diff --git a/botorch/models/likelihoods/sparse_outlier_noise.py b/botorch/models/likelihoods/sparse_outlier_noise.py index 2f3630a5d8..7c07e33387 100644 --- a/botorch/models/likelihoods/sparse_outlier_noise.py +++ b/botorch/models/likelihoods/sparse_outlier_noise.py @@ -11,6 +11,7 @@ from botorch.exceptions.warnings import InputDataWarning from botorch.models.model import Model from botorch.models.relevance_pursuit import RelevancePursuitMixin +from botorch.models.transforms.input import InputTransform from botorch.utils.constraints import NonTransformedInterval from gpytorch.distributions import MultivariateNormal from gpytorch.likelihoods import _GaussianLikelihoodBase @@ -28,6 +29,7 @@ def __init__( self, base_noise: Noise | FixedGaussianNoise, dim: int, + input_transform: InputTransform | None, outlier_indices: list[int] | None = None, rho_prior: Prior | None = None, rho_constraint: NonTransformedInterval | None = None, @@ -68,6 +70,8 @@ def __init__( base_noise: The base noise model. dim: The number of training observations, which determines the maximum number of data-point-specific noise variances of the noise model. + input_transform: An input transform to be applied to the input data. This + should be the same transform that is used in the Gaussian process model. outlier_indices: The indices of the outliers. rho_prior: Prior for `self.noise_covar`'s rho parameter. rho_constraint: Constraint for `self.noise_covar`'s rho parameter. Needs to @@ -82,6 +86,7 @@ def __init__( noise_covar = SparseOutlierNoise( base_noise=base_noise, dim=dim, + input_transform=input_transform, outlier_indices=outlier_indices, rho_prior=rho_prior, rho_constraint=rho_constraint, @@ -122,6 +127,7 @@ def __init__( self, base_noise: Noise | FixedGaussianNoise, dim: int, + input_transform: InputTransform | None, outlier_indices: list[int] | None = None, rho_prior: Prior | None = None, rho_constraint: NonTransformedInterval | None = None, @@ -155,6 +161,8 @@ def __init__( base_noise: The base noise model. dim: The number of training observations, which determines the maximum number of data-point-specific noise variances of the noise model. + input_transform: An input transform to be applied to the input data. This + should be the same transform that is used in the Gaussian process model. outlier_indices: The indices of the outliers. rho_prior: Prior for the rho parameter. rho_constraint: Constraint for the rho parameter. Needs to be a @@ -232,6 +240,7 @@ def _rho_param(m): # with the rho constraints. self._convex_parameterization = convex_parameterization self.loo = loo + self.input_transform = input_transform self._cached_train_inputs = None @property @@ -401,6 +410,13 @@ def forward( ) elif self.training or self._cached_train_inputs is None: apply_robust_variances = True + # NOTE: BoTorch input transforms are applied in the model's `forward` + # in `train` mode and in `posterior` in `eval` mode. For this reason, + # the likelihood will receive un-transformed inputs during training, + # but transformed inputs during inference, so we need to make sure to + # store the transformed inputs in the cache for inference comparisons. + if self.input_transform is not None: + X = self.input_transform.transform(X) self._cached_train_inputs = X warning_reason = "" # will not warn when applying robust variances else: diff --git a/test/models/test_relevance_pursuit.py b/test/models/test_relevance_pursuit.py index 3a671b31d3..d7435b3469 100644 --- a/test/models/test_relevance_pursuit.py +++ b/test/models/test_relevance_pursuit.py @@ -7,6 +7,7 @@ from __future__ import annotations import itertools +import warnings from functools import partial @@ -26,7 +27,7 @@ get_posterior_over_support, RelevancePursuitMixin, ) -from botorch.models.transforms.input import Normalize +from botorch.models.transforms.input import InputTransform, Normalize from botorch.models.transforms.outcome import Standardize from botorch.test_functions.base import constant_outlier_generator, CorruptedTestProblem @@ -94,6 +95,7 @@ def _get_robust_model( X: Tensor, Y: Tensor, likelihood: SparseOutlierGaussianLikelihood, + input_transform: InputTransform | None, ) -> SingleTaskGP: min_lengthscale = 0.1 lengthscale_constraint = NonTransformedInterval( @@ -113,7 +115,7 @@ def _get_robust_model( train_Y=Y, mean_module=ZeroMean(), covar_module=kernel, - input_transform=Normalize(d=X.shape[-1]), + input_transform=input_transform, outcome_transform=Standardize(m=Y.shape[-1]), likelihood=likelihood, ) @@ -145,14 +147,17 @@ def _test_robust_gp_end_to_end( min_noise, max_noise, initial_value=1e-3 ) ).to(dtype=dtype, device=self.device) - + input_transform = Normalize(d=X.shape[-1]) rp_likelihood = SparseOutlierGaussianLikelihood( base_noise=base_noise, dim=X.shape[0], + input_transform=input_transform, convex_parameterization=convex_parameterization, ) - model = self._get_robust_model(X=X, Y=Y, likelihood=rp_likelihood) + model = self._get_robust_model( + X=X, Y=Y, likelihood=rp_likelihood, input_transform=input_transform + ) X_test = torch.rand(3, 1, dtype=dtype, device=self.device) with self.assertWarnsRegex(InputDataWarning, "SparseOutlierNoise"): @@ -197,6 +202,11 @@ def _test_robust_gp_end_to_end( undetected_outliers = set(outlier_indices) - set(sparse_module.support) self.assertEqual(len(undetected_outliers), 0) + # testing that posterior inference on training set does not throw warnings + with warnings.catch_warnings(record=True) as warnings_log: + map_model.posterior(X) + self.assertEqual(warnings_log, []) + def test_robust_relevance_pursuit(self) -> None: for optimizer, convex_parameterization, dtype in itertools.product( [forward_relevance_pursuit, backward_relevance_pursuit], @@ -249,6 +259,7 @@ def _test_robust_relevance_pursuit( SparseOutlierGaussianLikelihood( base_noise=base_noise, dim=X.shape[0], + input_transform=None, convex_parameterization=convex_parameterization, rho_constraint=Interval(0.0, 1.0), # pyre-ignore[6] ) @@ -257,6 +268,7 @@ def _test_robust_relevance_pursuit( SparseOutlierGaussianLikelihood( base_noise=base_noise, dim=X.shape[0], + input_transform=None, convex_parameterization=convex_parameterization, rho_constraint=NonTransformedInterval(-1.0, 1.0), ) @@ -266,6 +278,7 @@ def _test_robust_relevance_pursuit( SparseOutlierGaussianLikelihood( base_noise=base_noise, dim=X.shape[0], + input_transform=None, convex_parameterization=convex_parameterization, rho_constraint=NonTransformedInterval(0.0, 2.0), loo=loo, @@ -274,6 +287,7 @@ def _test_robust_relevance_pursuit( likelihood_with_other_bounds = SparseOutlierGaussianLikelihood( base_noise=base_noise, dim=X.shape[0], + input_transform=None, convex_parameterization=convex_parameterization, rho_constraint=NonTransformedInterval(0.0, 2.0), loo=loo, @@ -285,6 +299,7 @@ def _test_robust_relevance_pursuit( rp_likelihood = SparseOutlierGaussianLikelihood( base_noise=base_noise, dim=X.shape[0], + input_transform=None, convex_parameterization=convex_parameterization, loo=loo, ) @@ -303,9 +318,11 @@ def _test_robust_relevance_pursuit( rp_likelihood.expected_log_prob(target=None, input=None) # pyre-ignore[6] # testing prior initialization + input_transform = None likelihood_with_prior = SparseOutlierGaussianLikelihood( base_noise=base_noise, dim=X.shape[0], + input_transform=input_transform, convex_parameterization=convex_parameterization, rho_prior=gpytorch.priors.NormalPrior(loc=1 / 2, scale=0.1), loo=loo, @@ -316,7 +333,9 @@ def _test_robust_relevance_pursuit( # combining likelihood with rho prior and full GP model # this will test the prior code paths when computing the marginal likelihood - model = self._get_robust_model(X=X, Y=Y, likelihood=likelihood_with_prior) + model = self._get_robust_model( + X=X, Y=Y, likelihood=likelihood_with_prior, input_transform=input_transform + ) # testing the _from_model method with self.assertRaisesRegex(