-
Notifications
You must be signed in to change notification settings - Fork 675
/
Copy pathtransforms.py
2009 lines (1699 loc) · 84.7 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
import math
import warnings
from typing import Callable, Optional
import torch
from torch import Tensor
from torchaudio import functional as F
from .functional.functional import (
_get_sinc_resample_kernel,
_apply_sinc_resample_kernel,
)
__all__ = [
'Spectrogram',
'InverseSpectrogram',
'GriffinLim',
'AmplitudeToDB',
'MelScale',
'InverseMelScale',
'MelSpectrogram',
'MFCC',
'LFCC',
'MuLawEncoding',
'MuLawDecoding',
'Resample',
'TimeStretch',
'Fade',
'FrequencyMasking',
'TimeMasking',
'SlidingWindowCmn',
'Vad',
'SpectralCentroid',
'Vol',
'ComputeDeltas',
'PitchShift',
'RNNTLoss',
'PSD',
'MVDR',
]
class Spectrogram(torch.nn.Module):
r"""Create a spectrogram from a audio signal.
Args:
n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``)
win_length (int or None, optional): Window size. (Default: ``n_fft``)
hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``)
pad (int, optional): Two sided padding of signal. (Default: ``0``)
window_fn (Callable[..., Tensor], optional): A function to create a window tensor
that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``)
power (float or None, optional): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc.
If None, then the complex spectrum is returned instead. (Default: ``2``)
normalized (bool, optional): Whether to normalize by magnitude after stft. (Default: ``False``)
wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``)
center (bool, optional): whether to pad :attr:`waveform` on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
(Default: ``True``)
pad_mode (string, optional): controls the padding method used when
:attr:`center` is ``True``. (Default: ``"reflect"``)
onesided (bool, optional): controls whether to return half of results to
avoid redundancy (Default: ``True``)
return_complex (bool, optional):
Deprecated and not used.
Example
>>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True)
>>> transform = torchaudio.transforms.Spectrogram(n_fft=800)
>>> spectrogram = transform(waveform)
"""
__constants__ = ['n_fft', 'win_length', 'hop_length', 'pad', 'power', 'normalized']
def __init__(self,
n_fft: int = 400,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
pad: int = 0,
window_fn: Callable[..., Tensor] = torch.hann_window,
power: Optional[float] = 2.,
normalized: bool = False,
wkwargs: Optional[dict] = None,
center: bool = True,
pad_mode: str = "reflect",
onesided: bool = True,
return_complex: Optional[bool] = None) -> None:
super(Spectrogram, self).__init__()
self.n_fft = n_fft
# number of FFT bins. the returned STFT result will have n_fft // 2 + 1
# number of frequencies due to onesided=True in torch.stft
self.win_length = win_length if win_length is not None else n_fft
self.hop_length = hop_length if hop_length is not None else self.win_length // 2
window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs)
self.register_buffer('window', window)
self.pad = pad
self.power = power
self.normalized = normalized
self.center = center
self.pad_mode = pad_mode
self.onesided = onesided
if return_complex is not None:
warnings.warn(
"`return_complex` argument is now deprecated and is not effective."
"`torchaudio.transforms.Spectrogram(power=None)` always returns a tensor with "
"complex dtype. Please remove the argument in the function call."
)
def forward(self, waveform: Tensor) -> Tensor:
r"""
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
Returns:
Tensor: Dimension (..., freq, time), where freq is
``n_fft // 2 + 1`` where ``n_fft`` is the number of
Fourier bins, and time is the number of window hops (n_frame).
"""
return F.spectrogram(
waveform,
self.pad,
self.window,
self.n_fft,
self.hop_length,
self.win_length,
self.power,
self.normalized,
self.center,
self.pad_mode,
self.onesided,
)
class InverseSpectrogram(torch.nn.Module):
r"""Create an inverse spectrogram to recover an audio signal from a spectrogram.
Args:
n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``)
win_length (int or None, optional): Window size. (Default: ``n_fft``)
hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``)
pad (int, optional): Two sided padding of signal. (Default: ``0``)
window_fn (Callable[..., Tensor], optional): A function to create a window tensor
that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``)
normalized (bool, optional): Whether the spectrogram was normalized by magnitude after stft.
(Default: ``False``)
wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``)
center (bool, optional): whether the signal in spectrogram was padded on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
(Default: ``True``)
pad_mode (string, optional): controls the padding method used when
:attr:`center` is ``True``. (Default: ``"reflect"``)
onesided (bool, optional): controls whether spectrogram was used to return half of results to
avoid redundancy (Default: ``True``)
Example
>>> batch, freq, time = 2, 257, 100
>>> length = 25344
>>> spectrogram = torch.randn(batch, freq, time, dtype=torch.cdouble)
>>> transform = transforms.InverseSpectrogram(n_fft=512)
>>> waveform = transform(spectrogram, length)
"""
__constants__ = ['n_fft', 'win_length', 'hop_length', 'pad', 'power', 'normalized']
def __init__(self,
n_fft: int = 400,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
pad: int = 0,
window_fn: Callable[..., Tensor] = torch.hann_window,
normalized: bool = False,
wkwargs: Optional[dict] = None,
center: bool = True,
pad_mode: str = "reflect",
onesided: bool = True) -> None:
super(InverseSpectrogram, self).__init__()
self.n_fft = n_fft
# number of FFT bins. the returned STFT result will have n_fft // 2 + 1
# number of frequencies due to onesided=True in torch.stft
self.win_length = win_length if win_length is not None else n_fft
self.hop_length = hop_length if hop_length is not None else self.win_length // 2
window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs)
self.register_buffer('window', window)
self.pad = pad
self.normalized = normalized
self.center = center
self.pad_mode = pad_mode
self.onesided = onesided
def forward(self, spectrogram: Tensor, length: Optional[int] = None) -> Tensor:
r"""
Args:
spectrogram (Tensor): Complex tensor of audio of dimension (..., freq, time).
length (int or None, optional): The output length of the waveform.
Returns:
Tensor: Dimension (..., time), Least squares estimation of the original signal.
"""
return F.inverse_spectrogram(
spectrogram,
length,
self.pad,
self.window,
self.n_fft,
self.hop_length,
self.win_length,
self.normalized,
self.center,
self.pad_mode,
self.onesided,
)
class GriffinLim(torch.nn.Module):
r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.
Implementation ported from
*librosa* [:footcite:`brian_mcfee-proc-scipy-2015`], *A fast Griffin-Lim algorithm* [:footcite:`6701851`]
and *Signal estimation from modified short-time Fourier transform* [:footcite:`1172092`].
Args:
n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``)
n_iter (int, optional): Number of iteration for phase recovery process. (Default: ``32``)
win_length (int or None, optional): Window size. (Default: ``n_fft``)
hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``)
window_fn (Callable[..., Tensor], optional): A function to create a window tensor
that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``)
power (float, optional): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc. (Default: ``2``)
wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``)
momentum (float, optional): The momentum parameter for fast Griffin-Lim.
Setting this to 0 recovers the original Griffin-Lim method.
Values near 1 can lead to faster convergence, but above 1 may not converge. (Default: ``0.99``)
length (int, optional): Array length of the expected output. (Default: ``None``)
rand_init (bool, optional): Initializes phase randomly if True and to zero otherwise. (Default: ``True``)
Example
>>> batch, freq, time = 2, 257, 100
>>> spectrogram = torch.randn(batch, freq, time)
>>> transform = transforms.GriffinLim(n_fft=512)
>>> waveform = transform(spectrogram)
"""
__constants__ = ['n_fft', 'n_iter', 'win_length', 'hop_length', 'power',
'length', 'momentum', 'rand_init']
def __init__(self,
n_fft: int = 400,
n_iter: int = 32,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
window_fn: Callable[..., Tensor] = torch.hann_window,
power: float = 2.,
wkwargs: Optional[dict] = None,
momentum: float = 0.99,
length: Optional[int] = None,
rand_init: bool = True) -> None:
super(GriffinLim, self).__init__()
assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum)
assert momentum >= 0, 'momentum={} < 0'.format(momentum)
self.n_fft = n_fft
self.n_iter = n_iter
self.win_length = win_length if win_length is not None else n_fft
self.hop_length = hop_length if hop_length is not None else self.win_length // 2
window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs)
self.register_buffer('window', window)
self.length = length
self.power = power
self.momentum = momentum / (1 + momentum)
self.rand_init = rand_init
def forward(self, specgram: Tensor) -> Tensor:
r"""
Args:
specgram (Tensor):
A magnitude-only STFT spectrogram of dimension (..., freq, frames)
where freq is ``n_fft // 2 + 1``.
Returns:
Tensor: waveform of (..., time), where time equals the ``length`` parameter if given.
"""
return F.griffinlim(specgram, self.window, self.n_fft, self.hop_length, self.win_length, self.power,
self.n_iter, self.momentum, self.length, self.rand_init)
class AmplitudeToDB(torch.nn.Module):
r"""Turn a tensor from the power/amplitude scale to the decibel scale.
This output depends on the maximum value in the input tensor, and so
may return different values for an audio clip split into snippets vs. a
a full clip.
Args:
stype (str, optional): scale of input tensor (``'power'`` or ``'magnitude'``). The
power being the elementwise square of the magnitude. (Default: ``'power'``)
top_db (float or None, optional): minimum negative cut-off in decibels. A reasonable
number is 80. (Default: ``None``)
"""
__constants__ = ['multiplier', 'amin', 'ref_value', 'db_multiplier']
def __init__(self, stype: str = 'power', top_db: Optional[float] = None) -> None:
super(AmplitudeToDB, self).__init__()
self.stype = stype
if top_db is not None and top_db < 0:
raise ValueError('top_db must be positive value')
self.top_db = top_db
self.multiplier = 10.0 if stype == 'power' else 20.0
self.amin = 1e-10
self.ref_value = 1.0
self.db_multiplier = math.log10(max(self.amin, self.ref_value))
def forward(self, x: Tensor) -> Tensor:
r"""Numerically stable implementation from Librosa.
https://librosa.org/doc/latest/generated/librosa.amplitude_to_db.html
Args:
x (Tensor): Input tensor before being converted to decibel scale.
Returns:
Tensor: Output tensor in decibel scale.
"""
return F.amplitude_to_DB(x, self.multiplier, self.amin, self.db_multiplier, self.top_db)
class MelScale(torch.nn.Module):
r"""Turn a normal STFT into a mel frequency STFT, using a conversion
matrix. This uses triangular filter banks.
Args:
n_mels (int, optional): Number of mel filterbanks. (Default: ``128``)
sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
f_min (float, optional): Minimum frequency. (Default: ``0.``)
f_max (float or None, optional): Maximum frequency. (Default: ``sample_rate // 2``)
n_stft (int, optional): Number of bins in STFT. See ``n_fft`` in :class:`Spectrogram`. (Default: ``201``)
norm (str or None, optional): If ``'slaney'``, divide the triangular mel weights by the width of the mel band
(area normalization). (Default: ``None``)
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
See also:
:py:func:`torchaudio.functional.melscale_fbanks` - The function used to
generate the filter banks.
"""
__constants__ = ['n_mels', 'sample_rate', 'f_min', 'f_max']
def __init__(self,
n_mels: int = 128,
sample_rate: int = 16000,
f_min: float = 0.,
f_max: Optional[float] = None,
n_stft: int = 201,
norm: Optional[str] = None,
mel_scale: str = "htk") -> None:
super(MelScale, self).__init__()
self.n_mels = n_mels
self.sample_rate = sample_rate
self.f_max = f_max if f_max is not None else float(sample_rate // 2)
self.f_min = f_min
self.norm = norm
self.mel_scale = mel_scale
assert f_min <= self.f_max, 'Require f_min: {} < f_max: {}'.format(f_min, self.f_max)
fb = F.melscale_fbanks(
n_stft, self.f_min, self.f_max, self.n_mels, self.sample_rate, self.norm,
self.mel_scale)
self.register_buffer('fb', fb)
def forward(self, specgram: Tensor) -> Tensor:
r"""
Args:
specgram (Tensor): A spectrogram STFT of dimension (..., freq, time).
Returns:
Tensor: Mel frequency spectrogram of size (..., ``n_mels``, time).
"""
# (..., time, freq) dot (freq, n_mels) -> (..., n_mels, time)
mel_specgram = torch.matmul(specgram.transpose(-1, -2), self.fb).transpose(-1, -2)
return mel_specgram
class InverseMelScale(torch.nn.Module):
r"""Solve for a normal STFT from a mel frequency STFT, using a conversion
matrix. This uses triangular filter banks.
It minimizes the euclidian norm between the input mel-spectrogram and the product between
the estimated spectrogram and the filter banks using SGD.
Args:
n_stft (int): Number of bins in STFT. See ``n_fft`` in :class:`Spectrogram`.
n_mels (int, optional): Number of mel filterbanks. (Default: ``128``)
sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
f_min (float, optional): Minimum frequency. (Default: ``0.``)
f_max (float or None, optional): Maximum frequency. (Default: ``sample_rate // 2``)
max_iter (int, optional): Maximum number of optimization iterations. (Default: ``100000``)
tolerance_loss (float, optional): Value of loss to stop optimization at. (Default: ``1e-5``)
tolerance_change (float, optional): Difference in losses to stop optimization at. (Default: ``1e-8``)
sgdargs (dict or None, optional): Arguments for the SGD optimizer. (Default: ``None``)
norm (str or None, optional): If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization). (Default: ``None``)
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
"""
__constants__ = ['n_stft', 'n_mels', 'sample_rate', 'f_min', 'f_max', 'max_iter', 'tolerance_loss',
'tolerance_change', 'sgdargs']
def __init__(self,
n_stft: int,
n_mels: int = 128,
sample_rate: int = 16000,
f_min: float = 0.,
f_max: Optional[float] = None,
max_iter: int = 100000,
tolerance_loss: float = 1e-5,
tolerance_change: float = 1e-8,
sgdargs: Optional[dict] = None,
norm: Optional[str] = None,
mel_scale: str = "htk") -> None:
super(InverseMelScale, self).__init__()
self.n_mels = n_mels
self.sample_rate = sample_rate
self.f_max = f_max or float(sample_rate // 2)
self.f_min = f_min
self.max_iter = max_iter
self.tolerance_loss = tolerance_loss
self.tolerance_change = tolerance_change
self.sgdargs = sgdargs or {'lr': 0.1, 'momentum': 0.9}
assert f_min <= self.f_max, 'Require f_min: {} < f_max: {}'.format(f_min, self.f_max)
fb = F.melscale_fbanks(n_stft, self.f_min, self.f_max, self.n_mels, self.sample_rate,
norm, mel_scale)
self.register_buffer('fb', fb)
def forward(self, melspec: Tensor) -> Tensor:
r"""
Args:
melspec (Tensor): A Mel frequency spectrogram of dimension (..., ``n_mels``, time)
Returns:
Tensor: Linear scale spectrogram of size (..., freq, time)
"""
# pack batch
shape = melspec.size()
melspec = melspec.view(-1, shape[-2], shape[-1])
n_mels, time = shape[-2], shape[-1]
freq, _ = self.fb.size() # (freq, n_mels)
melspec = melspec.transpose(-1, -2)
assert self.n_mels == n_mels
specgram = torch.rand(melspec.size()[0], time, freq, requires_grad=True,
dtype=melspec.dtype, device=melspec.device)
optim = torch.optim.SGD([specgram], **self.sgdargs)
loss = float('inf')
for _ in range(self.max_iter):
optim.zero_grad()
diff = melspec - specgram.matmul(self.fb)
new_loss = diff.pow(2).sum(axis=-1).mean()
# take sum over mel-frequency then average over other dimensions
# so that loss threshold is applied par unit timeframe
new_loss.backward()
optim.step()
specgram.data = specgram.data.clamp(min=0)
new_loss = new_loss.item()
if new_loss < self.tolerance_loss or abs(loss - new_loss) < self.tolerance_change:
break
loss = new_loss
specgram.requires_grad_(False)
specgram = specgram.clamp(min=0).transpose(-1, -2)
# unpack batch
specgram = specgram.view(shape[:-2] + (freq, time))
return specgram
class MelSpectrogram(torch.nn.Module):
r"""Create MelSpectrogram for a raw audio signal.
This is a composition of :py:func:`torchaudio.transforms.Spectrogram` and
and :py:func:`torchaudio.transforms.MelScale`.
Sources
* https://gist.github.com/kastnerkyle/179d6e9a88202ab0a2fe
* https://timsainb.github.io/spectrograms-mfccs-and-inversion-in-python.html
* http://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
Args:
sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins. (Default: ``400``)
win_length (int or None, optional): Window size. (Default: ``n_fft``)
hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``)
f_min (float, optional): Minimum frequency. (Default: ``0.``)
f_max (float or None, optional): Maximum frequency. (Default: ``None``)
pad (int, optional): Two sided padding of signal. (Default: ``0``)
n_mels (int, optional): Number of mel filterbanks. (Default: ``128``)
window_fn (Callable[..., Tensor], optional): A function to create a window tensor
that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``)
power (float, optional): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc. (Default: ``2``)
normalized (bool, optional): Whether to normalize by magnitude after stft. (Default: ``False``)
wkwargs (Dict[..., ...] or None, optional): Arguments for window function. (Default: ``None``)
center (bool, optional): whether to pad :attr:`waveform` on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
(Default: ``True``)
pad_mode (string, optional): controls the padding method used when
:attr:`center` is ``True``. (Default: ``"reflect"``)
onesided (bool, optional): controls whether to return half of results to
avoid redundancy. (Default: ``True``)
norm (str or None, optional): If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization). (Default: ``None``)
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
Example
>>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True)
>>> transform = transforms.MelSpectrogram(sample_rate)
>>> mel_specgram = transform(waveform) # (channel, n_mels, time)
See also:
:py:func:`torchaudio.functional.melscale_fbanks` - The function used to
generate the filter banks.
"""
__constants__ = ['sample_rate', 'n_fft', 'win_length', 'hop_length', 'pad', 'n_mels', 'f_min']
def __init__(self,
sample_rate: int = 16000,
n_fft: int = 400,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
f_min: float = 0.,
f_max: Optional[float] = None,
pad: int = 0,
n_mels: int = 128,
window_fn: Callable[..., Tensor] = torch.hann_window,
power: float = 2.,
normalized: bool = False,
wkwargs: Optional[dict] = None,
center: bool = True,
pad_mode: str = "reflect",
onesided: bool = True,
norm: Optional[str] = None,
mel_scale: str = "htk") -> None:
super(MelSpectrogram, self).__init__()
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length if win_length is not None else n_fft
self.hop_length = hop_length if hop_length is not None else self.win_length // 2
self.pad = pad
self.power = power
self.normalized = normalized
self.n_mels = n_mels # number of mel frequency bins
self.f_max = f_max
self.f_min = f_min
self.spectrogram = Spectrogram(n_fft=self.n_fft, win_length=self.win_length,
hop_length=self.hop_length,
pad=self.pad, window_fn=window_fn, power=self.power,
normalized=self.normalized, wkwargs=wkwargs,
center=center, pad_mode=pad_mode, onesided=onesided)
self.mel_scale = MelScale(
self.n_mels,
self.sample_rate,
self.f_min,
self.f_max,
self.n_fft // 2 + 1,
norm,
mel_scale
)
def forward(self, waveform: Tensor) -> Tensor:
r"""
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
Returns:
Tensor: Mel frequency spectrogram of size (..., ``n_mels``, time).
"""
specgram = self.spectrogram(waveform)
mel_specgram = self.mel_scale(specgram)
return mel_specgram
class MFCC(torch.nn.Module):
r"""Create the Mel-frequency cepstrum coefficients from an audio signal.
By default, this calculates the MFCC on the DB-scaled Mel spectrogram.
This is not the textbook implementation, but is implemented here to
give consistency with librosa.
This output depends on the maximum value in the input spectrogram, and so
may return different values for an audio clip split into snippets vs. a
a full clip.
Args:
sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
n_mfcc (int, optional): Number of mfc coefficients to retain. (Default: ``40``)
dct_type (int, optional): type of DCT (discrete cosine transform) to use. (Default: ``2``)
norm (str, optional): norm to use. (Default: ``'ortho'``)
log_mels (bool, optional): whether to use log-mel spectrograms instead of db-scaled. (Default: ``False``)
melkwargs (dict or None, optional): arguments for MelSpectrogram. (Default: ``None``)
See also:
:py:func:`torchaudio.functional.melscale_fbanks` - The function used to
generate the filter banks.
"""
__constants__ = ['sample_rate', 'n_mfcc', 'dct_type', 'top_db', 'log_mels']
def __init__(self,
sample_rate: int = 16000,
n_mfcc: int = 40,
dct_type: int = 2,
norm: str = 'ortho',
log_mels: bool = False,
melkwargs: Optional[dict] = None) -> None:
super(MFCC, self).__init__()
supported_dct_types = [2]
if dct_type not in supported_dct_types:
raise ValueError('DCT type not supported: {}'.format(dct_type))
self.sample_rate = sample_rate
self.n_mfcc = n_mfcc
self.dct_type = dct_type
self.norm = norm
self.top_db = 80.0
self.amplitude_to_DB = AmplitudeToDB('power', self.top_db)
melkwargs = melkwargs or {}
self.MelSpectrogram = MelSpectrogram(sample_rate=self.sample_rate, **melkwargs)
if self.n_mfcc > self.MelSpectrogram.n_mels:
raise ValueError('Cannot select more MFCC coefficients than # mel bins')
dct_mat = F.create_dct(self.n_mfcc, self.MelSpectrogram.n_mels, self.norm)
self.register_buffer('dct_mat', dct_mat)
self.log_mels = log_mels
def forward(self, waveform: Tensor) -> Tensor:
r"""
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
Returns:
Tensor: specgram_mel_db of size (..., ``n_mfcc``, time).
"""
mel_specgram = self.MelSpectrogram(waveform)
if self.log_mels:
log_offset = 1e-6
mel_specgram = torch.log(mel_specgram + log_offset)
else:
mel_specgram = self.amplitude_to_DB(mel_specgram)
# (..., time, n_mels) dot (n_mels, n_mfcc) -> (..., n_nfcc, time)
mfcc = torch.matmul(mel_specgram.transpose(-1, -2), self.dct_mat).transpose(-1, -2)
return mfcc
class LFCC(torch.nn.Module):
r"""Create the linear-frequency cepstrum coefficients from an audio signal.
By default, this calculates the LFCC on the DB-scaled linear filtered spectrogram.
This is not the textbook implementation, but is implemented here to
give consistency with librosa.
This output depends on the maximum value in the input spectrogram, and so
may return different values for an audio clip split into snippets vs. a
a full clip.
Args:
sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
n_filter (int, optional): Number of linear filters to apply. (Default: ``128``)
n_lfcc (int, optional): Number of lfc coefficients to retain. (Default: ``40``)
f_min (float, optional): Minimum frequency. (Default: ``0.``)
f_max (float or None, optional): Maximum frequency. (Default: ``None``)
dct_type (int, optional): type of DCT (discrete cosine transform) to use. (Default: ``2``)
norm (str, optional): norm to use. (Default: ``'ortho'``)
log_lf (bool, optional): whether to use log-lf spectrograms instead of db-scaled. (Default: ``False``)
speckwargs (dict or None, optional): arguments for Spectrogram. (Default: ``None``)
See also:
:py:func:`torchaudio.functional.linear_fbanks` - The function used to
generate the filter banks.
"""
__constants__ = ['sample_rate', 'n_filter', 'n_lfcc', 'dct_type', 'top_db', 'log_lf']
def __init__(self,
sample_rate: int = 16000,
n_filter: int = 128,
f_min: float = 0.,
f_max: Optional[float] = None,
n_lfcc: int = 40,
dct_type: int = 2,
norm: str = 'ortho',
log_lf: bool = False,
speckwargs: Optional[dict] = None) -> None:
super(LFCC, self).__init__()
supported_dct_types = [2]
if dct_type not in supported_dct_types:
raise ValueError('DCT type not supported: {}'.format(dct_type))
self.sample_rate = sample_rate
self.f_min = f_min
self.f_max = f_max if f_max is not None else float(sample_rate // 2)
self.n_filter = n_filter
self.n_lfcc = n_lfcc
self.dct_type = dct_type
self.norm = norm
self.top_db = 80.0
self.amplitude_to_DB = AmplitudeToDB('power', self.top_db)
speckwargs = speckwargs or {}
self.Spectrogram = Spectrogram(**speckwargs)
if self.n_lfcc > self.Spectrogram.n_fft:
raise ValueError('Cannot select more LFCC coefficients than # fft bins')
filter_mat = F.linear_fbanks(
n_freqs=self.Spectrogram.n_fft // 2 + 1,
f_min=self.f_min,
f_max=self.f_max,
n_filter=self.n_filter,
sample_rate=self.sample_rate,
)
self.register_buffer("filter_mat", filter_mat)
dct_mat = F.create_dct(self.n_lfcc, self.n_filter, self.norm)
self.register_buffer('dct_mat', dct_mat)
self.log_lf = log_lf
def forward(self, waveform: Tensor) -> Tensor:
r"""
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
Returns:
Tensor: Linear Frequency Cepstral Coefficients of size (..., ``n_lfcc``, time).
"""
specgram = self.Spectrogram(waveform)
# (..., time, freq) dot (freq, n_filter) -> (..., n_filter, time)
specgram = torch.matmul(specgram.transpose(-1, -2), self.filter_mat).transpose(-1, -2)
if self.log_lf:
log_offset = 1e-6
specgram = torch.log(specgram + log_offset)
else:
specgram = self.amplitude_to_DB(specgram)
# (..., time, n_filter) dot (n_filter, n_lfcc) -> (..., n_lfcc, time)
lfcc = torch.matmul(specgram.transpose(-1, -2), self.dct_mat).transpose(-1, -2)
return lfcc
class MuLawEncoding(torch.nn.Module):
r"""Encode signal based on mu-law companding. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
This algorithm assumes the signal has been scaled to between -1 and 1 and
returns a signal encoded with values from 0 to quantization_channels - 1
Args:
quantization_channels (int, optional): Number of channels. (Default: ``256``)
Example
>>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True)
>>> transform = torchaudio.transforms.MuLawEncoding(quantization_channels=512)
>>> mulawtrans = transform(waveform)
"""
__constants__ = ['quantization_channels']
def __init__(self, quantization_channels: int = 256) -> None:
super(MuLawEncoding, self).__init__()
self.quantization_channels = quantization_channels
def forward(self, x: Tensor) -> Tensor:
r"""
Args:
x (Tensor): A signal to be encoded.
Returns:
Tensor: An encoded signal.
"""
return F.mu_law_encoding(x, self.quantization_channels)
class MuLawDecoding(torch.nn.Module):
r"""Decode mu-law encoded signal. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
This expects an input with values between 0 and ``quantization_channels - 1``
and returns a signal scaled between -1 and 1.
Args:
quantization_channels (int, optional): Number of channels. (Default: ``256``)
Example
>>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True)
>>> transform = torchaudio.transforms.MuLawDecoding(quantization_channels=512)
>>> mulawtrans = transform(waveform)
"""
__constants__ = ['quantization_channels']
def __init__(self, quantization_channels: int = 256) -> None:
super(MuLawDecoding, self).__init__()
self.quantization_channels = quantization_channels
def forward(self, x_mu: Tensor) -> Tensor:
r"""
Args:
x_mu (Tensor): A mu-law encoded signal which needs to be decoded.
Returns:
Tensor: The signal decoded.
"""
return F.mu_law_decoding(x_mu, self.quantization_channels)
class Resample(torch.nn.Module):
r"""Resample a signal from one frequency to another. A resampling method can be given.
Note:
If resampling on waveforms of higher precision than float32, there may be a small loss of precision
because the kernel is cached once as float32. If high precision resampling is important for your application,
the functional form will retain higher precision, but run slower because it does not cache the kernel.
Alternatively, you could rewrite a transform that caches a higher precision kernel.
Args:
orig_freq (int, optional): The original frequency of the signal. (Default: ``16000``)
new_freq (int, optional): The desired frequency. (Default: ``16000``)
resampling_method (str, optional): The resampling method to use.
Options: [``sinc_interpolation``, ``kaiser_window``] (Default: ``'sinc_interpolation'``)
lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper
but less efficient. (Default: ``6``)
rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist.
Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``)
beta (float or None, optional): The shape parameter used for kaiser window.
dtype (torch.device, optional):
Determnines the precision that resampling kernel is pre-computed and cached. If not provided,
kernel is computed with ``torch.float64`` then cached as ``torch.float32``.
If you need higher precision, provide ``torch.float64``, and the pre-computed kernel is computed and
cached as ``torch.float64``. If you use resample with lower precision, then instead of providing this
providing this argument, please use ``Resample.to(dtype)``, so that the kernel generation is still
carried out on ``torch.float64``.
Example
>>> waveform, sample_rate = torchaudio.load('test.wav', normalize=True)
>>> transform = transforms.Resample(sample_rate, sample_rate/10)
>>> waveform = transform(waveform)
"""
def __init__(
self,
orig_freq: int = 16000,
new_freq: int = 16000,
resampling_method: str = 'sinc_interpolation',
lowpass_filter_width: int = 6,
rolloff: float = 0.99,
beta: Optional[float] = None,
*,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__()
self.orig_freq = orig_freq
self.new_freq = new_freq
self.gcd = math.gcd(int(self.orig_freq), int(self.new_freq))
self.resampling_method = resampling_method
self.lowpass_filter_width = lowpass_filter_width
self.rolloff = rolloff
self.beta = beta
if self.orig_freq != self.new_freq:
kernel, self.width = _get_sinc_resample_kernel(
self.orig_freq, self.new_freq, self.gcd,
self.lowpass_filter_width, self.rolloff,
self.resampling_method, beta, dtype=dtype)
self.register_buffer('kernel', kernel)
def forward(self, waveform: Tensor) -> Tensor:
r"""
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
Returns:
Tensor: Output signal of dimension (..., time).
"""
if self.orig_freq == self.new_freq:
return waveform
return _apply_sinc_resample_kernel(
waveform, self.orig_freq, self.new_freq, self.gcd,
self.kernel, self.width)
class ComputeDeltas(torch.nn.Module):
r"""Compute delta coefficients of a tensor, usually a spectrogram.
See `torchaudio.functional.compute_deltas` for more details.
Args:
win_length (int, optional): The window length used for computing delta. (Default: ``5``)
mode (str, optional): Mode parameter passed to padding. (Default: ``'replicate'``)
"""
__constants__ = ['win_length']
def __init__(self, win_length: int = 5, mode: str = "replicate") -> None:
super(ComputeDeltas, self).__init__()
self.win_length = win_length
self.mode = mode
def forward(self, specgram: Tensor) -> Tensor:
r"""
Args:
specgram (Tensor): Tensor of audio of dimension (..., freq, time).
Returns:
Tensor: Tensor of deltas of dimension (..., freq, time).
"""
return F.compute_deltas(specgram, win_length=self.win_length, mode=self.mode)
class TimeStretch(torch.nn.Module):
r"""Stretch stft in time without modifying pitch for a given rate.
Proposed in *SpecAugment* [:footcite:`specaugment`].
Args:
hop_length (int or None, optional): Length of hop between STFT windows. (Default: ``win_length // 2``)
n_freq (int, optional): number of filter banks from stft. (Default: ``201``)
fixed_rate (float or None, optional): rate to speed up or slow down by.
If None is provided, rate must be passed to the forward method. (Default: ``None``)
Example
>>> spectrogram = torchaudio.transforms.Spectrogram()
>>> stretch = torchaudio.transforms.TimeStretch()
>>>
>>> original = spectrogram(waveform)
>>> streched_1_2 = stretch(original, 1.2)
>>> streched_0_9 = stretch(original, 0.9)
.. image:: https://download.pytorch.org/torchaudio/doc-assets/specaugment_time_stretch_1.png
:width: 600
:alt: Spectrogram streched by 1.2
.. image:: https://download.pytorch.org/torchaudio/doc-assets/specaugment_time_stretch_2.png
:width: 600
:alt: The original spectrogram
.. image:: https://download.pytorch.org/torchaudio/doc-assets/specaugment_time_stretch_3.png
:width: 600
:alt: Spectrogram streched by 0.9
"""
__constants__ = ['fixed_rate']
def __init__(self,
hop_length: Optional[int] = None,
n_freq: int = 201,
fixed_rate: Optional[float] = None) -> None:
super(TimeStretch, self).__init__()
self.fixed_rate = fixed_rate
n_fft = (n_freq - 1) * 2
hop_length = hop_length if hop_length is not None else n_fft // 2
self.register_buffer('phase_advance', torch.linspace(0, math.pi * hop_length, n_freq)[..., None])
def forward(self, complex_specgrams: Tensor, overriding_rate: Optional[float] = None) -> Tensor:
r"""
Args:
complex_specgrams (Tensor):
A tensor of dimension `(..., freq, num_frame)` with complex dtype.
overriding_rate (float or None, optional): speed up to apply to this batch.
If no rate is passed, use ``self.fixed_rate``. (Default: ``None``)
Returns:
Tensor:
Stretched spectrogram. The resulting tensor is of the same dtype as the input
spectrogram, but the number of frames is changed to ``ceil(num_frame / rate)``.
"""
if overriding_rate is None:
if self.fixed_rate is None:
raise ValueError(
"If no fixed_rate is specified, must pass a valid rate to the forward method.")
rate = self.fixed_rate
else:
rate = overriding_rate
return F.phase_vocoder(complex_specgrams, rate, self.phase_advance)
class Fade(torch.nn.Module):
r"""Add a fade in and/or fade out to an waveform.
Args:
fade_in_len (int, optional): Length of fade-in (time frames). (Default: ``0``)
fade_out_len (int, optional): Length of fade-out (time frames). (Default: ``0``)
fade_shape (str, optional): Shape of fade. Must be one of: "quarter_sine",