-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathbackbone_utils.py
179 lines (153 loc) · 7.61 KB
/
backbone_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import warnings
from torch import nn
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool
from torchvision.ops import misc as misc_nn_ops
from .._utils import IntermediateLayerGetter
from .. import mobilenet
from .. import resnet
class BackboneWithFPN(nn.Module):
"""
Adds a FPN on top of a model.
Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
extract a submodel that returns the feature maps specified in return_layers.
The same limitations of IntermediatLayerGetter apply here.
Args:
backbone (nn.Module)
return_layers (Dict[name, new_name]): a dict containing the names
of the modules for which the activations will be returned as
the key of the dict, and the value of the dict is the name
of the returned activation (which the user can specify).
in_channels_list (List[int]): number of channels for each feature map
that is returned, in the order they are present in the OrderedDict
out_channels (int): number of channels in the FPN.
Attributes:
out_channels (int): the number of channels in the FPN
"""
def __init__(self, backbone, return_layers, in_channels_list, out_channels, extra_blocks=None):
super(BackboneWithFPN, self).__init__()
if extra_blocks is None:
extra_blocks = LastLevelMaxPool()
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
self.fpn = FeaturePyramidNetwork(
in_channels_list=in_channels_list,
out_channels=out_channels,
extra_blocks=extra_blocks,
)
self.out_channels = out_channels
def forward(self, x):
x = self.body(x)
x = self.fpn(x)
return x
def resnet_fpn_backbone(
backbone_name,
pretrained,
norm_layer=misc_nn_ops.FrozenBatchNorm2d,
trainable_layers=3,
returned_layers=None,
extra_blocks=None
):
"""
Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.
Examples::
>>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
>>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3)
>>> # get some dummy image
>>> x = torch.rand(1,3,64,64)
>>> # compute the output
>>> output = backbone(x)
>>> print([(k, v.shape) for k, v in output.items()])
>>> # returns
>>> [('0', torch.Size([1, 256, 16, 16])),
>>> ('1', torch.Size([1, 256, 8, 8])),
>>> ('2', torch.Size([1, 256, 4, 4])),
>>> ('3', torch.Size([1, 256, 2, 2])),
>>> ('pool', torch.Size([1, 256, 1, 1]))]
Args:
backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50',
'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet
norm_layer (torchvision.ops): it is recommended to use the default value. For details visit:
(https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block.
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``.
By default all layers are returned.
extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
be performed. It is expected to take the fpn features, the original
features and the names of the original features as input, and returns
a new list of feature maps and their corresponding names. By
default a ``LastLevelMaxPool`` is used.
"""
backbone = resnet.__dict__[backbone_name](
pretrained=pretrained,
norm_layer=norm_layer)
# select layers that wont be frozen
assert 0 <= trainable_layers <= 5
layers_to_train = ['layer4', 'layer3', 'layer2', 'layer1', 'conv1'][:trainable_layers]
if trainable_layers == 5:
layers_to_train.append('bn1')
for name, parameter in backbone.named_parameters():
if all([not name.startswith(layer) for layer in layers_to_train]):
parameter.requires_grad_(False)
if extra_blocks is None:
extra_blocks = LastLevelMaxPool()
if returned_layers is None:
returned_layers = [1, 2, 3, 4]
assert min(returned_layers) > 0 and max(returned_layers) < 5
return_layers = {f'layer{k}': str(v) for v, k in enumerate(returned_layers)}
in_channels_stage2 = backbone.inplanes // 8
in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
out_channels = 256
return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
def _validate_trainable_layers(pretrained, trainable_backbone_layers, max_value, default_value):
# dont freeze any layers if pretrained model or backbone is not used
if not pretrained:
if trainable_backbone_layers is not None:
warnings.warn(
"Changing trainable_backbone_layers has not effect if "
"neither pretrained nor pretrained_backbone have been set to True, "
"falling back to trainable_backbone_layers={} so that all layers are trainable".format(max_value))
trainable_backbone_layers = max_value
# by default freeze first blocks
if trainable_backbone_layers is None:
trainable_backbone_layers = default_value
assert 0 <= trainable_backbone_layers <= max_value
return trainable_backbone_layers
def mobilenet_backbone(
backbone_name,
pretrained,
fpn,
norm_layer=misc_nn_ops.FrozenBatchNorm2d,
trainable_layers=2,
returned_layers=None,
extra_blocks=None
):
backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer).features
# Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
# The first and last blocks are always included because they are the C0 (conv1) and Cn.
stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
num_stages = len(stage_indices)
# find the index of the layer from which we wont freeze
assert 0 <= trainable_layers <= num_stages
freeze_before = num_stages if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
for b in backbone[:freeze_before]:
for parameter in b.parameters():
parameter.requires_grad_(False)
out_channels = 256
if fpn:
if extra_blocks is None:
extra_blocks = LastLevelMaxPool()
if returned_layers is None:
returned_layers = [num_stages - 2, num_stages - 1]
assert min(returned_layers) >= 0 and max(returned_layers) < num_stages
return_layers = {f'{stage_indices[k]}': str(v) for v, k in enumerate(returned_layers)}
in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers]
return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
else:
m = nn.Sequential(
backbone,
# depthwise linear combination of channels to reduce their size
nn.Conv2d(backbone[-1].out_channels, out_channels, 1),
)
m.out_channels = out_channels
return m