|
1 | 1 | # This code is part of a Qiskit project.
|
2 | 2 | #
|
3 |
| -# (C) Copyright IBM 2022, 2023. |
| 3 | +# (C) Copyright IBM 2022, 2024. |
4 | 4 | #
|
5 | 5 | # This code is licensed under the Apache License, Version 2.0. You may
|
6 | 6 | # obtain a copy of this license in the LICENSE.txt file in the root directory
|
@@ -94,19 +94,14 @@ class VQD(VariationalAlgorithm, Eigensolver):
|
94 | 94 | overlap estimation as indicated in the VQD paper.
|
95 | 95 | ansatz (QuantumCircuit): A parameterized circuit used as ansatz for the wave function.
|
96 | 96 | optimizer(Optimizer | Sequence[Optimizer]): A classical optimizer or a list of optimizers,
|
97 |
| - one for every k-th eigenvalue. Can either be a Qiskit optimizer or a callable |
| 97 | + one for every k-th eigenvalue. Can either be a Qiskit optimizer or a callable |
98 | 98 | that takes an array as input and returns a Qiskit or SciPy optimization result.
|
99 | 99 | k (int): the number of eigenvalues to return. Returns the lowest k eigenvalues.
|
100 | 100 | betas (list[float]): Beta parameters in the VQD paper.
|
101 | 101 | Should have length k - 1, with k the number of excited states.
|
102 | 102 | These hyper-parameters balance the contribution of each overlap term to the cost
|
103 | 103 | function and have a default value computed as the mean square sum of the
|
104 | 104 | coefficients of the observable.
|
105 |
| - initial point (Sequence[float] | Sequence[Sequence[float]] | None): An optional initial |
106 |
| - point (i.e. initial parameter values) or a list of initial points |
107 |
| - (one for every k-th eigenvalue) for the optimizer. |
108 |
| - If ``None`` then VQD will look to the ansatz for a |
109 |
| - preferred point and if not will simply compute a random one. |
110 | 105 | callback (Callable[[int, np.ndarray, float, dict[str, Any]], None] | None):
|
111 | 106 | A callback that can access the intermediate data
|
112 | 107 | during the optimization. Four parameter values are passed to the callback as
|
@@ -134,7 +129,7 @@ def __init__(
|
134 | 129 | fidelity: The fidelity class using primitives.
|
135 | 130 | ansatz: A parameterized circuit used as ansatz for the wave function.
|
136 | 131 | optimizer: A classical optimizer or a list of optimizers, one for every k-th eigenvalue.
|
137 |
| - Can either be a Qiskit optimizer or a callable |
| 132 | + Can either be a Qiskit optimizer or a callable |
138 | 133 | that takes an array as input and returns a Qiskit or SciPy optimization result.
|
139 | 134 | k: The number of eigenvalues to return. Returns the lowest k eigenvalues.
|
140 | 135 | betas: Beta parameters in the VQD paper.
|
|
0 commit comments