-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathi2c_bitbang.py
261 lines (226 loc) · 7.27 KB
/
i2c_bitbang.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import time
import logging
from contextlib import contextmanager
from pyftdi.ftdi import Ftdi
from pyftdi.i2c import I2cNackError
logger = logging.getLogger(__name__)
I2CNACK = I2cNackError
try:
BITMODE_BITBANG = Ftdi.BITMODE_BITBANG
except: # pyftdi >= 0.49.0
BITMODE_BITBANG = Ftdi.BitMode.BITBANG
class I2C:
SCL = 1 << 0
SDAO = 1 << 1
SDAI = 1 << 2
EN = (1 << 4) | (1 << 6) # 4 on <=v2.0, 6 on >v2.0
RESET = 1 << 5 # active high on >=v2.0, active low on <v2.0
max_clock_stretch = 100
def __init__(self):
self.dev = Ftdi()
self._time = 0
self._direction = 0
def configure(self, url, **kwargs):
self.dev.open_bitbang_from_url(url, **kwargs)
return self
def tick(self):
self._time += 1
def reset(self):
self.write(self.EN | self.RESET)
self.tick()
self.write(self.EN)
self.tick()
time.sleep(.01)
def set_direction(self, direction):
self._direction = direction
self.dev.set_bitmode(direction, BITMODE_BITBANG)
def write(self, data):
self.dev.write_data(bytes([data]))
def read(self):
return self.dev.read_pins()
def scl_oe(self, oe):
d = self._direction & ~self.SCL
if oe:
d |= self.SCL
self.set_direction(d)
def sda_oe(self, oe):
d = self._direction & ~self.SDAO
if oe:
d |= self.SDAO
self.set_direction(d)
def scl_i(self):
return bool(self.read() & self.SCL)
def sda_i(self):
return bool(self.read() & self.SDAI)
def clock_stretch(self):
for i in range(self.max_clock_stretch):
r = self.read()
if r & self.SCL:
return bool(r & self.SDAI)
raise ValueError("SCL low exceeded clock stretch limit")
def acquire(self):
# EN, !SCL, !SDA
self.write(self.EN)
# enable USB-I2C
self.set_direction(self.EN | self.RESET)
self.tick()
time.sleep(.1)
i = self.read()
if not i & self.EN:
raise ValueError("EN low despite enable")
if not i & self.SCL:
raise ValueError("SCL stuck low")
if not i & self.SDAI:
raise ValueError("SDAI stuck low")
if not i & self.SDAO:
raise ValueError("SDAO stuck low")
def release(self):
self.set_direction(self.EN | self.RESET)
self.write(0)
self.tick()
i = self.read()
if i & self.EN:
raise ValueError("EN high despite disable")
if not i & self.SCL:
raise ValueError("SCL low despite disable")
if not i & self.SDAI:
raise ValueError("SDAI low despite disable")
if not i & self.SDAO:
raise ValueError("SDAO low despite disable")
def __enter__(self):
self.acquire()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.release()
def clear(self):
self.tick()
self.scl_oe(False)
self.tick()
self.sda_oe(False)
self.tick()
for i in range(9):
if self.clock_stretch():
break
self.scl_oe(True)
self.tick()
self.scl_oe(False)
self.tick()
def start(self):
logger.debug("S")
assert self.scl_i()
if not self.sda_i():
raise ValueError("Arbitration lost")
self.sda_oe(True)
self.tick()
self.scl_oe(True)
# SCL low, SDA low
def stop(self):
logger.debug("P")
# SCL low, SDA low
self.tick()
self.scl_oe(False)
self.tick()
self.clock_stretch()
self.sda_oe(False)
self.tick()
if not self.sda_i():
raise ValueError("Arbitration lost")
def restart(self):
logger.debug("R")
# SCL low, SDA low
self.sda_oe(False)
self.tick()
self.scl_oe(False)
self.tick()
assert self.clock_stretch()
self.start()
def write_data(self, data):
for i in range(8):
bit = bool(data & (1 << 7 - i))
self.sda_oe(not bit)
self.tick()
self.scl_oe(False)
self.tick()
if self.clock_stretch() != bit:
raise ValueError("Arbitration lost")
self.scl_oe(True)
# check ACK
self.sda_oe(False)
self.tick()
self.scl_oe(False)
self.tick()
ack = not self.clock_stretch()
self.scl_oe(True)
self.sda_oe(True)
# SCL low, SDA low
logger.debug("W %#02x %s", data, "A" if ack else "N")
return ack
def read_data(self, ack=True):
self.sda_oe(False)
data = 0
for i in range(8):
self.tick()
self.scl_oe(False)
self.tick()
if self.clock_stretch():
data |= 1 << 7 - i
self.scl_oe(True)
# send ACK
self.sda_oe(ack)
self.tick()
self.scl_oe(False)
self.tick()
if self.clock_stretch() == ack:
raise ValueError("Arbitration lost")
self.scl_oe(True)
self.sda_oe(True)
# SCL low, SDA low
logger.debug("R %#02x %s", data, "A" if ack else "N")
return data
@contextmanager
def xfer(self):
self.start()
try:
yield
finally:
self.stop()
def write_single(self, addr, data, ack=True):
with self.xfer():
if not self.write_data(addr << 1):
raise I2CNACK("Address Write NACK", addr)
if not self.write_data(data) and ack:
raise I2CNACK("Data NACK", addr, data)
def read_single(self, addr):
with self.xfer():
if not self.write_data((addr << 1) | 1):
raise I2CNACK("Address Read NACK", addr)
return self.read_data(ack=False)
def write_many(self, addr, reg, data, ack=True):
with self.xfer():
if not self.write_data(addr << 1):
raise I2CNACK("Address Write NACK", addr)
if not self.write_data(reg):
raise I2CNACK("Reg NACK", reg)
for i, byte in enumerate(data):
if not self.write_data(byte) and (ack or i < len(data) - 1):
raise I2CNACK("Data NACK", data)
def read_many(self, addr, reg, length=1):
with self.xfer():
if not self.write_data(addr << 1):
raise I2CNACK("Address Write NACK", addr)
if not self.write_data(reg):
raise I2CNACK("Reg NACK", reg)
self.restart()
if not self.write_data((addr << 1) | 1):
raise I2CNACK("Address Read NACK", addr)
return bytes(self.read_data(ack=i < length - 1)
for i in range(length))
def read_stream(self, addr, length=1):
with self.xfer():
if not self.write_data((addr << 1) | 1):
raise I2CNACK("Address Read NACK", addr)
return bytes(self.read_data(ack=i < length - 1)
for i in range(length))
def poll(self, addr, write=False):
with self.xfer():
return self.write_data((addr << 1) | int(not write))