-
Notifications
You must be signed in to change notification settings - Fork 334
/
Copy pathutils.py
418 lines (354 loc) · 11.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import functools
import torch.nn
import torch.optim
from tensordict.nn import TensorDictModule, TensorDictSequential
from tensordict.nn.distributions import NormalParamExtractor
from torchrl.collectors import SyncDataCollector
from torchrl.data import (
Composite,
LazyMemmapStorage,
TensorDictPrioritizedReplayBuffer,
TensorDictReplayBuffer,
)
from torchrl.data.datasets.d4rl import D4RLExperienceReplay
from torchrl.data.replay_buffers import SamplerWithoutReplacement
from torchrl.envs import (
CatTensors,
Compose,
DMControlEnv,
DoubleToFloat,
EnvCreator,
ParallelEnv,
RewardSum,
TransformedEnv,
)
from torchrl.envs.libs.gym import GymEnv, set_gym_backend
from torchrl.envs.utils import ExplorationType, set_exploration_type
from torchrl.modules import (
EGreedyModule,
MLP,
ProbabilisticActor,
QValueActor,
TanhNormal,
ValueOperator,
)
from torchrl.objectives import CQLLoss, DiscreteCQLLoss, SoftUpdate
from torchrl.record import VideoRecorder
from torchrl.trainers.helpers.models import ACTIVATIONS
# ====================================================================
# Environment utils
# -----------------
def env_maker(cfg, device="cpu", from_pixels=False):
lib = cfg.env.backend
if lib in ("gym", "gymnasium"):
with set_gym_backend(lib):
return GymEnv(
cfg.env.name, device=device, from_pixels=from_pixels, pixels_only=False
)
elif lib == "dm_control":
env = DMControlEnv(
cfg.env.name, cfg.env.task, from_pixels=from_pixels, pixels_only=False
)
return TransformedEnv(
env, CatTensors(in_keys=env.observation_spec.keys(), out_key="observation")
)
else:
raise NotImplementedError(f"Unknown lib {lib}.")
def apply_env_transforms(
env,
):
transformed_env = TransformedEnv(
env,
Compose(
DoubleToFloat(),
RewardSum(),
),
)
return transformed_env
def make_environment(cfg, train_num_envs=1, eval_num_envs=1, logger=None):
"""Make environments for training and evaluation."""
maker = functools.partial(env_maker, cfg)
parallel_env = ParallelEnv(
train_num_envs,
EnvCreator(maker),
serial_for_single=True,
)
parallel_env.set_seed(cfg.env.seed)
train_env = apply_env_transforms(parallel_env)
maker = functools.partial(env_maker, cfg, from_pixels=cfg.logger.video)
eval_env = TransformedEnv(
ParallelEnv(
eval_num_envs,
EnvCreator(maker),
serial_for_single=True,
),
train_env.transform.clone(),
)
eval_env.set_seed(0)
if cfg.logger.video:
eval_env = eval_env.insert_transform(
0, VideoRecorder(logger=logger, tag="rendered", in_keys=["pixels"])
)
return train_env, eval_env
# ====================================================================
# Collector and replay buffer
# ---------------------------
def make_collector(
cfg,
train_env,
actor_model_explore,
compile=False,
compile_mode=None,
cudagraph=False,
):
"""Make collector."""
device = cfg.collector.device
if device in ("", None):
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
collector = SyncDataCollector(
train_env,
actor_model_explore,
init_random_frames=cfg.collector.init_random_frames,
frames_per_batch=cfg.collector.frames_per_batch,
max_frames_per_traj=cfg.collector.max_frames_per_traj,
total_frames=cfg.collector.total_frames,
device=device,
compile_policy={"mode": compile_mode} if compile else False,
cudagraph_policy=cudagraph,
)
collector.set_seed(cfg.env.seed)
return collector
def make_replay_buffer(
batch_size,
prb=False,
buffer_size=1000000,
scratch_dir=None,
device="cpu",
prefetch=3,
):
if prb:
replay_buffer = TensorDictPrioritizedReplayBuffer(
alpha=0.7,
beta=0.5,
pin_memory=False,
prefetch=prefetch,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=scratch_dir,
device=device,
),
batch_size=batch_size,
)
else:
replay_buffer = TensorDictReplayBuffer(
pin_memory=False,
prefetch=prefetch,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=scratch_dir,
device=device,
),
batch_size=batch_size,
)
return replay_buffer
def make_offline_replay_buffer(rb_cfg):
data = D4RLExperienceReplay(
dataset_id=rb_cfg.dataset,
split_trajs=False,
batch_size=rb_cfg.batch_size,
sampler=SamplerWithoutReplacement(drop_last=True),
prefetch=4,
direct_download=True,
)
data.append_transform(DoubleToFloat())
return data
# ====================================================================
# Model
# -----
#
# We give one version of the model for learning from pixels, and one for state.
# TorchRL comes in handy at this point, as the high-level interactions with
# these models is unchanged, regardless of the modality.
#
def make_cql_model(cfg, train_env, eval_env, device="cpu"):
model_cfg = cfg.model
action_spec = train_env.action_spec_unbatched
actor_net, q_net = make_cql_modules_state(model_cfg, eval_env)
in_keys = ["observation"]
out_keys = ["loc", "scale"]
actor_module = TensorDictModule(actor_net, in_keys=in_keys, out_keys=out_keys)
# We use a ProbabilisticActor to make sure that we map the
# network output to the right space using a TanhDelta
# distribution.
actor = ProbabilisticActor(
module=actor_module,
in_keys=["loc", "scale"],
spec=action_spec,
distribution_class=TanhNormal,
# Wrapping the kwargs in a TensorDictParams such that these items are
# send to device when necessary - not compatible with compile yet
# distribution_kwargs=TensorDictParams(
# TensorDict(
# {
# "low": torch.as_tensor(action_spec.space.low, device=device),
# "high": torch.as_tensor(action_spec.space.high, device=device),
# "tanh_loc": NonTensorData(False),
# }
# ),
# no_convert=True,
# ),
distribution_kwargs={
"low": action_spec.space.low.to(device),
"high": action_spec.space.high.to(device),
"tanh_loc": False,
},
default_interaction_type=ExplorationType.RANDOM,
)
in_keys = ["observation", "action"]
out_keys = ["state_action_value"]
qvalue = ValueOperator(
in_keys=in_keys,
out_keys=out_keys,
module=q_net,
)
model = torch.nn.ModuleList([actor, qvalue]).to(device)
# init nets
with torch.no_grad(), set_exploration_type(ExplorationType.RANDOM):
td = eval_env.reset()
td = td.to(device)
for net in model:
net(td)
del td
eval_env.close()
return model
def make_discretecql_model(cfg, train_env, eval_env, device="cpu"):
model_cfg = cfg.model
action_spec = train_env.action_spec
actor_net_kwargs = {
"num_cells": model_cfg.hidden_sizes,
"out_features": action_spec.shape[-1],
"activation_class": ACTIVATIONS[model_cfg.activation],
}
actor_net = MLP(**actor_net_kwargs)
qvalue_module = QValueActor(
module=actor_net,
spec=Composite(action=action_spec),
in_keys=["observation"],
)
qvalue_module = qvalue_module.to(device)
# init nets
with torch.no_grad(), set_exploration_type(ExplorationType.RANDOM):
td = eval_env.reset()
td = td.to(device)
qvalue_module(td)
del td
greedy_module = EGreedyModule(
annealing_num_steps=cfg.collector.annealing_frames,
eps_init=cfg.collector.eps_start,
eps_end=cfg.collector.eps_end,
spec=action_spec,
)
model_explore = TensorDictSequential(
qvalue_module,
greedy_module,
).to(device)
return qvalue_module, model_explore
def make_cql_modules_state(model_cfg, proof_environment):
action_spec = proof_environment.action_spec_unbatched
actor_net_kwargs = {
"num_cells": model_cfg.hidden_sizes,
"out_features": 2 * action_spec.shape[-1],
"activation_class": ACTIVATIONS[model_cfg.activation],
}
actor_net = MLP(**actor_net_kwargs)
actor_extractor = NormalParamExtractor(
scale_mapping=f"biased_softplus_{model_cfg.default_policy_scale}",
scale_lb=model_cfg.scale_lb,
)
actor_net = torch.nn.Sequential(actor_net, actor_extractor)
qvalue_net_kwargs = {
"num_cells": model_cfg.hidden_sizes,
"out_features": 1,
"activation_class": ACTIVATIONS[model_cfg.activation],
}
q_net = MLP(**qvalue_net_kwargs)
return actor_net, q_net
# ====================================================================
# CQL Loss
# ---------
def make_continuous_loss(loss_cfg, model, device: torch.device | None = None):
loss_module = CQLLoss(
model[0],
model[1],
loss_function=loss_cfg.loss_function,
temperature=loss_cfg.temperature,
min_q_weight=loss_cfg.min_q_weight,
max_q_backup=loss_cfg.max_q_backup,
deterministic_backup=loss_cfg.deterministic_backup,
num_random=loss_cfg.num_random,
with_lagrange=loss_cfg.with_lagrange,
lagrange_thresh=loss_cfg.lagrange_thresh,
)
loss_module.make_value_estimator(gamma=loss_cfg.gamma, device=device)
target_net_updater = SoftUpdate(loss_module, tau=loss_cfg.tau)
return loss_module, target_net_updater
def make_discrete_loss(loss_cfg, model, device: torch.device | None = None):
loss_module = DiscreteCQLLoss(
model,
loss_function=loss_cfg.loss_function,
delay_value=True,
)
loss_module.make_value_estimator(gamma=loss_cfg.gamma, device=device)
target_net_updater = SoftUpdate(loss_module, tau=loss_cfg.tau)
return loss_module, target_net_updater
def make_discrete_cql_optimizer(cfg, loss_module):
optim = torch.optim.Adam(
loss_module.parameters(),
lr=cfg.optim.lr,
weight_decay=cfg.optim.weight_decay,
)
return optim
def make_continuous_cql_optimizer(cfg, loss_module):
critic_params = loss_module.qvalue_network_params.flatten_keys().values()
actor_params = loss_module.actor_network_params.flatten_keys().values()
actor_optim = torch.optim.Adam(
actor_params,
lr=cfg.optim.actor_lr,
weight_decay=cfg.optim.weight_decay,
)
critic_optim = torch.optim.Adam(
critic_params,
lr=cfg.optim.critic_lr,
weight_decay=cfg.optim.weight_decay,
)
alpha_optim = torch.optim.Adam(
[loss_module.log_alpha],
lr=cfg.optim.actor_lr,
weight_decay=cfg.optim.weight_decay,
)
if loss_module.with_lagrange:
alpha_prime_optim = torch.optim.Adam(
[loss_module.log_alpha_prime],
lr=cfg.optim.critic_lr,
)
else:
alpha_prime_optim = None
return actor_optim, critic_optim, alpha_optim, alpha_prime_optim
# ====================================================================
# General utils
# ---------
def log_metrics(logger, metrics, step):
if logger is not None:
for metric_name, metric_value in metrics.items():
logger.log_scalar(metric_name, metric_value, step)
def dump_video(module):
if isinstance(module, VideoRecorder):
module.dump()