", time.time() - t_in_gr) + + textline_mask_tot_ea = textline_mask_tot_ea[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] + + img_bin_light = img_bin_light[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] + + return page_coord, image_page, textline_mask_tot_ea, img_bin_light, cont_page def run_graphics_and_columns(self, text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts): + t_in_gr = time.time() img_g = self.imread(grayscale=True, uint8=True) img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3)) @@ -2667,13 +3514,11 @@ def run_graphics_and_columns(self, text_regions_p_1, num_col_classifier, num_col img_only_regions_with_sep = ((text_regions_p_1[:, :] != 3) & (text_regions_p_1[:, :] != 0)) * 1 img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8) - if erosion_hurts: img_only_regions = np.copy(img_only_regions_with_sep[:,:]) else: img_only_regions = cv2.erode(img_only_regions_with_sep[:,:], KERNEL, iterations=6) - try: num_col, _ = find_num_col(img_only_regions, num_col_classifier, self.tables, multiplier=6.0) num_col = num_col + 1 @@ -2685,14 +3530,14 @@ def run_graphics_and_columns(self, text_regions_p_1, num_col_classifier, num_col return num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction def run_enhancement(self,light_version): + t_in = time.time() self.logger.info("Resizing and enhancing image...") is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified, img_bin = self.resize_and_enhance_image_with_column_classifier(light_version) self.logger.info("Image was %senhanced.", '' if is_image_enhanced else 'not ') - scale = 1 if is_image_enhanced: if self.allow_enhancement: - img_res = img_res.astype(np.uint8) + #img_res = img_res.astype(np.uint8) self.get_image_and_scales(img_org, img_res, scale) if self.plotter: self.plotter.save_enhanced_image(img_res) @@ -2706,12 +3551,15 @@ def run_enhancement(self,light_version): if self.allow_scaling: img_org, img_res, is_image_enhanced = self.resize_image_with_column_classifier(is_image_enhanced, img_bin) self.get_image_and_scales_after_enhancing(img_org, img_res) + #print("enhancement in ", time.time()-t_in) return img_res, is_image_enhanced, num_col_classifier, num_column_is_classified - def run_textline(self, image_page): - scaler_h_textline = 1 # 1.2#1.2 - scaler_w_textline = 1 # 0.9#1 - textline_mask_tot_ea, _ = self.textline_contours(image_page, True, scaler_h_textline, scaler_w_textline) + def run_textline(self, image_page, num_col_classifier=None): + scaler_h_textline = 1#1.3 # 1.2#1.2 + scaler_w_textline = 1#1.3 # 0.9#1 + #print(image_page.shape) + patches = True + textline_mask_tot_ea, _ = self.textline_contours(image_page, patches, scaler_h_textline, scaler_w_textline, num_col_classifier) if self.textline_light: textline_mask_tot_ea = textline_mask_tot_ea.astype(np.int16) @@ -2720,9 +3568,11 @@ def run_textline(self, image_page): return textline_mask_tot_ea def run_deskew(self, textline_mask_tot_ea): + #print(textline_mask_tot_ea.shape, 'textline_mask_tot_ea deskew') sigma = 2 main_page_deskew = True - slope_deskew = return_deskew_slop(cv2.erode(textline_mask_tot_ea, KERNEL, iterations=2), sigma, main_page_deskew, plotter=self.plotter) + n_total_angles = 30 + slope_deskew = return_deskew_slop(cv2.erode(textline_mask_tot_ea, KERNEL, iterations=2), sigma, n_total_angles, main_page_deskew, plotter=self.plotter) slope_first = 0 if self.plotter: @@ -2744,7 +3594,7 @@ def run_marginals(self, image_page, textline_mask_tot_ea, mask_images, mask_line if self.tables: regions_without_separators[table_prediction==1] = 1 regions_without_separators = regions_without_separators.astype(np.uint8) - text_regions_p = get_marginals(rotate_image(regions_without_separators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, kernel=KERNEL) + text_regions_p = get_marginals(rotate_image(regions_without_separators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, light_version=self.light_version, kernel=KERNEL) except Exception as e: self.logger.error("exception %s", e) @@ -2755,6 +3605,7 @@ def run_marginals(self, image_page, textline_mask_tot_ea, mask_images, mask_line def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts): self.logger.debug('enter run_boxes_no_full_layout') + t_0_box = time.time() if np.abs(slope_deskew) >= SLOPE_THRESHOLD: _, textline_mask_tot_d, text_regions_p_1_n, table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew) text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) @@ -2764,6 +3615,7 @@ def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p if self.tables: regions_without_separators_d[table_prediction_n[:,:] == 1] = 1 regions_without_separators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_separators_new(text_regions_p[:,:,0],img_only_regions) + #print(time.time()-t_0_box,'time box in 1') if self.tables: regions_without_separators[table_prediction ==1 ] = 1 if np.abs(slope_deskew) < SLOPE_THRESHOLD: @@ -2776,7 +3628,7 @@ def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p if np.abs(slope_deskew) >= SLOPE_THRESHOLD: _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) - + #print(time.time()-t_0_box,'time box in 2') self.logger.info("num_col_classifier: %s", num_col_classifier) if num_col_classifier >= 3: @@ -2786,147 +3638,201 @@ def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p else: regions_without_separators_d = regions_without_separators_d.astype(np.uint8) regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) + #print(time.time()-t_0_box,'time box in 3') t1 = time.time() if np.abs(slope_deskew) < SLOPE_THRESHOLD: boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) boxes_d = None self.logger.debug("len(boxes): %s", len(boxes)) + #print(time.time()-t_0_box,'time box in 3.1') - text_regions_p_tables = np.copy(text_regions_p) - text_regions_p_tables[:,:][(table_prediction[:,:] == 1)] = 10 - pixel_line = 3 - img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) - img_revised_tab2, contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction, 10, num_col_classifier) + if self.tables: + if self.light_version: + pass + else: + text_regions_p_tables = np.copy(text_regions_p) + text_regions_p_tables[:,:][(table_prediction[:,:] == 1)] = 10 + pixel_line = 3 + img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) + #print(time.time()-t_0_box,'time box in 3.2') + img_revised_tab2, contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction, 10, num_col_classifier) + #print(time.time()-t_0_box,'time box in 3.3') else: boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) boxes = None self.logger.debug("len(boxes): %s", len(boxes_d)) - text_regions_p_tables = np.copy(text_regions_p_1_n) - text_regions_p_tables =np.round(text_regions_p_tables) - text_regions_p_tables[:,:][(text_regions_p_tables[:,:] != 3) & (table_prediction_n[:,:] == 1)] = 10 - - pixel_line = 3 - img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) - img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction_n, 10, num_col_classifier) - - img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) - img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) - img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) - img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) - + if self.tables: + if self.light_version: + pass + else: + text_regions_p_tables = np.copy(text_regions_p_1_n) + text_regions_p_tables =np.round(text_regions_p_tables) + text_regions_p_tables[:,:][(text_regions_p_tables[:,:] != 3) & (table_prediction_n[:,:] == 1)] = 10 + + pixel_line = 3 + img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) + img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction_n, 10, num_col_classifier) + + img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) + img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) + img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) + img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) + #print(time.time()-t_0_box,'time box in 4') self.logger.info("detecting boxes took %.1fs", time.time() - t1) if self.tables: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - img_revised_tab = np.copy(img_revised_tab2[:,:,0]) - img_revised_tab[:,:][(text_regions_p[:,:] == 1) & (img_revised_tab[:,:] != 10)] = 1 + if self.light_version: + text_regions_p[:,:][table_prediction[:,:]==1] = 10 + img_revised_tab=text_regions_p[:,:] else: - img_revised_tab = np.copy(text_regions_p[:,:]) - img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 - img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 - - text_regions_p[:,:][text_regions_p[:,:]==10] = 0 - text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + img_revised_tab = np.copy(img_revised_tab2[:,:,0]) + img_revised_tab[:,:][(text_regions_p[:,:] == 1) & (img_revised_tab[:,:] != 10)] = 1 + else: + img_revised_tab = np.copy(text_regions_p[:,:]) + img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 + img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 + + text_regions_p[:,:][text_regions_p[:,:]==10] = 0 + text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 else: img_revised_tab=text_regions_p[:,:] #img_revised_tab = text_regions_p[:, :] - polygons_of_images = return_contours_of_interested_region(img_revised_tab, 2) + if self.light_version: + polygons_of_images = return_contours_of_interested_region(text_regions_p, 2) + else: + polygons_of_images = return_contours_of_interested_region(img_revised_tab, 2) pixel_img = 4 min_area_mar = 0.00001 - polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) + if self.light_version: + marginal_mask = (text_regions_p[:,:]==pixel_img)*1 + marginal_mask = marginal_mask.astype('uint8') + marginal_mask = cv2.dilate(marginal_mask, KERNEL, iterations=2) + + polygons_of_marginals = return_contours_of_interested_region(marginal_mask, 1, min_area_mar) + else: + polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) pixel_img = 10 contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) - + #print(time.time()-t_0_box,'time box in 5') self.logger.debug('exit run_boxes_no_full_layout') return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables - def run_boxes_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts): + def run_boxes_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts, img_bin_light): self.logger.debug('enter run_boxes_full_layout') - + t_full0 = time.time() if self.tables: - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n , table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew) - - text_regions_p_1_n = resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1]) - textline_mask_tot_d = resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1]) - table_prediction_n = resize_image(table_prediction_n,text_regions_p.shape[0],text_regions_p.shape[1]) - - regions_without_separators_d=(text_regions_p_1_n[:,:] == 1)*1 - regions_without_separators_d[table_prediction_n[:,:] == 1] = 1 + if self.light_version: + text_regions_p[:,:][table_prediction[:,:]==1] = 10 + img_revised_tab=text_regions_p[:,:] + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n , table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew) + + text_regions_p_1_n = resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1]) + textline_mask_tot_d = resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1]) + table_prediction_n = resize_image(table_prediction_n,text_regions_p.shape[0],text_regions_p.shape[1]) + + regions_without_separators_d=(text_regions_p_1_n[:,:] == 1)*1 + regions_without_separators_d[table_prediction_n[:,:] == 1] = 1 + else: + text_regions_p_1_n = None + textline_mask_tot_d = None + regions_without_separators_d = None + regions_without_separators = (text_regions_p[:,:] == 1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) + regions_without_separators[table_prediction == 1] = 1 + else: - text_regions_p_1_n = None - textline_mask_tot_d = None - regions_without_separators_d = None + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n , table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew) + + text_regions_p_1_n = resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1]) + textline_mask_tot_d = resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1]) + table_prediction_n = resize_image(table_prediction_n,text_regions_p.shape[0],text_regions_p.shape[1]) + + regions_without_separators_d=(text_regions_p_1_n[:,:] == 1)*1 + regions_without_separators_d[table_prediction_n[:,:] == 1] = 1 + else: + text_regions_p_1_n = None + textline_mask_tot_d = None + regions_without_separators_d = None + + regions_without_separators = (text_regions_p[:,:] == 1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) + regions_without_separators[table_prediction == 1] = 1 - regions_without_separators = (text_regions_p[:,:] == 1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) - regions_without_separators[table_prediction == 1] = 1 - - pixel_lines=3 - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, peaks_neg_fin, matrix_of_lines_ch, splitter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) - - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, splitter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier, self.tables, pixel_lines) - - if num_col_classifier>=3: + pixel_lines=3 if np.abs(slope_deskew) < SLOPE_THRESHOLD: - regions_without_separators = regions_without_separators.astype(np.uint8) - regions_without_separators = cv2.erode(regions_without_separators[:,:], KERNEL, iterations=6) + num_col, peaks_neg_fin, matrix_of_lines_ch, splitter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - regions_without_separators_d = regions_without_separators_d.astype(np.uint8) - regions_without_separators_d = cv2.erode(regions_without_separators_d[:,:], KERNEL, iterations=6) - else: - pass - - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) - text_regions_p_tables = np.copy(text_regions_p) - text_regions_p_tables[:,:][(table_prediction[:,:]==1)] = 10 - pixel_line = 3 - img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) - - img_revised_tab2,contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction, 10, num_col_classifier) - - else: - boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) - text_regions_p_tables = np.copy(text_regions_p_1_n) - text_regions_p_tables = np.round(text_regions_p_tables) - text_regions_p_tables[:,:][(text_regions_p_tables[:,:]!=3) & (table_prediction_n[:,:]==1)] = 10 - - pixel_line = 3 - img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) - - img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction_n, 10, num_col_classifier) - img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) + num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, splitter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier, self.tables, pixel_lines) + + if num_col_classifier>=3: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + regions_without_separators = regions_without_separators.astype(np.uint8) + regions_without_separators = cv2.erode(regions_without_separators[:,:], KERNEL, iterations=6) + + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + regions_without_separators_d = regions_without_separators_d.astype(np.uint8) + regions_without_separators_d = cv2.erode(regions_without_separators_d[:,:], KERNEL, iterations=6) + else: + pass + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) + text_regions_p_tables = np.copy(text_regions_p) + text_regions_p_tables[:,:][(table_prediction[:,:]==1)] = 10 + pixel_line = 3 + img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) + + img_revised_tab2,contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction, 10, num_col_classifier) + + else: + boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) + text_regions_p_tables = np.copy(text_regions_p_1_n) + text_regions_p_tables = np.round(text_regions_p_tables) + text_regions_p_tables[:,:][(text_regions_p_tables[:,:]!=3) & (table_prediction_n[:,:]==1)] = 10 + + pixel_line = 3 + img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) + + img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction_n, 10, num_col_classifier) + img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) + - img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) - img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) + img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) + img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) - img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) + img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) - if np.abs(slope_deskew) < 0.13: - img_revised_tab = np.copy(img_revised_tab2[:,:,0]) - else: - img_revised_tab = np.copy(text_regions_p[:,:]) - img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 - img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 - - - ##img_revised_tab=img_revised_tab2[:,:,0] - #img_revised_tab=text_regions_p[:,:] - text_regions_p[:,:][text_regions_p[:,:]==10] = 0 - text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 - #img_revised_tab[img_revised_tab2[:,:,0]==10] =10 + if np.abs(slope_deskew) < 0.13: + img_revised_tab = np.copy(img_revised_tab2[:,:,0]) + else: + img_revised_tab = np.copy(text_regions_p[:,:]) + img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 + img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 + + + ##img_revised_tab=img_revised_tab2[:,:,0] + #img_revised_tab=text_regions_p[:,:] + text_regions_p[:,:][text_regions_p[:,:]==10] = 0 + text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 + #img_revised_tab[img_revised_tab2[:,:,0]==10] =10 pixel_img = 4 min_area_mar = 0.00001 - polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) + + if self.light_version: + marginal_mask = (text_regions_p[:,:]==pixel_img)*1 + marginal_mask = marginal_mask.astype('uint8') + marginal_mask = cv2.dilate(marginal_mask, KERNEL, iterations=2) + + polygons_of_marginals = return_contours_of_interested_region(marginal_mask, 1, min_area_mar) + else: + polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) pixel_img = 10 contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) @@ -2937,24 +3843,46 @@ def run_boxes_full_layout(self, image_page, textline_mask_tot, text_regions_p, s text_regions_p[:, :][text_regions_p[:, :] == 4] = 8 image_page = image_page.astype(np.uint8) - - regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, True, cols=num_col_classifier) - text_regions_p[:,:][regions_fully[:,:,0]==6]=6 - regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) - regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4 - - regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully) - regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier) - if num_col_classifier > 2: - regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0 + #print("full inside 1", time.time()- t_full0) + if self.light_version: + regions_fully, regions_fully_only_drop = self.extract_text_regions_new(img_bin_light, False, cols=num_col_classifier) else: - regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p) - - regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions) + regions_fully, regions_fully_only_drop = self.extract_text_regions_new(image_page, False, cols=num_col_classifier) + #print("full inside 2", time.time()- t_full0) + # 6 is the separators lable in old full layout model + # 4 is the drop capital class in old full layout model + # in the new full layout drop capital is 3 and separators are 5 + + text_regions_p[:,:][regions_fully[:,:,0]==5]=6 + ###regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 3] = 4 + + #text_regions_p[:,:][regions_fully[:,:,0]==6]=6 + ##regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) + ##regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4 + drop_capital_label_in_full_layout_model = 3 + + drops = (regions_fully[:,:,0]==drop_capital_label_in_full_layout_model)*1 + + drops= drops.astype(np.uint8) + + regions_fully[:,:,0][regions_fully[:,:,0]==drop_capital_label_in_full_layout_model] = 1 + + drops = cv2.erode(drops[:,:], KERNEL, iterations=1) + regions_fully[:,:,0][drops[:,:]==1] = drop_capital_label_in_full_layout_model + + + regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully, drop_capital_label_in_full_layout_model, text_regions_p) + ##regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier) + ##if num_col_classifier > 2: + ##regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0 + ##else: + ##regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p) + + ###regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions) # plt.imshow(regions_fully[:,:,0]) # plt.show() - text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4 - text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4 + text_regions_p[:, :][regions_fully[:, :, 0] == drop_capital_label_in_full_layout_model] = 4 + ####text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4 #plt.imshow(text_regions_p) #plt.show() ####if not self.tables: @@ -2974,7 +3902,9 @@ def run_boxes_full_layout(self, image_page, textline_mask_tot, text_regions_p, s regions_without_separators = (text_regions_p[:, :] == 1) * 1 img_revised_tab = np.copy(text_regions_p[:, :]) polygons_of_images = return_contours_of_interested_region(img_revised_tab, 5) + self.logger.debug('exit run_boxes_full_layout') + #print("full inside 3", time.time()- t_full0) return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables def our_load_model(self, model_file): @@ -2985,312 +3915,2092 @@ def our_load_model(self, model_file): model = load_model(model_file , compile=False,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches}) return model + def do_order_of_regions_with_machine(self,contours_only_text_parent, contours_only_text_parent_h, text_regions_p): + y_len = text_regions_p.shape[0] + x_len = text_regions_p.shape[1] + + img_poly = np.zeros((y_len,x_len), dtype='uint8') + + unique_pix = np.unique(text_regions_p) - def run(self): - """ - Get image and scales, then extract the page of scanned image - """ - self.logger.debug("enter run") + + img_poly[text_regions_p[:,:]==1] = 1 + img_poly[text_regions_p[:,:]==2] = 2 + img_poly[text_regions_p[:,:]==3] = 4 + img_poly[text_regions_p[:,:]==6] = 5 - t0_tot = time.time() + model_ro_machine, _ = self.start_new_session_and_model(self.model_reading_order_machine_dir) - if not self.dir_in: - self.ls_imgs = [1] + height1 =672#448 + width1 = 448#224 + + height2 =672#448 + width2= 448#224 + + height3 =672#448 + width3 = 448#224 - for img_name in self.ls_imgs: - t0 = time.time() - if self.dir_in: - self.reset_file_name_dir(os.path.join(self.dir_in,img_name)) + img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8') + + if contours_only_text_parent_h: + _, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(contours_only_text_parent_h) + for j in range(len(cy_main)): + img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1 + co_text_all = contours_only_text_parent + contours_only_text_parent_h + else: + co_text_all = contours_only_text_parent - if self.extract_only_images: - img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) - self.logger.info("Enhancing took %.1fs ", time.time() - t0) - - text_regions_p_1 ,erosion_hurts, polygons_lines_xml,polygons_of_images,image_page, page_coord, cont_page = self.get_regions_light_v_extract_only_images(img_res, is_image_enhanced, num_col_classifier) - pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], polygons_of_images, [], [], [], [], [], cont_page, [], []) + labels_con = np.zeros((y_len,x_len,len(co_text_all)),dtype='uint8') + for i in range(len(co_text_all)): + img_label = np.zeros((y_len,x_len,3),dtype='uint8') + img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1)) + labels_con[:,:,i] = img_label[:,:,0] + + + img3= np.copy(img_poly) - if self.plotter: - self.plotter.write_images_into_directory(polygons_of_images, image_page) + labels_con = resize_image(labels_con, height1, width1) - if self.dir_in: - self.writer.write_pagexml(pcgts) - else: - return pcgts + img_header_and_sep = resize_image(img_header_and_sep, height1, width1) - else: - img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) - self.logger.info("Enhancing took %.1fs ", time.time() - t0) + img3= resize_image (img3, height3, width3) - t1 = time.time() - if self.light_version: - text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier) - slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) - #self.logger.info("Textregion detection took %.1fs ", time.time() - t1t) - num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea = \ - self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts) - #self.logger.info("run graphics %.1fs ", time.time() - t1t) - textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea) - else: - text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier) - self.logger.info("Textregion detection took %.1fs ", time.time() - t1) + img3 = img3.astype(np.uint16) + + + order_matrix = np.zeros((labels_con.shape[2], labels_con.shape[2]))-1 + inference_bs = 6 + tot_counter = 1 + batch_counter = 0 + i_indexer = [] + j_indexer =[] + + input_1= np.zeros( (inference_bs, height1, width1,3)) + + tot_iteration = int( ( labels_con.shape[2]*(labels_con.shape[2]-1) )/2. ) + full_bs_ite= tot_iteration//inference_bs + last_bs = tot_iteration % inference_bs + + #print(labels_con.shape[2],"number of regions for reading order") + for i in range(labels_con.shape[2]): + for j in range(labels_con.shape[2]): + if j>i: + img1= np.repeat(labels_con[:,:,i][:, :, np.newaxis], 3, axis=2) + img2 = np.repeat(labels_con[:,:,j][:, :, np.newaxis], 3, axis=2) + + img2[:,:,0][img3[:,:]==5] = 2 + img2[:,:,0][img_header_and_sep[:,:]==1] = 3 + + img1[:,:,0][img3[:,:]==5] = 2 + img1[:,:,0][img_header_and_sep[:,:]==1] = 3 + + + i_indexer.append(i) + j_indexer.append(j) + + input_1[batch_counter,:,:,0] = img1[:,:,0]/3. + input_1[batch_counter,:,:,2] = img2[:,:,0]/3. + input_1[batch_counter,:,:,1] = img3[:,:]/5. + + batch_counter = batch_counter+1 + + if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs): + y_pr=model_ro_machine.predict(input_1 , verbose=0) - t1 = time.time() - num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction = \ - self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts) - self.logger.info("Graphics detection took %.1fs ", time.time() - t1) - #self.logger.info('cont_page %s', cont_page) - - if not num_col: - self.logger.info("No columns detected, outputting an empty PAGE-XML") - pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], cont_page, [], []) - self.logger.info("Job done in %.1fs", time.time() - t1) - if self.dir_in: - self.writer.write_pagexml(pcgts) - continue - else: - return pcgts + if batch_counter==inference_bs: + iteration_batches = inference_bs + else: + iteration_batches = last_bs + for jb in range(iteration_batches): + if y_pr[jb][0]>=0.5: + order_class = 1 + else: + order_class = 0 + + order_matrix[i_indexer[jb],j_indexer[jb]] = y_pr[jb][0]#order_class + order_matrix[j_indexer[jb],i_indexer[jb]] = 1-y_pr[jb][0]#int( 1 - order_class) + + batch_counter = 0 + + i_indexer = [] + j_indexer = [] + tot_counter = tot_counter+1 + + + sum_mat = np.sum(order_matrix, axis=1) + index_sort = np.argsort(sum_mat) + index_sort = index_sort[::-1] + + REGION_ID_TEMPLATE = 'region_%04d' + order_of_texts = [] + id_of_texts = [] + for order, id_text in enumerate(index_sort): + order_of_texts.append(id_text) + id_of_texts.append( REGION_ID_TEMPLATE % order ) + + + return order_of_texts, id_of_texts + + def update_list_and_return_first_with_length_bigger_than_one(self,index_element_to_be_updated, innner_index_pr_pos, pr_list, pos_list,list_inp): + list_inp.pop(index_element_to_be_updated) + if len(pr_list)>0: + list_inp.insert(index_element_to_be_updated, pr_list) + else: + index_element_to_be_updated = index_element_to_be_updated -1 + + list_inp.insert(index_element_to_be_updated+1, [innner_index_pr_pos]) + if len(pos_list)>0: + list_inp.insert(index_element_to_be_updated+2, pos_list) + + len_all_elements = [len(i) for i in list_inp] + list_len_bigger_1 = np.where(np.array(len_all_elements)>1) + list_len_bigger_1 = list_len_bigger_1[0] + + if len(list_len_bigger_1)>0: + early_list_bigger_than_one = list_len_bigger_1[0] + else: + early_list_bigger_than_one = -20 + return list_inp, early_list_bigger_than_one + def do_order_of_regions_with_machine_optimized_algorithm(self,contours_only_text_parent, contours_only_text_parent_h, text_regions_p): + y_len = text_regions_p.shape[0] + x_len = text_regions_p.shape[1] + + img_poly = np.zeros((y_len,x_len), dtype='uint8') + + unique_pix = np.unique(text_regions_p) - t1 = time.time() - if not self.light_version: - textline_mask_tot_ea = self.run_textline(image_page) - self.logger.info("textline detection took %.1fs", time.time() - t1) + + img_poly[text_regions_p[:,:]==1] = 1 + img_poly[text_regions_p[:,:]==2] = 2 + img_poly[text_regions_p[:,:]==3] = 4 + img_poly[text_regions_p[:,:]==6] = 5 + + if self.dir_in: + pass + else: + self.model_reading_order_machine, _ = self.start_new_session_and_model(self.model_reading_order_machine_dir) - t1 = time.time() - slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) - self.logger.info("deskewing took %.1fs", time.time() - t1) - t1 = time.time() - #plt.imshow(table_prediction) - #plt.show() + height1 =672#448 + width1 = 448#224 - textline_mask_tot, text_regions_p, image_page_rotated = self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction) - self.logger.info("detection of marginals took %.1fs", time.time() - t1) - t1 = time.time() - if not self.full_layout: - polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts) + height2 =672#448 + width2= 448#224 - if self.full_layout: - polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts) - text_only = ((img_revised_tab[:, :] == 1)) * 1 - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 + height3 =672#448 + width3 = 448#224 + + img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8') + + if contours_only_text_parent_h: + _, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(contours_only_text_parent_h) + + for j in range(len(cy_main)): + img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1 + + co_text_all = contours_only_text_parent + contours_only_text_parent_h + else: + co_text_all = contours_only_text_parent - min_con_area = 0.000005 - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - contours_only_text, hir_on_text = return_contours_of_image(text_only) - contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) - - if len(contours_only_text_parent) > 0: - areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) - areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) - #self.logger.info('areas_cnt_text %s', areas_cnt_text) - contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] - contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] - areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] - index_con_parents = np.argsort(areas_cnt_text_parent) - contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) - areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) - - cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) - cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) - - contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) - contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) - - areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d]) - areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) - - if len(areas_cnt_text_d)>0: - contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] - index_con_parents_d = np.argsort(areas_cnt_text_d) - contours_only_text_parent_d = list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d]) - areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d]) - - cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) - cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) - try: - if len(cx_bigest_d) >= 5: - cx_bigest_d_last5 = cx_bigest_d[-5:] - cy_biggest_d_last5 = cy_biggest_d[-5:] - dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))] - ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d) - else: - cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):] - cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):] - dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))] - ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d) - - cx_bigest_d_big[0] = cx_bigest_d[ind_largest] - cy_biggest_d_big[0] = cy_biggest_d[ind_largest] - except Exception as why: - self.logger.error(why) - - (h, w) = text_only.shape[:2] - center = (w // 2.0, h // 2.0) - M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0) - M_22 = np.array(M)[:2, :2] - p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big]) - x_diff = p_big[0] - cx_bigest_d_big - y_diff = p_big[1] - cy_biggest_d_big + labels_con = np.zeros((y_len,x_len,len(co_text_all)),dtype='uint8') + for i in range(len(co_text_all)): + img_label = np.zeros((y_len,x_len,3),dtype='uint8') + img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1)) + labels_con[:,:,i] = img_label[:,:,0] + + + img3= np.copy(img_poly) - contours_only_text_parent_d_ordered = [] - for i in range(len(contours_only_text_parent)): - p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]]) - p[0] = p[0] - x_diff[0] - p[1] = p[1] - y_diff[0] - dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] - contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) - # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) - # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) - # plt.imshow(img2[:,:,0]) - # plt.show() - else: - contours_only_text_parent_d_ordered = [] - contours_only_text_parent_d = [] - contours_only_text_parent = [] + labels_con = resize_image(labels_con, height1, width1) - else: - contours_only_text_parent_d_ordered = [] - contours_only_text_parent_d = [] - contours_only_text_parent = [] - else: - contours_only_text, hir_on_text = return_contours_of_image(text_only) - contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) - - if len(contours_only_text_parent) > 0: - areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) - areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) - - contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] - contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] - areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] - - index_con_parents = np.argsort(areas_cnt_text_parent) - contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) - areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) - - cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) - cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) - #self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent) - # self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d) - # self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d)) - else: - pass - if self.light_version: - txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first) - else: - txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) - boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) - boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) + img_header_and_sep = resize_image(img_header_and_sep, height1, width1) - if not self.curved_line: - if self.light_version: - if self.textline_light: - slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew) - slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew) - else: - slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) - slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) - else: - slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) - slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) + img3= resize_image (img3, height3, width3) - else: + img3 = img3.astype(np.uint16) + + inference_bs = 3 + input_1= np.zeros( (inference_bs, height1, width1,3)) + starting_list_of_regions = [] + if len(co_text_all)<=1: + starting_list_of_regions.append( list(range(1)) ) + else: + starting_list_of_regions.append( list(range(labels_con.shape[2])) ) + index_update = 0 + index_selected = starting_list_of_regions[0] + #print(labels_con.shape[2],"number of regions for reading order") + while index_update>=0: + ij_list = starting_list_of_regions[index_update] + i = ij_list[0] + ij_list.pop(0) + + pr_list = [] + post_list = [] + + batch_counter = 0 + tot_counter = 1 + + tot_iteration = len(ij_list) + full_bs_ite= tot_iteration//inference_bs + last_bs = tot_iteration % inference_bs + + jbatch_indexer =[] + for j in ij_list: + img1= np.repeat(labels_con[:,:,i][:, :, np.newaxis], 3, axis=2) + img2 = np.repeat(labels_con[:,:,j][:, :, np.newaxis], 3, axis=2) + + img2[:,:,0][img3[:,:]==5] = 2 + img2[:,:,0][img_header_and_sep[:,:]==1] = 3 + + img1[:,:,0][img3[:,:]==5] = 2 + img1[:,:,0][img_header_and_sep[:,:]==1] = 3 - scale_param = 1 - all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew) - all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier) - all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) - all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) + jbatch_indexer.append(j) + + input_1[batch_counter,:,:,0] = img1[:,:,0]/3. + input_1[batch_counter,:,:,2] = img2[:,:,0]/3. + input_1[batch_counter,:,:,1] = img3[:,:]/5. - if self.full_layout: - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) - if self.light_version: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) - else: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + batch_counter = batch_counter+1 + + if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs): + y_pr=self.model_reading_order_machine.predict(input_1 , verbose=0) + + if batch_counter==inference_bs: + iteration_batches = inference_bs else: - #takes long timee - contours_only_text_parent_d_ordered = None - if self.light_version: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + iteration_batches = last_bs + for jb in range(iteration_batches): + if y_pr[jb][0]>=0.5: + post_list.append(jbatch_indexer[jb]) else: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + pr_list.append(jbatch_indexer[jb]) + + batch_counter = 0 + jbatch_indexer = [] + + tot_counter = tot_counter+1 + + starting_list_of_regions, index_update = self.update_list_and_return_first_with_length_bigger_than_one(index_update, i, pr_list, post_list,starting_list_of_regions) - if self.plotter: - self.plotter.save_plot_of_layout(text_regions_p, image_page) - self.plotter.save_plot_of_layout_all(text_regions_p, image_page) + index_sort = [i[0] for i in starting_list_of_regions ] + + REGION_ID_TEMPLATE = 'region_%04d' + order_of_texts = [] + id_of_texts = [] + for order, id_text in enumerate(index_sort): + order_of_texts.append(id_text) + id_of_texts.append( REGION_ID_TEMPLATE % order ) + + + return order_of_texts, id_of_texts + def return_start_and_end_of_common_text_of_textline_ocr(self,textline_image, ind_tot): + width = np.shape(textline_image)[1] + height = np.shape(textline_image)[0] + common_window = int(0.2*width) + + width1 = int ( width/2. - common_window ) + width2 = int ( width/2. + common_window ) + + img_sum = np.sum(textline_image[:,:,0], axis=0) + sum_smoothed = gaussian_filter1d(img_sum, 3) + + peaks_real, _ = find_peaks(sum_smoothed, height=0) + + if len(peaks_real)>70: + print(len(peaks_real), 'len(peaks_real)') - pixel_img = 4 - polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) - all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, kernel=KERNEL, curved_line=self.curved_line) - pixel_lines = 6 + peaks_real = peaks_real[(peaks_realwidth1)] + arg_sort = np.argsort(sum_smoothed[peaks_real]) - if not self.headers_off: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h) - else: - _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h_d_ordered) - elif self.headers_off: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) - else: - _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) + arg_sort4 =arg_sort[::-1][:4] - if num_col_classifier >= 3: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - regions_without_separators = regions_without_separators.astype(np.uint8) - regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6) + peaks_sort_4 = peaks_real[arg_sort][::-1][:4] - else: - regions_without_separators_d = regions_without_separators_d.astype(np.uint8) - regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) + argsort_sorted = np.argsort(peaks_sort_4) + first_4_sorted = peaks_sort_4[argsort_sorted] + y_4_sorted = sum_smoothed[peaks_real][arg_sort4[argsort_sorted]] + #print(first_4_sorted,'first_4_sorted') + + arg_sortnew = np.argsort(y_4_sorted) + peaks_final =np.sort( first_4_sorted[arg_sortnew][2:] ) + + #plt.figure(ind_tot) + #plt.imshow(textline_image) + #plt.plot([peaks_final[0], peaks_final[0]], [0, height-1]) + #plt.plot([peaks_final[1], peaks_final[1]], [0, height-1]) + #plt.savefig('./'+str(ind_tot)+'.png') + + return peaks_final[0], peaks_final[1] + else: + pass + + + def return_start_and_end_of_common_text_of_textline_ocr_without_common_section(self,textline_image, ind_tot): + width = np.shape(textline_image)[1] + height = np.shape(textline_image)[0] + common_window = int(0.06*width) - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) - else: - boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) + width1 = int ( width/2. - common_window ) + width2 = int ( width/2. + common_window ) + + img_sum = np.sum(textline_image[:,:,0], axis=0) + sum_smoothed = gaussian_filter1d(img_sum, 3) + + peaks_real, _ = find_peaks(sum_smoothed, height=0) + + if len(peaks_real)>70: + #print(len(peaks_real), 'len(peaks_real)') - #print(boxes_d,'boxes_d') - #img_once = np.zeros((textline_mask_tot_d.shape[0],textline_mask_tot_d.shape[1])) - #for box_i in boxes_d: - #img_once[int(box_i[2]):int(box_i[3]),int(box_i[0]):int(box_i[1]) ] =1 - #plt.imshow(img_once) - #plt.show() - #print(np.unique(img_once),'img_once') - if self.plotter: - self.plotter.write_images_into_directory(polygons_of_images, image_page) - t_order = time.time() - if self.full_layout: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) - else: - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d) + peaks_real = peaks_real[(peaks_realwidth1)] - pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml) - self.logger.info("Job done in %.1fs", time.time() - t0) + arg_max = np.argmax(sum_smoothed[peaks_real]) - if not self.dir_in: - return pcgts - else: - contours_only_text_parent_h = None - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) - else: - contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d) - pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables) - self.logger.info("Job done in %.1fs", time.time() - t0) - if not self.dir_in: - return pcgts + peaks_final = peaks_real[arg_max] + + #plt.figure(ind_tot) + #plt.imshow(textline_image) + #plt.plot([peaks_final, peaks_final], [0, height-1]) + ##plt.plot([peaks_final[1], peaks_final[1]], [0, height-1]) + #plt.savefig('./'+str(ind_tot)+'.png') + + return peaks_final + else: + return None + def return_start_and_end_of_common_text_of_textline_ocr_new_splitted(self,peaks_real, sum_smoothed, start_split, end_split): + peaks_real = peaks_real[(peaks_realstart_split)] - if self.dir_in: - self.writer.write_pagexml(pcgts) - #self.logger.info("Job done in %.1fs", time.time() - t0) - if self.dir_in: - self.logger.info("All jobs done in %.1fs", time.time() - t0_tot) + arg_sort = np.argsort(sum_smoothed[peaks_real]) + + arg_sort4 =arg_sort[::-1][:4] + + peaks_sort_4 = peaks_real[arg_sort][::-1][:4] + + argsort_sorted = np.argsort(peaks_sort_4) + + first_4_sorted = peaks_sort_4[argsort_sorted] + y_4_sorted = sum_smoothed[peaks_real][arg_sort4[argsort_sorted]] + #print(first_4_sorted,'first_4_sorted') + + arg_sortnew = np.argsort(y_4_sorted) + peaks_final =np.sort( first_4_sorted[arg_sortnew][3:] ) + return peaks_final[0] + + def return_start_and_end_of_common_text_of_textline_ocr_new(self,textline_image, ind_tot): + width = np.shape(textline_image)[1] + height = np.shape(textline_image)[0] + common_window = int(0.15*width) + + width1 = int ( width/2. - common_window ) + width2 = int ( width/2. + common_window ) + mid = int(width/2.) + + img_sum = np.sum(textline_image[:,:,0], axis=0) + sum_smoothed = gaussian_filter1d(img_sum, 3) + + peaks_real, _ = find_peaks(sum_smoothed, height=0) + + if len(peaks_real)>70: + peak_start = self.return_start_and_end_of_common_text_of_textline_ocr_new_splitted(peaks_real, sum_smoothed, width1, mid+2) + + peak_end = self.return_start_and_end_of_common_text_of_textline_ocr_new_splitted(peaks_real, sum_smoothed, mid-2, width2) + + #plt.figure(ind_tot) + #plt.imshow(textline_image) + #plt.plot([peak_start, peak_start], [0, height-1]) + #plt.plot([peak_end, peak_end], [0, height-1]) + #plt.savefig('./'+str(ind_tot)+'.png') + + return peak_start, peak_end + else: + pass + + def return_ocr_of_textline_without_common_section(self, textline_image, model_ocr, processor, device, width_textline, h2w_ratio,ind_tot): + if h2w_ratio > 0.05: + pixel_values = processor(textline_image, return_tensors="pt").pixel_values + generated_ids = model_ocr.generate(pixel_values.to(device)) + generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + else: + + #width = np.shape(textline_image)[1] + #height = np.shape(textline_image)[0] + #common_window = int(0.3*width) + + #width1 = int ( width/2. - common_window ) + #width2 = int ( width/2. + common_window ) + + + split_point = self.return_start_and_end_of_common_text_of_textline_ocr_without_common_section(textline_image, ind_tot) + if split_point: + image1 = textline_image[:, :split_point,:]# image.crop((0, 0, width2, height)) + image2 = textline_image[:, split_point:,:]#image.crop((width1, 0, width, height)) + + #pixel_values1 = processor(image1, return_tensors="pt").pixel_values + #pixel_values2 = processor(image2, return_tensors="pt").pixel_values + + pixel_values_merged = processor([image1,image2], return_tensors="pt").pixel_values + generated_ids_merged = model_ocr.generate(pixel_values_merged.to(device)) + generated_text_merged = processor.batch_decode(generated_ids_merged, skip_special_tokens=True) + + #print(generated_text_merged,'generated_text_merged') + + #generated_ids1 = model_ocr.generate(pixel_values1.to(device)) + #generated_ids2 = model_ocr.generate(pixel_values2.to(device)) + + #generated_text1 = processor.batch_decode(generated_ids1, skip_special_tokens=True)[0] + #generated_text2 = processor.batch_decode(generated_ids2, skip_special_tokens=True)[0] + + #generated_text = generated_text1 + ' ' + generated_text2 + generated_text = generated_text_merged[0] + ' ' + generated_text_merged[1] + + #print(generated_text1,'generated_text1') + #print(generated_text2, 'generated_text2') + #print('########################################') + else: + pixel_values = processor(textline_image, return_tensors="pt").pixel_values + generated_ids = model_ocr.generate(pixel_values.to(device)) + generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + + #print(generated_text,'generated_text') + #print('########################################') + return generated_text + def return_ocr_of_textline(self, textline_image, model_ocr, processor, device, width_textline, h2w_ratio,ind_tot): + if h2w_ratio > 0.05: + pixel_values = processor(textline_image, return_tensors="pt").pixel_values + generated_ids = model_ocr.generate(pixel_values.to(device)) + generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + else: + #width = np.shape(textline_image)[1] + #height = np.shape(textline_image)[0] + #common_window = int(0.3*width) + + #width1 = int ( width/2. - common_window ) + #width2 = int ( width/2. + common_window ) + + try: + width1, width2 = self.return_start_and_end_of_common_text_of_textline_ocr_new(textline_image, ind_tot) + + image1 = textline_image[:, :width2,:]# image.crop((0, 0, width2, height)) + image2 = textline_image[:, width1:,:]#image.crop((width1, 0, width, height)) + + pixel_values1 = processor(image1, return_tensors="pt").pixel_values + pixel_values2 = processor(image2, return_tensors="pt").pixel_values + + generated_ids1 = model_ocr.generate(pixel_values1.to(device)) + generated_ids2 = model_ocr.generate(pixel_values2.to(device)) + + generated_text1 = processor.batch_decode(generated_ids1, skip_special_tokens=True)[0] + generated_text2 = processor.batch_decode(generated_ids2, skip_special_tokens=True)[0] + #print(generated_text1,'generated_text1') + #print(generated_text2, 'generated_text2') + #print('########################################') + + match = sq(None, generated_text1, generated_text2).find_longest_match(0, len(generated_text1), 0, len(generated_text2)) + + generated_text = generated_text1 + generated_text2[match.b+match.size:] + except: + pixel_values = processor(textline_image, return_tensors="pt").pixel_values + generated_ids = model_ocr.generate(pixel_values.to(device)) + generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + + return generated_text + + def return_textline_contour_with_added_box_coordinate(self, textline_contour, box_ind): + textline_contour[:,0] = textline_contour[:,0] + box_ind[2] + textline_contour[:,1] = textline_contour[:,1] + box_ind[0] + return textline_contour + def return_list_of_contours_with_desired_order(self, ls_cons, sorted_indexes): + return [ls_cons[sorted_indexes[index]] for index in range(len(sorted_indexes))] + + def return_it_in_two_groups(self,x_differential): + split = [ind if x_differential[ind]!=x_differential[ind+1] else -1 for ind in range(len(x_differential)-1)] + + split_masked = list( np.array(split[:])[np.array(split[:])!=-1] ) + + if 0 not in split_masked: + split_masked.insert(0, -1) + + split_masked.append(len(x_differential)-1) + + split_masked = np.array(split_masked) +1 + + sums = [np.sum(x_differential[split_masked[ind]:split_masked[ind+1]]) for ind in range(len(split_masked)-1)] + + indexes_to_bec_changed = [ind if ( np.abs(sums[ind-1]) > np.abs(sums[ind]) and np.abs(sums[ind+1]) > np.abs(sums[ind])) else -1 for ind in range(1,len(sums)-1) ] + + indexes_to_bec_changed_filtered = np.array(indexes_to_bec_changed)[np.array(indexes_to_bec_changed)!=-1] + + x_differential_new = np.copy(x_differential) + for i in indexes_to_bec_changed_filtered: + x_differential_new[split_masked[i]:split_masked[i+1]] = -1*np.array(x_differential)[split_masked[i]:split_masked[i+1]] + + return x_differential_new + def dilate_textregions_contours_textline_version(self,all_found_textline_polygons): + #print(all_found_textline_polygons) + + for j in range(len(all_found_textline_polygons)): + for ij in range(len(all_found_textline_polygons[j])): + + con_ind = all_found_textline_polygons[j][ij] + area = cv2.contourArea(con_ind) + con_ind = con_ind.astype(np.float) + + x_differential = np.diff( con_ind[:,0,0]) + y_differential = np.diff( con_ind[:,0,1]) + + + x_differential = gaussian_filter1d(x_differential, 0.1) + y_differential = gaussian_filter1d(y_differential, 0.1) + + x_min = float(np.min( con_ind[:,0,0] )) + y_min = float(np.min( con_ind[:,0,1] )) + + x_max = float(np.max( con_ind[:,0,0] )) + y_max = float(np.max( con_ind[:,0,1] )) + + x_differential_mask_nonzeros = [ ind/abs(ind) if ind!=0 else ind for ind in x_differential] + y_differential_mask_nonzeros = [ ind/abs(ind) if ind!=0 else ind for ind in y_differential] + + abs_diff=abs(abs(x_differential)- abs(y_differential) ) + + inc_x = np.zeros(len(x_differential)+1) + inc_y = np.zeros(len(x_differential)+1) + + + if (y_max-y_min) <= (x_max-x_min): + dilation_m1 = round(area / (x_max-x_min) * 0.12) + else: + dilation_m1 = round(area / (y_max-y_min) * 0.12) + + if dilation_m1>8: + dilation_m1 = 8 + if dilation_m1<6: + dilation_m1 = 6 + #print(dilation_m1, 'dilation_m1') + dilation_m1 = 6 + dilation_m2 = int(dilation_m1/2.) +1 + + for i in range(len(x_differential)): + if abs_diff[i]==0: + inc_x[i+1] = dilation_m2*(-1*y_differential_mask_nonzeros[i]) + inc_y[i+1] = dilation_m2*(x_differential_mask_nonzeros[i]) + elif abs_diff[i]!=0 and x_differential_mask_nonzeros[i]==0 and y_differential_mask_nonzeros[i]!=0: + inc_x[i+1]= dilation_m1*(-1*y_differential_mask_nonzeros[i]) + elif abs_diff[i]!=0 and x_differential_mask_nonzeros[i]!=0 and y_differential_mask_nonzeros[i]==0: + inc_y[i+1] = dilation_m1*(x_differential_mask_nonzeros[i]) + + elif abs_diff[i]!=0 and abs_diff[i]>=3: + if abs(x_differential[i])>abs(y_differential[i]): + inc_y[i+1] = dilation_m1*(x_differential_mask_nonzeros[i]) + else: + inc_x[i+1]= dilation_m1*(-1*y_differential_mask_nonzeros[i]) + else: + inc_x[i+1] = dilation_m2*(-1*y_differential_mask_nonzeros[i]) + inc_y[i+1] = dilation_m2*(x_differential_mask_nonzeros[i]) + + + inc_x[0] = inc_x[-1] + inc_y[0] = inc_y[-1] + + con_scaled = con_ind*1 + + con_scaled[:,0, 0] = con_ind[:,0,0] + np.array(inc_x)[:] + con_scaled[:,0, 1] = con_ind[:,0,1] + np.array(inc_y)[:] + + con_scaled[:,0, 1][con_scaled[:,0, 1]<0] = 0 + con_scaled[:,0, 0][con_scaled[:,0, 0]<0] = 0 + + area_scaled = cv2.contourArea(con_scaled.astype(np.int32)) + + con_ind = con_ind.astype(np.int32) + + results = [cv2.pointPolygonTest(con_ind, (con_scaled[ind,0, 0], con_scaled[ind,0, 1]), False) for ind in range(len(con_scaled[:,0, 1])) ] + + results = np.array(results) + + #print(results,'results') + + results[results==0] = 1 + + + diff_result = np.diff(results) + + indices_2 = [ind for ind in range(len(diff_result)) if diff_result[ind]==2] + indices_m2 = [ind for ind in range(len(diff_result)) if diff_result[ind]==-2] + + + if results[0]==1: + con_scaled[:indices_m2[0]+1,0, 1] = con_ind[:indices_m2[0]+1,0,1] + con_scaled[:indices_m2[0]+1,0, 0] = con_ind[:indices_m2[0]+1,0,0] + #indices_2 = indices_2[1:] + indices_m2 = indices_m2[1:] + + + + if len(indices_2)>len(indices_m2): + con_scaled[indices_2[-1]+1:,0, 1] = con_ind[indices_2[-1]+1:,0,1] + con_scaled[indices_2[-1]+1:,0, 0] = con_ind[indices_2[-1]+1:,0,0] + + indices_2 = indices_2[:-1] + + + for ii in range(len(indices_2)): + con_scaled[indices_2[ii]+1:indices_m2[ii]+1,0, 1] = con_scaled[indices_2[ii],0, 1] + con_scaled[indices_2[ii]+1:indices_m2[ii]+1,0, 0] = con_scaled[indices_2[ii],0, 0] + + + all_found_textline_polygons[j][ij][:,0,1] = con_scaled[:,0, 1] + all_found_textline_polygons[j][ij][:,0,0] = con_scaled[:,0, 0] + return all_found_textline_polygons + def dilate_textregions_contours(self,all_found_textline_polygons): + #print(all_found_textline_polygons) + for j in range(len(all_found_textline_polygons)): + + con_ind = all_found_textline_polygons[j] + #print(len(con_ind[:,0,0]),'con_ind[:,0,0]') + area = cv2.contourArea(con_ind) + con_ind = con_ind.astype(np.float) + + x_differential = np.diff( con_ind[:,0,0]) + y_differential = np.diff( con_ind[:,0,1]) + + + x_differential = gaussian_filter1d(x_differential, 0.1) + y_differential = gaussian_filter1d(y_differential, 0.1) + + x_min = float(np.min( con_ind[:,0,0] )) + y_min = float(np.min( con_ind[:,0,1] )) + + x_max = float(np.max( con_ind[:,0,0] )) + y_max = float(np.max( con_ind[:,0,1] )) + + x_differential_mask_nonzeros = [ ind/abs(ind) if ind!=0 else ind for ind in x_differential] + y_differential_mask_nonzeros = [ ind/abs(ind) if ind!=0 else ind for ind in y_differential] + + abs_diff=abs(abs(x_differential)- abs(y_differential) ) + + inc_x = np.zeros(len(x_differential)+1) + inc_y = np.zeros(len(x_differential)+1) + + + if (y_max-y_min) <= (x_max-x_min): + dilation_m1 = round(area / (x_max-x_min) * 0.12) + else: + dilation_m1 = round(area / (y_max-y_min) * 0.12) + + if dilation_m1>8: + dilation_m1 = 8 + if dilation_m1<6: + dilation_m1 = 6 + #print(dilation_m1, 'dilation_m1') + dilation_m1 = 6 + dilation_m2 = int(dilation_m1/2.) +1 + + for i in range(len(x_differential)): + if abs_diff[i]==0: + inc_x[i+1] = dilation_m2*(-1*y_differential_mask_nonzeros[i]) + inc_y[i+1] = dilation_m2*(x_differential_mask_nonzeros[i]) + elif abs_diff[i]!=0 and x_differential_mask_nonzeros[i]==0 and y_differential_mask_nonzeros[i]!=0: + inc_x[i+1]= dilation_m1*(-1*y_differential_mask_nonzeros[i]) + elif abs_diff[i]!=0 and x_differential_mask_nonzeros[i]!=0 and y_differential_mask_nonzeros[i]==0: + inc_y[i+1] = dilation_m1*(x_differential_mask_nonzeros[i]) + + elif abs_diff[i]!=0 and abs_diff[i]>=3: + if abs(x_differential[i])>abs(y_differential[i]): + inc_y[i+1] = dilation_m1*(x_differential_mask_nonzeros[i]) + else: + inc_x[i+1]= dilation_m1*(-1*y_differential_mask_nonzeros[i]) + else: + inc_x[i+1] = dilation_m2*(-1*y_differential_mask_nonzeros[i]) + inc_y[i+1] = dilation_m2*(x_differential_mask_nonzeros[i]) + + + inc_x[0] = inc_x[-1] + inc_y[0] = inc_y[-1] + + con_scaled = con_ind*1 + + con_scaled[:,0, 0] = con_ind[:,0,0] + np.array(inc_x)[:] + con_scaled[:,0, 1] = con_ind[:,0,1] + np.array(inc_y)[:] + + con_scaled[:,0, 1][con_scaled[:,0, 1]<0] = 0 + con_scaled[:,0, 0][con_scaled[:,0, 0]<0] = 0 + + area_scaled = cv2.contourArea(con_scaled.astype(np.int32)) + + con_ind = con_ind.astype(np.int32) + + results = [cv2.pointPolygonTest(con_ind, (con_scaled[ind,0, 0], con_scaled[ind,0, 1]), False) for ind in range(len(con_scaled[:,0, 1])) ] + + results = np.array(results) + + #print(results,'results') + + results[results==0] = 1 + + + diff_result = np.diff(results) + + indices_2 = [ind for ind in range(len(diff_result)) if diff_result[ind]==2] + indices_m2 = [ind for ind in range(len(diff_result)) if diff_result[ind]==-2] + + + if results[0]==1: + con_scaled[:indices_m2[0]+1,0, 1] = con_ind[:indices_m2[0]+1,0,1] + con_scaled[:indices_m2[0]+1,0, 0] = con_ind[:indices_m2[0]+1,0,0] + #indices_2 = indices_2[1:] + indices_m2 = indices_m2[1:] + + + + if len(indices_2)>len(indices_m2): + con_scaled[indices_2[-1]+1:,0, 1] = con_ind[indices_2[-1]+1:,0,1] + con_scaled[indices_2[-1]+1:,0, 0] = con_ind[indices_2[-1]+1:,0,0] + + indices_2 = indices_2[:-1] + + + for ii in range(len(indices_2)): + con_scaled[indices_2[ii]+1:indices_m2[ii]+1,0, 1] = con_scaled[indices_2[ii],0, 1] + con_scaled[indices_2[ii]+1:indices_m2[ii]+1,0, 0] = con_scaled[indices_2[ii],0, 0] + + + all_found_textline_polygons[j][:,0,1] = con_scaled[:,0, 1] + all_found_textline_polygons[j][:,0,0] = con_scaled[:,0, 0] + return all_found_textline_polygons + + + def dilate_textline_contours(self,all_found_textline_polygons): + for j in range(len(all_found_textline_polygons)): + for ij in range(len(all_found_textline_polygons[j])): + + con_ind = all_found_textline_polygons[j][ij] + area = cv2.contourArea(con_ind) + + con_ind = con_ind.astype(np.float) + + x_differential = np.diff( con_ind[:,0,0]) + y_differential = np.diff( con_ind[:,0,1]) + + x_differential = gaussian_filter1d(x_differential, 3) + y_differential = gaussian_filter1d(y_differential, 3) + + x_min = float(np.min( con_ind[:,0,0] )) + y_min = float(np.min( con_ind[:,0,1] )) + + x_max = float(np.max( con_ind[:,0,0] )) + y_max = float(np.max( con_ind[:,0,1] )) + + x_differential_mask_nonzeros = [ ind/abs(ind) if ind!=0 else ind for ind in x_differential] + y_differential_mask_nonzeros = [ ind/abs(ind) if ind!=0 else ind for ind in y_differential] + + abs_diff=abs(abs(x_differential)- abs(y_differential) ) + + inc_x = np.zeros(len(x_differential)+1) + inc_y = np.zeros(len(x_differential)+1) + + if (y_max-y_min) <= (x_max-x_min): + dilation_m1 = round(area / (x_max-x_min) * 0.35) + else: + dilation_m1 = round(area / (y_max-y_min) * 0.35) + + + if dilation_m1>12: + dilation_m1 = 12 + if dilation_m1<4: + dilation_m1 = 4 + #print(dilation_m1, 'dilation_m1') + dilation_m2 = int(dilation_m1/2.) +1 + + for i in range(len(x_differential)): + if abs_diff[i]==0: + inc_x[i+1] = dilation_m2*(-1*y_differential_mask_nonzeros[i]) + inc_y[i+1] = dilation_m2*(x_differential_mask_nonzeros[i]) + elif abs_diff[i]!=0 and x_differential_mask_nonzeros[i]==0 and y_differential_mask_nonzeros[i]!=0: + inc_x[i+1]= dilation_m1*(-1*y_differential_mask_nonzeros[i]) + elif abs_diff[i]!=0 and x_differential_mask_nonzeros[i]!=0 and y_differential_mask_nonzeros[i]==0: + inc_y[i+1] = dilation_m1*(x_differential_mask_nonzeros[i]) + + elif abs_diff[i]!=0 and abs_diff[i]>=3: + if abs(x_differential[i])>abs(y_differential[i]): + inc_y[i+1] = dilation_m1*(x_differential_mask_nonzeros[i]) + else: + inc_x[i+1]= dilation_m1*(-1*y_differential_mask_nonzeros[i]) + else: + inc_x[i+1] = dilation_m2*(-1*y_differential_mask_nonzeros[i]) + inc_y[i+1] = dilation_m2*(x_differential_mask_nonzeros[i]) + + + inc_x[0] = inc_x[-1] + inc_y[0] = inc_y[-1] + + con_scaled = con_ind*1 + + con_scaled[:,0, 0] = con_ind[:,0,0] + np.array(inc_x)[:] + con_scaled[:,0, 1] = con_ind[:,0,1] + np.array(inc_y)[:] + + con_scaled[:,0, 1][con_scaled[:,0, 1]<0] = 0 + con_scaled[:,0, 0][con_scaled[:,0, 0]<0] = 0 + + + con_ind = con_ind.astype(np.int32) + + results = [cv2.pointPolygonTest(con_ind, (con_scaled[ind,0, 0], con_scaled[ind,0, 1]), False) for ind in range(len(con_scaled[:,0, 1])) ] + + results = np.array(results) + + results[results==0] = 1 + + + diff_result = np.diff(results) + + indices_2 = [ind for ind in range(len(diff_result)) if diff_result[ind]==2] + indices_m2 = [ind for ind in range(len(diff_result)) if diff_result[ind]==-2] + + if results[0]==1: + con_scaled[:indices_m2[0]+1,0, 1] = con_ind[:indices_m2[0]+1,0,1] + con_scaled[:indices_m2[0]+1,0, 0] = con_ind[:indices_m2[0]+1,0,0] + indices_m2 = indices_m2[1:] + + + + if len(indices_2)>len(indices_m2): + con_scaled[indices_2[-1]+1:,0, 1] = con_ind[indices_2[-1]+1:,0,1] + con_scaled[indices_2[-1]+1:,0, 0] = con_ind[indices_2[-1]+1:,0,0] + indices_2 = indices_2[:-1] + + + for ii in range(len(indices_2)): + con_scaled[indices_2[ii]+1:indices_m2[ii]+1,0, 1] = con_scaled[indices_2[ii],0, 1] + con_scaled[indices_2[ii]+1:indices_m2[ii]+1,0, 0] = con_scaled[indices_2[ii],0, 0] + + all_found_textline_polygons[j][ij][:,0,1] = con_scaled[:,0, 1] + all_found_textline_polygons[j][ij][:,0,0] = con_scaled[:,0, 0] + return all_found_textline_polygons + + def filter_contours_inside_a_bigger_one(self,contours, image, marginal_cnts=None, type_contour="textregion"): + if type_contour=="textregion": + areas = [cv2.contourArea(contours[j]) for j in range(len(contours))] + area_tot = image.shape[0]*image.shape[1] + + M_main = [cv2.moments(contours[j]) for j in range(len(contours))] + cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] + cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] + + + + areas_ratio = np.array(areas)/ area_tot + contours_index_small = [ind for ind in range(len(contours)) if areas_ratio[ind] < 1e-3] + contours_index_big = [ind for ind in range(len(contours)) if areas_ratio[ind] >= 1e-3] + + #contours_> = [contours[ind] for ind in contours_index_big] + indexes_to_be_removed = [] + for ind_small in contours_index_small: + results = [cv2.pointPolygonTest(contours[ind], (cx_main[ind_small], cy_main[ind_small]), False) for ind in contours_index_big ] + if marginal_cnts: + results_marginal = [cv2.pointPolygonTest(marginal_cnts[ind], (cx_main[ind_small], cy_main[ind_small]), False) for ind in range(len(marginal_cnts)) ] + results_marginal = np.array(results_marginal) + + if np.any(results_marginal==1): + indexes_to_be_removed.append(ind_small) + + results = np.array(results) + + if np.any(results==1): + indexes_to_be_removed.append(ind_small) + + + if len(indexes_to_be_removed)>0: + indexes_to_be_removed = np.unique(indexes_to_be_removed) + indexes_to_be_removed = np.sort(indexes_to_be_removed)[::-1] + for ind in indexes_to_be_removed: + contours.pop(ind) + + return contours + + + else: + contours_txtline_of_all_textregions = [] + indexes_of_textline_tot = [] + index_textline_inside_textregion = [] + + for jj in range(len(contours)): + contours_txtline_of_all_textregions = contours_txtline_of_all_textregions + contours[jj] + + ind_ins = np.zeros( len(contours[jj]) ) + jj + list_ind_ins = list(ind_ins) + + ind_textline_inside_tr = np.array (range(len(contours[jj])) ) + + list_ind_textline_inside_tr = list(ind_textline_inside_tr) + + index_textline_inside_textregion = index_textline_inside_textregion + list_ind_textline_inside_tr + + indexes_of_textline_tot = indexes_of_textline_tot + list_ind_ins + + + M_main_tot = [cv2.moments(contours_txtline_of_all_textregions[j]) for j in range(len(contours_txtline_of_all_textregions))] + cx_main_tot = [(M_main_tot[j]["m10"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))] + cy_main_tot = [(M_main_tot[j]["m01"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))] + + + areas_tot = [cv2.contourArea(con_ind) for con_ind in contours_txtline_of_all_textregions] + area_tot_tot = image.shape[0]*image.shape[1] + + textregion_index_to_del = [] + textline_in_textregion_index_to_del = [] + for ij in range(len(contours_txtline_of_all_textregions)): + + args_all = list(np.array(range(len(contours_txtline_of_all_textregions)))) + + args_all.pop(ij) + + areas_without = np.array(areas_tot)[args_all] + area_of_con_interest = areas_tot[ij] + + args_with_bigger_area = np.array(args_all)[areas_without > 1.5*area_of_con_interest] + + if len(args_with_bigger_area)>0: + results = [cv2.pointPolygonTest(contours_txtline_of_all_textregions[ind], (cx_main_tot[ij], cy_main_tot[ij]), False) for ind in args_with_bigger_area ] + results = np.array(results) + if np.any(results==1): + #print(indexes_of_textline_tot[ij], index_textline_inside_textregion[ij]) + textregion_index_to_del.append(int(indexes_of_textline_tot[ij])) + textline_in_textregion_index_to_del.append(int(index_textline_inside_textregion[ij])) + #contours[int(indexes_of_textline_tot[ij])].pop(int(index_textline_inside_textregion[ij])) + + uniqe_args_trs = np.unique(textregion_index_to_del) + + for ind_u_a_trs in uniqe_args_trs: + textline_in_textregion_index_to_del_ind = np.array(textline_in_textregion_index_to_del)[np.array(textregion_index_to_del)==ind_u_a_trs] + textline_in_textregion_index_to_del_ind = np.sort(textline_in_textregion_index_to_del_ind)[::-1] + + for ittrd in textline_in_textregion_index_to_del_ind: + contours[ind_u_a_trs].pop(ittrd) + + return contours + + + + def filter_contours_without_textline_inside(self,contours,text_con_org, contours_textline): + + ###contours_txtline_of_all_textregions = [] + + ###for jj in range(len(contours_textline)): + ###contours_txtline_of_all_textregions = contours_txtline_of_all_textregions + contours_textline[jj] + + ###M_main_textline = [cv2.moments(contours_txtline_of_all_textregions[j]) for j in range(len(contours_txtline_of_all_textregions))] + ###cx_main_textline = [(M_main_textline[j]["m10"] / (M_main_textline[j]["m00"] + 1e-32)) for j in range(len(M_main_textline))] + ###cy_main_textline = [(M_main_textline[j]["m01"] / (M_main_textline[j]["m00"] + 1e-32)) for j in range(len(M_main_textline))] + + + ###M_main = [cv2.moments(contours[j]) for j in range(len(contours))] + ###cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] + ###cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] + + ###contours_with_textline = [] + ###for ind_tr, con_tr in enumerate(contours): + ###results = [cv2.pointPolygonTest(con_tr, (cx_main_textline[index_textline_con], cy_main_textline[index_textline_con]), False) for index_textline_con in range(len(contours_txtline_of_all_textregions)) ] + + ###results = np.array(results) + ###if np.any(results==1): + ###contours_with_textline.append(con_tr) + + textregion_index_to_del = [] + for index_textregion, textlines_textregion in enumerate(contours_textline): + if len(textlines_textregion)==0: + textregion_index_to_del.append(index_textregion) + + uniqe_args_trs = np.unique(textregion_index_to_del) + uniqe_args_trs_sorted = np.sort(uniqe_args_trs)[::-1] + + + for ind_u_a_trs in uniqe_args_trs_sorted: + contours.pop(ind_u_a_trs) + contours_textline.pop(ind_u_a_trs) + text_con_org.pop(ind_u_a_trs) + + return contours, text_con_org, contours_textline + + def dilate_textlines(self,all_found_textline_polygons): + for j in range(len(all_found_textline_polygons)): + for i in range(len(all_found_textline_polygons[j])): + con_ind = all_found_textline_polygons[j][i] + + con_ind = con_ind.astype(np.float) + + x_differential = np.diff( con_ind[:,0,0]) + y_differential = np.diff( con_ind[:,0,1]) + + x_min = float(np.min( con_ind[:,0,0] )) + y_min = float(np.min( con_ind[:,0,1] )) + + x_max = float(np.max( con_ind[:,0,0] )) + y_max = float(np.max( con_ind[:,0,1] )) + + + if (y_max - y_min) > (x_max - x_min) and (x_max - x_min)<70: + + x_biger_than_x = np.abs(x_differential) > np.abs(y_differential) + + mult = x_biger_than_x*x_differential + + arg_min_mult = np.argmin(mult) + arg_max_mult = np.argmax(mult) + + if y_differential[0]==0: + y_differential[0] = 0.1 + + if y_differential[-1]==0: + y_differential[-1]= 0.1 + + + + y_differential = [y_differential[ind] if y_differential[ind]!=0 else (y_differential[ind-1] + y_differential[ind+1])/2. for ind in range(len(y_differential)) ] + + + if y_differential[0]==0.1: + y_differential[0] = y_differential[1] + if y_differential[-1]==0.1: + y_differential[-1] = y_differential[-2] + + y_differential.append(y_differential[0]) + + y_differential = [-1 if y_differential[ind]<0 else 1 for ind in range(len(y_differential))] + + y_differential = self.return_it_in_two_groups(y_differential) + + y_differential = np.array(y_differential) + + + con_scaled = con_ind*1 + + con_scaled[:,0, 0] = con_ind[:,0,0] - 8*y_differential + + con_scaled[arg_min_mult,0, 1] = con_ind[arg_min_mult,0,1] + 8 + con_scaled[arg_min_mult+1,0, 1] = con_ind[arg_min_mult+1,0,1] + 8 + + try: + con_scaled[arg_min_mult-1,0, 1] = con_ind[arg_min_mult-1,0,1] + 5 + con_scaled[arg_min_mult+2,0, 1] = con_ind[arg_min_mult+2,0,1] + 5 + except: + pass + + con_scaled[arg_max_mult,0, 1] = con_ind[arg_max_mult,0,1] - 8 + con_scaled[arg_max_mult+1,0, 1] = con_ind[arg_max_mult+1,0,1] - 8 + + try: + con_scaled[arg_max_mult-1,0, 1] = con_ind[arg_max_mult-1,0,1] - 5 + con_scaled[arg_max_mult+2,0, 1] = con_ind[arg_max_mult+2,0,1] - 5 + except: + pass + + + else: + y_biger_than_x = np.abs(y_differential) > np.abs(x_differential) + + mult = y_biger_than_x*y_differential + + arg_min_mult = np.argmin(mult) + arg_max_mult = np.argmax(mult) + + if x_differential[0]==0: + x_differential[0] = 0.1 + + if x_differential[-1]==0: + x_differential[-1]= 0.1 + + + + x_differential = [x_differential[ind] if x_differential[ind]!=0 else (x_differential[ind-1] + x_differential[ind+1])/2. for ind in range(len(x_differential)) ] + + + if x_differential[0]==0.1: + x_differential[0] = x_differential[1] + if x_differential[-1]==0.1: + x_differential[-1] = x_differential[-2] + + x_differential.append(x_differential[0]) + + x_differential = [-1 if x_differential[ind]<0 else 1 for ind in range(len(x_differential))] + + x_differential = self.return_it_in_two_groups(x_differential) + x_differential = np.array(x_differential) + + + con_scaled = con_ind*1 + + con_scaled[:,0, 1] = con_ind[:,0,1] + 8*x_differential + + con_scaled[arg_min_mult,0, 0] = con_ind[arg_min_mult,0,0] + 8 + con_scaled[arg_min_mult+1,0, 0] = con_ind[arg_min_mult+1,0,0] + 8 + + try: + con_scaled[arg_min_mult-1,0, 0] = con_ind[arg_min_mult-1,0,0] + 5 + con_scaled[arg_min_mult+2,0, 0] = con_ind[arg_min_mult+2,0,0] + 5 + except: + pass + + con_scaled[arg_max_mult,0, 0] = con_ind[arg_max_mult,0,0] - 8 + con_scaled[arg_max_mult+1,0, 0] = con_ind[arg_max_mult+1,0,0] - 8 + + try: + con_scaled[arg_max_mult-1,0, 0] = con_ind[arg_max_mult-1,0,0] - 5 + con_scaled[arg_max_mult+2,0, 0] = con_ind[arg_max_mult+2,0,0] - 5 + except: + pass + + + con_scaled[:,0, 1][con_scaled[:,0, 1]<0] = 0 + con_scaled[:,0, 0][con_scaled[:,0, 0]<0] = 0 + + all_found_textline_polygons[j][i][:,0,1] = con_scaled[:,0, 1] + all_found_textline_polygons[j][i][:,0,0] = con_scaled[:,0, 0] + + return all_found_textline_polygons + + def delete_regions_without_textlines(self,slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con): + slopes_rem = [] + all_found_textline_polygons_rem = [] + boxes_text_rem = [] + txt_con_org_rem = [] + contours_only_text_parent_rem = [] + index_by_text_par_con_rem = [] + + for i, ind_con in enumerate(all_found_textline_polygons): + if len(ind_con): + all_found_textline_polygons_rem.append(ind_con) + slopes_rem.append(slopes[i]) + boxes_text_rem.append(boxes_text[i]) + txt_con_org_rem.append(txt_con_org[i]) + contours_only_text_parent_rem.append(contours_only_text_parent[i]) + index_by_text_par_con_rem.append(index_by_text_par_con[i]) + + index_sort = np.argsort(index_by_text_par_con_rem) + indexes_new = np.array(range(len(index_by_text_par_con_rem))) + + index_by_text_par_con_rem_sort = [indexes_new[index_sort==j][0] for j in range(len(index_by_text_par_con_rem))] + + return slopes_rem, all_found_textline_polygons_rem, boxes_text_rem, txt_con_org_rem, contours_only_text_parent_rem, index_by_text_par_con_rem_sort + + def run(self): + """ + Get image and scales, then extract the page of scanned image + """ + self.logger.debug("enter run") + + t0_tot = time.time() + + if not self.dir_in: + self.ls_imgs = [1] + + for img_name in self.ls_imgs: + print(img_name) + t0 = time.time() + if self.dir_in: + self.reset_file_name_dir(os.path.join(self.dir_in,img_name)) + #print("text region early -11 in %.1fs", time.time() - t0) + + + if self.extract_only_images: + img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) + self.logger.info("Enhancing took %.1fs ", time.time() - t0) + + text_regions_p_1 ,erosion_hurts, polygons_lines_xml,polygons_of_images,image_page, page_coord, cont_page = self.get_regions_light_v_extract_only_images(img_res, is_image_enhanced, num_col_classifier) + ocr_all_textlines = None + pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], polygons_of_images, [], [], [], [], [], cont_page, [], [], ocr_all_textlines) + + if self.plotter: + self.plotter.write_images_into_directory(polygons_of_images, image_page) + + if self.dir_in: + self.writer.write_pagexml(pcgts) + else: + return pcgts + else: + img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) + self.logger.info("Enhancing took %.1fs ", time.time() - t0) + #print("text region early -1 in %.1fs", time.time() - t0) + t1 = time.time() + if not self.skip_layout_and_reading_order: + if self.light_version: + text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin_light = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier) + #print("text region early -2 in %.1fs", time.time() - t0) + + if num_col_classifier == 1 or num_col_classifier ==2: + if num_col_classifier == 1: + img_w_new = 1000 + img_h_new = int(textline_mask_tot_ea.shape[0] / float(textline_mask_tot_ea.shape[1]) * img_w_new) + + elif num_col_classifier == 2: + img_w_new = 1300 + img_h_new = int(textline_mask_tot_ea.shape[0] / float(textline_mask_tot_ea.shape[1]) * img_w_new) + + textline_mask_tot_ea_deskew = resize_image(textline_mask_tot_ea,img_h_new, img_w_new ) + + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea_deskew) + else: + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) + #print("text region early -2,5 in %.1fs", time.time() - t0) + #self.logger.info("Textregion detection took %.1fs ", time.time() - t1t) + num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea, img_bin_light = \ + self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light) + #self.logger.info("run graphics %.1fs ", time.time() - t1t) + #print("text region early -3 in %.1fs", time.time() - t0) + textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea) + #print("text region early -4 in %.1fs", time.time() - t0) + else: + text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier) + self.logger.info("Textregion detection took %.1fs ", time.time() - t1) + + t1 = time.time() + num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction = \ + self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts) + self.logger.info("Graphics detection took %.1fs ", time.time() - t1) + #self.logger.info('cont_page %s', cont_page) + + if not num_col: + self.logger.info("No columns detected, outputting an empty PAGE-XML") + ocr_all_textlines = None + pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], cont_page, [], [], ocr_all_textlines) + self.logger.info("Job done in %.1fs", time.time() - t1) + if self.dir_in: + self.writer.write_pagexml(pcgts) + continue + else: + return pcgts + #print("text region early in %.1fs", time.time() - t0) + t1 = time.time() + if not self.light_version: + textline_mask_tot_ea = self.run_textline(image_page) + self.logger.info("textline detection took %.1fs", time.time() - t1) + + t1 = time.time() + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) + self.logger.info("deskewing took %.1fs", time.time() - t1) + t1 = time.time() + #plt.imshow(table_prediction) + #plt.show() + if self.light_version and num_col_classifier in (1,2): + org_h_l_m = textline_mask_tot_ea.shape[0] + org_w_l_m = textline_mask_tot_ea.shape[1] + if num_col_classifier == 1: + img_w_new = 2000 + img_h_new = int(textline_mask_tot_ea.shape[0] / float(textline_mask_tot_ea.shape[1]) * img_w_new) + + elif num_col_classifier == 2: + img_w_new = 2400 + img_h_new = int(textline_mask_tot_ea.shape[0] / float(textline_mask_tot_ea.shape[1]) * img_w_new) + + image_page = resize_image(image_page,img_h_new, img_w_new ) + textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_h_new, img_w_new ) + mask_images = resize_image(mask_images,img_h_new, img_w_new ) + mask_lines = resize_image(mask_lines,img_h_new, img_w_new ) + text_regions_p_1 = resize_image(text_regions_p_1,img_h_new, img_w_new ) + table_prediction = resize_image(table_prediction,img_h_new, img_w_new ) + + textline_mask_tot, text_regions_p, image_page_rotated = self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction) + + if self.light_version and num_col_classifier in (1,2): + image_page = resize_image(image_page,org_h_l_m, org_w_l_m ) + textline_mask_tot_ea = resize_image(textline_mask_tot_ea,org_h_l_m, org_w_l_m ) + text_regions_p = resize_image(text_regions_p,org_h_l_m, org_w_l_m ) + textline_mask_tot = resize_image(textline_mask_tot,org_h_l_m, org_w_l_m ) + text_regions_p_1 = resize_image(text_regions_p_1,org_h_l_m, org_w_l_m ) + table_prediction = resize_image(table_prediction,org_h_l_m, org_w_l_m ) + image_page_rotated = resize_image(image_page_rotated,org_h_l_m, org_w_l_m ) + + self.logger.info("detection of marginals took %.1fs", time.time() - t1) + #print("text region early 2 marginal in %.1fs", time.time() - t0) + ## birdan sora chock chakir + t1 = time.time() + if not self.full_layout: + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts) + ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) + if self.full_layout: + if not self.light_version: + img_bin_light = None + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts, img_bin_light) + ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) + + if self.light_version: + drop_label_in_full_layout = 4 + textline_mask_tot_ea_org[img_revised_tab==drop_label_in_full_layout] = 0 + + + text_only = ((img_revised_tab[:, :] == 1)) * 1 + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 + + #print("text region early 2 in %.1fs", time.time() - t0) + ###min_con_area = 0.000005 + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + contours_only_text, hir_on_text = return_contours_of_image(text_only) + contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) + + if len(contours_only_text_parent) > 0: + areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) + areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) + #self.logger.info('areas_cnt_text %s', areas_cnt_text) + contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] + contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > MIN_AREA_REGION] + areas_cnt_text_parent = [area for area in areas_cnt_text if area > MIN_AREA_REGION] + index_con_parents = np.argsort(areas_cnt_text_parent) + + contours_only_text_parent = self.return_list_of_contours_with_desired_order(contours_only_text_parent, index_con_parents) + + ##try: + ##contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) + ##except: + ##contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=np.int32)[index_con_parents]) + ##areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) + areas_cnt_text_parent = self.return_list_of_contours_with_desired_order(areas_cnt_text_parent, index_con_parents) + + cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) + cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) + + contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) + contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) + + areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d]) + areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) + + if len(areas_cnt_text_d)>0: + contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] + index_con_parents_d = np.argsort(areas_cnt_text_d) + contours_only_text_parent_d = self.return_list_of_contours_with_desired_order(contours_only_text_parent_d, index_con_parents_d) + #try: + #contours_only_text_parent_d = list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d]) + #except: + #contours_only_text_parent_d = list(np.array(contours_only_text_parent_d,dtype=np.int32)[index_con_parents_d]) + + #areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d]) + areas_cnt_text_d = self.return_list_of_contours_with_desired_order(areas_cnt_text_d, index_con_parents_d) + + cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) + cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) + try: + if len(cx_bigest_d) >= 5: + cx_bigest_d_last5 = cx_bigest_d[-5:] + cy_biggest_d_last5 = cy_biggest_d[-5:] + dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))] + ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d) + else: + cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):] + cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):] + dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))] + ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d) + + cx_bigest_d_big[0] = cx_bigest_d[ind_largest] + cy_biggest_d_big[0] = cy_biggest_d[ind_largest] + except Exception as why: + self.logger.error(why) + + (h, w) = text_only.shape[:2] + center = (w // 2.0, h // 2.0) + M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0) + M_22 = np.array(M)[:2, :2] + p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big]) + x_diff = p_big[0] - cx_bigest_d_big + y_diff = p_big[1] - cy_biggest_d_big + + contours_only_text_parent_d_ordered = [] + for i in range(len(contours_only_text_parent)): + p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]]) + p[0] = p[0] - x_diff[0] + p[1] = p[1] - y_diff[0] + dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] + contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) + # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) + # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) + # plt.imshow(img2[:,:,0]) + # plt.show() + else: + contours_only_text_parent_d_ordered = [] + contours_only_text_parent_d = [] + contours_only_text_parent = [] + + else: + contours_only_text_parent_d_ordered = [] + contours_only_text_parent_d = [] + contours_only_text_parent = [] + else: + contours_only_text, hir_on_text = return_contours_of_image(text_only) + contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) + + if len(contours_only_text_parent) > 0: + areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) + areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) + + contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] + contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > MIN_AREA_REGION] + areas_cnt_text_parent = [area for area in areas_cnt_text if area > MIN_AREA_REGION] + + index_con_parents = np.argsort(areas_cnt_text_parent) + + contours_only_text_parent = self.return_list_of_contours_with_desired_order(contours_only_text_parent, index_con_parents) + #try: + #contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) + #except: + #contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=np.int32)[index_con_parents]) + #areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) + areas_cnt_text_parent = self.return_list_of_contours_with_desired_order(areas_cnt_text_parent, index_con_parents) + + cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) + cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) + #self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent) + # self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d) + # self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d)) + else: + pass + + #print("text region early 3 in %.1fs", time.time() - t0) + if self.light_version: + contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent) + contours_only_text_parent = self.filter_contours_inside_a_bigger_one(contours_only_text_parent, text_only, marginal_cnts=polygons_of_marginals) + #print("text region early 3.5 in %.1fs", time.time() - t0) + txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first) + #txt_con_org = self.dilate_textregions_contours(txt_con_org) + #contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent) + else: + txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) + #print("text region early 4 in %.1fs", time.time() - t0) + boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) + boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) + #print("text region early 5 in %.1fs", time.time() - t0) + ## birdan sora chock chakir + if not self.curved_line: + if self.light_version: + if self.textline_light: + #slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew) + + slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light2(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew) + slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew) + + #slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con = self.delete_regions_without_textlines(slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con) + + #slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, polygons_of_marginals, polygons_of_marginals, _ = self.delete_regions_without_textlines(slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, polygons_of_marginals, polygons_of_marginals, np.array(range(len(polygons_of_marginals)))) + #all_found_textline_polygons = self.dilate_textlines(all_found_textline_polygons) + #####all_found_textline_polygons = self.dilate_textline_contours(all_found_textline_polygons) + all_found_textline_polygons = self.dilate_textregions_contours_textline_version(all_found_textline_polygons) + all_found_textline_polygons = self.filter_contours_inside_a_bigger_one(all_found_textline_polygons, textline_mask_tot_ea_org, type_contour="textline") + all_found_textline_polygons_marginals = self.dilate_textregions_contours_textline_version(all_found_textline_polygons_marginals) + + contours_only_text_parent, txt_con_org, all_found_textline_polygons = self.filter_contours_without_textline_inside(contours_only_text_parent,txt_con_org, all_found_textline_polygons) + + else: + textline_mask_tot_ea = cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1) + slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) + slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) + + #all_found_textline_polygons = self.filter_contours_inside_a_bigger_one(all_found_textline_polygons, textline_mask_tot_ea_org, type_contour="textline") + else: + textline_mask_tot_ea = cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1) + slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) + slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) + + else: + + scale_param = 1 + all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=2), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew) + all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier) + all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=2), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) + all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) + #print("text region early 6 in %.1fs", time.time() - t0) + if self.full_layout: + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order(contours_only_text_parent_d_ordered, index_by_text_par_con) + #try: + #contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=np.int32)[index_by_text_par_con]) + #except: + #contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) + if self.light_version: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + else: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + else: + #takes long timee + contours_only_text_parent_d_ordered = None + if self.light_version: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + else: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + + if self.plotter: + self.plotter.save_plot_of_layout(text_regions_p, image_page) + self.plotter.save_plot_of_layout_all(text_regions_p, image_page) + + pixel_img = 4 + polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) + all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, kernel=KERNEL, curved_line=self.curved_line, textline_light=self.textline_light) + pixel_lines = 6 + + if not self.reading_order_machine_based: + if not self.headers_off: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h) + else: + _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h_d_ordered) + elif self.headers_off: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) + else: + _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) + + if num_col_classifier >= 3: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + regions_without_separators = regions_without_separators.astype(np.uint8) + regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6) + + else: + regions_without_separators_d = regions_without_separators_d.astype(np.uint8) + regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) + + if not self.reading_order_machine_based: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) + else: + boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) + + if self.plotter: + self.plotter.write_images_into_directory(polygons_of_images, image_page) + t_order = time.time() + + if self.full_layout: + + if self.reading_order_machine_based: + order_text_new, id_of_texts_tot = self.do_order_of_regions_with_machine_optimized_algorithm(contours_only_text_parent, contours_only_text_parent_h, text_regions_p) + else: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) + else: + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d) + self.logger.info("detection of reading order took %.1fs", time.time() - t_order) + + if self.ocr: + ocr_all_textlines = [] + else: + ocr_all_textlines = None + + pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml, ocr_all_textlines) + self.logger.info("Job done in %.1fs", time.time() - t0) + if not self.dir_in: + return pcgts + + + else: + contours_only_text_parent_h = None + if self.reading_order_machine_based: + order_text_new, id_of_texts_tot = self.do_order_of_regions_with_machine_optimized_algorithm(contours_only_text_parent, contours_only_text_parent_h, text_regions_p) + else: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) + else: + contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order(contours_only_text_parent_d_ordered, index_by_text_par_con) + #try: + #contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) + #except: + #contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=np.int32)[index_by_text_par_con]) + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d) + + + if self.ocr: + + device = cuda.get_current_device() + device.reset() + gc.collect() + model_ocr = VisionEncoderDecoderModel.from_pretrained(self.model_ocr_dir) + device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") + torch.cuda.empty_cache() + model_ocr.to(device) + + ind_tot = 0 + #cv2.imwrite('./img_out.png', image_page) + + ocr_all_textlines = [] + for indexing, ind_poly_first in enumerate(all_found_textline_polygons): + ocr_textline_in_textregion = [] + for indexing2, ind_poly in enumerate(ind_poly_first): + if not (self.textline_light or self.curved_line): + ind_poly = copy.deepcopy(ind_poly) + box_ind = all_box_coord[indexing] + #print(ind_poly,np.shape(ind_poly), 'ind_poly') + #print(box_ind) + ind_poly = self.return_textline_contour_with_added_box_coordinate(ind_poly, box_ind) + #print(ind_poly_copy) + ind_poly[ind_poly<0] = 0 + x, y, w, h = cv2.boundingRect(ind_poly) + #print(ind_poly_copy, np.shape(ind_poly_copy)) + #print(x, y, w, h, h/float(w),'ratio') + h2w_ratio = h/float(w) + mask_poly = np.zeros(image_page.shape) + if not self.light_version: + img_poly_on_img = np.copy(image_page) + else: + img_poly_on_img = np.copy(img_bin_light) + + mask_poly = cv2.fillPoly(mask_poly, pts=[ind_poly], color=(1, 1, 1)) + + if self.textline_light: + mask_poly = cv2.dilate(mask_poly, KERNEL, iterations=1) + img_poly_on_img[:,:,0][mask_poly[:,:,0] ==0] = 255 + img_poly_on_img[:,:,1][mask_poly[:,:,0] ==0] = 255 + img_poly_on_img[:,:,2][mask_poly[:,:,0] ==0] = 255 + + img_croped = img_poly_on_img[y:y+h, x:x+w, :] + #cv2.imwrite('./extracted_lines/'+str(ind_tot)+'.jpg', img_croped) + text_ocr = self.return_ocr_of_textline_without_common_section(img_croped, model_ocr, processor, device, w, h2w_ratio, ind_tot) + + ocr_textline_in_textregion.append(text_ocr) + + + ind_tot = ind_tot +1 + ocr_all_textlines.append(ocr_textline_in_textregion) + + else: + ocr_all_textlines = None + #print(ocr_all_textlines) + self.logger.info("detection of reading order took %.1fs", time.time() - t_order) + pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables, ocr_all_textlines) + self.logger.info("Job done in %.1fs", time.time() - t0) + if not self.dir_in: + return pcgts + #print("text region early 7 in %.1fs", time.time() - t0) + else: + _ ,_, _, textline_mask_tot_ea, img_bin_light = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier, skip_layout_and_reading_order=self.skip_layout_and_reading_order) + + page_coord, image_page, textline_mask_tot_ea, img_bin_light, cont_page = self.run_graphics_and_columns_without_layout(textline_mask_tot_ea, img_bin_light) + + + ##all_found_textline_polygons =self.scale_contours_new(textline_mask_tot_ea) + + cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea) + all_found_textline_polygons = filter_contours_area_of_image(textline_mask_tot_ea, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001) + + all_found_textline_polygons=[ all_found_textline_polygons ] + + all_found_textline_polygons = self.dilate_textregions_contours_textline_version(all_found_textline_polygons) + all_found_textline_polygons = self.filter_contours_inside_a_bigger_one(all_found_textline_polygons, textline_mask_tot_ea, type_contour="textline") + + + order_text_new = [0] + slopes =[0] + id_of_texts_tot =['region_0001'] + + polygons_of_images = [] + slopes_marginals = [] + polygons_of_marginals = [] + all_found_textline_polygons_marginals = [] + all_box_coord_marginals = [] + polygons_lines_xml = [] + contours_tables = [] + ocr_all_textlines = None + + pcgts = self.writer.build_pagexml_no_full_layout(cont_page, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, page_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables, ocr_all_textlines) + if not self.dir_in: + return pcgts + + if self.dir_in: + self.writer.write_pagexml(pcgts) + #self.logger.info("Job done in %.1fs", time.time() - t0) + print("Job done in %.1fs", time.time() - t0) + + if self.dir_in: + self.logger.info("All jobs done in %.1fs", time.time() - t0_tot) + print("all Job done in %.1fs", time.time() - t0_tot) + + +class Eynollah_ocr: + def __init__( + self, + dir_models, + dir_xmls=None, + dir_in=None, + dir_out=None, + tr_ocr=False, + logger=None, + ): + self.dir_in = dir_in + self.dir_out = dir_out + self.dir_xmls = dir_xmls + self.dir_models = dir_models + self.tr_ocr = tr_ocr + if tr_ocr: + self.processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + self.model_ocr_dir = dir_models + "/trocr_model_ens_of_3_checkpoints_201124" + self.model_ocr = VisionEncoderDecoderModel.from_pretrained(self.model_ocr_dir) + self.model_ocr.to(self.device) + + else: + self.model_ocr_dir = dir_models + "/model_1_ocrcnn"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn" + model_ocr = load_model(self.model_ocr_dir , compile=False) + + self.prediction_model = tf.keras.models.Model( + model_ocr.get_layer(name = "image").input, + model_ocr.get_layer(name = "dense2").output) + + + with open(os.path.join(self.model_ocr_dir, "characters_org.txt"),"r") as config_file: + characters = json.load(config_file) + + + AUTOTUNE = tf.data.AUTOTUNE + + # Mapping characters to integers. + char_to_num = StringLookup(vocabulary=list(characters), mask_token=None) + + # Mapping integers back to original characters. + self.num_to_char = StringLookup( + vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True + ) + + def decode_batch_predictions(self, pred, max_len = 128): + # input_len is the product of the batch size and the + # number of time steps. + input_len = np.ones(pred.shape[0]) * pred.shape[1] + + # Decode CTC predictions using greedy search. + # decoded is a tuple with 2 elements. + decoded = tf.keras.backend.ctc_decode(pred, + input_length = input_len, + beam_width = 100) + # The outputs are in the first element of the tuple. + # Additionally, the first element is actually a list, + # therefore we take the first element of that list as well. + #print(decoded,'decoded') + decoded = decoded[0][0][:, :max_len] + + #print(decoded, decoded.shape,'decoded') + + output = [] + for d in decoded: + # Convert the predicted indices to the corresponding chars. + d = tf.strings.reduce_join(self.num_to_char(d)) + d = d.numpy().decode("utf-8") + output.append(d) + return output + + + def distortion_free_resize(self, image, img_size): + w, h = img_size + image = tf.image.resize(image, size=(h, w), preserve_aspect_ratio=True) + + # Check tha amount of padding needed to be done. + pad_height = h - tf.shape(image)[0] + pad_width = w - tf.shape(image)[1] + + # Only necessary if you want to do same amount of padding on both sides. + if pad_height % 2 != 0: + height = pad_height // 2 + pad_height_top = height + 1 + pad_height_bottom = height + else: + pad_height_top = pad_height_bottom = pad_height // 2 + + if pad_width % 2 != 0: + width = pad_width // 2 + pad_width_left = width + 1 + pad_width_right = width + else: + pad_width_left = pad_width_right = pad_width // 2 + + image = tf.pad( + image, + paddings=[ + [pad_height_top, pad_height_bottom], + [pad_width_left, pad_width_right], + [0, 0], + ], + ) + + image = tf.transpose(image, (1, 0, 2)) + image = tf.image.flip_left_right(image) + return image + + def return_start_and_end_of_common_text_of_textline_ocr_without_common_section(self, textline_image): + width = np.shape(textline_image)[1] + height = np.shape(textline_image)[0] + common_window = int(0.06*width) + + width1 = int ( width/2. - common_window ) + width2 = int ( width/2. + common_window ) + + img_sum = np.sum(textline_image[:,:,0], axis=0) + sum_smoothed = gaussian_filter1d(img_sum, 3) + + peaks_real, _ = find_peaks(sum_smoothed, height=0) + + if len(peaks_real)>70: + + peaks_real = peaks_real[(peaks_realwidth1)] + + arg_max = np.argmax(sum_smoothed[peaks_real]) + + peaks_final = peaks_real[arg_max] + + return peaks_final + else: + return None + + def return_textlines_split_if_needed(self, textline_image): + + split_point = self.return_start_and_end_of_common_text_of_textline_ocr_without_common_section(textline_image) + if split_point: + image1 = textline_image[:, :split_point,:]# image.crop((0, 0, width2, height)) + image2 = textline_image[:, split_point:,:]#image.crop((width1, 0, width, height)) + return [image1, image2] + else: + return None + + def run(self): + ls_imgs = os.listdir(self.dir_in) + + if self.tr_ocr: + b_s = 2 + for ind_img in ls_imgs: + t0 = time.time() + file_name = ind_img.split('.')[0] + dir_img = os.path.join(self.dir_in, ind_img) + dir_xml = os.path.join(self.dir_xmls, file_name+'.xml') + out_file_ocr = os.path.join(self.dir_out, file_name+'.xml') + img = cv2.imread(dir_img) + + ##file_name = Path(dir_xmls).stem + tree1 = ET.parse(dir_xml, parser = ET.XMLParser(encoding = 'iso-8859-5')) + root1=tree1.getroot() + alltags=[elem.tag for elem in root1.iter()] + link=alltags[0].split('}')[0]+'}' + + name_space = alltags[0].split('}')[0] + name_space = name_space.split('{')[1] + + region_tags=np.unique([x for x in alltags if x.endswith('TextRegion')]) + + + + cropped_lines = [] + cropped_lines_region_indexer = [] + cropped_lines_meging_indexing = [] + + indexer_text_region = 0 + for nn in root1.iter(region_tags): + for child_textregion in nn: + if child_textregion.tag.endswith("TextLine"): + + for child_textlines in child_textregion: + if child_textlines.tag.endswith("Coords"): + cropped_lines_region_indexer.append(indexer_text_region) + p_h=child_textlines.attrib['points'].split(' ') + textline_coords = np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) + x,y,w,h = cv2.boundingRect(textline_coords) + + h2w_ratio = h/float(w) + + img_poly_on_img = np.copy(img) + mask_poly = np.zeros(img.shape) + mask_poly = cv2.fillPoly(mask_poly, pts=[textline_coords], color=(1, 1, 1)) + + mask_poly = mask_poly[y:y+h, x:x+w, :] + img_crop = img_poly_on_img[y:y+h, x:x+w, :] + img_crop[mask_poly==0] = 255 + + if h2w_ratio > 0.05: + cropped_lines.append(img_crop) + cropped_lines_meging_indexing.append(0) + else: + splited_images = self.return_textlines_split_if_needed(img_crop) + #print(splited_images) + if splited_images: + cropped_lines.append(splited_images[0]) + cropped_lines_meging_indexing.append(1) + cropped_lines.append(splited_images[1]) + cropped_lines_meging_indexing.append(-1) + else: + cropped_lines.append(img_crop) + cropped_lines_meging_indexing.append(0) + indexer_text_region = indexer_text_region +1 + + + extracted_texts = [] + n_iterations = math.ceil(len(cropped_lines) / b_s) + + for i in range(n_iterations): + if i==(n_iterations-1): + n_start = i*b_s + imgs = cropped_lines[n_start:] + else: + n_start = i*b_s + n_end = (i+1)*b_s + imgs = cropped_lines[n_start:n_end] + pixel_values_merged = self.processor(imgs, return_tensors="pt").pixel_values + generated_ids_merged = self.model_ocr.generate(pixel_values_merged.to(self.device)) + generated_text_merged = self.processor.batch_decode(generated_ids_merged, skip_special_tokens=True) + + extracted_texts = extracted_texts + generated_text_merged + + extracted_texts_merged = [extracted_texts[ind] if cropped_lines_meging_indexing[ind]==0 else extracted_texts[ind]+extracted_texts[ind+1] if cropped_lines_meging_indexing[ind]==1 else None for ind in range(len(cropped_lines_meging_indexing))] + + extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None] + #print(extracted_texts_merged, len(extracted_texts_merged)) + + unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer) + + #print(len(unique_cropped_lines_region_indexer), 'unique_cropped_lines_region_indexer') + text_by_textregion = [] + for ind in unique_cropped_lines_region_indexer: + extracted_texts_merged_un = np.array(extracted_texts_merged)[np.array(cropped_lines_region_indexer)==ind] + + text_by_textregion.append(" ".join(extracted_texts_merged_un)) + + #print(len(text_by_textregion) , indexer_text_region, "text_by_textregion") + + + #print(time.time() - t0 ,'elapsed time') + + + indexer = 0 + indexer_textregion = 0 + for nn in root1.iter(region_tags): + text_subelement_textregion = ET.SubElement(nn, 'TextEquiv') + unicode_textregion = ET.SubElement(text_subelement_textregion, 'Unicode') + + + has_textline = False + for child_textregion in nn: + if child_textregion.tag.endswith("TextLine"): + text_subelement = ET.SubElement(child_textregion, 'TextEquiv') + unicode_textline = ET.SubElement(text_subelement, 'Unicode') + unicode_textline.text = extracted_texts_merged[indexer] + indexer = indexer + 1 + has_textline = True + if has_textline: + unicode_textregion.text = text_by_textregion[indexer_textregion] + indexer_textregion = indexer_textregion + 1 + + + + ET.register_namespace("",name_space) + tree1.write(out_file_ocr,xml_declaration=True,method='xml',encoding="utf8",default_namespace=None) + #print("Job done in %.1fs", time.time() - t0) + else: + max_len = 512 + padding_token = 299 + image_width = max_len * 4 + image_height = 32 + b_s = 8 + + + img_size=(image_width, image_height) + + for ind_img in ls_imgs: + t0 = time.time() + file_name = ind_img.split('.')[0] + dir_img = os.path.join(self.dir_in, ind_img) + dir_xml = os.path.join(self.dir_xmls, file_name+'.xml') + out_file_ocr = os.path.join(self.dir_out, file_name+'.xml') + img = cv2.imread(dir_img) + + tree1 = ET.parse(dir_xml, parser = ET.XMLParser(encoding = 'iso-8859-5')) + root1=tree1.getroot() + alltags=[elem.tag for elem in root1.iter()] + link=alltags[0].split('}')[0]+'}' + + name_space = alltags[0].split('}')[0] + name_space = name_space.split('{')[1] + + region_tags=np.unique([x for x in alltags if x.endswith('TextRegion')]) + + cropped_lines = [] + cropped_lines_region_indexer = [] + cropped_lines_meging_indexing = [] + + tinl = time.time() + indexer_text_region = 0 + for nn in root1.iter(region_tags): + for child_textregion in nn: + if child_textregion.tag.endswith("TextLine"): + + for child_textlines in child_textregion: + if child_textlines.tag.endswith("Coords"): + cropped_lines_region_indexer.append(indexer_text_region) + p_h=child_textlines.attrib['points'].split(' ') + textline_coords = np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) + x,y,w,h = cv2.boundingRect(textline_coords) + + h2w_ratio = h/float(w) + + img_poly_on_img = np.copy(img) + mask_poly = np.zeros(img.shape) + mask_poly = cv2.fillPoly(mask_poly, pts=[textline_coords], color=(1, 1, 1)) + + mask_poly = mask_poly[y:y+h, x:x+w, :] + img_crop = img_poly_on_img[y:y+h, x:x+w, :] + img_crop[mask_poly==0] = 255 + img_crop = tf.reverse(img_crop,axis=[-1]) + img_crop = self.distortion_free_resize(img_crop, img_size) + img_crop = tf.cast(img_crop, tf.float32) / 255.0 + cropped_lines.append(img_crop) + + indexer_text_region = indexer_text_region +1 + + + extracted_texts = [] + + n_iterations = math.ceil(len(cropped_lines) / b_s) + + for i in range(n_iterations): + if i==(n_iterations-1): + n_start = i*b_s + imgs = cropped_lines[n_start:] + imgs = np.array(imgs) + imgs = imgs.reshape(imgs.shape[0], image_width, image_height, 3) + else: + n_start = i*b_s + n_end = (i+1)*b_s + imgs = cropped_lines[n_start:n_end] + imgs = np.array(imgs).reshape(b_s, image_width, image_height, 3) + + + preds = self.prediction_model.predict(imgs, verbose=0) + pred_texts = self.decode_batch_predictions(preds) + + for ib in range(imgs.shape[0]): + pred_texts_ib = pred_texts[ib].strip("[UNK]") + extracted_texts.append(pred_texts_ib) + + unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer) + + text_by_textregion = [] + for ind in unique_cropped_lines_region_indexer: + extracted_texts_merged_un = np.array(extracted_texts)[np.array(cropped_lines_region_indexer)==ind] + + text_by_textregion.append(" ".join(extracted_texts_merged_un)) + + indexer = 0 + indexer_textregion = 0 + for nn in root1.iter(region_tags): + text_subelement_textregion = ET.SubElement(nn, 'TextEquiv') + unicode_textregion = ET.SubElement(text_subelement_textregion, 'Unicode') + + + has_textline = False + for child_textregion in nn: + if child_textregion.tag.endswith("TextLine"): + text_subelement = ET.SubElement(child_textregion, 'TextEquiv') + unicode_textline = ET.SubElement(text_subelement, 'Unicode') + unicode_textline.text = extracted_texts[indexer] + indexer = indexer + 1 + has_textline = True + if has_textline: + unicode_textregion.text = text_by_textregion[indexer_textregion] + indexer_textregion = indexer_textregion + 1 + + ET.register_namespace("",name_space) + tree1.write(out_file_ocr,xml_declaration=True,method='xml',encoding="utf8",default_namespace=None) + #print("Job done in %.1fs", time.time() - t0) diff --git a/src/eynollah/ocrd-tool-binarization.json b/src/eynollah/ocrd-tool-binarization.json new file mode 100644 index 0000000..1711e89 --- /dev/null +++ b/src/eynollah/ocrd-tool-binarization.json @@ -0,0 +1,47 @@ +{ + "version": "0.1.0", + "git_url": "https://github.com/qurator-spk/sbb_binarization", + "tools": { + "ocrd-sbb-binarize": { + "executable": "ocrd-sbb-binarize", + "description": "Pixelwise binarization with selectional auto-encoders in Keras", + "categories": ["Image preprocessing"], + "steps": ["preprocessing/optimization/binarization"], + "input_file_grp": [], + "output_file_grp": [], + "parameters": { + "operation_level": { + "type": "string", + "enum": ["page", "region"], + "default": "page", + "description": "PAGE XML hierarchy level to operate on" + }, + "model": { + "description": "Directory containing HDF5 or SavedModel/ProtoBuf models. Can be an absolute path or a path relative to the OCR-D resource location, the current working directory or the $SBB_BINARIZE_DATA environment variable (if set)", + "type": "string", + "format": "uri", + "content-type": "text/directory", + "required": true + } + }, + "resources": [ + { + "url": "https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2020_01_16.zip", + "name": "default", + "type": "archive", + "path_in_archive": "saved_model_2020_01_16", + "size": 563147331, + "description": "default models provided by github.com/qurator-spk (SavedModel format)" + }, + { + "url": "https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip", + "name": "default-2021-03-09", + "type": "archive", + "path_in_archive": ".", + "size": 133230419, + "description": "updated default models provided by github.com/qurator-spk (SavedModel format)" + } + ] + } + } +} diff --git a/src/eynollah/ocrd-tool.json b/src/eynollah/ocrd-tool.json index b840005..9eb8932 100644 --- a/src/eynollah/ocrd-tool.json +++ b/src/eynollah/ocrd-tool.json @@ -28,6 +28,16 @@ "type": "boolean", "default": true, "description": "Try to detect all element subtypes, including drop-caps and headings" + }, + "light_version": { + "type": "boolean", + "default": true, + "description": "Try to detect all element subtypes in light version" + }, + "textline_light": { + "type": "boolean", + "default": true, + "description": "Light version need textline light" }, "tables": { "type": "boolean", diff --git a/src/eynollah/ocrd_cli_binarization.py b/src/eynollah/ocrd_cli_binarization.py new file mode 100644 index 0000000..6a8bbdc --- /dev/null +++ b/src/eynollah/ocrd_cli_binarization.py @@ -0,0 +1,158 @@ +from os import environ +from os.path import join +from pathlib import Path +from pkg_resources import resource_string +from json import loads + +from PIL import Image +import numpy as np +import cv2 +from click import command + +from ocrd_utils import ( + getLogger, + assert_file_grp_cardinality, + make_file_id, + MIMETYPE_PAGE +) +from ocrd import Processor +from ocrd_modelfactory import page_from_file +from ocrd_models.ocrd_page import AlternativeImageType, to_xml +from ocrd.decorators import ocrd_cli_options, ocrd_cli_wrap_processor + +from .sbb_binarize import SbbBinarizer + +OCRD_TOOL = loads(resource_string(__name__, 'ocrd-tool-binarization.json').decode('utf8')) +TOOL = 'ocrd-sbb-binarize' + +def cv2pil(img): + return Image.fromarray(img.astype('uint8')) + +def pil2cv(img): + # from ocrd/workspace.py + color_conversion = cv2.COLOR_GRAY2BGR if img.mode in ('1', 'L') else cv2.COLOR_RGB2BGR + pil_as_np_array = np.array(img).astype('uint8') if img.mode == '1' else np.array(img) + return cv2.cvtColor(pil_as_np_array, color_conversion) + +class SbbBinarizeProcessor(Processor): + + def __init__(self, *args, **kwargs): + kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL] + kwargs['version'] = OCRD_TOOL['version'] + super().__init__(*args, **kwargs) + if hasattr(self, 'output_file_grp'): + # processing context + self.setup() + + def setup(self): + """ + Set up the model prior to processing. + """ + LOG = getLogger('processor.SbbBinarize.__init__') + if not 'model' in self.parameter: + raise ValueError("'model' parameter is required") + # resolve relative path via environment variable + model_path = Path(self.parameter['model']) + if not model_path.is_absolute(): + if 'SBB_BINARIZE_DATA' in environ and environ['SBB_BINARIZE_DATA']: + LOG.info("Environment variable SBB_BINARIZE_DATA is set to '%s'" \ + " - prepending to model value '%s'. If you don't want this mechanism," \ + " unset the SBB_BINARIZE_DATA environment variable.", + environ['SBB_BINARIZE_DATA'], model_path) + model_path = Path(environ['SBB_BINARIZE_DATA']).joinpath(model_path) + model_path = model_path.resolve() + if not model_path.is_dir(): + raise FileNotFoundError("Does not exist or is not a directory: %s" % model_path) + # resolve relative path via OCR-D ResourceManager + model_path = self.resolve_resource(str(model_path)) + self.binarizer = SbbBinarizer(model_dir=model_path, logger=LOG) + + def process(self): + """ + Binarize images with sbb_binarization (based on selectional auto-encoders). + + For each page of the input file group, open and deserialize input PAGE-XML + and its respective images. Then iterate over the element hierarchy down to + the requested ``operation_level``. + + For each segment element, retrieve a raw (non-binarized) segment image + according to the layout annotation (from an existing ``AlternativeImage``, + or by cropping into the higher-level images, and deskewing when applicable). + + Pass the image to the binarizer (which runs in fixed-size windows/patches + across the image and stitches the results together). + + Serialize the resulting bilevel image as PNG file and add it to the output + file group (with file ID suffix ``.IMG-BIN``) along with the output PAGE-XML + (referencing it as new ``AlternativeImage`` for the segment element). + + Produce a new PAGE output file by serialising the resulting hierarchy. + """ + LOG = getLogger('processor.SbbBinarize') + assert_file_grp_cardinality(self.input_file_grp, 1) + assert_file_grp_cardinality(self.output_file_grp, 1) + + oplevel = self.parameter['operation_level'] + + for n, input_file in enumerate(self.input_files): + file_id = make_file_id(input_file, self.output_file_grp) + page_id = input_file.pageId or input_file.ID + LOG.info("INPUT FILE %i / %s", n, page_id) + pcgts = page_from_file(self.workspace.download_file(input_file)) + self.add_metadata(pcgts) + pcgts.set_pcGtsId(file_id) + page = pcgts.get_Page() + page_image, page_xywh, _ = self.workspace.image_from_page(page, page_id, feature_filter='binarized') + + if oplevel == 'page': + LOG.info("Binarizing on 'page' level in page '%s'", page_id) + bin_image = cv2pil(self.binarizer.run(image=pil2cv(page_image), use_patches=True)) + # update METS (add the image file): + bin_image_path = self.workspace.save_image_file(bin_image, + file_id + '.IMG-BIN', + page_id=input_file.pageId, + file_grp=self.output_file_grp) + page.add_AlternativeImage(AlternativeImageType(filename=bin_image_path, comments='%s,binarized' % page_xywh['features'])) + + elif oplevel == 'region': + regions = page.get_AllRegions(['Text', 'Table'], depth=1) + if not regions: + LOG.warning("Page '%s' contains no text/table regions", page_id) + for region in regions: + region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh, feature_filter='binarized') + region_image_bin = cv2pil(binarizer.run(image=pil2cv(region_image), use_patches=True)) + region_image_bin_path = self.workspace.save_image_file( + region_image_bin, + "%s_%s.IMG-BIN" % (file_id, region.id), + page_id=input_file.pageId, + file_grp=self.output_file_grp) + region.add_AlternativeImage( + AlternativeImageType(filename=region_image_bin_path, comments='%s,binarized' % region_xywh['features'])) + + elif oplevel == 'line': + region_line_tuples = [(r.id, r.get_TextLine()) for r in page.get_AllRegions(['Text'], depth=0)] + if not region_line_tuples: + LOG.warning("Page '%s' contains no text lines", page_id) + for region_id, line in region_line_tuples: + line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized') + line_image_bin = cv2pil(binarizer.run(image=pil2cv(line_image), use_patches=True)) + line_image_bin_path = self.workspace.save_image_file( + line_image_bin, + "%s_%s_%s.IMG-BIN" % (file_id, region_id, line.id), + page_id=input_file.pageId, + file_grp=self.output_file_grp) + line.add_AlternativeImage( + AlternativeImageType(filename=line_image_bin_path, comments='%s,binarized' % line_xywh['features'])) + + self.workspace.add_file( + ID=file_id, + file_grp=self.output_file_grp, + pageId=input_file.pageId, + mimetype=MIMETYPE_PAGE, + local_filename=join(self.output_file_grp, file_id + '.xml'), + content=to_xml(pcgts)) + +@command() +@ocrd_cli_options +def cli(*args, **kwargs): + return ocrd_cli_wrap_processor(SbbBinarizeProcessor, *args, **kwargs) diff --git a/src/eynollah/processor.py b/src/eynollah/processor.py index 1bd190e..ed510c8 100644 --- a/src/eynollah/processor.py +++ b/src/eynollah/processor.py @@ -49,6 +49,8 @@ def process(self): 'curved_line': self.parameter['curved_line'], 'full_layout': self.parameter['full_layout'], 'allow_scaling': self.parameter['allow_scaling'], + 'light_version': self.parameter['light_version'], + 'textline_light': self.parameter['textline_light'], 'headers_off': self.parameter['headers_off'], 'tables': self.parameter['tables'], 'override_dpi': self.parameter['dpi'], diff --git a/src/eynollah/sbb_binarize.py b/src/eynollah/sbb_binarize.py new file mode 100644 index 0000000..36e9ab0 --- /dev/null +++ b/src/eynollah/sbb_binarize.py @@ -0,0 +1,383 @@ +""" +Tool to load model and binarize a given image. +""" + +import sys +from glob import glob +from os import environ, devnull +from os.path import join +from warnings import catch_warnings, simplefilter +import os + +import numpy as np +from PIL import Image +import cv2 +environ['TF_CPP_MIN_LOG_LEVEL'] = '3' +stderr = sys.stderr +sys.stderr = open(devnull, 'w') +import tensorflow as tf +from tensorflow.keras.models import load_model +from tensorflow.python.keras import backend as tensorflow_backend +sys.stderr = stderr + + +import logging + +def resize_image(img_in, input_height, input_width): + return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST) + +class SbbBinarizer: + + def __init__(self, model_dir, logger=None): + self.model_dir = model_dir + self.log = logger if logger else logging.getLogger('SbbBinarizer') + + self.start_new_session() + + self.model_files = glob(self.model_dir+"/*/", recursive = True) + + self.models = [] + for model_file in self.model_files: + self.models.append(self.load_model(model_file)) + + def start_new_session(self): + config = tf.compat.v1.ConfigProto() + config.gpu_options.allow_growth = True + + self.session = tf.compat.v1.Session(config=config) # tf.InteractiveSession() + tensorflow_backend.set_session(self.session) + + def end_session(self): + tensorflow_backend.clear_session() + self.session.close() + del self.session + + def load_model(self, model_name): + model = load_model(join(self.model_dir, model_name), compile=False) + model_height = model.layers[len(model.layers)-1].output_shape[1] + model_width = model.layers[len(model.layers)-1].output_shape[2] + n_classes = model.layers[len(model.layers)-1].output_shape[3] + return model, model_height, model_width, n_classes + + def predict(self, model_in, img, use_patches, n_batch_inference=5): + tensorflow_backend.set_session(self.session) + model, model_height, model_width, n_classes = model_in + + img_org_h = img.shape[0] + img_org_w = img.shape[1] + + if img.shape[0] < model_height and img.shape[1] >= model_width: + img_padded = np.zeros(( model_height, img.shape[1], img.shape[2] )) + + index_start_h = int( abs( img.shape[0] - model_height) /2.) + index_start_w = 0 + + img_padded [ index_start_h: index_start_h+img.shape[0], :, : ] = img[:,:,:] + + elif img.shape[0] >= model_height and img.shape[1] < model_width: + img_padded = np.zeros(( img.shape[0], model_width, img.shape[2] )) + + index_start_h = 0 + index_start_w = int( abs( img.shape[1] - model_width) /2.) + + img_padded [ :, index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:] + + + elif img.shape[0] < model_height and img.shape[1] < model_width: + img_padded = np.zeros(( model_height, model_width, img.shape[2] )) + + index_start_h = int( abs( img.shape[0] - model_height) /2.) + index_start_w = int( abs( img.shape[1] - model_width) /2.) + + img_padded [ index_start_h: index_start_h+img.shape[0], index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:] + + else: + index_start_h = 0 + index_start_w = 0 + img_padded = np.copy(img) + + + img = np.copy(img_padded) + + + + if use_patches: + + margin = int(0.1 * model_width) + + width_mid = model_width - 2 * margin + height_mid = model_height - 2 * margin + + + img = img / float(255.0) + + img_h = img.shape[0] + img_w = img.shape[1] + + prediction_true = np.zeros((img_h, img_w, 3)) + mask_true = np.zeros((img_h, img_w)) + nxf = img_w / float(width_mid) + nyf = img_h / float(height_mid) + + if nxf > int(nxf): + nxf = int(nxf) + 1 + else: + nxf = int(nxf) + + if nyf > int(nyf): + nyf = int(nyf) + 1 + else: + nyf = int(nyf) + + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + + img_patch = np.zeros((n_batch_inference, model_height, model_width,3)) + + for i in range(nxf): + for j in range(nyf): + + if i == 0: + index_x_d = i * width_mid + index_x_u = index_x_d + model_width + elif i > 0: + index_x_d = i * width_mid + index_x_u = index_x_d + model_width + + if j == 0: + index_y_d = j * height_mid + index_y_u = index_y_d + model_height + elif j > 0: + index_y_d = j * height_mid + index_y_u = index_y_d + model_height + + if index_x_u > img_w: + index_x_u = img_w + index_x_d = img_w - model_width + if index_y_u > img_h: + index_y_u = img_h + index_y_d = img_h - model_height + + + list_i_s.append(i) + list_j_s.append(j) + list_x_u.append(index_x_u) + list_x_d.append(index_x_d) + list_y_d.append(index_y_d) + list_y_u.append(index_y_u) + + + img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :] + + batch_indexer = batch_indexer + 1 + + + + if batch_indexer == n_batch_inference: + + label_p_pred = model.predict(img_patch,verbose=0) + + seg = np.argmax(label_p_pred, axis=3) + + #print(seg.shape, len(seg), len(list_i_s)) + + indexer_inside_batch = 0 + for i_batch, j_batch in zip(list_i_s, list_j_s): + seg_in = seg[indexer_inside_batch,:,:] + seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) + + index_y_u_in = list_y_u[indexer_inside_batch] + index_y_d_in = list_y_d[indexer_inside_batch] + + index_x_u_in = list_x_u[indexer_inside_batch] + index_x_d_in = list_x_d[indexer_inside_batch] + + if i_batch == 0 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + else: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + + indexer_inside_batch = indexer_inside_batch +1 + + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + + img_patch = np.zeros((n_batch_inference, model_height, model_width,3)) + + elif i==(nxf-1) and j==(nyf-1): + label_p_pred = model.predict(img_patch,verbose=0) + + seg = np.argmax(label_p_pred, axis=3) + + #print(seg.shape, len(seg), len(list_i_s)) + + indexer_inside_batch = 0 + for i_batch, j_batch in zip(list_i_s, list_j_s): + seg_in = seg[indexer_inside_batch,:,:] + seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2) + + index_y_u_in = list_y_u[indexer_inside_batch] + index_y_d_in = list_y_d[indexer_inside_batch] + + index_x_u_in = list_x_u[indexer_inside_batch] + index_x_d_in = list_x_d[indexer_inside_batch] + + if i_batch == 0 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color + elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0: + seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1: + seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + else: + seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] + prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color + + indexer_inside_batch = indexer_inside_batch +1 + + + list_i_s = [] + list_j_s = [] + list_x_u = [] + list_x_d = [] + list_y_u = [] + list_y_d = [] + + batch_indexer = 0 + + img_patch = np.zeros((n_batch_inference, model_height, model_width,3)) + + + + prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:] + prediction_true = prediction_true.astype(np.uint8) + + else: + img_h_page = img.shape[0] + img_w_page = img.shape[1] + img = img / float(255.0) + img = resize_image(img, model_height, model_width) + + label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2])) + + seg = np.argmax(label_p_pred, axis=3)[0] + seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) + prediction_true = resize_image(seg_color, img_h_page, img_w_page) + prediction_true = prediction_true.astype(np.uint8) + return prediction_true[:,:,0] + + def run(self, image=None, image_path=None, save=None, use_patches=False, dir_in=None, dir_out=None): + print(dir_in,'dir_in') + if not dir_in: + if (image is not None and image_path is not None) or \ + (image is None and image_path is None): + raise ValueError("Must pass either a opencv2 image or an image_path") + if image_path is not None: + image = cv2.imread(image_path) + img_last = 0 + for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): + self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files))) + + res = self.predict(model, image, use_patches) + + img_fin = np.zeros((res.shape[0], res.shape[1], 3)) + res[:, :][res[:, :] == 0] = 2 + res = res - 1 + res = res * 255 + img_fin[:, :, 0] = res + img_fin[:, :, 1] = res + img_fin[:, :, 2] = res + + img_fin = img_fin.astype(np.uint8) + img_fin = (res[:, :] == 0) * 255 + img_last = img_last + img_fin + + kernel = np.ones((5, 5), np.uint8) + img_last[:, :][img_last[:, :] > 0] = 255 + img_last = (img_last[:, :] == 0) * 255 + if save: + cv2.imwrite(save, img_last) + return img_last + else: + ls_imgs = os.listdir(dir_in) + for image_name in ls_imgs: + image_stem = image_name.split('.')[0] + print(image_name,'image_name') + image = cv2.imread(os.path.join(dir_in,image_name) ) + img_last = 0 + for n, (model, model_file) in enumerate(zip(self.models, self.model_files)): + self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files))) + + res = self.predict(model, image, use_patches) + + img_fin = np.zeros((res.shape[0], res.shape[1], 3)) + res[:, :][res[:, :] == 0] = 2 + res = res - 1 + res = res * 255 + img_fin[:, :, 0] = res + img_fin[:, :, 1] = res + img_fin[:, :, 2] = res + + img_fin = img_fin.astype(np.uint8) + img_fin = (res[:, :] == 0) * 255 + img_last = img_last + img_fin + + kernel = np.ones((5, 5), np.uint8) + img_last[:, :][img_last[:, :] > 0] = 255 + img_last = (img_last[:, :] == 0) * 255 + + cv2.imwrite(os.path.join(dir_out,image_stem+'.png'), img_last) diff --git a/src/eynollah/utils/__init__.py b/src/eynollah/utils/__init__.py index d2b2488..d7f9ccd 100644 --- a/src/eynollah/utils/__init__.py +++ b/src/eynollah/utils/__init__.py @@ -7,7 +7,7 @@ import imutils from scipy.signal import find_peaks from scipy.ndimage import gaussian_filter1d - +import time from .is_nan import isNaN from .contour import (contours_in_same_horizon, find_new_features_of_contours, @@ -775,9 +775,8 @@ def put_drop_out_from_only_drop_model(layout_no_patch, layout1): return layout_no_patch -def putt_bb_of_drop_capitals_of_model_in_patches_in_layout(layout_in_patch): - - drop_only = (layout_in_patch[:, :, 0] == 4) * 1 +def putt_bb_of_drop_capitals_of_model_in_patches_in_layout(layout_in_patch, drop_capital_label, text_regions_p): + drop_only = (layout_in_patch[:, :, 0] == drop_capital_label) * 1 contours_drop, hir_on_drop = return_contours_of_image(drop_only) contours_drop_parent = return_parent_contours(contours_drop, hir_on_drop) @@ -786,13 +785,32 @@ def putt_bb_of_drop_capitals_of_model_in_patches_in_layout(layout_in_patch): contours_drop_parent = [contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz] > 0.00001] - areas_cnt_text = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > 0.001] + areas_cnt_text = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > 0.00001] contours_drop_parent_final = [] for jj in range(len(contours_drop_parent)): x, y, w, h = cv2.boundingRect(contours_drop_parent[jj]) - layout_in_patch[y : y + h, x : x + w, 0] = 4 + mask_of_drop_cpaital_in_early_layout = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1])) + + mask_of_drop_cpaital_in_early_layout[y : y + h, x : x + w] = text_regions_p[y : y + h, x : x + w] + + all_drop_capital_pixels_which_is_text_in_early_lo = np.sum( mask_of_drop_cpaital_in_early_layout[y : y + h, x : x + w]==1 ) + + mask_of_drop_cpaital_in_early_layout[y : y + h, x : x + w]=1 + all_drop_capital_pixels = np.sum(mask_of_drop_cpaital_in_early_layout==1 ) + + percent_text_to_all_in_drop = all_drop_capital_pixels_which_is_text_in_early_lo / float(all_drop_capital_pixels) + + + if ( ( areas_cnt_text[jj] * float(drop_only.shape[0] * drop_only.shape[1]) ) / float(w*h) ) > 0.6 and percent_text_to_all_in_drop>=0.3: + + layout_in_patch[y : y + h, x : x + w, 0] = drop_capital_label + else: + layout_in_patch[y : y + h, x : x + w, 0][layout_in_patch[y : y + h, x : x + w, 0] == drop_capital_label] = drop_capital_label + layout_in_patch[y : y + h, x : x + w, 0][layout_in_patch[y : y + h, x : x + w, 0] == 0] = drop_capital_label + layout_in_patch[y : y + h, x : x + w, 0][layout_in_patch[y : y + h, x : x + w, 0] == 4] = drop_capital_label# images + #layout_in_patch[y : y + h, x : x + w, 0][layout_in_patch[y : y + h, x : x + w, 0] == drop_capital_label] = 1#drop_capital_label return layout_in_patch @@ -1200,17 +1218,12 @@ def order_of_regions(textline_mask, contours_main, contours_header, y_ref): top = peaks_neg_new[i] down = peaks_neg_new[i + 1] - # print(top,down,'topdown') - indexes_in = matrix_of_orders[:, 0][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))] cxs_in = matrix_of_orders[:, 2][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))] cys_in = matrix_of_orders[:, 3][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))] types_of_text = matrix_of_orders[:, 1][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))] index_types_of_text = matrix_of_orders[:, 4][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))] - # print(top,down) - # print(cys_in,'cyyyins') - # print(indexes_in,'indexes') sorted_inside = np.argsort(cxs_in) ind_in_int = indexes_in[sorted_inside] @@ -1224,11 +1237,17 @@ def order_of_regions(textline_mask, contours_main, contours_header, y_ref): ##matrix_of_orders[:len_main,4]=final_indexers_sorted[:] - # print(peaks_neg_new,'peaks') - # print(final_indexers_sorted,'indexsorted') - # print(final_types,'types') - # print(final_index_type,'final_index_type') - + # This fix is applied if the sum of the lengths of contours and contours_h does not match final_indexers_sorted. However, this is not the optimal solution.. + if (len(cy_main)+len(cy_header) ) == len(final_index_type): + pass + else: + indexes_missed = set(list( np.array( range((len(cy_main)+len(cy_header) ) )) )) - set(final_indexers_sorted) + for ind_missed in indexes_missed: + final_indexers_sorted.append(ind_missed) + final_types.append(1) + final_index_type.append(ind_missed) + + return final_indexers_sorted, matrix_of_orders, final_types, final_index_type def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(img_p_in_ver, img_in_hor,num_col_classifier): @@ -1338,7 +1357,7 @@ def return_points_with_boundies(peaks_neg_fin, first_point, last_point): return peaks_neg_tot def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, pixel_lines, contours_h=None): - + t_ins_c0 = time.time() separators_closeup=( (region_pre_p[:,:,:]==pixel_lines))*1 separators_closeup[0:110,:,:]=0 @@ -1352,84 +1371,47 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, separators_closeup_new=np.zeros((separators_closeup.shape[0] ,separators_closeup.shape[1] )) - - - - ##_,separators_closeup_n=self.combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(region_pre_p[:,:,0]) separators_closeup_n=np.copy(separators_closeup) separators_closeup_n=separators_closeup_n.astype(np.uint8) - ##plt.imshow(separators_closeup_n[:,:,0]) - ##plt.show() separators_closeup_n_binary=np.zeros(( separators_closeup_n.shape[0],separators_closeup_n.shape[1]) ) separators_closeup_n_binary[:,:]=separators_closeup_n[:,:,0] separators_closeup_n_binary[:,:][separators_closeup_n_binary[:,:]!=0]=1 - #separators_closeup_n_binary[:,:][separators_closeup_n_binary[:,:]==0]=255 - #separators_closeup_n_binary[:,:][separators_closeup_n_binary[:,:]==-255]=0 - - - #separators_closeup_n_binary=(separators_closeup_n_binary[:,:]==2)*1 - - #gray = cv2.cvtColor(separators_closeup_n, cv2.COLOR_BGR2GRAY) - - ### - - #print(separators_closeup_n_binary.shape) + gray_early=np.repeat(separators_closeup_n_binary[:, :, np.newaxis], 3, axis=2) gray_early=gray_early.astype(np.uint8) - #print(gray_early.shape,'burda') imgray_e = cv2.cvtColor(gray_early, cv2.COLOR_BGR2GRAY) - #print('burda2') ret_e, thresh_e = cv2.threshold(imgray_e, 0, 255, 0) - #print('burda3') contours_line_e,hierarchy_e=cv2.findContours(thresh_e,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) - #slope_lines_e,dist_x_e, x_min_main_e ,x_max_main_e ,cy_main_e,slope_lines_org_e,y_min_main_e, y_max_main_e, cx_main_e=self.find_features_of_lines(contours_line_e) - slope_linese,dist_xe, x_min_maine ,x_max_maine ,cy_maine,slope_lines_orge,y_min_maine, y_max_maine, cx_maine=find_features_of_lines(contours_line_e) dist_ye=y_max_maine-y_min_maine - #print(y_max_maine-y_min_maine,'y') - #print(dist_xe,'x') args_e=np.array(range(len(contours_line_e))) args_hor_e=args_e[(dist_ye<=50) & (dist_xe>=3*dist_ye)] - #print(args_hor_e,'jidi',len(args_hor_e),'jilva') cnts_hor_e=[] for ce in args_hor_e: cnts_hor_e.append(contours_line_e[ce]) - #print(len(slope_linese),'lieee') figs_e=np.zeros(thresh_e.shape) figs_e=cv2.fillPoly(figs_e,pts=cnts_hor_e,color=(1,1,1)) - #plt.imshow(figs_e) - #plt.show() - - ### - separators_closeup_n_binary=cv2.fillPoly(separators_closeup_n_binary,pts=cnts_hor_e,color=(0,0,0)) gray = cv2.bitwise_not(separators_closeup_n_binary) gray=gray.astype(np.uint8) - - #plt.imshow(gray) - #plt.show() - - bw = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, \ cv2.THRESH_BINARY, 15, -2) - ##plt.imshow(bw[:,:]) - ##plt.show() - + horizontal = np.copy(bw) vertical = np.copy(bw) @@ -1447,16 +1429,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, horizontal = cv2.dilate(horizontal,kernel,iterations = 2) horizontal = cv2.erode(horizontal,kernel,iterations = 2) - - ### - #print(np.unique(horizontal),'uni') horizontal=cv2.fillPoly(horizontal,pts=cnts_hor_e,color=(255,255,255)) - ### - - - - #plt.imshow(horizontal) - #plt.show() rows = vertical.shape[0] verticalsize = rows // 30 @@ -1467,35 +1440,21 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, vertical = cv2.dilate(vertical, verticalStructure) vertical = cv2.dilate(vertical,kernel,iterations = 1) - # Show extracted vertical lines horizontal,special_separators=combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(vertical,horizontal,num_col_classifier) - - #plt.imshow(horizontal) - #plt.show() - #print(vertical.shape,np.unique(vertical),'verticalvertical') separators_closeup_new[:,:][vertical[:,:]!=0]=1 separators_closeup_new[:,:][horizontal[:,:]!=0]=1 - ##plt.imshow(separators_closeup_new) - ##plt.show() - ##separators_closeup_n vertical=np.repeat(vertical[:, :, np.newaxis], 3, axis=2) vertical=vertical.astype(np.uint8) - ##plt.plot(vertical[:,:,0].sum(axis=0)) - ##plt.show() - - #plt.plot(vertical[:,:,0].sum(axis=1)) - #plt.show() - imgray = cv2.cvtColor(vertical, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_line_vers,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_line_vers) - #print(slope_lines,'vertical') + args=np.array( range(len(slope_lines) )) args_ver=args[slope_lines==1] dist_x_ver=dist_x[slope_lines==1] @@ -1508,9 +1467,6 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, len_y=separators_closeup.shape[0]/3.0 - #plt.imshow(horizontal) - #plt.show() - horizontal=np.repeat(horizontal[:, :, np.newaxis], 3, axis=2) horizontal=horizontal.astype(np.uint8) imgray = cv2.cvtColor(horizontal, cv2.COLOR_BGR2GRAY) @@ -1578,8 +1534,6 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, matrix_of_lines_ch[len(cy_main_hor):,9]=1 - - if contours_h is not None: slope_lines_head,dist_x_head, x_min_main_head ,x_max_main_head ,cy_main_head,slope_lines_org_head,y_min_main_head, y_max_main_head, cx_main_head=find_features_of_lines(contours_h) matrix_l_n=np.zeros((matrix_of_lines_ch.shape[0]+len(cy_main_head),matrix_of_lines_ch.shape[1])) @@ -1625,8 +1579,6 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, args_big_parts=np.array(range(len(splitter_y_new_diff))) [ splitter_y_new_diff>22 ] - - regions_without_separators=return_regions_without_separators(region_pre_p) @@ -1636,19 +1588,8 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, peaks_neg_fin_fin=[] for itiles in args_big_parts: - - regions_without_separators_tile=regions_without_separators[int(splitter_y_new[itiles]):int(splitter_y_new[itiles+1]),:,0] - #image_page_background_zero_tile=image_page_background_zero[int(splitter_y_new[itiles]):int(splitter_y_new[itiles+1]),:] - - #print(regions_without_separators_tile.shape) - ##plt.imshow(regions_without_separators_tile) - ##plt.show() - - #num_col, peaks_neg_fin=self.find_num_col(regions_without_separators_tile,multiplier=6.0) - - #regions_without_separators_tile=cv2.erode(regions_without_separators_tile,kernel,iterations = 3) - # + try: num_col, peaks_neg_fin = find_num_col(regions_without_separators_tile, num_col_classifier, tables, multiplier=7.0) except: @@ -1666,9 +1607,6 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, peaks_neg_fin=peaks_neg_fin[peaks_neg_fin<=(vertical.shape[1]-500)] peaks_neg_fin_fin=peaks_neg_fin[:] - #print(peaks_neg_fin_fin,'peaks_neg_fin_fintaza') - - return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,splitter_y_new,separators_closeup_n diff --git a/src/eynollah/utils/contour.py b/src/eynollah/utils/contour.py index 53b39b5..8a92ace 100644 --- a/src/eynollah/utils/contour.py +++ b/src/eynollah/utils/contour.py @@ -263,7 +263,7 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first): return cnts_org -def get_textregion_contours_in_org_image_light(cnts, img, slope_first): +def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first): h_o = img.shape[0] w_o = img.shape[1] @@ -278,14 +278,7 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first): img_copy = np.zeros(img.shape) img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1)) - # plt.imshow(img_copy) - # plt.show() - - # print(img.shape,'img') img_copy = rotation_image_new(img_copy, -slope_first) - ##print(img_copy.shape,'img_copy') - # plt.imshow(img_copy) - # plt.show() img_copy = img_copy.astype(np.uint8) imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) @@ -300,6 +293,70 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first): return cnts_org +def return_list_of_contours_with_desired_order(ls_cons, sorted_indexes): + return [ls_cons[sorted_indexes[index]] for index in range(len(sorted_indexes))] +def do_back_rotation_and_get_cnt_back(queue_of_all_params, contours_par_per_process,indexes_r_con_per_pro, img, slope_first): + contours_textregion_per_each_subprocess = [] + index_by_text_region_contours = [] + for mv in range(len(contours_par_per_process)): + img_copy = np.zeros(img.shape) + img_copy = cv2.fillPoly(img_copy, pts=[contours_par_per_process[mv]], color=(1, 1, 1)) + + img_copy = rotation_image_new(img_copy, -slope_first) + + img_copy = img_copy.astype(np.uint8) + imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) + ret, thresh = cv2.threshold(imgray, 0, 255, 0) + + cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) + + cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) + cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) + # print(np.shape(cont_int[0])) + contours_textregion_per_each_subprocess.append(cont_int[0]*6) + index_by_text_region_contours.append(indexes_r_con_per_pro[mv]) + + queue_of_all_params.put([contours_textregion_per_each_subprocess, index_by_text_region_contours]) + +def get_textregion_contours_in_org_image_light(cnts, img, slope_first): + num_cores = cpu_count() + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(cnts), num_cores + 1) + indexes_by_text_con = np.array(range(len(cnts))) + + h_o = img.shape[0] + w_o = img.shape[1] + + img = cv2.resize(img, (int(img.shape[1]/6.), int(img.shape[0]/6.)), interpolation=cv2.INTER_NEAREST) + ##cnts = list( (np.array(cnts)/2).astype(np.int16) ) + #cnts = cnts/2 + cnts = [(i/ 6).astype(np.int32) for i in cnts] + + for i in range(num_cores): + contours_par_per_process = cnts[int(nh[i]) : int(nh[i + 1])] + indexes_text_con_per_process = indexes_by_text_con[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_back_rotation_and_get_cnt_back, args=(queue_of_all_params, contours_par_per_process, indexes_text_con_per_process, img, slope_first))) + + for i in range(num_cores): + processes[i].start() + + cnts_org = [] + all_index_text_con = [] + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + contours_for_subprocess = list_all_par[0] + indexes_for_subprocess = list_all_par[1] + for j in range(len(contours_for_subprocess)): + cnts_org.append(contours_for_subprocess[j]) + all_index_text_con.append(indexes_for_subprocess[j]) + for i in range(num_cores): + processes[i].join() + + cnts_org = return_list_of_contours_with_desired_order(cnts_org, all_index_text_con) + + return cnts_org + def return_contours_of_interested_textline(region_pre_p, pixel): # pixels of images are identified by 5 diff --git a/src/eynollah/utils/drop_capitals.py b/src/eynollah/utils/drop_capitals.py index e12028f..67547d3 100644 --- a/src/eynollah/utils/drop_capitals.py +++ b/src/eynollah/utils/drop_capitals.py @@ -4,6 +4,7 @@ find_new_features_of_contours, return_contours_of_image, return_parent_contours, + return_contours_of_interested_region, ) def adhere_drop_capital_region_into_corresponding_textline( @@ -17,6 +18,7 @@ def adhere_drop_capital_region_into_corresponding_textline( all_found_textline_polygons_h, kernel=None, curved_line=False, + textline_light=False, ): # print(np.shape(all_found_textline_polygons),np.shape(all_found_textline_polygons[3]),'all_found_textline_polygonsshape') # print(all_found_textline_polygons[3]) @@ -76,7 +78,7 @@ def adhere_drop_capital_region_into_corresponding_textline( # region_with_intersected_drop=region_with_intersected_drop/3 region_with_intersected_drop = region_with_intersected_drop.astype(np.uint8) # print(np.unique(img_con_all_copy[:,:,0])) - if curved_line: + if curved_line or textline_light: if len(region_with_intersected_drop) > 1: sum_pixels_of_intersection = [] @@ -114,12 +116,17 @@ def adhere_drop_capital_region_into_corresponding_textline( img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255)) img_textlines = img_textlines.astype(np.uint8) - imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) - ret, thresh = cv2.threshold(imgray, 0, 255, 0) + + contours_combined = return_contours_of_interested_region(img_textlines, 255, 0) + + #plt.imshow(img_textlines) + #plt.show() + + #imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) + #ret, thresh = cv2.threshold(imgray, 0, 255, 0) - contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) + #contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) - # print(len(contours_combined),'len textlines mixed') areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))]) contours_biggest = contours_combined[np.argmax(areas_cnt_text)] @@ -130,8 +137,13 @@ def adhere_drop_capital_region_into_corresponding_textline( # contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0] # contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2]) - - all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + + if len(contours_combined)==1: + all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + elif len(contours_combined)==2: + all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] ) + else: + pass except: # print('gordun1') @@ -167,14 +179,13 @@ def adhere_drop_capital_region_into_corresponding_textline( img_textlines = img_textlines.astype(np.uint8) - # plt.imshow(img_textlines) - # plt.show() - imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) - ret, thresh = cv2.threshold(imgray, 0, 255, 0) + + contours_combined = return_contours_of_interested_region(img_textlines, 255, 0) + ##imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) + ##ret, thresh = cv2.threshold(imgray, 0, 255, 0) - contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) + ##contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) - # print(len(contours_combined),'len textlines mixed') areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))]) contours_biggest = contours_combined[np.argmax(areas_cnt_text)] @@ -186,7 +197,12 @@ def adhere_drop_capital_region_into_corresponding_textline( # print(np.shape(contours_biggest),'contours_biggest') # print(np.shape(all_found_textline_polygons[int(region_final)][arg_min])) ##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2]) - all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + if len(contours_combined)==1: + all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + elif len(contours_combined)==2: + all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] ) + else: + pass except: pass @@ -215,10 +231,11 @@ def adhere_drop_capital_region_into_corresponding_textline( img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255)) img_textlines = img_textlines.astype(np.uint8) - imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) - ret, thresh = cv2.threshold(imgray, 0, 255, 0) + contours_combined = return_contours_of_interested_region(img_textlines, 255, 0) + #imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) + #ret, thresh = cv2.threshold(imgray, 0, 255, 0) - contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) + #contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # print(len(contours_combined),'len textlines mixed') areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))]) @@ -231,7 +248,12 @@ def adhere_drop_capital_region_into_corresponding_textline( contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] # -all_box_coord[int(region_final)][0] ##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2]) - all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + if len(contours_combined)==1: + all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + elif len(contours_combined)==2: + all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] ) + else: + pass # all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest except: @@ -320,10 +342,12 @@ def adhere_drop_capital_region_into_corresponding_textline( img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255)) img_textlines = img_textlines.astype(np.uint8) - imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) - ret, thresh = cv2.threshold(imgray, 0, 255, 0) + contours_combined = return_contours_of_interested_region(img_textlines, 255, 0) + + #imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) + #ret, thresh = cv2.threshold(imgray, 0, 255, 0) - contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) + #contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # print(len(contours_combined),'len textlines mixed') areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))]) @@ -336,8 +360,12 @@ def adhere_drop_capital_region_into_corresponding_textline( contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] - all_box_coord[int(region_final)][0] contours_biggest = contours_biggest.reshape(np.shape(contours_biggest)[0], np.shape(contours_biggest)[2]) - - all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + if len(contours_combined)==1: + all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + elif len(contours_combined)==2: + all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] ) + else: + pass except: # print('gordun1') @@ -375,10 +403,12 @@ def adhere_drop_capital_region_into_corresponding_textline( img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255)) img_textlines = img_textlines.astype(np.uint8) - imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) - ret, thresh = cv2.threshold(imgray, 0, 255, 0) + contours_combined = return_contours_of_interested_region(img_textlines, 255, 0) + + #imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY) + #ret, thresh = cv2.threshold(imgray, 0, 255, 0) - contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) + #contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # print(len(contours_combined),'len textlines mixed') areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))]) @@ -391,7 +421,12 @@ def adhere_drop_capital_region_into_corresponding_textline( contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] - all_box_coord[int(region_final)][0] contours_biggest = contours_biggest.reshape(np.shape(contours_biggest)[0], np.shape(contours_biggest)[2]) - all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + if len(contours_combined)==1: + all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest + elif len(contours_combined)==2: + all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] ) + else: + pass # all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest except: diff --git a/src/eynollah/utils/marginals.py b/src/eynollah/utils/marginals.py index 7c43de6..a29e50d 100644 --- a/src/eynollah/utils/marginals.py +++ b/src/eynollah/utils/marginals.py @@ -2,13 +2,11 @@ import cv2 from scipy.signal import find_peaks from scipy.ndimage import gaussian_filter1d - - from .contour import find_new_features_of_contours, return_contours_of_interested_region from .resize import resize_image from .rotate import rotate_image -def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=None): +def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_version=False, kernel=None): mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1])) mask_marginals=mask_marginals.astype(np.uint8) @@ -49,27 +47,14 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=N if thickness_along_y_percent>=14: text_with_lines_y_rev=-1*text_with_lines_y[:] - #print(text_with_lines_y) - #print(text_with_lines_y_rev) - - - - - #plt.plot(text_with_lines_y) - #plt.show() - text_with_lines_y_rev=text_with_lines_y_rev-np.min(text_with_lines_y_rev) - #plt.plot(text_with_lines_y_rev) - #plt.show() sigma_gaus=1 region_sum_0= gaussian_filter1d(text_with_lines_y, sigma_gaus) region_sum_0_rev=gaussian_filter1d(text_with_lines_y_rev, sigma_gaus) - #plt.plot(region_sum_0_rev) - #plt.show() region_sum_0_updown=region_sum_0[len(region_sum_0)::-1] first_nonzero=(next((i for i, x in enumerate(region_sum_0) if x), None)) @@ -78,43 +63,17 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=N last_nonzero=len(region_sum_0)-last_nonzero - ##img_sum_0_smooth_rev=-region_sum_0 - - mid_point=(last_nonzero+first_nonzero)/2. one_third_right=(last_nonzero-mid_point)/3.0 one_third_left=(mid_point-first_nonzero)/3.0 - #img_sum_0_smooth_rev=img_sum_0_smooth_rev-np.min(img_sum_0_smooth_rev) - - - - peaks, _ = find_peaks(text_with_lines_y_rev, height=0) - - peaks=np.array(peaks) - - - #print(region_sum_0[peaks]) - ##plt.plot(region_sum_0) - ##plt.plot(peaks,region_sum_0[peaks],'*') - ##plt.show() - #print(first_nonzero,last_nonzero,peaks) peaks=peaks[(peaks>first_nonzero) & ((peaksmid_point] @@ -137,9 +96,6 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=N - - #print(point_left,point_right) - #print(text_regions.shape) if point_right>=mask_marginals.shape[1]: point_right=mask_marginals.shape[1]-1 @@ -148,10 +104,8 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=N except: mask_marginals[:,:]=1 - #print(mask_marginals.shape,point_left,point_right,'nadosh') mask_marginals_rotated=rotate_image(mask_marginals,-slope_deskew) - #print(mask_marginals_rotated.shape,'nadosh') mask_marginals_rotated_sum=mask_marginals_rotated.sum(axis=0) mask_marginals_rotated_sum[mask_marginals_rotated_sum!=0]=1 @@ -167,73 +121,92 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=N if max_point_of_right_marginal>=text_regions.shape[1]: max_point_of_right_marginal=text_regions.shape[1]-1 + if light_version: + text_regions_org = np.copy(text_regions) + text_regions[text_regions[:,:]==1]=4 + + pixel_img=4 + min_area_text=0.00001 + + polygon_mask_marginals_rotated = return_contours_of_interested_region(mask_marginals,1,min_area_text) + + polygon_mask_marginals_rotated = polygon_mask_marginals_rotated[0] - #print(np.min(index_x_interest) ,np.max(index_x_interest),'minmaxnew') - #print(mask_marginals_rotated.shape,text_regions.shape,'mask_marginals_rotated') - #plt.imshow(mask_marginals) - #plt.show() + polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text) - #plt.imshow(mask_marginals_rotated) - #plt.show() + cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals) - text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4 + text_regions[(text_regions[:,:]==4)]=1 - #plt.imshow(text_regions) - #plt.show() + marginlas_should_be_main_text=[] - pixel_img=4 - min_area_text=0.00001 - polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text) + x_min_marginals_left=[] + x_min_marginals_right=[] - cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals) + for i in range(len(cx_text_only)): + results = cv2.pointPolygonTest(polygon_mask_marginals_rotated, (cx_text_only[i], cy_text_only[i]), False) - text_regions[(text_regions[:,:]==4)]=1 + if results == -1: + marginlas_should_be_main_text.append(polygons_of_marginals[i]) - marginlas_should_be_main_text=[] - x_min_marginals_left=[] - x_min_marginals_right=[] - for i in range(len(cx_text_only)): + text_regions_org=cv2.fillPoly(text_regions_org, pts =marginlas_should_be_main_text, color=(4,4)) + text_regions = np.copy(text_regions_org) + - x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i]) - y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i]) - #print(x_width_mar,y_height_mar,y_height_mar/x_width_mar,'y_height_mar') - if x_width_mar>16 and y_height_mar/x_width_mar<18: - marginlas_should_be_main_text.append(polygons_of_marginals[i]) - if x_min_text_only[i]<(mid_point-one_third_left): - x_min_marginals_left_new=x_min_text_only[i] - if len(x_min_marginals_left)==0: - x_min_marginals_left.append(x_min_marginals_left_new) - else: - x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new) - else: - x_min_marginals_right_new=x_min_text_only[i] - if len(x_min_marginals_right)==0: - x_min_marginals_right.append(x_min_marginals_right_new) - else: - x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new) + else: + + text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4 + + pixel_img=4 + min_area_text=0.00001 - if len(x_min_marginals_left)==0: - x_min_marginals_left=[0] - if len(x_min_marginals_right)==0: - x_min_marginals_right=[text_regions.shape[1]-1] + polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text) + cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals) + text_regions[(text_regions[:,:]==4)]=1 + marginlas_should_be_main_text=[] + + x_min_marginals_left=[] + x_min_marginals_right=[] + + for i in range(len(cx_text_only)): + x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i]) + y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i]) + + if x_width_mar>16 and y_height_mar/x_width_mar<18: + marginlas_should_be_main_text.append(polygons_of_marginals[i]) + if x_min_text_only[i]<(mid_point-one_third_left): + x_min_marginals_left_new=x_min_text_only[i] + if len(x_min_marginals_left)==0: + x_min_marginals_left.append(x_min_marginals_left_new) + else: + x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new) + else: + x_min_marginals_right_new=x_min_text_only[i] + if len(x_min_marginals_right)==0: + x_min_marginals_right.append(x_min_marginals_right_new) + else: + x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new) - #print(x_min_marginals_left[0],x_min_marginals_right[0],'margo') + if len(x_min_marginals_left)==0: + x_min_marginals_left=[0] + if len(x_min_marginals_right)==0: + x_min_marginals_right=[text_regions.shape[1]-1] - #print(marginlas_should_be_main_text,'marginlas_should_be_main_text') - text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4)) - #print(np.unique(text_regions)) + text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4)) - #text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0 - #text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0 - text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0 - text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0 + #text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0 + #text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0 + + + text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0 + text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0 ###text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4 diff --git a/src/eynollah/utils/separate_lines.py b/src/eynollah/utils/separate_lines.py index acdc2e9..f8df33f 100644 --- a/src/eynollah/utils/separate_lines.py +++ b/src/eynollah/utils/separate_lines.py @@ -3,7 +3,8 @@ from scipy.signal import find_peaks from scipy.ndimage import gaussian_filter1d import os - +from multiprocessing import Process, Queue, cpu_count +from multiprocessing import Pool from .rotate import rotate_image from .contour import ( return_parent_contours, @@ -1569,8 +1570,21 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, plotter=None): # plt.show() return img_patch_ineterst_revised -def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): +def do_image_rotation(queue_of_all_params,angels_per_process, img_resized, sigma_des): + angels_per_each_subprocess = [] + for mv in range(len(angels_per_process)): + img_rot=rotate_image(img_resized,angels_per_process[mv]) + img_rot[img_rot!=0]=1 + try: + var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + except: + var_spectrum=0 + angels_per_each_subprocess.append(var_spectrum) + + queue_of_all_params.put([angels_per_each_subprocess]) +def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100, main_page=False, plotter=None): + num_cores = cpu_count() if main_page and plotter: plotter.save_plot_of_textline_density(img_patch_org) @@ -1603,22 +1617,44 @@ def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): #plt.imshow(img_resized) #plt.show() angels=np.array([-45, 0 , 45 , 90 , ])#np.linspace(-12,12,100)#np.array([0 , 45 , 90 , -45]) - + + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + var_res=[] - - for rot in angels: - img_rot=rotate_image(img_resized,rot) - #plt.imshow(img_rot) - #plt.show() - img_rot[img_rot!=0]=1 - #neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 ) - #print(var_spectrum,'var_spectrum') - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - ##print(rot,var_spectrum,'var_spectrum') - except: - var_spectrum=0 - var_res.append(var_spectrum) + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() + + ###for rot in angels: + ###img_rot=rotate_image(img_resized,rot) + ####plt.imshow(img_rot) + ####plt.show() + ###img_rot[img_rot!=0]=1 + ####neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 ) + ####print(var_spectrum,'var_spectrum') + ###try: + ###var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + #####print(rot,var_spectrum,'var_spectrum') + ###except: + ###var_spectrum=0 + ###var_res.append(var_spectrum) + + + try: var_res=np.array(var_res) ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] @@ -1626,19 +1662,40 @@ def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): ang_int=0 - angels=np.linspace(ang_int-22.5,ang_int+22.5,100) + angels=np.linspace(ang_int-22.5,ang_int+22.5,n_tot_angles) + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + var_res=[] - for rot in angels: - img_rot=rotate_image(img_resized,rot) - ##plt.imshow(img_rot) - ##plt.show() - img_rot[img_rot!=0]=1 - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - except: - var_spectrum=0 - var_res.append(var_spectrum) + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() + + ##var_res=[] + ##for rot in angels: + ##img_rot=rotate_image(img_resized,rot) + ####plt.imshow(img_rot) + ####plt.show() + ##img_rot[img_rot!=0]=1 + ##try: + ##var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + ##except: + ##var_spectrum=0 + ##var_res.append(var_spectrum) try: var_res=np.array(var_res) ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] @@ -1649,25 +1706,47 @@ def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): #plt.imshow(img_resized) #plt.show() - angels=np.linspace(-12,12,100)#np.array([0 , 45 , 90 , -45]) + angels=np.linspace(-12,12,n_tot_angles)#np.array([0 , 45 , 90 , -45]) + + + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + + var_res=[] + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() - var_res=[] + ##var_res=[] - for rot in angels: - img_rot=rotate_image(img_resized,rot) - #plt.imshow(img_rot) - #plt.show() - img_rot[img_rot!=0]=1 - #neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 ) - #print(var_spectrum,'var_spectrum') - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + ##for rot in angels: + ##img_rot=rotate_image(img_resized,rot) + ###plt.imshow(img_rot) + ###plt.show() + ##img_rot[img_rot!=0]=1 + ###neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 ) + ###print(var_spectrum,'var_spectrum') + ##try: + ##var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - except: - var_spectrum=0 + ##except: + ##var_spectrum=0 - var_res.append(var_spectrum) + ##var_res.append(var_spectrum) if plotter: @@ -1680,18 +1759,39 @@ def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): early_slope_edge=11 if abs(ang_int)>early_slope_edge and ang_int<0: - angels=np.linspace(-90,-12,100) + angels=np.linspace(-90,-12,n_tot_angles) + + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + var_res=[] - for rot in angels: - img_rot=rotate_image(img_resized,rot) - ##plt.imshow(img_rot) - ##plt.show() - img_rot[img_rot!=0]=1 - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - except: - var_spectrum=0 - var_res.append(var_spectrum) + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() + ##var_res=[] + ##for rot in angels: + ##img_rot=rotate_image(img_resized,rot) + ####plt.imshow(img_rot) + ####plt.show() + ##img_rot[img_rot!=0]=1 + ##try: + ##var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + ##except: + ##var_spectrum=0 + ##var_res.append(var_spectrum) try: var_res=np.array(var_res) ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] @@ -1700,40 +1800,85 @@ def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): elif abs(ang_int)>early_slope_edge and ang_int>0: - angels=np.linspace(90,12,100) + angels=np.linspace(90,12,n_tot_angles) + + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + var_res=[] - for rot in angels: - img_rot=rotate_image(img_resized,rot) - ##plt.imshow(img_rot) - ##plt.show() - img_rot[img_rot!=0]=1 - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - #print(indexer,'indexer') - except: - var_spectrum=0 - var_res.append(var_spectrum) + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() + + + ###var_res=[] + ###for rot in angels: + ###img_rot=rotate_image(img_resized,rot) + #####plt.imshow(img_rot) + #####plt.show() + ###img_rot[img_rot!=0]=1 + ###try: + ###var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + ####print(indexer,'indexer') + ###except: + ###var_spectrum=0 + ###var_res.append(var_spectrum) try: var_res=np.array(var_res) ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] except: ang_int=0 else: - angels=np.linspace(-25,25,60) - var_res=[] + angels=np.linspace(-25,25,int(n_tot_angles/2.)+10) indexer=0 - for rot in angels: - img_rot=rotate_image(img_resized,rot) - #plt.imshow(img_rot) - #plt.show() - img_rot[img_rot!=0]=1 - #neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 ) - #print(var_spectrum,'var_spectrum') - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - except: - var_spectrum=0 - var_res.append(var_spectrum) + + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + + var_res=[] + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() + ####var_res=[] + + ####for rot in angels: + ####img_rot=rotate_image(img_resized,rot) + #####plt.imshow(img_rot) + #####plt.show() + ####img_rot[img_rot!=0]=1 + #####neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 ) + #####print(var_spectrum,'var_spectrum') + ####try: + ####var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + ####except: + ####var_spectrum=0 + ####var_res.append(var_spectrum) try: var_res=np.array(var_res) ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] @@ -1749,20 +1894,41 @@ def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): early_slope_edge=22 if abs(ang_int)>early_slope_edge and ang_int<0: - angels=np.linspace(-90,-25,60) - + angels=np.linspace(-90,-25,int(n_tot_angles/2.)+10) + + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + var_res=[] - - for rot in angels: - img_rot=rotate_image(img_resized,rot) - ##plt.imshow(img_rot) - ##plt.show() - img_rot[img_rot!=0]=1 - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - except: - var_spectrum=0 - var_res.append(var_spectrum) + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() + + ###var_res=[] + + ###for rot in angels: + ###img_rot=rotate_image(img_resized,rot) + #####plt.imshow(img_rot) + #####plt.show() + ###img_rot[img_rot!=0]=1 + ###try: + ###var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + ###except: + ###var_spectrum=0 + ###var_res.append(var_spectrum) try: var_res=np.array(var_res) @@ -1772,23 +1938,45 @@ def return_deskew_slop(img_patch_org, sigma_des, main_page=False, plotter=None): elif abs(ang_int)>early_slope_edge and ang_int>0: - angels=np.linspace(90,25,60) - + angels=np.linspace(90,25,int(n_tot_angles/2.)+10) + indexer=0 + + queue_of_all_params = Queue() + processes = [] + nh = np.linspace(0, len(angels), num_cores + 1) + + for i in range(num_cores): + angels_per_process = angels[int(nh[i]) : int(nh[i + 1])] + processes.append(Process(target=do_image_rotation, args=(queue_of_all_params, angels_per_process, img_resized, sigma_des))) + + for i in range(num_cores): + processes[i].start() + var_res=[] + for i in range(num_cores): + list_all_par = queue_of_all_params.get(True) + angles_for_subprocess = list_all_par[0] + for j in range(len(angles_for_subprocess)): + var_res.append(angles_for_subprocess[j]) + + for i in range(num_cores): + processes[i].join() - indexer=0 - for rot in angels: - img_rot=rotate_image(img_resized,rot) - ##plt.imshow(img_rot) - ##plt.show() - img_rot[img_rot!=0]=1 - try: - var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) - #print(indexer,'indexer') - except: - var_spectrum=0 + ###var_res=[] - var_res.append(var_spectrum) + + ###for rot in angels: + ###img_rot=rotate_image(img_resized,rot) + #####plt.imshow(img_rot) + #####plt.show() + ###img_rot[img_rot!=0]=1 + ###try: + ###var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 ) + ####print(indexer,'indexer') + ###except: + ###var_spectrum=0 + + ###var_res.append(var_spectrum) try: var_res=np.array(var_res) ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] diff --git a/src/eynollah/utils/xml.py b/src/eynollah/utils/xml.py index 0386b25..bd95702 100644 --- a/src/eynollah/utils/xml.py +++ b/src/eynollah/utils/xml.py @@ -72,7 +72,7 @@ def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region index_of_types_2 = index_of_types[kind_of_texts == 2] indexes_sorted_2 = indexes_sorted[kind_of_texts == 2] - + counter = EynollahIdCounter(region_idx=ref_point) for idx_textregion, _ in enumerate(found_polygons_text_region): id_of_texts.append(counter.next_region_id) diff --git a/src/eynollah/writer.py b/src/eynollah/writer.py index 4487af5..496b3db 100644 --- a/src/eynollah/writer.py +++ b/src/eynollah/writer.py @@ -2,7 +2,7 @@ # pylint: disable=import-error from pathlib import Path import os.path - +import xml.etree.ElementTree as ET from .utils.xml import create_page_xml, xml_reading_order from .utils.counter import EynollahIdCounter @@ -12,6 +12,7 @@ CoordsType, PcGtsType, TextLineType, + TextEquivType, TextRegionType, ImageRegionType, TableRegionType, @@ -93,11 +94,13 @@ def serialize_lines_in_marginal(self, marginal_region, all_found_textline_polygo points_co += ' ' coords.set_points(points_co[:-1]) - def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter): + def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion): self.logger.debug('enter serialize_lines_in_region') for j in range(len(all_found_textline_polygons[region_idx])): coords = CoordsType() textline = TextLineType(id=counter.next_line_id, Coords=coords) + if ocr_all_textlines_textregion: + textline.set_TextEquiv( [ TextEquivType(Unicode=ocr_all_textlines_textregion[j]) ] ) text_region.add_TextLine(textline) region_bboxes = all_box_coord[region_idx] points_co = '' @@ -133,6 +136,29 @@ def serialize_lines_in_region(self, text_region, all_found_textline_polygons, re points_co += str(int((contour_textline[0][1] + region_bboxes[0]+page_coord[0])/self.scale_y)) points_co += ' ' coords.set_points(points_co[:-1]) + + def serialize_lines_in_dropcapital(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion): + self.logger.debug('enter serialize_lines_in_region') + for j in range(1): + coords = CoordsType() + textline = TextLineType(id=counter.next_line_id, Coords=coords) + if ocr_all_textlines_textregion: + textline.set_TextEquiv( [ TextEquivType(Unicode=ocr_all_textlines_textregion[j]) ] ) + text_region.add_TextLine(textline) + #region_bboxes = all_box_coord[region_idx] + points_co = '' + for idx_contour_textline, contour_textline in enumerate(all_found_textline_polygons[j]): + if len(contour_textline) == 2: + points_co += str(int((contour_textline[0] + page_coord[2]) / self.scale_x)) + points_co += ',' + points_co += str(int((contour_textline[1] + page_coord[0]) / self.scale_y)) + else: + points_co += str(int((contour_textline[0][0] + page_coord[2]) / self.scale_x)) + points_co += ',' + points_co += str(int((contour_textline[0][1] + page_coord[0])/self.scale_y)) + + points_co += ' ' + coords.set_points(points_co[:-1]) def write_pagexml(self, pcgts): out_fname = os.path.join(self.dir_out, self.image_filename_stem) + ".xml" @@ -140,7 +166,7 @@ def write_pagexml(self, pcgts): with open(out_fname, 'w') as f: f.write(to_xml(pcgts)) - def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, found_polygons_tables): + def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, found_polygons_tables, ocr_all_textlines): self.logger.debug('enter build_pagexml_no_full_layout') # create the file structure @@ -159,7 +185,11 @@ def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, o Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)), ) page.add_TextRegion(textregion) - self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter) + if ocr_all_textlines: + ocr_textlines = ocr_all_textlines[mm] + else: + ocr_textlines = None + self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter, ocr_textlines) for mm in range(len(found_polygons_marginals)): marginal = TextRegionType(id=counter.next_region_id, type_='marginalia', @@ -209,7 +239,7 @@ def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, o return pcgts - def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml): + def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, ocr_all_textlines): self.logger.debug('enter build_pagexml_full_layout') # create the file structure @@ -226,14 +256,24 @@ def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_t textregion = TextRegionType(id=counter.next_region_id, type_='paragraph', Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord))) page.add_TextRegion(textregion) - self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter) + + if ocr_all_textlines: + ocr_textlines = ocr_all_textlines[mm] + else: + ocr_textlines = None + self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter, ocr_textlines) self.logger.debug('len(found_polygons_text_region_h) %s', len(found_polygons_text_region_h)) for mm in range(len(found_polygons_text_region_h)): textregion = TextRegionType(id=counter.next_region_id, type_='header', Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_h[mm], page_coord))) page.add_TextRegion(textregion) - self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h, slopes_h, counter) + + if ocr_all_textlines: + ocr_textlines = ocr_all_textlines[mm] + else: + ocr_textlines = None + self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h, slopes_h, counter, ocr_textlines) for mm in range(len(found_polygons_marginals)): marginal = TextRegionType(id=counter.next_region_id, type_='marginalia', @@ -242,8 +282,12 @@ def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_t self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter) for mm in range(len(found_polygons_drop_capitals)): - page.add_TextRegion(TextRegionType(id=counter.next_region_id, type_='drop-capital', - Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm], page_coord)))) + dropcapital = TextRegionType(id=counter.next_region_id, type_='drop-capital', + Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm], page_coord))) + page.add_TextRegion(dropcapital) + ###all_box_coord_drop = None + ###slopes_drop = None + ###self.serialize_lines_in_dropcapital(dropcapital, [found_polygons_drop_capitals[mm]], mm, page_coord, all_box_coord_drop, slopes_drop, counter, ocr_all_textlines_textregion=None) for mm in range(len(found_polygons_text_region_img)): page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord)))) diff --git a/tests/test_run.py b/tests/test_run.py index 2596dad..cdb715a 100644 --- a/tests/test_run.py +++ b/tests/test_run.py @@ -2,7 +2,7 @@ from pathlib import Path from ocrd_utils import pushd_popd from tests.base import CapturingTestCase as TestCase, main -from eynollah.cli import main as eynollah_cli +from eynollah.cli import layout as eynollah_cli testdir = Path(__file__).parent.resolve()