-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
89 lines (67 loc) · 2.93 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pickle
import cv2
import mediapipe as mp
import numpy as np
# Open and load model from file
model_dict = pickle.load(open('./model.p', 'rb'))
model = model_dict['model']
# Read video from camera
cam = cv2.VideoCapture(1) # Remeber changing based on the OS, with Mac it is 1
# Drawing hands with mediapipe
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
# Get labels for the machine learning models (The index represent the folder storing images for each label)
labels_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G',
7: 'H', 8: 'I', 9: 'K', 10: 'L', 11: 'M', 12: 'N', 13: 'O',
14: 'P', 15: 'Q', 16: 'R', 17: 'S', 18: 'T', 19: 'U', 20: 'V',
21: 'W', 22: 'X', 23: 'Y'}
while True:
data_aux = []
x_ = []
y_ = []
# Read frames from camera
ret, frame = cam.read()
# Get the dimension and shape of frame with the format x, y, z
H, W, _ = frame.shape
# Converting image to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = hands.process(frame_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
frame, # image to draw
hand_landmarks, # model output
mp_hands.HAND_CONNECTIONS, # hand connections
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
for hand_landmarks in results.multi_hand_landmarks:
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
x_.append(x)
y_.append(y)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
# Get the data closer to the value
data_aux.append(x - min(x_))
data_aux.append(y - min(y_))
x1 = int(min(x_) * W) - 10
y1 = int(min(y_) * H) - 10
x2 = int(max(x_) * W) - 10
y2 = int(max(y_) * H) - 10
# Making prediction based on trained data
prediction = model.predict([np.asarray(data_aux)])
# Getting the predicted data from trained data
predicted_character = labels_dict[int(prediction[0])]
# Showing the letter or the prediction on to the windows
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), 4) # Create a box
cv2.putText(frame, predicted_character, (x1, y1 - 10), cv2.FONT_HERSHEY_DUPLEX, 1.3, (0, 0, 0), 3,
cv2.LINE_AA)
# Showing frame by frame
cv2.imshow('frame', frame)
cv2.waitKey(1)
cam.release()
cv2.destroyAllWindows()