-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_letor_feature_selection.py
423 lines (304 loc) · 19.2 KB
/
run_letor_feature_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 07/12/2021
@author: Maurizio Ferrari Dacrema
"""
from minorminer import busclique
import pandas as pd
from neal import SimulatedAnnealingSampler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
import greedy, os, time, traceback, multiprocessing
import numpy as np
from Letor.run_letor_ranking import run_letor_ranking
from utils.DataIO import DataIO
from tabu import TabuSampler
from DataLoader import DataLoader
from LetorLoader import LetorLoader
from functools import partial
import minorminer, dimod
from dwave.embedding.chain_strength import uniform_torque_compensation
from dwave.system.samplers import DWaveSampler, DWaveCliqueSampler, LeapHybridSampler
from dwave.system import FixedEmbeddingComposite
import networkx as nx
from FeatureSelection.VarianceThreshold import VarianceThreshold
from FeatureSelection.Chi2 import Chi2
from FeatureSelection.ANOVA_F_Test import ANOVA_F_Test
from FeatureSelection.LinearMutualInformationMIT import LinearMutualInformationMIT
from FeatureSelection.LinearPearsonCorrelation import LinearPearsonCorrelation
from FeatureSelection.LinearSVCBoosting import LinearSVCBoosting
from FeatureSelection.QUBOCorrelation import QUBOCorrelation
from FeatureSelection.QUBOSVCBoosting import QUBOSVCBoosting
from FeatureSelection.QUBOMutualInformation import QUBOMutualInformation
from FeatureSelection.BaseQUBOFeatureSelection import _get_BQM_alpha
from utils.print_table_utils import letor_global_result_summary, letor_result_dataset_summary
from run_feature_selection import _k_comb_list, _get_fixed_embedding
from utils.process_letor_results import letor_result_dataframe
def _create_selected_features_file(folder, file_name, original_feature_list, selected_features_list):
# If directory does not exist, create
if not os.path.exists(folder):
os.makedirs(folder)
file = open(folder + file_name, "w")
selected_features_set = set(selected_features_list)
for feature in original_feature_list:
if feature in selected_features_set:
file.write("{}\n".format(feature))
file.close()
def _all_features_dataset_experiment(result_dataset_folder, X_train, Y_train, X_test, Y_test):
try:
all_features_result_df = pd.read_csv(result_dataset_folder + "all_features_result_df.csv", index_col=0)
except FileNotFoundError:
all_features_result_df = pd.DataFrame(columns=["selection_algorithm_name",
"actual_feature_k",
"classifier_algorithm_name",
"classifier_algorithm_fit_time",
"classifier_algorithm_CV_time",
"CV_scores",
"CV_scores_mean",
"CV_scores_std",])
classifier_folder = result_dataset_folder + "all_features/"
# CV_scores, test_accuracy, classifier_algorithm_fit_time, classifier_algorithm_CV_time = _evaluate_classifier(X_train, Y_train, X_test, Y_test, classifier_folder, "all_features")
all_features_result_df = all_features_result_df.append({
"selection_algorithm_name": "all_features",
"actual_feature_k": len(X_train.columns),
"classifier_algorithm_name": None,
"classifier_algorithm_fit_time": None,
"classifier_algorithm_CV_time": None,
"CV_scores": None,
"CV_scores_mean": None,
"CV_scores_std": None,
"test_accuracy": None,
}, ignore_index=True)
all_features_result_df.to_csv(result_dataset_folder + "all_features_result_df.csv", index=True)
_create_selected_features_file(classifier_folder, "selected_features_k_{}.txt".format(len(X_train.columns)), X_train.columns, X_train.columns)
def run_letor_dataset_experiment(dataset_name, result_dataset_folder, classic_algorithms_dict, QUBO_algorithms_dict, QUBO_solvers_dict):
data_loader = LetorLoader(folder_path = result_dataset_folder, dataset_name = dataset_name)
X_train = data_loader.X_train
Y_train = data_loader.Y_train
# X_test = data_loader.X_test
# Y_test = data_loader.Y_test
n_features = len(X_train.columns)
print("Dataset: {}, Number of features: {}, Number of samples: {}".format(dataset_name, n_features, len(X_train)))
k_comb_list = _k_comb_list(n_features, max_cases = 50)
_all_features_dataset_experiment(result_dataset_folder, X_train, Y_train, None, None)
try:
classic_result_df = pd.read_csv(result_dataset_folder + "classic_result_df.csv", index_col=0)
except FileNotFoundError:
classic_result_df = pd.DataFrame(columns=["selection_algorithm_name",
"selection_algorithm_fit_time",
"selection_algorithm_select_best_k_time",
"selected_features",
"target_feature_k",
"actual_feature_k",
"classifier_algorithm_name",
"classifier_algorithm_fit_time",
"classifier_algorithm_CV_time",
"CV_scores",
"CV_scores_mean",
"CV_scores_std",
"test_accuracy"])
try:
QUBO_result_df = pd.read_csv(result_dataset_folder + "QUBO_result_df.csv", index_col=0)
except FileNotFoundError:
QUBO_result_df = pd.DataFrame(columns=[*classic_result_df.columns,
"QUBO_solver",
"alpha_value",
"alpha_heuristic",
"embedding_time",])
all_selection_algorithm_dict = {**classic_algorithms_dict, **QUBO_algorithms_dict}
for selection_algorithm_name, selection_algorithm_class in all_selection_algorithm_dict.items():
if dataset_name == "steel-plates-fault" and selection_algorithm_name in ["Linear Mutual Information MIToolbox", "QUBOMutualInformation"]:
# For some reason it causes a segmentation fault
continue
classifier_folder = result_dataset_folder + selection_algorithm_name + "/"
selection_algorithm_instance = selection_algorithm_class(X_train, Y_train)
try:
selection_algorithm_instance.load_model(classifier_folder, file_name="selection_algorithm_instance")
except FileNotFoundError:
print("Selection algorithm: {}, fitting...".format(selection_algorithm_name))
selection_algorithm_instance.fit()
selection_algorithm_instance.save_model(classifier_folder, file_name="selection_algorithm_instance")
for target_feature_k in k_comb_list:
if selection_algorithm_name in classic_algorithms_dict:
# Check if it was already done
if classic_result_df[(classic_result_df["selection_algorithm_name"]==selection_algorithm_name) &
(classic_result_df["target_feature_k"]==target_feature_k)].empty:
print("Selection algorithm: {}, target number of features {}/{}".format(selection_algorithm_name, target_feature_k, n_features))
try:
selected_features, select_best_k_time = selection_algorithm_instance.select_best_k(target_feature_k)
X_train_selected_features = X_train[selected_features].copy()
# X_test_selected_features = X_test[selected_features].copy()
# CV_scores, test_accuracy, classifier_algorithm_fit_time, classifier_algorithm_CV_time = _evaluate_classifier(X_train_selected_features, Y_train, X_test_selected_features, Y_test, classifier_folder, target_feature_k)
classic_result_df = classic_result_df.append({
"selection_algorithm_name": selection_algorithm_name,
"selection_algorithm_fit_time": selection_algorithm_instance._fit_time,
"selection_algorithm_select_best_k_time": select_best_k_time,
"selected_features": selected_features,
"target_feature_k": target_feature_k,
"actual_feature_k": len(selected_features),
"classifier_algorithm_name": None,
"classifier_algorithm_fit_time": None,
"classifier_algorithm_CV_time": None,
"CV_scores": None,
"CV_scores_mean": None,
"CV_scores_std": None,
"test_accuracy": None,
}, ignore_index=True)
classic_result_df.to_csv(result_dataset_folder + "classic_result_df.csv", index=True)
_create_selected_features_file(classifier_folder, "selected_features_k_{}.txt".format(target_feature_k), X_train.columns, selected_features)
except:
traceback.print_exc()
elif selection_algorithm_name in QUBO_algorithms_dict:
# for alpha_input in [0.1, 0.3, 0.5, 0.7, 0.9, "balanced"]:
for alpha_input in [0.5]:
for QUBO_solver_name, QUBO_solver in QUBO_solvers_dict.items():
if n_features>300 and QUBO_solver_name == "QPU":
continue
# else:
# if QUBO_solver_name == "QPUHybrid":
# continue
if alpha_input == "balanced":
alpha_heuristic = "balanced"
_, alpha_value = _get_BQM_alpha(selection_algorithm_instance._Q, alpha_input)
else:
alpha_heuristic = "hyperparameter"
alpha_value = alpha_input
classifier_folder = result_dataset_folder + selection_algorithm_name + "/" + QUBO_solver_name + "/"
# If directory does not exist, create
if not os.path.exists(classifier_folder):
os.makedirs(classifier_folder)
if QUBO_solver_name == "QPU":
# QUBO_solver = LazyFixedEmbeddingComposite(QUBO_solver)
fixed_embedding, embedding_time = _get_fixed_embedding(QUBO_solver, n_features, classifier_folder)
sampler_hyperparams = {
"chain_strength": uniform_torque_compensation,
"num_reads": 100,
}
if not fixed_embedding:
print("Embedding failed, QUBO may be too big, n_features is {}.".format(n_features))
raise Exception
QUBO_solver = FixedEmbeddingComposite(QUBO_solver, fixed_embedding)
elif QUBO_solver_name == "QPUHybrid":
embedding_time = np.nan
sampler_hyperparams = {}
else:
embedding_time = np.nan
sampler_hyperparams = {"num_reads": 100}
# Check if it was already done
if QUBO_result_df[(QUBO_result_df["selection_algorithm_name"]==selection_algorithm_name) &
(QUBO_result_df["target_feature_k"]==target_feature_k) &
(QUBO_result_df["QUBO_solver"]==QUBO_solver_name) &
(QUBO_result_df["alpha_value"].round(4) == round(alpha_value, 4))].empty:
print("Selection algorithm: {}, target number of features {}/{}, alpha: {}, QUBO solver: {}".format(selection_algorithm_name, target_feature_k, n_features, alpha_input, QUBO_solver_name))
try:
selected_features, sampleset_df, sampler_info, select_best_k_time = selection_algorithm_instance.select_best_k(target_feature_k, QUBO_solver, alpha_input, sampler_hyperparams = sampler_hyperparams)
X_train_selected_features = X_train[selected_features].copy()
# X_test_selected_features = X_test[selected_features].copy()
# CV_scores, test_accuracy, classifier_algorithm_fit_time, classifier_algorithm_CV_time = _evaluate_classifier(X_train_selected_features, Y_train, X_test_selected_features, Y_test, classifier_folder, target_feature_k)
QUBO_result_df = QUBO_result_df.append({
"selection_algorithm_name": selection_algorithm_name,
"selection_algorithm_fit_time": selection_algorithm_instance._fit_time,
"selection_algorithm_select_best_k_time": select_best_k_time,
"selected_features": selected_features,
"target_feature_k": target_feature_k,
"actual_feature_k": len(selected_features),
"alpha_heuristic": alpha_heuristic,
"alpha_value": alpha_value,
"classifier_algorithm_name": None,
"classifier_algorithm_fit_time": None,
"classifier_algorithm_CV_time": None,
"CV_scores": None,
"CV_scores_mean": None,
"CV_scores_std": None,
"QUBO_solver": QUBO_solver_name,
"embedding_time": embedding_time,
"test_accuracy": None,
**sampler_info
}, ignore_index=True)
QUBO_result_df.to_csv(result_dataset_folder + "QUBO_result_df.csv", index=True)
sampleset_df.to_csv(classifier_folder + "/sampleset_df_k_{}_alpha_{}.csv".format(target_feature_k, alpha_input), index=True)
_create_selected_features_file(classifier_folder, "selected_features_k_{}_alpha_{}.txt".format(target_feature_k, alpha_input), X_train.columns, selected_features)
except:
traceback.print_exc()
print("Dataset: {}, Complete!".format(dataset_name))
def run_letor_dataset_experiment_parallel(dataset_name, result_root_folder, classic_algorithms_dict, QUBO_algorithms_dict, QUBO_solvers_dict):
try:
print("\n\nDataset name: {}".format(dataset_name))
result_dataset_folder = os.path.join(result_root_folder, dataset_name + "/")
# If directory does not exist, create
if not os.path.exists(result_dataset_folder):
os.makedirs(result_dataset_folder)
run_letor_dataset_experiment(dataset_name, result_dataset_folder, classic_algorithms_dict, QUBO_algorithms_dict, QUBO_solvers_dict)
letor_result_dataset_summary(result_dataset_folder)
except Exception as e:
print("On dataset {} Exception {}".format(dataset_name, str(e)))
traceback.print_exc()
if __name__ == '__main__':
DATASET_LIST = ['OHSUMED', 'MQ2007', 'MQ2008']
# CLASSIC ALGORITHMS
classic_algorithms_dict = {
"ANOVA F Test": ANOVA_F_Test,
"Chi2 Test": Chi2,
"Linear Mutual Information MIToolbox": LinearMutualInformationMIT,
"Linear Pearson Correlation": LinearPearsonCorrelation,
"Linear SVC Boosting": LinearSVCBoosting,
"Variance Threshold": VarianceThreshold,
}
# QUBO ALGORITHMS
QUBO_algorithms_dict = {
"QUBOCorrelation": QUBOCorrelation,
"QUBOMutualInformation": QUBOMutualInformation,
"QUBOSVCBoosting": QUBOSVCBoosting,
}
# Solvers
QUBO_solvers_dict = {
"SimulatedAnnealing": SimulatedAnnealingSampler(),
"SteepestDescent": greedy.SteepestDescentSolver(),
"TabuSampler": TabuSampler(),
}
result_root_folder = "./results_ranking/"
run_letor_dataset_experiment_parallel_partial = partial(run_letor_dataset_experiment_parallel,
result_root_folder = result_root_folder,
classic_algorithms_dict = classic_algorithms_dict,
QUBO_algorithms_dict = QUBO_algorithms_dict,
QUBO_solvers_dict = QUBO_solvers_dict)
pool = multiprocessing.Pool(processes=5, maxtasksperchild=1)
resultList = pool.map(run_letor_dataset_experiment_parallel_partial, LetorLoader.DATASET_LIST, chunksize=1)
pool.close()
pool.join()
for dataset_name in DATASET_LIST:
try:
run_letor_dataset_experiment_parallel_partial(dataset_name)
except Exception as e:
print("On dataset {} Exception {}".format(dataset_name, str(e)))
traceback.print_exc()
sampler_QA = {"topology__type": "pegasus", "name__contains": "Advantage_system"}
sampler_QA = DWaveSampler(client="qpu", solver=sampler_QA)
sampler_QAHybrid = LeapHybridSampler()
# Solvers
QUBO_QPU_solvers_dict = {
"QPU": sampler_QA,
"QPUHybrid": sampler_QAHybrid,
}
run_letor_dataset_experiment_parallel_partial = partial(run_letor_dataset_experiment_parallel,
result_root_folder = result_root_folder,
classic_algorithms_dict = classic_algorithms_dict,
QUBO_algorithms_dict = QUBO_algorithms_dict,
QUBO_solvers_dict = QUBO_QPU_solvers_dict)
for dataset_name in DATASET_LIST:
try:
run_letor_dataset_experiment_parallel_partial(dataset_name)
except Exception as e:
print("On dataset {} Exception {}".format(dataset_name, str(e)))
traceback.print_exc()
letor_global_result_summary(result_root_folder, DATASET_LIST)
linear_fs_methods = list(classic_algorithms_dict.keys())
linear_fs_methods.insert(0, 'all_features')
qubo_fs_methods = list(QUBO_algorithms_dict.keys())
qubo_solvers = list(QUBO_QPU_solvers_dict.keys())
qubo_solvers.extend(list(QUBO_solvers_dict.keys()))
run_letor_ranking(DATASET_LIST, linear_fs_methods, qubo_fs_methods, qubo_solvers)
letor_result_dataframe(DATASET_LIST, result_root_folder)