-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathsuper_resolution_with_onnxruntime.py
356 lines (285 loc) · 14.2 KB
/
super_resolution_with_onnxruntime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
"""
(optional) Exporting a Model from PyTorch to ONNX and Running it using ONNX Runtime
===================================================================================
.. note::
As of PyTorch 2.1, there are two versions of ONNX Exporter.
* ``torch.onnx.dynamo_export`` is the newest (still in beta) exporter based on the TorchDynamo technology released with PyTorch 2.0.
* ``torch.onnx.export`` is based on TorchScript backend and has been available since PyTorch 1.2.0.
In this tutorial, we describe how to convert a model defined
in PyTorch into the ONNX format using the TorchScript ``torch.onnx.export`` ONNX exporter.
The exported model will be executed with ONNX Runtime.
ONNX Runtime is a performance-focused engine for ONNX models,
which inferences efficiently across multiple platforms and hardware
(Windows, Linux, and Mac and on both CPUs and GPUs).
ONNX Runtime has proved to considerably increase performance over
multiple models as explained `here
<https://cloudblogs.microsoft.com/opensource/2019/05/22/onnx-runtime-machine-learning-inferencing-0-4-release>`__
For this tutorial, you will need to install `ONNX <https://github.com/onnx/onnx>`__
and `ONNX Runtime <https://github.com/microsoft/onnxruntime>`__.
You can get binary builds of ONNX and ONNX Runtime with
.. code-block:: bash
%%bash
pip install onnx onnxruntime
ONNX Runtime recommends using the latest stable runtime for PyTorch.
"""
# Some standard imports
import numpy as np
from torch import nn
import torch.utils.model_zoo as model_zoo
import torch.onnx
######################################################################
# Super-resolution is a way of increasing the resolution of images, videos
# and is widely used in image processing or video editing. For this
# tutorial, we will use a small super-resolution model.
#
# First, let's create a ``SuperResolution`` model in PyTorch.
# This model uses the efficient sub-pixel convolution layer described in
# `"Real-Time Single Image and Video Super-Resolution Using an Efficient
# Sub-Pixel Convolutional Neural Network" - Shi et al <https://arxiv.org/abs/1609.05158>`__
# for increasing the resolution of an image by an upscale factor.
# The model expects the Y component of the ``YCbCr`` of an image as an input, and
# outputs the upscaled Y component in super resolution.
#
# `The
# model <https://github.com/pytorch/examples/blob/master/super_resolution/model.py>`__
# comes directly from PyTorch's examples without modification:
#
# Super Resolution model definition in PyTorch
import torch.nn as nn
import torch.nn.init as init
class SuperResolutionNet(nn.Module):
def __init__(self, upscale_factor, inplace=False):
super(SuperResolutionNet, self).__init__()
self.relu = nn.ReLU(inplace=inplace)
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
self._initialize_weights()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
return x
def _initialize_weights(self):
init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))
init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))
init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))
init.orthogonal_(self.conv4.weight)
# Create the super-resolution model by using the above model definition.
torch_model = SuperResolutionNet(upscale_factor=3)
######################################################################
# Ordinarily, you would now train this model; however, for this tutorial,
# we will instead download some pretrained weights. Note that this model
# was not trained fully for good accuracy and is used here for
# demonstration purposes only.
#
# It is important to call ``torch_model.eval()`` or ``torch_model.train(False)``
# before exporting the model, to turn the model to inference mode.
# This is required since operators like dropout or batchnorm behave
# differently in inference and training mode.
#
# Load pretrained model weights
model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'
batch_size = 64 # just a random number
# Initialize model with the pretrained weights
map_location = lambda storage, loc: storage
if torch.cuda.is_available():
map_location = None
torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location))
# set the model to inference mode
torch_model.eval()
######################################################################
# Exporting a model in PyTorch works via tracing or scripting. This
# tutorial will use as an example a model exported by tracing.
# To export a model, we call the ``torch.onnx.export()`` function.
# This will execute the model, recording a trace of what operators
# are used to compute the outputs.
# Because ``export`` runs the model, we need to provide an input
# tensor ``x``. The values in this can be random as long as it is the
# right type and size.
# Note that the input size will be fixed in the exported ONNX graph for
# all the input's dimensions, unless specified as a dynamic axes.
# In this example we export the model with an input of batch_size 1,
# but then specify the first dimension as dynamic in the ``dynamic_axes``
# parameter in ``torch.onnx.export()``.
# The exported model will thus accept inputs of size [batch_size, 1, 224, 224]
# where batch_size can be variable.
#
# To learn more details about PyTorch's export interface, check out the
# `torch.onnx documentation <https://pytorch.org/docs/master/onnx.html>`__.
#
# Input to the model
x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
torch_out = torch_model(x)
# Export the model
torch.onnx.export(torch_model, # model being run
x, # model input (or a tuple for multiple inputs)
"super_resolution.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['input'], # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes
'output' : {0 : 'batch_size'}})
######################################################################
# We also computed ``torch_out``, the output after of the model,
# which we will use to verify that the model we exported computes
# the same values when run in ONNX Runtime.
#
# But before verifying the model's output with ONNX Runtime, we will check
# the ONNX model with ONNX API.
# First, ``onnx.load("super_resolution.onnx")`` will load the saved model and
# will output a ``onnx.ModelProto`` structure (a top-level file/container format for bundling a ML model.
# For more information `onnx.proto documentation <https://github.com/onnx/onnx/blob/master/onnx/onnx.proto>`__.).
# Then, ``onnx.checker.check_model(onnx_model)`` will verify the model's structure
# and confirm that the model has a valid schema.
# The validity of the ONNX graph is verified by checking the model's
# version, the graph's structure, as well as the nodes and their inputs
# and outputs.
#
import onnx
onnx_model = onnx.load("super_resolution.onnx")
onnx.checker.check_model(onnx_model)
######################################################################
# Now let's compute the output using ONNX Runtime's Python APIs.
# This part can normally be done in a separate process or on another
# machine, but we will continue in the same process so that we can
# verify that ONNX Runtime and PyTorch are computing the same value
# for the network.
#
# In order to run the model with ONNX Runtime, we need to create an
# inference session for the model with the chosen configuration
# parameters (here we use the default config).
# Once the session is created, we evaluate the model using the run() API.
# The output of this call is a list containing the outputs of the model
# computed by ONNX Runtime.
#
import onnxruntime
ort_session = onnxruntime.InferenceSession("super_resolution.onnx", providers=["CPUExecutionProvider"])
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
ort_outs = ort_session.run(None, ort_inputs)
# compare ONNX Runtime and PyTorch results
np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)
print("Exported model has been tested with ONNXRuntime, and the result looks good!")
######################################################################
# We should see that the output of PyTorch and ONNX Runtime runs match
# numerically with the given precision (``rtol=1e-03`` and ``atol=1e-05``).
# As a side-note, if they do not match then there is an issue in the
# ONNX exporter, so please contact us in that case.
#
######################################################################
# Timing Comparison Between Models
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# Since ONNX models optimize for inference speed, running the same
# data on an ONNX model instead of a native pytorch model should result in an
# improvement of up to 2x. Improvement is more pronounced with higher batch sizes.
import time
x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
start = time.time()
torch_out = torch_model(x)
end = time.time()
print(f"Inference of Pytorch model used {end - start} seconds")
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
start = time.time()
ort_outs = ort_session.run(None, ort_inputs)
end = time.time()
print(f"Inference of ONNX model used {end - start} seconds")
######################################################################
# Running the model on an image using ONNX Runtime
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
######################################################################
# So far we have exported a model from PyTorch and shown how to load it
# and run it in ONNX Runtime with a dummy tensor as an input.
######################################################################
# For this tutorial, we will use a famous cat image used widely which
# looks like below
#
# .. figure:: /_static/img/cat_224x224.jpg
# :alt: cat
#
######################################################################
# First, let's load the image, preprocess it using standard PIL
# python library. Note that this preprocessing is the standard practice of
# processing data for training/testing neural networks.
#
# We first resize the image to fit the size of the model's input (224x224).
# Then we split the image into its Y, Cb, and Cr components.
# These components represent a grayscale image (Y), and
# the blue-difference (Cb) and red-difference (Cr) chroma components.
# The Y component being more sensitive to the human eye, we are
# interested in this component which we will be transforming.
# After extracting the Y component, we convert it to a tensor which
# will be the input of our model.
#
from PIL import Image
import torchvision.transforms as transforms
img = Image.open("./_static/img/cat.jpg")
resize = transforms.Resize([224, 224])
img = resize(img)
img_ycbcr = img.convert('YCbCr')
img_y, img_cb, img_cr = img_ycbcr.split()
to_tensor = transforms.ToTensor()
img_y = to_tensor(img_y)
img_y.unsqueeze_(0)
######################################################################
# Now, as a next step, let's take the tensor representing the
# grayscale resized cat image and run the super-resolution model in
# ONNX Runtime as explained previously.
#
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(img_y)}
ort_outs = ort_session.run(None, ort_inputs)
img_out_y = ort_outs[0]
######################################################################
# At this point, the output of the model is a tensor.
# Now, we'll process the output of the model to construct back the
# final output image from the output tensor, and save the image.
# The post-processing steps have been adopted from PyTorch
# implementation of super-resolution model
# `here <https://github.com/pytorch/examples/blob/master/super_resolution/super_resolve.py>`__.
#
img_out_y = Image.fromarray(np.uint8((img_out_y[0] * 255.0).clip(0, 255)[0]), mode='L')
# get the output image follow post-processing step from PyTorch implementation
final_img = Image.merge(
"YCbCr", [
img_out_y,
img_cb.resize(img_out_y.size, Image.BICUBIC),
img_cr.resize(img_out_y.size, Image.BICUBIC),
]).convert("RGB")
# Save the image, we will compare this with the output image from mobile device
final_img.save("./_static/img/cat_superres_with_ort.jpg")
# Save resized original image (without super-resolution)
img = transforms.Resize([img_out_y.size[0], img_out_y.size[1]])(img)
img.save("cat_resized.jpg")
######################################################################
# Here is the comparison between the two images:
#
# .. figure:: /_static/img/cat_resized.jpg
#
# Low-resolution image
#
# .. figure:: /_static/img/cat_superres_with_ort.jpg
#
# Image after super-resolution
#
#
# ONNX Runtime being a cross platform engine, you can run it across
# multiple platforms and on both CPUs and GPUs.
#
# ONNX Runtime can also be deployed to the cloud for model inferencing
# using Azure Machine Learning Services. More information `here <https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-onnx>`__.
#
# More information about ONNX Runtime's performance `here <https://onnxruntime.ai/docs/performance>`__.
#
#
# For more information about ONNX Runtime `here <https://github.com/microsoft/onnxruntime>`__.
#