From 6ac388066812f8aa97d04ce74fa1f5d22c2699b9 Mon Sep 17 00:00:00 2001 From: HDCharles Date: Tue, 11 Jun 2024 21:05:27 -0700 Subject: [PATCH 1/2] fixing peak memory stats for benchmark Summary: we were hitting the peak upon model load, not during model runtime, this is an issue since users can load model to cpu/meta which significantly reduces mem usage during model load/quant. Test Plan: sh benchmarks.sh Reviewers: Subscribers: Tasks: Tags: --- torchao/_models/llama/benchmark_results.txt | 24 ++++++++++++------ torchao/_models/llama/generate.py | 1 + torchao/quantization/README.md | 28 +++++++++++---------- 3 files changed, 32 insertions(+), 21 deletions(-) diff --git a/torchao/_models/llama/benchmark_results.txt b/torchao/_models/llama/benchmark_results.txt index 50dcc622ad..960bdd4f17 100644 --- a/torchao/_models/llama/benchmark_results.txt +++ b/torchao/_models/llama/benchmark_results.txt @@ -1,8 +1,16 @@ -20240610164534, tok/s= 94.91, mem/s=1424.58 GB/s, peak_mem=16.43 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 -20240610164738, tok/s=179.41, mem/s= 757.45 GB/s, peak_mem=23.44 GB, model_size= 4.22 GB quant: int4wo-64, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 -20240610164952, tok/s=136.75, mem/s=1028.38 GB/s, peak_mem=19.16 GB, model_size= 7.52 GB quant: int8wo, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 -20240610165423, tok/s= 8.41, mem/s= 63.23 GB/s, peak_mem=19.16 GB, model_size= 7.52 GB quant: int8dq, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 -20240610165618, tok/s=105.02, mem/s=1387.78 GB/s, peak_mem=13.88 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 -20240610165808, tok/s=199.81, mem/s= 746.45 GB/s, peak_mem=15.92 GB, model_size= 3.74 GB quant: int4wo-64, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 -20240610170005, tok/s=147.03, mem/s= 973.54 GB/s, peak_mem=14.50 GB, model_size= 6.62 GB quant: int8wo, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 -20240610170408, tok/s= 9.40, mem/s= 62.26 GB/s, peak_mem=14.50 GB, model_size= 6.62 GB quant: int8dq, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611210704, tok/s= 29.44, mem/s= 883.80 GB/s, peak_mem=32.34 GB, model_size=30.02 GB quant: None, mod: Meta-Llama-3-8B, compile: False, compile_prefill: False, dtype: torch.float32, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.float32 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611210907, tok/s= 26.22, mem/s= 393.56 GB/s, peak_mem=16.16 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: False, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611211226, tok/s= 94.57, mem/s=1419.48 GB/s, peak_mem=16.43 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611215300, tok/s= 95.57, mem/s=1434.47 GB/s, peak_mem=16.43 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: True, compile_prefill: True, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --compile_prefill --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611215559, tok/s=180.13, mem/s= 760.48 GB/s, peak_mem= 6.88 GB, model_size= 4.22 GB quant: int4wo-64, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611215907, tok/s=139.34, mem/s=1047.90 GB/s, peak_mem=10.42 GB, model_size= 7.52 GB quant: int8wo, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611220524, tok/s= 8.46, mem/s= 63.59 GB/s, peak_mem= 9.24 GB, model_size= 7.52 GB quant: int8dq, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611221358, tok/s= 9.26, mem/s= 138.97 GB/s, peak_mem=10.60 GB, model_size=15.01 GB quant: autoquant, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization autoquant --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611221551, tok/s= 30.18, mem/s= 797.58 GB/s, peak_mem=27.23 GB, model_size=26.43 GB quant: None, mod: Llama-2-7b-chat-hf, compile: False, compile_prefill: False, dtype: torch.float32, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.float32 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611221743, tok/s= 26.09, mem/s= 344.72 GB/s, peak_mem=13.62 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: False, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611222048, tok/s=105.41, mem/s=1393.00 GB/s, peak_mem=13.90 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611230037, tok/s=106.78, mem/s=1411.01 GB/s, peak_mem=13.88 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: True, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --compile_prefill --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611230250, tok/s=199.72, mem/s= 746.13 GB/s, peak_mem= 4.75 GB, model_size= 3.74 GB quant: int4wo-64, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611230440, tok/s=149.32, mem/s= 988.73 GB/s, peak_mem= 8.95 GB, model_size= 6.62 GB quant: int8wo, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611231027, tok/s= 9.35, mem/s= 61.94 GB/s, peak_mem= 8.61 GB, model_size= 6.62 GB quant: int8dq, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 +20240611231759, tok/s= 9.56, mem/s= 126.32 GB/s, peak_mem= 8.53 GB, model_size=13.22 GB quant: autoquant, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization autoquant --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8 diff --git a/torchao/_models/llama/generate.py b/torchao/_models/llama/generate.py index b1a01b621a..1f5380a888 100644 --- a/torchao/_models/llama/generate.py +++ b/torchao/_models/llama/generate.py @@ -285,6 +285,7 @@ def callback(x): ) if i == -1: print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds") + torch.cuda.reset_peak_memory_stats() continue if hasattr(prof, "export_chrome_trace"): prof.export_chrome_trace(f"{profile}.json") diff --git a/torchao/quantization/README.md b/torchao/quantization/README.md index 04efddd0ca..d972e4ab48 100644 --- a/torchao/quantization/README.md +++ b/torchao/quantization/README.md @@ -3,19 +3,21 @@ Typically quantization algorithms will have different schemes for how the activa ## Benchmarks Benchmarks are run on a machine with a single A100 GPU using the script in _models/llama, evaluation was done -Using the lm_eval. The models used were meta-llama/Llama-2-7b-chat-hf and meta-llama/Meta-Llama-3-8B - -| Model | Technique | wikitext-perplexity | Tokens/Second | Memory Bandwidth (GB/s) | Model Size (GB) | -| ----------- | ------------------ | ------------------- | ------------- | ----------------------- | --------------- | -| Llama-2-7B | Base (bfloat16) | 12.212 | 105.02 | 1387.78 | 13.21 | -| | int8dq | 12.262 | 9.40 | 62.26 | 6.62 | -| | int8wo | 12.204 | 147.03 | 973.54 | 6.62 | -| | int4wo-64 | 12.843 | 199.81 | 746.45 | 3.74 | -| | int4wo-64-GPTQ | 12.489 | 199.81 | 746.45 | 3.74 | -| Llama-3-8B | Base (bfloat16) | N/A | 94.91 | 1424.58 | 15.01 | -| | int8dq | N/A | 8.41 | 63.23 | 7.52 | -| | int8wo | N/A | 136.75 | 1028.38 | 7.52 | -| | int4wo-64 | N/A | 179.41 | 757.45 | 4.22 | +Using the lm_eval. The models used were meta-llama/Llama-2-7b-chat-hf and meta-llama/Meta-Llama-3-8B benchmarked for batchsize=1 + +| Model | Technique | wikitext-perplexity | Tokens/Second | Memory Bandwidth (GB/s) | Peak Memory (GB) | Model Size (GB) | +| ----------- | ------------------ | ------------------- | ------------- | ----------------------- | ---------------- | --------------- | +| Llama-2-7B | Base (bfloat16) | 12.212 | 105.02 | 1387.78 | 13.21 | 13.90 | +| | int8dq | 12.262 | 9.40 | 62.26 | 6.62 | 8.61 | +| | int8wo | 12.204 | 147.03 | 973.54 | 6.62 | 8.95 | +| | int4wo-64 | 12.843 | 199.81 | 746.45 | 3.74 | 4.75 | +| | int4wo-64-GPTQ | 12.489 | 199.81 | 746.45 | 3.74 | 4.75 | +| Llama-3-8B | Base (bfloat16) | N/A | 94.91 | 1424.58 | 15.01 | 16.43 | +| | int8dq | N/A | 8.41 | 63.23 | 7.52 | 9.24 | +| | int8wo | N/A | 136.75 | 1028.38 | 7.52 | 10.42 | +| | int4wo-64 | N/A | 179.41 | 757.45 | 4.22 | 6.88 | + +note: Int8 dynamic quantization works best on compute bound models like [SAM](https://github.com/pytorch-labs/segment-anything-fast) whereas Llama with batchsize=1 tends to be memory bound, thus the rather low performance. ## Autoquantization From f7620feca514f224e20fe0aa89f1a11c6cc318d0 Mon Sep 17 00:00:00 2001 From: HDCharles Date: Wed, 12 Jun 2024 16:37:29 -0700 Subject: [PATCH 2/2] improve language Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: --- torchao/quantization/README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/torchao/quantization/README.md b/torchao/quantization/README.md index d972e4ab48..a4fc320502 100644 --- a/torchao/quantization/README.md +++ b/torchao/quantization/README.md @@ -2,8 +2,8 @@ Typically quantization algorithms will have different schemes for how the activation and weights are quantized so A16W8 for instance means the activations are quantized to 16 bits wheras the weights are quantized to 8 bits. Trying out different quantization schemes in `torchao` is generally a 1 line change. Note: exact APIs are not stable, we may change them in the future. ## Benchmarks -Benchmarks are run on a machine with a single A100 GPU using the script in _models/llama, evaluation was done -Using the lm_eval. The models used were meta-llama/Llama-2-7b-chat-hf and meta-llama/Meta-Llama-3-8B benchmarked for batchsize=1 +Benchmarks are run on a machine with a single A100 GPU using the script in _models/llama which generates text in a latency optimized way (batchsize=1), evaluation was done +Using the lm_eval. The models used were meta-llama/Llama-2-7b-chat-hf and meta-llama/Meta-Llama-3-8B. | Model | Technique | wikitext-perplexity | Tokens/Second | Memory Bandwidth (GB/s) | Peak Memory (GB) | Model Size (GB) | | ----------- | ------------------ | ------------------- | ------------- | ----------------------- | ---------------- | --------------- |