-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathnms_kernel.cpp
117 lines (98 loc) · 3.3 KB
/
nms_kernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include <ATen/ATen.h>
#include <torch/library.h>
namespace vision {
namespace ops {
namespace {
template <typename scalar_t>
at::Tensor nms_kernel_impl(
const at::Tensor& dets,
const at::Tensor& scores,
double iou_threshold) {
TORCH_CHECK(dets.is_cpu(), "dets must be a CPU tensor");
TORCH_CHECK(scores.is_cpu(), "scores must be a CPU tensor");
TORCH_CHECK(
dets.scalar_type() == scores.scalar_type(),
"dets should have the same type as scores");
if (dets.numel() == 0)
return at::empty({0}, dets.options().dtype(at::kLong));
auto x1_t = dets.select(1, 0).contiguous();
auto y1_t = dets.select(1, 1).contiguous();
auto x2_t = dets.select(1, 2).contiguous();
auto y2_t = dets.select(1, 3).contiguous();
at::Tensor areas_t = (x2_t - x1_t) * (y2_t - y1_t);
auto order_t = std::get<1>(
scores.sort(/*stable=*/true, /*dim=*/0, /* descending=*/true));
auto ndets = dets.size(0);
at::Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte));
at::Tensor keep_t = at::zeros({ndets}, dets.options().dtype(at::kLong));
auto suppressed = suppressed_t.data_ptr<uint8_t>();
auto keep = keep_t.data_ptr<int64_t>();
auto order = order_t.data_ptr<int64_t>();
auto x1 = x1_t.data_ptr<scalar_t>();
auto y1 = y1_t.data_ptr<scalar_t>();
auto x2 = x2_t.data_ptr<scalar_t>();
auto y2 = y2_t.data_ptr<scalar_t>();
auto areas = areas_t.data_ptr<scalar_t>();
int64_t num_to_keep = 0;
for (int64_t _i = 0; _i < ndets; _i++) {
auto i = order[_i];
if (suppressed[i] == 1)
continue;
keep[num_to_keep++] = i;
auto ix1 = x1[i];
auto iy1 = y1[i];
auto ix2 = x2[i];
auto iy2 = y2[i];
auto iarea = areas[i];
for (int64_t _j = _i + 1; _j < ndets; _j++) {
auto j = order[_j];
if (suppressed[j] == 1)
continue;
auto xx1 = std::max(ix1, x1[j]);
auto yy1 = std::max(iy1, y1[j]);
auto xx2 = std::min(ix2, x2[j]);
auto yy2 = std::min(iy2, y2[j]);
auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1);
auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1);
auto inter = w * h;
auto ovr = inter / (iarea + areas[j] - inter);
if (ovr > iou_threshold)
suppressed[j] = 1;
}
}
return keep_t.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep);
}
at::Tensor nms_kernel(
const at::Tensor& dets,
const at::Tensor& scores,
double iou_threshold) {
TORCH_CHECK(
dets.dim() == 2, "boxes should be a 2d tensor, got ", dets.dim(), "D");
TORCH_CHECK(
dets.size(1) == 4,
"boxes should have 4 elements in dimension 1, got ",
dets.size(1));
TORCH_CHECK(
scores.dim() == 1,
"scores should be a 1d tensor, got ",
scores.dim(),
"D");
TORCH_CHECK(
dets.size(0) == scores.size(0),
"boxes and scores should have same number of elements in ",
"dimension 0, got ",
dets.size(0),
" and ",
scores.size(0));
auto result = at::empty({0}, dets.options());
AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "nms_kernel", [&] {
result = nms_kernel_impl<scalar_t>(dets, scores, iou_threshold);
});
return result;
}
} // namespace
TORCH_LIBRARY_IMPL(torchvision, CPU, m) {
m.impl(TORCH_SELECTIVE_NAME("torchvision::nms"), TORCH_FN(nms_kernel));
}
} // namespace ops
} // namespace vision