-
Notifications
You must be signed in to change notification settings - Fork 12
/
imagenet-resnet.py
executable file
·169 lines (147 loc) · 6.44 KB
/
imagenet-resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# File: imagenet-resnet.py
# Modified from TensorPack.
# Work done at CVL-ETH Zurich under supervision of Wen Li
# Qin Wang, 2018.04
import argparse
import os
import cv2
from tensorpack import logger, QueueInput
from tensorpack.models import *
from tensorpack.callbacks import *
from tensorpack.train import (
TrainConfig, SyncMultiGPUTrainerReplicated, launch_train_with_config)
from tensorpack.dataflow import FakeData
from tensorpack.tfutils import argscope, get_model_loader
from tensorpack.utils.gpu import get_nr_gpu
from imagenet_utils import (
fbresnet_augmentor, get_imagenet_dataflow, ImageNetModel,
eval_on_ILSVRC12)
from resnet_model import (
preresnet_group, preresnet_basicblock, preresnet_bottleneck,
resnet_group, resnet_basicblock, resnet_bottleneck, se_resnet_bottleneck,
resnet_backbone)
class Model(ImageNetModel):
def __init__(self, depth, data_format='NCHW', mode='resnet'):
super(Model, self).__init__(data_format)
if mode == 'se':
assert depth >= 50
self.mode = mode
basicblock = preresnet_basicblock if mode == 'preact' else resnet_basicblock
bottleneck = {
'resnet': resnet_bottleneck,
'preact': preresnet_bottleneck,
'se': se_resnet_bottleneck}[mode]
self.num_blocks, self.block_func = {
18: ([2, 2, 2, 2], basicblock),
34: ([3, 4, 6, 3], basicblock),
50: ([3, 4, 6, 3], bottleneck),
101: ([3, 4, 23, 3], bottleneck),
152: ([3, 8, 36, 3], bottleneck)
}[depth]
def get_logits(self, image):
with argscope([Conv2D, MaxPooling, GlobalAvgPooling, BatchNorm], data_format=self.data_format):
return resnet_backbone(
image, self.num_blocks,
preresnet_group if self.mode == 'preact' else resnet_group, self.block_func)
def get_data(name, batch, parallel=None):
isTrain = name == 'train'
augmentors = fbresnet_augmentor(isTrain)
return get_imagenet_dataflow(
args.data, name, batch, augmentors, parallel=parallel)
def get_config(model, fake=False):
nr_tower = max(get_nr_gpu(), 1)
assert args.batch % nr_tower == 0
batch = args.batch // nr_tower
if fake:
logger.info("For benchmark, batch size is fixed to 64 per tower.")
dataset_train = FakeData(
[[64, 224, 224, 3], [64]], 1000, random=False, dtype='uint8')
callbacks = []
else:
logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
dataset_train = get_data('train', batch)
dataset_val = get_data('val', batch)
BASE_LR = 0.1 * (args.batch / 256.0)
callbacks = [
ModelSaver(),
ScheduledHyperParamSetter(
'learning_rate', [(0, BASE_LR), (30, BASE_LR * 1e-1), (60, BASE_LR * 1e-2),
(90, BASE_LR * 1e-3)]),
]
if BASE_LR > 0.1:
callbacks.append(
ScheduledHyperParamSetter(
'learning_rate', [(0, 0.1), (3, BASE_LR)], interp='linear'))
infs = [ClassificationError('wrong-top1', 'val-error-top1'),
ClassificationError('wrong-top5', 'val-error-top5')]
if nr_tower == 1:
# single-GPU inference with queue prefetch
callbacks.append(InferenceRunner(QueueInput(dataset_val), infs))
else:
# multi-GPU inference (with mandatory queue prefetch)
callbacks.append(DataParallelInferenceRunner(
dataset_val, infs, list(range(nr_tower))))
return TrainConfig(
model=model,
dataflow=dataset_train,
callbacks=callbacks,
steps_per_epoch=100 if args.fake else 1280000 // args.batch,
max_epoch=110,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--data', help='ILSVRC dataset dir')
parser.add_argument('--load', help='load model')
parser.add_argument('--fake', help='use fakedata to test or benchmark this model', action='store_true')
parser.add_argument('--data_format', help='specify NCHW or NHWC',
type=str, default='NCHW')
parser.add_argument('-d', '--depth', help='resnet depth',
type=int, default=18, choices=[18, 34, 50, 101, 152])
parser.add_argument('--eval', action='store_true')
parser.add_argument('--eval5k', action='store_true')
parser.add_argument('--batch', default=256, type=int,
help='total batch size. 32 per GPU gives best accuracy, higher values should be similarly good')
parser.add_argument('--mode', choices=['resnet', 'preact', 'se'],
help='variants of resnet to use', default='resnet')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
model = Model(args.depth, args.data_format, args.mode)
if args.eval5k:
import json
import shutil
batch = 128
acc1, acc5 = [], []
basedir = args.data+"/meta/"
for i in range(5000):
shutil.copy2(basedir+"val"+str(i)+".txt", basedir+"val.txt")
print("Eval on class:", i)
ds = get_data('val', batch, parallel=1)
ac1, ac5 = eval_on_ILSVRC12(model, get_model_loader(args.load), ds)
acc1.append(ac1)
acc5.append(ac5)
with open("web_acc1.json", "w") as f:
json.dump(acc1, f)
with open("web_acc5.json", "w") as f:
json.dump(acc5, f)
print("Error1", sum(acc1)/5000)
print("Error5", sum(acc5)/5000)
shutil.copy2(basedir+"val_full.txt", basedir+"val.txt")
elif args.eval:
batch = 128 # something that can run on one gpu
ds = get_data('val', batch, parallel=1)
eval_on_ILSVRC12(model, get_model_loader(args.load), ds)
else:
if args.fake:
logger.set_logger_dir(os.path.join('train_log', 'tmp'), 'd')
else:
logger.set_logger_dir(
os.path.join('train_log', 'imagenet-{}-d{}'.format(args.mode, args.depth)))
config = get_config(model, fake=args.fake)
if args.load:
config.session_init = get_model_loader(args.load)
trainer = SyncMultiGPUTrainerReplicated(max(get_nr_gpu(), 1))
launch_train_with_config(config, trainer)