Replies: 1 comment
-
This is not the right repo for this question, we do not use ONNX. Try asking in https://github.com/nvidia/tensorrt |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
I have got below memory error , how to solve that
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:10: DeprecationWarning: Use get_tensor_name instead.
print(engine.get_binding_index("input"))
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:11: DeprecationWarning: Use get_tensor_name instead.
context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image_height, image_width))
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:11: DeprecationWarning: Use set_input_shape instead.
context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image_height, image_width))
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:16: DeprecationWarning: Use get_tensor_name instead.
binding_idx = engine.get_binding_index(binding)
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:17: DeprecationWarning: Use get_tensor_shape instead.
print("binding size",context.get_binding_shape(binding_idx))
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:18: DeprecationWarning: Use get_tensor_shape instead.
size = trt.volume(context.get_binding_shape(binding_idx))
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:19: DeprecationWarning: Use get_tensor_dtype instead.
dtype = trt.nptype(engine.get_binding_dtype(binding))
C:\Users\gj\AppData\Local\Temp\ipykernel_11580\158248581.py:21: DeprecationWarning: Use get_tensor_mode instead.
if engine.binding_is_input(binding):
LogicError Traceback (most recent call last)
Cell In[6], line 3
1 print("Running TensorRT inference for FCN-ResNet101")
2 with load_engine(engine_file) as engine:
----> 3 infer(engine, input_file, output_file)
Cell In[4], line 46, in infer(engine, input_file, output_file)
44 print(output_memory)
45 # Synchronize the stream
---> 46 stream.synchronize()
49 img =postprocess(np.reshape(output_buffer, (image_height, image_width)))
51 print("Writing output image to file {}".format(output_file))
LogicError: cuStreamSynchronize failed: an illegal memory access was encountered
what would bethe problem
Beta Was this translation helpful? Give feedback.
All reactions