-
Notifications
You must be signed in to change notification settings - Fork 7k
/
train.py
334 lines (285 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
r"""PyTorch Detection Training.
To run in a multi-gpu environment, use the distributed launcher::
python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
train.py ... --world-size $NGPU
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
--lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
--epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3
Also, if you train Keypoint R-CNN, the default hyperparameters are
--epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
"""
import datetime
import os
import time
import presets
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
import utils
from coco_utils import get_coco
from engine import evaluate, train_one_epoch
from group_by_aspect_ratio import create_aspect_ratio_groups, GroupedBatchSampler
from torchvision.transforms import InterpolationMode
from transforms import SimpleCopyPaste
def copypaste_collate_fn(batch):
copypaste = SimpleCopyPaste(blending=True, resize_interpolation=InterpolationMode.BILINEAR)
return copypaste(*utils.collate_fn(batch))
def get_dataset(is_train, args):
image_set = "train" if is_train else "val"
num_classes, mode = {"coco": (91, "instances"), "coco_kp": (2, "person_keypoints")}[args.dataset]
with_masks = "mask" in args.model
ds = get_coco(
root=args.data_path,
image_set=image_set,
transforms=get_transform(is_train, args),
mode=mode,
use_v2=args.use_v2,
with_masks=with_masks,
)
return ds, num_classes
def get_transform(is_train, args):
if is_train:
return presets.DetectionPresetTrain(
data_augmentation=args.data_augmentation, backend=args.backend, use_v2=args.use_v2
)
elif args.weights and args.test_only:
weights = torchvision.models.get_weight(args.weights)
trans = weights.transforms()
return lambda img, target: (trans(img), target)
else:
return presets.DetectionPresetEval(backend=args.backend, use_v2=args.use_v2)
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)
parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
parser.add_argument(
"--dataset",
default="coco",
type=str,
help="dataset name. Use coco for object detection and instance segmentation and coco_kp for Keypoint detection",
)
parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
parser.add_argument(
"-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
)
parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
)
parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
parser.add_argument(
"--lr",
default=0.02,
type=float,
help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
)
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument(
"--norm-weight-decay",
default=None,
type=float,
help="weight decay for Normalization layers (default: None, same value as --wd)",
)
parser.add_argument(
"--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
)
parser.add_argument(
"--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
)
parser.add_argument(
"--lr-steps",
default=[16, 22],
nargs="+",
type=int,
help="decrease lr every step-size epochs (multisteplr scheduler only)",
)
parser.add_argument(
"--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
)
parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
parser.add_argument(
"--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
)
parser.add_argument(
"--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
)
parser.add_argument(
"--sync-bn",
dest="sync_bn",
help="Use sync batch norm",
action="store_true",
)
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
)
# distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
# Mixed precision training parameters
parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
# Use CopyPaste augmentation training parameter
parser.add_argument(
"--use-copypaste",
action="store_true",
help="Use CopyPaste data augmentation. Works only with data-augmentation='lsj'.",
)
parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive")
parser.add_argument("--use-v2", action="store_true", help="Use V2 transforms")
return parser
def main(args):
if args.backend.lower() == "tv_tensor" and not args.use_v2:
raise ValueError("Use --use-v2 if you want to use the tv_tensor backend.")
if args.dataset not in ("coco", "coco_kp"):
raise ValueError(f"Dataset should be coco or coco_kp, got {args.dataset}")
if "keypoint" in args.model and args.dataset != "coco_kp":
raise ValueError("Oops, if you want Keypoint detection, set --dataset coco_kp")
if args.dataset == "coco_kp" and args.use_v2:
raise ValueError("KeyPoint detection doesn't support V2 transforms yet")
if args.output_dir:
utils.mkdir(args.output_dir)
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
if args.use_deterministic_algorithms:
torch.use_deterministic_algorithms(True)
# Data loading code
print("Loading data")
dataset, num_classes = get_dataset(is_train=True, args=args)
dataset_test, _ = get_dataset(is_train=False, args=args)
print("Creating data loaders")
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
else:
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
if args.aspect_ratio_group_factor >= 0:
group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
else:
train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
train_collate_fn = utils.collate_fn
if args.use_copypaste:
if args.data_augmentation != "lsj":
raise RuntimeError("SimpleCopyPaste algorithm currently only supports the 'lsj' data augmentation policies")
train_collate_fn = copypaste_collate_fn
data_loader = torch.utils.data.DataLoader(
dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=train_collate_fn
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
)
print("Creating model")
kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
if args.data_augmentation in ["multiscale", "lsj"]:
kwargs["_skip_resize"] = True
if "rcnn" in args.model:
if args.rpn_score_thresh is not None:
kwargs["rpn_score_thresh"] = args.rpn_score_thresh
model = torchvision.models.get_model(
args.model, weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
)
model.to(device)
if args.distributed and args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
if args.norm_weight_decay is None:
parameters = [p for p in model.parameters() if p.requires_grad]
else:
param_groups = torchvision.ops._utils.split_normalization_params(model)
wd_groups = [args.norm_weight_decay, args.weight_decay]
parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]
opt_name = args.opt.lower()
if opt_name.startswith("sgd"):
optimizer = torch.optim.SGD(
parameters,
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov="nesterov" in opt_name,
)
elif opt_name == "adamw":
optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
else:
raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
scaler = torch.cuda.amp.GradScaler() if args.amp else None
args.lr_scheduler = args.lr_scheduler.lower()
if args.lr_scheduler == "multisteplr":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
elif args.lr_scheduler == "cosineannealinglr":
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
else:
raise RuntimeError(
f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
)
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu", weights_only=True)
model_without_ddp.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.amp:
scaler.load_state_dict(checkpoint["scaler"])
if args.test_only:
torch.backends.cudnn.deterministic = True
evaluate(model, data_loader_test, device=device)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
lr_scheduler.step()
if args.output_dir:
checkpoint = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"args": args,
"epoch": epoch,
}
if args.amp:
checkpoint["scaler"] = scaler.state_dict()
utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
# evaluate after every epoch
evaluate(model, data_loader_test, device=device)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Training time {total_time_str}")
if __name__ == "__main__":
args = get_args_parser().parse_args()
main(args)