forked from awslabs/dgl-lifesci
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classification.py
206 lines (186 loc) · 10.2 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import torch
import torch.nn as nn
from dgllife.model import load_pretrained
from dgllife.utils import EarlyStopping, Meter, SMILESToBigraph
from torch.optim import Adam
from torch.utils.data import DataLoader
from utils import collate_molgraphs, load_model, predict
def run_a_train_epoch(args, epoch, model, data_loader, loss_criterion, optimizer):
model.train()
train_meter = Meter()
for batch_id, batch_data in enumerate(data_loader):
smiles, bg, labels, masks = batch_data
if len(smiles) == 1:
# Avoid potential issues with batch normalization
continue
labels, masks = labels.to(args['device']), masks.to(args['device'])
logits = predict(args, model, bg)
# Mask non-existing labels
loss = (loss_criterion(logits, labels) * (masks != 0).float()).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_meter.update(logits, labels, masks)
if batch_id % args['print_every'] == 0:
print('epoch {:d}/{:d}, batch {:d}/{:d}, loss {:.4f}'.format(
epoch + 1, args['num_epochs'], batch_id + 1, len(data_loader), loss.item()))
train_score = np.mean(train_meter.compute_metric(args['metric']))
print('epoch {:d}/{:d}, training {} {:.4f}'.format(
epoch + 1, args['num_epochs'], args['metric'], train_score))
def run_an_eval_epoch(args, model, data_loader):
model.eval()
eval_meter = Meter()
with torch.no_grad():
for batch_id, batch_data in enumerate(data_loader):
smiles, bg, labels, masks = batch_data
labels = labels.to(args['device'])
logits = predict(args, model, bg)
eval_meter.update(logits, labels, masks)
return np.mean(eval_meter.compute_metric(args['metric']))
def main(args, exp_config, train_set, val_set, test_set):
if args['featurizer_type'] != 'pre_train':
exp_config['in_node_feats'] = args['node_featurizer'].feat_size()
if args['edge_featurizer'] is not None:
exp_config['in_edge_feats'] = args['edge_featurizer'].feat_size()
exp_config.update({
'n_tasks': args['n_tasks'],
'model': args['model']
})
train_loader = DataLoader(dataset=train_set, batch_size=exp_config['batch_size'], shuffle=True,
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
val_loader = DataLoader(dataset=val_set, batch_size=exp_config['batch_size'],
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
test_loader = DataLoader(dataset=test_set, batch_size=exp_config['batch_size'],
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
if args['pretrain']:
args['num_epochs'] = 0
if args['featurizer_type'] == 'pre_train':
model = load_pretrained('{}_{}'.format(
args['model'], args['dataset'])).to(args['device'])
else:
model = load_pretrained('{}_{}_{}'.format(
args['model'], args['featurizer_type'], args['dataset'])).to(args['device'])
else:
model = load_model(exp_config).to(args['device'])
loss_criterion = nn.BCEWithLogitsLoss(reduction='none')
optimizer = Adam(model.parameters(), lr=exp_config['lr'],
weight_decay=exp_config['weight_decay'])
stopper = EarlyStopping(patience=exp_config['patience'],
filename=args['result_path'] + '/model.pth',
metric=args['metric'])
for epoch in range(args['num_epochs']):
# Train
run_a_train_epoch(args, epoch, model, train_loader, loss_criterion, optimizer)
# Validation and early stop
val_score = run_an_eval_epoch(args, model, val_loader)
early_stop = stopper.step(val_score, model)
print('epoch {:d}/{:d}, validation {} {:.4f}, best validation {} {:.4f}'.format(
epoch + 1, args['num_epochs'], args['metric'],
val_score, args['metric'], stopper.best_score))
if early_stop:
break
if not args['pretrain']:
stopper.load_checkpoint(model)
val_score = run_an_eval_epoch(args, model, val_loader)
test_score = run_an_eval_epoch(args, model, test_loader)
print('val {} {:.4f}'.format(args['metric'], val_score))
print('test {} {:.4f}'.format(args['metric'], test_score))
with open(args['result_path'] + '/eval.txt', 'w') as f:
if not args['pretrain']:
f.write('Best val {}: {}\n'.format(args['metric'], stopper.best_score))
f.write('Val {}: {}\n'.format(args['metric'], val_score))
f.write('Test {}: {}\n'.format(args['metric'], test_score))
if __name__ == '__main__':
from argparse import ArgumentParser
from utils import init_featurizer, mkdir_p, split_dataset, get_configure
parser = ArgumentParser('Multi-label Binary Classification')
parser.add_argument('-d', '--dataset', choices=['MUV', 'BACE', 'BBBP', 'ClinTox', 'SIDER',
'ToxCast', 'HIV', 'PCBA', 'Tox21'],
help='Dataset to use')
parser.add_argument('-mo', '--model', choices=['GCN', 'GAT', 'Weave', 'MPNN', 'AttentiveFP',
'gin_supervised_contextpred',
'gin_supervised_infomax',
'gin_supervised_edgepred',
'gin_supervised_masking',
'NF'],
help='Model to use')
parser.add_argument('-f', '--featurizer-type', choices=['canonical', 'attentivefp'],
help='Featurization for atoms (and bonds). This is required for models '
'other than gin_supervised_**.')
parser.add_argument('-p', '--pretrain', action='store_true',
help='Whether to skip the training and evaluate the pre-trained model '
'on the test set (default: False)')
parser.add_argument('-s', '--split', choices=['scaffold', 'random'], default='scaffold',
help='Dataset splitting method (default: scaffold)')
parser.add_argument('-sr', '--split-ratio', default='0.8,0.1,0.1', type=str,
help='Proportion of the dataset to use for training, validation and test, '
'(default: 0.8,0.1,0.1)')
parser.add_argument('-me', '--metric', choices=['roc_auc_score', 'pr_auc_score'],
default='roc_auc_score',
help='Metric for evaluation (default: roc_auc_score)')
parser.add_argument('-n', '--num-epochs', type=int, default=1000,
help='Maximum number of epochs for training. '
'We set a large number by default as early stopping '
'will be performed. (default: 1000)')
parser.add_argument('-nw', '--num-workers', type=int, default=0,
help='Number of processes for data loading (default: 0)')
parser.add_argument('-pe', '--print-every', type=int, default=20,
help='Print the training progress every X mini-batches')
parser.add_argument('-rp', '--result-path', type=str, default='classification_results',
help='Path to save training results (default: classification_results)')
args = parser.parse_args().__dict__
if torch.cuda.is_available():
args['device'] = torch.device('cuda:0')
else:
args['device'] = torch.device('cpu')
args = init_featurizer(args)
mkdir_p(args['result_path'])
smiles_to_g = SMILESToBigraph(add_self_loop=True, node_featurizer=args['node_featurizer'],
edge_featurizer=args['edge_featurizer'])
if args['dataset'] == 'MUV':
from dgllife.data import MUV
dataset = MUV(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'BACE':
from dgllife.data import BACE
dataset = BACE(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'BBBP':
from dgllife.data import BBBP
dataset = BBBP(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'ClinTox':
from dgllife.data import ClinTox
dataset = ClinTox(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'SIDER':
from dgllife.data import SIDER
dataset = SIDER(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'ToxCast':
from dgllife.data import ToxCast
dataset = ToxCast(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'HIV':
from dgllife.data import HIV
dataset = HIV(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'PCBA':
from dgllife.data import PCBA
dataset = PCBA(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'Tox21':
from dgllife.data import Tox21
dataset = Tox21(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
else:
raise ValueError('Unexpected dataset: {}'.format(args['dataset']))
args['n_tasks'] = dataset.n_tasks
train_set, val_set, test_set = split_dataset(args, dataset)
exp_config = get_configure(args['model'], args['featurizer_type'], args['dataset'])
main(args, exp_config, train_set, val_set, test_set)