diff --git a/.github/workflows/regression_test.yml b/.github/workflows/regression_test.yml index ad4a1cf5fe..2c3b594eea 100644 --- a/.github/workflows/regression_test.yml +++ b/.github/workflows/regression_test.yml @@ -36,9 +36,9 @@ jobs: torch-spec: 'torch==2.4.0' gpu-arch-type: "cuda" gpu-arch-version: "12.1" - - name: CUDA Nightly (Aug 29, 2024) + - name: CUDA Nightly runs-on: linux.g5.12xlarge.nvidia.gpu - torch-spec: '--pre torch==2.5.0.dev20240829+cu121 --index-url https://download.pytorch.org/whl/nightly/cu121' + torch-spec: '--pre torch --index-url https://download.pytorch.org/whl/nightly/cu121' gpu-arch-type: "cuda" gpu-arch-version: "12.1" @@ -57,9 +57,9 @@ jobs: torch-spec: 'torch==2.4.0 --index-url https://download.pytorch.org/whl/cpu' gpu-arch-type: "cpu" gpu-arch-version: "" - - name: CPU Nightly (Aug 29, 2024) + - name: CPU Nightly runs-on: linux.4xlarge - torch-spec: '--pre torch==2.5.0.dev20240829+cpu --index-url https://download.pytorch.org/whl/nightly/cpu' + torch-spec: '--pre torch --index-url https://download.pytorch.org/whl/nightly/cpu' gpu-arch-type: "cpu" gpu-arch-version: "" diff --git a/test/dtypes/test_bitnet.py b/test/dtypes/test_bitnet.py index d507950bd9..70153cf5ba 100644 --- a/test/dtypes/test_bitnet.py +++ b/test/dtypes/test_bitnet.py @@ -4,7 +4,7 @@ from torchao.prototype.dtypes import BitnetTensor from torchao.prototype.dtypes.uint2 import unpack_uint2 from torchao.quantization.quant_api import _replace_with_custom_fn_if_matches_filter -from torchao.utils import TORCH_VERSION_AT_LEAST_2_4 +from torchao.utils import TORCH_VERSION_AT_LEAST_2_4, TORCH_VERSION_AT_LEAST_2_5 if not TORCH_VERSION_AT_LEAST_2_4: pytest.skip("Unsupported PyTorch version", allow_module_level=True) @@ -58,6 +58,7 @@ def fn(mod): lambda mod, fqn: isinstance(mod, torch.nn.Linear), ) +@pytest.mark.skipif(TORCH_VERSION_AT_LEAST_2_5, reason="Regression introdued in nightlies") @pytest.mark.parametrize("input_shape", [[2, 4], [5, 5, 5, 4], [1, 4, 4]]) def test_uint2_quant(input_shape): device = 'cuda' if torch.cuda.is_available() else 'cpu' diff --git a/test/integration/test_integration.py b/test/integration/test_integration.py index 29f8ec604c..6a5ea8ef9d 100644 --- a/test/integration/test_integration.py +++ b/test/integration/test_integration.py @@ -817,6 +817,9 @@ def test_int8_dynamic_quant_subclass_api(self, device, dtype): @parameterized.expand(COMMON_DEVICE_DTYPE) @unittest.skipIf(is_fbcode(), "broken in fbcode") def test_int8_weight_only_quant_subclass_api(self, device, dtype): + if TORCH_VERSION_AT_LEAST_2_5 and device == "cpu": + self.skipTest("Regression introduced in PT nightlies") + undo_recommended_configs() self._test_lin_weight_subclass_api_impl( _int8wo_api, device, 40, test_dtype=dtype @@ -826,6 +829,9 @@ def test_int8_weight_only_quant_subclass_api(self, device, dtype): @torch._inductor.config.patch({"freezing": True}) @unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_4, "freeze requires torch 2.4 and after.") def test_int8_weight_only_quant_with_freeze(self, device, dtype): + if TORCH_VERSION_AT_LEAST_2_5 and device == "cpu": + self.skipTest("Regression introduced in PT nightlies") + self._test_lin_weight_subclass_api_impl( _int8wo_api, device, 40, test_dtype=dtype ) @@ -1039,7 +1045,10 @@ def test_save_load_dqtensors(self, device, dtype): @parameterized.expand(COMMON_DEVICE_DTYPE) @torch.no_grad() @unittest.skipIf(is_fbcode(), "broken in fbcode") - def test_save_load_int8woqtensors(self, device, dtype): + def test_save_load_int8woqtensors(self, device, dtype): + if TORCH_VERSION_AT_LEAST_2_5 and device == "cpu": + self.skipTest(f"Regression introduced in PT nightlies") + undo_recommended_configs() self._test_handle_save_load_meta_impl(_int8wo_api, device, test_dtype=dtype)