-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodule_outline.html
136 lines (136 loc) · 9.67 KB
/
module_outline.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
<h2 style="color: #ffffff; background: #d6000d; padding-left: 10px; text-align: left;"><strong>FIN7028 Advanced Financial Data Analytics</strong></h2>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">📌 Introduction</h2>
</div>
<div id="cond_group_1" class="ig-list" style="display: block;">
<div class="ig-row ">
<div class="">
<p>Statistics is the science of <strong>uncertainty and variation</strong>. This course is about the statistics used in the Advanced analysis of time-series data used for economic and financial problems. This course aims to teach students to apply time series financial econometrics techniques sensibly in the context of real-world empirical problems.</p>
</div>
</div>
</div>
</div>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">📣 Module Coordinator</h2>
</div>
<div id="cond_group_2" class="ig-list" style="display: block;">
<div class="ig-row ">
<div class="">Your module coordinator is Barry Quinn (<a class="inline_disabled" href="mailto:b.quinn@qub.ac.uk" target="_blank" rel="noopener">b.quinn@qub.ac.uk</a>).</div>
</div>
</div>
</div>
<p> </p>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">🔎 Module Contents</h2>
<p>Aims to deepen participants' understanding of financial predictions and decision-making by exploring the revolutionary impact of combining econometrics, Bayesian methods, and machine learning in financial analytics. This course integrates machine learning, classical financial time series econometrics, and Bayesian methods to tackle complex financial problems characterised by uncertainty and conflicting objectives. It does this by covering:</p>
<p><strong>Financial Markets as Predictive Systems</strong>: It emphasises understanding market prices as reflections of predictions about future asset payoffs and risks, highlighting the predictive nature of financial markets</p>
<p><strong>Classical Econometrics in Finance</strong>: Covers traditional financial time series models such as ARIMA and GARCH, acknowledging their strengths in historical data analysis and noting limitations with complex modern datasets.</p>
<p><strong>Bayesian Methods for Financial Analytics</strong>: Introduces Bayesian methods for their probabilistic approach, enabling the incorporation of prior knowledge and continuous updating with new data, which is crucial for adapting to dynamic financial markets.</p>
<p><strong>Machine Learning's Role:</strong> Explores the role of machine learning in processing large datasets and accurately modelling the complexities of financial markets, complementing traditional econometrics and Bayesian approaches.</p>
<p><strong>Theoretical Foundations</strong>: Discusses machine learning and Bayesian methods' foundational principles, including overparameterisation, regularisation, and probabilistic modelling, to tackle high-dimensional data and uncertainty.</p>
<p><strong>Synergy of Approaches</strong>: Highlights the comprehensive toolkit formed by combining econometrics, Bayesian methods, and machine learning to address the intricacies of financial markets effectively.</p>
<p><strong>Growth Mindset in Learning Financial Analytics</strong>: Advocates for adopting a growth mindset for learning advanced financial data analytics, emphasising embracing challenges, persisting through setbacks, leveraging criticism, and finding lessons in others' success.</p>
<p><strong>Benefits of a Growth Mindset</strong>: Details the advantages of a growth mindset, such as improved performance, resilience, collaboration, adaptability, and a long-term focus on sustainable learning habits.</p>
<p><strong>Developing a Growth Mindset</strong>: Offers practical suggestions to foster a growth mindset, including setting clear goals, tracking progress, seeking new learning opportunities, engaging with peers, and viewing mistakes as learning opportunities.</p>
<p><strong>Empowering Learners</strong>: The course is designed to equip participants with the necessary insights and tools to navigate the sophisticated realm of financial analytics, encouraging a lifelong commitment to learning and development in the field.</p>
<p><a title="Please read carefully" href="https://canvas.qub.ac.uk/courses/25549/pages/please-read-carefully" data-course-type="wikiPages" data-published="true" data-api-endpoint="https://canvas.qub.ac.uk/api/v1/courses/25549/pages/please-read-carefully" data-api-returntype="Page">Follow this link to access all the course materials</a></p>
</div>
</div>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">⭐ What are my learning outcomes?</h2>
</div>
<div id="cond_group_4" class="ig-list" style="display: block;">
<div class="ig-row ">
<ol>
<li>We are rethinking econometrics as a science of uncertainty and variation.</li>
<li>Understanding and exploiting the stylised facts of financial data to make more intelligent economic predictions.</li>
<li>The appropriate use of dashboard analytics in advanced financial data analytics.</li>
<li>Introduction to open science principles of advanced financial data analytics. (see skills)</li>
<li>Learn to be experimental, iterative, curious, and resilient in analytic practices.</li>
<li>Work independently or in groups towards an empirical goal.</li>
</ol>
</div>
</div>
</div>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">🏅 How will my skills be enhanced?</h2>
</div>
<div id="cond_group_5" class="ig-list" style="display: block;">
<div class="ig-row ">
<p>This module will help you to develop the following skills:</p>
<ol>
<li>Introduction to the “tidy” data principles of Hadley Wickham in Posit.</li>
<li>Introduction to literate programming using the <a class="inline_disabled" href="https://style.tidyverse.org" target="_blank" rel="noopener">“tidyverse” programming style guide</a>.</li>
<li>Introduction to cloud computing using <a class="instructure_file_link inline_disabled" href="https://rstudio.com/products/team/" target="_blank" rel="noopener">Posit Professional Products</a>.</li>
<li>Introduction to reproducible research using <a class="inline_disabled" href="https://quarto.org" target="_blank" rel="noopener">open-source scientific and technical publishing system</a> and git version control.</li>
<li>Introduction to <a class="inline_disabled" href="https://quarto.org/docs/interactive/" target="_blank" rel="noopener">interactivity</a> in advanced financial data analytics.</li>
<li>The ability to work independently to glean meaning from noisy financial data.</li>
</ol>
</div>
</div>
</div>
<p> </p>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">✅ How will the module be assessed?</h2>
</div>
<div id="cond_group_6" class="ig-list" style="display: block;">
<div class="ig-row ">
<div class="">
<p>Assessment of this module will comprise:</p>
<table style="border-collapse: collapse; width: 100%; height: 18px;" border="1">
<tbody>
<tr style="height: 29px; background-color: #dddddd;">
<td style="width: 20%; height: 29px;"><strong>Assessment Type</strong></td>
<td style="width: 10%; height: 29px;"><strong>Weight (%)</strong></td>
<td style="width: 70%; height: 29px;"><strong>Description</strong></td>
</tr>
<tr style="height: 29px; background-color: #ffffff;">
<td style="width: 20%; height: 29px;">Assignment</td>
<td style="width: 10%; height: 29px;">50</td>
<td style="width: 70%; height: 29px;">Critical Essay</td>
</tr>
<tr style="height: 29px; background-color: #ffffff;">
<td style="width: 20%; height: 29px;">Computer Practical</td>
<td style="width: 10%; height: 29px;">50</td>
<td style="width: 70%; height: 29px;">Computer-based exam</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
<p> </p>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">📚 Self-Study</h2>
</div>
<div id="cond_group_7" class="ig-list" style="display: block;">
<div class="ig-row ">
<ul>
<li>How videos are provided for step-by-step guides to analytics task</li>
<li>Interactive analytics tutorials have been created</li>
<li>
<p>Students will use R statistical programming and have access to state-of-the-art cloud computing <a class="inline_disabled" href="https://www.rstudio.com/products/cloud/" target="_blank" rel="noopener">Posit Cloud</a> technologies via the <a class="inline_disabled" title="Link" href="https://www.quinference.com/qrap/" target="_blank" rel="noopener">Q-RaP (Queen's management school Remote Analytics Platform)</a>. </p>
<p><iframe title="YouTube video player" src="https://www.youtube.com/embed/videoseries?list=PL9HYL-VRX0oSn7tBLDiSt4Vnyk3yB6ipA" width="560" height="315" allowfullscreen="allowfullscreen" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" data-mce-fragment="1"></iframe></p>
</li>
</ul>
</div>
</div>
</div>
<div class="item-group-condensed" style="padding: 0px;">
<div class="ig-header">
<h2 class="ig-header-title element_toggler">📝 Additional Guidance</h2>
</div>
</div>
<ul>
<li>Weekly one-to-one coding clinics</li>
<li>The companion live textbook is written specifically for this course (for in-detail course material)</li>
</ul>
<p style="text-align: center;"><img id="590" role="presentation" src="https://canvas.qub.ac.uk/courses/18575/files/3117640/preview" alt="" width="100%; min-width: 100%" data-api-endpoint="https://canvas.qub.ac.uk/api/v1/courses/18575/files/3117640" data-api-returntype="File" /></p>