diff --git a/CHANGELOG.md b/CHANGELOG.md index 030573ad93..fa671a8c63 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -614,4 +614,80 @@ Signed-off-by: Naren Dasan Signed-off-by: Naren Dasan +# 0.3.0 (2021-05-13) + + +### Bug Fixes + +* **//plugins:** Readding cuBLAS BUILD to allow linking of libnvinfer_plugin on Jetson ([a8008f4](https://github.com/NVIDIA/TRTorch/commit/a8008f4)) +* **//tests/../concat:** Concat test fix ([2432fb8](https://github.com/NVIDIA/TRTorch/commit/2432fb8)) +* **//tests/core/partitioning:** Fixing some issues with the partition ([ff89059](https://github.com/NVIDIA/TRTorch/commit/ff89059)) +* erase the repetitive nodes in dependency analysis ([80b1038](https://github.com/NVIDIA/TRTorch/commit/80b1038)) +* fix a typo for debug ([c823ebd](https://github.com/NVIDIA/TRTorch/commit/c823ebd)) +* fix typo bug ([e491bb5](https://github.com/NVIDIA/TRTorch/commit/e491bb5)) +* **aten::linear:** Fixes new issues in 1.8 that cause script based ([c5057f8](https://github.com/NVIDIA/TRTorch/commit/c5057f8)) +* register the torch_fallback attribute in Python API ([8b7919f](https://github.com/NVIDIA/TRTorch/commit/8b7919f)) +* support expand/repeat with IValue type input ([a4882c6](https://github.com/NVIDIA/TRTorch/commit/a4882c6)) +* support shape inference for add_, support non-tensor arguments for segmented graphs ([46950bb](https://github.com/NVIDIA/TRTorch/commit/46950bb)) + + +* feat!: Updating versions of CUDA, cuDNN, TensorRT and PyTorch ([71c4dcb](https://github.com/NVIDIA/TRTorch/commit/71c4dcb)) +* feat(WORKSPACE)!: Updating PyTorch version to 1.8.1 ([c9aa99a](https://github.com/NVIDIA/TRTorch/commit/c9aa99a)) + + +### Features + +* **//.github:** Linter throws 1 when there needs to be style changes to ([a39dea7](https://github.com/NVIDIA/TRTorch/commit/a39dea7)) +* **//core:** New API to register arbitrary TRT engines in TorchScript ([3ec836e](https://github.com/NVIDIA/TRTorch/commit/3ec836e)) +* **//core/conversion/conversionctx:** Adding logging for truncated ([96245ee](https://github.com/NVIDIA/TRTorch/commit/96245ee)) +* **//core/partitioing:** Adding ostream for Partition Info ([b3589c5](https://github.com/NVIDIA/TRTorch/commit/b3589c5)) +* **//core/partitioning:** Add an ostream implementation for ([ee536b6](https://github.com/NVIDIA/TRTorch/commit/ee536b6)) +* **//core/partitioning:** Refactor top level partitioning API, fix a bug with ([abc63f6](https://github.com/NVIDIA/TRTorch/commit/abc63f6)) +* **//core/plugins:** Gating plugin logging based on global config ([1d5a088](https://github.com/NVIDIA/TRTorch/commit/1d5a088)) +* added user level API for fallback ([f4c29b4](https://github.com/NVIDIA/TRTorch/commit/f4c29b4)) +* allow users to set fallback block size and ops ([6d3064a](https://github.com/NVIDIA/TRTorch/commit/6d3064a)) +* insert nodes by dependencies for nonTensor inputs/outputs ([4e32eff](https://github.com/NVIDIA/TRTorch/commit/4e32eff)) +* support aten::arange converter ([014e381](https://github.com/NVIDIA/TRTorch/commit/014e381)) +* support aten::transpose with negative dim ([4a1d2f3](https://github.com/NVIDIA/TRTorch/commit/4a1d2f3)) +* support Int/Bool and other constants' inputs/outputs for TensorRT segments ([54e407e](https://github.com/NVIDIA/TRTorch/commit/54e407e)) +* support prim::Param for fallback inputs ([ec2bbf2](https://github.com/NVIDIA/TRTorch/commit/ec2bbf2)) +* support prim::Param for input type after refactor ([3cebe97](https://github.com/NVIDIA/TRTorch/commit/3cebe97)) +* support Python APIs for Automatic Fallback ([100b090](https://github.com/NVIDIA/TRTorch/commit/100b090)) +* support the case when the injected node is not supported in dependency analysis ([c67d8f6](https://github.com/NVIDIA/TRTorch/commit/c67d8f6)) +* support truncate long/double to int/float with option ([740eb54](https://github.com/NVIDIA/TRTorch/commit/740eb54)) +* Try to submit review before exit ([9a9d7f0](https://github.com/NVIDIA/TRTorch/commit/9a9d7f0)) +* update truncate long/double python api ([69e49e8](https://github.com/NVIDIA/TRTorch/commit/69e49e8)) +* **//docker:** Adding Docker 21.03 ([9b326e8](https://github.com/NVIDIA/TRTorch/commit/9b326e8)) +* update truncate long/double warning message ([60dba12](https://github.com/NVIDIA/TRTorch/commit/60dba12)) +* **//docker:** Update CI container ([df63467](https://github.com/NVIDIA/TRTorch/commit/df63467)) +* **//py:** Allowing people using the PyTorch backend to use TRTorch/TRT ([6c3e0ad](https://github.com/NVIDIA/TRTorch/commit/6c3e0ad)) +* **//py:** Catch when bazel is not in path and error out when running ([1da999d](https://github.com/NVIDIA/TRTorch/commit/1da999d)) +* **//py:** Gate partial compilation from to_backend API ([bf1b2d8](https://github.com/NVIDIA/TRTorch/commit/bf1b2d8)) +* **//py:** New API to embed engine in new module ([88d07a9](https://github.com/NVIDIA/TRTorch/commit/88d07a9)) +* **aten::floor:** Adds floor.int evaluator ([a6a46e5](https://github.com/NVIDIA/TRTorch/commit/a6a46e5)) + + +### BREAKING CHANGES + +* PyTorch version has been bumped to 1.8.0 +Default CUDA version is CUDA 11.1 +TensorRT version is TensorRT 7.2.3.4 +cuDNN version is now cuDNN 8.1 + +Signed-off-by: Naren Dasan +Signed-off-by: Naren Dasan +* Due to issues with compatability between PyTorch 1.8.0 +and 1.8.1 in the Torch Python API, TRTorch 0.3.0 compiled for 1.8.0 does not +work with PyTorch 1.8.1 and will show an error about use_input_stats. +If you see this error make sure the version of libtorch you are +compiling with is PyTorch 1.8.1 + +TRTorch 0.3.0 will target PyTorch 1.8.1. There is no backwards +compatability with 1.8.0. If you need this specific version compile from +source with the dependencies in WORKSPACE changed + +Signed-off-by: Naren Dasan +Signed-off-by: Naren Dasan + + diff --git a/docs/v0.3.0/.nojekyll b/docs/v0.3.0/.nojekyll new file mode 100644 index 0000000000..e69de29bb2 diff --git a/docs/v0.3.0/_cpp_api/class_view_hierarchy.html b/docs/v0.3.0/_cpp_api/class_view_hierarchy.html new file mode 100644 index 0000000000..024e25e27b --- /dev/null +++ b/docs/v0.3.0/_cpp_api/class_view_hierarchy.html @@ -0,0 +1,498 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Class Hierarchy — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+

+ Class Hierarchy + + ¶ + +

+ + +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.html b/docs/v0.3.0/_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.html new file mode 100644 index 0000000000..5c7ded16de --- /dev/null +++ b/docs/v0.3.0/_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.html @@ -0,0 +1,1191 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Class CompileSpec::DataType — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Class CompileSpec::DataType + + ¶ + +

+ +

+ Nested Relationships + + ¶ + +

+

+ This class is a nested type of + + + Struct CompileSpec + + + . +

+

+ Class Documentation + + ¶ + +

+
+
+ + + + class + + + trtorch:: + + CompileSpec + + + :: + + + + DataType + + + ¶ + +
+
+
+

+ Supported Data Types that can be used with TensorRT engines +

+

+ This class is compatable with c10::DataTypes (but will check for TRT support) so there should not be a reason that you need to use this type explictly. +

+
+

+ Public Types +

+
+
+ + + + enum + + + Value + + + ¶ + +
+
+
+

+ Underlying enum class to support the + + + DataType + + + Class +

+

+ In the case that you need to use the + + + DataType + + + class itself, interface using this enum vs. normal instatination +

+

+ ex. trtorch::DataType type = + + + DataType::kFloat + + + ; +

+

+ + Values: + +

+
+
+ + + + enumerator + + + kFloat + + + ¶ + +
+
+
+

+ FP32. +

+
+
+
+
+ + + + enumerator + + + kHalf + + + ¶ + +
+
+
+

+ FP16. +

+
+
+
+
+ + + + enumerator + + + kChar + + + ¶ + +
+
+
+

+ INT8. +

+
+
+
+
+
+
+

+ Public Functions +

+
+
+ + + + DataType + + + ( + + + ) + + = default + + ¶ + +
+
+
+

+ Construct a new Data Type object. +

+
+
+
+
+ + + + constexpr + + + DataType + + + ( + + + Value + + + t + + + ) + + + ¶ + +
+
+
+

+ + + DataType + + + constructor from enum. +

+
+
+
+
+ + + + DataType + + + ( + + c10::ScalarType + + t + + + ) + + + ¶ + +
+
+
+

+ Construct a new Data Type object from torch type enums. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + t + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + operator Value + + + ( + + + ) + + + const + + + ¶ + +
+
+
+

+ Get the enum value of the + + + DataType + + + object. +

+

+

+
+
+ + Return + +
+
+

+ Value +

+
+
+
+
+
+
+ + + + operator bool + + + ( + + + ) + + = delete + + ¶ + +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator== + + + ( + + + DataType + + + other + + + ) + + + const + + + ¶ + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator== + + + ( + + + DataType + + :: + + Value + + + other + + + ) + + + const + + + ¶ + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator!= + + + ( + + + DataType + + + other + + + ) + + + const + + + ¶ + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator!= + + + ( + + + DataType + + :: + + Value + + + other + + + ) + + + const + + + ¶ + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.html b/docs/v0.3.0/_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.html new file mode 100644 index 0000000000..e78710c381 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.html @@ -0,0 +1,1036 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Class Device::DeviceType — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+ +
+
+
+ + +

+ Class Device::DeviceType + + ¶ + +

+ +

+ Nested Relationships + + ¶ + +

+

+ This class is a nested type of + + + Struct CompileSpec::Device + + + . +

+

+ Class Documentation + + ¶ + +

+
+
+ + + + class + + + trtorch:: + + CompileSpec + + :: + + Device + + + :: + + + + DeviceType + + + ¶ + +
+
+
+

+ Supported + + + Device + + + Types that can be used with TensorRT engines +

+

+ This class is compatable with c10::DeviceTypes (but will check for TRT support) but the only applicable value is at::kCUDA, which maps to + + + DeviceType::kGPU + + +

+

+ To use the + + + DataType + + + class itself, interface using the enum vs. normal instatination +

+

+ ex. trtorch::DeviceType type = + + + DeviceType::kGPU + + + ; +

+
+

+ Public Types +

+
+
+ + + + enum + + + Value + + + ¶ + +
+
+
+

+ Underlying enum class to support the + + + DeviceType + + + Class +

+

+ In the case that you need to use the + + + DeviceType + + + class itself, interface using this enum vs. normal instatination +

+

+ ex. trtorch::DeviceType type = + + + DeviceType::kGPU + + + ; +

+

+ + Values: + +

+
+
+ + + + enumerator + + + kGPU + + + ¶ + +
+
+
+

+ Target GPU to run engine. +

+
+
+
+
+ + + + enumerator + + + kDLA + + + ¶ + +
+
+
+

+ Target DLA to run engine. +

+
+
+
+
+
+
+

+ Public Functions +

+
+
+ + + + DeviceType + + + ( + + + ) + + = default + + ¶ + +
+
+
+

+ Construct a new + + + Device + + + Type object. +

+
+
+
+
+ + + + constexpr + + + DeviceType + + + ( + + + Value + + + t + + + ) + + + ¶ + +
+
+
+

+ Construct a new + + + Device + + + Type object from internal enum. +

+
+
+
+
+ + + + DeviceType + + + ( + + c10::DeviceType + + t + + + ) + + + ¶ + +
+
+
+

+ Construct a new + + + Device + + + Type object from torch device enums Note: The only valid value is torch::kCUDA (torch::kCPU is not supported) +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + t + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + operator Value + + + ( + + + ) + + + const + + + ¶ + +
+
+
+

+ Get the internal value from the + + + Device + + + object. +

+

+

+
+
+ + Return + +
+
+

+ Value +

+
+
+
+
+
+
+ + + + operator bool + + + ( + + + ) + + = delete + + ¶ + +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator== + + + ( + + + DeviceType + + + other + + + ) + + + const + + + ¶ + +
+
+
+

+ Comparison operator for + + + DeviceType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator!= + + + ( + + + DeviceType + + + other + + + ) + + + const + + + ¶ + +
+
+
+

+ Comparison operator for + + + DeviceType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.html b/docs/v0.3.0/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.html new file mode 100644 index 0000000000..811c2704f6 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.html @@ -0,0 +1,985 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Template Class Int8CacheCalibrator — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Template Class Int8CacheCalibrator + + ¶ + +

+ +

+ Inheritance Relationships + + ¶ + +

+

+ Base Type + + ¶ + +

+
    +
  • +

    + + + private + + + Algorithm + + +

    +
  • +
+

+ Class Documentation + + ¶ + +

+
+
+ template<typename + + Algorithm + + > +
+ + + + class + + + trtorch::ptq + + :: + + + + Int8CacheCalibrator + + : + + private + + + Algorithm + + + ¶ + +
+
+
+

+ Generic + + + Int8Calibrator + + + implementation based on a specified TensorRT calibration algorithm that only reads from a calibration file. +

+

+

+
+
+ + Template Parameters + +
+
+
    +
  • +

    + + + Algorithm + + + : class nvinfer1::IInt8Calibrator (Default: nvinfer1::IInt8EntropyCalibrator2) - Algorithm to use +

    +
  • +
+
+
+
+

+ Public Functions +

+
+
+ + + + Int8CacheCalibrator + + + ( + + + const + + std::string & + + cache_file_path + + + ) + + + ¶ + +
+
+
+

+ Construct a new Int 8 Cache Calibrator object. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + cache_file_path + + + : +

    +
  • +
+
+
+
+
+
+
+ + + int + + getBatchSize + + + ( + + + ) + + + const + + + override + + + ¶ + +
+
+
+

+ Get the Batch Size for the next batch (always 1 due to issues with TRT and explicit batch) +

+

+

+
+
+ + Return + +
+
+

+ int +

+
+
+
+
+
+
+ + + bool + + getBatch + + + ( + + void * + + bindings + + [], + + const + + char * + + names + + [], int + + nbBindings + + + ) + + + override + + + ¶ + +
+
+
+

+ Get the next Batch. +

+

+ Not used always returns false +

+

+

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + bindings + + + : void*[] - An array of binding pointers (fed in from TensorRT calibrator), these buffers should be filed with batch data for each input +

    +
  • +
  • +

    + + + names + + + : const char*[] - Names of bindings +

    +
  • +
  • +

    + + + nbBindings + + + : int - Number of bindings +

    +
  • +
+
+
+
+
+
+
+ + + + const + + void * + + readCalibrationCache + + + ( + + size_t & + + length + + + ) + + + override + + + ¶ + +
+
+
+

+ Read calibration cache. +

+

+ How to read from the calibration cache, only enabled if use_cache is set +

+

+

+
+
+ + Return + +
+
+

+ const void* - Pointer to cache data +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + length + + + : +

    +
  • +
+
+
+
+
+
+
+ + + void + + writeCalibrationCache + + + ( + + + const + + void * + + cache + + , size_t + + length + + + ) + + + override + + + ¶ + +
+
+
+

+ Write calibration cache. +

+

+ Write a the calibration cache provided by TensorRT to a specified file +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + cache + + + : const void* - cache data +

    +
  • +
  • +

    + + + length + + + : size_t - length of cache +

    +
  • +
+
+
+
+
+
+
+ + + + operator nvinfer1::IInt8Calibrator* + + + ( + + + ) + + + ¶ + +
+
+
+

+ operator to cast to nvinfer1::IInt8Calibrator* +

+

+ Convience function to convert to a IInt8Calibrator* to easily be assigned to the ptq_calibrator field in + + + CompileSpec + + +

+

+

+
+
+ + Return + +
+
+

+ nvinfer1::IInt8Calibrator* +

+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.html b/docs/v0.3.0/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.html new file mode 100644 index 0000000000..dcd941e93f --- /dev/null +++ b/docs/v0.3.0/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.html @@ -0,0 +1,1046 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Template Class Int8Calibrator — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Template Class Int8Calibrator + + ¶ + +

+ +

+ Inheritance Relationships + + ¶ + +

+

+ Base Type + + ¶ + +

+
    +
  • +

    + + + private + + + Algorithm + + +

    +
  • +
+

+ Class Documentation + + ¶ + +

+
+
+ template<typename + + Algorithm + + , typename + + DataLoaderUniquePtr + + > +
+ + + + class + + + trtorch::ptq + + :: + + + + Int8Calibrator + + : + + private + + + Algorithm + + + ¶ + +
+
+
+

+ Generic + + + Int8Calibrator + + + implementation based on a specified TensorRT calibration algorithm and a LibTorch DataLoader. +

+

+

+
+
+ + Template Parameters + +
+
+
    +
  • +

    + + + Algorithm + + + : class nvinfer1::IInt8Calibrator (Default: nvinfer1::IInt8EntropyCalibrator2) - Algorithm to use +

    +
  • +
  • +

    + + + DataLoaderUniquePtr + + + : std::unique_ptr<torch::data::DataLoader> - DataLoader type +

    +
  • +
+
+
+
+

+ Public Functions +

+
+
+ + + + Int8Calibrator + + + ( + + + DataLoaderUniquePtr + + + dataloader + + , + + const + + std::string & + + cache_file_path + + , bool + + use_cache + + + ) + + + ¶ + +
+
+
+

+ Construct a new + + + Int8Calibrator + + + object. +

+

+ Using the provided DataLoader, construct a calibrator that can be used for PTQ with TRTorch +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + dataloader + + + : std::unqiue_ptr<torch::data::DataLoader> - A unique pointer to the DataLoader, should be what is returned from the make_data_loader factory +

    +
  • +
  • +

    + + + cache_file_path + + + : const std::string& - A path to store / find the calibration cache +

    +
  • +
  • +

    + + + use_cache + + + : : bool - Whether to use the cache (if it exists) +

    +
  • +
+
+
+
+
+
+
+ + + int + + getBatchSize + + + ( + + + ) + + + const + + + override + + + ¶ + +
+
+
+

+ Get the Batch Size for the next batch (always 1 due to issues with TRT and explicit batch) +

+

+

+
+
+ + Return + +
+
+

+ int +

+
+
+
+
+
+
+ + + bool + + getBatch + + + ( + + void * + + bindings + + [], + + const + + char * + + names + + [], int + + nbBindings + + + ) + + + override + + + ¶ + +
+
+
+

+ Get the next Batch. +

+

+

+
+
+ + Return + +
+
+

+ true - There is a new batch for the calibrator to consume +

+
+
+ + Return + +
+
+

+ false - There is not a new batch for the calibrator to consume +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + bindings + + + : void*[] - An array of binding pointers (fed in from TensorRT calibrator), these buffers should be filed with batch data for each input +

    +
  • +
  • +

    + + + names + + + : const char*[] - Names of bindings +

    +
  • +
  • +

    + + + nbBindings + + + : int - Number of bindings +

    +
  • +
+
+
+
+
+
+
+ + + + const + + void * + + readCalibrationCache + + + ( + + size_t & + + length + + + ) + + + override + + + ¶ + +
+
+
+

+ Read calibration cache. +

+

+ How to read from the calibration cache, only enabled if use_cache is set +

+

+

+
+
+ + Return + +
+
+

+ const void* - Pointer to cache data +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + length + + + : +

    +
  • +
+
+
+
+
+
+
+ + + void + + writeCalibrationCache + + + ( + + + const + + void * + + cache + + , size_t + + length + + + ) + + + override + + + ¶ + +
+
+
+

+ Write calibration cache. +

+

+ Write a the calibration cache provided by TensorRT to a specified file +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + cache + + + : const void* - cache data +

    +
  • +
  • +

    + + + length + + + : size_t - length of cache +

    +
  • +
+
+
+
+
+
+
+ + + + operator nvinfer1::IInt8Calibrator* + + + ( + + + ) + + + ¶ + +
+
+
+

+ operator to cast to nvinfer1::IInt8Calibrator* +

+

+ Convience function to convert to a IInt8Calibrator* to easily be assigned to the ptq_calibrator field in + + + CompileSpec + + +

+

+

+
+
+ + Return + +
+
+

+ nvinfer1::IInt8Calibrator* +

+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html new file mode 100644 index 0000000000..81076e7923 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html @@ -0,0 +1,504 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define STR — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.html new file mode 100644 index 0000000000..bfcc080b78 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.html @@ -0,0 +1,495 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define TRTORCH_API — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.html new file mode 100644 index 0000000000..6630fed509 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.html @@ -0,0 +1,495 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define TRTORCH_HIDDEN — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.html new file mode 100644 index 0000000000..af017262f2 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.html @@ -0,0 +1,495 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define TRTORCH_MAJOR_VERSION — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.html new file mode 100644 index 0000000000..cccd2a62e7 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.html @@ -0,0 +1,495 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define TRTORCH_PATCH_VERSION — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.html new file mode 100644 index 0000000000..86db5d3b0b --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.html @@ -0,0 +1,495 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define TRTORCH_VERSION — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html new file mode 100644 index 0000000000..aaf393e799 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html @@ -0,0 +1,504 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define XSTR — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.html b/docs/v0.3.0/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.html new file mode 100644 index 0000000000..6f6c425b3d --- /dev/null +++ b/docs/v0.3.0/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.html @@ -0,0 +1,495 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Define TRTORCH_MINOR_VERSION — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/dir_cpp.html b/docs/v0.3.0/_cpp_api/dir_cpp.html new file mode 100644 index 0000000000..65e203aa40 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/dir_cpp.html @@ -0,0 +1,454 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Directory cpp — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/dir_cpp_api.html b/docs/v0.3.0/_cpp_api/dir_cpp_api.html new file mode 100644 index 0000000000..cc757f34d0 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/dir_cpp_api.html @@ -0,0 +1,469 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Directory api — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/dir_cpp_api_include.html b/docs/v0.3.0/_cpp_api/dir_cpp_api_include.html new file mode 100644 index 0000000000..dec54fe38f --- /dev/null +++ b/docs/v0.3.0/_cpp_api/dir_cpp_api_include.html @@ -0,0 +1,469 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Directory include — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/dir_cpp_api_include_trtorch.html b/docs/v0.3.0/_cpp_api/dir_cpp_api_include_trtorch.html new file mode 100644 index 0000000000..be71852568 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/dir_cpp_api_include_trtorch.html @@ -0,0 +1,496 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Directory trtorch — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.html b/docs/v0.3.0/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.html new file mode 100644 index 0000000000..bf9bb7061b --- /dev/null +++ b/docs/v0.3.0/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.html @@ -0,0 +1,638 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Enum Level — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ Enum Level + + ¶ + +

+ +

+ Enum Documentation + + ¶ + +

+
+
+ + + + enum + + + trtorch::logging + + :: + + + + Level + + + ¶ + +
+
+
+

+ Emum for setting message severity +

+

+ + Values: + +

+
+
+ + + + enumerator + + + kINTERNAL_ERROR + + + ¶ + +
+
+
+

+ Only print messages for internal errors. +

+
+
+
+
+ + + + enumerator + + + kERROR + + + ¶ + +
+
+
+

+ Print all internal errors and errors (default) +

+
+
+
+
+ + + + enumerator + + + kWARNING + + + ¶ + +
+
+
+

+ Print warnings and errors. +

+
+
+
+
+ + + + enumerator + + + kINFO + + + ¶ + +
+
+
+

+ Print all info, warnings and errors. +

+
+
+
+
+ + + + enumerator + + + kDEBUG + + + ¶ + +
+
+
+

+ Print all debug info, info, warnings and errors. +

+
+
+
+
+ + + + enumerator + + + kGRAPH + + + ¶ + +
+
+
+

+ Print everything including the intermediate graphs of the lowering phase. +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_logging.h.html b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_logging.h.html new file mode 100644 index 0000000000..321e4e244b --- /dev/null +++ b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_logging.h.html @@ -0,0 +1,713 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + File logging.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + + +
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_macros.h.html b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_macros.h.html new file mode 100644 index 0000000000..92f8d089ea --- /dev/null +++ b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_macros.h.html @@ -0,0 +1,619 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + File macros.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ File macros.h + + ¶ + +

+

+ ↰ + + + Parent directory + + + ( + + + cpp/api/include/trtorch + + + ) +

+ +

+ Definition ( + + + cpp/api/include/trtorch/macros.h + + + ) + + ¶ + +

+ +

+ Included By + + ¶ + +

+ +

+ Defines + + ¶ + +

+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_ptq.h.html b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_ptq.h.html new file mode 100644 index 0000000000..28f718fe14 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_ptq.h.html @@ -0,0 +1,720 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + File ptq.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ File ptq.h + + ¶ + +

+

+ ↰ + + + Parent directory + + + ( + + + cpp/api/include/trtorch + + + ) +

+ +

+ Definition ( + + + cpp/api/include/trtorch/ptq.h + + + ) + + ¶ + +

+ +

+ Includes + + ¶ + +

+
    +
  • +

    + + + NvInfer.h + + +

    +
  • +
  • +

    + + + fstream + + +

    +
  • +
  • +

    + + + iostream + + +

    +
  • +
  • +

    + + + iterator + + +

    +
  • +
  • +

    + + + memory + + +

    +
  • +
  • +

    + + + sstream + + +

    +
  • +
  • +

    + + + string + + +

    +
  • +
  • +

    + + + torch/torch.h + + +

    +
  • +
  • +

    + + + trtorch/logging.h + + + ( + + + File logging.h + + + ) +

    +
  • +
  • +

    + + + vector + + +

    +
  • +
+

+ Namespaces + + ¶ + +

+ +

+ Classes + + ¶ + +

+ +

+ Functions + + ¶ + +

+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.html b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.html new file mode 100644 index 0000000000..8b2012d0f0 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.html @@ -0,0 +1,747 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + File trtorch.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ File trtorch.h + + ¶ + +

+

+ ↰ + + + Parent directory + + + ( + + + cpp/api/include/trtorch + + + ) +

+ +

+ Definition ( + + + cpp/api/include/trtorch/trtorch.h + + + ) + + ¶ + +

+ +

+ Includes + + ¶ + +

+
    +
  • +

    + + + cuda_runtime.h + + +

    +
  • +
  • +

    + + + memory + + +

    +
  • +
  • +

    + + + string + + +

    +
  • +
  • +

    + + + trtorch/macros.h + + + ( + + + File macros.h + + + ) +

    +
  • +
  • +

    + + + vector + + +

    +
  • +
+

+ Namespaces + + ¶ + +

+ +

+ Classes + + ¶ + +

+ +

+ Functions + + ¶ + +

+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/file_view_hierarchy.html b/docs/v0.3.0/_cpp_api/file_view_hierarchy.html new file mode 100644 index 0000000000..78b3e5aacd --- /dev/null +++ b/docs/v0.3.0/_cpp_api/file_view_hierarchy.html @@ -0,0 +1,472 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + File Hierarchy — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.html b/docs/v0.3.0/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.html new file mode 100644 index 0000000000..4876e60cba --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.html @@ -0,0 +1,528 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::logging::get_reportable_log_level — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::logging::get_reportable_log_level + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API + + Level + + + trtorch::logging + + :: + + + + get_reportable_log_level + + + ( + + + ) + + + ¶ + +
+
+
+

+ Get the current reportable log level. +

+

+

+
+
+ + Return + +
+
+

+ TRTORCH_API get_reportable_log_level +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.html b/docs/v0.3.0/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.html new file mode 100644 index 0000000000..f97f5f905e --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.html @@ -0,0 +1,512 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::logging::set_logging_prefix — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::logging::set_logging_prefix + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API void + + trtorch::logging + + :: + + + + set_logging_prefix + + + ( + + std::string + + prefix + + + ) + + + ¶ + +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.html b/docs/v0.3.0/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.html new file mode 100644 index 0000000000..e37221986a --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.html @@ -0,0 +1,525 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::logging::get_is_colored_output_on — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::logging::get_is_colored_output_on + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API bool + + trtorch::logging + + :: + + + + get_is_colored_output_on + + + ( + + + ) + + + ¶ + +
+
+
+

+ Is colored output enabled? +

+

+

+
+
+ + Return + +
+
+

+ TRTORCH_API get_is_colored_output_on +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.html b/docs/v0.3.0/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.html new file mode 100644 index 0000000000..e2d0e20742 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.html @@ -0,0 +1,538 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::logging::set_is_colored_output_on — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::logging::set_is_colored_output_on + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API void + + trtorch::logging + + :: + + + + set_is_colored_output_on + + + ( + + bool + + colored_output_on + + + ) + + + ¶ + +
+
+
+

+ Sets if logging prefix will be colored (helpful when debugging but not always supported by terminal) +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + colored_output_on + + + : bool - If the output will be colored or not +

    +
  • +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.html b/docs/v0.3.0/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.html new file mode 100644 index 0000000000..12fd93fad7 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.html @@ -0,0 +1,554 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::logging::log — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+ + +

+ Function trtorch::logging::log + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API void + + trtorch::logging + + :: + + + + log + + + ( + + + Level + + + lvl + + , std::string + + msg + + + ) + + + ¶ + +
+
+
+

+ Adds a message to the global log. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + lvl + + + : trtorch::logging::Level - Severity of the message +

    +
  • +
  • +

    + + + msg + + + : std::string - Message to be logged +

    +
  • +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.html b/docs/v0.3.0/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.html new file mode 100644 index 0000000000..b4ad9571b1 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.html @@ -0,0 +1,540 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::logging::set_reportable_log_level — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::logging::set_reportable_log_level + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API void + + trtorch::logging + + :: + + + + set_reportable_log_level + + + ( + + + Level + + + lvl + + + ) + + + ¶ + +
+
+
+

+ Sets the level that logging information needs to be to be added to the log. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + lvl + + + : trtorch::logging::Level - Level that messages need to be at or above to be added to the log +

    +
  • +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.html b/docs/v0.3.0/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.html new file mode 100644 index 0000000000..30e5b65f11 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.html @@ -0,0 +1,508 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::logging::get_logging_prefix — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::logging::get_logging_prefix + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API std::string + + trtorch::logging + + :: + + + + get_logging_prefix + + + ( + + + ) + + + ¶ + +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.html b/docs/v0.3.0/_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.html new file mode 100644 index 0000000000..48c192d775 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.html @@ -0,0 +1,648 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Template Function trtorch::ptq::make_int8_calibrator — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Template Function trtorch::ptq::make_int8_calibrator + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ template<typename + + Algorithm + + = nvinfer1::IInt8EntropyCalibrator2, typename + + DataLoader + + > +
+ + + TRTORCH_API + + Int8Calibrator + + < + + Algorithm + + , + + DataLoader + + > + + trtorch::ptq + + :: + + + + make_int8_calibrator + + + ( + + + DataLoader + + + dataloader + + , + + const + + std::string & + + cache_file_path + + , bool + + use_cache + + + ) + + + ¶ + +
+
+
+

+ A factory to build a post training quantization calibrator from a torch dataloader. +

+

+ Creates a calibrator to use for post training quantization. By default the returned calibrator uses TensorRT Entropy v2 algorithm to perform calibration. This is recommended for feed forward networks. You can override the algorithm selection (such as to use the MinMax Calibrator recomended for NLP tasks) by calling make_int8_calibrator with the calibrator class as a template parameter. +

+

+ e.g. + + + trtorch::ptq::make_int8_calibrator<nvinfer1::IInt8MinMaxCalibrator>(std::move(calibration_dataloader), + + + calibration_cache_file, + + + use_cache); + + +

+
+
+ + Return + +
+
+

+ Int8Calibrator<Algorithm, DataLoader> +

+
+
+ + Template Parameters + +
+
+
    +
  • +

    + + + Algorithm + + + : class nvinfer1::IInt8Calibrator (Default: nvinfer1::IInt8EntropyCalibrator2) - Algorithm to use +

    +
  • +
  • +

    + + + DataLoader + + + : std::unique_ptr<torch::data::DataLoader> - DataLoader type +

    +
  • +
+
+
+ + Parameters + +
+
+
    +
  • +

    + + + dataloader + + + : std::unique_ptr<torch::data::DataLoader> - DataLoader containing data +

    +
  • +
  • +

    + + + cache_file_path + + + : const std::string& - Path to read/write calibration cache +

    +
  • +
  • +

    + + + use_cache + + + : bool - use calibration cache +

    +
  • +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.html b/docs/v0.3.0/_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.html new file mode 100644 index 0000000000..5c292e3601 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.html @@ -0,0 +1,591 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Template Function trtorch::ptq::make_int8_cache_calibrator — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Template Function trtorch::ptq::make_int8_cache_calibrator + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ template<typename + + Algorithm + + = nvinfer1::IInt8EntropyCalibrator2> +
+ + + TRTORCH_API + + Int8CacheCalibrator + + < + + Algorithm + + > + + trtorch::ptq + + :: + + + + make_int8_cache_calibrator + + + ( + + + const + + std::string & + + cache_file_path + + + ) + + + ¶ + +
+
+
+

+ A factory to build a post training quantization calibrator from a torch dataloader that only uses the calibration cache. +

+

+ Creates a calibrator to use for post training quantization which reads from a previously created calibration cache, therefore you can have a calibration cache generating program that requires a dataloader and a dataset, then save the cache to use later in a different program that needs to calibrate from scratch and not have the dataset dependency. However, the network should also be recalibrated if its structure changes, or the input data set changes, and it is the responsibility of the application to ensure this. +

+

+ By default the returned calibrator uses TensorRT Entropy v2 algorithm to perform calibration. This is recommended for feed forward networks You can override the algorithm selection (such as to use the MinMax Calibrator recomended for NLP tasks) by calling make_int8_calibrator with the calibrator class as a template parameter. +

+

+ e.g. trtorch::ptq::make_int8_cache_calibrator<nvinfer1::IInt8MinMaxCalibrator>(calibration_cache_file); +

+
+
+ + Return + +
+
+

+ Int8CacheCalibrator<Algorithm> +

+
+
+ + Template Parameters + +
+
+
    +
  • +

    + + + Algorithm + + + : class nvinfer1::IInt8Calibrator (Default: nvinfer1::IInt8EntropyCalibrator2) - Algorithm to use +

    +
  • +
+
+
+ + Parameters + +
+
+
    +
  • +

    + + + cache_file_path + + + : const std::string& - Path to read/write calibration cache +

    +
  • +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.html b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.html new file mode 100644 index 0000000000..170c60bf07 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.html @@ -0,0 +1,525 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::get_build_info — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+ + +

+ Function trtorch::get_build_info + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API std::string + + trtorch + + :: + + + + get_build_info + + + ( + + + ) + + + ¶ + +
+
+
+

+ Get the build information for the library including the dependency versions. +

+

+

+
+
+ + Return + +
+
+

+ std::string +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.html b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.html new file mode 100644 index 0000000000..5e305d0da8 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.html @@ -0,0 +1,584 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::CompileGraph — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+ + +

+ Function trtorch::CompileGraph + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API torch::jit::Module + + trtorch + + :: + + + + CompileGraph + + + ( + + + const + + torch::jit::Module & + + module + + , + + CompileSpec + + + info + + + ) + + + ¶ + +
+
+
+

+ Compile a TorchScript module for NVIDIA GPUs using TensorRT. +

+

+

+

+ Takes a existing TorchScript module and a set of settings to configure the compiler and will convert methods to JIT Graphs which call equivalent TensorRT engines +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + module + + + : torch::jit::Module - Existing TorchScript module +

    +
  • +
  • +

    + + + info + + + : + + + trtorch::CompileSpec + + + - Compilation settings +

    +
  • +
+
+
+

+ Converts specifically the forward method of a TorchScript Module +

+

+

+
+
+ + Return + +
+
+

+ : A new module trageting a TensorRT engine +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.html b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.html new file mode 100644 index 0000000000..69d1c449ca --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.html @@ -0,0 +1,541 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::set_device — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ Function trtorch::set_device + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API void + + trtorch + + :: + + + + set_device + + + ( + + + const + + int + + gpu_id + + + ) + + + ¶ + +
+
+
+

+ Set gpu device id. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + gpu_id + + + : Sets gpu id using cudaSetDevice +

    +
  • +
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.html b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.html new file mode 100644 index 0000000000..e52b445967 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.html @@ -0,0 +1,511 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::dump_build_info — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+ + +

+ Function trtorch::dump_build_info + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API void + + trtorch + + :: + + + + dump_build_info + + + ( + + + ) + + + ¶ + +
+
+
+

+ Dump the version information for TRTorch including base libtorch and TensorRT versions to stdout. +

+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.html b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.html new file mode 100644 index 0000000000..3526abcf10 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.html @@ -0,0 +1,575 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::CheckMethodOperatorSupport — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::CheckMethodOperatorSupport + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API bool + + trtorch + + :: + + + + CheckMethodOperatorSupport + + + ( + + + const + + torch::jit::Module & + + module + + , std::string + + method_name + + + ) + + + ¶ + +
+
+
+

+ Check to see if a module is fully supported by the compiler. +

+

+

+

+ Takes a module and a method name and checks if the method graph contains purely convertable operators +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + module + + + : torch::jit::script::Module - Existing TorchScript module +

    +
  • +
  • +

    + + + method_name + + + : std::string - Name of method to compile +

    +
  • +
+
+
+

+ Will print out a list of unsupported operators if the graph is unsupported +

+

+

+
+
+ + Return + +
+
+

+ bool: Method is supported by TRTorch +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.html b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.html new file mode 100644 index 0000000000..ee9f65cd73 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.html @@ -0,0 +1,558 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::EmbedEngineInNewModule — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+ +
+
+
+ + +

+ Function trtorch::EmbedEngineInNewModule + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API torch::jit::Module + + trtorch + + :: + + + + EmbedEngineInNewModule + + + ( + + + const + + std::string & + + engine + + + ) + + + ¶ + +
+
+
+

+ Take a previously created TensorRT engine and embed it in in a TorchScript module. +

+

+

+

+ Takes a pre-built serialized TensorRT engine and embeds it in a TorchScript module. Registers execution of the engine as the forward method of the module Forward is defined as: forward(Tensor[]) -> Tensor[] +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + engine + + + : std::string - Pre-built serialized TensorRT engine +

    +
  • +
+
+
+

+

+
+
+ + Return + +
+
+

+ : A new module trageting a TensorRT engine +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.html b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.html new file mode 100644 index 0000000000..45de42d6bc --- /dev/null +++ b/docs/v0.3.0/_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.html @@ -0,0 +1,595 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Function trtorch::ConvertGraphToTRTEngine — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Function trtorch::ConvertGraphToTRTEngine + + ¶ + +

+ +

+ Function Documentation + + ¶ + +

+
+
+ + + TRTORCH_API std::string + + trtorch + + :: + + + + ConvertGraphToTRTEngine + + + ( + + + const + + torch::jit::Module & + + module + + , std::string + + method_name + + , + + CompileSpec + + + info + + + ) + + + ¶ + +
+
+
+

+ Compile a TorchScript method for NVIDIA GPUs using TensorRT. +

+

+

+

+ Takes a existing TorchScript module and a set of settings to configure the compiler and will convert selected method to a serialized TensorRT engine which can be run with TensorRT +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + module + + + : torch::jit::Module - Existing TorchScript module +

    +
  • +
  • +

    + + + method_name + + + : std::string - Name of method to compile +

    +
  • +
  • +

    + + + info + + + : + + + trtorch::CompileSpec + + + - Compilation settings +

    +
  • +
+
+
+

+

+
+
+ + Return + +
+
+

+ : std::string: Serialized TensorRT engine equivilant to the method graph +

+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/namespace_trtorch.html b/docs/v0.3.0/_cpp_api/namespace_trtorch.html new file mode 100644 index 0000000000..7fdaf51110 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/namespace_trtorch.html @@ -0,0 +1,659 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Namespace trtorch — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+ +
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/namespace_trtorch__logging.html b/docs/v0.3.0/_cpp_api/namespace_trtorch__logging.html new file mode 100644 index 0000000000..0af5dbb69c --- /dev/null +++ b/docs/v0.3.0/_cpp_api/namespace_trtorch__logging.html @@ -0,0 +1,576 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Namespace trtorch::logging — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+ +
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/namespace_trtorch__ptq.html b/docs/v0.3.0/_cpp_api/namespace_trtorch__ptq.html new file mode 100644 index 0000000000..824d51c703 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/namespace_trtorch__ptq.html @@ -0,0 +1,540 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Namespace trtorch::ptq — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+ + + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.html b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.html new file mode 100644 index 0000000000..24b1b6fe73 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.html @@ -0,0 +1,469 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Program Listing for File logging.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ Program Listing for File logging.h + + ¶ + +

+

+ ↰ + + + Return to documentation for file + + + ( + + + cpp/api/include/trtorch/logging.h + + + ) +

+
+
+
/*
+ * Copyright (c) NVIDIA Corporation.
+ * All rights reserved.
+ *
+ * This library is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree.
+ */
+#pragma once
+
+#include <string>
+#include "trtorch/macros.h"
+
+namespace trtorch {
+namespace logging {
+enum Level {
+  kINTERNAL_ERROR,
+  kERROR,
+  kWARNING,
+  kINFO,
+  kDEBUG,
+  kGRAPH,
+};
+
+// Are these ones necessary for the user?
+TRTORCH_API std::string get_logging_prefix();
+TRTORCH_API void set_logging_prefix(std::string prefix);
+
+TRTORCH_API void set_reportable_log_level(Level lvl);
+
+TRTORCH_API void set_is_colored_output_on(bool colored_output_on);
+
+TRTORCH_API Level get_reportable_log_level();
+
+TRTORCH_API bool get_is_colored_output_on();
+
+// Dont know if we want this?
+TRTORCH_API void log(Level lvl, std::string msg);
+} // namespace logging
+} // namespace trtorch
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.html b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.html new file mode 100644 index 0000000000..a6da5722f9 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.html @@ -0,0 +1,457 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Program Listing for File macros.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ Program Listing for File macros.h + + ¶ + +

+

+ ↰ + + + Return to documentation for file + + + ( + + + cpp/api/include/trtorch/macros.h + + + ) +

+
+
+
/*
+ * Copyright (c) NVIDIA Corporation.
+ * All rights reserved.
+ *
+ * This library is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree.
+ */
+#pragma once
+
+#if defined(__GNUC__)
+#define TRTORCH_API __attribute__((__visibility__("default")))
+#define TRTORCH_HIDDEN __attribute__((__visibility__("hidden")))
+#else
+#define TRTORCH_API
+#define TRTORCH_HIDDEN
+#endif // defined(__GNUC__)
+
+// Does this need to be gaurded or something?
+#define XSTR(x) #x
+#define STR(x) XSTR(x)
+
+#define TRTORCH_MAJOR_VERSION 0
+#define TRTORCH_MINOR_VERSION 3
+#define TRTORCH_PATCH_VERSION 0
+#define TRTORCH_VERSION      \
+  STR(TRTORCH_MAJOR_VERSION) \
+  "." STR(TRTORCH_MINOR_VERSION) "." STR(TRTORCH_PATCH_VERSION)
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.html b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.html new file mode 100644 index 0000000000..cb99535b93 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.html @@ -0,0 +1,607 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Program Listing for File ptq.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ Program Listing for File ptq.h + + ¶ + +

+

+ ↰ + + + Return to documentation for file + + + ( + + + cpp/api/include/trtorch/ptq.h + + + ) +

+
+
+
/*
+ * Copyright (c) NVIDIA Corporation.
+ * All rights reserved.
+ *
+ * This library is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree.
+ */
+#pragma once
+
+#include <fstream>
+#include <iostream>
+#include <iterator>
+#include <memory>
+#include <sstream>
+#include <string>
+#include <vector>
+
+#include "NvInfer.h"
+#include "torch/torch.h"
+#include "trtorch/logging.h"
+
+#ifndef DOXYGEN_SHOULD_SKIP_THIS
+namespace nvinfer1 {
+class IInt8Calibrator;
+class IInt8EntropyCalibrator2;
+} // namespace nvinfer1
+
+namespace trtorch {
+namespace ptq {
+bool get_batch_impl(void* bindings[], const char* names[], int nbBindings, torch::Tensor& data);
+}
+} // namespace trtorch
+#endif // DOXYGEN_SHOULD_SKIP_THIS
+
+namespace trtorch {
+namespace ptq {
+
+template <typename Algorithm, typename DataLoaderUniquePtr>
+class Int8Calibrator : Algorithm {
+  using DataLoader = typename DataLoaderUniquePtr::element_type;
+  using Batch = typename DataLoader::super::BatchType;
+
+ public:
+  Int8Calibrator(DataLoaderUniquePtr dataloader, const std::string& cache_file_path, bool use_cache)
+      : dataloader_(dataloader.get()), cache_file_path_(cache_file_path), use_cache_(use_cache) {
+    for (auto batch : *dataloader_) {
+      batched_data_.push_back(batch.data);
+    }
+    it_ = batched_data_.begin();
+  }
+
+  int getBatchSize() const override {
+    // HACK: TRTorch only uses explict batch sizing, INT8 Calibrator does not
+    // work when reporting the batch size here and having explicity batching.
+    // So we just report batch size 1 (warnings will still be printed out).
+    return 1;
+    // return static_cast<int>(dataloader_->options().batch_size);
+  }
+
+  bool getBatch(void* bindings[], const char* names[], int nbBindings) override {
+    if (it_ != batched_data_.end()) {
+      auto status = get_batch_impl(bindings, names, nbBindings, *it_);
+      it_ = ++it_;
+      return status;
+    } else {
+      // Reset iterator if incase calibrator is going to be used again
+      it_ = batched_data_.begin();
+      return false;
+    }
+  }
+
+  const void* readCalibrationCache(size_t& length) override {
+    if (use_cache_) {
+      std::stringstream ss;
+      ss << "Reading Calibration Cache from " << cache_file_path_;
+      logging::log(logging::Level::kINFO, ss.str());
+
+      cache_.clear();
+      std::ifstream input(cache_file_path_, std::ios::binary);
+      input >> std::noskipws;
+      if (input.good()) {
+        std::copy(std::istream_iterator<char>(input), std::istream_iterator<char>(), std::back_inserter(cache_));
+        logging::log(logging::Level::kDEBUG, "Cache read");
+      }
+      length = cache_.size();
+      return length ? cache_.data() : nullptr;
+    }
+    return nullptr;
+  }
+
+  void writeCalibrationCache(const void* cache, size_t length) override {
+    std::ofstream cache_file(cache_file_path_, std::ios::binary);
+    cache_file.write(reinterpret_cast<const char*>(cache), length);
+    std::stringstream ss;
+    ss << "Saved Calibration Cache to " << cache_file_path_;
+    logging::log(logging::Level::kINFO, ss.str());
+  }
+
+  operator nvinfer1::IInt8Calibrator*() {
+    return reinterpret_cast<nvinfer1::IInt8Calibrator*>(this);
+  }
+
+ private:
+  DataLoader* dataloader_;
+  const std::string& cache_file_path_;
+  size_t cache_size_ = 0;
+  bool use_cache_;
+  std::vector<char> cache_;
+  std::vector<torch::Tensor> batched_data_;
+  std::vector<torch::Tensor>::iterator it_;
+};
+
+template <typename Algorithm>
+class Int8CacheCalibrator : Algorithm {
+ public:
+  Int8CacheCalibrator(const std::string& cache_file_path) : cache_file_path_(cache_file_path) {}
+
+  int getBatchSize() const override {
+    // HACK: TRTorch only uses explict batch sizing, INT8 Calibrator does not
+    // work when reporting the batch size here and having explicity batching.
+    // So we just report batch size 1 (warnings will still be printed out).
+    return 1;
+  }
+
+  bool getBatch(void* bindings[], const char* names[], int nbBindings) override {
+    return false;
+  }
+
+  const void* readCalibrationCache(size_t& length) override {
+    std::stringstream ss;
+    ss << "Reading Calibration Cache from " << cache_file_path_;
+    logging::log(logging::Level::kINFO, ss.str());
+
+    cache_.clear();
+    std::ifstream input(cache_file_path_, std::ios::binary);
+    input >> std::noskipws;
+    if (input.good()) {
+      std::copy(std::istream_iterator<char>(input), std::istream_iterator<char>(), std::back_inserter(cache_));
+      logging::log(logging::Level::kDEBUG, "Cache read");
+    }
+    length = cache_.size();
+    return length ? cache_.data() : nullptr;
+  }
+
+  void writeCalibrationCache(const void* cache, size_t length) override {
+    std::ofstream cache_file(cache_file_path_, std::ios::binary);
+    cache_file.write(reinterpret_cast<const char*>(cache), length);
+    std::stringstream ss;
+    ss << "Saved Calibration Cache to " << cache_file_path_;
+    logging::log(logging::Level::kINFO, ss.str());
+  }
+
+  operator nvinfer1::IInt8Calibrator*() {
+    return reinterpret_cast<nvinfer1::IInt8Calibrator*>(this);
+  }
+
+ private:
+  const std::string& cache_file_path_;
+  size_t cache_size_ = 0;
+  std::vector<char> cache_;
+};
+
+template <typename Algorithm = nvinfer1::IInt8EntropyCalibrator2, typename DataLoader>
+TRTORCH_API inline Int8Calibrator<Algorithm, DataLoader> make_int8_calibrator(
+    DataLoader dataloader,
+    const std::string& cache_file_path,
+    bool use_cache) {
+  return Int8Calibrator<Algorithm, DataLoader>(std::move(dataloader), cache_file_path, use_cache);
+}
+
+template <typename Algorithm = nvinfer1::IInt8EntropyCalibrator2>
+TRTORCH_API inline Int8CacheCalibrator<Algorithm> make_int8_cache_calibrator(const std::string& cache_file_path) {
+  return Int8CacheCalibrator<Algorithm>(cache_file_path);
+}
+
+} // namespace ptq
+} // namespace trtorch
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.html b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.html new file mode 100644 index 0000000000..1ee613da70 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.html @@ -0,0 +1,634 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Program Listing for File trtorch.h — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ Program Listing for File trtorch.h + + ¶ + +

+

+ ↰ + + + Return to documentation for file + + + ( + + + cpp/api/include/trtorch/trtorch.h + + + ) +

+
+
+
/*
+ * Copyright (c) NVIDIA Corporation.
+ * All rights reserved.
+ *
+ * This library is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree.
+ */
+
+#pragma once
+
+#include <cuda_runtime.h>
+#include <memory>
+#include <string>
+#include <vector>
+
+// Just include the .h?
+#ifndef DOXYGEN_SHOULD_SKIP_THIS
+namespace torch {
+namespace jit {
+struct Graph;
+struct Module;
+} // namespace jit
+} // namespace torch
+
+namespace c10 {
+enum class DeviceType : int8_t;
+enum class ScalarType : int8_t;
+template <class>
+class ArrayRef;
+} // namespace c10
+
+namespace nvinfer1 {
+class IInt8Calibrator;
+}
+#endif // DOXYGEN_SHOULD_SKIP_THIS
+
+#include "trtorch/macros.h"
+namespace trtorch {
+struct TRTORCH_API CompileSpec {
+  struct TRTORCH_API InputRange {
+    std::vector<int64_t> min;
+    std::vector<int64_t> opt;
+    std::vector<int64_t> max;
+    InputRange(std::vector<int64_t> opt);
+    InputRange(c10::ArrayRef<int64_t> opt);
+    InputRange(std::vector<int64_t> min, std::vector<int64_t> opt, std::vector<int64_t> max);
+    InputRange(c10::ArrayRef<int64_t> min, c10::ArrayRef<int64_t> opt, c10::ArrayRef<int64_t> max);
+  };
+
+  class TRTORCH_API DataType {
+   public:
+    enum Value : int8_t {
+      kFloat,
+      kHalf,
+      kChar,
+    };
+
+    DataType() = default;
+    constexpr DataType(Value t) : value(t) {}
+    DataType(c10::ScalarType t);
+    operator Value() const {
+      return value;
+    }
+    explicit operator bool() = delete;
+    constexpr bool operator==(DataType other) const {
+      return value == other.value;
+    }
+    constexpr bool operator==(DataType::Value other) const {
+      return value == other;
+    }
+    constexpr bool operator!=(DataType other) const {
+      return value != other.value;
+    }
+    constexpr bool operator!=(DataType::Value other) const {
+      return value != other;
+    }
+
+   private:
+    Value value;
+  };
+
+  enum class EngineCapability : int8_t {
+    kDEFAULT,
+    kSAFE_GPU,
+    kSAFE_DLA,
+  };
+
+  CompileSpec(std::vector<InputRange> input_ranges) : input_ranges(std::move(input_ranges)) {}
+  CompileSpec(std::vector<std::vector<int64_t>> fixed_sizes);
+  CompileSpec(std::vector<c10::ArrayRef<int64_t>> fixed_sizes);
+
+  // Defaults should reflect TensorRT defaults for BuilderConfig
+
+  std::vector<InputRange> input_ranges;
+
+  DataType op_precision = DataType::kFloat;
+
+  bool disable_tf32 = false;
+
+  bool refit = false;
+
+  bool debug = false;
+
+  bool truncate_long_and_double = false;
+
+  bool strict_types = false;
+
+  /*
+   * Setting data structure for Target device
+   */
+  struct Device {
+    class DeviceType {
+     public:
+      enum Value : int8_t {
+        kGPU,
+        kDLA,
+      };
+
+      DeviceType() = default;
+      constexpr DeviceType(Value t) : value(t) {}
+      DeviceType(c10::DeviceType t);
+      operator Value() const {
+        return value;
+      }
+      explicit operator bool() = delete;
+      constexpr bool operator==(DeviceType other) const {
+        return value == other.value;
+      }
+      constexpr bool operator!=(DeviceType other) const {
+        return value != other.value;
+      }
+
+     private:
+      Value value;
+    };
+
+    DeviceType device_type;
+
+    /*
+     * Target gpu id
+     */
+    int64_t gpu_id;
+
+    /*
+     * When using DLA core on NVIDIA AGX platforms gpu_id should be set as Xavier device
+     */
+    int64_t dla_core;
+
+    bool allow_gpu_fallback;
+
+    Device() : device_type(DeviceType::kGPU), gpu_id(0), dla_core(0), allow_gpu_fallback(false) {}
+  };
+
+  /*
+   * Target Device
+   */
+  Device device;
+
+  struct TRTORCH_API TorchFallback {
+    bool enabled = false;
+
+    uint64_t min_block_size = 1;
+
+    std::vector<std::string> forced_fallback_ops;
+
+    TorchFallback() = default;
+
+    TorchFallback(bool enabled) : enabled(enabled) {}
+
+    TorchFallback(bool enabled, uint64_t min_size) : enabled(enabled), min_block_size(min_size) {}
+  };
+
+  TorchFallback torch_fallback;
+
+  EngineCapability capability = EngineCapability::kDEFAULT;
+
+  uint64_t num_min_timing_iters = 2;
+  uint64_t num_avg_timing_iters = 1;
+
+  uint64_t workspace_size = 0;
+
+  uint64_t max_batch_size = 0;
+
+  nvinfer1::IInt8Calibrator* ptq_calibrator = nullptr;
+};
+
+TRTORCH_API std::string get_build_info();
+
+TRTORCH_API void dump_build_info();
+
+TRTORCH_API bool CheckMethodOperatorSupport(const torch::jit::Module& module, std::string method_name);
+
+TRTORCH_API torch::jit::Module CompileGraph(const torch::jit::Module& module, CompileSpec info);
+
+TRTORCH_API std::string ConvertGraphToTRTEngine(
+    const torch::jit::Module& module,
+    std::string method_name,
+    CompileSpec info);
+
+TRTORCH_API torch::jit::Module EmbedEngineInNewModule(const std::string& engine);
+
+TRTORCH_API void set_device(const int gpu_id);
+
+} // namespace trtorch
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec.html b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec.html new file mode 100644 index 0000000000..ea3f120658 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec.html @@ -0,0 +1,2941 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Struct CompileSpec — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+ + +

+ Struct CompileSpec + + ¶ + +

+ +

+ Nested Relationships + + ¶ + +

+

+ Nested Types + + ¶ + +

+ +

+ Struct Documentation + + ¶ + +

+
+
+ + + + struct + + + trtorch + + :: + + + + CompileSpec + + + ¶ + +
+
+
+

+ Settings data structure for TRTorch compilation +

+
+

+ Public Types +

+
+
+ + + + enum + + + EngineCapability + + + ¶ + +
+
+
+

+ Emum for selecting engine capability +

+

+ + Values: + +

+
+
+ + + + enumerator + + + kDEFAULT + + + ¶ + +
+
+
+
+
+
+
+ + + + enumerator + + + kSAFE_GPU + + + ¶ + +
+
+
+
+
+
+
+ + + + enumerator + + + kSAFE_DLA + + + ¶ + +
+
+
+
+
+
+
+
+
+

+ Public Functions +

+
+
+ + + + CompileSpec + + + ( + + std::vector< + + InputRange + + > + + input_ranges + + + ) + + + ¶ + +
+
+
+

+ Construct a new Extra Info object from input ranges. Each entry in the vector represents a input and should be provided in call order. +

+

+ Use this constructor if you want to use dynamic shape +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + input_ranges + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + CompileSpec + + + ( + + std::vector<std::vector<int64_t>> + + fixed_sizes + + + ) + + + ¶ + +
+
+
+

+ Construct a new Extra Info object Convienence constructor to set fixed input size from vectors describing size of input tensors. Each entry in the vector represents a input and should be provided in call order. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + fixed_sizes + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + CompileSpec + + + ( + + std::vector<c10::ArrayRef<int64_t>> + + fixed_sizes + + + ) + + + ¶ + +
+
+
+

+ Construct a new Extra Info object Convienence constructor to set fixed input size from c10::ArrayRef’s (the output of tensor.sizes()) describing size of input tensors. Each entry in the vector represents a input and should be provided in call order. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + fixed_sizes + + + : +

    +
  • +
+
+
+
+
+
+
+

+ Public Members +

+
+
+ + + std::vector< + + InputRange + + > + + input_ranges + + + ¶ + +
+
+
+

+ Sizes for inputs to engine, can either be a single size or a range defined by Min, Optimal, Max sizes +

+

+ Order is should match call order +

+
+
+
+
+ + + + DataType + + + op_precision + + = + + DataType + + ::kFloat + + ¶ + +
+
+
+

+ Default operating precision for the engine +

+
+
+
+
+ + + bool + + disable_tf32 + + = false + + ¶ + +
+
+
+

+ Prevent Float32 layers from using TF32 data format +

+

+ TF32 computes inner products by rounding the inputs to 10-bit mantissas before multiplying, but accumulates the sum using 23-bit mantissas. This is the behavior of FP32 layers by default. +

+
+
+
+
+ + + bool + + refit + + = false + + ¶ + +
+
+
+

+ Build a refitable engine +

+
+
+
+
+ + + bool + + debug + + = false + + ¶ + +
+
+
+

+ Build a debugable engine +

+
+
+
+
+ + + bool + + truncate_long_and_double + + = false + + ¶ + +
+
+
+

+ Truncate long/double type to int/float type +

+
+
+
+
+ + + bool + + strict_types + + = false + + ¶ + +
+
+
+

+ Restrict operating type to only set default operation precision (op_precision) +

+
+
+
+
+ + + + Device + + + device + + + ¶ + +
+
+
+
+
+
+
+ + + + TorchFallback + + + torch_fallback + + + ¶ + +
+
+
+
+
+
+
+ + + + EngineCapability + + + capability + + = + + EngineCapability + + :: + + kDEFAULT + + + ¶ + +
+
+
+

+ Sets the restrictions for the engine (CUDA Safety) +

+
+
+
+
+ + + uint64_t + + num_min_timing_iters + + = 2 + + ¶ + +
+
+
+

+ Number of minimization timing iterations used to select kernels +

+
+
+
+
+ + + uint64_t + + num_avg_timing_iters + + = 1 + + ¶ + +
+
+
+

+ Number of averaging timing iterations used to select kernels +

+
+
+
+
+ + + uint64_t + + workspace_size + + = 0 + + ¶ + +
+
+
+

+ Maximum size of workspace given to TensorRT +

+
+
+
+
+ + + uint64_t + + max_batch_size + + = 0 + + ¶ + +
+
+
+

+ Maximum batch size (must be >= 1 to be set, 0 means not set) +

+
+
+
+
+ + + nvinfer1::IInt8Calibrator * + + ptq_calibrator + + = nullptr + + ¶ + +
+
+
+

+ Calibration dataloaders for each input for post training quantizatiom +

+
+
+
+
+
+ + + + class + + + DataType + +
+
+
+

+ Supported Data Types that can be used with TensorRT engines +

+

+ This class is compatable with c10::DataTypes (but will check for TRT support) so there should not be a reason that you need to use this type explictly. +

+
+

+ Public Types +

+
+
+ + + + enum + + + Value + +
+
+
+

+ Underlying enum class to support the + + + DataType + + + Class +

+

+ In the case that you need to use the + + + DataType + + + class itself, interface using this enum vs. normal instatination +

+

+ ex. trtorch::DataType type = + + + DataType::kFloat + + + ; +

+

+ + Values: + +

+
+
+ + + + enumerator + + + kFloat + +
+
+
+

+ FP32. +

+
+
+
+
+ + + + enumerator + + + kHalf + +
+
+
+

+ FP16. +

+
+
+
+
+ + + + enumerator + + + kChar + +
+
+
+

+ INT8. +

+
+
+
+
+
+
+

+ Public Functions +

+
+
+ + + + DataType + + + ( + + + ) + + = default +
+
+
+

+ Construct a new Data Type object. +

+
+
+
+
+ + + + constexpr + + + DataType + + + ( + + + Value + + + t + + + ) + +
+
+
+

+ + + DataType + + + constructor from enum. +

+
+
+
+
+ + + + DataType + + + ( + + c10::ScalarType + + t + + + ) + +
+
+
+

+ Construct a new Data Type object from torch type enums. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + t + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + operator Value + + + ( + + + ) + + + const + +
+
+
+

+ Get the enum value of the + + + DataType + + + object. +

+

+

+
+
+ + Return + +
+
+

+ Value +

+
+
+
+
+
+
+ + + + operator bool + + + ( + + + ) + + = delete +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator== + + + ( + + + DataType + + + other + + + ) + + + const + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator== + + + ( + + + DataType + + :: + + Value + + + other + + + ) + + + const + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator!= + + + ( + + + DataType + + + other + + + ) + + + const + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator!= + + + ( + + + DataType + + :: + + Value + + + other + + + ) + + + const + +
+
+
+

+ Comparision operator for + + + DataType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+
+
+
+ + + + struct + + + Device + + + ¶ + +
+
+
+
+

+ Public Functions +

+
+
+ + + + Device + + + ( + + + ) + + + ¶ + +
+
+
+

+ Constructor for + + + Device + + + structure +

+
+
+
+
+

+ Public Members +

+
+
+ + + + DeviceType + + + device_type + + + ¶ + +
+
+
+

+ Setting data structure for device This struct will hold Target device related parameters such as device_type, gpu_id, dla_core. +

+
+
+
+
+ + + int64_t + + gpu_id + + + ¶ + +
+
+
+
+
+
+
+ + + int64_t + + dla_core + + + ¶ + +
+
+
+
+
+
+
+ + + bool + + allow_gpu_fallback + + + ¶ + +
+
+
+

+ (Only used when targeting DLA (device)) Lets engine run layers on GPU if they are not supported on DLA +

+
+
+
+
+
+ + + + class + + + DeviceType + +
+
+
+

+ Supported + + + Device + + + Types that can be used with TensorRT engines +

+

+ This class is compatable with c10::DeviceTypes (but will check for TRT support) but the only applicable value is at::kCUDA, which maps to + + + DeviceType::kGPU + + +

+

+ To use the + + + DataType + + + class itself, interface using the enum vs. normal instatination +

+

+ ex. trtorch::DeviceType type = + + + DeviceType::kGPU + + + ; +

+
+

+ Public Types +

+
+
+ + + + enum + + + Value + +
+
+
+

+ Underlying enum class to support the + + + DeviceType + + + Class +

+

+ In the case that you need to use the + + + DeviceType + + + class itself, interface using this enum vs. normal instatination +

+

+ ex. trtorch::DeviceType type = + + + DeviceType::kGPU + + + ; +

+

+ + Values: + +

+
+
+ + + + enumerator + + + kGPU + +
+
+
+

+ Target GPU to run engine. +

+
+
+
+
+ + + + enumerator + + + kDLA + +
+
+
+

+ Target DLA to run engine. +

+
+
+
+
+
+
+

+ Public Functions +

+
+
+ + + + DeviceType + + + ( + + + ) + + = default +
+
+
+

+ Construct a new + + + Device + + + Type object. +

+
+
+
+
+ + + + constexpr + + + DeviceType + + + ( + + + Value + + + t + + + ) + +
+
+
+

+ Construct a new + + + Device + + + Type object from internal enum. +

+
+
+
+
+ + + + DeviceType + + + ( + + c10::DeviceType + + t + + + ) + +
+
+
+

+ Construct a new + + + Device + + + Type object from torch device enums Note: The only valid value is torch::kCUDA (torch::kCPU is not supported) +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + t + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + operator Value + + + ( + + + ) + + + const + +
+
+
+

+ Get the internal value from the + + + Device + + + object. +

+

+

+
+
+ + Return + +
+
+

+ Value +

+
+
+
+
+
+
+ + + + operator bool + + + ( + + + ) + + = delete +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator== + + + ( + + + DeviceType + + + other + + + ) + + + const + +
+
+
+

+ Comparison operator for + + + DeviceType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator!= + + + ( + + + DeviceType + + + other + + + ) + + + const + +
+
+
+

+ Comparison operator for + + + DeviceType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+
+
+
+
+
+ + + + struct + + + InputRange + + + ¶ + +
+
+
+

+ A struct to hold an input range (used by TensorRT Optimization profile) +

+

+ This struct can either hold a single vector representing an input shape, signifying a static input shape or a set of three input shapes representing the min, optiminal and max input shapes allowed for the engine. +

+
+

+ Public Functions +

+
+
+ + + + InputRange + + + ( + + std::vector<int64_t> + + opt + + + ) + + + ¶ + +
+
+
+

+ Construct a new Input Range object for static input size from vector. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + opt + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + InputRange + + + ( + + c10::ArrayRef<int64_t> + + opt + + + ) + + + ¶ + +
+
+
+

+ Construct a new Input Range object static input size from c10::ArrayRef (the type produced by tensor.sizes()) +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + opt + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + InputRange + + + ( + + std::vector<int64_t> + + min + + , std::vector<int64_t> + + opt + + , std::vector<int64_t> + + max + + + ) + + + ¶ + +
+
+
+

+ Construct a new Input Range object dynamic input size from vectors for min, opt, and max supported sizes. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + min + + + : +

    +
  • +
  • +

    + + + opt + + + : +

    +
  • +
  • +

    + + + max + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + InputRange + + + ( + + c10::ArrayRef<int64_t> + + min + + , c10::ArrayRef<int64_t> + + opt + + , c10::ArrayRef<int64_t> + + max + + + ) + + + ¶ + +
+
+
+

+ Construct a new Input Range object dynamic input size from c10::ArrayRef (the type produced by tensor.sizes()) for min, opt, and max supported sizes. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + min + + + : +

    +
  • +
  • +

    + + + opt + + + : +

    +
  • +
  • +

    + + + max + + + : +

    +
  • +
+
+
+
+
+
+
+

+ Public Members +

+
+
+ + + std::vector<int64_t> + + min + + + ¶ + +
+
+
+

+ Minimum acceptable input size into the engine. +

+
+
+
+
+ + + std::vector<int64_t> + + opt + + + ¶ + +
+
+
+

+ Optimal input size into the engine (gets best performace) +

+
+
+
+
+ + + std::vector<int64_t> + + max + + + ¶ + +
+
+
+

+ Maximum acceptable input size into the engine. +

+
+
+
+
+
+
+
+ + + + struct + + + TorchFallback + + + ¶ + +
+
+
+

+ A struct to hold fallback info. +

+
+

+ Public Functions +

+
+
+ + + + TorchFallback + + + ( + + + ) + + = default + + ¶ + +
+
+
+

+ Construct a default Torch Fallback object, fallback will be off. +

+
+
+
+
+ + + + TorchFallback + + + ( + + bool + + enabled + + + ) + + + ¶ + +
+
+
+

+ Construct from a bool. +

+
+
+
+
+ + + + TorchFallback + + + ( + + bool + + enabled + + , uint64_t + + min_size + + + ) + + + ¶ + +
+
+
+

+ Constructor for setting min_block_size. +

+
+
+
+
+

+ Public Members +

+
+
+ + + bool + + enabled + + = false + + ¶ + +
+
+
+

+ enable the automatic fallback feature +

+
+
+
+
+ + + uint64_t + + min_block_size + + = 1 + + ¶ + +
+
+
+

+ minimum consecutive operation number that needs to be satisfied to convert to TensorRT +

+
+
+
+
+ + + std::vector<std::string> + + forced_fallback_ops + + + ¶ + +
+
+
+

+ A list of names of operations that will explicitly run in PyTorch. +

+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.html b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.html new file mode 100644 index 0000000000..c965fd8883 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.html @@ -0,0 +1,1137 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Struct CompileSpec::Device — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Struct CompileSpec::Device + + ¶ + +

+ +

+ Nested Relationships + + ¶ + +

+

+ This struct is a nested type of + + + Struct CompileSpec + + + . +

+

+ Nested Types + + ¶ + +

+ +

+ Struct Documentation + + ¶ + +

+
+
+ + + + struct + + + trtorch:: + + CompileSpec + + + :: + + + + Device + +
+
+
+
+

+ Public Functions +

+
+
+ + + + Device + + + ( + + + ) + +
+
+
+

+ Constructor for + + + Device + + + structure +

+
+
+
+
+

+ Public Members +

+
+
+ + + + DeviceType + + + device_type + +
+
+
+

+ Setting data structure for device This struct will hold Target device related parameters such as device_type, gpu_id, dla_core. +

+
+
+
+
+ + + int64_t + + gpu_id + +
+
+
+
+
+
+
+ + + int64_t + + dla_core + +
+
+
+
+
+
+
+ + + bool + + allow_gpu_fallback + +
+
+
+

+ (Only used when targeting DLA (device)) Lets engine run layers on GPU if they are not supported on DLA +

+
+
+
+
+
+ + + + class + + + DeviceType + +
+
+
+

+ Supported + + + Device + + + Types that can be used with TensorRT engines +

+

+ This class is compatable with c10::DeviceTypes (but will check for TRT support) but the only applicable value is at::kCUDA, which maps to + + + DeviceType::kGPU + + +

+

+ To use the + + + DataType + + + class itself, interface using the enum vs. normal instatination +

+

+ ex. trtorch::DeviceType type = + + + DeviceType::kGPU + + + ; +

+
+

+ Public Types +

+
+
+ + + + enum + + + Value + +
+
+
+

+ Underlying enum class to support the + + + DeviceType + + + Class +

+

+ In the case that you need to use the + + + DeviceType + + + class itself, interface using this enum vs. normal instatination +

+

+ ex. trtorch::DeviceType type = + + + DeviceType::kGPU + + + ; +

+

+ + Values: + +

+
+
+ + + + enumerator + + + kGPU + +
+
+
+

+ Target GPU to run engine. +

+
+
+
+
+ + + + enumerator + + + kDLA + +
+
+
+

+ Target DLA to run engine. +

+
+
+
+
+
+
+

+ Public Functions +

+
+
+ + + + DeviceType + + + ( + + + ) + + = default +
+
+
+

+ Construct a new + + + Device + + + Type object. +

+
+
+
+
+ + + + constexpr + + + DeviceType + + + ( + + + Value + + + t + + + ) + +
+
+
+

+ Construct a new + + + Device + + + Type object from internal enum. +

+
+
+
+
+ + + + DeviceType + + + ( + + c10::DeviceType + + t + + + ) + +
+
+
+

+ Construct a new + + + Device + + + Type object from torch device enums Note: The only valid value is torch::kCUDA (torch::kCPU is not supported) +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + t + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + operator Value + + + ( + + + ) + + + const + +
+
+
+

+ Get the internal value from the + + + Device + + + object. +

+

+

+
+
+ + Return + +
+
+

+ Value +

+
+
+
+
+
+
+ + + + operator bool + + + ( + + + ) + + = delete +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator== + + + ( + + + DeviceType + + + other + + + ) + + + const + +
+
+
+

+ Comparison operator for + + + DeviceType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + constexpr + + bool + + operator!= + + + ( + + + DeviceType + + + other + + + ) + + + const + +
+
+
+

+ Comparison operator for + + + DeviceType + + + . +

+

+

+
+
+ + Return + +
+
+

+ true +

+
+
+ + Return + +
+
+

+ false +

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + other + + + : +

    +
  • +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.html b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.html new file mode 100644 index 0000000000..6b314e1cd4 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.html @@ -0,0 +1,836 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Struct CompileSpec::InputRange — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Struct CompileSpec::InputRange + + ¶ + +

+ +

+ Nested Relationships + + ¶ + +

+

+ This struct is a nested type of + + + Struct CompileSpec + + + . +

+

+ Struct Documentation + + ¶ + +

+
+
+ + + + struct + + + trtorch:: + + CompileSpec + + + :: + + + + InputRange + +
+
+
+

+ A struct to hold an input range (used by TensorRT Optimization profile) +

+

+ This struct can either hold a single vector representing an input shape, signifying a static input shape or a set of three input shapes representing the min, optiminal and max input shapes allowed for the engine. +

+
+

+ Public Functions +

+
+
+ + + + InputRange + + + ( + + std::vector<int64_t> + + opt + + + ) + +
+
+
+

+ Construct a new Input Range object for static input size from vector. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + opt + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + InputRange + + + ( + + c10::ArrayRef<int64_t> + + opt + + + ) + +
+
+
+

+ Construct a new Input Range object static input size from c10::ArrayRef (the type produced by tensor.sizes()) +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + opt + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + InputRange + + + ( + + std::vector<int64_t> + + min + + , std::vector<int64_t> + + opt + + , std::vector<int64_t> + + max + + + ) + +
+
+
+

+ Construct a new Input Range object dynamic input size from vectors for min, opt, and max supported sizes. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + min + + + : +

    +
  • +
  • +

    + + + opt + + + : +

    +
  • +
  • +

    + + + max + + + : +

    +
  • +
+
+
+
+
+
+
+ + + + InputRange + + + ( + + c10::ArrayRef<int64_t> + + min + + , c10::ArrayRef<int64_t> + + opt + + , c10::ArrayRef<int64_t> + + max + + + ) + +
+
+
+

+ Construct a new Input Range object dynamic input size from c10::ArrayRef (the type produced by tensor.sizes()) for min, opt, and max supported sizes. +

+

+

+
+
+ + Parameters + +
+
+
    +
  • +

    + + + min + + + : +

    +
  • +
  • +

    + + + opt + + + : +

    +
  • +
  • +

    + + + max + + + : +

    +
  • +
+
+
+
+
+
+
+

+ Public Members +

+
+
+ + + std::vector<int64_t> + + min + +
+
+
+

+ Minimum acceptable input size into the engine. +

+
+
+
+
+ + + std::vector<int64_t> + + opt + +
+
+
+

+ Optimal input size into the engine (gets best performace) +

+
+
+
+
+ + + std::vector<int64_t> + + max + +
+
+
+

+ Maximum acceptable input size into the engine. +

+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.html b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.html new file mode 100644 index 0000000000..b0619a8d0e --- /dev/null +++ b/docs/v0.3.0/_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.html @@ -0,0 +1,663 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Struct CompileSpec::TorchFallback — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Struct CompileSpec::TorchFallback + + ¶ + +

+ +

+ Nested Relationships + + ¶ + +

+

+ This struct is a nested type of + + + Struct CompileSpec + + + . +

+

+ Struct Documentation + + ¶ + +

+
+
+ + + + struct + + + trtorch:: + + CompileSpec + + + :: + + + + TorchFallback + +
+
+
+

+ A struct to hold fallback info. +

+
+

+ Public Functions +

+
+
+ + + + TorchFallback + + + ( + + + ) + + = default +
+
+
+

+ Construct a default Torch Fallback object, fallback will be off. +

+
+
+
+
+ + + + TorchFallback + + + ( + + bool + + enabled + + + ) + +
+
+
+

+ Construct from a bool. +

+
+
+
+
+ + + + TorchFallback + + + ( + + bool + + enabled + + , uint64_t + + min_size + + + ) + +
+
+
+

+ Constructor for setting min_block_size. +

+
+
+
+
+

+ Public Members +

+
+
+ + + bool + + enabled + + = false +
+
+
+

+ enable the automatic fallback feature +

+
+
+
+
+ + + uint64_t + + min_block_size + + = 1 +
+
+
+

+ minimum consecutive operation number that needs to be satisfied to convert to TensorRT +

+
+
+
+
+ + + std::vector<std::string> + + forced_fallback_ops + +
+
+
+

+ A list of names of operations that will explicitly run in PyTorch. +

+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/trtorch_cpp.html b/docs/v0.3.0/_cpp_api/trtorch_cpp.html new file mode 100644 index 0000000000..ecc44bbc8f --- /dev/null +++ b/docs/v0.3.0/_cpp_api/trtorch_cpp.html @@ -0,0 +1,1429 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + TRTorch C++ API — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+

+ TRTorch C++ API + + ¶ + +

+

+ Class Hierarchy + + ¶ + +

+ + +

+ File Hierarchy + + ¶ + +

+ + +

+ Full API + + ¶ + +

+

+ Namespaces + + ¶ + +

+ + + +

+ Classes and Structs + + ¶ + +

+ + + + + + + + +

+ Enums + + ¶ + +

+ +

+ Functions + + ¶ + +

+ + + + + + + + + + + + + + + + +

+ Defines + + ¶ + +

+ + + + + + + + +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/unabridged_api.html b/docs/v0.3.0/_cpp_api/unabridged_api.html new file mode 100644 index 0000000000..2278f99138 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/unabridged_api.html @@ -0,0 +1,1139 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Full API — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+

+ Full API + + ¶ + +

+

+ Namespaces + + ¶ + +

+ + + +

+ Classes and Structs + + ¶ + +

+ + + + + + + + +

+ Enums + + ¶ + +

+ +

+ Functions + + ¶ + +

+ + + + + + + + + + + + + + + + +

+ Defines + + ¶ + +

+ + + + + + + + +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_cpp_api/unabridged_orphan.html b/docs/v0.3.0/_cpp_api/unabridged_orphan.html new file mode 100644 index 0000000000..70dc2c7727 --- /dev/null +++ b/docs/v0.3.0/_cpp_api/unabridged_orphan.html @@ -0,0 +1,697 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Full API — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+ +
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_images/_notebooks_Resnet50-example_11_0.png b/docs/v0.3.0/_images/_notebooks_Resnet50-example_11_0.png new file mode 100644 index 0000000000..e997fe3cca Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_Resnet50-example_11_0.png differ diff --git a/docs/v0.3.0/_images/_notebooks_Resnet50-example_14_1.png b/docs/v0.3.0/_images/_notebooks_Resnet50-example_14_1.png new file mode 100644 index 0000000000..362069cfb8 Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_Resnet50-example_14_1.png differ diff --git a/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_0.png b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_0.png new file mode 100644 index 0000000000..e8b6d5d062 Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_0.png differ diff --git a/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_1.png b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_1.png new file mode 100644 index 0000000000..37c558cf19 Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_1.png differ diff --git a/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_2.png b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_2.png new file mode 100644 index 0000000000..1ebb1f58af Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_17_2.png differ diff --git a/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_0.png b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_0.png new file mode 100644 index 0000000000..baae17365e Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_0.png differ diff --git a/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_1.png b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_1.png new file mode 100644 index 0000000000..ebe7062102 Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_1.png differ diff --git a/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_2.png b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_2.png new file mode 100644 index 0000000000..3828740c37 Binary files /dev/null and b/docs/v0.3.0/_images/_notebooks_ssd-object-detection-demo_34_2.png differ diff --git a/docs/v0.3.0/_notebooks/Resnet50-example.html b/docs/v0.3.0/_notebooks/Resnet50-example.html new file mode 100644 index 0000000000..9aa607dc87 --- /dev/null +++ b/docs/v0.3.0/_notebooks/Resnet50-example.html @@ -0,0 +1,1921 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + TRTorch Getting Started - ResNet 50 — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ +
+
+
+
[1]:
+
+
+
+
+
+
+# Copyright 2019 NVIDIA Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+
+
+
+

+ f9ba4b08deae4acb87b5fd0aa6b52c2f +

+

+ TRTorch Getting Started - ResNet 50 + + ¶ + +

+

+ Overview + + ¶ + +

+

+ In the practice of developing machine learning models, there are few tools as approachable as PyTorch for developing and experimenting in designing machine learning models. The power of PyTorch comes from its deep integration into Python, its flexibility and its approach to automatic differentiation and execution (eager execution). However, when moving from research into production, the requirements change and we may no longer want that deep Python integration and we want optimization to get the +best performance we can on our deployment platform. In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. TorchScript uses PyTorch’s JIT compiler to transform your normal PyTorch code which gets interpreted by the Python interpreter to an intermediate representation (IR) which can have optimizations run on it and at runtime can get interpreted by the PyTorch JIT interpreter. For PyTorch this has opened up a whole new +world of possibilities, including deployment in other languages like C++. It also introduces a structured graph based format that we can use to do down to the kernel level optimization of models for inference. +

+

+ When deploying on NVIDIA GPUs TensorRT, NVIDIA’s Deep Learning Optimization SDK and Runtime is able to take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family be it an A100, TITAN V, Jetson Xavier or NVIDIA’s Deep Learning Accelerator. TensorRT performs a couple sets of optimizations to achieve this. TensorRT fuses layers and tensors in the model graph, it then uses a large kernel library to select implementations that +perform best on the target GPU. TensorRT also has strong support for reduced operating precision execution which allows users to leverage the Tensor Cores on Volta and newer GPUs as well as reducing memory and computation footprints on device. +

+

+ TRTorch is a compiler that uses TensorRT to optimize TorchScript code, compiling standard TorchScript modules into ones that internally run with TensorRT optimizations. This enables you to continue to remain in the PyTorch ecosystem, using all the great features PyTorch has such as module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch. +

+

+ Learning objectives + + ¶ + +

+

+ This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a pretrained ResNet-50 network, and running it to test the speedup obtained. +

+

+ Content + + ¶ + +

+
    +
  1. +

    + + Requirements + +

    +
  2. +
  3. +

    + + ResNet-50 Overview + +

    +
  4. +
  5. +

    + + Creating TorchScript modules + +

    +
  6. +
  7. +

    + + Compiling with TRTorch + +

    +
  8. +
  9. +

    + + Conclusion + +

    +
  10. +
+
+
+
+
[2]:
+
+
+
+
+
+
+!nvidia-smi
+
+
+
+
+
+
+
+
+
+
+Tue Aug 25 06:25:19 2020
++-----------------------------------------------------------------------------+
+| NVIDIA-SMI 450.24       Driver Version: 450.24       CUDA Version: 11.0     |
+|-------------------------------+----------------------+----------------------+
+| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
+| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
+|                               |                      |               MIG M. |
+|===============================+======================+======================|
+|   0  Tesla P100-SXM2...  On   | 00000000:06:00.0 Off |                    0 |
+| N/A   37C    P0    43W / 300W |    891MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+|   1  Tesla P100-SXM2...  On   | 00000000:07:00.0 Off |                    0 |
+| N/A   35C    P0    34W / 300W |      2MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+|   2  Tesla P100-SXM2...  On   | 00000000:0A:00.0 Off |                    0 |
+| N/A   35C    P0    33W / 300W |      2MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+|   3  Tesla P100-SXM2...  On   | 00000000:0B:00.0 Off |                    0 |
+| N/A   33C    P0    32W / 300W |      2MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+|   4  Tesla P100-SXM2...  On   | 00000000:85:00.0 Off |                    0 |
+| N/A   34C    P0    33W / 300W |      2MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+|   5  Tesla P100-SXM2...  On   | 00000000:86:00.0 Off |                    0 |
+| N/A   31C    P0    35W / 300W |      2MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+|   6  Tesla P100-SXM2...  On   | 00000000:89:00.0 Off |                    0 |
+| N/A   36C    P0    33W / 300W |      2MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+|   7  Tesla P100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
+| N/A   34C    P0    33W / 300W |      2MiB / 16280MiB |      0%      Default |
+|                               |                      |                  N/A |
++-------------------------------+----------------------+----------------------+
+
++-----------------------------------------------------------------------------+
+| Processes:                                                                  |
+|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
+|        ID   ID                                                   Usage      |
+|=============================================================================|
++-----------------------------------------------------------------------------+
+
+
+
+
+

+ ## 1. Requirements +

+

+ Follow the steps in + + + notebooks/README + + + to prepare a Docker container, within which you can run this notebook. +

+

+ ## 2. ResNet-50 Overview +

+

+ PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our ResNet-50 model from there pretrained on ImageNet. +

+

+ Model Description + + ¶ + +

+

+ This ResNet-50 model is based on the + + Deep Residual Learning for Image Recognition + + paper, which describes ResNet as “a method for detecting objects in images using a single deep neural network”. The input size is fixed to 32x32. +

+

+ alt +

+
+
+
+
[3]:
+
+
+
+
+
+
+import torch
+resnet50_model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet50', pretrained=True)
+resnet50_model.eval()
+
+
+
+
+
+
+
+
+
+
+Using cache found in /root/.cache/torch/hub/pytorch_vision_v0.6.0
+
+
+
+
+
+
+
+
[3]:
+
+
+
+
+
+
+ResNet(
+  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
+  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+  (relu): ReLU(inplace=True)
+  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
+  (layer1): Sequential(
+    (0): Bottleneck(
+      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+      (downsample): Sequential(
+        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      )
+    )
+    (1): Bottleneck(
+      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (2): Bottleneck(
+      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+  )
+  (layer2): Sequential(
+    (0): Bottleneck(
+      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+      (downsample): Sequential(
+        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
+        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      )
+    )
+    (1): Bottleneck(
+      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (2): Bottleneck(
+      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (3): Bottleneck(
+      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+  )
+  (layer3): Sequential(
+    (0): Bottleneck(
+      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+      (downsample): Sequential(
+        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
+        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      )
+    )
+    (1): Bottleneck(
+      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (2): Bottleneck(
+      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (3): Bottleneck(
+      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (4): Bottleneck(
+      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (5): Bottleneck(
+      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+  )
+  (layer4): Sequential(
+    (0): Bottleneck(
+      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+      (downsample): Sequential(
+        (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
+        (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      )
+    )
+    (1): Bottleneck(
+      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+    (2): Bottleneck(
+      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
+      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
+      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+      (relu): ReLU(inplace=True)
+    )
+  )
+  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
+  (fc): Linear(in_features=2048, out_features=1000, bias=True)
+)
+
+
+
+
+

+ All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape + + + (3 + + + x + + + H + + + x + + + W) + + + , where + + + H + + + and + + + W + + + are expected to be at least + + + 224 + + + . The images have to be loaded in to a range of + + + [0, + + + 1] + + + and then normalized using + + + mean + + + = + + + [0.485, + + + 0.456, + + + 0.406] + + + and + + + std + + + = + + + [0.229, + + + 0.224, + + + 0.225] + + + . +

+

+ Here’s a sample execution. +

+
+
+
+
[4]:
+
+
+
+
+
+
+!mkdir ./data
+!wget  -O ./data/img0.JPG "https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630"
+!wget  -O ./data/img1.JPG "https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg"
+!wget  -O ./data/img2.JPG "https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg"
+!wget  -O ./data/img3.JPG "https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg"
+
+!wget  -O ./data/imagenet_class_index.json "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
+
+
+
+
+
+
+
+
+
+
+mkdir: cannot create directory ‘./data’: File exists
+--2020-08-25 06:25:22--  https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630
+Resolving d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)... 13.227.77.77, 13.227.77.154, 13.227.77.109, ...
+Connecting to d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)|13.227.77.77|:443... connected.
+HTTP request sent, awaiting response... 200 OK
+Length: 24112 (24K) [image/jpeg]
+Saving to: ‘./data/img0.JPG’
+
+./data/img0.JPG     100%[===================>]  23.55K  --.-KB/s    in 0.001s
+
+2020-08-25 06:25:22 (38.7 MB/s) - ‘./data/img0.JPG’ saved [24112/24112]
+
+--2020-08-25 06:25:22--  https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg
+Resolving www.hakaimagazine.com (www.hakaimagazine.com)... 23.185.0.4, 2620:12a:8001::4, 2620:12a:8000::4
+Connecting to www.hakaimagazine.com (www.hakaimagazine.com)|23.185.0.4|:443... connected.
+HTTP request sent, awaiting response... 200 OK
+Length: 452718 (442K) [image/jpeg]
+Saving to: ‘./data/img1.JPG’
+
+./data/img1.JPG     100%[===================>] 442.11K  --.-KB/s    in 0.04s
+
+2020-08-25 06:25:23 (10.9 MB/s) - ‘./data/img1.JPG’ saved [452718/452718]
+
+--2020-08-25 06:25:23--  https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg
+Resolving www.artis.nl (www.artis.nl)... 94.75.225.20
+Connecting to www.artis.nl (www.artis.nl)|94.75.225.20|:443... connected.
+HTTP request sent, awaiting response... 200 OK
+Length: 361413 (353K) [image/jpeg]
+Saving to: ‘./data/img2.JPG’
+
+./data/img2.JPG     100%[===================>] 352.94K   774KB/s    in 0.5s
+
+2020-08-25 06:25:30 (774 KB/s) - ‘./data/img2.JPG’ saved [361413/361413]
+
+--2020-08-25 06:25:31--  https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg
+Resolving www.familyhandyman.com (www.familyhandyman.com)... 104.18.202.107, 104.18.201.107, 2606:4700::6812:c96b, ...
+Connecting to www.familyhandyman.com (www.familyhandyman.com)|104.18.202.107|:443... connected.
+HTTP request sent, awaiting response... 200 OK
+Length: 96063 (94K) [image/jpeg]
+Saving to: ‘./data/img3.JPG’
+
+./data/img3.JPG     100%[===================>]  93.81K  --.-KB/s    in 0.01s
+
+2020-08-25 06:25:31 (7.44 MB/s) - ‘./data/img3.JPG’ saved [96063/96063]
+
+--2020-08-25 06:25:32--  https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
+Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.112.158
+Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.112.158|:443... connected.
+HTTP request sent, awaiting response... 200 OK
+Length: 35363 (35K) [application/octet-stream]
+Saving to: ‘./data/imagenet_class_index.json’
+
+./data/imagenet_cla 100%[===================>]  34.53K  --.-KB/s    in 0.07s
+
+2020-08-25 06:25:32 (482 KB/s) - ‘./data/imagenet_class_index.json’ saved [35363/35363]
+
+
+
+
+
+
+
+
+
[5]:
+
+
+
+
+
+
+!pip install pillow matplotlib
+
+
+
+
+
+
+
+
+
+
+Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (4.3.0)
+Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (3.3.1)
+Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow) (0.46)
+Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (1.2.0)
+Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2020.6.20)
+Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2.8.1)
+Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (0.10.0)
+Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2.4.7)
+Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (1.18.1)
+Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.1->matplotlib) (1.14.0)
+WARNING: You are using pip version 20.0.2; however, version 20.2.2 is available.
+You should consider upgrading via the '/usr/bin/python -m pip install --upgrade pip' command.
+
+
+
+
+
+
+
+
[6]:
+
+
+
+
+
+
+from PIL import Image
+from torchvision import transforms
+import matplotlib.pyplot as plt
+
+fig, axes = plt.subplots(nrows=2, ncols=2)
+
+for i in range(4):
+    img_path = './data/img%d.JPG'%i
+    img = Image.open(img_path)
+    preprocess = transforms.Compose([
+        transforms.Resize(256),
+        transforms.CenterCrop(224),
+        transforms.ToTensor(),
+        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
+])
+    input_tensor = preprocess(img)
+    plt.subplot(2,2,i+1)
+    plt.imshow(img)
+    plt.axis('off')
+
+
+
+
+
+
+
+
+ ../_images/_notebooks_Resnet50-example_11_0.png +
+
+
+
+
+
[7]:
+
+
+
+
+
+
+import json
+
+with open("./data/imagenet_class_index.json") as json_file:
+    d = json.load(json_file)
+
+print("Number of classes in ImageNet: {}".format(len(d)))
+
+
+
+
+
+
+
+
+
+
+Number of classes in ImageNet: 1000
+
+
+
+
+
+
+
+
[8]:
+
+
+
+
+
+
+import numpy as np
+
+def rn50_preprocess():
+    preprocess = transforms.Compose([
+        transforms.Resize(256),
+        transforms.CenterCrop(224),
+        transforms.ToTensor(),
+        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
+    ])
+    return preprocess
+
+# decode the results into ([predicted class, description], probability)
+def predict(img_path, model):
+    img = Image.open(img_path)
+    preprocess = rn50_preprocess()
+    input_tensor = preprocess(img)
+    input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
+
+    # move the input and model to GPU for speed if available
+    if torch.cuda.is_available():
+        input_batch = input_batch.to('cuda')
+        model.to('cuda')
+
+    with torch.no_grad():
+        output = model(input_batch)
+        # Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
+        sm_output = torch.nn.functional.softmax(output[0], dim=0)
+
+    ind = torch.argmax(sm_output)
+    return d[str(ind.item())], sm_output[ind] #([predicted class, description], probability)
+
+
+
+
+
+
+
+
[9]:
+
+
+
+
+
+
+for i in range(4):
+    img_path = './data/img%d.JPG'%i
+    img = Image.open(img_path)
+
+    pred, prob = predict(img_path, resnet50_model)
+    print('{} - Predicted: {}, Probablility: {}'.format(img_path, pred, prob))
+
+    plt.subplot(2,2,i+1)
+    plt.imshow(img);
+    plt.axis('off');
+    plt.title(pred[1])
+
+
+
+
+
+
+
+
+
+
+./data/img0.JPG - Predicted: ['n02110185', 'Siberian_husky'], Probablility: 0.49295926094055176
+./data/img1.JPG - Predicted: ['n01820546', 'lorikeet'], Probablility: 0.6450406312942505
+./data/img2.JPG - Predicted: ['n02481823', 'chimpanzee'], Probablility: 0.9903154969215393
+./data/img3.JPG - Predicted: ['n01749939', 'green_mamba'], Probablility: 0.35704153776168823
+
+
+
+
+
+
+
+
+ ../_images/_notebooks_Resnet50-example_14_1.png +
+
+

+ Benchmark utility + + ¶ + +

+

+ Let us define a helper function to benchmark a model. +

+
+
+
+
[10]:
+
+
+
+
+
+
+import time
+import numpy as np
+
+import torch.backends.cudnn as cudnn
+cudnn.benchmark = True
+
+def benchmark(model, input_shape=(1024, 1, 224, 224), dtype='fp32', nwarmup=50, nruns=10000):
+    input_data = torch.randn(input_shape)
+    input_data = input_data.to("cuda")
+    if dtype=='fp16':
+        input_data = input_data.half()
+
+    print("Warm up ...")
+    with torch.no_grad():
+        for _ in range(nwarmup):
+            features = model(input_data)
+    torch.cuda.synchronize()
+    print("Start timing ...")
+    timings = []
+    with torch.no_grad():
+        for i in range(1, nruns+1):
+            start_time = time.time()
+            features = model(input_data)
+            torch.cuda.synchronize()
+            end_time = time.time()
+            timings.append(end_time - start_time)
+            if i%100==0:
+                print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))
+
+    print("Input shape:", input_data.size())
+    print("Output features size:", features.size())
+    print('Average batch time: %.2f ms'%(np.mean(timings)*1000))
+
+
+
+
+
+
+
+
[11]:
+
+
+
+
+
+
+# Model benchmark without TRTorch/TensorRT
+model = resnet50_model.eval().to("cuda")
+benchmark(model, input_shape=(128, 3, 224, 224), nruns=1000)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 100/1000, ave batch time 162.87 ms
+Iteration 200/1000, ave batch time 162.92 ms
+Iteration 300/1000, ave batch time 162.92 ms
+Iteration 400/1000, ave batch time 162.93 ms
+Iteration 500/1000, ave batch time 162.93 ms
+Iteration 600/1000, ave batch time 162.93 ms
+Iteration 700/1000, ave batch time 162.93 ms
+Iteration 800/1000, ave batch time 162.94 ms
+Iteration 900/1000, ave batch time 162.94 ms
+Iteration 1000/1000, ave batch time 162.94 ms
+Input shape: torch.Size([128, 3, 224, 224])
+Output features size: torch.Size([128, 1000])
+Average batch time: 162.94 ms
+
+
+
+
+

+ ## 3. Creating TorchScript modules +

+

+ To compile with TRTorch, the model must first be in + + TorchScript + + . TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: + + Tracing + + and + + Scripting + + . +

+
    +
  • +

    + Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it sees. +

    +
  • +
  • +

    + Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do. +

    +
  • +
+

+ Tracing is more likely to compile successfully with TRTorch due to simplicity (though both systems are supported). We start with an example of the traced model in TorchScript. +

+

+ Tracing + + ¶ + +

+

+ Tracing follows the path of execution when the module is called and records what happens. This recording is what the TorchScript IR will describe. +

+

+ To trace an instance of the model, we can call torch.jit.trace with an example input. +

+
+
+
+
[12]:
+
+
+
+
+
+
+model = resnet50_model.eval().to("cuda")
+traced_model = torch.jit.trace(model, [torch.randn((128, 3, 224, 224)).to("cuda")])
+
+
+
+
+

+ We can save this model and use it independently of Python. +

+
+
+
+
[13]:
+
+
+
+
+
+
+# This is just an example, and not required for the purposes of this demo
+torch.jit.save(traced_model, "resnet_50_traced.jit.pt")
+
+
+
+
+
+
+
+
[14]:
+
+
+
+
+
+
+# Obtain the average time taken by a batch of input
+benchmark(traced_model, input_shape=(128, 3, 224, 224), nruns=1000)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 100/1000, ave batch time 162.96 ms
+Iteration 200/1000, ave batch time 162.96 ms
+Iteration 300/1000, ave batch time 162.96 ms
+Iteration 400/1000, ave batch time 162.96 ms
+Iteration 500/1000, ave batch time 162.96 ms
+Iteration 600/1000, ave batch time 162.96 ms
+Iteration 700/1000, ave batch time 162.96 ms
+Iteration 800/1000, ave batch time 162.96 ms
+Iteration 900/1000, ave batch time 162.96 ms
+Iteration 1000/1000, ave batch time 162.96 ms
+Input shape: torch.Size([128, 3, 224, 224])
+Output features size: torch.Size([128, 1000])
+Average batch time: 162.96 ms
+
+
+
+
+

+ ## 4. Compiling with TRTorch +

+

+ TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT. +

+

+ As mentioned earlier, we start with an example of TRTorch compilation with the traced model. +

+

+ Note that we show benchmarking results of two precisions: FP32 (single precision) and FP16 (half precision). +

+

+ FP32 (single precision) + + ¶ + +

+
+
+
+
[18]:
+
+
+
+
+
+
+import trtorch
+
+# The compiled module will have precision as specified by "op_precision".
+# Here, it will have FP16 precision.
+trt_model_fp32 = trtorch.compile(traced_model, {
+    "input_shapes": [(128, 3, 224, 224)],
+    "op_precision": torch.float32, # Run with FP32
+    "workspace_size": 1 << 20
+})
+
+
+
+
+
+
+
+
+
+
[19]:
+
+
+
+
+
+
+# Obtain the average time taken by a batch of input
+benchmark(trt_model_fp32, input_shape=(128, 3, 224, 224), nruns=1000)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 100/1000, ave batch time 117.05 ms
+Iteration 200/1000, ave batch time 117.06 ms
+Iteration 300/1000, ave batch time 117.10 ms
+Iteration 400/1000, ave batch time 117.14 ms
+Iteration 500/1000, ave batch time 117.19 ms
+Iteration 600/1000, ave batch time 117.22 ms
+Iteration 700/1000, ave batch time 117.25 ms
+Iteration 800/1000, ave batch time 117.29 ms
+Iteration 900/1000, ave batch time 117.36 ms
+Iteration 1000/1000, ave batch time 117.41 ms
+Input shape: torch.Size([128, 3, 224, 224])
+Output features size: torch.Size([128, 1000])
+Average batch time: 117.41 ms
+
+
+
+
+

+ FP16 (half precision) + + ¶ + +

+
+
+
+
[20]:
+
+
+
+
+
+
+import trtorch
+
+# The compiled module will have precision as specified by "op_precision".
+# Here, it will have FP16 precision.
+trt_model = trtorch.compile(traced_model, {
+    "input_shapes": [(128, 3, 224, 224)],
+    "op_precision": torch.half, # Run with FP16
+    "workspace_size": 1 << 20
+})
+
+
+
+
+
+
+
+
+
[21]:
+
+
+
+
+
+
+# Obtain the average time taken by a batch of input
+benchmark(trt_model, input_shape=(128, 3, 224, 224), dtype='fp16', nruns=1000)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 100/1000, ave batch time 62.79 ms
+Iteration 200/1000, ave batch time 62.78 ms
+Iteration 300/1000, ave batch time 62.79 ms
+Iteration 400/1000, ave batch time 62.78 ms
+Iteration 500/1000, ave batch time 62.78 ms
+Iteration 600/1000, ave batch time 62.78 ms
+Iteration 700/1000, ave batch time 62.79 ms
+Iteration 800/1000, ave batch time 62.79 ms
+Iteration 900/1000, ave batch time 59.37 ms
+Iteration 1000/1000, ave batch time 54.04 ms
+Input shape: torch.Size([128, 3, 224, 224])
+Output features size: torch.Size([128, 1000])
+Average batch time: 54.04 ms
+
+
+
+
+

+ ## 5. Conclusion +

+

+ In this notebook, we have walked through the complete process of compiling TorchScript models with TRTorch for ResNet-50 model and test the performance impact of the optimization. With TRTorch, we observe a speedup of + + 1.4X + + with FP32, and + + 3.0X + + with FP16. +

+

+ What’s next + + ¶ + +

+

+ Now it’s time to try TRTorch on your own model. Fill out issues at + + https://github.com/NVIDIA/TRTorch + + . Your involvement will help future development of TRTorch. +

+
+
+
+
[ ]:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_notebooks/Resnet50-example.ipynb b/docs/v0.3.0/_notebooks/Resnet50-example.ipynb new file mode 100644 index 0000000000..5d2602b891 --- /dev/null +++ b/docs/v0.3.0/_notebooks/Resnet50-example.ipynb @@ -0,0 +1,965 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright 2019 NVIDIA Corporation. All Rights Reserved.\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "# ==============================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# TRTorch Getting Started - ResNet 50" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "In the practice of developing machine learning models, there are few tools as approachable as PyTorch for developing and experimenting in designing machine learning models. The power of PyTorch comes from its deep integration into Python, its flexibility and its approach to automatic differentiation and execution (eager execution). However, when moving from research into production, the requirements change and we may no longer want that deep Python integration and we want optimization to get the best performance we can on our deployment platform. In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. TorchScript uses PyTorch's JIT compiler to transform your normal PyTorch code which gets interpreted by the Python interpreter to an intermediate representation (IR) which can have optimizations run on it and at runtime can get interpreted by the PyTorch JIT interpreter. For PyTorch this has opened up a whole new world of possibilities, including deployment in other languages like C++. It also introduces a structured graph based format that we can use to do down to the kernel level optimization of models for inference.\n", + "\n", + "When deploying on NVIDIA GPUs TensorRT, NVIDIA's Deep Learning Optimization SDK and Runtime is able to take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family be it an A100, TITAN V, Jetson Xavier or NVIDIA's Deep Learning Accelerator. TensorRT performs a couple sets of optimizations to achieve this. TensorRT fuses layers and tensors in the model graph, it then uses a large kernel library to select implementations that perform best on the target GPU. TensorRT also has strong support for reduced operating precision execution which allows users to leverage the Tensor Cores on Volta and newer GPUs as well as reducing memory and computation footprints on device.\n", + "\n", + "TRTorch is a compiler that uses TensorRT to optimize TorchScript code, compiling standard TorchScript modules into ones that internally run with TensorRT optimizations. This enables you to continue to remain in the PyTorch ecosystem, using all the great features PyTorch has such as module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning objectives\n", + "\n", + "This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a pretrained ResNet-50 network, and running it to test the speedup obtained.\n", + "\n", + "## Content\n", + "1. [Requirements](#1)\n", + "1. [ResNet-50 Overview](#2)\n", + "1. [Creating TorchScript modules](#3)\n", + "1. [Compiling with TRTorch](#4)\n", + "1. [Conclusion](#5)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tue Aug 25 06:25:19 2020 \r\n", + "+-----------------------------------------------------------------------------+\r\n", + "| NVIDIA-SMI 450.24 Driver Version: 450.24 CUDA Version: 11.0 |\r\n", + "|-------------------------------+----------------------+----------------------+\r\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\r\n", + "| | | MIG M. |\r\n", + "|===============================+======================+======================|\r\n", + "| 0 Tesla P100-SXM2... On | 00000000:06:00.0 Off | 0 |\r\n", + "| N/A 37C P0 43W / 300W | 891MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 1 Tesla P100-SXM2... On | 00000000:07:00.0 Off | 0 |\r\n", + "| N/A 35C P0 34W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 2 Tesla P100-SXM2... On | 00000000:0A:00.0 Off | 0 |\r\n", + "| N/A 35C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 3 Tesla P100-SXM2... On | 00000000:0B:00.0 Off | 0 |\r\n", + "| N/A 33C P0 32W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 4 Tesla P100-SXM2... On | 00000000:85:00.0 Off | 0 |\r\n", + "| N/A 34C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 5 Tesla P100-SXM2... On | 00000000:86:00.0 Off | 0 |\r\n", + "| N/A 31C P0 35W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 6 Tesla P100-SXM2... On | 00000000:89:00.0 Off | 0 |\r\n", + "| N/A 36C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 7 Tesla P100-SXM2... On | 00000000:8A:00.0 Off | 0 |\r\n", + "| N/A 34C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + " \r\n", + "+-----------------------------------------------------------------------------+\r\n", + "| Processes: |\r\n", + "| GPU GI CI PID Type Process name GPU Memory |\r\n", + "| ID ID Usage |\r\n", + "|=============================================================================|\r\n", + "+-----------------------------------------------------------------------------+\r\n" + ] + } + ], + "source": [ + "!nvidia-smi" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 1. Requirements\n", + "\n", + "Follow the steps in `notebooks/README` to prepare a Docker container, within which you can run this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 2. ResNet-50 Overview\n", + "\n", + "\n", + "PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our ResNet-50 model from there pretrained on ImageNet.\n", + "\n", + "### Model Description\n", + "\n", + "This ResNet-50 model is based on the [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf) paper, which describes ResNet as “a method for detecting objects in images using a single deep neural network\". The input size is fixed to 32x32.\n", + "\n", + "\"alt\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/pytorch_vision_v0.6.0\n" + ] + }, + { + "data": { + "text/plain": [ + "ResNet(\n", + " (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", + " (layer1): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (layer2): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (3): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (layer3): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (3): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (4): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (5): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (layer4): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n", + " (fc): Linear(in_features=2048, out_features=1000, bias=True)\n", + ")" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "resnet50_model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet50', pretrained=True)\n", + "resnet50_model.eval()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All pre-trained models expect input images normalized in the same way,\n", + "i.e. mini-batches of 3-channel RGB images of shape `(3 x H x W)`, where `H` and `W` are expected to be at least `224`.\n", + "The images have to be loaded in to a range of `[0, 1]` and then normalized using `mean = [0.485, 0.456, 0.406]`\n", + "and `std = [0.229, 0.224, 0.225]`.\n", + "\n", + "Here's a sample execution." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘./data’: File exists\n", + "--2020-08-25 06:25:22-- https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630\n", + "Resolving d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)... 13.227.77.77, 13.227.77.154, 13.227.77.109, ...\n", + "Connecting to d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)|13.227.77.77|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 24112 (24K) [image/jpeg]\n", + "Saving to: ‘./data/img0.JPG’\n", + "\n", + "./data/img0.JPG 100%[===================>] 23.55K --.-KB/s in 0.001s \n", + "\n", + "2020-08-25 06:25:22 (38.7 MB/s) - ‘./data/img0.JPG’ saved [24112/24112]\n", + "\n", + "--2020-08-25 06:25:22-- https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg\n", + "Resolving www.hakaimagazine.com (www.hakaimagazine.com)... 23.185.0.4, 2620:12a:8001::4, 2620:12a:8000::4\n", + "Connecting to www.hakaimagazine.com (www.hakaimagazine.com)|23.185.0.4|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 452718 (442K) [image/jpeg]\n", + "Saving to: ‘./data/img1.JPG’\n", + "\n", + "./data/img1.JPG 100%[===================>] 442.11K --.-KB/s in 0.04s \n", + "\n", + "2020-08-25 06:25:23 (10.9 MB/s) - ‘./data/img1.JPG’ saved [452718/452718]\n", + "\n", + "--2020-08-25 06:25:23-- https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg\n", + "Resolving www.artis.nl (www.artis.nl)... 94.75.225.20\n", + "Connecting to www.artis.nl (www.artis.nl)|94.75.225.20|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 361413 (353K) [image/jpeg]\n", + "Saving to: ‘./data/img2.JPG’\n", + "\n", + "./data/img2.JPG 100%[===================>] 352.94K 774KB/s in 0.5s \n", + "\n", + "2020-08-25 06:25:30 (774 KB/s) - ‘./data/img2.JPG’ saved [361413/361413]\n", + "\n", + "--2020-08-25 06:25:31-- https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg\n", + "Resolving www.familyhandyman.com (www.familyhandyman.com)... 104.18.202.107, 104.18.201.107, 2606:4700::6812:c96b, ...\n", + "Connecting to www.familyhandyman.com (www.familyhandyman.com)|104.18.202.107|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 96063 (94K) [image/jpeg]\n", + "Saving to: ‘./data/img3.JPG’\n", + "\n", + "./data/img3.JPG 100%[===================>] 93.81K --.-KB/s in 0.01s \n", + "\n", + "2020-08-25 06:25:31 (7.44 MB/s) - ‘./data/img3.JPG’ saved [96063/96063]\n", + "\n", + "--2020-08-25 06:25:32-- https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json\n", + "Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.112.158\n", + "Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.112.158|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 35363 (35K) [application/octet-stream]\n", + "Saving to: ‘./data/imagenet_class_index.json’\n", + "\n", + "./data/imagenet_cla 100%[===================>] 34.53K --.-KB/s in 0.07s \n", + "\n", + "2020-08-25 06:25:32 (482 KB/s) - ‘./data/imagenet_class_index.json’ saved [35363/35363]\n", + "\n" + ] + } + ], + "source": [ + "!mkdir ./data\n", + "!wget -O ./data/img0.JPG \"https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630\"\n", + "!wget -O ./data/img1.JPG \"https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg\"\n", + "!wget -O ./data/img2.JPG \"https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg\"\n", + "!wget -O ./data/img3.JPG \"https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg\"\n", + "\n", + "!wget -O ./data/imagenet_class_index.json \"https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (4.3.0)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (3.3.1)\n", + "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow) (0.46)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (1.2.0)\n", + "Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2020.6.20)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2.8.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2.4.7)\n", + "Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (1.18.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.1->matplotlib) (1.14.0)\n", + "\u001b[33mWARNING: You are using pip version 20.0.2; however, version 20.2.2 is available.\n", + "You should consider upgrading via the '/usr/bin/python -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install pillow matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7BlSX7fiX0y89jrn3/lq9r3dE+Pw2AwAwwAggRAI3JpxKUkhihxQ0GZ1T/6S/pzQ6FQ6A8p9J+kCCm0sdQuuSRFBwWWhCHhBmYwvnumbXV3VZd9/l1/7zGZ+iMzzzn3VVVPD8SanQpVdtd79517TJ403/z+bApjDE/L0/K0PC1Py4+nyP+2K/C0PC1Py9Py/0/lKeg+LU/L0/K0/BjLU9B9Wp6Wp+Vp+TGWp6D7tDwtT8vT8mMsT0H3aXlanpan5cdYgsdx03/8B98xs9ms+lsIgRACACklWmu01ivX+HOEEBhjqn/N40IKEAIpJUaDLjWFLklaHcIgwlASqIA07ZAkCUEQoFRIGAZIqRDSoBRICVDfWwmBMRqtm88zKCkIBEj32ddzpRgDBgQ0f9Rfu0MGKAHjzrfnnTm34Ulin2NAmOpGxt3IGENpsG2gqdpJSgECytJQZjlFUZDnOQII4xgB6LxguVgwzzNKo/FPPPNWDxZTn+PboNkWv/TShR96i6flaXlaHhPoKqUIw/Bjv1dKATVg+OI/N0HXHzfCHtdaI5BIKVFSoJQiCEOkDAjDkCRJCMOQILBgK6VASgiVBSYhTXVPKQVCQFkKlAKBQAqBkCAdiAoBCPFwYBKiAtWz3nf+tYwx9R+NYt+vOhshHrzHo4oQYBww1wuVrT/agDaYoiRfZmitMdogpaTIc7Ii55O6CvrzBPXit3LcLYJPy9PytHyy8lhA9+MmYRNgf9jEPzuhjdEr3xljHEhKAhWgAoijmDAMCcMQpRRSgpCgpGW4UhgExoKq9PcCI8FBFhJ7jvv2gXo1v1l5g7MkuHnoDPCaxmFbBw9iZ270iCYSD1kEtDYIY9BFgS4KijzHlCUCyJdLx5CNY7ifDHQFdlHxoLvyfNc/D7D/p+VpeVoeWR4L6H7cJGyy17OgK4SHOqtGEEJa0BTCsltLde110kKaUiFCSJSCSIaEUhEqQRhYFiyEE72FI6UCx249g7bArQRYAb4Soi0AOzA0Kwj6Z2oVqymo0LaBp6IJgWfB9CEPPdO+XioAKIoSnecUeU5ZFNV7ag+4uqy1G40nVADauK/WFpzPAm5djYcff1qelqfl0eWxgK4vTd3tim62obc9O2ntdxZkg0AgpXKivUZSYoyuAMZoQxApVKCQUiKlQEn3uQIEj3QCjAV1rY0Dc0dArbYUIVYZuhRexfAwfav7/Anawb7T6rlGeHj1VLdmvU3RvTr/rFRgHjxmjKEsC6vLLQu0MWAM2v0r0I22wDHYuo5KKZqwW1Ku9F/zeU8Z7tPytPzZymMBXWMMRVFQlmV9UNQc7qze1hq8VKUu8JNbKYUMI0BgygLQmLJ+BsLqdQMVONCVSKUeUG94PbBBVjpcnApBSqz+4SHitmGVRVZ1d7TXiOrVfmh7NM96qGBvmh9c+/iDZ8AYrNr2QR2ycOoAAYGk1CW60BitLdyKVeRfWQQabV49Q+sHwPapDvdpeVr+fyuPBXTLsmZInlQB4JjtWc8FrXWDORkwAiEUQZgQJwlaa7JMUJZlBZgajXDXCKyR3xrWJKIhomtjKhiTFaO1F4gGGxaOEfv7aYS1R/mXACQCuWL8cq/FDwdeW+dHqWhF46evoAXdJhZrI9C6UgI7pt4AYqcOMAKkVASBoTCGotKFP6KWDouFgSBQVR+Vpaz6qulJUlfzKdN9Wp6WH7U8FtBdLpeA08WaGjqEkNXEPQu8vlgRWaMChZDKeR8otDaYsqgs/sYIhFJIpRz4WotZiUEYbYFblxgHrp4AutOQynopSGpPr8pCj2OSeJcsJ143DG+ChhEMeJhhakU9QMNT7OOsbyuN4YDXiIZ7WF2H5jPKsrSLnTtBCgFKWbaqLdt92JO8ikMIYQ2QUYgQgqIoEA2dsH/WWeB9mjDpaXlafrTy2NQLURRZsd4YtGNaSiqUlA5YyxWRtulCpmQtwla+tEpRqhCDoCw1UlpgjuOYKIpRYYQIAoQKQFnRX0hpvRUqS7vzYFACKTRKWHvcGZ7Z0K2C0XbhqEBOWuquVhwMzA9luh7M/ywgZRqqBK2tTttLBt7tzatnmnpyL3F4dc9Zv+eqbk5KCMPQ+jMLLzUojPKGxFU981kV0dPytDwtn6w8FtCNomjFWKbdby/+Q83MmqDanMBBIGmqDoUQqCBwIKMRUhAnMUmcEkURKghQKkApiRSglEQp57XgrpdCO+OYQXmWe8ZFywBaOHZprHrCG96MsSoHf6LHLdlQodjbiepe9Y0/iZPWKnh7MJcCtPB10ehSY6RGKGn13kKglEQIqxv3BsymPrYC/LPuX8KBrqr9mf0rSCVQqEaF6rc8y+Kflqflaflk5bGArg1KkDXoOrbljwshbKRUgzX587XWKOVAM1AEDoyjMERg0E6XKaQijhOiKCIIAoKgBo0gUCjvn0vNyqQLeBDOVcCsGIlqPar2In2TqRuJ0M77QTpANIBzc5MNtGwCpwdh/Qg2uGqkqmvhrzVeL+G8FYzWlHlOYQwyCCAGIYKG25d/V1ktbFaKWLW8nWWs1ggpG2oL61pnjHjo+QIbIaiceudpeVqelk9WHivTBR4A3bM+umcNNP5zEISEQWiTQzirvJZWDwuW9YZh6EBXuWAH+33gXL2E/+0woekOZURlOnNYZKrfCLESYmsc2/WGK6GdbtirDPD6WmF54SNc4X5YuJkx3pXsQY8HAEqDKTW6KMmyDBk4VUBj0aqe1WjLyuPgES5fXtKwXiQWeO016kxodFO/a+r7PAXdp+Vp+cTlMYFuSGVeMmC0xhjLXhEP99FtqiMQomKutWFLI4RxIbrSqQ9krUaQNcjQdI0Sq/f33goebI1uuF9VzrQWZP0/i8XGGukk1tPBrOqKjaxZqnTnn9FcsBIQYZqHLdq6Zcibtmz93G+rVijRRUlZFPaz1hQqQDo1QxUIoR/Uw0ohQVgVTxAE1lDp2hYhUNKrKuziEgSyMtyZhirFnr7iV/EUdJ+Wp+VHKI8FdOMoAqgYotG1TtcfF4EDYVdWAgMkKCmde5bBmBJjChsg4RiakpJA2kgyiWOxxgKiEQZtrOsYpQfjmvHaoAHHZDWU2lSBBI7OWj20Ng1y6ABMe/QpEY5ZSyWdasO6hUlEA6Sa7PYMc3U0WTvdsdFiBdxwPstaa8pCUxQFRZFTlrlj/1DkGTJXeD2rELWxDaxHgg+fls5AaQ2X9bPsmfZvJepaai8NnF0phA8neXLLv/5H/3tjnGeNqRZD517oX80fdyop27uNL10frBhiXZvVx2uXxWpRbZINF6HSvBPggnuk9a0+a+yVXkVmJTa7wPu5ZN9JVT41tUul9/yxmUvcfa2OzLWBc500tZpN4vvfYIxGVHYXe2eNbg4Q3AzEVZtS2M/akxmcYRqDNgIjbKSpFp4kuPeo7mmciku7RpT4m9u+0a4V6xZGSIwp3XE7I42o6+R6D4NGYtvD1tragzTY6FfquSEBIyTGSIQoMca2ocFFWbn2qOsh+O//vf/soZPksYBu4nxrLTur1Qsrhh0pKq8GOCt5G4SwBiLb9bbBm25STY8He72p76PtYJLOH8yHAmNk3TXeUKZtVi7dGExN39QmaBrTNE55piudV4RAKpzhyx5fqfNDJqsdUE5vXOpqEXBnuWs96JYUWUaRZ3aSuZcrnWeCcGAKxkkI0i4KUoKpo+u8+5wU1JWr3nM1BNkvUrVuuaEaEuJMnz1ZxYNK82/lQIFq6hh8lre6dawkJc5kRW0aJs+KM5VbHnbi2iIRQlffCyEbz6wnrzDWE0dR+4xXajLhAcN2jXTgFlR6eFmDQ1V1gRINPVZVA/eGXoXmztUOiGsPHeGIkLWJCCMxQjsQrJcO42BNIiiFvUsJCDfWjDcsG1EZrm17eUw4Kz0JN/5M9edqgwvbpl7ZJyQ2r5+ohne9sFoQ95Ko7WIbIKUNSCQr88GpNA0gRenaRGJEHRNgViv1seWxgG632yXPc/I8pyy0jfd3KoYKdI1AViI1K4PAApdECIURxrltgXH+uEpa0dhojWkY7JrAW3lFCGvw8XrKaoRiAVc7wNXaiuuly8gF9crvrzPGsQtTMyLLVFxQRqXnFb6f3HM9qzfumJ82jsmW2hq9CkOel5Xngb9WGwu6uiyQGMIgQEWx1b+6eGallG0XZZwe23lxSL+Ge5hwE4vaDa5aWswqs7dMos5gVg1e46ZGUzp54pivZYNlNRVrrmJBoTrNQlI1t2vA8izVL6SsfHSszV/TAF7fByBtWtFmtdzYsH1USyDey9qCsEFWgFgDvhAOkIVjqNSAa6tRMz6BBTthLFBZANXuRI0xHohpABM4HmjrUdVcYIQi14oSUEiMyQlk6d7BuDHoFjVjKmhtLvhVR6wAabN13DHHkKtOqhqrkSsEAOXGuQf6uqctKOuqLwy6AnXtZAGwajk7192SYpxULbQdQaIeK8KTQyNX+/RMeUxMNyIMA4oiIssysiyzTK4S6x2hN2cb2lVeNLNXGbQU6FLWDSqcOGCT6lLiY4NlpZv1zLp0oCuFtGJZpffUNViXJVqXFEVh1SErTKXW3XqPhrMGq4e5YjVz3EolCENVeRZUUXAVoNlouzzLyYsCm1/CPt9rPASSIAyIopAosjmC7bhR5IVmsViCKdCmIMtz8qxESUOaRqRpShwpklg5lmPQqApky4rN1QzOLjAeHEQFun7htHW0K8ujPDN+kkvF4kwFj9UwFI3XEY7mi4oUeDYnaknGeInLI25j6gvHrDxIu+koK8C2jNe4yV8BPLWw6q+S1XfKAqKwgCndWLNisV1gqyd51mysxCiRLkUqyCZz9IQFKlLij9cQKNzybdACChNxUq7x0WyHo6zL/izGFAU5AlMuWQ8XXGrt88zaCZ1gau9i3Lsaz4U9RywxRmHVBY7h+2WlWugsSPpxV9sW7EJUtZjxoEj9Tu4pvj/9nPV8wRiBFFblYZvNzQXhOK45qwCq11l7XmPhODOGzpbHlNrRi90WhLTWlKJEOFVDvTJ7EaJem2rvBesGhsCFpBaUZYEdpAoppNNLaYTGMmKjLSvWpsr74AFcSolQTaCr1R66tCyyyZgfHnUlG59pnOtUEvXC7+afravStk2ak9NQVPfxzwqjgDgJq3bxKhrv+RGGgXOls4NhNJqTLa2uF6HJsjn7+4cMh2MwgtPJlBs3bnL54iWyRcaVq5d5/pmLnD+3TiBroC2NZu/+Me+9c5cvfflTxEmdC9mLfZ7d22REfo7az2Vzkj4hRVe/a72laKpMDJU+VTqQscxHuAklqolphCdbdZY8b8vV1Tz0agDhAFw05qgFAwuIvi0dUBvjawi4SMOKCFhW5Zm1rWKtIpJuofA5TWo1R40KDntqrrmiS60XI9sUplogpmaNPzx+hbcna9ydaOI8oxXAUodMspz5MkDrHvNlQl9s8xeunfJzl28RyMzpWz3k1uzVAq+smHHFkr1upFn/Wg6o7uUD/UUFuMbNQ3utEdQEwQO46wYp/P2o+sWqkajayxJFWV1fae+9eqW5PnzM2HtMqR1NNaZMYBOaa21A1MEQ9rwafL0rGEAYhsRx7FzBLJhqrcnznKJwSmxhRTNhR6vTi1oPg6ZlvQmkpvQ6Hut7aypjmQNoaQ103uAksACuS6t2sF4BtWHEv4MQhkDJFYZesVxpAxdsTgNVjXCtvbpBVBnR/LXWPxb8wDfG1AEQygaW3D8YMhpOWRu06bZguchYLOd044CLz1/j+PiU06NDXr52mc9++kX27h3wX/7jf8rGzjZf/urPcunCRYbDER/dvEk2W9Jqxbz0qecJw9oLoqpD1ZjNBah2qys/doj9pJamOqoWK33P+glEZRiz5pSmuklWk9zeT+BA0i2aRjiQNP57J/RXk7I20Hjg9dKGvYOsUot63S3U9ZFugtdA30BQe8i/TQ3+1SlWnWAX0jpEvAlnYCq1SgVcRjLOY753cI73T0O+tT9hOlmSRAGZEIQG0sCwKAx6OWOJ5ChT/D9+cJ4fHHX5H77yDp14QmWEc8CIM0vVAKqopFn/3sYvOE79Iex5lZoADUL55nY4XSlZHJh7hrwqebgRsUK2Vs3FHmB9D8hKCgWLYdb2JNwrPTzNATwupuspvDNgqSAgNAKTLSlMjgqVBSKXEcznZPCvppQiCq13AkJikJTGBgOoPKfUutZhenFOG4pCQ16gi3p1FG61Wu08Ay4XgRAgpCQIZRXR1hT9dWFcOG1J0VAteN9YpWxQgaqCC0RlpKomYwNYV1zjVsRY/722E03Y1d84ZhUaKKXheDjnjdffpbfWY2e9Ry+WmLJkmS9Z63ZQ/R6T+ZyTowOe2d0hjkPK+ZytzQHzyQnvH+xzcO8GG7uXGU2XXN4a8Ct/4RfY2d2i1Y6IleMZbsn3CYMcTcN3kjB1foonT7lgJ5g3tVSCqBHOeu04q2sDz2IrvV5FEpxe3DFXbwTzXK0ilK4PPUdbyVospIuMdJBqqJ5jWa4HeAcCwul3jQUZC76+zzyfrVUC7iEO7hsqBNfHVowXjvI62HPz14vVSEGpYTSBd26OEKFmcfv/zfXvlWTqZbLoWTKjSWTOX10/ZXF8g4Fo8WvJF5iKFBOHFAa+drfL6fRF/sEXrrORnkKjnlb14aUprFfDSn2tlGsXy2ZWwFpv7GSLql+acFq1hNPveu8EiVUz+QWqAubGlbaOsvq+Bu+6HlZb7dQQDT3vw8rjyafbeKKQWHHYDd4oCl06Rukc8a3O1XNIQR3g4N3BtBAoIyiFIZBRxfxkA6i1AaWMBeOipCx1RVe8catallyRXt8rqfI9rJxiqLwabAYv/1J+cjgVihSVvlji8qv78/wEWhE5zuizRXW6W4D8ANBIY11eNIL7+2P+8Jvf5+T4hF+6vEO/HaPQZIV2O2cohicndHo9WmHA/+ef/wte/exrfPrzn+ajmzc5PthHl5qPPnqPK5cO+Wt/5++wNehy/94tBoMW25sDFM3salRtrMG5KrniA0R0432fpGKgrJh8xUGt+FkxIcdYcYsppmoPW7yRxU72SjAX9jsvyQg8K2u6E3o9II0nCcpahHJHvHiL+2Qaul1RfbakrqGDdwazFV1t9TQcG/Ocl5rR4q4xVQQQh8cLbtyasjZY49KFCzz7wvO89brmp+/8Gtfvf5O3j6+RBDN2VZ83bn2EWNtmcv27/OKv7PAv58+gc4GRbUy54M3TmP/Tn36K/82X3qCbjmnuBlPTIu0WA+oFwb+FcGcKqjkkMOClQ+MNZ/67GkabR01DlVTZWKormnzfX1cz3YpxN5axapETteLqUeXxJLzBA4hlDkElPoe2gkKi3BY6uHOsfceBk/S+t3ZCK6xuTAqBdg0kTe0gooXzByyF1fcGEl2CZ7pQN6wFQte8wjarEqZ2pzpTtG9asxrxJZrvSDUnqH/5c011rKlcr9SgZx7ZnNSeFWkER+MZ3/z+u3x48yN+6atfYLPfIlKCPCuYzWaU2jBfZHTaLe58dJM//J3fZTgaknRavP/+B/z+738NJWF4fMTm5haDzTW0XvK13/0WX/7ZL7O7vUUS26AW/26ejHvGrrG6aW3A67ikXH2vJ6UY4/1uDQqq/eZqo5l3KRI1EDnGW6/fxulhjQM84WmaY6eec2oH3O68+gjuEbYIN64bKg3v910zKrkCHk4z2TD0UTNUanZr2Z1nkk4+EV61INyZ9blGSMyy4HDvlKPvfMTLUcTkT7/Nsij46Fc+x0ayxn/69/463/3eH/Ivv3vI3nBOb3HA94+PGX50g+fW21zK7jMYvMLQpOjh3Ga9KwU3juD/+c2r/C++/A5RsHD5TPyzdQMQzQooV4BoBJbhej25Z+ymHrfO/7daYar7i6otKiml+rbmt6L6q1bs+LlRjQNjXVurJN/g6vXxwUKPBXSdM0VtRRWGQFovBN9w0vvR4vxHm+zY/RTgwmodALv2NsYZ66rnuYGq7DNKI2qbVXW3M4AmvOHBA/gDRBj36Lo0d5ao2KhfBb2IIlaubK6SStRro6b2WV7RHFXsy2u5BIfjBV//7ntc//AGLzx7nvVeQiil9d0tNIvlgnarTzuRzJZjZtMx33/jde4fDUn/5FvMllOW2ZzlYs5seEqr20ZEbb73+jtECJ594Rk6aVqBgHF6auOi8Yx2/SbqnMDataGsl/gHG+8nuBhROhy1wGUMSKGrPvSj11u3lRB+lWZFQSAcTxXa+sm6Y1a95sGsMSqqcWN/ejWFB9CaZImKFIBnbLhxUfOxknoc4p5WOfs3B6+B+m7OK0DXblDeAOQXF4lAfv8jvvi7f0w62mN6MGbeanH/8jny/iZhWnB660Pi/Tv86tU+v/52hxFD/u7PtZllc346eYXfiq7RKjOKokSuhQxNjB4uAMk3T9f49Xcu89devo5wC5yuXA+9l4KveD3T7eJF9bdDQNvK1fzU1cJJhUJ2HvqZVTGFlWHrodf29YoMJFzYKT7oApwFv2pxT5NWqvyQ8tjUCx4cPVtD1oMGqHLZgn1/n2PB3QD7oqJi68J9Xa1X9cJesWLjDjZ9SJtFrHxusAzhn994/Mrf4sFGFM2PYpXtuRXUiNVqGC/SGTt8KmbRsP4Lt4IXWjCd55yMpnz9Oz9gOJlzbmuNZ69copu2EMK6mS2XS6RUJK2Q5XLOnb37/N7Xv0nr3FU+++oWeVEitCRSEeeuRpRakrR7iChFxR3SJEBGXZvH4UyzVbkl7PysJmgzc5yVDp68MOCaSQm78DqQ8lnpvA7XLjb1hFJ49ukjuxzQOb/WpnjvLS0Cl5OjsahZNimqZwG1IcypmEzj2cbUS7Of4DYgwou9ZnXYmhq/ve6gAtYK2BxYeZ9bx4CFEciy5Oof/YDd4QFsXaN1paCdbnD15c/w4Rf/EipNiYKAsfw/svfOG+jwS9zQM8Yn99nd2OWN8hLLuSLsCXaCgmkQMc8zloEGbE6PX791kSvpAa9eOiQI5Eq9bJSQZ6ENtml01V4NEQGvy60XuNrvtlYBeVBqinBepmggpVhxuqsl4Ia/tQVXHx0nEaKwLm84cP8Yj57Hpl7wq480dXrFphpT+ndwxbvAgGXG/szmTjorbdwYhAbBinHCn8PZQzXsVwKEH6Efd6142BdnmHmTJjfdyqpDxrpWuQO6gfLNKpRI5rnmw1uHfPt7b3E6PGYyGXHlykVeeu4KW2t9Qul3drBizWCwRpYXvHv9Dn/wx98m0ykbu1c4Oj7EGMPOuXNcuLiFEoL3ds+xv3/IzqUrzOcFk0XGG2/e4NlLu0Sy1mE95FXwPsUr32tvXHyymK7wk9QPMAHC1LFI1mug3plEimraN1J5Os9X48NJ/cKkGxPdFi0MCOkmXK02qKexZVcVLzPuemNVZ4F7utf9Ao12bwjHxpujHHXxztU05tXKcHfuWRUeucVgPmPxrW+jn79EMp4Rr19hSYn43u/x7XxOvrFBmkruvn2d1+92mYU7FMll7uqCu2FKLxKslxPaizFzJGGR0Q66iEiyREOYMivhn33wPM+em9OWEyuqe2C0rXam17zcqGsCgGe0UBmx7BcrJG0lxHilETwAN45Vi58/ZM5cI3D5BdxzDFJBKQvI5ZlrHiyPx3uhMkvYjjYOdUWlgK7XMP8KEq+XEmeYHyvzuYIpUQOoXD3lgbICHJWBYpX3muaJTfxcee7qIH9kqSabndjaCOd07a3SjtW45xa6ZDxeMp1l3Lx7xPWbd7hz5x5GFyxmQwaDLjsbfdZ6LUIJs/mMKI4o8pLMSPb3Dnnv+g2uf3gHrVpMpkfMxsdMhqfErZTBoM1Pf/7TDHodOu2UW7cOee0Ln+YHb97g5vWPWBZ2GyTdWOCaDV4aXGy8qJIDVUEmjvU+qaXmrWZl4ayBV6BEDb5+bmrhmK2pxXjvmVL78joO5b0eKpD1IQb+tyUcfhybxjhBgKoMRlWlG0zWNGdbBTj+dz1k7eLombkwK6Y/Vl2cDGW7xclmm96Ht9jsxIRFBhsdTp9bR8j3uf8n/5aTsWI4URTn/xrdQNHqrFMcnSKXS0ycUBAwoKCjCu4azdQIkk4LjSKmZCkD7i4H/Kubn+HvPv8NBEWlbzbex7iWA6hnf81QESW1uqei8u4eZ8lAWelxhWi0kbuuXiSdHOONeWbVU8F6J/gxY59RFAIdztEdTWS6tNqdR465x+Oni3eNMfVgbQxCoF5NcM0p6uOi8UWzySpyWIkG9f0+lmf5xVOssrSzxTzkLk1uXD9HPHDOyo2rfpd23zH3vUFbFyUhyDTMZkvu3zviO6+/x9f+6NtEacIim7K+3mc2OeXk6JC1QY+rl3dJk4gyzyiUYlkWTIYLjIasKJhOxvS7bX7qs6/w3oe3OD7YY3tnnTQJWFtf5zMvvcSLly8hleTalSv0+5u8/NxlDu6NmPVP+at/7gvE0lBQW8Kbi74X3DzLbWZsqwxrT2CpXbhWXYcCRCX6N6e4Bzevg/TBAyWe/ZpKPyw8cALepcwDg3cDFI48OE5NPSGsF4VqqNusB0StZmh6G1TQ6fRq/r/KkOQHqKAGNWGcT7/1lq2kegBdgAyY/8//Fh/+n/8RwXJK6/AjbhcD7vzP/iPO5Queu38ARnBddvnXh4eMr32WhIJpHDIzEWvjY5RZMGNOphT3By8glguypINqhYRhTIogTiS3FhE/OHqJV9bfqMhUPae8GqapPqnbpY6apL7Oz+SVEN1V2lSzYqiXL98DFsibWkVvIwUaLmtixVdX5S1EOaccHLFMfsxMF2oglX7FbiIsnt3aT7Ixy+vjVMzfg29Td7qqg/n4ulgl+8ecVonM9T2FaMbFUOljH9aU3gjnrf314LDpKEsjWOaa6Tzj+GTE/b0jvvPdt/n617/F/t4+QaQ4d/4C7RaUImP/zk2SWCJNxmR8QreTEAUSnRfMWXA6GTv2XLK9tsa5zTXaaYtAKr746RcZTn6GKIk5OhkSxgkb/RZpZCg0LGcLBt2U9W7KZz/1PL/8s59hvZcCxhmCVhlfjb7unVboFvjkKE9a8RKUMk4ag8oDwfu72n617SEFNsOcU4x6IqFFnYjGMyctfHpPnEhf+wdoIQjwIC0QxrpHni2ymgUNiHELXaV/baJCxRD93847Y0XCMpVvNRVAg/fJNRWvFBbBr11h8p/9T3l7/4D+0V3iO/fQCFQYE196kUuHP2CTE95Pj/ntvGQkBDpQFJnVdx/JFunwAxady5j9OxTE6O4OYgmpglgWXGkJBrHi5vQaF9t7dKN7FTP372aDQJxKQQgwZ9UOVY9SgSHGRev5+VsrIQWNH16/S71QrhI6YRvLNGf2igixUgdRxnCiyDh+SB1teXyg662vDcD1zN9HxVhgrkUv3wYPmfL49a8palTkeAXqHlKXR3yuniGaHLduTOHEhya786dIb2EVEkFZueNoYL4oGQ5n3Ll9wGi85HA05vbdexzs7TE8PubNN94g0wW9tT69jRYvfPo12u0upydHsJyTL5dMTkfsbG1wcnrM8dEB589vk4UBk9mM3BgOj0/pD3qs97u0w4BAKQSCJIhY725QGs3RvT3+b//Xf8iLLz7P//jv/U2Wy4zFLGNrd4PppGBjrc3l810/qh/q+iWEQK0wB4GRVNFoT2wRLv1hteALG/0ILi2iJ6ieLfpBK6qgBS1xuQ6oGShe4rQAK919rNHLkQVRxzrVkoWsmJcwZ0dpTQY84NZagzMilqgDeGrWp13CHDtPhF9oTM2K/T0rtZ2xmQ+CtS7Z2oB9nkHoAm00Umiyi+fpfvPbmI0X+IK4yu+3Byx1SJiEmNmYxWiPLO4g4x1GokMkDWESEk8+oN9rcXl5wqX0mGd7Uz59boboKbavHjAZhty9E5MtPLuvddS+XhYOHbgKy9btO9lFc8VWVIGO++XGsKdPdXjzgy1dua6IJg+ulybwWQfr1rbqiwB52n/k0HtM6oXarYXGyzS/95Eh1Wrhxa+qjcTKgDLGOB/dB23lDW3bJyiNla96tHOEasSj+/sqLatggWrYa8NsWbDMC06HY0bDGfki4+jomK//ybf4wVvvQBSgJWzs7oIQ3LlxncnwlPliSX9tnbU4Zmv3HJeuPYMIFMIUzE6POD0+Il8uSeKAWzc/pNVKuHfnNucvnGM2mZIXhQ2HRhJNFxSFRkSiVuO4MEiD4PnnLvGrv/xV3n3vOllhkw5dvXwRhOAHb7zPl7/8PKGsRavm0tNU9yhRD1LvklSfena1fzKK16kqF8qLqNUMYCdPFVRj8O4xtXHGWMnA62MNhtLUY76+j80V69UDNuuXqD0VqgHvdMsVMallOStFNSSOisjU7e7Bw37fNKXV9bWM7UxvVYuFdYsypnbXsn1tsL6nGgjAaLSBaTtGKEVw9H1e3BzwuX7KR8uI45lAixl60GUzvcPO6CZX+orL3e/Sj09pn5eU0XPs7E7obL9N2s1odzXr6x02OhvoLOflV36Rd97ucevDkqLw5M2DHzVgNtJA1q54rj1WftR2JNPow4rsroz7+vp60arBtl5Vce3UbM1aHCw+xs7x2JiuOVO5s+WTQuQne1Zj8P0wWdc0zqucxe0xrSV5XrJYZJycThiPp9y8c8TxcEZRavaOD8myHKPhYO+E2WTK/v37TKbHjIaHSFMwOr7LfDYmTrtcufYcs/GQnfOX6Xe6mHLO7vkdTkdjwkhw7ZlLbJ/f5vatW9z56Cb7d+6yd/c2cRSytrHOcj7DFEtOT444PjokTlsMhyOyLKPf32AxL/jW997kpz77KXrthEiCcF0qBaRJxK/+ys/x87/wM8RxgGpLkjRGI3n2wjn6Hbs8VpotcXYq1wxfuhXdR58VNMt/yN78cRYXRS9MrSIQLoy9ORGhEtNpSGLVxDU+ZEFWxLma2MYBvI9M9Bci6oAKTOWp4L1DzcrEdueYVSWA19tW6V2ag3lFHPZVF1ZEcSB+liVbwPUidukut1mG7fUlXuI0Eg4vrXNpumAvU4ymM4Kw4Od2foPzz/w7zqU32T03p50IVCEoipzd8xCngiK/gwoNSQIyM4gSysmIMlaUhQT9r3jttWd45tpneP07XQ4PbIPaRVHWORsaEFstUcb3a0PyqFqr7pMqWMpTKa+6MasYIhpjodIrO3dQzpBCTxxLYfitm7/F3+X/cHbAAY8RdKuK4Fcqvzo1VpOK3T5U6K8pf+UPStXpXhVTr3zuk1vRtRbkhWYyX5AtC/KsYDKescxKjo+HFKWmKAvKIme+WHJwcMrp6YT79/eZL2Z8ePO2jehKFO1OjzhJkXFAO23R6rSZZwvSbky3TAjba7Q6EccH9+it79DtbzA8us/1N75Bq9NnPj7EKEFvsMH1t35Av9+lu7vJxsYagpLpZMxkNGI5nyJ1wfhkRByFpGnK0cF94rsJk+mMIErYu3ePk+MTtnbmnL90lfsHR1z/4AbPXbvMoB0TuHBmKw3YfJ+t2G6triT02hFCKgIJUitK2QhhbLR9XVYNOBXgNAbcWZB6MordHVpUYGmqAAgb7CAadoAmADdMOjUO43XADUEYEE7FUF/v3e1XzxKNC2vm3Dxu57hu+Nk2OZ+TBPHAUIeoNg1QLiVLpVao619/bgKJoN4ZwtfUzjRbj8m1V7lxe4f/bfjzxOK3+V994b/gwsU9ugPI5rBcClopxInhxoeC6cxQloZuIklSQ9oKKYqMREGuDQeHRyRpC5XNmQzfpLd2j1/65f8R3/3OlPff1mhjEwDVRjFRBUH4hJZe0vC5V5qacR9I4k54KL7IQFQBZnU4cS3nVh1SNZPhLKl9d/g2Hx5/l0eVxwq6vlRJYjB1NE1DZIXGmtVcQdzqpt3g8/7NutIEGLz1SgtBtiz44IPbfPu7b/Pt777JrTv7lCIk10uG0xNEUbK5vcUzzz1DnKTEcUSZLTg9HXL3zj1AM5mM6Pb6fOqnPkXaaRMFAVlWMJ3OOD7YYzYZUpQLtClZLARJFBMEAVkQcv7qs8znM6SBS8+9yNHBffLFlDCOGWysM5vN6bRaJGnKtWevEQSK0ckJJ4eHLGZzMBCqkHlhmI0mCAFRGHG8d8jx0QmnoxGHBweMjk9ZLgviVptBv8NoMmX/4Ahh1ui3WwQN0bjOUeGc3oVEIlBGUtmFVoZxUxxt6tOoRE88IxZeDH9MA+cxFpsWVFY2hTrpjFMPVO67oiK5niH6iC8/gmufW+9ZcAaqReWUVkfwOfCs6IJwfzlfbkkz61Y9x21/NVIX+msqOoL1SnjAXdQxW+HfqwG+fuWoeWx1DVDpf6m+tYzwdOOn+a9ONrgW/Vf8rb/xXxL2CqYzu79hqDXdHlAYtBbspBAqSWugMfMSMYHZNGBjQ7IYLUhDAyGcTnLWe5JIaBbD+xTJb/Laqzt0Wld443uSsgwqRikE1TtX7+7aoyJp1Ri331UJsppN49VIoqTYGCNnbcQkrFU2Kwvd2dJQObm/d5INvnrxSw8515bHlNqRh9ZPNBpL8GhVQAXA7n1Xzmr44WEMeQkn4wW/+/tf53f+/R/yp1//BmU+YTYfgymJ4g4bO+c5d/kaV154lqvXLtLpRPQ6PVpJSpktuXnrNpefu8RkPOX0dEjaSlnfWKPd7SCF5M6d++TlksN7d5iPx0RpQhAGLOZzgjBES8W5CxcphWDj3DmbI8LkXHzhWWaTMUkgufXhB0yHJyRJyu6ly1y6dJGiKDk9Oebehx8wm04J44TB5iYqDJjPZkwnE5IkYXRyyrtvvM7lF54nTVImwZjp6Qmj0yFr/T7z5RKk5PD4mDLPWVtfs6kg5Wroc70jhVhFBEyDuYpHDi/ftys+q08g4AJUuSM8WHqpy4Wq48VUb5hpsMIq+0GDTCCc6qXBHgQNY69otKsDAoS1sFt9ZH2/GhbqZ9oq1ZFZ9nLjpkPDwGxKl7ugdhmrwdasduwK+Bv8VjrNr6tzhGW9fpjk9Pgn77Y4GP0aX/zMP2O2NFyOIFKGyaLElIJyDq0k5nSUkSQGoQWbO4rDvZLJCWTLOUa3iVoh5b2cbgItlXG4p9je7LGcLzgpv09/a8iF9QM6P/sa3/h6xDKLEI0cFMKtWqLRwFbaNxVe1AmAfP9Q9Z1xunSDIB9mLNr36bavEkyT1dUOGlKfqPpFlzYcPohiirxgPdhma23rkUPvsRnSVuWi+uMnYkV+ArjrVkJ03aossHlc/+Bb1/n2Wx+yv3eXeHOTz/3CVzHacHRwSBSGpN2UOA7Y2dmk1++xmE1QJBTLJctWarOdBXBy94DxeApIAiVAF0idM5suuHH9HaaTOUJq4jRChZLZ+JTDu3dJO13agzXm4zFahZy/dIF2O6IVhizmc+ajIe+98QPufXSDTqdD/+KAl155BSkFZZkzHJ5yfP8uk+mU7YtXWD+/w/r5bWajMcOTY/JFTrvb5aP3r2NKyzKKsmA+nbI9mTKbzYnTXWSgaMcpJ6MxKowJg4B2miBUM/G6YbnMCcMQGUnnHuXac8VNxglVzQHqz6mFkCe6SLd1jVXBuHdzXiw1GWi8bAVIoppwlQqgksTEyrFab+h81mkksBGaFRcmj8aehXkHUGMw0hIMb1wWou4nz8YrPadoAHbF5yqqV1va/fuYRi5aalnHLwq2LlRtY42CAR/cPM8HN7/P4LV/wdwM+P77+5RKU0pYTgVpDBt9wUJpaBsWUxCh4eDQ0N2KONjPmc8NJ4cTuh1FN5V89K7kmYslcSHgpmFtvY+YhKjdNsWuplu8yRc+c5mvf2vLJrQSgmaMXjPrWKVqcKWZaEi4v42LEvTGRBAkyw1yc8pJ+BYX1n+a4rSk1KVvhOp+fqE2WjN+7x48G7O7+wr3/9E/4+Zxwk8/f+WRY+8xRaStqvt9GHBznvq+/6GGL1/cYPLstyg1f/jt6/zBn77Nzvk1Wu0L3Ll7l0IbsuWS81cuo5QkihXXrl4kiRWRUoRBwHyxQAnBeDwG4PjwmL0799DacHR8Qm+jz+65c6RxzCJbgpBky4xur8vJ8TGL+YzhwX3ybEqQxyzmC46PD9nYOUc2n7O9OYCyIMszlosF08kEtCEvC5bZnMGgx/raGrfGt9FFQZEvyRcTENDq9tnd2WI8GnLzumF8MmS+MMgg5t6dW3QHa4RpAgGoQAEFRVGChlAouv0Bk/mCbrtDVhQIGbiV2WC0YJZpymzGZhCQOBlaV24vTi/pPtuFbZUcSGwwhMLg86w+iQFpWvidpA14HS41I13xIarkcYHfKBJq8ljtqGsHdGOcWyCzO1XbGVDpGJ0qwxrYmlpeD9QOId1DVo/725laM9CQVrz9xJgHWeDKdpz+najByN0Jzxb93bVj1ULAUm/w/e/c5I1v/RP+wa/scPlCCnKfG3cisjInm0G/Y/M/T5cFaRsWBjolLMeGtJ2zsaU4zUvSDcPshmZxpAiF4a2vST7zSosiKjHvKFQ4oDwKSfcj9GaHMB9wrSt4/7Ths99IROU2E8K65dWv6d+kIg7C9kZTCAiVpDCCbv4swtxjmLzL7oVPMbw3Rxe6kbLBEApFi4DFyYjh+gGb6+d496PX+a//5bfpxJJico+//Yix92PR6VK97I84Oxt47IHAiAIjBLcPZvzhd27R3wrIs4w7924wPB6ymBdsnt8hChSXLuzS7iQkUUgcBiilGI2GLJdzjqdTJpMx8/mcyXDEeDQkTVtMR0OUEmRra0xnM7rdDlevXEIYQ7lcoDBcf/tN5tMxhZF0Bht01zboDvoYYei2U5SA0mh0npNEEWEYkXZaLOYz5tMp8+mYMNyh02nRbqeEScT8zoTZcITWIMOQC5fOEwaCD9/7kGJvH5O2GI3GhHnBMy9foSxyQqXpdhKy5YzhaAhaM1gb0I5ipJSUpWGZ1cvfcDLnrfdusMjmfP6V57myu1GBQc2K3Jrvx2ZDIl1RK6wsoU9e8aoFfNaqpjuiZ/ZeZvOs0zNMxwC1yyviXc6qlhSNdmy2U0NP0Yi79Nx21T9X6FobYCyke1nam8k8AdHNEF4Pjm4Lq+oZlbeCoN4up77GG++q13f5DGqNhFduCPLJBmb8Fnp8xPT2r3Iop2xf2gN5iASW0vDBgeDOgaDThUiCUYauhEFfsLxtF4ZOB5I9xZVXOrz5jSndjmRr18D1jHS7BdsCeRpgZhHFXhs5FVDMeT5a41gGnGD3BRQuT0aVt0L4gGrbOq713BHrsueXSd9LUkAQSMq8QIiQbnGB2fFt7mc/YG37InoUoeeCbhzTyjMWswnLUnBvfsxN8w3E8YssFxFXPrVGm4JpmD9y7D0mne4Pn5ArZzSWpIdd2VyxNJLJtOBf/9rXyMshct4CMUSXJXt379DtbnD5yiXWey3W+m2MKZjN5gyHU8oyZzqdoLUhCBRRFDGdTsmyJfPZmDLLyOYzllHE6ckJSknOBbvESUS32+HW0SEne3eZnByhi5z13asMNneI2y2MEAwGXYJAoIuc4ckxw5NjDvf2kUqSFQW6yNFlzng05OjoEK0LLl66wNbONvsf3GAxmTAajVFBRNpOOXfpAkWhMWXJ6fEpUsV0Bl1a3Q4b6+skShGFijgOyXWJlpIszzA6QMuSMG2xyHKMgdIYfvO3/4B/+J//Y9I05a/9R3+Z//R/8rcqY8QDbW5WVYDi7FkeZP4Ma+lPQqlcvBx7s8DjRNXKJchL/aL2lqlWIYEQ9QartZGGBxzyvT6xVk54VcYqm6zNWqbOhQ0NxkuDSZsVA5c/z2e48oDrXZs81FfZyqrLdOU37GtBdb2nhKYi+wK48/YH5PM94rTF7P4V7p+csH/rZZ77/J+Q9Bao2BAmMB9DvhRoLQkDzUgLJhmoqcRkgpaQ9LQmmhdEax1OhpLOPEcJGE8TknmXYNliOtZ0lgWq6NMSU/LJXb7Susx3WtvcE/cxxuZUsEl7vHmzoqWu1b2qpNaz1wEWBoFikRX88e/9Ns8/+ypbFy+SyIvoacbxbEivLbi4m3J0b86dXGCCBEJgvcVHXzsiv/8tds6f5xd+5mcYjcZMFqNHjr3HptNdWeErMWB16q4kEzc/jDs5dqEF/+bff4s7J0fsXlhnOBqxnM042TsiX+Q88/mrmGyG0AHCxGR5QZGXHB2fMBqNrEdArIjCgCCQtFoJRdZhNDwlm82RSiCUZDaZopRCO4+HMAkplgvuvf82i2XOuWsvce7yNVr9AUkaU5YZ/UGXvFhyerrg4P4ew5MTymKJwKCkorW2ycbuOZJWmzLPkQLCUHL1ued5/3vfYzI8YDY8RReGKErptltky4zx8JT5YoGIBJvbu1y+dInBWpckioiCiNFwiAB6vQFSBgRBSBQqokDQabU5OhlTloa19Q2SVoft3U0++9pLzpJeD0ItwPrLWCCpN0ypebDGiqJ+s+tKdH3CSu2o0FAnOOOXqVBJ1BJaZQjz0Xm4eS1qpuxN5fh7u/sYb/Sx9zLSwUAFppV3bgXEnr1675Km4oHqXjVce2BuYnBtaKvr7bmsEaW9t3expGbc7otqkfHqKQCNYnFySLGccGHrHMdHEz61nnLvncuM42PM7of0t8a0Yxj0DOMjgZ4betuG8VCwKCELDDrXzGcJ40IyMQotQ47LXa6i0IscUcYMy4hEBQQ6ZDEr0XKGaIeYoENresQXcs07/T7XObXtY3xwSW3kqgyWeOjVjTHv29UloheSc88+w7/69X9KN+ih4oDwqkC3S37mxUtodYG8uAbC7t+WyJTZwU2YtrgxnZMmQ7pITLjk1c9+7pFj77ElvHFjou7KWuJaPbc58IF6mj/sxprb90f87h99k/XtDZSQHNzfoyhz0m7Mf+/v/nfZ3Nni+PCIu/fusFzOMUCeFSwWCxaLJUEgEdIwn82IwpAwDAmjEAwUZUEcR2hdoPOM4/19hsfHTMcThifH3PngLebLjO3z19i8eJlrL71Au9clX8wpi4xut4MKJPPplLIsGQ6HlEWOEYK03SZtpbS7HSbjCZ12QpIkRGHIzqXzdLc2mdy4w8GdO+zfv8/GRo9W2iZJU5J2i+3zO4xGc6IkodXpsr6+ThQEREFInhecnJwSxy3Wez27RXugiANJKxS0NvtkRcHmL3yBn//Cy3TaKf1OihFWZJTG7cyB1XU2s7y5LgT81kWub43bFfgJDQUWWHZXpfaqXIwa9N4ecWO5ZnuVyC/qhCemoXaoNlkVhgfUav453jfU1IK7hzWXAszVp6mVOKOQaOh0K4Cvamga7lKeP3sG2GDW7h7VvnBeyeAYsqZmwJ6VB7miKwpm3R6z8QeowTNcEkvK1y+w+M6SzpcOKPsLZJIRHXSJtmYUyxItA3prC27fDtBtzTwv6JsN8sOAcBZSGMW/f7/PX+5AMDMoUbKQIAqNIISyhSYgTmG5KMi04BWjyQYdbpkJWpQIF8RdtZQL9268GR6gjajTa+L649qV5+h9/jmKtzMm+yeMb024+qWUyy+9xu3b77EpnkEYTRQkdEWPV69+ljTc4fW3/4B7t9/khS8YLm78NCsbHpwpj12nWw2IFbZb/101j2cO1XmrdzEC8tzwa//NH1IIQxILPrpx0/rEXjjPL371S1zYXGdZZJRZxq3bmtt379FupSwXdhdhMHYLcylZFAXLxYIgCOh2uyRpwvj0FIREKsHRwT66KBifHvN+WTIbT8jzgu0rL3Dx+ZcYrG3QSlt0khgTB6RpQhQHHJ8cs1wuWWZLWu02YMiXc7e9eky31yfPMmazuWXSWpPEEa1uHxntkc0mHO3tMbq4SxxJtNb019dI2i1UNKTd6RKGCf3+AGEMoVJs7+xQFCXtVgchBEopAhUQhMq+jzCkYUASStY6EWCd9ksEyhtpDN5F1Hk14BgXq4zKa8aMBdyzgU9PShEYjGyyVFzS/zrss2avVJOy6cXQZBE+p4JsjGfPRj0JaVIKUcv+tdbR+c1WgURndTsNIt1MxeivtefphgrCis5Gu4gyYaj3/qhB1FT3sEY27d2rhEA6v2S/gacwhq1OyIn77q4M+HB0hxeThM2woJj0ib4dU7Y1WmXIxSYHUhM9s09na8FiPiTLCopJTigMzAOiScYyO+Bof8GNe4r7syX/4PMXSOcLjA4JlQKlUIsSFeyQjeZESc6snPLWOOJKuE7RLrjHstE3rlSGT8t+fXTgivzQ8BQRSD539RW+8Y1/T0vO6a8F/Pxf+QyH0wNMadu819kk1l10UXDz1n2W84yLScLzL/wqOTOqyL9HlMcOuuKBD/WfPqT0h6kV/O93rt/mez94i/7WgOlswuHhfbZ3tviLf/6rnN8aQGkoMkO7FXPx4gVmsxmz6YSgHXF8OiIIQ8Ig4uTwiPlihlSSdruNaIUs5guy5YKo2yFutQnDmOlwyHI2ZTabsXP5MkHc4ZmXXmTj3C7SGHZ3Nmi1Y8CgtWE6nRBIu8Pxxs42rc6MIs+YjkeUeUYcxygpGZ6c0lvrWDXGbIoKA555/nn2b96l2+8yGR4xHY1pd1oslzlBGBEnKZ3egOHJmPliQaQS+u0WYOi1NFIq0jQlTVKMMcRKEAlZGSDtVjCqblXHbI3d/tb2gYZAWFHYbsdj4+y1sB4L0iVPBx8J5LZYeSBBy09+EcI7G1nxX+C29XawqRu6U/DEoUErvSTuFyq8aqIB2v4OHoD9pU3g9JFRTtRfCUYRHpztg5rhvzix2QBCu++NPqPCq4HUg6rPPmbBWzcYoK71v24xKBtqBbunmEGQcfFci+TNIxbtq/zrbMI46vNdPeLlKES2N0hNjljElFJykiQsyiPErT75XkmYJaz3DFlHQxqQF0uOtKYbJZzfajO7H/DWeMb//fvH/C8vtgmkoTQRSocgFMUsBxRCG9baORkZ7+yVXO63KDZDDrDhZH5BaUYQrvaKB+EaeO1rl7ywfYXB3/hFhifvs/a5Nbrra9y8/zY7wTOspVcYJB1u3bzF0eERJwfvooIJVz/3WYK4y/2D91ksT4ij/iPH3o/Be8ENk4oRNRzR+WGAa88wGHQB//yf/wZFmRFGcOfuXXZ2tvgbf+0vc+ncFgGGhc6ZLRdky4wwCNjY2KDXbQOwNuhy99497t29j0BQamN9Wzs9Ou0OoQoZnY7Y7fVYG/QJlGLW7ZC0O2xsb9IbDCiygsHGGmEc0UoThITFfInWJZPplCIvUM4vNgxDTCsFkxAnIUIbsjxDRSEAJ8cnhGFIEAQEUjJdzInShLTbI4xj8iJjOhkznU0pioJz53ZZG/QJn4kpi5LFfMHmYIDEMJ/PabVTkiRBSkEgBXHQ2CBG0Jjy1XytVUCrSFCJJqISv+oILOWcwz0rNkI8iZhLzVQFPvNUU+rygQ5e99dUO9R6X/e3eLBdfWCEV0VUCI0FSSNrPa5rSHA7UJTCpwv19fGczMZnGliRBFdVIk4mMdYP2D663hzK6nIFhqKWXhxLtuTbApAWVCzX5tw1blHQqPOKFzZbvD864qpU6FbMWA15J50StxRyEVKUBS1dEEUgo4CAQyb5kCTJScqC9kyAWjBtLch1ymx+hd7dAV9YFzzb2+R7R0v+X3eW/P0LChkuEIGxyeRLjckiJ76nbMkIFkOOQ8nOScp4sGQhdW3gFT6Et7FaOtZv395YNZDB7oLiFs3Ny5fofMpQJhmTaUmRTxkkL7M8nnKvOOTOjbdYzu+yfvE83a0XAIk2BZvrlzgcfovN8AuPHHk/Rpcx+4pnS3MVegCCqwEMN2/c42tf+yNe+PwrGAw75y7xy3/uq1w5v0MsDNkyZzabscxzltmS/f19Ot0uO9sbRIEEU9LvJkSB4mQ4oRwa+mtrBFFMkra4+OyzTGYzlIQ8W9BeX+PchXNMxhOMgLTdYj5boo0mjSMwJVEUki0LRqMpi8UcKRWjkU1I47dtF1IglKIol4RxRBhHJElCktrcCmEYMpvOSFst0m6Hzvoam9s7CAnLbEFZlkRRxPbWJlvrPbqdPkVpMCUURU4rTUhI6+17BLTCiEDQYF0/ogagCci+/xCVZKI8CLiZ/ySqdaWT1avxJ6QDHLAA6TcY9DZu/666Er3tdbU7UqVScKW6lbt+VaPm1AkVABjX5h4UGjPCR1Y5pt3MEWufbVOpV6a+Cl8MPomNPVClo6eGIlNrUKr6ldhE3bhzLeha9UfJJB2xce08a+8cc2m84PX9KfGFDcxgimwfIucFQQbLuaKbRBQ6gwSiSDLLl8S9kPksZ5wbkhZkLJAHAbKU5BgGIuOXzke8OY34N1nE30xDssUI044RQQSRpigkaSkopWa5iFgOD5Dn+1xo97gZL5pLStXfK3KEMY3+tm0dCEMeC/JoStY6oShGmMwwnB0SKcPiqCAffcDh3VuE6ZTzr7yCilvO08cgXKrHJGmRFZNHjr0fC+gKQFWswRbTmNQfx3oNGm0Mv/4bv0PUbxEmMWnaYXdnhyvnNkkUFIVNsyilopW0aLeXxEnCbDpjOo2Jeh26aYs4CMgvnSdOj5BS0mp3uXPvLkJIdnbPsbbWpxXHTMZjjk9PmC/mxFFIr99hOpsQyBKdzznYmxFEkoP9fYxRFKUmz5YIYZjNpmhtUEoRJ0kl7kVxhNCGKIpY31ij0+0ShgHCaNppSrfX5YXXXmXn4mW2d3bI8wVhFNDrdVkf9Ll4bot+p0Ur7SBlgC4Fi/kcgSCMQzCGPF/SbnWJ4vBHA1nf+qIeqKbRG9LY5NfazU4fQGFwuzU/gUxXC7f1uhe+a5JLZd12Hg2W8UHl5jWfIlqdWjqoVAx2Ikt3wKx8BxXLwkOfY5jeXcvrcr1kUukaPZj686BW7mpqv1RPYCxo6srHpHKYcv9XYielwOr1/bMAjLTvLGykmzYaQwkuiq8g4+C5y3RPp1wcTTjWmt/7kw+IdiSXfzGht7NPp5xT5JLlokOazMiyMShJ2JLslRmtgSTUcDQLkKpHkiZkg5TpbM5yAltoPrsOhyLh+0HKK9mMfHqCXAvI5h2k6WKyiCRMWY+m/Ob1j+jODrkWXKF9oc9QZtR+eo22o5YgvB7el9xoFvEe8+SEEAlKYjJJUQ6JswHTwz329j5i9/Im7Z0X7B10bWrUWoCQxOE1TiZvP3LsPV7Q9YPI/mE/P8S/yKy+e10cAzg+nfLN773DS6+8zGQxY12UvPDcZfrtBEzJMs9Z5EtrAxZ2l1whBVEUEccxutQURcFkPCJfztlcH9Bpd5lMF1y+eJk8L8iKJRtrfZ6/dpXZdMbB8RF7+/sYDHmecXx4xOnxCSCQMkCGkiRtE0cps9mcZZ7RaqW02m20hiiKCMMAqQRxPHA7D2ha7YR+v0un27eTrczJlhmDtQHbu7tsbm7T6XaYza0+uNfrcuXiBbbW10jjGCkVUgSYQBIG1hAnBcRRDMaQBEGVOPuBZNjNRa/phHv2S/9xRWT9OGR98lDXJgyXVEmyjXafqRZKz3DrZrLvWYg5AS3srrGyyo1rv5X4UDB/bcUoq6Ws0fYNwH3YQllfU0suvu80LqjBs1nhccbVAcu+akHah1UYB0Q1dmeTPVRng0AEaGHVC9pYA5xw7oMexLQwjDua4OWLbL/7IV8YF9y5dIXvvf5d2uYi6Z/fJhv8gDCaIdsjhEmIWyFaz5DaoGcBk1kXhCLUiujup+gtJK2oQPc0ccdwb5ZzfxyStAr+6f4Jf70V8fnWGmLZwoRAZndjkUbQTwZcu7jLP73/IT97+y5rukRc7mGzj1m9ua7USX6Bka7JvF7btlA0G7CIFyyLBUrA0eQGAKM7EdO997jy6qcJ09SpW1wOZFOZQhFGo2SE4cccHPEfqhjHrn7/a6/T39oly2eYMmNt0CIJDNJYH9xFtmSRz1ksc0oNZVkipXQ6TismlaVGm4J2GtNqdSmAsjhgPJ5VTOLFZ6/RayVs9Drsbq+z1m9zfHLCfLFECUlv0CfPS8ajCcPhCUoqdJEzHg4Jopgo6RMnLXrdHkEQIoSh00kJAomUIEpNnISkaYySAbosMEJSFoIL53fp9gesr2+glGS5bDGfzdha32R7fY1WFCGVQqkAjM0sGgSK09NTgkARByGtOCENokYo7ydp5NVzf9hlBrfli/ddFT6145NV/NbrtSbX5b/zKgLhw0ybrlcAAplI8nJOFHTcEVvq3UVE5UyAVwx7P1oHdnVQRMN7oKmqqBCxmapbNOpTbxvvizDWmOa9IOxi4gxn+Ag3Uz3DOH221Ukp3t/7DZ4795frDH44SdMFgze3gS+F5nC3xbmXL7D25g0+O36T/JVXObx7i+LtK4zOpchwSNR5A9ZP7K4ZMkCXJXFaMN6XrB39ND2tUCZlsRgxH49YHwg6qSHtLpmWGXePNXka8Q9PCqJwjc9FkIp1dBIhaVPMphRhl1999nPcjyPent/hheGIZC8g3E1swEvlSVArG+rlzPeZ1RnH0RoTeZu8mJEtJWVxRBwMSFp9dr/wHEaG1nXSg7fPLF1JMCXCBPTT5x859h4/6BqDkA3JpfHVD5+rgsl0yW/+1tdYv7jJ8PiIQX+Nrc0N2q0QTEle5gglUEqiTclwPGa+KGilMdlyyWJuWBpNEYVEYUxZLih1iQwCa+zSJfsHRzx77QLddko7TYjiiCzLeP7Za8wX58iykuPjU6Z5xnSeMZnOuf3RR4yGJyyWM4wwhGFAFEVEUUgQBiRxSLfTodVKAE0QSLqtBIAoCtF5TpHnlEVAUZTsbm8xWF+nlbasONdOyFotuu0O7bRFFEVU+jshXSYzQ5rESBWQhBHd2ObTbczch7byyo4c7nclJJ3R5dZ8qaJydqiuGEN/GBP+ySsV2JgS69XReIdKZ93YgNC3ijBI0WKsx4R0qsi2KvS3oqU1tNn/H7KduHPvqlmp/ezdfEEijE+vLljV+eKU6f6+PueAVyPUKgThmZ7diRLp3ARLYVBuMQjVgEl+g73J6+x2Xqv0lPX9G0oR/2pCcvTFZ9k92OPSB3ukd77Bt8+/QpQtOf4owRQxo/sv8tqXWkzldVqJIs9C5uMUWUj0acYUzWaqbb4CmTI5GDHtQX8L1joLorUFeyddRt01/nWhiUSLV+I1mIxI9Q3MyW0UG6gw4z8+/wL/l0M4SWaojw650L8AqTcB12y03jvOvlWgFJv9TQbrL/DR/EPKfIouFafjd4iCEC016zsXMLk1ltXhigar/1ZACUa5cVASyh/zbsC+WCOAcImH+YTzsnmS4foHt3n3vXe4ZMbs3f4AVMJLLz3DbDYl73Qdu9AYrZESWu2UVjdiPl8wPD0lz5a0Wwl5vsToiGVWoEVGGkZ0u12y/DZKCXrdjgXMICTLC6RS9Npt2p0OGEmvN+B0PObkdMJidp84bjHYCNA6YzwckcYJaZqQpi3CQNFKYzbX+iRxjJCCNAlJneeCEII8WzCdTgmDgDC0+Rk6nQ5RFAFWT50EMa00RaoAIZSN8zd1KIlybD6Qik6auK13WJn7n7QYqnFY9YIlPIKm27w31vidJD4pof7JK47lUI9Tn/qlZnmVDsD+dMlphIgpg/2GEc1U92j62ZrGdSvqBMc4KzW6qNlu5S3h/AasCqRmxBYjPZCb2j1XmAqgabBoJ5u4k1YXVuNCIqynRcQg3mZv/G1acZ80uISudKG1/rk23tlxkLVi9n/1Z9j+V79LdzQjGH3A/umbiK1r7Ld3iXsbmJMN2sWAyeQEqTWtpE+eFxBrhF4yzjLalLQxdJOU8WTG/kiQXI1orc+5cPmE3gKGk5jfVilr8zlXZzdAQNTpIlUHPbpJO8v425uX+c9P9sg4Qr15zLnPbdREotEvQkhaccL2xhU2+hdYFAV7hx9x1/w+udCcnuwhy4K+eZFApERxgM6cWga/GAn8zsC2T4tqd4+PMy8/ZqbbEF9+5Olp0Bq+9oevs7m1jilt2OzoeJ83vv0dnr18jqLIAUFRFHj/HK1LsmxGnucoJTBaMZ/PSeOI6WLBdD6nF0UUeYEx0Gq1UMqy1CAMabXaFFqjlAJhCKTBGElfhYRhQCttM53O2DvYJ1YJZRlg9Ih2p8Pa2hpxHLO1sUm3k9Jrd0jDGBUIpHQMV2uMMSwlSCmd14EhTa3Ll/DK+VIjld0FwicrqXLhYpm9/64dhkRBvT/BnwUIz/bQ2f3pHjy72VNPHtO1G0VqTOW77CaKZ/BeMvMAJnyyH4NBEUtDqXMCGVFDr3Gg6tkmFZN12OoIqMG4bdyprmxkKTO18avKcdvwZrD30u6DdpqIuvd1pad0LFnU6gQf8uuf4esppWBn7WfYu//PuTf6BtfWWkCfWtaxP61/t6zeRwPzTkzrq58j/r032FEh17przJdHfH1vxM3tFyhlSBK1UcWYwhTMR4d0khbLuaGMQpZGMCtzpnrJQGp6SUjfRBzdK7l1DN3Lku2LhrQ35HDc4d8VEf8DuUWr2GeZQRhHYCBYLHmmr/krg/P8epLw0Y0Pad0e07tkg5QMNol/v7PGzuZVWvE64+EJ9268zfHhDSZtQ7E+YjaZYJZjLse/RGTWMcsSk+kVQ2bl2+va3Bjv7K6wKobaJ/5seSyg6zsEcJl/GlZXL/I0LWfi7NV2oo+nS67fuE3SjhmPjphPJgSUzGczCm1YLDMbclk57YOPE5fCMJtN0GVJoOxmjbPFkvkio9MXCCkpyiVxEjMY9FlfXyOJLauMAxdUIAxC2YkiBXRkhygqef65Z9ne2eH6++9zdHzMEYLZdMbObkgrSel326z3eqRxTKgCVCCRfssAZcONlwiSJLW+gca4wI3ALhzYHSO0bqSoa7RRoCRBEKCEIAoCYlUDxYO63MYBszpxG731kOM4nXrTwFMzXnPWSPcEliobQSMQQrhN0rzxy4dz2i3Vfe5WQde0mDIkZJsKYJsgCc4Vqzag2RGq681fTNUl1TELZG7zGVFLF9oYl0uh3pSnfi5UjLbipRbhfdpze62pL3H5fDGghUYaSONztMMOs+w+x6NvsNb/RffOxm4rbwy1I1k9bgyGoyvbbHz6KtEP7qBGc3baAX811Lx7+D3utT7PMEiRYUAxsTurHJ2M6KQh0LJ1lAlTrVmKnCw3dAVsRSFd2ebOjZz3jjO2Lq6x1e9yeFTyu1HJr+Z94uiUsrAhw7kuiWYnfDFe563DY17vtrn3/iHd3RZhHLLW22Jn+xqKmGI2Zv/4Ovfv3eD+7Zvcv3+D8790jjIXLGenXIy+QsSafT+/WHp9PGWtYmjOBa9TFw111EPKY1YvNJJs+M31HjJXHzhkDAjNex/eQ0SGuJUgVJcyGzA+Peb+/Xucnpxy9fw5kjBiWWQopZBKYbQmzzKKoiDPlkipGE8mBFFEVpRoA3GUEEYxejJjMOgx6HXY3dogTVLiKKxq5BXm2u1NJVQASNYHfdI4QpqS7MoFXnr+WcbjCd1ul3anxfbGOu0kJnALQr3A6IbXgLCJaVSIEFCUJWVR2nOFIIxClllmLchWiQpCEghBqARBIEhUaDvQjf+PM56tKm3ONDdUeszV46KewFXXCErj38bvE/vkAXCVZ7beSMepZQTa+cVWngL2itqtTICQG8z0LTpiG5vQRleA6bdor9xAqeP7q0CThlrBCO8D7ZmuA15TJXGs7lLfp3JUquaY96X1f1W7Yvh3qJ7vWXJZLTgGUEZyvvtF3jn6Dfa5jUzepB+9WsHr2dFRxcc5o+rxa1fZHM+IPtgnJ2TjwnleObzD9r3XeTtaZ6+9Rh7FFFlGJ0kZzeeIxTHr3R5CRGSqxVhCLnNKWVAi6QjBtbTPUR5w+3sLutsGFcfcXE+5ObvBZbNBHEhEaQiYscgCEnWfv7Xe5fU//RNGG22Gezlf+cWfQ2rF7Hifk8M9JpMht2+/S1FMaW2sce38Z8hbQ6aTA84HnyVm04Kp0VUf2g+6+l01K9bqgbO34PrlUeWxG9L8RnhQ5xb5JKU0gtwE9AZttJkhRcpgexMVWPE7yzKWyyWRVFUgwmIxt65hkwmnp6fkeY4MYgptmM4XLLOMQAWUZcl0ukAXhlYccX5nm7V+jzQOiYOAyhFe27R3WpcY47bY9kYOHXHpwjkbATfIybKMxIF2GNgsZlUIJ1i9s7FtkWUZo/GYdqtFZ70FwDLLyLLMtpOURJFlukbbd8PYoIRQ2SQ3caBWNkKsfTx/VAD8uPNr1tY8Vk9rgzZ2D6wnrRjRXAyd3lQooA4Cae7eULNh3MsHlGZBQUZgAhqmSAtGnspWkCUaf1sG3Ti78kjAbZ/oQdme4hLiOJWEB3aqBa/OSGaPObLQID22FhbEvfLBLziWndkzeu3nYf/3GC3HBKPvkK4J4vAFtFYYqYlFwLzwFnuDESUuiJpSSY5+5iUuLgrK+yOKk2N6pSZopaRBxt2T9/gwWGNPQCljOnFEXhoOR2OQ0E375ElKrgMWpmC7pciDgNQIttKQXjvhsMzJBJhWyvubA6J794kwtNpbNlhpdsqBllwc7PK//txn+N995095/Y0P6A/O0yn2ORofcTI8pJRT1s5fpj14FqTie19/j1uv3+Ol7Rbp8ztOpaep9gX09MO4PHtnREK7htduefy41QvNoqsKPfqceiWtwTnX8OGtO9bVyulDh6dLpBCkgx4yCEjT1PpWOn2nCgJKXaKUIs9zptMpKtRkeU6Ra/I8Z22wxmw2I4wS0iRmfdBjo9+l00pJwtAao3yFlAV0IwMMFnQDKSm0IZSSoiyRUpAFAWUck8QxSinHcLR1V3O9U5aGUpcUecFsPmc6mdJptRAO1MFYll7kFpjzDBBEcUygAkIVkAQBURgSKVXtzuFL7fBd/3y0iFOrfCpNYO3jdKZvRGVA0ca5i7l13QYMVFrGjxsGP3HFh9TatrCpLL0Ry+fcqv1s/S6V3gfXnherhFk5oSsGVOkZTS16N+9RWf1pLoxeRNEIoahZq6+LqZ/nFm08Q3ahy45ju6d4FlZtBt+QQ/x2PDXb9uAhMG5rJo0SinP9l3nv8NukcszR+E+4sn6bY91lPB5zbvDnqy7X7nleR4yQFFHA3a++wva/+zazvSNm2ZSynRB11nklLNku97mtYj4sI05lB6lSkjhilmUsyjnZaEYUd0nbHfaLgJmAXrdNUuQMkpBzUcJEz1noiGI04VY5RBQlg6xEqR2mWUEEzCYHXFvb4u9fu8R/cTjl3/3OH/HMTkZnU7B25Txhq4tQFlyKXHF4qHn7T97kK//JL2GMxCZ6P2NUrQhULVrWUgh+5awk2UeVx7sFO1SVqo88vNSOL7buo0lBaUra7ZTDw5wsnxMEimWWky3mHB0fk+clYWQTzKAlKggQQhKGIb1ej/FkynRsk5YvFyWtdsxkOiFtt+h1Uta6XTbXB3Q7LVpRSOhFraa6WdSTUQGhtCJnFkjyUhMEglApm8tBCJsUpsFq/T0QdgFa5hlFWTDoD9je3CQMFEVhiMOAKFCUZUmhNdP5jKLU9Lo90igmDUNacWjjzw2Vn2mziAcPrbR4JSo3u0SA0BWO2D6rrLweMPyJTqclvIrBDTj56H79SS1G6MYmOaukoMlYRQNk/WcPyS25xqke0TU9e4+qv7EgLOuJ6lVrnmueTWFaC+tQeeZWklJzZ2CzoqZY4bHC19FOfH9NjdWmSk7e1Mp6HXLpWPBO7zXevP1dxkFJojV3xu8z1Yae+lm0bqTzEX4hqY2IYMjTiL2/8FPs/PtvENzLUIscwilZ0mEj1sRFwdrkDvdUhw/VgFGwRhSEhHHCUhcszIKDowWDjQ0K1WM+he2t82Ro2qIkUJrg+C7JMicXHYweMprdoysySm24dTKnb9qITovLly7zV4J7/OZwzN1Ri5/5wjVCVW8oZnLJd3//Tb7xO7/N3/zbX6R7/jxWaWaogx6avs/ufZsugRWFqXsFUT5y7D2+jSn9QK2OfvKJWRi4dzhiOhmjlDU4KWW344gjxfHxCfP5nGWek0YR2kBRWJ1KHKdoBHlZUpQlcRyT51bxrVREHEd0kpitfp+tzXXaSUIrjohUbf23VV9dqZoAKoQgkRAFiiiQFKEmy0tyU1pVQOnni9V3SSldLlobHpymKRhBGEUIY9lyGIZIKZHC6hZbrRZHx8ekSUgcWb9fJWQt+p5pXVvHWpD92BY/S0xFY357m4BF19Vzm0DrpG5rCHyyWC7gdoc404LOluDOsFOpGsxucvkFSQgCnVCIQ0pKpAkaY8YuUP4ZFUutFKPNzFfaZTRrSBqiwq+Kr1JNea9DrY3T/hxRTfx6zzNtGpBd9a2us8y5f6VVEGCMIAi7dJIuRTBkni3JCoMpFBfPPe9SQHjlRaNtGvPFGCiSkHu//EU2v/k2nTffR0/mmLBFGEkG3ZiONAzGEwb5PndMxmFriwkpURATiAQlMxaLU3JTojZ3OTge041DljpHzIdsrfUZrm2S3HiDbJyRyx5MlyhV0ou6fHhrj05vi/vlGoPBJf5C+y5/NF7y1rfu8OpPXUQIQ7mE4/t3uf/m7/CVn7rA1VeeRQYB3j/Z+HGCVynY96wlSNcC3kiJcIvQiuLvgfKTEZHm6+f6LddwcDJmNh1xfHzAfD4jimJkEBDIhP5gwMH+PqejEZ1W6nShAqMFRVEymc0odEnaahEECfP5Eoxgc2OLQbfFhe0NttbXaMcxaRSQKFUPbuGHbUN05wwGu68UIANFJBVRoFhoC/RFYRmrB10bqisIggAppY1WcxO4LMpqa3TlDIFSSNppitrYIAmtnjmQFnC9wKrP1GW1ORsHfxgeVqc2tX/1V+bsaTgw9mpLKexmE09cWSUE9v2kY5lW1F+REpot4RdgaRPez5nTNjabnfdYsOJmzZi9F4rdrt2Kr17/ZxdKiXU1Em4XA9vOPhlOzbY8eGqEy69g36bBfo0H59qbwWccM84wJD0jxuC3bPe1NcDGYJs7syHjpSYNBIFpoWSCdRIS1bn1gmzcIlY/uwwDDr70KvNBi/brP4CDA/SgR0tIwihmPV7SyhS7Ys79/R9wEG1wuPkMw9aAMG0zW84wAhanh6jWgIUQpNmUVhSwzAsKUZLuXGNAymkxIysN29KgZMTa2iV+77vX+epnv8J3p0uS9jZfPl/ybjnk9vv3WN/uEwYlF+KYn/sbf57O7gXXLz51qV/iKkUa1WropQi31tTSvGj4bv+3pF74UYqgFo1n05z9w31yvSROUrQ+IkkCAhVzeDCi0+2yvrFJrzdASYVUActlxny5ZDKbMZvN0BqyvERj/XV3tra5tLtDr5uy1m8TxdbvNgqCKtbei9c/UnENHypJoCSFUhSh1c8WpabQusoAZkzgEmS4dxbSbpHuXMOyPMdgiFWIAJIoJlQhoVQos/LIFdHYH3tI1R7d2NU5fnLb47IaZo30hY1FUXqmhXTO8x8/wH5yi3ENWbekwIvLXoGAsxfoOimNcKYoPWEvu49WMAsmtLK284d1BipjqsRgHkhlZWzzOuKGCgOXuMZd531gJdSAGIIuDUL7pdfU7+H0vjU8+BSQlvfWCmGb6Me1gH0fb3cxVCkPZRjSCqEoBK0ogbzd4Nv1AlQPDZ9j2ctati21gPHLz5Ftdtn8vT9BT44hADlI0ElIK9BESpHKGVtmxGT+NkcngkOdMuxuM+ttswCMzpEFiDCEQKLDNsvphPF8wigJ2RXb3F2OOVrM2G4NQGo2Nwu+9u77XHvhc3zr6DaHoebqQDHuSEQIQRSh5SGdnUu23U1ZLyY+L281Vvw76WrO1DbW2pPEjhuJz9L2sPITA7pVETCeZ7SSmCSNmc+mBIEiCAKWyzlrmxuEYUh/MEAKSZ7nFGVBVmSMxyNOTk5Y5kuyZQ7GMOh02NneZmt9g05qlfZJFBMHIUkUodSKUqEC/hWuexZTRP2hXujtehdKSQQYqdCBNb4ZasbbDHIoypL5UiOVdUsTQlGWOYXWSKFRyu5g7PNHPExtU4upn6BpRS2sVqKRA1dTsWdRg+7Zdzb2Hmdg6uN2JvkJLg6pGvrRFY+GyiBmqNMclggtMdIgiIkXhpm6T9aCTA6IdVyxnpUech/tXlyl+6aZE8B9b3S1a4NxddDCeyEYxosZ707f5HP9L1Tb8DihtmZf2Kmv8DsVawezZcW068XDL6B+0Gvb7/mSXrBBf+tV3rv1fTC59SGncW5l4KMWA5s5an29sL6ry61t9n/lF1j/8AOK4zmdvEBtbMH4lDLXJK0UpQ2xgGh5Snt5l+n4A07fSxivXyH71IvMpxoVSMJ2n/npMdlsTkBO3O/x7r379DsdTsKYSXlKbBQRGf2O5HDvBpfXBtw42WdeBlzJQ9LQYBYTlmt9KrewyubhVWb1+9Y+IY1jVVPUPtUf5xrry2MLjrB1N1Wuzh9+hT2r1IbxMqfUGULCZDKl0+lSFAVCSlrtFtPplLwomM1nlEsYToaMZhNOhsMql61UkvPnznH14kU21taJw5AwEERBSBSEtKO4Cpv1qzzUjNv7WPrtaqqygsb1F83cEsaxGAnIZnJspVZukwnJsihtp2uvZ1NoY8h1aUN/K9VHs5Ua1fFA+ggn3Ucz93qiGOxuwf4W2tidIqxU7I0kq1f6JN+IOiHLk1Z81i6f16Bq22b/ntGfGqFdnyr6yRUSPeCouMepOmCXi3X/g/PzpBbjsdeZalIKB6y4/Aj2mDwzsb3TUitIuTXdIw6/yyutzzXGrVcggBYlstJDupzAFNg4Ml3psWsI8ZCsq/sJFbHV/SxaLCF4FyE1gfb6SnNmwvjE6s4m4s5pmNvwrDfr9th79TUOC83W2+9wYaaJg4hFnrEoS2RUQtJGbJwjUhFifZOks8Wm0cjBJoss5J039llMpsh8RhCEaKHI8oKgHdNPDe2p5kSFFEFE0dqE030SITk9gp3+OofTE66fSq4GIW1OEWnLxn8IL4V44Kw9F6rBYWo9uaha3asUqpCXHwp4jwd0Rd0nTUb1qLpUiwqG6dKwt3fEdDpGFzb6SkhAKdZ6WywXC1pp13Vwxnw2YzwesSxyWkmLVtIijSOSNGV9bY1uq0WSxCipUDIkkIIkiQjCB+mZMA2x3QGvol7R9Kqq91Fv07zjg89oIGggJaFU5KLeOk/ImgEZDIGUKD8OftSyokZo1K0aWx5pdDWYPHu153kWXHVPJdZqUTNs9SP7Bv8EFGFY3cTQR37VOb0sZrgwbN9UDnAMGklAqtbZ0IpjeY+lWhKVEX6Dd8t46gmpG+O88nRY4at++5iaMXqfXL+4vjJ4idePvsNOcpF1uVHxapt3GvxWO3USydUlsflU795mz5XVEz2kKCLaqsciG5Oo2IF1nSrSn+cXLaone021k5e8ntpAKQQmDNn71IvIW0vk3SOGZsxi0CV+9RolglIpiqRDGQQIFMrYHAd33z/it//Nf8PhDL782Vd47TMvIYqS+WREuxWjzm+RTG+R5iF7w5IiVwRr58hmEwbyhKNxzk4bhsuCt+4ccmHQov/WHtGVAUU/pnar02fe0CXIcdJEc0NSuy7Xfs5Uy9+jy+MLA37o0Yd/47/VGPaPJ8wXM+bzKQcH+3T7fSaTIabUTCZTdFnS7/a4dP48nTQhl4ZgOqPlksIkcUK7ndJutYjjmCSyzFZK6/2QxCFJGNphsSJus8Ji6zR99WHP7syZejfLA0tLrRN44CoJSCVR2qXTNrU4JtAETr1wtlUfxWofWpri8sp1ouHOX6sUqgley7h1jU09LXWDAf8ItfnJKW67bmvkqkGuNlPWe4bBag82eSsIUjmgnZ8yCvdY51IFuR6k7BCo4a7aGr0C9dKBfwOwjK6kDekT6QCX0stcT9/nm3t/yhfPfYl1OUCUtSrIg6b9T9ebBVRGNeoxDngfZGnsBj4esr27RS+5wOH4DYJOHxv+Wve220u6qnUlblfLiHurhsrELdmUgWS/16O97PFuNiI317nU26A2+vlFz5AvNe997wP2PvqQZy+lDMYTFrNb7F5+lXt7EiUi1nYGmEHEYuMZBIaNRc6dW/uwCDHpgDKf0o5zsjKgFxQoDDdP52y3OuzcyUiXmnwrporz8d4njZa1Wdo8sNajwr+r7eemXPrw8uPT6fpGfxjmOhpXmJJFbrtMm4K8yDCihQEmoxFChSileOGFF3jlpZeIyVmGIZqAUhcEQUyapsRhgAosYEXSZvK37mYBaRyhHlYHGvj4kPZqKAkAp2b3YsbZax64/+qXzaXHiic1yHtFvHK5c/2qWqvQHt2Znxz8LOsqDRXQl8a7F+H8fX3oaj2JvLuQ3x0Wd45+Ar0XbGrKRl4QvKhvkMoarNxSC27XhHpsyArQhBEIoenLixyU75AHc6IiqU4V3kiJQBiNNIYSl8OgkV2s/l3Rp0pFVTpDmxCCWIZcSM/xQXGL37j+L/iVy3+BzfCyG4ueo9WRa9bg4wVn75pmbQj+3HpZddzaCJBWk7zWvsK9ozeI4z5nN860BMF5WlRuUp5FuyZ171LrQ0UlMYg4Yl7kLIpTNl7a9qMM77onhGJ8NOG9b32f8WjCaDwm6bT48quXePHzXwQZEKeHdNYiZD+mEDnC2Dwr3x+9x5unb/Cc7rIVf55+bw1TZARGovOCbpQRKc3YGPazkM0TjRyfEl/eJI+Kxtri6w/G1O9m54ZXo6wWz4YfVR4L6K76yterQekqcjbptR90RamYLpZobTd7DMOIstDosiRbLmgNUl791Gt87rXXSCNFWWiCKKHbC2zUVhghpbT7khm7OR3SumLFYUQahTZBTrVS1fU9G1Tw6GKv9wKEW4yrCdnchujjigdqIQS6NE6jUFu1lVRIHwjhzn9YHT00PPQZZ2vu9K92AFFZX/371HrG1bXHJ8/WojawWR/dT/CiP6nFddyK/CVAGImRJctkQTyLwXmWVAPGBTxY4PDymUCIgF55jpPyDtviGQvSlZbWMtcmjHuQ92TaCON0sa5ezmCpHUN1HmQIA1fTa9zNbjCaV5pUB6zWywLvN+rHjqlBHXD8tAnSpvEN+Ly7BkMr3iIQAUncZTVCyw9gqjsIIdzu0E1a4cC8ESTiv9JBm/v5PZbdMZ2d5239USChzCXHd0557zs/wJgcIUo67YJXf/pzbF26bN0tjWZrZ82RkrJCGoPhm7e+xe2jE2bRPpdMwbPyK3SCFkIXjJaQqpBUFnTzKRPR4dZUcj7tkL0zJL3UgYGXOJ3b3orU6z77KNCK4Z8JFX9EeTxMt7ICNirR6JyKQlVWT/tnnpVEcUin0ybLMptpqywYj8ZIIXntlVf4uS//DL00RZcZQioCJQjCyG5j41IdSpclSrnk4kkYEQVhY+6sov4D4AQ0RfEHV606C9XZRv7kbLPZLI5He3bjkuRU0XCf5KY/VK9aqyaaWOmTofs8EaXxgu6Zh7p5VBtI3OF6PD5ZpbmCNVmNEJALtJwy62Sk4341ma1vtWyImeBpm8EQyz6yuEcWzYnLlgNjU4Gll4qEA2Sb18NU90A0mLewqU1rqK7HZDfoIE3BoHOODOtmWKL93heNOQa1kz+V769XLFXqDGPv4Bdgq3Kx1ykRcGXtCu0gJa/uWQOqcIZBD9I2MsgZ3cyqcclLawBlPuDD714n7Mx49uVLeBkPBNPjJW994z3uf/Au7b5CRCk7F3e49vIXCdp9F45eUO/grIHAgaQdy1+69AWm5deY64y3xzcQQZsX2z8PC0kYCO4eD0mTNmsRBMsZyzDldpFwMQ44/WBKsq5IL7coxbIxZhpjvamSEs5NrGr0j5+0P3ZnH+NX34dVRgnSlt15YWdnmzAKGU+GjMdjfuqnvsQvfPkr9NshQuQu5NamOAwC5XIe2DyzgRJEStJKYrpJShIEKNPItvSweon634+tCCwrh8qVTIoG4LK6PHycauGTFM9uV0Nez5wjrMGwydhNBcqNK7zjv1ldoJ6UYkwjfku4yDHhDUCGdLmOyRdMu6eV7ypQT7YVXZS095MB68FLTMq7zjPCnVONedujwj3HpyG1U7YR1OsmicCyX+kSyUsn3mpt6Ifb7AwuMy4m7Bcj/vDWv61Zq6tb0yBnsAuq56rWD3gVfr1Rze7/Vffthc7n2Zxn9nvj8sqaOuDCvpNvIFlNIsdxfcPhFxadD/joj2+ytlty/qUtZJQCEl2m3PlgzJ/+2z/kB3/yLVCGu8cTdq+s8eznPoVKu2hdorWVDI0x1uvHuIXD2N1jtNG8tPkCf+vlv0S31eeli5f5+c99iZ1nQ47jJQsRMOh3mSwm7C0jVJjQEiUhOXd1AkJx66MJ9753ilm67d5X8h/b7bJwPVfLLv6YQHyMH+VjAV3dILOVQNKgRD4Jjql+24qEoWUA/X6XXr9Pq51gTMm5czt8+UtfIo0iSzI0lEajnP+uUlYkCZUkDUM6cUSv3aYVJ6jGbgq4Oj3wjwboQhWD4uvus2n5wXa2NK956DM+pgROlSCEdDkb3CR0IFDlWaXShj2yfLLHPvwupTY0sxF4tUaJVSt4gVEYUMZ6LCgJgfoEJPsnsAgf1ul7zW/uaGrzYnuxidQ5y97IjR+NinyGWlOBsTd8lkXJ8fCY2LRYqrHH2zPPtWIrxrNfd1IjYY69Z8VvXdvX0CiM4Znkeeb5jFJJ3j+8QyfoNURfp5JoLJAeUv1+abaD3WTyG5ZXqjcPpXYn4KWMicaCdunv7+5nbHJPr/PUoilD+Xb1Bmk3gkyP+985ZONqQP/SACEFulQsRwknN4bce/cDrt86hnHG++8d8+Wf/wzPfOY1SwZM4RaksloAbOBHiU1Q41i6sXXabZ/jv/P8X+Srz/8CgYzJOOUk/XXyVoFpt9naXEOUc06WUCIRRYEQJQciJIlDru9NuP6tQ4pJD2Gsn3JtZD67mEDtGggPbs9Ul8eiXrBuLla0qhxebQ9UPxvdUFVcAr12QhLCrN/j/LkdMCX9dockCjFaUzqmYA1N1uVHSZt0Jg1DAimbEg1OJq41Hg+przlzvOlb/OCkeZDZmTM3ftS19fe19kkJ4RK92zbQxrkymYe10ScsTSa7Ym0W1fhonOCukc5ljBWRWLp6eFWHwC6aCPtbCwjCJxJ1HeA5Q5AT8QUCvVwi4gCDIp2tMxsck68vCIYtlvEQwphoHnlaWukNFjIhS2ISBUtzTEwbKus+tfrAi/Heo8EZJ3H+tfZ2plKNCu/Vgq5SPq4HawzyLtvpDiY+4UrntZrpOD9T03hWLegb58xf67MBB1rgYxLtHezPIgi4td7ihUzwVmKcR0ZtOKuzlTXNkg/OAl0mHHz3lKA/onO+Z4OBFimJ6DCb7GFkwLffuM7w+IT1jZT/+O/8LOsXzzvCo6lD4N2ENnaLeCEC1326lkDcuO7H6whRok3BcLLP/M6MD5b/hue2fxkZr9OOU+ajETePp+yud0gQmHaX8XJCu9vmnfunaHnAztUt+ltjjCwstNe017np1WZZi78/5oi0UuASMD8aLs7qBsFm8GpHAYEJ2NlYJ1SSzfU1Bt0uaRwBporOUoHd0kFKSRoEpKHCewKcBcHHXVbWlR/5WmGzp+V5JcbXIqZxLMKLon/2lzKP+AyNRdsVn5wcnNHT+yXWta7uUy+jTxjw+rYWjYXJAa8MAxblESfilFa8QZilzFojWmsaU5YsxJBlAKoMoABTGqSJWJpTgkAyni9Jk5hup2QyrlUKLqUMoqETttgh3GaRThKkFhWFG8xNQ5oPNn0+ucZMDNkIMuKgQ2XZdCu2195WwAiVFKVNzWg9d29uRq5NLf1hoFCSG8WEc6bFHe+54V8Ar9sVVb09/vuidcrh95cUYo+dZ7dI402KaYRZjDmZ3GM+zxDlEUUBX/lch+e/9FP0L5xzuaSNFfGNRldBzML9r5xh3ts/vHwq0ZQs8zH3j29y7/AmxbIgStfZ7JRcPD9jac5xchQRBiH9tM3twwM2VERWTGyehzhibXudvaXAHCxZ3+ig5ekKuFYEvnpZrz56NCI8Ppcxt9gI3ZytvrK125QHEzu27J5kOlR0kpRwQ7GxtkakAqTwW39DEKhKTAuVIg4DOKOHfBio89Aj7vgZJvzAeaIayysnNgHrRwVe7yYmhXSDWzi/XGmTkFALew+4pTXrfhbvzJku91JmAyIbtaBK2egYUakNpZ/l7lWlqV2+/fVSNCfrk1Zc4If2IiN1Z0pFwjZrOmKSHTAu5uiFZKruE0U9RBAgXEKXUmQYtbDjTS+JtaBMZsRlQPvGDcq1rzCTzUlqMC65DYaG5duDqden1lvj2BQ8NVv1ORISIuaTJW006BIhrDHH522wo8eHuNoNYn0f+160+ltfO1cvqofYdnIr7jSK2T5dkrQDFpFxsmkj/SFeEYZlpiKwcXDqWZaHBUfHf8BnvvoMcbBOTJuFmnDn3h7T6RHdgSDeXCOVcPnZXfrnLqC133nX+ewaWeGH82tEIjie3KdYwPp6jzDooCkYL/b54O7bHO3dohUnhJ0+7W6HrDzitQu/QBCt0RIjWmHKZNliOosIYkmkp1y91sGIJfPpnFInGGJCtSBXS6pOM17P65cyP6p8HX/MTLfGgHql9iKqPUrl81cnm3HGAlm6DRkFkXI6WyEpiyVKWZewstQoJHEYkkZB7YJm6mecrcnHEbGHbUleXda4t/Zzs3nP/wAETwq3kJfY3LqRXKHPBlz6v4YO8GxpVMzgVADUags7qeuiGzqpyiVeuOEi7NaDNm+EfV7z+hXDPc0h96SVOm4LzkgsAlK1RsKAwkyZLQ85KW8wlrdJozZxtmQep2RFhi6WGECVmtR0aMldArXJURJx8fYxty+tUzSt3e4hujrmVQj+O8c2cRKjUwVIU3NWr3pYi87BLEPIWqQujWF+PKO14TwonAuZv0YbXSXB9/y6AcGVdFW1RhXyK/ioK3jxxPDWpmiQnIpCoXKBKefopIUIXqbV3uXm7Sn373/AK1/4HDKPWCyWHI4+YpLdZFwcsvvMLoFscffNG7z08oD+YAdTMVbh+mk11NaD3TAb8lvf+E2KxYJ2q8X29mXG0yHF8phep83GxTU6SUpgBLvd5zjKdyjKDGVsutc4mhLFU9Z7ErNjkCpBiBxDm3bP16HAZ2ezZM/jQr0Xjl2CBDY16MfD6mPfDfhsqSvcONb4UliBASkFJrDbpwhjKvFWOoQNhKkAt3Y3+bOXB13ETFVf+yaPB1gE1hglhaBEIP32PD4S7SGS+yqzPSvK2eFoxdhKYl7BaXPmam+0EWADYz3YilrkteyrRtsn2UUXcH6xzbGHl1iBelILKQhNh37YpRte4ih/i5nYx2QT5jpDouiHO8RZjzhaox1s4fN45RHcCXK27o44ON+llKbiheB0gcbvFlEDrXDfVfpRh5aL6ZioEyNMiBIuLF3Y1KJLRzgkkJaK0/EJrY0UIZyqyEA5L5BKI6OwSudoJXPtspl5vWQtk9q28O5QmkIp9uOSrVnJXttmRSvnBhUFoASDY8UyVUzl82R5l3u373H39k2O713nM+dfo8jHHBzdZzK9z2n3JmVkKPeHtDoB53d32Xn1GYJFgREB8+k+aXsNUNSubiCEJtM5t45u8Uff+QbFYoYIwMxmZHfeY3unw8buBp22IRGK7eQKrfgcQoScizbBFHhAMcL7WRtH3ux8sLti+NFRzzHTzPhfHfMtJisK83Fy7+MJAzZ1tzUdy1cGOFS6EG/QcIes2KoUQkqkBu22sNHGoNzgjMPQbvzob+ce9Sj3pR+2d1jze9H4WX1ssMhPXB7BSM9WUeJy6VK6XKpN6v4gSMIq8Db1vaZKM0fDAv5gu1jG5CQOp6CrtHy+HU1T3VL3ozYO1Fde88liuwLL9qWoE8rUAShOhPGN5CFIhKzHn2LKhEWSckk+gzSSRTinJVNitQu65ogCQZlE7G8Ytm+OGG8FzKOI0iXMb5UdjCmYymlDRePcsUzd1z63gdBzFuUeO71rMMvASOY3P+Ibb32E7N7l81/8Emo449QEbFx8llCF4H1atWZ5cojqSwhsStFSlGhj4+MklrlawiPRJUwmApkUgM0THUQSIUoOe4rnb044jTssAwmhYTGc8dEHQ9aLAduf2mGj3SEb3+bDN3+fZZ5QFCVvvfVtwkTQWQ/ZvXiOYLTgfvtD5qKk3zkHYZvTe0OU2ef+yYQPb95BhS1QAd02XFt7gfWNcyAk/+7r/5bbh/vEseDSpS79XoKIuyzyA9JWQUdKziWX6MbPIqVNlWqngETKqMpJ7Iup9MaNUe2ApREc7dJXNrBGuLHiB49Xdv+4DWl++Ngt9iwgNLQIlW7UxzkLU59jO19gpLXga60pdQlCVqn3pIAwDG1juIAhDVVk2Nnpbxv8k8Hlw6Cjqe9ducsPuaVnmSuLjneba1zv45aUdJ3q6muEdXoHgdB1ez3s2RXUul/KtaM2D17iF0WNz/8vK7ClCukVFWhrUQO0B6BK1+ysyE9cMX4qeUt801PDBw3Up/tEMkIIxFJwPniNUKQIBK1Sc5If8Obwj/nc+c+QztuIQoGBxXjBZDJk794pl/YEXF0nMoLWssuL95YUZcHh+YQblzOklNZ9UCoiFSBkSKgi0JqSAN29wqK8QzZK6HQ2GY2m3D6+x3hkeOvr73Ep7XB6fMRwrrn43Cv01nuk7Q6yLDG6pLO2i9YFerIkDLvMJxPK5ZwkHdgNUMvc9rUOQIRweMrN0wX3bn3IVAbsbrV4+fkepie5vdPi/PUh957dYBFAsJZw6YImmLf49DPPM5nM0WstvvgzX+D9A80Prt9HqHe58PKLGBOAKNnqPsOGuUauC+4F9+gUEWZzn2KoaZuES5d7LJeQL0uSSDHJbjE/ukkQJGxuR2xcuIBWGa00ZZ4PCeWIbhACcHXjMyRqC2MU3g1Qg7UNoZyE4UK8G/lJVgJf8MAKdeShP7dWK9Sg4+a2KRH8mDem1L5yxgGvq7dwIp1PyVHvF79SZ6eEt/coTR1KqaS0oOtUDI6ErBSbKcwxhD+DA6lhFc8+Bud+5Hs171E2JzQ28Y1psiRnSCu1sdu4mx/l+WJlhWjuamuMF5/c4tZkrH6BsGhqQRvng2yoB5oPLDB+DWmsLE9I8ctHJdc4pu8FMx+h5/N+2WsEQkt2g5cISav2FSrkzv17/P77v01Xh7wQ7hIFO5DlhNMZd75/ne+/d4uLW+fYigQXd7aYHt0g3L7C2vlzxN0e59b7SGET8s9nM5aLBVlRcnh8wjKbk2dLuruGd//4HeL2Brubp7zz/kd2wK+3CLYkv/mtN7m4nWCCiPdufAdxS5OXBhHEREFEIBVSheRL+86dJEFJ0GafloLjo2OSVsLpbMk0A1TAu+/dRc+nLCZzrn3mKuKu5vu/9S7PvPpZBEPa77UY6YLdzYjnts4Tb1zmzu2PyErD9XfeRHywRznoMz0uef7nX6VQPrBBWDIF3BLXGeolaaE4Xu6xk1xkrbtFd9onn56SDtY44BSlQ4xYYoSmnWyRFyMEJaFe0ultgM4wImI5HxMEbazhrUQYae0xjpVJC782DWYFgc7P19Rzx1C79VEpXmTFGivpshK1FQ+f9avl8biM+XB1UQMu1AmUbZz/gyHCgGPDAiWkAwF7IyHrTEoekB6gnQ11gxcnxMpxL/Q1rjlTAc9Gq+nYXAXPqhzOVPxhTd0kgZUBpII6UekAvJuJNqC1oSw1SGknjRDV+5ytefOAwbjcEtWLNL6vdbf1Pwu81te77ij/vTbGDUX3bOOT79RubGfb74kpogZe4cRDUYlKojpn1RPEYIqSUHUbTWvQZckrO59BCcls/zb3Xz1PJI9ply2i/gbPnV9n8/MvUk5L1trr5MMph6MZp+Eem2qX/OSAk+tvkJsF5BOMztBojC6IWzGaksP5PpfUDuevriFVyWx6mxc/veES3e/ylT/32coToU4saRPbGHwUmUaUmjvf3+N3fvt7aL0kz5ecO9fm1S8/T/uZlE63Tdt0EMpKSbvPJgz3DzjeO+Wj02MW5ZKj6ZDBdMhHJyNGp0dcO7/J5Kgk+lzKH//ev2e0mKH3DpnfO+Xn7mpef+4IHT+Dfv0j5GuXKEVZGdJPgxOm5W2Qm1wffpuB3EKFAQLBoHMB074AgNIR0/yUuShZFAt0MaSlWgzUNn1xnijtozFM9ZB9cZ2FPqVFx7JZUeeoqHpdmJVZ7xNL2T+dgdFLdkK76xuBHg50jai9Nqyvs6oW7EeVx2RIc51uRGXxF471KgzNDQE9CFUY5iaD0i4SSkqEtBs4Gv+SIuCBzRCrFxXoMwxXNJiep9X2UY9IUNFQUTzS3+7s4TOA9fBTxZm/7ZtrQAhFkCTkmd05whiIAhDC7jospGdkjuWbMxV2v7XRjYRCjYFiapBtNp1Pnu1Zq48+w/mVelZSjTXjo+98RJCoVCJPVtEV2NqtdHzxIbkuiKB5hZM6rJuZPdcXKSXPb7zC1+/9CW/fn6DCIc90Xua51l8nCge0UsV8Pud47xYHp3dJP7pD9vVvcfxPfo212YLWr3yK4Oe/hJIDkC4oWEiEgA+PPmJU5PTa66BCtNG0er3G04uKTriluzHnLQTbmCGFCQQFEZsBDF6+wGe/8jJRt4ORPlmNdpKNVTy112Hn2W2M0UxPxty7fkArNhwuTtmfZNz46BZryYyjXHNndMj61T4XX76AGJ6QmnN8OHqTo+5rRPGAO298n6sbfYoLbQwFURLzwewbtJIBi3yJnh0jWtskSQfw4xAwgkRukYQ7aDNlEhyzVxZsqR7r7c9iXHiRBPqqgxBwOr1Ju3setMCIAOmsEF6aWXF8xnMfB7KmOYubQQ9VeiFXP1O1s2fBtaT6YwZd3VCTCO9V4f4uAVMl8sCyWFZDaH1cuG0gZ+81BuXAY75YUASGJI5XnlsFY1QNUf+0t/a65UZeA7FSvdX7+Po86kX9CY0+elSWsRX9IG6AN9pAImhFMXMkeZYhwIGtxmhr4GhuB++7tzKWefUBgtVMi14HUMf2N3YAc3WrjZmN4NEKbN1crM41HsCN3+zwjBTwBJTKma7BaoWQjVaxZdW3uWnucj+Ny0BgBPeP32BKyVYR8Fz/L7LT+TnmM7h7b4/ldA9TDmm1A559+TzpN79D9oMPCJVg+cw6k2cvsRkm4Jipvb0GoXh38i4Xo4vgd6o1grPicO2C6bmF02I624BfaddGil4acfHv/yyiP3AusMbqdF3SG4MHFPuHT+y+tbVOe9AFo1iMBMn3b7JcnHCvzPnUZy/RvbhFe6tFND/mdO0Ok7yNkgWL995nOThlOt0j39/CXGhjjGS5yEhklzhoc7Q4YS3uYYqZ8zemnjQNVilFi55IyZOctuqgfXSdERi3a0YvOE8p52g5RplBNaI96/U3FV6P5OcQtl2NP9Cc3zQiXU1zjHhdhEUx4/a5+7jY+McDulU2POP0u64ONoloQ1L34GYrLtxgkS4HaWl8x9tBgbSGtel8jtYLer0eUQW8lcDeANGmzqUuzeQt/tkVO3QN7UV6aUSj/XzXiAaz9v1YG19W3KlWKX11Fw9eQBUYEQiBkgFLCrIiJ1QCco1SCq2sv7JButBh15ZU7uyNJCyr9a3UK8blUjAOWt0MrdyTGoPFezV4wG1Oglq9YI8Xj17Uf6KLX1ytJk5UQ1IY75PdhNzV1dRvVCkESBmRtvpcan2GZ67+JfJpwOT0kOs3vwVyTtpJWNvsEkY7aGeQW/wnfx351c+QLSbol55lM06w4bSNXQv+v+z9Z5NlSXrnif3c/airQ2Skziytu6rRaAUxADEz4CyX5O7azu6SXKORX4D8Jnyxb+cVlZFmpNGMO2u7JHf0zA4GaAy6ge5Gd1V3qdQydFxxlAu+cPdzT2RmZVYDqG7AEE9ZVEbce/Rx//vz/B8l/ETeXz3kteRSt6J3pI8jACsUg4KqqonxpK737qWzSCQbjxfMjiw335igVOrDoqwLYyi+715eWvQBBC9MqTXp4BFHN9/m5PNPmI4usHP5PtfeV0yuCpQ4Zv/oIwp5Ff3WJR66u0yPEoa7x3B8xGAn54e37/PON66FueIYiHNoO2eaDJH2yNOi6yWRCGrxPfjCP5ItLiPqEjGQrAsHRf5dsTF8naw9wIgAhH0QFL0Ei/h3F6LXzzfrN5F1a2ztXUtcEOgdr6fSPVO+mugFz1pH8O8AV1g/kNbOtV42WhzinXPNA4JBYLWlLFeoJGU8HDAshjgLWmuQEpmm4GSo9+NYA5w7lTjRXd8pLtKttbXwjrt3IWKr6gjAp1ToMEnXtZbWwUedconr/91dAMRaQw7AOr/A4Llr7QRNq8m0IU1TlHakCtI0QTrraRqV+Hq7T+joPHkaIriLUIgolk2h54nsg3OYfFaE8DN3KtKCaJpZ3wLcuSfrJ//NkBgi5QFWhHRnIH4elAXTaZZxkfL7C6lIVcHGeAeVb9CalMd3E/Yefowwc8Zjyfkrm8j0nN/B+epgeH3SF0p/+1XWLyLEZ0Ogw8JuCIyscemYGDfirMSiUTK22HE8WO3zs+OP+drmuwxlhrCRVnIUpEx396kTy/6lKTpQJOvUiDXUeKUoatGOrvutcBgL5iSh2n3E1vYWh0ef8c7fU0yHQ8xuy82f3ODad98lTc6DnFBt/ZThf/kB1w8TbKIYv3GRc9K3pnLCa+FZmpJlm6wWc+4fnPDKhRFdhS5HF6OM6M8hh0oLSEbhWB0crwEVaOUW0org+xI9LVex7puyfobQX6xOQ3Cn8IbrWjPCov8hPpv0dATEk/LVcLqd96zn/OrUut7NBbMopsM+2a02pkIumpq9w0dsbWxSloJBkVFVJcXAFyUWRiBV4jtEOLrIiVOe6O4ZrB9Gz3rx5eIC4MQibq6Lg45FLEJth5ji3qFvj5AIlYYQget06ztaLzBRg/BiXPxxNMZytKiYHx+z++AemxubDPKEzY0Zk9EE2hZpLaPpFOMaikERx+RTa2tnKgbe1hBL+znfd2r9wnoDKvK4dGnXp7+nC9vrl4L9myaRoVtX4BNrIEZQtz4Bx4Z254lMUConSQuwiqpssTXcPTxk/+BTyuVDGvmY119+kyy76Bc2Zz2AdTnc3mxY/xUth2BKhKyx9bu0HNQnLM0JTe6b6TTacevuR2yeG7E1vhwWB8FBteSffvRv+V72Q3YmV9geTtkuJkyzIZcNHG0a3tp5h5t7h+AS1oGKXWmccH0ReKFfjSH6GG0+RDnLv/7BZ+TZp3zjW+c43H3A9NEWV97+gERtYR2kyZhcTTlUHzO6eJXNzXeoqiNGORh3sQOtQZpyYjUnD0uO547kwpPkWKxlALBWMjy02kAP+eLnHj56EQQCnAqKhFzHoQjWIOufv/AaYaDZrIhV4J5USCDCu6PrHwKso7X8M5M9Rexp+Wo6R8hokq+B1EckrCdpmMtE0lCuVQ2kAGM855JIWNaWz289ptKQSE1Tlty9f5dXX3mVRDleunqRjdnEa7pi3ZnC16rteSl7qBTrK8dn5eLs65QZ//8+VdCZ2eG61y9urfpGDpTeCrwuqCKI3nCD6IDXOB/xoa3Fast0NESXC6SzJMIyPzzCtpbdvRXlcsFoNGDHwnSQMSxC2+9nLKyR3xNCrLVRG3ucuW49WHO364FiOw5XEKMWwPkoklMe/dOW298UUdIXaInKvm0sRZpzdFgzXzY8fnhMamsmsxnFcEhjNOXygJPFkvnhAQc3P0ElNV/7rW8w3ZpQJw8ZFglpNgqWQdSO/NSM7z06X5yI0TyBMugAd60JCCH4ycMfkCU5K9sCls/ufJ9qeBvDS2xwiXlb8dn8If/9z/8VQkLrKo6XtzmoFHfSBN1oMif43WvvonYe0sqGnI0OtKIVIwi1TejRXp2WD0hBnRyxWO5x586QGzdv8+v/YMliUbGRXEe8/BZpUoQ7ElgnOHfuazys/wiR3Oew2iVVx7hSMCi+g+AaFhhmI6q25fHth2RSkspBOHlvghKei4hQF5xbIkKx7FFr/TkZHL39OS38YrjWxFzvJ2zjogUcQldPqbj+u2jfdpSGc0Di7z4sUF8kX03tBbHmcaOmKYQPTJasV02fDCGfelTga+M652idYzIcc/Wl1xFSMBzNGE43GG5uMRsPUWim4xGZiB5a0bsOelrGEyUoYt+78Gf3XEVHdJzawAHuVLxzT2M+9VlwbnTfrReTvsPJ9UkJX9EEULjCr5UXJld575Ur4dmJnrni1s/Y+aObeI1Pkdd0xbHBIZwlCcuQdutFpXOW9RMzuoknwmITBqYJGoQ9vc/fNPnJjw+ojGN1cMj2+Q1G4y1SV3L7xg0ePrjF7vEhoyLh3GbGcJQzGA5JcTz8/AGf3H7MxfMT/sH//O8x3b7Av/mXf8LRuX/DN1/5D+narrv47mPir+tMJG819RZn6F6Cj+yJGrDg2vQqP3v0Z9TlPsxeJ9s+plWCeb3PP7v5T/j85k2OTIMdO0ZFSpGl1IuKWjsSPeDtyTW+cfkDssmUZbtkYHMe17c5P7jeo41cZwGtLbFIlVmEgtLdZmX3yVdfY+v8kG9/e5/tV/aZ2LfJR2/hocSDkj+GYTi4xJXsdZrkNkoopLxCq1uW4lOkPWYo3qSWLZMyJxMrCiVJxCDqjuHifEztemb7+WSDJiuxIPol4Pv79SZvqCsiQrSKv9RQsKZzprnee3BrbaKnLPUd+6LTavojy4TzfDG0fqVpwPF6w6d0gBFUwpgrfhp01yubQ4CyXDlXcHX7ZUQctEJgQ1iEwvO28TRPaV3dCrg+fr/Lb/e56P8rTiNy+NU+eez+KXp/fWGY2ReohP3jehDsg7ZbL1ysn0+8h3Uq4rOuq5f8EPaPi3y3FAUE6J8z1p5YV+iP6cFhUYmf2agNPf0U/rrLv/gn/xoh4fz2Bp998gmb2zlvvLzNK69v8d43PiDNc7K8AKnWb9MY5Mkfcv/zO/zeb/09fnd/C7F/gLt+kXuT32Gshghng5LrwMmup1psJeNrTfcddesIFG8FRqvIQ8vLs9e5cHSOptnHCkcyzrEnxwyzMdORY3vbsK1n/NwdsNIGYQy/azaYnXuZK1e/RqYGOCHQwocipqKgXNXctze5OHqJWAvXEfnb02MryR1V+ghXz2ExZv5zzWLxmI3LDZuDtxlmb+OiSe94YuRLcvV1hmrCYPgAbVt0ssGiqnF2Tt38FLnYJKdic5hSGshc3iv6c3pM+WJMXn2Kuugph1Gn0IRnDxBAOfQ8DkArOgBGmN6MDe+jc7S5LoZ9rQeH6IRuaeipcn1H9BdhAL+EbsCue4BBgsl9GifWnmMCjysj7jnPj0gkRshOQ05wdO3C6dcreLasIxZeJF+w4TMs+Gcern+rX3RNMXrgGbsp1kqtA5yQnKq8/+Sxe1zT82W9CLqwfxy4Qvrnbc0afE9p5QGdIx7Y0BrEudNpxn+T5Hd/5zIb0w20tgynI3YubDMYjoNe5dBB24/OpPj43/r93+DlNy/x24+22Lr957iR4e+aR/zod36PwyLvqAURx7n1emQM6VpbqrG+Qnxzrlsg+1NGAl+bfYvPTj5EpxXNao9sdB6BYOiGvHPpHabJDt8E/vjOj/jt0WUuJTu4y74uhHMW6QTYBGN8LtbVzVf5/3z0/+M7bww4l53zWOGilrquNJYOBW22j9WaeTOnaF7myhsv8cM//TE6WzJI36FfczT6+sM0Jrqi2vYNZLnBcOMBSi5pbA22omkqsgdHtMOUedmQZxmZHPlBGtkF1ub8Wp6IkxaxInAc0cGh1jnVXLjMsADiwTZkDaxBvlMeOlOF6HiOFabXVEPYTsSXFekG94TT7mn5ynqk9U3U7nl0cWMS60Ia8DNwKQ7OSEn4TgYOiUVhvXYb0bc7wZeRCDziC3/idqcoEtG7BeheQ2ztLllr7JEOeNEi4Ho/9M8j1ry0FP5VqvD7i44ohHvq/P0Gl2uHouvGi6+JG6IzpDh1DClBKf9vvFpfca+XmWY9H/03Tb7x3e/y6rtv8ebX3+XqKy+RDUceNKKmal33Q0+jF1IxvHyNW7d+hk0F4uLLyL1drvy7/xqvUURtETwMmQ6MYjBYnOg2WjFBgfBAHL5ztguhvD56hZPykEflh4hsRqLGCCkZ5EN04jg0B7w0eZv/zUv/AZeLC4iLryOsxFpfs9disPWK1XyFcAIlFO+ef4//9of/jAfVbsC4tWYHkBY5Oi+Z1wvmi12yGi6lrzKZTEmLkvMb2wjykB4etcvA94c6vN6pIREYmnqL1eHrSCbk6ZBRAkN1hcHs13DuAw6PHInNSPOJ3+8UpebVrvUY7lFmwWom/E18poH/7drGx9jmPhiGtj62i2TwC+TakxPDIn0VGREtYNbXtT5vOKdLcC+AVfFVNBX88MQGazRMdhmcYuJ0kw+B7xHWQV0XxRByTCINEI7TNUjkaS3yRbAbgeVZ2z3rGazLO37R83nW0QLz2R8Hv6A8sxXQM87ZNwG7LLIvvK71QhYXQxN07T6nC2CsxTnZOz4+fAxfB8LZHuA6D7jOCX7jyt9Ed9qZnMkvX74STffZQO7Wk5w1SDyz0eMTn4keiP117zwbG1jCae31Lw9Jzz6A+AscvIs7fOJa4/Ge1Jaf3K5vxcgXq+BnciZn0pOvKDkCz21HbjICpojkc7dlV8lKBM7F/7M2863zgcY9NpNf7Szvn/vpBUCKHlvrnrXFL3Kq9X27/kH7VxA4qn5U2pPf+y96h41avxC9YNuwzSlON3wcgulPXwfdec1f73XwTM7kr5V8RY60kG0VnTEOZBJrjPWbXPQpknUmSdSEPQaIngupB9fur0J79PLlS0CuyfovgtM177Pe/BdRzvvX8lyioXNs+fMJ8WyjJVoJ0bERWZNI80i5Tuftn0JK8YVWiLdY/HX2GbAzOZMzebF8JfSCStZTsc89dmmFbg1azoXQpL4GJQgZVIGLdH8zp3WfK/0Kz/KC78WpxclaX3uhrzjbL7jIU+8sbNw/lguOnudl35zJmZzJaflKNN00EbQaOjXvVHDxWpsNW6z/jlpZx0s8fey/rHb7F23n84tIFznAM5xqQav/smD8Qg47hn6dCtI+fS/r6K/TdEX0nPcpEc84BBoo3Ie1MdZXdGU5I5VsnUD9zVwTz+RMfiXylYBuArQhsyYqtY5+GJPfLuaaeImg/CQc98URM0HEM79/sTzJM3+JPX7Bz58Q98TC8ouc+6kNxVNfCXxs77og4BdcV+QPxJrTjY0J+5WTED5AxxoPvDFipKMo7Joi8paI8EVhzrxpZ3ImX0q+8m7AUoZgJdHXs54sOQFdrB/uFD8Zyyh2YWadm/0vOs0F0Ux+Mfj9JQGXpwH3Ly/rI/aLBb2YZDjNN6/rFz9NjgshOueZCMG9QhICcvv8AqfC+M7kTM7kxfKVgq4ATpeyPF08O7rIYt50P7v6lPRwwWPEaYrimft8mev7BXZah0w9Ybo/47e1Q/AZUOjoPYG/uMSMnFOA+wVGwroC0nrDbv8vOn7vcDEJwoOvJ9ytiwtp/8RnciZn8iL5ykDXd7MVPsk8JEfEkE5PI3izWMXKH66XvvAFc7gPuH8FV9j7/S93zH4sw5MBbac6YsTvBU90d/iLiCD29Hoy8uBFEvxfxHqrPmcoLCouLIPhQtcltXv7x+ys+D6/qCjFmZzJmTwlX23BG+fo90OT0ZPuonbb02x7fK/7Ao0tHB0Q3rkTmYYvAcRd4ZdfFfco6DIQnYtXFL76CywkTzvYotPyi8+/3nmtKXdf90PV+s+/W+hC/IJda/yxDqs543PP5Ey+tHyloOuI2m3gUeF0cYmuxiPd5O6Dyam4/qgA97EmgsdfSdDuFzutIFzbE1uJU78/C9L7hXzo3arr7fEc6a9A4ukH0IXjPYcm+CJ5MqIiXuKL+p0J6dX0GGbm3BeHnJ3JmZzJ0/KVgK461eBvDTGOUNLOgXJ0uueTk7zfRSL2lIr1Lxyh9GwHchEKnw9hPWXtGfJ8wH3WVuILfv+ycrpm0rMvLVoAsT5VTy89zel2C88vdg0dH9wZJqfbDYnedk8S0Z1m/Fex3p3Jmfwtkq+k4M2ZnMmZnMmZPFu+stKOZ3ImZ3ImZ/K0nIHumZzJmZzJL1HOQPdMzuRMzuSXKGegeyZnciZn8kuUM9A9kzM5kzP5JcoZ6J7JmZzJmfwS5Qx0z+RMzuRMfolyBrpnciZncia/RDkD3TM5kzM5k1+inIHumZzJmZzJL1HOQPdMzuRMzuSXKGegeyZnciZn8kuUM9A9kzM5kzP5JcoZ6J7JmZzJmfwS5Qx0z+RMzuRMfolyBrpnciZncia/RDkD3TM5kzM5k1+inIHumZzJmZzJL1HOQPdMzuRMzuSXKF9JY8ozOZO/KfLdf/iSi002xRMdNoVwCKFAKIRSSKFQKkHKBCllb3uBcIKu13PoOyjAN752/jNrNWDXHbGxGGtCQ1B//ievITZl7V1V97e1ltjW1EoXP0Rgw34Oh0UIh3UG6yxWGJzVCGdx4cc6g7XaH8/hO8A+IUI8u5di/FRI36BUiCeator1fTnhsIBEglQImSJlihSq9zyFP1c4mJSyO85T536qv6MI70uiRIISCqXWP917RvircALhwCG7e3bOf7f+2+EwgAHsuoN5r52sELHHt//v//Vf/ei5rVrPQPdM/lZLf+LGLtQd+AmJiIArE6T04BABoj+JhZBd+3oRW1cHETgsFikTcNZPWecA47tZR3R+poh4BhAidIj220sZFwuQcX9pQZje8TxoKCEQziKcxAkJaCzG7+9ABHB29st11+5fXTwG8TaE6H0QgcuFDtO+u7VHO4ezFiefeHY9ie/EPdF1+knA7f4OnbFdeK4d4Lu4eK0PYkOHbRH7ljuxPoSIz8FfZ/egT935M97Zl3hsZ6B7Jn+rJbahF5zWdIWUCKmQUiFE/Fd2Kp0L2pLX7MJ/fc0XP9HXWChwTuCcxDoLLkz48PuTMOdBlu64p7TxqFm5JzQt5xAyXCO2Ayrr/LklXgt2CJwQCCcxTgAakGAMQhCu0/XuxwXcET3ceQbghJtwrBXCDrrC3wKHjJaBBScJVoDFK7UR+FzvLH7nJ4G3/w7X12m8thu2755np0WL9YWd2n+9gIHtrgLC+ulc0Pb7b0r6c2JfsHCeljPQPZO/1eKI2mO0j0GqBKEChYDsAFdICTLxgBWAC8AJ4YEkgmNQjqKGBd6kdk5gncU5gXAOLEipcO605hZN8r7m19fA1yBLp1H6T6KGG/Q3Ec+tAmsQgR9sBNEOSF0AZNOdbw28a6RbX6Y/YwTB04Do1rv0wHctYq2NdoArsdYhpQvA704fYE1kdNf3xe/0tDz57FyfCiI+w56m3Lv4+J/saJOnNXFEb7+nKI+n5Qx0z+RvuUQi0oOqVF6rRUoPtIE6iD8OEQA6TOZOG1pTAP1JKyN4SRE0W+npBms9nNhwDUEn7HOg8fr6gCHlWtPtT3DPlhI+i0AVOd/gL3eiQ0YZvhUBM6QAKwLFELXop7S3Nc/5TI0z/K+7crH+LNjs3WUQjYBwvS5oks5ZrA3KejxnT6Nf0w2Rjug/v/Uzi+fvy1NALdb7uSd3d/GReSpEBGqku1cXPhdP3ueL+YUz0D2Tv9USpi7C67RIkSBEguwDXc9LJKSf6FKsKQUREMIJAij7o0EAtHAih0M4h8IhrMUIgTABeF100njpa7oe8IVfFIQI5/G0hAxAYOPZnPU/qHAkS1TFRGB+jXAI6/x1dcCjcCIJmrrBYnDYHjO8ltPgFcG990kPePufRcsAJzyv3IGn65yN8Xqd85p6IHE6ugH6GrjreNi1uinp0wJeqX2a+ong6KkP0QNad/pm49F6Sqw/lu1ZEoEOOaUlf7Gcge6Z/K0WGbzYUsjgLAs/EWRF0KY617wItMMadLu/owa8tjc9+Io1EEWQEdYiRIsVYK30EQzO9LS66LX3x5VSgJRBSwznlh7E43Z0vKt3THmoiia19Ka881QI0lMdEo1z0v8QqBMhAx3i6QrvirOnlckgz9J6+xpvZ7gLiXRBfRUyrlBr8OvRDP4DgbMyYKl4AvSf9SafNus7e+NJzrx7VuvFrQP/Dn9dj5y2RIPE00q2u7lTijYgxOkF6FnyXND9R//o/+BwgqZtODg85vHuHgfH+8hc8u4br/PGS6+yM52RiBTTao6Ojvj05k1++NHP+eTGHU5OVtSNoTUGYwzOOUzPEaiCFziREqVEWJsFUoiOVF+bWxKHxDiHsRqrDdpYnLVY6/zn4UHZ4KSI75XAY7nOXxmYPD/2ghahArXjItODCyblaDjm7a+9z9Zsxv/o7/wux8sVg9EIpw1pmuKwXNg+x6qqEVazu7/H4909Hjx4wL17t/jwo49o2gYrFaQKlyQY6bAO7721wXxxDqzBaYvTLU5bjPNaiR+fruMOVTRdw4ovXF/b8SuvjQNDeI0gun8QMmhdfo7bwGl5Tcj5pxO9H8IiUH5Vdy7wkoTtuycV9B0R9ybaztJKf3y33oo4Rh20Rw9frBp8heLBVgVaIUGJJGi2EqTo6U2eVpARDAlgK+SpkKd16NP6Xy+dPY1wDmsNRgi0cAgDtnO0eUoggqXXbkO4kzz9qHxolQ0AEd5A984j8Ad1T0SiIWjGIuzjPI9qrUUIFTRMTXxbzvm3KsO7sx3tsBbnelx2uPoumsJfaPedEBIbn2oY8z6czD8nay1CxvEDOIXB38/6XZw6ezwJnc3iZNBMRZj7YdEJq198Mmt6Ol51AOC4VMjesV0ct2v+V4hOb4YQnveX1nRt22KApmlwzqISRTEcsXVuxuVLl7l66TLnNzYZpAOwlsXihNlkzGQ0YDQa8vNPbrG7f4xsNK2QAXgN1vo3YKz3ElrrUFb4sBYJifBOh/i7UhIlE5AirIgSm1ha3WK0xRiLch68bHzxYXUzBB+jcBgnO2ASUSvoTEtBkibkRYFzjp3z5zl/8TLTyZTz5y/yja//Gjs7l0jSzIOOkKhUYVtNpiTL1QJEinOWC+mAy5ev8u1vfpfd3Uf87LOP+ezTT7jz8B5HywVaCrRzlHWFblsQ0agSYREIf8nwzLrx5SePn0+ym5g4P0DW/oAOOrvBGPeTURMLpl2Y4x0gSpTfX6wBWgRXtAtjT8ThJfrPsZuW3eovUKAEMkxUF4E9EGj2S/BfX7lIiehpuBFEkRIXnqkQ3jQWwZviAVeE8DGFCnG7UiVrKkB4J1wwPBHYEM3gf4RVXmtyJoxJ2zm5+qFrnROvpxFG8WPcPvH5OsTKhse7Zp4jIMowSSwW5RdWIRHChvOoTuPultPu+OZUZMPTsbJhq6Dd+23o7ifeo0DgpAdFGx2LUQMNVIPo+Gl/F/1/+pEb68gK0XGtka44fX3PG29ewXPdOW037uNze1IiGaLWR/gymPt80G3bxr88o8nSjOlkyng64/LlHS6du8D25jZbm1uM0gIBjMcDijwjy1KyNGeYF/zs81s8eLTHatXQaBBGYIT1jgTnQdIKg7F+2iopcMqhhCRBgvSrbCIFSiksXpN11qIENGiUlP541muGOB+Dh8P/jQ+bkU5gndd3/XvykyeJzgUB77z1Dm+89Q7vvfcely9fAyR5niGl5PhowXy+9NchJGmSoCQsqppluUIbg9aGQZGjNZTVksFoyK+//03efet9jo4PKVdL7uze54c//yl3Hz1kZbw2YV2I2SSQ89Kbd9L111bHqYVCBC0WOD0mxPrz8J0MZpoUfnGLuxjp38OTDp3weALo+q+i88U/SxsCy8Oz613dGvDjQVh/GpWyuGD8ikUI5a2cLjQsQSoVFMQQJtT3fiO7WF2lElTUkJVCyKTHA/vjQcAvZ4mOLW9AeO5V2oTu7ToXNLMAan1OmTUY+6SIqBH3gSn+tbZ7XbTounfrQVoSTXeHcSoAbi8aQahgMdmwuPvjSSe9xRhN9me8wmiad9+7J+gBJCB9yNjajmCtAAfwtR5A+/zrk6eLgPvEBawVrw5411EI63cfNrd0gCvEetvuYN1YffIK3Pr73rL2Inku6DZtC8aAUOR5Rj4YUBQFly9cZGfrHNPRhNFgRF4U/mCpIgkZJkJIVJpSDAryQc79e4+Zz1c0rcYYgQa09UHjuDU9YPA0gou+CxNiD631WkkYAELiNWDrV2gpFcYKMH4wC/w7U1ZgsEg84Mrw7CLJrqQiSxO2z+3wxttv8+1vfpdXX34NYzXNqmS+WFE3tacshCJJE9pWo61jOCxASOrViuVqhW5blEo52Dc0bc2oyBmNxxijqZsW3WomwxG/9vrbXL9wmRt3b/PJ7Rt8dvsW88UC66x/Ic7TBj6DKAyQ8Hk0+ZwIfJ1bm0MuALYLWqmINEt4nwpICSSCEEEn9c/FBc0khsjEYSSwnt+LjiPpEMZheqaaE1ErWQ/IjnqIWk3QmPxg91clvsQA/apFiiQ40Dx4CpngZIhzBQ98ku5pxAgHn+WU9oA30AAd5RCAhRiv2y1Z63AyJVFG4Zz2QBQUBiHocZvu1DyOzibXRSbA2qhfi79aiROuO0Q/UcBrctEk99duRcxiIyw2PQCMCkHUkkWwaOLl9cGsD0AugrBYb9yBaJiE1uHEOnFDhHEdlYB+mFqnf/fQPi4I3TlF1P5lAF2feRc0D9ZaSNhfRmBeKx19x906G++LlITAn7tn6cNPy3NBV6YprW4QwpGkQ7J8wHg4YToeMxmOKPKCJEkhTfxqKgYMgC1nMNZgrMNJgVCSNFHce/CYk5MFdW0QWuCMwVpwxhCZamct1oFxAoVFI0C0HRhIIUP4jZ/ISskQ4xcHocBaGUxtQ7A2wsvwVIYTwmsnScqbb73BO2+9xRuvvcXG5jZGO/b29nDOslquqFqNblsqrXHWURQFCIGxmlSl5HlO27bs7++jtQWhcDiGwwF1VbOqG8bDzJtMRrN/cgQC6qZhczDl2299jXOzGX/+yScsFnPqVRk4VosIEZYhuAiJ7WJCuwEdV2vCYI/KQVxYelpPfAZCgCJEZIbj2b6GC0TKAiE9vx7MahtmmvM7+31FT7O266Epw8VZLNKJ4El+drjRr0p8llmCUmmgF5IOFyI50D0+KUFJRKKQKqSwqpQkxPT6Y8WJ/URZk6DtRi0xnlslCutUsM5sZ31JKddamnWeS32mBMDtca39pAbv+Fkvo+tvTNg4On4CRRQ03Oj5i0uFd6p5e6YDuUhBCPsMBa/3QXSEuXUcQme0xwXI+tSN/tjoogzCDo417D77OUSQNmH7tUUdHXUicO79CIg+0HaWQy/++Wl58tNwXrFOq3iePBd0i3wAxtC2NcJZlJRIJUlUQqoSP9gSFVRSBwnIPCE3BePJhJ1zLZXRVE1Da1qQjiRVHB+vaKoG0QqUNrQONM4PSgcGvzoJK71WFryuxgbtVqqgmQikTINp7jEiSTLawIOaqvI6gQMhBZPJhDTLKYYjNje32D63w/vvvc/li5dJVIoxGtNULFYl1lnK1Yqj4xPKsgQhUUnCMdL7WIK2kyQZQinKsqTVGiu8JnByfAzOMp7OWI4GbM38YqWk4HixpNXOOxCl4Ouvvc0bV6/zo48/4qNPP2V+coJ1ApVmCOGtDSkEmxsbjMZjnHbs7+9idBumkX/hnkijC2VZG/sRSKELyREhm8aGCdvXpuIvViADYSWcCGAdOF7purkZeWLhvIPGurjqd3pJN04jxSDigvArFj+GFEIknmro6BDV03AcQnjAVYmnH5RUJEqhkgSlMu+PCM63yM/3Q6f8O1HgJDIQ6UIphPVj2QmHCnSEVGuu3liLFYFOeM7j6sDq1JwX/j4CldCZ/QGEnYhAGzReT16zTmmOR3HERGMhLM4Fd5yw3docxcVFub93CBHz16HWerlYn9sTILKzLiCE5YVxt1YJ6LTnNa+8/mIN2jb4F2xwVls/N63tHPjxHtcpxH2yI1oU8ZNwnfF64y7xfkW8+ReP6ReDrrXezHWeTNdtS6tbCPGGfonWwQyyYB1SSvI8ZzQaMp0OOXduk0W9oNEN4FBSMT9ZoCpB3YRoBWM9PWCtv9WwMlkLTgmc0z5KwShU4shSr2dFU0MpxWS6wdvvvs9gOOTe/Xvcv/+Ao6NDGqOD0paxc/4yX/vae7x87Rrj0QQnlDf9paVpKhbzJauy7Jx0Ks3IhGCxXLI8OEY4S9s2DEcTBsMR4xEkMsdZi25ayrphVS0Ct1ugraWpK8qyZDYasDGbMBuPyLIcawyJFGhjGeQjvv7We2xOJnx29x77+3ssT+ZgU771rW/z7ptv8+Zrb7A8mfNH3//3/NmP/5S9R/fx4SDBidYfNNGKioMyBHg7S3BgOHAO4bwvObrrgjLq36xzGCsC1+eCLmSRQmCV9JRCGGhrnHcIGxw53VTpmXVR83IC9ddA411Hx0TONgBA5HPxDjSppKcU5PpHqARU4jXgkFxhw0E759F6BcMFeis6QKWUuMANR7T01xNAMdJhcSHrm7ynltO4qK11yL7IGOna+TPighiZeLV+xyIMqVPgsf49Fufxv0dtfg023jLwUTAmAJFfwEJiSYxf7qiN4HQM7+E03x9Bbg25z77Dnu4cQTpE3tAV9bGdf8S6J6IruoiaOH+itmvDc2MNttFe6C5CrDFYRHB+vjwXdBMlSdKUzA595IAAY1pWqyVVXdG2DXnboELoiXMOjPUhXcLhEkGWpwzGBdONMRurCVVTYq1BKoeaK0RVo2qNar0TSluBsCbit395xmGsQ1mHVI6UBCUdUvhpraTi+quv83u/9/d5+aVXePXV10FIbty8weeff86tW7c4OTnhwsULXL9ymdlsC5ylrluO50vGwwFNU7GaLzg5OfYcMhKDB120ZlWWLFdLjG5RQjCbbmCNxlnPSSslsVazXBzTmhaVZp7KsIamrkmEYCk8P50qhcKSJinGtAggzXLyfMDlX7vIay8f8cmtz3n44D7/yX/4H/GNb/w6/8O/+uf8i3/635OplPfefAsn4U/+sOTo+MhzsqemoOvGjcWFyRE+cJ7CERKEW/N9/eEnoOOn/ICVqPhNmBhJ/N1GoyxcgQ3DtyueIrojuxDyFiNI/xoouniAjbDk72kNvi5wuKIHuJ6vFcFRtk4PVqwdTvgFrT8JnQwgEIEVlJA4keCk51dd2M+/J9dN9Li9k6ZzeIbloLuHtXbZT831n6z1tfVn3iHmPDXURazERTfo6uIJnjIA6Drd2Es/VdhB8DeE6+u4KdldQ6ddhx8Zn1s8f/QfxHuPx3UhVkOG6I541k7jjf+G751PazZO+kxAazxf72z3rMIFEXnI3vLSvaunBuraG0zvpvz/vpAGWstzQdfo1m+UpCRpQpIocILFYsHh0QHTQUGaKorce2Ct8TGzdasp64q6bdBYpBLkecpoVDCZDmlti5OgUkVWplSrhmrZULctSmu09nSD9eoSzjm0A4MlCVqxNhpJQpqnXL56nb/7u7/H9//oe/w3/+//mu98+7v83u/9PlubO1z73ZcoT+bcvnOL1mpWy5L7Dx5S1zVCCoaDIavVkoePHlPXDcvVkkQlDEdjlExYLVccHe6zWpbUdQt4XqiqK4ZyhFIKF7TZ5XIeOHCJsBYdtOUkcdRNDcIxHAyQaUqaFeAcdWNpqgaaliLLWC4WzAZDfv3Ndxh845t87d33GRUF/+D3/ydMpxv83/9v/2d++uGf841vfJMr166xWC3RTYvpAtnXWsc6KNwSPcjOOqTwIXpOhOgRt56McXB7JTbsYyxOSGSk+8LsiBEUhgjgrgt5iiZkDA+KmjY9g809QXv+KiRqWggZYp5lSIyg41al8pXGhPRlA71Wq0IMbaw61qcm6KwO1ws7EiHLChupCAdKgUtCBTBvinj/BHgADZw6rnM40XNmQc/RFL2h8d56BGnfk7/WwNehaULEhTmEj3V8bWD8g+YekyzWMalrAHIixI2HhVl0lEF0xPYffPjbRe0xLBvi9DYd4IXH6K0vh4rFcbrtXe/f+Exk8NMFP48M+q2jZ2W5aAp2C2X83D+vJ4A8hrP29/8FnRTPBd2qWvoaoklCnmUkMkEbzWK54PG+YjIsyIuMRI0QwmFaS6M1VduwKktvkpcr6tbH+SaZYDBOGNkMJyxZLqnKjGXesEpqVsuKuq5phABh0dpgBV25OR++ZrFCYzQ0CC6dv8777/8a/+Qf/2M+u3kTI2B5ckxd13z9G7/BaDQkUZL5YsXxfI5zPj62LEvG4xFpmlGtVqRZxny1wvOwY4RTrOqKo6MjVmXJqq5o2oZECoo0wVkYjoYYa6lXKx+G5TwvV9al56SlQuBIkhlZMUIJ2N/dZToZM5tOGQyHTDY3WZUVTVOxXC5IkwxLyyBLef36K0jnONo/4Gh/H9doNqczbt38nD/53h/w1rtfo7x+nRs3b2AbvdYyO8iL2oePAY1RCx5MoxYUHSW9Fdr5fa31zhYTQEgRJpMUQUvz2kgM17PWYS2Y4MCMA9wbQrYDa+UCQ2h/9ajrq4nJDkzjBIpZYDEkzIeUheiFsM86GSJ81ivn6CKvE4CiSwp2wTXnAoUR4nud889QWHi6dq0/rwjVaJ11T2lgp0oX9t/lE3gQF17RM3HifYmwuMYxtKYKepYSHkzXBw7jTIiOYomWQyQbIn8cTta77rUW779yp77rX/Pp+wh+GmHXMcfrLXv/+sXCWo0VAmn9NVoIzzm+6+7JnOKHn36IfhvxxD10K8KXNN2eC7paNwihyJQkSRSp9Brtoq7ZPTpgezZhczZlVORICa3W1K32GmO14mi5YLFasiqXVG2JoUFljnyU4GRGlivyXJMmGalISIRkKQRSNvigMoG2GmdCdEJYqbWxCGEYjoa8+cZb/A//6l9x49Zt0iQhy1LmZcUPfvinJNmAy5euIIVg/+CARV0jhMAYw6VLFyjynOVqhdMGrGM0HMJwiHUwny+o6oaqaWmtJksUrlUY06C1QgJ5kpAVA1bLBW3dYo1huTyhbRpq3ZLnBSBJ0ozNrW2yNGEyTajKFcfzJUhJ07akWU6aZQzdmPlyRbmoGeYpn37+OYNiwMnJMccnRzx68JAkzZhtbtFqze7jx1y/dIWjoyP293Y7XvYpviB86HqgYEUE46jdrg1Ej90hWD8QVt5D7TnIBHziQCwTiMNYMNahrVkfz8mw39p2FM6Fc5+6uF+ZRJBA9njdoOF23K2IlIJfbGLGWkcvBCdRl7oblzQRQk0FdFkondkeP4qTWOL9XQ6JX8Bg7WX3hb9lSEh1HQsRzXHg1Pv14ug7i2LCgXWxmDhEbnit8Xtu12K6MeHvjRDBQGfleAvceSshxDkrodbgD+tQwz5q9qiELppFCIJZSxd+EzbuZz72B3ccp/HYp8PI1hqqz6TTGOvfH0KGiJvT+9A7T7cQdCRG/Dl9DetzfHl5LugOh2OatsI4b1YrJdDGm5xl1bCqSnRdY9oWkSQYa9Hax6Quy4pFuWSxWrKsllRNiTYaJxxJahmpFJMmpGlKIlKkVd3LlaUCV2NFC1oghMFon8Hmc8AliZC8/PLrPLx7h/sPHzEeDRkMBmTFkGI8Zjgcs3+4x8ZkSpKlXrtzDt0aLlzcYZDnHJ2cIKVitSzRxiCEJFGSarXE6AbnDK1uWCwXlMuSpip9QoRKKIoihKMYhBDMl3NarWl0S1mXtG2LNhaVZKxWSx4/fsT1K1dI0oyd2YxyuWR+fIJKU4QqGQ4H5IMBCIFKFG1Z8dHPPmJzOuF4Mef46JjZbJtLl19mON1ENzWZStjYmLG9tcNqPscYg9aaGAVioUsuOjUshFtrIsJPfp9B5M1TGfhE16cFHFhpu/3ipMW5LurIuegA8ls48eTg7H7zk/EXG6tfiZx2oAUHlwjVxlSCVOuC5WsaQYW/Q8RDiBCIxzjluxfRpO/f/zrzrD+Ju/cUaR2/abBgRadJxyiD01HYT//+tL7sN5EuZqud1s5EXBB6+7iQRkvoqNCP447XiZQBbFWIL14f18cfeRdsh7uRchEOn5TRewoiRo93Vxwu5Ik/gyM4jtG+xtk9axED1PBWW9TGg2WyVjOCBi/iEXqhbOEuYpECF8233oU9SeO8SJ4LupvnLrBaLaiqFc4arPVpvFIpMAJr/YP3GoAiEd48qmoPuquyZlWVrMqSqqmodYU2NUJBliWQSJSyCJvijCJ6wmXiX56qBFXdorWkRaCNCTnikslkzKULF/jopz9hOBoxGU+YzjbY2NxmtrFFPhyQqJT9kyOUVFRNg3UwnUywbcPBYcP58+epyprjozmj8ZAiTXn4+BFGa4o85XhxzPzkkPnxkc+AU5IiT5kMCibTKePJBBAkKmE6mZJKSV1VmLbFGo01LavFIc615EnCweEB+WLJaDRiMhmTTCaU5Yp6sUQ3FVaIQKWAMZbpxiZ1U1OuKl5/9wOK4ZhyueS6tWirWcznKCl56y04OT7k+HC/S610iOCt9Y60NdngkyR8/GUYVCJWnFpP9Fj2z2u5wmthDmQvd12G92WFQ0qQViKjsyiYpaLn5IP1xP/FWLCvTkTUrIhmpkCESAWpTtMIMoT4OSUQSegkIfpgGzXPmPvvUTQWKl/XyzI9sPfFbmJxGQjvJZqwbg0mhIhqAZ2XH/f0RF+HQK2/jyF8YWnxCyvrFFp/nSLEUwdAjSDUWyxOvbmo5UuFJCxGRO1R9CKoYtCZCkZPKJYu/DFcrFsgpNe+XSAl4o2GouwxvddbB5FE6wNeeH+hhKUIWjjhb2tbhFAYqSBQNCJQmU8r4t7miFE70bqIgN7PUPsr1XQ3N8+R50PmiyNsW9E0jXdgyTAok9QPPCQqvABjHXXTsKpqqqqmrGtWVUXVVrS2Rbs2xNoKRCqxWpLlDjuQ2DDusjwjy3KyKiVZlpSrOixSImSmKUbDEeVqRZIV7FycsrVxjs2tTcajCRubW96bbBqOjw853N+jals2NjbRxjBfLHjt9dew2nB0dERR5OhGc+vBQ4wz1GWFNi2PHj6grmuKLAMhyRLFcDBkNt0kywtGwxHaOk8PpBnj0YSsGJIdZCyXy/DSfOWkxXKOEGCNYWM6Y5BfZzrbIC8KmqbhcH/PJ5Q4x3K5QiFQITMqG4yoVyV5NuDyxYu0RiOFZFWWSKOZbcy4c/tz2rpktVr46kzOoq1dO2+CPtbNRef1FuHAhhAyEQaxw2tDRvpJHwdbwN4wMDsVjKgDJUqAlV2UAkHb8BRFT0cSgli39VctpxWoNWfb74G2ph0kLrbuET6+9pSW23HCAcRw4PRpxUisNco1LbHmCWOW1mkd9PT1RgDoajnAE5pz2Nb2v1uH8XW6aG/f/gX2HWCdNtlbkf1YiBx4XHhU4MYjWAXtNdzIbPs1zl3/DtONKZSHPHr4M3Yff4ptSwQhvh2HwARuN8QyP3X3T5r3LlAxdO8qZmpa5SlKiUR5lRxrjde6u0pxfeIghOIJv1cXZ91ZKWvgffKNdH/9ZTXdwXBImuZIpVjMD1ku5jRNAwLSNEWFHHXrHNo6WmOo24ZVXVFWFWVVU65Kyrqi0S0WA1KSiBThJFZbnFMkUpEmgjzLUEKhrSEvGrIqI88zTpIly+WKpBG+OE6ScOXyZbLhmMlsk+nGNrPNbWbTMVmWs1ouOT7YZ//wgFVdkSQJaZazWC4YjUa8+cab1FXF4fGc8XhC01TcvXeXuqpZLo5ZLBeAIM9S3nrzLa/ZS4GuW+qmZTAYMB4NKfIMkRdYB7quqKoK5yYICdtbhqIo0E5zsH9I2zQoJbCtYbGc83hvl7qpGY2njMdT7GyTxeIE5xxN0nDvwX3aqmI0GpLnBQeH+zijuXrlGm+9+wGbm5tsC6+SltWS3/yt3+H45JiqKhFK0DY+JjpWf/KDpzeIgxYRq4fJbtITtJ3oPhFd3Yb1lPeDS3XmmNeGlXQ4Kda0XNhYEMP/4jk7Q/CFA/QrFxcmW1xUOhphDbTIdbSCiL3SItgE4ImA08cEn4xwGhAgamHhGVkbTGz5BGj6hTP6MWJkSP/4IlbRIjaZXN+UV7LX7wsIFJuHs5jQ4Pdzp8HCRTgKDrTu2DGszt+zB9xg1ciE4eQcGzuvceHa+0zHG1hn0dWCew/u0O7WfG30MoeN4PuPar75a/9bvjuBo93bzI8fcHh0n73DW1TlkU++yhSL5T5Ol8hgk9lepEOXKfjEy3QueDaCZiEDZdbF8dhIdcTylacXVhf+XZd0VMhohQSrxpecPB1e9jTt8MXyXNAVQpHlCQM9RLcNq9USbU3gunztTWN8R1NhDG3TUlY1y9KbxOVqxWpVUukW4yxCORKpkCLBOYXWfgUWSKRyZFnikwZw5G1LlmUM8pwkTUgzyWpZ0dYtaZIxHAxoqoat7R12Ll1lUAxwbcX+40d8duMzFosFFhgMhrTGIFSKM5bJeMruwQFKSooi5/DwgDt37jCfz2mrEpUk7Fy6wje+/gHf/tavc+H8RVSSsiorpJIcn5yw92iXBw8fUJU10hkGeYrLFNsXfAGgc+e2KfKC0WiCShN023B4eMjnN2/z0YcfcvPzz7l77z6rsuaSUIxGI2azKdpZjo6OyPKMjY0ZD+4vefz4IXVZkeU5Wmtu37rB3t4u3/nObzHd3KIqK4zRvHzlOucvXuLx7iNWZYmzJiiiEXhdAJj4cgnUQxyOrgPJmFHVH0MRgCP2WuHQiA5cvcfaRZWh89jH2EoZw2+6w0aP+K9WLD5wXoUFal09bB1LKqQC5SMYYulHGbRUGcxrYG3quwhmJjyHSF/4Ce61JfnEj+sBb+R8w2E70F2nNsQNooYbzrDeJ1ghT4YCQsCTkDVon/kK3FN/WSLfrXDCh2JJfDZqPrrAa+/8fZLZK2xuX2C+qtnXNeloQCtrHux9xht7tyk/S3nl9Xf5dPWYf/PzD7n40iu8t/V13rr6myxWCxJhGaWSaTFgMhixv3rIZ3d/wB/+4f8JXR9GO+208tC7Sk/RxIxLgXQhWzKsVvEpGRtGu/KcfPdOIqhHK0T2/A5BOREh0nztJzkFvc8ZaWt5fsGbpkWFNF+lUpIkJ898XrNE0DQtZV1T1Q1JKljVFauyYlWuWCxXLJcr6irEkEpAKTKVokSGswJcUPUFOCxJpkjTAin9sfM8pTUZSS5Ic0FepKwWFc74WMpBkSNUTrlYYKoV5XLO3Xt3uXP7NvlgwGy2gW4bZKLQbcPWlWsIIUiShEFe8PjxI27fvc3x8TFZorhw7Trf/M63+eCDD0iEZG9/n/1HHzKZzWi0o2lqxqMho+GIDz74gNYYFkdHCARZkTOazhDOUVcV1apifngXhGQ8HlGkGe+9/Sbvv/sON2/d4nvf+yMe3L/PvXt3MG3LxUuXmE2nlFXN0cE+UiWMxxMGg4L93cfs7j7CWEdb+3C8qi55650PEEBZlgyylK2NLZRMwVYY7YdBzGjqD9Lod4iakw3OsgjOAl8z14aNRa9uQqdlhcw24YJTDIcTkkS4LisrRiooBxF6LA6F8DywfXrq/LKlK4YSTGapet1+pfS90rq266ENew8s6aXMdhpjr7054K2GzibtkRmRaiBMcuFzCZwTWIyvwWEjuDq6WrsdVRM+c2tA8a8wmMkxe8ytz9zV5egAG9YLoOnOZTug8geN9W5djNrAa/0b17/L5kvf5cd3Dqj378CHH2OSnHprh5Foafb2kLfuIB/d5N7du8gffZ9HLmFvssPj2w94tHOFodC89drrGDHg/GyDyWQLl2ZMBxm/9f7rLOZH/OBP/q8g2i9+j0RKwkczeGVAdDfuO23EzDMRPIm+UFYE2o7xDqnQwsV0YcI2IYY56tpRS+FZ/36xPD9krK3RGtpWY40mSVKKYogxGmthvlyxf3RMKhR5PmBVV8xLX3FruVpSVQ2Ntjjp+ck0T8mSDJxEa19VyNeFNb6WiFLkeYoSEpVIUptgSVA5pKkkSxOSNEVXliRV1HXJ8WIPISRFntPUNQ8fPUQ7SxbCsbRumeRjLl6+wmQ69YCbpOw9fsSNz2+wf7hHkmW89977/PZv/TYbswnHh0ecHB+zPDnhZL7kwf077O7too2hKDIuXrjMK6+/wWA4om01o9GYB/cfkOY5H334Ex7ev4t0MB4VpFnGufOXuHDhMtONLdI04cqF8/xn/+k/5N9//wf8yQ/+hFt37rBcrdjeucBoOCSVkqPjIxSKw6N9NrbOsVgs2X34gLb1ps6tW59zeLRPUQzIs4JBPqBqSoyxVK1P05bQBaXHqmMdQEZtx7oAOAFAXUzTDYjsQhqpdd5/KwRGhPHrfEowDk8tBICNwfXR4lo7dkBaP0E6IP8Vi7UaQjyykKJznCEErivXmPpaCzEONXKXkU6gD4ymA7uODwzn6kLFXOiR5ghOKx/jK4UP5I+WQ8yocqdO40IGYqg05ggmsutxj3TnX1caW78D69bX26dCosZsI/ASy+JEzjrwtfjrTs5/g+PRe/z4J5/i9Iq2tbhqRT4Zs9q/Q7q9w+PHj8hLzcCBahv2jpdUkytMt6Yk924w+vkfU6aSf/kHFnvxNdTFd9m4/ipv70z52pUrbBvNd7/5v+Te7R/yYPcH3ZLlOG0rec0+pLpjg4baA8bofHMAvgSsQ/v7EQkx9lh00Rb+WLECt7cFo+XoF9xnarZfQtl9frseIWmbFWVZYo1BCuerijlH2zaczCtff8HCeDjGOMuqLCmXK6pVRdsaHD5FNs8SBnlOJnO0NrQ0IHzdXJF4QJBKkSTehEFBrhROKJIsprd7TndhGuq6QteOk6NDdNv6kKti6LNVhMS2BjkUDEcDNjbPcX5nh9FgyGwy4dPPPuXh413mixMQkvfee4/f/O53mB/tc3J4QFPX3Lt3j729xzx8cJ/79+5QtzVIRZqk3Llzmx/96AfMNjbZPn+ZPM04Pj7hzu1PKQZDTuYLjg/3GeYZ29tbGAP7u3uMxyOuvvQqIrmEdJbvfOtbSKX43vf+iMf7B5RNw9bmFtPphM3NGUI4qnrIYjlnZ2eH+ckJ5dEBSSIpBgOq5YJ6ucI6x+bGNiJXNLoh1ly1EUjjGh7ivCyiq6XRmUhurQFjRcf7xe99IL+f/dbGwe18ny8Rq2CEvl/O+hoDUWMKJrPXLYJlLBzCfYkR+hWLtRr7BFBGgFmHivn6IP0KVZGSiXVy17zoepJ28oTjpavv2uNSOw01bCuD9qWF6EAwBjB5JxinNNzTZ4jb+OScrtB5/BE8EZngemDRu7ZwNiF8HV3CIuGcRMxe50hd4t7tn5CmjtHVGVJnbO9coRCKebXL+QQ2r7zK0f4lDr/f0ipNee0lxu/+HdS/+wOKz36Ak4706puMRlPakyO2q3/Pnzz8Mfdeeouf3LnKeJBzbucyZvoqPP5TzyWDX4yehXnOc+Tdk4prTdRYQwESIXw1Q2dACNOF/63hPPo4Qj3h7ukYBBbh1DoTODpc8YvSi+S5oKskNM7RthXW2OA4AITEOkNVtxzLklSl1I2nHRaLBYvFgqqpsE6jlCRNhNdy0wIlEoz2JRqRvmWPFaBkBjK0SokAnIFQPv3UWIM2jqrStI1v2ZNnOfOTY7SxYDWpSqjKJa1xbGxskCjJdLLBtStXGKQJq9WKw4Mj9vf3WS3mtE3Dq6+8yne/9R3ywQjnBJ9//ik///An3Pz8U05ODmnbBmOdT2TQPtZvvpwzHo2RScrh8UfUbUOiFKvVgnv3bvuwNqVo25KTkyNu3bqFTBKmkwmXb97k+quv8frrbzDVhpeuvcTe/gE//+gjHj58SFlWLFebpGlK1RicdUwnmxwd7HLxwnnK1RJnLHniM+iqusE6y3g44NzGBT9UbPQArwPFugFqY3h9GJQ9ysDPvzCSnO1KSlrhSMS6LkMw1oLGFQabE0gbIjl7cZMxWkqKdQVYP5TXR/tVim/1ZFC2xTkNLsMFMiTeq3dU+Vbp6wjl0/Gs8al2YWendLL4bF0X2x0dWF10CD1gID7TkGggtHfcuPX33oEmscIELl76oi4iIUkSknRENpxQZCOsgzwvaI2mWh5R1UtWywOsXnW+P8/hh+zC8O79nYY76RyyAmRKPbnGY6MZzlp+550NZtIhxQGfJFC2Jb+9PeHyZMzGxkW03uRHV7YpphPUhfN8dgyLf/if8tpbr1JYePDa+9TM2Ht4i8mnP+QiJyj7iL3Pf8RussOd5ducP7iJIlYd9FZGTM0JD8zjRkcTPOEc7JacfinLjuUNqdcKKdOo0+L1XNtZPvG5d+nWLjyXbgn+cuP5+ZquWxf6aOsKZAJChYI1CVkhcSJl2TpaswDTcjI/YbFaoHXrNQSVkKSSIi1IZLqe4zKEpqgQpqO8iSWcwODTI5VSiMSHk6Q6J80taZ6g0tSXaEyG3ousBPNV6dv/CAnCcHR8yE5+no3pDGuhblqcdhwe7bN/dMhiueDyxUu8+cabNHXNZ598zOOHD/nwwx9x4/NPODg6pqobX1oP/zLTLKVIM0ySYI1jVZUYY2h1S5YXvgaD0bRNS1XXGGOwxrcnsg6yLOPew4fcf/wQYywXzp9nMp1x/cpVdh8/4sbNI27eusGFcsXm5rYPR8szjNGMZ5vs7j0myzJUmlA3VaB5jOeUsxyEIk2TENolMV2H2aChRp6Btekb2TARB5BzvcETnRZ+YYyh5n32KmqJwoWMKSFQzhekj/47rwlKbNBA/BgQfy00XeGC1h7rrq7JgHXnAusCMR0KxEQ+lwCUwblyyvv15PwLWr8N6dKdOe/iBBdhofQGvYs8qoPYMkxH0AgvwVmHVBmTyTZbW9eY7bzGK9feIiumWJkxLkbkwwE3jlbMnGBzNGClG4RoaI4f89PPvs/Nj7/H/t4NhG0C5bDuChFvIsKK/1Piih3ulEvy2THfvVLwQbZg79GC+WLBlthlMMqRw5bH8xssyne5y8d88O63abMJS10wm7QMVgdc/f3/GcPZmKZasViVLCcT5oNrvH/wEDk/ZGf7EgtjOBidcPTwdp8N719VeI/h2k4t5uvvY2afd2LGob+mEYRwOGFwRuBNbx3ANr5SSYzqcL1ZEPXhbgx8CXk+p2t0KLScgfD1YpNQhS7LhwyGGYQA+LKe0yznzE9OqOsKh0GplCxTPu42zVEqwTYt0vkMFqssCBscEyKs1hKpYzm6UNlfQZpCqixKZVhbcTw/Id8ak6gEbIvBl2jcmM148OgxLvFV/du2odUaYwx7+/vce3iPummZjqfMJhOO9h5x+9OfsVot2Nvb5e79+8wXC+ZlybKq0NaRCEWSSmqtKVVDIhSZUsjETzwlFatViVCKuqywVqO1pdYtrTY+px5BozXWOcytz2jKBS9df5mtrR22Ll5iNpswGg7QbcvD3cc0bct4MvUJIcZQVSuG4ykH+3ukScLx0SHWaPKsQFtDlnn+eDqbYVpNWZXRb9CN025+s079xEk/2ASBY7eBG/OcVWw17veK+xG0WdcNXEuICQ4zwIfWuI6rjEausFHz7spo/0olZioCp8195xcFGcx650ISCGvawUt0hHlC29nglAtkisdh662lTtO1Heiuj8Gpv23vmfuQLIVwDiO8Njve2OT8+Vd4563foJhepzKCRkv2hGHvWDOzAjlo+PSTXa6gcNOCn69adGv59mRAOrzC1ssbvP/W73P3/o/5wz/4f7A8vOG5zrAQBZYFicB0YWSCk2xCbUt27AaLKuOfHx2gVzVtCbSGy2qLRw/u8d5L71A+vsm1a+9y88YtBqMJP8okejpDnR+yKw6wtz8kvb/H9OYtvnb4GNcYblvD9mCDNMkYyxUfjAb8IEloqgBxHTdLNCFArAvxeKuh+/KUdArradUiLGQOh/FWBconBAnnaQfnaQcP2qJbLEWH4OG9fgll97mgW9c1WZaSJCkqyTFmhTXG56RnGcVwhHQJTdtQV0vKqmG5KtFaIyUkSpCmgiLLSdMcZx1au84sdVikdCQKb9BZidIy1BBwxIpGwkli1XlfOUgg7DpmMAnNAbVuETg2ZzMcCmuhtZbZdMaDe/e49+ghVd2Aszjb0jYVn332McvFCavVioP9A47ncxZVTaMtw9EUKaWnL5wllwJtDcZaGgGZFSSJ6gZqW9e+8ItxNK3BIhgNJ+R5Rt00PoSuqsA5jHmAblsODvfZODpgOtvGGUOaKtJi4GtCYBmPJhjn6YKN6YRy+xxFmrBYHPvJYB3j0YjxaISTlo3tDZyE5OTE935L/EAxofMFwtOQxnqTyhqLCQVrgjpLDLqXUuG6tuBhkAVHW+eMESJAxNooiwgfV/7Ic0nnqYpoTqsvqRl8leLCpD01h4mJC8GTHb9x7tQVr60F1uFeveaVMZLBOuedYtZ3AXaxxgAAaj3r3XoBWDM0PpxMWhBqwM6lt7j22ndok/OkoxEHImX/oEKJlNttxd2jkt90lpsZfFwN2GotW9OEf6drnNa87RSfWM18XpGSsCot7fZ7fPf3//d8+Af/F27f+mNAdNp1bM8jgpYrkJSmROYKuWqR+wOSuiCXCkGFSzWr5QHJsOCnxw+5sH2ZO85g22Ps0R1+unhEXmRcE2PMUrJ7/xHHieTnJw/ZGGxzvzlmunmRu6JmPJtyZXIBZaAQijq+h85cjl6C7sX1tOG1NhqB0otPOHLdPfUyCcN+MdbXGl+RTwRrz3O+vVoPMc5XRAdcf+H8Ynku6J6cLNja2kApRZYVmLZF6wYJpIkiTzMQqZ+8zlE1DU2rcTiSRCJTULl3oqVSUTcNxlhfTEP4ojUy8RSDtKBNb/CHAeucwFrPHxoXy7RBkfnEicl4zGJ5TKJ8oHaaJpy/cJHjRUma+0yx+w/u8Xh3l6qumB8fk6SSyWjAYnHM4uiQx48fs1wuWdY1dWuo2xYpFePhmOVqSVFkDEdjTNvQ1hW69Xyy7x8mUAkY68PYGmupW09JJNJ3GnDWYrWhGGQYbai1wa5K3N5jqrZhvlxy8ZJGJgqzMpSrE5I0ZbFaYY2jKHLydEC5mvPWa6+znB+jmwoc5FnGZDIjLwqy6YCsGDDZVmydv8j2bMrO+fMURebxVHqnkHMC3bRUVclytWA1X1BWFdYE0xZBXTeUizlNWeKMoW5a30beWKzxrZiMc34AhapSvqW8nwjCRa2E0C/Mc3BJsAqfqmz2KxIf83p6svYnqBD9HP3ednHW9j6UMaKBNaY653x3jlBb2dcAsN3xZWfCBiuin+7kvGJCkjG78B7JpV9jNrrAR/OKa+Mh9+49Jskk74x3+P8+vM0DmfPBquWTy1t8nCXsWMGvTwZ8qFas0oJfEwM2i5RbbcPWoODrGxt8dLDHQSt5Y3KZ1379v+Dxoxusqsch5EoGaqlHNghBimagGww1d3cfYquKNFEUqcC0DaNRQpZKhplB2F3UvUfkODKh+MbREYV2WLHHz3CYNANj+eD8dRQFR82K8yKnSSQTt8It5xxlU5bVYRcrvqYW4qLeJ0N6j8+dfp/dghZos+4hd8ddfxI1ZutMoB+Cr0nINYMUk12c4slreZ48F3T3Dw8pioxikHtyPstoTUOrW3JnfT8o4SkCawxN603TJMPH1eaKLEuQia/s1ejWa4rOIIRBKF9hTCmJbmJ8oPGmggz9uILKH4u5tK1Ba8dxteDaRcnlK5e5fUcjcMhCUgxHXLl0lQum5fHxMUWqeLD7mKPFCYv5AtM2JEnBqChYLudUdUXdNNTaoK1FO4t0ho3hgEvnz9HUQ27df0SepmRpijAZw3xAXmS0bUOhEpyQNMag0oSqKmG+xJYVhbBcvPIy5weSP7/xOeViTpakXYWjpmo5licIoFqegEy9485otNGMRlMarcnJyVPBpeuvUGQpN8qSIs9xFlSacenSZaRSbEynvP3W2zw+OaGpGq5ducZLV65w/dpVJhsbpFkalCrfBqZtGxbzOYuTI6oA4m3b0jYG6yxHx/sc7e+xODpiPp9zND9hfuJDAS0OlCVJJUpJEgRGW+q6oa4bnHUkeUo+HDEYDEnSlDTPfY85maCNoVwsXzhAv2rpish0wBscJcGq6jvN1o0dodOJOyqBuHeYwFGzDbG01mCt9iBqIy+8TqqImpsvOO+1J4dgtnmdwaVv8sNjWO1a6r3H7FQrbowk+6bm68WQfywln4xzXm1ysksTHm/k/GYx4+uV4d/Klmy0wXsiZ1Nb/qhdsZOnvCYKPj7a43iUcbVNKZua5fZFfv03/gv+4F//IyDE0BMtyi6imIFtkNkGqRPkxYCVrdHtirIFIw3CpLTpCF0JmrbFrFYUSCqryVXKsasYjydUJ3tcGU7IsilOCZQY8rULr6KSEUUxoGkPGactjz79Q0xbh2flwxdjKJgN+Ns1sjwFsK73e0/bFcFiJhaejK+gB8AuasDBXRfWWNsD3GD7hf0iWfZifuG5oPt4b5/RMGdbbSIEKClQSYppa0zgSaVwvsGk0RhnUakkTVPSXJIPfEaZEorW+s4QzrUIYUA1SOWQCXjfr8OGmgGRK/Gagw0xzwEotKbVmqpsaI0hzRJm05m/JhxpqpDSYQ1MRhMOj084Ojri5GRBVS99aTeTcXCwB87S1DWt8eUbkyRFZTnV0nF1lHBO7/Hp0YoigTQbIBxcuLTD1tY5VCKpFicIJyirmvnihNF0hhOCffmAut1ju7Bccw/Qq4TUGJxSGJEwGGRgbWjD7aunncxPKIaezjBa46SkqSsGgxHOCt+iXgp021DVJXk+JEkUSZby5isv8+jgiNFoynBjg8reph068tGY6WzG+fOXuHjxPMPRaD0YA8CWyyVtW1JVJcZKylVJ01YIB3VbcXJ0wKOH9zk+POLw6Ii9g0NO5gsf6pNJhoPE00OBqmgbQ1XVqCxja/s829s7TGdbTDe2mE03KQYjrIWqbpifHL1wgH7VIsSay312CJI3+z278BwtJkZyCIFzXqO1oUDTKadZxyk+OT29Nhwdk2k6Ynrhbabbb/HHe5px2/BoNUdXNVZpfr59jd8eXmbTGT7NHP/BZIfL8xX/VC7YqBzX2hG3L0xoKdmwNZePJfcvKq4OJkzKCnfcoC/MEHv7TE3Oh67m6myKe/WbXP35ezx88Oes9T1BLGYDgqJakkwELYKN6RYjJUlsg7KORbNAJIo8kUyKKdb44vyta2n1ktlwRl0dkljD1668zTiZ0LiEe6v77Ex3eEMNOTGG4TBDm4pHDz7BLHd7mml4b0QAXBMDnDI8nn5XPuxOdT4HQlLMekvRWT7rs8RjuS7kLFJHstdos4vY+RKV+Z8LugeHh2xOB+R5wnBQ+KQyqVAqQUqwxlftsabFWY2QDplK0kySFYk3i7MMnKJ1bbhJi1QGIS1pqlApWK3DoA6cYTBLLZpE+BbqMb5OIhiPRrzxyhtcvnyFh/cfMBkOOTppmY3HIBXLqmJVtZws5jRt60sumhbnIElTlJQ0VYmUAmNaX4c3sQzGExwJk+GMZZbRmASb52yNc7Z2zqOkZHNrk9l0A60NauMc1lkODg8oRmOGY1/wxqxqrBUcL464VxWUGmbbl1CJ9BqiEFSrBeVqiRQC3TTUdUs2cJhW47ShsQ1JkmKNpqyWqNGE/SNfeEgKyXA0QTjD+Z0L/PzzG4w2Njk8muOUQyGpbEOjG6wQoARp5osIDTLPPVpr0SZjPCwoq4qmqmmNZWdHoHWLw9JUFeW5bTY2Zxzt77N/eMzk0WMOjw+xzlAMUoaDlER5jcAag259iM1s6wJbmxeYTjaYbGyyuXWe8WhKolK/cDY1VV2+cIB+1RLB0PcBNF2jzn7MrC8c4zsxWxMtvJ45GjhD0R3Peiohxv7G5p+sNbB1jLTPiPJtkVqMcwxGO9iNN/hslXBwdA9VGz62DtkYNmZDfrxxjtcbx3Bi+JcbUOiUZNXwxxemZEXCSNVsHjru2QWX05ZLmcCNJ/yzxQHpwZK/p3Lubsz43qNH/MfjnHJRMp0KOFhwYg3Xrn+Dh/d/6jVxsYa1WLMgkZJhklEPhhwf7XJlc5NMOExdszWbYLCsmhpjGwZJgjQG1zRMiwmDZMRkc0auchSKYT4hcZI3Z+8wTAcsq5KLGzO0bHjw6CHzozt40JNhCQg+HmJ0TAy5C7yrUwEAJTzhqu0qg3XaaqQKYhxzn931P+sY3bXmTMCpTqsWxnO7wZfxInku6C5WJfP5giJXWDMiS1IkkKUZSZL4dcEZrPHFbJJEYkhIUt/iJ80KEpXRtr7BZCwi4bAIJVCpT7E02nhng3eVhtv3//kydz4GMklSprMZm7MM5STL5ZJ8MKCtK87n55EyoRgOKJuGRXlM2XgOdlUuacoSqXy4m8GyqjVpyDgaFENQGVtbOwghKVcr0qJgMplxIcsZDoYhIy9jOpkw3digDe11kILhcIw2xjsd04IUwcW6YnFyRJokvmGh1ixXC7CWNC84VBJjLUr6V143Lclq5QurpAoaizGWVV2ykU0pV0tEUSCtj0HO0pzRYMDJasHJqiIdTrmwM6IYFlzaOc/xaolIFaZteby7x6pqKbKcYZrhnGU8LFBpStXUSOGLOw8GBYNhhpSStq2xgwHNaERaJAyKgnw4RGUJ+XSAaVuGw5TJICNNvCFqnMZqw3AwZjK7wGi8wXA0ZbqxyWS8QZEPkDLBGE3btl1nil+lxAXIRseitRijg+kfdDspfbxxDOfCeeB1vTz9HkXo3Lr1tw9f6L5aa8sCnDMhRofgF4Gs2Cbb/oCPjxWptTyuKl6fbXCiG946KZkPHW5nwrvqHDc5Qds5b6TbvKQSHiQrZm3L9ZXh/rmc/+dyFzM/4r8sN7g5qPhp/TnnxBhpzvMvlh+xEo6lvcYfyBr5cMlrMmU6TBhfeZfB+ALlatc7iIREyBSVTtjYvsLmtQ9YFhd5cHiPXN5jfnLIRpaRqoRU+6zDaTIkzXMAlBgxm53HWUNRDFBSUVYrknyALXLGLQhrSaRkcP4C8/qQTz77tzx+9DHS1V6XPGUa9KmfkBpNb5OnzYjuXccwxtN93dY1L/qUev+9QX+dFT0odl2CyZfNsHwu6JZVTVWWVGVKmjp0kpKqjCQbkAbHlTUWY3xFqzRRJCIlSRxp5rO3cGC1C5kfPuHCSRe0XNWl5pngORe99s5C4HPQnY+/TdKMohAM8ymT4RQpEnb3D9AORkXOaDCk1JbFqgTnKMuSxXxOuVr5hyN9dk/dtGSJD4TWrUGphJHKSZViNtuknU5ptWYynuCc18Sl9HVPh+MJUkhSJbFtg7EGZzSjokAmviX95tYm9vAQwRSJIFGStqmQqURaaHTLcDjC6BbpfJo1StEa7TPqkhzXaLTxwHR8dMTG5gbOOXZ2LpIlkmFRcHR8yO7hIVYkHBwdoVTK5YvnmE1G7IynaAR7D/a4+dkdkiRjNp0hEsWgyMmyhPF4TJEXKCU5f36LrXOb5FmCEI40lThXIFdLJky85iagNQYrQeuWYZ6wMcpIlfB1ZkOcazEYMxhtMR5OGIzGjMcj8qFvvJkkCqMtbVP3eoH9aiVmzlnrgpNQI0yoNeCkD3OTaw+1cs5Xq+plrcF6Kq5TdZ8Il+/M4RBahvCF+h1YIbD5Oe41E+5/fAu1LNm3sD3Z4M8yx9vpFHs94/FGyrfmmvnOkt3thDEVlZnzx8NN/tn8NklV8Z+3lxAnN9le3WVYHZDZy2Sp5YOjG1xUG7TDBWnzkOvZBsux5Ejf5Zsbb/ATseLdUjGpDG+99z9mf7VH02pGk002t64y23oZm05YOUFuWh4Dn+8/4ooqGGgNbUOWpqTBcpe1IEkyisEAh0CngmWjEUIzHu+gkgG6aRBZyng4RkjB7Qc/5uOP/w2mXaKk7TIYZY+W8b/EmNkAht3iFjndHs/eA9r+v6coCPFEnK3r/7Ju48QTTleIET1rV9qL5PkhY1VD3dRIJcnSDISjNQ3CpJ2ZZJ3BmJZESr+yiQSVGtI0RYoEY5yPNcWAMAhlkQkkWUKaKJwRHcg68CnAOO9Lk/4OpRDkWQ5WolVCIjOSNKUua4w2tE6gTcPm1kWagzlaaxarJW1T07S+M6+U1ncDkIK6qlGDAlJBWviuvUql5FmGdJZRPqBODXW9Yjwc44xhVVdcu3YdJQVG1wyLIiQkiFAQWdCahrrxgKqtY2/vMdPRiKpuOTk+JMsyRJJQ1zVt1Xi+1rTeSSGlb3kDtG3DIC84mR8xm23ipKCsKsaDMThQQlEUA+5/8jOOlyXTydRry7rl8HhBnhdY23AyX/B4fx/joG4095SvXTEaDJnOpowmYy7snOPVV67zyktXGI0yIGQJ4qjqCqQlSSRZnpEXA4rhkEFdolvJsEgYDDOyVPk0bSt8UZg0pSgS8iIlzzOSVJKkwqdzK+HbjosUp5sXDtCvWjp6IYRzGaMRbXCkBOtLCIFQoWasA0KTw34JSGDtVCdywQQaIU7T4KSLCQgdPyhwesyD1ZCmbLAP7iE2p5x76S0uTbZ4kLbsjLb5UJ1QFXOYnsNYwfGje2wmQ95qE/4k/Tmj/Z9RVDXWHXE9kXzz+AHt4gShDinR7KyOmSQHHI8esN3WnB9VLMoVV03D2O2jzJy7gy3ydsX7b36Hv/v6+xyXNQNVcDj3ztvGNMzbhp8c3ueRaKlfusJnN/+c+eGcaZoxlAmzoiCRjsFAIlWGtt4XlEjfTmucDUmSnJP2hP3lPdxckx8pDvY/Y2/vBtD2Ig5YF3SPXEfQLruKX741KmtXWN8R2tds47sR3avyASjeIllrv663v4/TXdc57mUjRudnuArnX/gLx9zzNd26RhvDcDxlc/s8zkFZrmh1Q9NUCLzGo41BJSkFAissKN/6xhhH2/gGk8aawGdKUpmhVI4QSSgY7FAelv0gDRX6pXI4KZBWY/AmmBLS92pzkOeZL4yTZlgp2D8p2Ts8oq4rhFRkSUGSVFhr0MYDgrEGmaSovMA55wuFK8d0NiNPC1qtIU1x1pClKcuTE4aTKa++eo08z8kSyYULV3y1qTRhtarIkgTjLBIPmPfuP6TIU957731u3viMtq04d/4Ch4cHWO1LVg7zAVrXWKNZqZJGaw922ueUN63vKrxcLdna2ibNc99bTMJ4Mubm/dvcefSYVvsSjkmaslACFRocZllKVZfBUehjbrEOjL9OZwyjQcH2zjYbW1sYC6uy9gCapt7xabXPetMGKWToCp2iEoUx+Ayqrp21CDVm/Shv6pXPMkwkJGAVPktNKbSx69ZCTF44SL9K6RxcoSuKsRqhg1ZrXVfgRjhH4gAlMEoirDdv/Xehu0TQgmI4XD+qwbn1JAY6dclai3ED7i5z7h/tsXIWNRpTTce80pR86o546chRbo1oZ3CuPGJojvgQw8HBZ5RkLOxFvilrNnaPcPMV0hyyGhQk1ZLEOkRhWdU1IyfIaNk7WpIJgZSOk+aQGQUPVyXnVc49dcDlnUtUxnBveUyR5CxcQ5Kl1NJyJGFuDccDx4ULU5a3PqapjnhYarAKnSqaZcXmcIheLsjahsl0E0nuo4aGIwyOOw//nDu3vk9TH60r4Qk/pnqVnL1OIwzWhZRkF58wfjKEJB0Rk8wddLG4kR7yWl0Htp3DrVOOXXe82App3XEivC4nOsdZPIiN2/IEdfQCeQG90NBYb1Kf2z6PUgmL1ZLDw11f0LsqaX0NQdKsQCWW1rQY22C1wDhHW2ma1tIagwltOaRKUVahtcLq0L/Iqa44i68rqMK65VcrYxx5NiQTBXlaUOQFR4uK8WTi+5CVFQdHJ1hrSNKM6sAXMJdS0tSNj4RwPsoiHwx8xShhUWnGMA28ciYYTaZhsjmkdVx+5WWGowlNXbM5nbC5tUVRDNjf22VztEWicpzVHB4dMpmMfTyvhXv37jFfLLh0/hL37t/m7q2bjMZj8uEIYfFcLwXHJwekSRo4Q582nQlBWWqKvEAb38liMhwzHgxYLhf89NE9Hu7t4pwhUZKyWnFykvgaukZzMj9iUfrSmlKlIT3ah/dkxZDFasmm3mQwGrC/v8+gyBkNUrY2JighqJvGh+xpTdNqmrbBOecrtA2HZMsUWkmuFCpm5ztfj8MZn4GnjfWOXOmTKWpdI8oTLAJtWk+lGMe7Fy58qYH6VUlXGtFZMAbQGL98opRD9LRaP/HBkvjiP/gmkkKEYtkQZnjM3Yrn6BG+Pc3Ip4cLjlYD9u7tkTjLxmSDdJiTXnqVidbcYM6Va6/y3fEmh3ufM683uWBXrNQB+cEhg9pQNfts5YrtqqJ2giJRaGspVMJo4NPTkzRllOasdE2aJORSsr9YhhjqFWVjGExmDJKEVZ5yNLJcEA0mK1gazWLg0E5QuhotLNdlAQf7yMd3MfWS0WgGCMq6IslzjHOkzmfwtW2LzBxGGG7e/SkPH31EtXjon5uMzyuwsjEIoNNMw+IVKtcJEZ+hd611RZn6zEBHM6xB+bT0qIeowQpFLgdMkinjvKDSlksX3+L+/mc8nt/HoUNVOdEVe+qfdh0D/GJ5viOtrFisaqyQDIYTRqMxw/EUIR2H+3uUi4Vvvqgy0qTwWUqtQtca3WjaVtNU2sfXWktDi0pDQ7/Q8M9Z0DWY1vO5ntpVaOsQWvpoCDWE1NCuDK20FIOUujVkSUJpK5wx6LblZLlgtVqyKlcY3eKc82FqAmQaiulYx6AoGBYFuqnI08THGOvGJ4EoxbnzOwwGI9/7SUmquubqtWvs7Jwjz3LytEA4QT4YsH9wgNMt587tkOc5Dsl0E4rJjEcP7nLj8xtMZxsMh2NW1RLTthhjkU77AtrG+PKBypebs8bSNDVJlnrKoakxQG0MZdNgTcONu/dYLhckWcpwMEAmGc5osJrFYkmiJAqLxLEqV1gEUoUURqlIlMJYjcoUaZYynU6QUlK3Gu3NDTBe81AKv73xcadJ6PiaJCmJSkkS6UPGhIPW+XhsUyOSFJUmtG2LqEpsu8Lg02F98SLDuvnPr1ZccAibEI3j+dwQFqRCgoCTfpETaTRafTFvv7J4Z0wgD5/tzOlPfNE58Bqds7dfc2QNzc5FNoxl/8oml5s5P3tpghUwzUv+4KTip7f+lC0xZK7O87WBYGPlaGtNIkC3ilQohBRkg4JlXZNmBaiUyjbkec6yXOGEIBWKsqpIZIp10OoGYR1H8z1skTO/X6KuJ+Sff8qVK1fYnA6ZSkEuU47qOTeO53zy4DYff/QT7ImmtYrZKMO0LZvZkHExQruWZDAhH05I8gEny10ef/pzVsuHgOm0z+45Rco0FEj3CqX1WYxBoxUiVMZbVxZnbT04TodrRe3V9k4gehSQ64INBJKEnLHZYKfa5OrgEte/9jXeeevvc3Syy4PVbX5y84/59O5POan2gxUTQ9Z6C2ooZfAieS7ozlcVhycLTuZLGq3ZSFOSLEWbc2itfetxYxhmniu0Dt9V1wpMa2lrS11pGm2ojUUDmU0QSvlc7kC4mwZs60iF9GawEOC8CdsaA84gXE6SCUbFkLbRrFYrlpXxYU3ViqauMLpGiWCGKIEiQeiWRCkSlWKM9gVjhKKuSrJU+UD+sLKqNPFF253nNWWeYVvDq6++ysbWNmVVc+fOJ3z9/Q/YOb/ji+gYjZSCrc0tcI779+/wk49+xpvvfsAbb77NZDTmxz/8Uw9uyRTnHNWqRDoNtiabzUhVyvFqxd7RESpVYCTWGH/N1qG1JlEpdduSJfFZO5rah5VlQtJay9HhIcY6qrpECNHV2kUlqDQhkcq3ULENTVuzt3/AbGvG/uE+o1HOaJihEhUcQZqybmgbTx+12vgmmVWJ0RYplG+rkiYkytGa1mtu2tLUJVb4NGaDr1ngs0ldaOcTujOI9IUD9CuXEC4mnPTOQuP7ajkcyiU4FML6Ce+kn+D+0wR/U7HmbiwdGE3awDF2QfpxttsuM01rwcM7J+wtBGmaM1MJ56Zj9NGSV6cz2F9SGUluDtjVh7xS1Wzalsq2iLLgUpJwLAO3mY9QrUYqh1aOxlVQtxzVKx+1owXDfIu2qaltRZokNLr19xousUgSGoBqwZ27n9O+lHJ37wCO9tG2Za91FEJw4/F99u7fgFXDpszYnmwyUyPSYc5QJozyEXJQkA8mGOvYe/gZTq/Y2LrMxvmr1K0vP6qUwmEoqwXGtlhd+agZXWFF61sZuSbgYzD5hQNUqHPbB98eoX7qs/C5iw639TuK4V15MmRncBGxr7j101tc+sZV3nv5t9ne3mY22+aae5fvvv33ebR4xM9u/ICf3f4zPr37E8p2hXaNt5JEoD6+BMPw/M4RZcP+wTEPHj5i/+iQ6XTKoBgwKIaMRxscDY5o2hPfPTVRoB1atzS1z2pqG0vTWKqmpTIa7cA4hQ6al09oczgdiGwlyFNF07SIRGGlQiW5HxhWMptuMsgybBFaAy2PqKuKtm1IEkkqJa02CGsYDUaYZYlEkA6G1FXlU4UlaK191AEWJRPSJMEazfHxsX9NUqLSFGk0Fy9eZnN7ByEVn336U7737/4VmXS8/vo7jKabIBSD0RCVZNy7+Qk//ein/OkPf8i5nfNMR0PO7Zzn/Q++zs2bt3DAowf3aNoaXde05QKlFC9fuUY+GGGNY15XmCyOHxHC1QzCOvIsp6lXTKdTdFMzXy5wVmOMN301od4xUNcVTasZFAaZKKz15TKzvKCpM9+FwjnUwDu7ikHOYjUnTRKGgxys1/xOFse0dYsxUFU1pmnIlMQ6hVLylOlsAW1DUUAh0NanjTutSbIMmXizXIfiL1LlLx6hX7F4eiFqng4pLcKazmuunOfDY1cNLejFDqngLBO+i4ZUXeZS7wzdj0+aCDy5tbhG4UTGZHtEYxVqmLG/PeOx3eXxpuLG0W3E8SNeG1zh29mA/WRG1VSM0oRWOHKZkKeKykGbSObH91kuH9PUC5wJWYPg44wdVMPLDLfe8vHATRmSc0L9aWugMQiZMVIKt1yye+sTzON7VNRo22KtQtFilgvS4yOu5gVSJWwPJ1iXkMoho+EEoRTZcItvvfMNhtmA0jhGxYC28c5KKVOckkglkM6SJJZUGpZNxUm54LicY+sVJ4s9Hu9/zt7hXerVAfVin9acoAJfLmLiCk/8xMJLEaj7XKuItSS8BaMQXN24zrXBq9y69Tmb4y3eefddqoNHPGo1yWCKSBRZlrIhd/itt/4jfvOd/yki1SzrEx4e3uHjW3/Ohzd+yO3dj6ndF3e3iPJc0DXGsrd/wp07D3j40kM2phPk1jYI6Tmi8cSbj3iHQNNWVOXCe+e1w2pDoy1N62gah5YJViS0WmEEJFIghUM5SIFGGZzGx946aFqHqVuGgxEb4xF5muJrMTiOT+YY7UtJNk3NIM9pqhqtGza2tlhVDSfLJco36iKRkkT53q1xUiRpgQBa5yManPP5N+PxlEE+QGUZOzs7vtJalrN9/hJV1fLf/nf/Da+/8lM++PXfICtGDKcb/PjHf8Yf/tt/zo3bt9jZucxoOEbKhLqpmc22uHSp4WB3n63NTX7+8UdU5RITONDD42MmkxmbW9tonI9isNZXuBIKqySr1dKHjVnLYrkkzTKGjGnbGmh9tTVn0W1DIiW1cwhnvCaaZmgTUqmtRriEqq0Y6DG7u3s43bC7v8v2bJPhwIeQJcqXGhwWKXme0rQa3bZgfWypkLEKHEiZoKzFYJBKkojCxxsnGVL6+q5FNiBNU9/gUxvfMy/JXjhAv2rxDhVv6ht8rz9fsFsguk6+InC6NoQ+Cuj9CGe7Fjhrp816okfLwQOuCbHAht2DJfeODOlYk4+mzE4OqXZSXqkFWyeHnD/Zo2g0UsxxTctLRcFKZZTacKxbxmlGMkhY7t/g8cM7WFMT+dFYK8BhPa9uHcvlXezmeeSFt1D7D1HHxwjj4+Cd8BmFqhUgUoZS0pTH6OUBQglSAakQJEJ4pSEvGIVFvNaaYpBRZAMWjcG4nKvjbX5+95jhDLaHih/d3kekKSiFS0co4ymNc+c2QToGKmUkMy5tXWDLOJZScM7Am7bFtQ1Gthwd3uKTO3/CwaOfsfvwQ2R9Eu5XBodu7MwR+Vzb02w9/RD72m3kM77+2m8xG424+fkn3PnoBnc+u83f+dbvcP3N99m5epXj/QWHe4852DugrjVZXjCebXB8POft999mZ+siVyaX+ObL30X/nuWnn/4x3//wD1845l5QTxdWq4rdwwMO9nc52N8gTSR5niOFpSgGjEYj6rKkbSrKckXdtmirvZagFFnqwRMpSGQGLkEb/3C0ECjlNQgpDUWeI4Cq0kw3zjHNslBExTIeThnmKVa37C1PqOuG5WJJU/vohP2DBRJBPpyQD0acLEtsq0nTDK0taZJQVxVSCaa5D/caDEdUqxXCaiajEcbBoBgEoEi5cuUyWZajEkWSFcymM9548y1+9KN/zx9//4/58Gcf8u3v/jY3bsy4+dnPuHv/DqPRmHffe59z5y8yGI4QSiGKgvPSV/Z6vHefvBiwWC0ByXA0wjQ1bSh801pLXZc+FjjLSFVKayHL81Cu0fNJJ/MTEpVgjaVsVkgh0Vr7bDIhSGXKYDwK4G098A0GDIZDtIUszUmEwpQtu/U+h3uH7E6nTCYTpBCMhgWTYc6+EL6yXJIAjkz64vOJhFZ4t5K1YK2g1QLjJIgcJyRSZDinsE5ijEWpkDppYikV9Yuj5F+xuOBk9FSIBeEXla6EiQjp2vhyowjPW3eAKwQSD1rOuhBQerrIirUGY9tQX9lijfblOpeG7fEG6XDIgYTVzgblsuHB/oLXd2b8xvAcR3LBQAiMUrTGkasEkSaskpQTfcjRw89o60VYAHtgHzLkIsfosFgpKO/9BDGc4UYTBqsVeQKurUPRKV/C0LNBmsw5MumjfhyW1FoGecqiFQxGIxZ1hTaWJM04PF5xdHjAydKws3mdu3s/YXLpCsl9SaYr7pgxi9GIzHgr7OrGeeo8oTaWc03NxTTna9ubfF4dsxKSc0nORQSPDTiVUyRjBhsTfmfrXc6NDD+89T1++NN/xuNbf4KtjkKr9371th5fHLRh/6fg6698h//kN/9XvHz163zy6Q+QK8W9o9vsDg64fPm6j6F2gtn2Fqu65OGjfWw65PL2eZIiZ6Rrjh89xNU1+UCxPDxEpJIL4jz/2W/+r1845p7fDRivcVVVS13X1OWKcrUAZ8AJstTHi7ZtQ7lYeedMkjMcZeimpa59IXPjrF9hpG+/40Lrl1RIpPAdKYZ54rVQKRmPJiRJhrG+m+8wT0nTjDRNKNsWXWuauubw6AhjNMvVCms0WTFklGW0dY3VLWmWAT70rKxWtG1LLjNEmpIm3lFlnSPPMjY2NtGNobUWbTTbF84x3dxECIVKc1KVsHPhEr/+rd9ECMe9Ozcolwv2H93n0rWcPMu5fOk6r7/5Lm+/93WG4xltqEdsWk1ZVuR5RlVXNE3D5qbvGCysxbQlq7JkvlrRauNrSiQp+XDIfD4nS3JfxlH7SIL5/ISq9MCc5ClSgDGGNEmQUvoC7yGOOEl9eJ2zGtM6jPbx05lISBGMhxOMNZSrYx5Xu1RVTT4qWFYli5UiTSWz8YSqbtCtpUj9+ZJEgjFoLWkTH3daNxqk8U40kSCMwkjQjQd+EdJjjTZIKf+alHZcN2H0YUfrLLnERTBefxYMJ2yIcTAAyvPCUqp1WNE6dgFjIuCGmgxWY4xlaRxIy9K2cGmDVC45XiwY2xOaVcHF2TaXxhm1NdSN5qRxSGFQ4wHN6gH7jz8NXUJiXlvs7uU6Z0+MlhBCkjiHEQ59409Jrn7AarZBu1hQCBCmIVGhb7HWvq+hcN7pG+o8amNoWkHTWnSzxArB3fuPWB4uOFhqTL7B9s4lHlUrjo5KRs7SpCmrJCNLLfX8gNm5ixxsTjkcJOSmZDh3XBCKfyk131+ccCVJ+VpRUNcrPskz7jUGrONrLuWSTPm80izTglde+ru8cfk3+PntP+J/+Hf/R8q9j2PcVqgK5u+986eFD1OR8vVr32SnuMogG3Jp+yr140d8dvRjrl24wutvvU2WJhzevUU6KHDLE+pmSbmsoWnY+Pq7vPb2a7RVQzYcMpgMaVodnH4GvXxxEacXaLoW6eiKduDAaENVrnxXByCRXl13OPK8YDjMcU5QVRUHB/vQtCSp752VJMbnrzsPunkmccb5SndK+vjV4Ziq8XVxhUqwCI6XJamsfY1PazEItPXaW1kuPaDo1qdUWkfdVL4kmwxBPW2LaTUqEYyHo3UmlINBnpHluY+okH5i5FmKUpKmrEAkrBYrRtMNJpvbvPHmO2xubnL/7k3K+QnjyZgHD+6xfe487777a7z06utsbJ3j8OiI+ckhiZLcuX2L1XzOzvlzJFmBk4pUZYwHQ4SztFoxXyyodYNUGSpJSNKEpqoRCBbLOeeHA7oqbOBrPyRg68rH72oL0tdXGA6G5EUetDBJXoQqcYmnGmrdAJqyXCFlQprnDIabOOcdnoe7uxirGRU5w0HO/nyOswJnNIM0I0t8kHszLBhkCSrxpmyrfdEjUs1woEiMQWsQrkGnAt36xQHteWb5q88C9s0hRKx3u7ZGhZMYYbqylObJuCQc2oUiNcp5LV6FBpcdqesnvbV9asGA1eAcA5UjsxytFGMjsWXLu4MhNk8ppOLYtmyJlNQYEpVhEkWTFBysbnL86GN/eCkQmHXd3+CRt8K3+nEiQaUFWTZiMJwynmwzmmxz/tzL5JOL/OTOLXbvfU51sovSmgSDsy1IfDRHIqmOaoo05+TkyDdNPTziaP+YdlVxeLTC5iPSS9eY7ZxDjAvefOVtHjSak9RXk3PaYZOceizZz6FuV2wOcnKjuCcdD1LLaDjg14Y5N/ce8YduxuZ4yraSWNWSS8fxsmJvpFgKx8n+ktdGBdenY959/XeZbFzjn/3z/4rjO38Un3qXPOGC8zK+i+s7r/DyxXcpT+as8kewWPD5T/+cR/cfcv3iK75GyWhCuapYVpp0OuM//l/85yTDCaaqSTNFuVpSTAc4B21j2bhwCd2UCDTDQfHCMfdc0PU1bC1tCHOy1mGMxjlH2zqUyoJZI8mKnDwfMSgmvnnkcsGqWlK3NQUSZS0qsSA0MdoxzzLQAmMURZ4xyIdICXmm0LZB65qqWuCcYpgXvtKYsWgL4+kGq1XJ0fERUioGw4LRdOK9/qnELUGIxGvara8mNByNSfMMa0HG0KkQAF1XZQhjcly+dIVBMUQqxWg0YTCa+OnWNmTZgKsvvcLW9hZtVaJ1y7WXX0XKhPF4RpoPqMoVRSoZXzjPfD7nwvnz5C+9hJKwefcc9x88ROsaowvSNPG9qGQC1pANC1bVijQdMy9XFKnv2eWEdxysFktGowlVWeKXFN8pmUyQZwVZPgCgDVEZiUpCK3EP9EIkDPI0JCloVss5A2dJswyNobUthyfHtM5w+3FJkSuyLCMRgkSmPlY3TZkMhowHGcMiI0vTrhaBjgvqoKYoht751zoSVZPINDjwfYV9mfzq6QUbIhOEwMfeWosVvnEhwuCMDOb2Ot7Tt7SRxOI20lmslQgjT2U+xbqtznh6wVqv6YtYuEWlLEVDPVLoeokxmvfGLzFLJAvjq+Y9Xp6A89RGJRNe+8ZvcP7gArs717zW3NaUdUWWZCRSgZSoxDu6R6Mpw2LMZDRjMNrAicR3HpIJ2joeLZecv/I2q3QLd3zMav8+zXwXvdrnYPce5dEe9WLOqi7BGKr5EpRApwkMBkhVkO5sY/IUO82ppyP0bMoPHv6cerjJZHSZQTZAN7A3nCKmI97LCz7b3edwWHB4aZvXBwWbu3f4YbvgT0TK9NplWFZ873DO29OMb6Yj/ky0zMeKadsiTMXQpNzdmzNXisy1zIav8ju/97/jn/93+6wOPvIc+2lvZufP3BxsszW7zOZsG+EMQ2loG8fl82/wm7/3+1iZsJwvmM8XnBzPSdIU00ouvPQSo8kIpxv29h6QTTaQ+QAlBVYYlsd7HNz+DCETLrz9wXPH3HNB1xdg9sH588WSqi7RekSSSOq6RKkmtHhxFMWQ4WTCeDAL9Rg0WZogpEZJjZUWpNcclPCFbgaFQDDEtYY0GfjBk2WopMC0mjwf4ITAaJ+9VDcGE7LIJuMxi+GQzc0NlBA0rfExsFJhG5/5pFqfYitl4jlk4we6FJpBkeMcFFlBXZZYmYBSbE5nvPzKy8y2tpkfnzCfHyOkJMsLlErRugYNWZJTzAZIsea8jLbo1oeoKZmj2xaJI0lTyrJkNp3w+quvcfvmLerVHOFK5otQ6Ft5+sUYjW5qqmpFU5ZkSYIQsotoraraa/FKgbUMioIkkUwnU4aDEYnKsM7Str5OsHMgnMG1Na2ztML3mBNJxqAYUBSFd5pJ0I0OWTaKebmi0YZl3SJEiTaaqq0ZpL5P3CDPmQwHDLOcNMl8ooRKAtD74u1pmpLlGUVWkKmUJMnIkwRBbAX114BesLF+M75zhvTNGYW0wfFi8E06JQrfAVYJHzrmYu83a31KsFyD7nrSh3KNNjajNMS23rmU5FKQZ2OkGpANFIe6oRA5mypnXi09ly4lTWsQV65y7bX3mb32TWrdMhKCWjc0OjSnVAl1Y7DG+dZYzoJukEnCXlnTOoOSKau6ZNGWLKzg8ckcIzPuakcqh5w0ilRnLBt4cPueH2vDFJcrsguvkKUJS9GQnbvIZPMSmy7n1v2PSHZy5OURr117g3s3PudhWlLtSN64+P9n7s9+LUvT807s9w1r3PMZY86MzKysHGokWaRISmRLpCi1YQ0NNwwbjYZtuG3YF274T/CN4Uuj7b40YBi+aLTltgU3jHY3hW6JokiVqBpYLLIqh4iMOc64z57W+E2++NY5mZS7KwXLcnEBkZlx4mTE2SfWftf7ve/z/J77vF1n/J+e/gCbHvLR/AHfvvdVVq9O+chdcdLlzI8OeSf0/NR1pBb+3b19kmLDn2rFLpf8eprzcrPjJZJf0hPWpcZ5RxIchZBsesNk8R6/8Bv/c/7gP/tfEZolnnhKv9H/hkAiE46mt5AuwqSkkCzPz7k4v+CDb/4Kd95+n7ra0XWW/YMD7ty7h1OK3XLJ84/+mL2DPbyHy9NTsk1NsVhwst7w/LNHPHv0MUrAdLbPb3zJPfelRTeCY1rWqy1V1TCd9jgnaZtoYdVK44NEFRlpmpGkaVyaaInSAvBY22NCTxBRRSB0TiCl7wRaCxJd4oE0TSJ9SHukztjVDUJG2pNpeuq2Jk0SGuvYbTYkiWI2n7NZbzFDJ5HICNJxtaN3FiVSnI+LID/YT4t8RF6WdG1DbyxdbyjKjNlij6998CF7+4es15thPprQdi0hBLIsEKRGiqHj9wqdZQgRu32pY3fdtQ3WGKp6R29MZCG42KXfu3OX3/zN3+RHP/w+ze4K09c4BPlkxrp6jTOx+2ubGmN6BBMSrVAqJm/oRLHZVlgboT3jIo9z7/GE0WSP2WyPUZaSacVmt+HV62dUbYsL12kWgAsENSAIg0erFCkkeZpT9Q2T0YjK9VxWG0xvcM6QJhnWGtabDVJGjWWiNVmSkaqETMeimihFKmUcW+gYaiqUQkgZfy1RSKHw2Bv04c/zCsPWW/g4u4wZboOdnWtVgkD4QfaFABn/fR1wHkQs0Pg/X3Svff0x/TfEMcA1FSuASjyr4Gi2De8/OGSa5XSmp8Oy2mwJw+wbIWmspc4kQXsaBD5kPO97MlmQJJ5uUEUYKbFBsOsMBdArSd1ZlBT0siBYy1oEnjY9F7ambzp2bcMiC/iqw8uOFyefUG9PUff2UT5AEigfPEDv32U8O+R2nrALnmXX0Y1m/PL7H/D45VPO65o/OHvML7z/DW6Zhj9tL9i4NfrOu/z2+D3+xGz46kjy3z9e8GhW8H9YP+Kb0wPuqZIPRM5/dPGcZSb5YxH4q9NjtpcveW48Jz7l1/aO+T3bcKoz7hLVRlOlGEnBae/pHLxx55d58t7f4OUP/y9EG/C1pCyeOt46+ipvHnyVru4Qqsabhh9993uMZ3fou4Bpe+6+8SZyaGjq1RW7yxekZcHV2TN+8sM/pHcpH37nL2OUpr24BCU4vHeXg7v3GE0mmP7LcaVfMtMd9H1dz3K1ZrXeMJ/NKPIMa+PHndmg05xJXqJk3HAHb/HWEpyntz1Vs8Z4hxCCJMkRAdJU4n1KCJokHdP3BuMDzgeC1ZiuH4pMihw4ps56zleXGGcYpdHt1NQdWqdoa1E6YTId03cmLvyEiB0GoFUsntY5xuMRidRYIajaLs5BR2O++c1v881vfQshJMZGA8ZuuyVNUhIladtoCkjzDK107E6VxDiLEhJjeqwxmL7DGhsLDorNZgMCxqokLwq+9rUPuX//Pn/03e/y7NkjLi8ukGlGOZ3RtZYkK1ivV4zKURyBDMANHzy271HE4+5kMiHLMsoip8hH0Wk3GjFfHIM3jBcHZHnB02ef0Zse62PXJmSMGDd9N0hsYDoe4Y1F+5hCezBdYJ1lXVesd2uaviVBMspHdKbHGEvTG6BGEpObo7lFkKAHotwAeR5cRjIM+LswYOv/AqAdgUFadT1qCEPw4TXDOb4HpIvoRUEMQQWJDDIuhUUszOGm040xP7H+Oq6RkCJEA7AfzroicSzyguliSporFvmYJItxTUoqQqbwCJre0VvL1WrD97dn/M7xW1RekHcJvRes+0AqwQVBaxVegE0yTtuWc+uYpAkbYzB9zZW3fNpumY0Lpi2srMd3V3z0+M8IwbLvG2QZKEYLvJeYIuPOvYds8KwOp5jb9/h3736beZ7wk/VLnmzXvJnsYdOC5fYxTjs+3pzzd+++xz892/CDdsufXr7mf3n3XR69fMZHxvKp7fn6bI//UXBc9T1GGZK9Kb8UStauQ4uOozzj37t1zA/0Gi9KvJL8yi7nD9sdrVD81mzGS+lJApTC4NsOoXLe+drf5uWj30dsnhNCRBRE7X3C19/4S7z77q9QpiVpnnH6Ysmdt77BX/m7/w59VzObThnPpnRNR296dJ7R2Y7d+oLTyyU/efwcocfIxScI71hdnXPy8hkXF2ecXV4SgqCpa3773/7v/czb7UsXaQGPN5blcsX5+SWL2QKBHHS5lrZpkb2jGMeIFu/8UHhiEq41gbbpaU2HTjO6bkcYa5JkihQjCCVVbWnbnraP7pO+r/DOYoPHmW3MTvMWLWSM2GkqNiLQNQ1KK8o8Z38+i5IqBOdXFyihYsCld2RJisHQtZ40SVAqag2NdUymYxbzBW+//RW+9vWvIUT8xgmpSNOMvCho247Nek3btiRpSlGUCBG5wkEq+q4lTVKcNbRtF23PvUFqFW23Onbru90Oa3om0wmHB4f89t/4m/z+7/1Dvrv8fYyxJDpDlClNvUNrDUJinaUsS5q2Go6ogBAxfy1AohTTyZS8nDAej5lN55F/qhQ6Sdnbv0XbtZxfnNF03TA/FmjhcQFM35IkmrozeNtHe7OOSxiFQIaAFhLnLV6K+EAZZmYSiR0CF3vX0fmhO/TipsBwbeu8cQbFM9/1PPTnffnBGSmGzXeQUc0gQ1zACATCDRqAYRpyjYb2kijNkrGTEnErF4v2kLkgB16AuKby8flrTqTFzZVgbAAAeN1JREFUdZaxLjia7tEYy6qpqDYbgu/jaExdW5JBXF3xh59+zHcWx9wZjXgdIFEaKwNXTiJ9ICSQSHBdi0xzvpqkfLq84pk0JIXC9A3vFhN+8PwjzpxDJwlZe874SNKdrtl6z/zBV1itLmhkBYs52YO3uJMmfFpYpnlGt1vyw9cXNLbi2AVG3jJdn/HQ9CjjuBNWdK8+Zq/f0aSCI90z2tXM05L744RnXUtrV3ylOOCfuTP+mC1/sLL8+6Pb/P31K75r1/xZ8PxPZ8fcri7pqdGJ45vzCb1PQY7pAkyawGd9w9d1Sj8tkM5xm4fceeev8vIH/2fUkGhNEOyP7/DOw18kKya02ysCObZvmM7nLG4ds1teDLhNyLJkUJwE6qbj048/o2oFd954h48+/ZT/9P/xf2dU5IzTgqPjY66qZzw7eY0Pgr7/cnLezx4vQFyOOM9qs+X07JLFfIrWgixN0TIhTQq8jE93byxOGPq+wzk7WEUzvNes1yuSJHD71puMy4PoWfcCpeK8VhITa9u2Hba84iZhoOs6GIr/ZrvC9NHuO59OmE0mBAJt2yBCYLfZYNoOpeXwEHBkqUTpLMp6lMKGgEZGBkDTM30w5zu/8pewXct6u6Vu22hHlnB2ehrlUE2LCwFnLciYlqqHzX/TtYyKEVJAvavI8oyqbkh0gkzTIWlAMhmPYjElQn5uHR3wlfff5wd//H3W24ogBVpqsjTDZBnOuZhZZmKSr3EWhnGLc4HddkuWJNRNS5JNECKh7zoSG1UiKkCWF+wf3GJXben7AfyDxCFxxiBVcpNSa2zUkAonyfOcO7M9vItBnc4Hmq7FOoMdGAoSPgd8D3SzmHwbENeKl4H2NJhiB++8+Jch4P3/5fpzMeji85FaZAO74euOneuNa22AqAQxxHWHa9auGn6na53S8I/h9/rzoYUBIXs6s6PzHWOVIoPk0leRchckLnh6GxkmAEm1wTx/xn+Y/xH/4/c/ZD8vkMGSjnOmveGFDzzIMn60OufObMGu7/hpdcE3jhYcbq/4UX/Jg+kYKsvVRLC9uuL1iw25GnPLzPjIPsflKUkmefvNN/ikW1LO9jlMEqYukJ1vOPRbnHtNdXWG9R0pil2SoXYVB9IitWSR95ircx7aBpY5x5M1m4szRkFxtc0oZ8e8NT6is3DRN7yXJTwgJXGCPs2ZJI6GnvO2ZWnm/D2z4W5h+V/kJbO2wmnHSJfcHeXYvKe2UHqNQ3Kgxnzjm3+Hlx/9A9zuJQRBpjJ+61t/m1t791i9esrq9TPOTl7T1pZf/2//d+h2O3zfIYcILpWmNyak2dEdvvWbx1xdXfDxn3yPxWKOVBoVNL/zN/5bvPuND/neP/9D/sP//f+WbVUzmS6+9J778pnuIKcxfc/VbsVyvWQ0yljMF2RaI0OOyDRZliJEwFkzGBYsqU4o0hGJGqFljZYFzghw8a24NQ1UFdfxxhKPFIHdboOxPqZKOIPpWnrTY/oO00e/eKKj5XK33ZEVGUpKmq7DWROf3mnGpqrI8pwizwnOY1RPonWUqWmB6XoODg741V//dYoiY921NH3HarXCmp5iNKLr45/rrAchIyrRRHmadRadpYgApu1IByaCDoG6bRiXiq6uYyijlHibIwqJD/GBstlsuXv3Lu9/8HX++fe+R2d6emdw3kXtn4iyl7qq0ErRmj4ef72nNS1SZPTGUDcVeV7S9SNUDeQlgkDnLYJRNEXkBabrWO92cdklMspyirEGawzj0QRVKuq6oW4qjOlBK+ZpyUZucVIis4LaKExXQRgi+1ycV8rr5b6P/dzn47TwBaXVtR12OLnz8+90YVgYi1ho5XC/490Nj+d6fBA/+TqqPr7ACEy5nvY64uBG3HS4nz94hm/Q9fcEEMKQJw2jNKWTgavdltV2Ba5HMKRJS4WQga5r0FoyOnvJRlj+g2rDt+6+yWw6IUfxlfkcsWvYmZRjLfjJZsl+knBfW76/OmGsSz6UY/7z05esjOS+32N9+YiqPqVyV9wq5iTTKZkIPMhG3JYpjSkY15bD7gS33SCvTrkyhqYPLM+XdM4gg+Nl0NTWIsqU0WREMd8nyARdpEhnyF1gtVsxch6uEtTkBWZxn8e6YD+XlGXJYe5xveSW6Cm0ZCYU897icKS6pQyKp9uakgm/Z1Y8yAN/QyjmGGZlRtIKPq47cp1y69ZDDu59m4s/OyHguTW7yzv33qe9vOT08Sf44MnLGXfu3wIs9WaJ7xrSySTWOxFBR6PJmKbtMU2NFLBYHCJJOT074+pyxfLihD/55zs2Fxf88nd+mYvlFWX55ajSn22OGISLMhHoArzs6O2Oql6RphI1mqFVTHTQUhGCj3CUPiY3ZFnGdDrmoFnQ9hVta+m7midPl0zGM4qiBC/wYtgAoxHBMZnkVHXLbrdjW1V0bXejCpDCMylyxqMSrTXOObRS9F1DW9dInSBUXD4oqYebVqBUMji84pB8u93ifODDr32Lhw/fYrfb0nU9puvJBsLXZrWOM2YEVV2TZRlN393kWwUBWqphpODZuQ3leErbbTDGYvoeS1yKjUcj2q6LTAO2tP2MclRy6+iQ3/g3/hqfPvqMs9PXBEGErA/uIhcipS0EPeR3xe5LSRXTCQQIqTDGsF1dIieW8WhM11ZY06IFSKVYTCb0bYO1js1ug/EBKRR5McY6S9U2HO7voZA401G3NUU+QgnJfjnBeke1i2CSLMnobI/3n888r7vDWHWHhdONtjX+/PPa+xel3H7e6V6jBYOPT4QYJSRAMqCyhwrswcnrMcG1jz8MowSIrzembMjr78m/iBe84bf6qGDZvGZ6/yt0UmK0BhzOxw172xu8EMyKnHXbUtYNo5MztlXDy82Kf5BpvnrwgL/37FO+Pjnmh3bLb45u8fvNc1pV8tfyOf9l9YrOpfyqHvN6t6SqWrRRTC1cOsHYW+Ztzd3OI5xhVC0JQSHPT1jtdlR1T3e5Ynl5Sd80+DbmDoZrYTPEZBVAJYrPyoJsVDI6XLB/64jR4TFdluPyjNyn5MbR1Y61C6SFhKIkjA55rnNCEigLzUE2Btkj8Xwj7dnTir3EUAsPsmLT9mxczsoqdiPDu9mYvVyQGIHpFO99/d/k9z75PTJb8+G9r7M/WZDJEvWVdwnWcefdD0nzgvXJCzZnJyRK34weHQy6dE9bbairCiU1e4e3SfMxrXFYF+itw63WrFdrUpWR6oxJMfrSe+5LOl0BUlKOEhaLnMk0ReUBlMG6lt5maJWgQoozPYZr80R8cwuhybOU/b0ZvWvZ7dY0fYPOPI1ZYX1LnhbopECiI6ehd/S9oTcOY+P8r+s7gu0RJDF8UkQveV1XCCGom4qq2tK1PVkZX7SxhjRLcd5jrUcKfyNlciFmj6Vpxu27t0mzlKSLTivTdVRNw66uqHYVpu9RaUIQEeDuupY0zyiygqppSLKMEAJ5nrNZr6K0rekQStI7Q5mleF3gROSKaqVJ8gQRHKOyJE0SyjJDKknTtRRFfvPwCsHT9z0CQe9NFCnZmC82m0xpmxpnLbbv6XVLkiY0zS668bTGe8dut8EHgUWis5K078mznN729H1DEIIiL1EIOuM4WCwwzlDXFU3bxAeVUEyzEUIn1F1N3XeRzBZ1eNg+8nbFdTH9YljUNQg6CGI6yDDb/XNH7Z/fdQMbH+RFkecciWI3hgkhh5y+6OxywUczgvcIKRDxEBT5KsEP3e91kkB0K9yMtYFrsX7sZg1NfcEPXj7D9gbZdWB7lHCkKiHRCu88XWcY6wQVAk1Vceg86/WaD2ZzquUSkWa4vS2NrTgbV6SuoldbRN6x3y4xDmZuRHFxDk3FUdAk6zVdXTHzgdy3ZJcXbHdXvKoazLZjebHEGAc6vs9DNsXlk2ii6Bqs6WPyiY2jP5zFdZ5tb9mutixfn3H5+DmXx4eMDvYo9veZ780Z7x2xqddUEnKrGHWOrPWc9D219MhcQzHjJQk7GchKyaSYkBSB82C5nRn2sxm5tTwVFU+aBhmOmAbYyzWiLLh//2tk83vsN1f8yoe/yWJ+SL1a0VdXBGdw3Q41GSMSydnrl8zm+2RFEf8OtSEtx1GemhYsihHWWIqRYbLYZ//4FpenJ6RZxma5ZNJ2eCTj8RjCly+Hf/YiTQRUCqNJynxesrdXMJmmjBcj5uM5iSgw1mNMT13vSHVKb3uatr4BnSRJSqIT8jyhcwloh/MSpTIgAa8wNnaLddMRvKA3caGWpHFsoAm01ZbgHaZrUVKy87Eb6NsmHoWDQ0jJ3nzOarNBKg1cqxcEbdsgdUKSJFR1TVPXMf1BaYoiYXkWf5/xdDxg9xw2j0/zeNM3kcswLKjatiW4ELWoSTLodaMeuLcGJTW5UAilSXRG37XoRKH09WgksLpaEQi8evWazWaNDw7T91zj/wRiCK+UdG1LoiR93wEOgabIMwg+zllNh7cZejSm65uo8zU9QiryfAJS4kwfrcOJpu5bCBb6jiRJ0UlG2/dsW810MmWz3VHVFcLEhUKUSkl0mhGcpbcWaR3aeQop6XsbD9GSiHLkmtQ/FFfxL/S2fjhJ/UW4buj/wyPBA0S1Qmxh46hBDXpsEQaYTAAXBuSKB2S4Ri8MUjQ/6MTF0Pl//qARQ68vBGA2GLNllN9GuTVBKKzraLsI3JFSkmtNa3rwgUmas6saikSRX62wFx3fmO9Tn17wXpaxyHY86lfczseIZMx4e04qJFqWLM5eUbqeXCSE7Q61vaTpOl41McB0WzeEoON+YHaMSFIyleCzDOsNOIcKgpGNpyHbNrimAmugH4qw9+DijL/a7qi2O/SLV+zdOsK/+QZUHVd5gRwVpHZMMpJse8fGW0QimYSMxNecty3IwGQN+6OWC7lh5Xv8KCEfWS4yS50FFhNJIhxPfM4L0XBbeQ5mM/bvfMjs5Z9SJAndboc1hjTPWZ1uePnJT9HPnrNanvPxn/4pD99+h1Qr8n5EmmUIkZCPZ6TjCX3bIlUCw5jVOkM5Knj+6adsd2vuP7jPHW85ffXy/9OU8V9zfakjLU0ERaGZTDJms5LppGSxWHC8uIWWJXVtqZstfVPdFEAbIMsyonQmJt6OyzEqFdhg6E3AtDmmT2i6hqbZ0HaGtmmG47xHC01QcWsuRcA6i/AelSYgAlUd545aSKSIIXXFaAzEiOgkSQadr4wx5l1HLiVKiGgWCDG77fT8hFcnZyRpgus62t3mJkzyzp17nJ6eRt2ttVgTdcmZ1iTDjHRc5nR9dLwVZQSKuwBlWcbEBRRZnpFnKVVVU2023L59i/V2y3RU0DvD1WqNcyZmvmmH9yZqWKVEOE9vHXVTM8rzm2hv7y2j0ZhEK1IlUBKs7WnqHUpA2xt615OoFDnkv3kCaZbRm55UKlrT0Tk3RNJoSh35wnhDmWU0dRUxm8GTKYWTgr7zUY/rA95EApSxFi0ETgzFZRh9iC+2d4NqAe9RPkJkwl+AZvfP8W5vRg0MzWjseK+XgxH9CNL7oTuOGgUhxE3SQZwwDMoHwcDZ/Zx49flbclA6hADC0aw+Ib9/zGrn4oPQeRIpITi6vsFYh9IpmZRUuyiHzGXCul6TawnLK3bVljxPuERR9hVFVnARUppqjZGSE5HSba5w1rIWArOp2GzXyN6jdI4ZHaOnChMCvYqclCTAWCp2BCbpiJGz7LyjShQ2zVCjKbLrMKYjtA3CdIRmhzDt0OlLhFZY4zl7/RojUprxEaHZsN+37CNoDFwBPlWU5YixFtjeIKRkkShSKciNZdlXSBxZn6K3jk/9M9azEcf2FhPhecyWK7fjQO1hdc6d2++jL15w+fwVfbbj+M13OXr3TW497DFB0qyu2Gx39H3P8tVLDg4OmR4cEoSi7wzlJDZYzjmk0kjAOkO92bG8vODlySu++wff5Re+/W3KVDNfLChG5Zfecz+70yWghCJJFFmeUhQFRVEyGo+YLuaUyZy+g8vlGZdtTV1tMdaj8/JGwxqCIlGKvCiht3RGs9v21DszLFKiwmC33VDXNUJE0leWp2RZRtcLetszHY8i1EVpEB7bx4eCGpYVWZ6Ra4XwkVYWhryuzpjo6gkB2/e0fUuqFUoKmnrLZ48e8eD+ferNlrataeqGi5PXZGlK1zZkSiDSLEKf+5Y8ySjKAmcsx7ePkWmG1BalNHFcHEFAQijyNMFYS1NXGGN4+vgRWZYxX+xxeHTEixevmO0f8IPv/5Cu60jSOBLww3s+EXLoYk2UsXlPnmqyIUrH2p4kKVFJgifCzne7aF6IDy8QWtA1FX1T0zY1WmvKssR6i/WWuu0iCyIvB0nZ8PUrSZJobN/Gds4aggoonVASwFmMHGRlA08DqQhaEpSKjFmGwjsoAsRASJPeo4aAxp/3Fa6Fw9f+fLipwV7G3DP8wGiAuHATkUKFi2OJoES0Dfvrzt7Ff8vh/5HXEJxBWhYFaFyHvIsgcc0lu5f/jOn8HURySH21ZNvssLZDC4ES0Hct3bXLUmjWm0sMoNOUi+UlBkdWO666lhAsTvec9z1115JKyaUX1NUOXGTaonLmh28xKafsjGdnLJlt0cYiQiAJEnRgrQQ2SFAJ++MxeM9hXtC1DWe2iXhX60maHa7e4iYzQlcjup5gu3jkDobgPVfnL+g/zXjw679FKAtWpmez3aKSwFROKKzAGYtUklmRkeqEUiZUpidJU46VYqpT6l1Na1vGoWUhUy5MxjoTHE/GrBPBZ2bL/cUtvv6X/xa3xsf0naeYLZgf3R4Wkw4z32O0t4/pe04ePcJbT5qXyDSLe5q+RxHVR/VmHRfoSlLXW/7g9/4RHz/+jDTL8UMmodKSNPuSksq/hE5XSNBJlDGV+YhRMSFLC9I0pywnFIXGhUBd7dhs1vTWkgxLLK2i116qhGAcUizo2i0yeNJE0XY9dd2w3u1wzjEqihucYVHkFGkW516ivMngFMGx2+0ospxxWZJoSd3UWGsQItC2Fb2xoBKMNVFq1bcoKaKjar1iOh6TaM12s+Xjjz/mzYdv8+b9u1xdXICM0POnT5+g1QnHR4eUkykqSVBCUGYZoyLHplFMv7lcUtc1eZ6TpZrdrsVagzE9fd9zenZKXVUU5YQ7x8d8+PVvoBLN5eUls709bt27x3g2IXiPZIABiRi3o5RivVkNmleHNR2VdygRyHRC4iJ71wZJJiOgPdUJfd+TJAm9MZi+J0lyjI25ZNJo0iwjzwu6rifVLiI5sxItVUwO8HFplyTJoJ0O0QBhLc53WOlZjAqEgpBUBGNwAWoEtZB4pYZqEyNtgNjhOoc0MV4mEQ7pv/wo9q/7CuGLSXyBcB0yyRfkZCGOHqKDb7AJi+vyGTkiQl7rE3x8mAyj7OtX+OdSg2FQplx3x/Hh09anNO0V5eGHZId3kWca5a5ou4a2a3DWoYVCIKi7DS7AqCjxvgfjmOoE5SR50Ixkih44s9OQooMiCMF0Oma8OGS6OGA+nrJbL7moVrR2A87QEnA6/r0VSYZomjgqTDJckvAMi5RwpDXvPPwq+cUVl9WKdbPBpynoHGkNjKMRR7U7XLUm9C04Q/CW6uVzPv3d/5Sv/N1/h+KXfpXt7pL52Usm/RavBbNiRFHEYpdIHd93eUEhQAURSXxKME1ySp0w2m35bLMmWcy5rR7yOtsiksB+krGXHGPrlmbXod5MkVmKxKNtQGYJpsgoJ1Murna8fnnG4vguo4N9kiSLZplhjNRWFW3boHVczk8Xc1arFe/cf5uvf/sbzBYjPvvoJ/zRH36fv/U//J/9zHvuS3W6UinSNGcynjOdHJDnMxQJ3kWcn5SSIi8ZTeYkVxc0/frm//fB41yPMQFnJE1vSZMRbSuxvmO361itKpqmYVyOKLIMY3q8t9R1g+06Egm3D/YpyoLgIgZxmSVcrTc0bct622O7jsmkRKmEpomMT2/jLPaaWRCkIDhom6iptUOg5ng8Jssz3nn/q9y6dcwf/t4/YTabcvzL3+H1q3OePX3CevVnJGlCWZbszSZoKdlsN2x3O9bbXXwTEoswgijjqhtAsrd3yAdf+wZfeecrTKcjLpdLmrbj4OiQN95+yKPPXgyz4Yw8M/Q9dH2PICYL912cV0ulcaYnFxIHWBkwzmGcp2kNWiWM8pQ0jewFREArRWc7nG3xQmF8wNsO4yx5MSbNS3pnUM7RNhVKacZJStv1aAlKJmihIgDGgbKWHIvWgUIF5tMCNUkJ3mGVZmsD503HpnfYa23udbEJHnltXRaeQlzrXX++V7g2a8Cw7ItfUxCDmy5w40zzg/khytL9zZIMP8jnbkYVYRA+xLJ77Vq7Xq+JYbkY8bsx9RaRINKc2eIee/u3OD56SPqNX+enT57QvPyU3cUpbbWOUjQPOk9IkozxeBQTPIQi0QnWRzBVmqQIKeNyW6T4ckqaZHTeEHTB2WrDZ5cXTHEEIVkkBXlnOe8tXiZgDZtRSkhSnEw5KHNuWY/PM+g6TjeX/NNqBU4wUoqDLOO82hLKAhlKEmfo2x1uMkeN58hui2srQl3hu4Z+s+Sj/+v/kXl1xepr3ybs3yLfJSz6mg+c5YOQkPq4/C7ylJHSCKFouqgZ3yvLCNP3cGVaApZFpej1JXY85mA64mpzwTrAIh+zd3RMWhQIGR9EBIfpW7qqYnW15PnzZ5RZzt03H5JMZ6RFEY09w0O27zuEloxmE8QWbh0f86333uer777P4a1bON8PY8DuS++5n110Rex2ppM9JuUeRTIjlQXBSdq6IxU1SRrnUqmOus+maXA+Hn2DMTRNR9MaQpBkacF6vaXtOjYDTMZZw8HeAdbFYzjBk6aKvemMshwxKkcY07Oraq5WS1brNX3X4UxHlmgSJUhHBWU5iokE1mBcYFdVZEUZdbl+iB1XEmsd2+2GIARpHofjXdfz6uUJkzLjjbff4PXL12w3Ow4O9njw5lvsdjuePHrEo0ef8OiTj2mqiqZraQfNrlaRY5ulGbPZnLt37vOL336bt9/6CuP5jO1uw8XylOcv48z6vQ8/4OFb77CrGl6/eskP//h7bDeb+Nq1RlqPVJ6qbrkOTNQ+xPmuiUm9Kk0xLo4UfOLpncN4QUpM/EhTTW87siQlCEGz29JZF+E83iNVOxyLCpquj925jR3rsOJB4BiVOXSgrERYQa4LROopEs/hKGNcZAilaD0sG4vcVjQXK7wdjutySOrwAg2MS83hKGWSK4rk5x/Xg782L0g+B5MPqgPk50qMQa0RfMx5i6i6gVULg5vp81Tbm4IdxA2VLH48xlQFICiFyhcsjt5ib/6A24dvcXj0gLyYIYRmuWv4ynsLXt95H3F1TrJbIrYX7IlAi6CxPbM8YVGOqJqGtq+5O54RkpJlVbNqWtqgSKYH1M7SX56zrLY0YYvfbeldTRV6mmYXl6xaovSIucrJmpqrTYUpSmTouJSCZXDIvmVRlBwfP+BsV1OblrVwFLqkTErMMHYy1kFSQvRAkbsp1eqckJbQNtDV+K7j6j//+4iuwb/3AbWCyhpeXV3ye6cNmba8Oxnz1fGUt0cz9sdTylSRpwrnA11vaHBkSrOQmmAdF5ev2EvvcbefMDv8kNtZz3wyInhJVhTD/e9i3NXlkouLM5qqihFYrme33TGpWqRKIVUEDE1VUdf1sGCTkUbYGr767lvs7ZdcnT3Hestuu6at/1XZC8RwwzItSFWGRBK8wHSena+xHWRFF7WwwpPnI8pyStc1dG2P84Gq6XBB4APsqrgRr3Y7shRmkxJfxE2wM45EChKdMJ8tyPIRCMW6amibmuXVBV29jbPMvh2gKzHjaDzEpjdNBMy0naGqa2SSoqUkVRLr4xbYE9hUFVor9vf2yYuCTx99ymQy4qtf/QpHt28jdMKzJ09ZbdYsl1ccHR7zm//Gb/Dbf/236br+5i9hvV7hvacsRxR5ESPW8xIhJbvNinqz5JOf/gnbpmI6m7M4OCDPcqazPbbbLdtdzYvnz+jqiq6pGI2iWQFiHtquqlFC4UPEXGql6Uw0f/gBwBLB0j1pmmIQdDbQ9vF7z7VT0APB0fctQupI0kKQ6qi2yLIijjGERkrNaDSi7XtECCglyZIMQz/Mly1pIlkUE/ZnJfuLCSpVbDuD2jT0UnJWVfTbdugWh+N7CKRasDcdcXt/wt60YFr8/ItucJFFe5NAKyQEOWzEhsXgF9dfgWGhFgjXzW4czALhRrML16Ph6yVdZFBInZGNDzi4/T53jh5ytP+A6ewuWudEsE3HprNsupZl59g4yTII6nxGX8yQ81t0KdTO0HjBad/TX10itltUUHwqNH3w6E1DXW/pk4Ly6glNqsm1iKze9RrV79h5R/CBo3TKaX1CbQSNUmyDIS0LlMxJZcbdfMzJ2SvatKRTgou+ZY1lNDpgqjxXq0u2ukDlCbM0YbO8wI5GMFHkStBVVzQ2RRyNoGsQ3iLrNW51Bpst4R/9LkUwtB+8RxgXeGPoUuhEyz9vVvzg6pJ3s5K/ee9tHs4O0FpSJAolJaWQeBswtoOQ8At33mJ/fohQGt225JmOhVZqVDrEQw1hr11dgw/cuXOX6a+XtE1LtdmyPL1ghiKdSoIkBgboqPe3fQ8EsumYxKTsqi2nZy9ZXa2o1jsm4/GX3nM/2xwhRMQUqgFU7sEb6J3F9p6u7tG7HUVZglBkacZoNMUH6Ps4rBcyUsfqQRImhGCxKOiNpTcCTaBralIJJPENP5nt0fY9dbWNiRVdQ99FrkLvoihSS0mapBwspnQ2cHm1JBDz07ZVTGDouh7hLMV8FvGPNlColF1V4zwgJOdnp3Rdx3/1X5xRFDnHh0cUZcmDNx9weX7Bi2fPePr0Ux4/+gmp0uztHZCPJiRlyWxvgbERQrPdrliev2az2bCqdrRNjVSSYjRlMpuj84LxZMJus6OqKqzNePnqFReXS8qyiKoKpen7yK5ounaQzSV0Xf05D2BYWgUf53uIyLCt2o689BAsAYW1Bqk0Xg6uKalIVQSYh6DorSFNEpCSxCcUeUFdbVBJhBaVeRHBRT7OKIWQCKnwpsd2LqYgK02SatI0x6JIM0eWGtJED3ZaMwhYYyeYZ5rZdMThwYzDvRHTf4lN77/uy3qPCvKmsb12vQQvhiLMzXBWyOsMLhflcOIL+twvYipvqm5cxAmZUC7ucP/u13n4xje5dfgG4/EBdvjE3lpaF2itZdd1SCnZdpZt07E2lu12hewqzHZDdf6Cz85esTY9frzAJCWHtWGUJGyKDHuxxeUZMtFMp3PK0HNPF7zeNZwuV3Tnr+jrLf2kBBfjl6a37nFvOqaqtygjON1esfGaPhvhk4TnviM9PGCuNInzvNxe0qmc3myYiII5CSvbYZWnag1FMaYTAaMEXiak89v0XYUgQbdbbL0BJaNjL8sJuy3mB99HLMaId94mpI6wvYIGZAvKxTPCy92WeVqyPy7RKEapRqFIRiXj8R6jco9UJwQVk8TL6Rgta9rdhmy8iOMW2+O6Du9B5QWp82RpznQ6ZXV5xcvHr3DqAvKScZoQCGzWW2xb0xP3QqcvXnB+doYPnsuTF3S2ZbvZ8uaDB2TplzOivzSuh+sjVQBC7JqCc/hgwQ5yLttH+VKiyIs8WnWFwwdNiseLHm1bykyQZTmd7Tg97fA20De7CI72Nkb/BIHKMrSPQJum6+j7WID6vif4aCrIE8X+Yo4PsNpckSQJ282Wqqppuw4bAnXbIrKEtm1I0zjvNCagdZQ09QPnYbVakucjXjx/wVsPH7LebEjzjKPjYxCCq6slL548ZVmd89Mf/5BNU9P2lnGWUrWRXJbpIVVYSOaLBbfuPaAcj0mzAikF2/WGLMkYD86w9eqK9XrFxx//BCEciYwR4F3XUzcVOkniLBBH8DG1+BoQI1SKC7GjneQpSZrRtC3bqmI8KhHeRU4DhqIoaY1F6wyhHDgRWRcyLkCViK6rPCvojaNrmzieSFKUFDhnUVrH/b6NAHvbO0xn6NueujWgFMb0OGtx1sZ5urdIL/B4vAAVHEppRmXGZDJiMp5Q5D//CHbnosNPShVj2EOc4zHMcoO8tuwOY4LBsSbCEM7pI086hkFeKyGGzxcwO3rIr/zi3+btB99gf3aAlIreByrrqHuLCJZt08bxhvNUF6+5urqi2a2oTl7y7OmnPHnyKat6Q8gLpvNbJLN9ynxMf7nE5y3n4wXVYp+5dxz7huVqy1YlGH/Orr3iVELv4sPlcFIilOQCgUhSTHXJJ6dPQUqkzllMZzzc22e53mKt4Xx5yi7XCJ1BkXOsUt5KJpybHTvfsLZj0vGYaaJZXZ7TTaaYLGOeJqwuT+jzCcVkj1RCZxyMFwSZEkKHHM1w7Q6xWeN2S/jeDxndmSJkTuVa6AJF7znOct6ZHpAqjSGmM9fWUqYZ42zE/t4DnMzxUvDjT56y7QVFJvlwX5LJhn6zYi+f0PcdTbXDVBU+OKrNjuXpGWmWMplNkEmFJ+rt0zSNOxHTU9c17WYdQxcknJ+d8tnjx/RtTZZKjO/Z7Zb8/h98wmZX8e//r/93P/Oe+1J9g/MRHH49QwleRBG/iUfeVAiEAqUkRVaSaUWbxMC5sigYj6d45zm/eM3maknTtTSNYLeLsxJrOlIVxwplWVCUU7qmZrlc0rQVVR2zzZw1JFoxG4+YTeKPbdNRtxGus97saJqGznSR9KMkwRqCjuxNpRRKB7yzKBEhPq2JLIZEaa6Wl1S7DScnpwghWK2WXF0tKYuCru8oJyOyUYET0J6dcXb1gt3WYY3BE9OR33z4FrO9fdq6pu1ajPfkhWU2jWB3Yw3GGIqyZHm1wjnHZDLm8uwEVRY4D10fSWBuMD10bYfzcRZrvUeKQaY0dLxN3aCTjDzJaNsWqSTjrMASFyq0NRbJfP+AtosjChscXd9F+7ZWscAKSZql9H2P7Rv6viEvSoztadqGohyRpxld36HShKoxnF2tsFjG3YTOOzZNy3pXUTcNwTjsUICutbBhAEcHYt5W1//81Qu4GNgobkA9w4JLhqHQxtdwE/Ek4wghDmav57dyWI5duyniRxezB/zOr/4PWCxuE5qGV80ZTW9Y25amteyWVzw7fUJvAqGtSDx89uwTtrst29Wa3eoS67ooy0sSnEqovEX1LaiEW8WIk67HLS8xr55ymWtOy2lUsfSG+WiCmuzxYr3Edx3UO16OC7yUCJGwGOXcTo+5bNZQLLCJYlmvOHErQkgYTybc9n0MnEwtzhlO8pyLRHOwuIutLtkFMFlGl00pjwsav8MnijYdMXnjbXZNS4chm0+RuwYvMtR4jm9WqL6K9uFkDCrD7y6Y/fAR4jsfUtUO1bYkrudgNKPre9JiRJakyCSjVAllOqJPpvzkpGa8SFi1NZuQIUcpl/WOp68v6LpzMp0wuwN931FfLtmurtBFwdnrlzz904958JV3mR8eMzs8Zv+qJSlHjKZjRuMRroa0KDFtTZKnSK0RWjOZjdn6lvffe5snzz7j+997xLYeTtBfcn2peiEg8C7QNT2VbGhTg3MNbbsj1wkySegaDUSQix4yvkaThOl8n1ExxXQ9fd9RbWvqjWV1VbHbxvkszuKkZlxOKMoxAUG121HtNth+WPC4KNCfTaYc7u+RJgmrbUXddGgladqOummxNpKyAgItFUqAVmrIU4vpDUEIsjSh6wy2N4zLiGkcj0ratuXJk88oipy92ZwuL6irinoX7cZt09AZw/7REUiJ6Tuq7Tbyd73H+OjC2Ww3OBeYTKeY3mGtZ2//kOAds/mCto/R8VeXS8bliEvCTRSSsdH2q4Vm2/UDYQ1uGAcyandTsphkKyV915IVo0hu9QEz8CLMMB6wznFxcUme5bRAEgy9t9RNQ5JmeAeTsmA2CtRSsGviHD0W5YxdHWVLRTmOUS/GsrWW9W7D6eUF4+kElabU1nO5relaM5yO/HAfRYZs1/Zs1xWrUmO6OtLXfs6Xv16ACR/VBz5ESHkIN9Iw+KLkK8SgiWs1WYgPQn+tSQYEijQpePjGr/HjR69w8iWt6fFe0Ww6ntuKXdtzVIzI256z3Zqu3cS5d2/Znp7RCg+ZRvQBkWrKokSmJVNdUG+v2LUrPkticvUszSmbLec7i81rRJKBcLw0VURDypTFbB+33rA9OceUUygVgZb1ZIYqEmbljLtZQv/Tl5g0xecJu2pDlyryN97kltScvPoYrxU2DSyrJYdHR+imZi0lu3HJZHxA9vJjap3QjEeMRgrRrAnFAlsuKIotTQ9oheg2OKUJSUbIM6ROkGVO83KFmX+GnGXczXK0VCzSkvvT/YHhFkedMikR0/s8P9+yXl6Qvj5nrRX19oru/JzJ3iFjeYlqL7h3/y10UZAkGTKJkUa75SWvnz3larXiDaUoJ2PGcorrPOvVdiD8dXS7LbbvyEcjbFdz9fqcs5NXVLsVwRkmszFvf+UdTs93fPL4Ea9OXn/pPfelM10lJF3TsdnswAV0IrC+w4seJR1pAGs7QuPxwVGO5mglGU8mTGdzEpXRKwWXsK0tq6stqyGVocgz6tqRJjnjckzXWepmQ9+1OGfpbQRr4DxlWSCUZtf09JuapmmiVMZH9IgfPJvW+RstndIqRpBLSd/10Z6LQOmELIuRH955xmVJcJ7Nes3p61OObx0x/ua3uH33Li+ePWc2m7FeraiaCuccu101BEOm5GWJkoKr9Zqua6jrKs6SRcV8MY/4yL4nOEs52mO72/LHP/oRSZazvloiBWRZDh5609O3bYyNFz24eMqIptEwxMHE8HLr45vf2BATeNsWIQKbtkMtopNPKU3bGZSSdG2N1BNQGpVIlI+Bidb0aClpesMoizD41EPTVKR5SVmMSNOcpq4G8Iei6wJCKi6XW9pmh1UvSccjnEqpQqD3cYZ7QxsLRC133fH69Rm+rylzPWTS/ZyvEPm5wnsQ/kaG5INHSHVTbEP4fHwQxQtxJinENbMVbgjtWPZmbyDEjN12i1WCi7MtdeJRjcWZnhrL080lD8sxiQ9cXZyz7Wts15AlEtV0qF1Fkyk6GzCbFUm6Y+/2G+zpCaHZ0rRbbG9YZjmb2Yw0KTnMCm6NZ6wvznlxfoLJcygKLnxgfPcOUyFJveLQwyer12zMBlWM2TmP6zX7x3fJTaBZnXOZBqzO6LwijBbcfuNDdr5iZWpMWXBiHPfvPsS1PdsEWgX3vvUdlmev2CjNppiw/9UPOd9scUlGIiTt63NCOkXvHUTjTdtA6yArSUY5YrtitGzIJgm3i4zDyQEyCIw15ElG3dZskoLGKz5+8Rkvg6SVHrnacfv+McqlhPEcR4/qa9K0YO/WbYrxGKU1aZ4jleDV06d89ugx43LCfG9OMYr2X+/ifVrVFYae7dUSETz5pGDdXPH82ROePHtMu1txfLBP19XM5xN+5Ze/w1/7rd/hz3760y+95X5m0VVCIFzAtIamakmUJkMShCFoi5cKtCDICGYxLkpjinJMlqUkAhjMDGcXKzabmqaJbhklQuxivWOvKEi0oKqb6LrpGpx3dNbSG0MykMzqznG1vkSpOF9LVHzjpkOkem9MtGMKgZIiohaNJc2LOAZwFoRE6Wh0MM5irSEvCkzb8dM/+wn7B/vUj3fsLfY5unOMVoLjW0ds1iuyNMcby9nZGdaZSPqynrwYpCTGcrVeY6yhkCN21Q4hNYv9A4oi5/ziAikkr54/G+ZLFVpJyixjW1X0vcWYDhFAyXyIBodrjoFUKs5KZYoSxDGP7VFKYUIfUyysY1ttydI0LoNkQtXsKLKMttqRZCNCMGRZhvMa5z3eGayBVhI5yHiSNKNtdiRDLE+vFdb0CBUXbQSBEoquidlpq02DKEooMnyiCcS/o5udkne0jeOsa9msVmgRcL39/7pW/v/uit9bzyD7kuKGihsnCuKm8MaiGyULAhkTOOQAthlwj0JGjW+qpnzyyScUqeZks2Kaz7h6/pxtIthPR9xxjhe7JT89dyRI9oOlrjb01lB7hzAGnSgyBFkQCKEgwOnqDHSGSlIOJ1PEes2LekOPpclLdk1Fs62Y3b7FncUeqVCI1vAJDVfOkqgkjh9Mw1HTUq62mLFhO97yfDwh6Jy0yDma3sWfrNmpDqcDGwKbUcnh/A7TkydsU41PE150PfeOJrTPP8OqAyoneXM24U92Fb22pIsJY9+xK0aELKXwjrrrKY732VycIbOMwI6sa5iphMl0D9M3LMyUaZKxSHIKnUXbe6o5mOxh8gP+7KrHCU2ZCLwNdH2NX57Hk4o3HKI4nEw4WsyZ375Fluc4awnO0ewqnj55xuuzC37hG3fJyhypJDpNKKcjinHG+fkZk/05aZGivEZ4R9O0XKyvqPKW85Mz9uZjri6WnF1c8g/+i3/Ie+99yF/963/zS++4L2UveO8xvaVve0xpSNAgLdBFNoCOQnxvA850uF3ACUHRdmjZUtU9T56/4vzyCryh7xqatkN5B96QJzFp9uzinF3dUqYDprCq6bqOIlWMR1OEUNi+QcmAsz46nYKn61qUiK4eR3TShGDI0hwRBEmiCN7Su1gEpA4QBqtwiByGWBgcTbvj4sKhVcL52Qkff/oR77z9Nrfu3maxt6CqdoQ8ZzYec7G8JEkLrDc458jzjCIvaDuDsw4lFZPJnNne4iZpuK4rnjz+jLZt2WyWMUBQCiaTCXazputauj4qPGKjG+VM0WIrEUQIe9yiD8s1Ab3tcSqqE4QINNUOIcYIDGk+QoQIzsFE5YJMElxwZFl+MweWSkXrp9KDQSUQHGy2K7IsRwbQSY4zZvjzA3t7x1wsL3HBImUWVRXDEf2my71eLIVIoKs6Q923BNPH2Pif8xW5CIPCQ8R7/iYlQsSlWVQqiEgUCyGiduXn/IUbOPnQ8AqpWC0rlpdnTIqc9XLNKkisljSrllfilOPZgpHQtH2H8z0nPqAnU0ZtQ9LsWAVDkyVordBSc5gUNG3DrtoRkg7ykqWzJOMx5f4huuspjKGyjovjkqbtIEmZCM9+tWZ2cUKdZqSTEt/1vJpOUG/cI0tKbmUT7Gd/ykbskHsjrFacqkD68C2OguP06Q9x1iGyAzaVYPLG2xxfvebV6hVeCUKbcXcx57ndcNFa7j54yMHZlvPCsBl5vr1/jz+qOvp0zFFyRHO6oi9HyNUSrwpEb+hUYNUHxmnO2Gj0tufw9iEKzyxN2B/NKbMUp+a8tAWV32BfPWVUJijjGfkNF589Zq0LmrM1v/Qb32GU5+zdPiYpR/hArE99R1+3bNc7OmOQStGblma3RUiBFwGdQLW8IB9lFHszgg+01YbL7ZKz9hWmdLz7rQ/YvtzR2Yw3Pnif6fd+yicffcR3fuHXvvSe+xK0o8caS9O0tKZj6guEELjQoaRHag/aIURA+RRswHlB3xvausEZz+Vyx9nZKcpbmqamahq6rkP4nkRI5rMRu67j/GpFkWVcbXdsdluauiZTijyb4IWMW3Ub6WM+BIqiZFfXJIJI2PIe52O8dIx5DxhrKPM0xgF6h9YSJQXCO5IsIWQJQkBV7dBKIqWMaQxlwXf/6Lt0XUcInt1uy+27txmVBWmiWWrFrVu3sC4u5kajERcXF0xnM8J2x/HxEd7GZAiZZpy9PsF0lqquuDg74Wp1xdHxMa9PTijy6N32wWP6NqIaZY/p+1hshYDgELiosUUOWXQ+Ihzz/MZy6/zAsnU91W5LmReYrkaomJLhg6K3W8pkHgu6MaRJinf94Kjz9MagpcZ7g/UO28ZuNFiHE5AmGT5E2pmQgtt37nNy9gKvFFZJTPB474a4m8F0EP/SBimrx8d088HB9XO+xLWVQQ68m4DDo4SMqb0h/npARtdIiIaPIIYY9mt0o7i2Cku0yhiV++ALXm2uGM/3OOsMNk+5N5myqWte2x4tFG8uDtmsLzmpVqAEivhw1C7gm5agJcbB6ciTjscUcsQ4KZjkJY+6DbskIIUgHZVMjCU7PaHoWrr9fdLguapbVrMF8v4bjGTCdLvkpK2o92coE2iSgBM96Vfe5ZZM8atLzkSLkzlWS5LxiNvT7+Ct5+zyKZ2WMAq8u3eLqtvQ+h0vas933rhD8/JTWkbcb2a82v0J++oWX7Pv4cySooBynPKto7sstcY5SPb36C0UWlFXDabacpkojtIM3bbMfcabt/fRQjJKFJ3I+NPXV1xWG9abHSPlWRnHw8WIzVVPbY941FpuH01viIIyywCPaXaYusJ0DWki+Po3v8rde3MmZcJ2tQQhGLU1UivapkJIQde3yEqT5hlBK1rfko1H/K1v/U3ePLjHf/If/8d8/OgRDz98j3/z7/5b/P3/6O+xvNh86S33peoFayPf1jmHJ75xhZSoJAJtYsasR+mAkinGeKSIc96maTk9O8ebHu8sm+2Wvutpmypmb5UFrXGcLq8QIdA6S9XUaCBPcoqyxEtF17ZU2w1Sxkyw8XiMD55gDVZL2qYhSAVKE7ouQsiFwF2zTQM3Kva6blFao5IINLfWUlUV8/mC2WTKWX/J+mqFFFFGdPL6lL3FHp98/An379+lbzuuVleU5Yj1JuImdZIync5Ikows6UjTlPF+XC69fP2Kx08ek+mUJM+4Wi1xztI2NVmaIoSkahr6oUMWIdqIIT5ABFEfKpCkOhteUyAIBUNQZVqM0CoZWLYhKhSso6oqstyS5yOCi2oCIQR93ZAWZeRVpDI+zBBYPpdQee+j62rgEPTe0dueznTkWUGelbSmJUsLkmJEaz/PhgreD1CtCDQCYn6YH2agWkfTgPv5L9JE+KL1Yfhqbx4Y15/0uYoBiJz2QRIWht8knpqig02KjKZuQEucD+z6Dtt2NP2OnSqZTReYy9d0tuZlXTGazVg4A6ZhZR3bSRTYp84xals2rqPPc3pAhYBKNYskZ79t2bU9SEu33vGyyEiO90nTgnHbEE7POD++hccgjMMojRyPGXmPN5qQgDc7VokjiJIkVdxZ7LFot1RFhqNls2tZlSMO9keUp4ad2FL4wMuu4Zvf/hrf/+T3SdOSg25Mu97it56r5RMe7iyP/vSP+Sh9wtt3Dnm4mHH74TH3DzaUiWGXHZKPN7iqQ+oMISVZqpHGoGSJyXouWsuHElLZY0LGT897frLcUKYjbu+VJEpy/voF37844+ziFdZJLrI539ybsn39Gu7OSbMEETx9taGtNvRNh9KB/Vsz0tKjvMY7Q1tXdF1LwLM5vyBg8KZjddGSlyVeOublhH/v3/qfoBz8/u/9V5ycLlGh5g9+9//JL/zqX+Hv/Nt/B1mnX3rPfalONxiHCxaBQ4o4w5JakWqBlBIXDL2HRAQSrchkjAt3xlLtWvqmIU8UT0+XmK6jbRtM3yEFJMmc5TqqFBIlsdcR6jpBZ/E4Z01PM8jG8izBi7hEattot7Ndh/MgdYLpWgiOROfRzhrAOjvIrDzWeXZtR5Z48tySZSkkiqZt6LtYhKQUjIqcgIhGh6slf/BP/4DFbMZoNCIrco5u3yY4T9cbdKpYXywZjUqKcoILDq0VIVg60/Pi+XPWV1f0psMFT5ZmKKGoq4oki0qPrqnpugbvYkT3NfnKOVBC3SjwlYpaUu/MYF+V9LZFSo3M44gAEd/owTucCBgjybOAUBLb9aRpRtdWeBFwzg3nYRUL8qDHjn1dnHnjA51Ug8ch0Gy3eGOZjGdkSUZLh0wznO9xYdCvDpCQWI88N5QxERAqGjpQ6i8ET1cEib8BjQ+LMDEE71wX5PhNuTapxe7XDwGU0oNQeKJ5JXgFJDgE5+sVR7NDPtotY4p23XBSZmxtz51yyqraca5h21RMkoS5MaxCj08ykALTdXQIyqxAtT2ilAgFu+qST22HkAnjJGVaWT4rctyoxIUQH9pJwmI+J/SGWib4sMPohLPJHHH/Ifl4xhvW8ejZj8GM0IcKYTxnNiWdH/BmWfD47CeYfIwiQXaB2++8h21rnp79Gbxxm2Bb5iJl3BU8/uiEeT3ie5/9mKwXZLsdSZFxdx92r8858R27t0+489d/g1++9YAXakJQd/nR2ZZeSXj1HO9EBONQokXCWWt5cfKMtnrCmnucj7+OzGbk9NSrM56+fMVmd86VT/GpYJFM+Mo0I929QGdz5rO7ZEVGsIau2dJUK7arHevlFX3fYNotOhmRjxaoJMH0LdVmzW67RgqJtx0ISb3dMCpz3ji8x/rFGeV8ytMXJ4xGY0wf+PFHn9LVNd/5tb/C3bcefOk99yWUMXDBxfeIFqgkzjtUGkHYQgqctzgfj2RBCVI1itq74Nltt2gtuFqtMX0HPgZNeuvIyzFV11O33RDXTnSpqEjmV0LR1xVCSOq2QYWAQw6JwA3GtsOcJhLFrPeYtiZLNGmS0vQG5yxdF1Dhejw3bKcFgCfVCo+mqRsSJcmyjLF1KC25WsYUiOXFGcY6gvOcvHrNweERl6sliYpzvr7vmczm5FnOrq4p84K6bWiNIc0b2q6n6VucjRbaLC2QSUog0HWGQmj6viPYuOgTSg/mk0GCNGAB/RBPHxGSCmd7rB/MCtbgW0i0RukEARHLaO3ABXBYZzFdw3Xwotlt0DplY3pG5RhrHARHwDPKC9xginG2pyCPhgzX4kPAdj0VW9IsJcuL6AKScqit4cb6G2uU+EKQhIREcA01FOHn3+leX/FhcY0Gi8vYoUePulyuxQnX98/1OAFunjDDDHuSLxC+oG9OKQ5T9EXLultykE4R2zXGWS6aLUU+RncOvGe3XWLHU0bTCcnyCtdsqJRmNxujEk0mBAchpXKGpTJ4UyPRJKIkn8+43/ecuxavZdyJaEE1S8mKKW9O9mgePeGxbgndChKJlJbLRHL7K99GBMPp60+pJiNCNqfrFCPh2VdzNuWI1Kw5P28535/yS4clz1cveMdqjpoFvp/zox9+n3p5yfRyy753vH/3Te6//Sbf/PrXefu9D0jThOevnrNZbdj8ySfcutXxW/ff4p+lkuelQ3rPVhV8ayz4oNlR7s/InCb1FunX7DY7XtmOPHdMVuek9Sm/d7aCpGSTzpH5iBzDfjnhOHjmMuVwNmY8G6Mk+L7CdjvqzZqTlycsL5est0vqbc1X3vsGd2YL8vGIau3jvigM8UOBGHAbPJPJguXJS4y3PP6Tx7x49ZqnT18wmRScnazYVBVn50ve+cpP+e3/7r9CBHtMew2kqSDNJEkiECqgEx27OfyQuGsIwpGoFCEFWg3Jvk2D8x5jO/JUct61tG0X0YVJEjPJbpKDQfqoLHAITFXhbI8zJuaFDWDs1hj6pkEpQGpciJbgrmvi+0VFfoAQFu8FQUc+ZwjX2V1xBgYeKQOJTshSTaIko6KkazvSLCFJY16SHSDd1WbNrqrY1E949tkT3n77IcZY5osZIlPY4Lm4OKccj3j28hVdVbHdxiOLIKCkJElSpHOoxCO1pmu6KNiudhjb44e0CCEiUEUIh1TpsEWPoZ9JmgACrVOC6QgEFAFrumjN9Za8GCGGmPTreBnnXJQ+2WhZsLZH5AOexQfAxyw2Z7FJGscUaYp3lmAM3vuhoMbFXRg4xjrNKPMC2VdYZwfp3jAnDTFJQgZi7yyJbFmpYIgW/wtx3dTM8IXC+/mPcP2xm08eVAxB3BRdIa7hNwHbdwS7YzZd8HS75hYJn2Ul67LgzrJiuVlxtb9HkyiOuoBbLTmdTTEyqlOODvfhpKUO8aGHcPRa44qCmR5Ds8YER+c9G9PysfSkWcLd8RFyueVTdlipAInvai604tYbDzm6fMVOeoRydKtTTvMJsum5t7fPgc+od1uyTJL3jt22JRvnfG1vyp8+fYQ/nHAwy5k2Hfd3Eltd8A/Xz/mNh++QPH2OfPaa8bjkmx++z9e/9jUe3LvLvTffwoYO0/ccTSZMkpT3ypxdVVOcPObQB35nNCE7voe4f5cDnbBw32ZcFmgFo8UM2zl++OkT/oPf/X1ef/8f80t35zyVkrZ3pN0OEQzjasXszgMO2xV7wXL/eI833rpHXub4vqWvVjTVlu3qiudPn3C52tJ7y2K8z9GdB+wd3yLNErTU2N5GtkkIeKVw1pBnOYvDY3QqefXkGb0T3D++xyQvqdqavb05T59+xg8//Ywff/aE/82X3G4/u9NVgqzQFKUmLSRJLkhSRZrqCMoe+KJBOJRS5PmIPCkRIcG0PUJ4mralzFNsZzHW4YlgHOscTVvH4z8C4+PxVgdBU23jEikM6DupQSratsFZAyGQyjzOCKWkdy4ub7SKUjPTY7wbgNwZfd/inccNixHro1C/0S1FIRkVOc710Y8tY7y5DZ5UKYwQMZom0VycnfDq5BRjLKNRwWa9YbG/z3gyxvYtddPx+uyM9WrFdrNhtV7H6HZvSdKUUVFig0MPgB/vPU1T0bUttoumCCHjNj0K86/n5u5GqRBCiEGbSQIErLegJN7EmbD0Dikk+XhKkOAIkWWrB12yNaA03kfDgncxmSDVMQcOKWOmnPRxOUmg6zvSsiR4i5Iqaqj7LhafasdkNCbTW7oBlxkG1myQQ5frr2uWABU/jpIgvxz4/K/9CtervjB0t18A1lyPSATczBf+hefEDRN30FMjAk5Kmq5ClyW75TnzfEK2WtOEjkmmyBFU6wu6omCLYj4ak6y39OMEhWbbtoz2DzjqLLtmhUoStgFeuh4dHEfTOUe7lmdUNInECUfrBMLXvHNwyP5aceF2yFQSXMP5znMmt0znGW80gcePH2PmBUH0aAqyFWSHM75x8Ab169d8ZteY6QyVe25VZyTdisPastdPeWQ9d+cP+d6P/iGpg+8//pT26SmLVHHrYEbf1fzoRz/gs0cfs/+nf0JejvjgvQ9o6wbvLKcu6p/TLKHuOpTS7G9WbNYruqLgqhzztW9+i7Y3nP7kOW3d8A8+vWRHTntwxOM28P2rLSHLqHuDXdxGqpIPD4+4V19xT9V87ZvvcXDvFkkiqNeXNNsVTV2x3WxZLpecXm5QacYbd/dYHB2Tj8coKRlNQSnN5mpE3XX03uKDwzUtZy+foNOU84tzmnqNTj0HB3P2xYKXJ68YTSds64rl1fpLb7mfrdNNJcU4pRznFGVKmkdTgU4GWMUwklNBk2YF48mMUTrDWUXbXKGTyAvI0iEqvG4RSPI0parrG6aAszZ6/KWmabc4528E6zJNYqSMjcu8YA1JPiYIHbsv4TFdHV+MkAQXMDIWKZI4t7Q+0Fsbl16D7TfRCV3bo7WiKAps24LSJFrQW0OuNSHP6eqagKKpa7Yqpkd0TcujTz9hf/+AR598zHwxwxjLrq7AxVk0wVPttig1cAu8xw523q43eGtx1tGbFmtcBK9oHee3g6EjCPl5hzoUBe88RVYQAOdiUoYKIc6gnCWEGFQZXXwKgsM5i9A6/j460pmcEti+QxKPo0KIGx2jkpJkUHNIEQ0mto8mChcsSqnILPbxYWeN4XC6oF0Z2r4bImiuG8VrcMzwbynxQhJuytXP9/oXv4r/xoyrwOdAnOsi/EX0IxDlDYq6qSEd49KUuUpZlpIH+phlteZcKw4evs3o/Iw6gaVKcApuTceoiyvOlGWTJzRCkM1y7o1v0VQ7Vr4jhIQgFWsMs8mYeaXpuhV+lKC9oNqs+EnRUiwWPOwyrl495XyWErKAyMZ0iYbphLuTMRvb4Vx0VH6crBH9hP2k4+F8hrv8LoWfcJs73NZ3OT78BueXp/zZ6z/BdTU+SZmuGnYvTrmsDNNCc7g3RuDp+5ZyVEQpY9twen7GRx99xIcffEiWKPqq4d6Dt1itNjRtzeuLJfz4x9y/d5+VlOzvLfjP/m//CR99/CnBW/R0wZPiDTi4w0xknF1esDjcoywnVJsrHuYpD1TgLTaM04a3jvY5ON6jGBXY7RXd5grr+riIzkcsFvucXO6YjKbcf+Mhk8UCvMd2BhGgHI8jjCt4pExZra6o1is+/cmfMJ7FxJf/7Hf/X5y8es2oHKESRdN3XFxd0jQdUv4rAm+uATZFmZPlKWmakaYJMolwlgSGJQTkacGomFBmE/CKatuitEIrD0TZWVM3Ea4cYlH1zuOCxfQmvlGVwxhD07RIKUnTJCbZWov3DkUgyfOYZ+YcSEnftBhjyNIMGyzeQ64UxkSMdm8MhGjPjWzvmLemVI5Smr7tGJUFxnR4E/8cLWVUNqiYxCpE/Brqpo1JFIO6YL1a4a2h2uyoqh1116JUSpolMVE2BJI0xbhox+36jlRp0NHU4W0/JOnGEMRUSaTUNyBqIQXeWZIki0VqyOLqTR8RkjHnITaNLoCWBOcJwdPWDUVREBB0fU8mYhG1Jv5+Slm8dYhE09Q1IUTouXM+LjqLHBUYeAwd1pih0BuuM32ljA8F03XIRDIpxhB87BAGSlcQg/51mJNGudXnc/Wf+yWuy+c1Cfe/8dO+iFZgmFYPza24SYIQSKQOdHWN8R3CGs63DeOkIBNQ24azRPHOfILoe05NhfWBJMt44+iA3fqKXd8QskCgoBuXFOMpe8tzjHdgHU1d8ekoUBxMecNktK9OeT022LLABE/Tb5jsHbJv79OYK9rQkwuL2W74uNpBmfG1Ow+QLy/44XgDSUOaCr659wGjTnKrNpQY1ss1v/vJP+LWeMLb4xnZ7pK9JCc7OeP8o5cQHOMypxzpuF8A6qZh1zYkSpMXedSC1w1/9uMfMRqPuX/7DnXX8MknnxCE4Gq7Y5ynbDdbsjzjBz/8EQ/uPeDO7Qfcun2Xn64bzl9eIVhjVIYvp2iZsh8879w94q3MM9Mee/WKRLQUo4QQDN1uw+bilGq7BgRygKCPxiVpIpmOp8yPDpASvHUE71BDUo0AurZGKEU5GvHP/8k/QQXHx4+ecOfeXSbjCdkbJXmacfvuLYzt+Cff/UPW683NeO1nXV+iXpBopcizjLLIyfM46wwiHiGRChlACkmWjlAyIU0zTE8s0IlGK4HpLav1Jrp9lKQ1Hdb1VF2Fs45EJzhrcA52uwop4uchJU3XDDE2fmDoRueZEIrQG0zfxqTbIbU3DGMJ66JW1NkelSTxxtY6HreJya5SxKNuOxC6vIckSyAI+q5DCoGWApEoetOz7VcxOVdFuVbfN4gAzW4TU3YHx5jt43tTKY2xPdZ04BOkkHSuJ/XXM9Yor7I+nr+vl2dSSqQEpTXGRA1vmhUopQcdboiyLK0Jth8A2o5Ep1jfR6WGNRijSZIEYyxSdCR5jtZZNDogMRicdyADdVORpxkCiTE9QgTKNEVKFReOUuGDR1lF37UgFMb2JFIhCFFHHXoQEq2TaP117ub7LUK4CW+U17PS6yifn/sVJQli4DiG/5rSex3Pcz18uOncv/BrkQugsK4nnc+oVhuK4zvMLk94WbccLQ6ZnL9AqIaXXnJ0eMzi5ROsDLRNw4tJyvTObfzzZzjjWLuK57ZDZDn7RwtmL864SHtMrjHe0ZuacjZnqt6gqJbszJYsU2QkXGxWuKnmYHKXo2XLq/qS13JFKEvSZMI0S2A8Ym+5JvOGkdzjyYvn5LM5v/CVv8H3/vi7nNePUSogtWV/OuH9vMBcLvF1zXe+9jCqi5yj7lq8s9Rdi3OBPM1wMrDebBmPx5RZRlVXLBZzTi6u+OSzl6SpZn9/n7DecufuPUZlSSIlv/KdX6Ecl1wu1yRacGUENsmQaYKeHSAbS5pmvJkHvnE04YgtdnXGs/NXCN+z3Z+xXc3ZeserJ09ZXlygpEQpQdc2XFxe0uwqZPD0XUeza0izlCRN0UlC19Q0bUVdr3HG4pXi4NYRf/iP/zHGGR4/f8x4vMevfedXGE9yVqslP/7JU5w1zGdz8uzLyXk/s+ha62lrh7eQqJw0yUl11OYiVCRGuQBotMgHfWdASkExytBpitIJVd1Q1y3OeXSm4udZN0CgFU3T3GADE6ViVycVpuuRKi7svPegMpyPc0/vfWQ+hICWmqHpQOk0Sr+IHW0IInZ/PhbtEDxKRZh5311rS8PQwUZTBUJi+x4xWGCF8LRt3PwHaUl0ggxuiG+J2lMPNw+H4B1Bxiwrb+0NPN2YnkTGQm+dGxJ/GYp/ZCrgA0olONkjpSDLMqyLelel1fA6xZBhlmG6mEbhgyTXSXwdzg2yrQjEid/DgDcdeTHBBQ9eoUix1pIoRde3WBk12KmKr99rTapTUAlSBJq+R8lonpDD2MQagyQC0bXth8j7mGXJoC++1r2mSpIXCVmRoRLF5ybhn991Pf74/APDVFdcx+3E6xqtIK5HJfDn7MHXS0shJSI4jG0IznDhKuZdzzJTPJOGO2i2Tc2Fllx1G+6WY9zZa15PNLtmzaWveXAwoT+54qqIidheQZt48sWEkfGY0KKSgFSCZVVxUYwYH7zBh7sN7W7DY/MCn6UIXeKF4s7xW5y+XDHyFZMkZ6zGnDYd5Z0Dvjr6Rc6efMbLzrGzj1CnHre4w+3pAUG2vHN4yN1iBrsth1LwYrthu97hTUvXO8aTktm4pO86rtoerRLmszm9MfRdizU9vZIEH1gur/js2Qnz6QzvLcvVir29fartjjcfvMHFyUtePn/KelNjesfte4dUVz1leRt5cA+BRHU78iLj7Vsz8uYM25zy4tOf8Pz5CYf7C7xxVJstTVXz/MUJnz1+TNc2TMYloyJhvd0hhWY8nuKcZ7VcU+QFi6MFzlrqasduu0Wime8v+PSTn7A6O2U+nZKXBT/88Y9B1Lw6fcaTf/YJp2fnGBvf/fPp7F8qgupnFl1nA6tVxdn5juPDjtl8BGnsxIQUMVFURqydlDJyEmSMugghkKYZUmuatoFBXuODQ4m4JQzeY3oz2E4daZYNbqgI8tZJMtB+erI0Q4hIztKoQVUQk36liEXI+4BONc55rPV45+Jy5At4Sq2i4cBah3UuAn06R0DEAgvDGEDQGkumNda2BEAJiRIeqQRSSJx1A/wroIBEQggKR4jWZGcYBpqAQ+i47XbWxjmSdeAdOk3Autghyji3FUHEU0CWIZ1FSoWSSYybV4oQHFop0rTAmhatI29CSIkmROmcTuLXlUUguRi01Dpoeu/xeKyFRGlcmsbSEhwQ/z4FAqlCBG+phLyIhKYA9NaQ5SOsMXRdR67HTLKCre+wLo4qbIhGGSEEUgsmRcZiVnK0P2E6Kvg8we7neH2hW4XPC+71r/25plfw5wvsMCa5+Zi85jP05LrBjDJGUtBlilJ5sDVdFkhCGoM5Q89OGkb7C1RfIbRkXOSsmob8wS3mrUWmEqXharvhVZYymhc87DKyDn5SndIkCqHmaLPj6Ohtll6hd48pVc1+PmGR7LPay3l37y/x6iOD9iMeLzuq8z8G4fnK4jaTYkF7+ZxMtxyO93hrfsCt0Zi7a0EqPRPfg2/IUoXf3+NZ3TMdj2n6lnGRIIlJJ+PckBYFV+sV1a5BSE9WZHRdz2Q84vxyxa6u8MGihWY+3Wc2XXDnzl0SpZjP9+g6QzmaIkTPR599xmszY1e/4mjvHiKf4OYzyr6DzRXebjl99ohHj59weHyPr37tAw7v345pKtZTtT299wStcFqzs57OwZ1bD7jz5tuorKCpO7RKIhCra9luNlS7HXmeR+2uiSdx4zrOnr1CCc96dcY//v0XKClYrjZY61gsFoRg4V/i9Pazxws+4IxluV5zcblmPitIszFJMixZpICgEcTu1FlH5xuEjGi/LMsYj6cYewIEqrqCRIPvca6PIwUfu0utNN6DDQOFVUWEoR+2dSpJomjdWbQS9F2Dkgp8DG20wTIEguO8wfjogrsmc8U3U8xHMtbTdD2JEpFRCxhnb+Zy1yv3EPyASYx1MwwC+kwrfBCgI29YDvpU6QNKxhlfpFcN9XaQq3kbSJIUMzjAnHN4b9F6cPkNBhFk1EfHkWeBTtM4k5ICrTRpVtLbiKlMixIlYlFUwhFC7DbyLCPJcwSBNE3jgo9BneEFSZLRB4+QButsHL04j050dKKpqDBQSsd8szQhluWoGRZtgwg+5kZpT1WtKYqCsU5Z2hrriMqLEBkFeZIwGefc2Rvz5u1DJmX+F2SVFr7w47qIfv6r1z+/Hj0IIW7ufXlTaK/fD5FKJhG47opeTJibwBPdcjsZoYLnY3pmoxFvuUDtep61azZFzvFowqEoeFydsOobRLDcXix4uJE8sSd4e0lQYzrGTG+/RboJ5OtzgjynUIJ72Tv81NeUb97j7UuD2Cxpuj1+sH6Oe/4TsizlO9OHvD65xFEh7AaZJjTNinenD9j6Obf3RizSObfLKSHU7OGYB4evN1jf44Tn1tEeRZ5R1TV93+OMJ88SBJLLqx1pY6KzbJj3r6423L97m/3FIf/k4x8yGmUolbE3O+AXv/VLzA73uHfnmN3mnE8ff8zTJ89ZzI/puhYjU8T+CKVK6m7NfLGHaD1JGt2Xdb1jtV4zGY35+je/zt23H5KmCRenp1ycnXNxccl6s6U3HU0bA2nn5R7vvPch88Nj8mKCKiVax3j7vm3YrtdR0dM2WNOSqoTxaMr7X/2ATz/9mPff3Y/Febuhd5Znz1/w+uw0SkNlgVb/ikVXakE6kmjt6WzNrtpRjFJ0UgyBg5+L3EUgivRdPNJqnZNnGaNyjBBxY++8xRqL6SNm0ROBOlLFbjXObWNwovNDJEoQqEQjJTHjS0iayuCsRaV62IgP0iQlB7OGAx8XdVpqvLWxmASPkvEI6EPsdtXwTXLWDV8HOO/p2wY5GBHofZTzixjvkmVD5LmRmD5EM4eUWGTUNl9LvgggFDpJsV13gwHsjCEZJF8BCM6jlEbrlL7ZkiQFTiVYE8crUdY0SJuCjx25zAghxEJZxgWWsHHsMy5HjMsCJ6NiIdeKYjyibVuCEMhEEUjirNj7QRoVF42m78iTlERphIAiLwk+ILRCCMkiz6PzTEbGhhCCPE0hRBVDnqVI0Q7a4Ph5gUAiYJxq5kXOPM+ZFsWft9b+nK4owRvsyuIL2mFBNELIL+7OPu9mRfSJf6HgStQwckNCqiW3RzmJz5hLxyzP8bUlL3t8opmkC2yzJClbQhKYzPfIt5JC9XRlR1pa9scldZoxrdZIq2CUkqVHPGp6xvOSdyfvs716RJbd4dFyzdadIpTg3f1bLLzk5W6Nt2uyVJIjsfQcz+ZsaotJp9yezHlneshRUuL1URzX9VvO6hPqzTll5xmNJ6Rac7Wrefb6FJBMpzPu3L+PmD6h9y24juAl7753j9PTHcE5RuOcXeXwNnB5ueHTT18xGhcIqbh7fIe//Ku/Rjkumc7H5Jnm1XrD+mrNNz54n9negqpuqXrP5sqwth06nTHPCi5MBT7FC0fdGara8uYbb3Hr/n1Gkym71SVnr17z6PFjXp295MXLl7RNR1lkPLz3kF/+9q/y4J03mOwtUCrBB4eQnq6rWZ6dUVUVOkt5/fo1FyeveOe999m/fYuP/uxH7O1NOL94zeHePg8e3OGzp0+4e+eYYpTz+vSUsshI9L+ieiEvFbN5znwvIysjwtFZH0+gOsZayKDBDzerj7ZbZzw5giIvadOULMtAxJgN03W0XTu4naJFN0mT+N/ISLcaikmiU/COLM/xA5LdGIM1fVy+uXg0987CMLrwInbcPvio8hmWZWmaENyQ4CoFxlo8Hik0TsRZr3dRGK0GAb8QUGQpTR/VFASQMiL/PB4hAlJF0b8PA+pvSGwIPjr0Eq1IlUQkw9N/AGMnOsWYBiFkXEZJQTcAfaSKVmpjopFDiMgGts6S6hwhQEuFVDrKvaTCmgbjHUVRcLC/h1aa1jiCFJRFzrgo4+w5CILWsYQ7gwhZzJ3DgbExjDJJKMoRWZowGY0QUsWoJBQ60ezPJBdXSwhgXFwKahXlgSoIUqlpTD/cEvE1OGvpTUfd1FR1TXxe/kXpdG9UxFxbfT9fjoUbk8SfGyUMxfb651/8b4HA+Z6krfG64K35bbJkTlMG3u8s5fiIi7VjUmq+hqAojnm+8VwVnv3RQ0ZmzSQ/4KeXDVZWvLm4y341Q6uCH6/XtGHDutW4yQFvpw95VfU426KFJZMpfd9yfHhEtZO0ssAJh1Ype/mYw8mYsSnxvqVMJEd5SlsvsfUrmvqMxu8IziC8Zn2uuXx1RZ6l7JqWtu9IkozNtub27YzZwYwfv3oUV4hCkOsZ83e+xvJsiXQ9GZIXL87I2sDh/oJqU/HuO+/wO7/110AK+rbmox98xh/tdmSpJs9zPnv+DPPZZ+x2W5RSNLP7dI3kXKSMCs3+4R1mQVC//oRw8orZaMLDd99msphAcKwuLjh5/ZrVZs22quk7y6gsuH14zHd+8Zf5ytc/YO/4CK11TJgJHtN2rC/OWZ6cEBKFxjGbzxEh8MlPf8zrk+eE4Li83OCCo6q23Dk+4uzkNUmWMx2PsHbBbruN/I0vuX520R0lTGcFe3sls1nOeFYwnU1JkxwfLN7Hba2QEj+Ex7ngo/5UdKRpjlLxTe9cdDCZvo14vAEDGPWlEYVovEVLiXcSJWMXkmQZwcUNvvMxYl0ISZDqRtd6TeOyfWTRWmeQRGBNhE8rEpViQxwhOBejWTzQ9naY+wYSFfACsjzD2FjcS6Uos5y26QAfHwwu/r9CSpAeZyLK8LprJniUjoUz0TryE1SIki3rSFXy+ZuUgB/0t4n0eKJy49okIUX0+CdpRtf3eOex3sYduw8oncTcrbaCINmbzphPxvgAqDgLTtOczlrSJMEGKLIC48E0Gi0dLkRViIr2NIo0JZOKSTkmSVPKYoS1nqpukEqSJYHZdMpqs0FpsMPJwrpoaZ1mI1prbrp9AfSdY7uuOQeE86zWBfrLeUv/2q8b48P1z2+GuNHo8EXFgiTO8qN+OZ7upPh/t3dmvZEdWX7/Rdy4ay5kci2SRdYmaaSRep3u2XqmgYH9MLA9fvcn8nfwgz+A3wwYhgE/jT3T05hBq1vq0a4q1UIWd+Z2M/NuEeGHiJukuntUBhqWGm4egFKVyEpmUfeee+J//ssNmKGdgj2Nsm5m6LJByTXipqa70Wc7eJPFcM44rUGGrMsV6lFFY2bUSkE64H6ywelsThpWzO2CsS7YW9uhupyw0unRD2piJVlJI9Y2t0nnC5K6jxY1WZqwkfZ5vbdNd7JCk0qMmTPIMvY6K1T5FDmdc3p+Sjmb8LSaUlVzjPXUSpyASViLCCV1IQhqS1X4/5/K7SQWxYKN7W3kicKYCg3MbcFcQrGyTjEcIhNBb7CGKCru3T3gh9/9Hqv9Hv3VLu/+7OdUdcPdvT12d/dQkeL9f36P88tLwjAmjGKGV1dM1Yygs4u1FVfTC/a2txmYGqNnNNWcew/2WN/ZIgwV+eUVV2dnjMdD8tkU3WgGawPu3tngj779Ld759lsM1leJ44immlPkY2b5jMnViHk+dckytWJxNaQoZpyev+QX771LVTWs9nvEccKiXHB1OWN3a4uNtXVenp4435UoJLca3bzamP8rr/o4UXQ7Lkiw38vo91YYbGyhUEznE0cJkiCE9Q5X7oQmhKGqZxQLhcQQBIIkjkDrpYeAk7w6TLTdDLvUS3cLhN4IOwwVTa0xWrtmZy2B9z2QgaOaicCxGbTWBKE7Umufx2WMRkiJ9nzbSjcEFkxjiLxbn8AttKI08oqsBmOFo3zpml6vx2iaU1eaSPlECm8G4x4mPrJbWIIgWFoEiiBASekEB4E7djj2hEvrdTeydJO9x5YRgYNtrEBKn3zh+bvCW1Zaa73BSkMSO8e1yjRESjmZsAhQKiBGEgjl2AgaVKwIjHESbu2wXiOgKUrSpEMjHcVPCkOaxO5BWGtKWdPpdEizlKoomCEotabf6zOfz4mCGOONwKezKcbWKCGcH4dPkWgayPUMW9aMhrmLtP6XhAhfazk81z0AWS7WltWiDW0zvfmpX1uqyS8xGyyGMKgIdE53sEYSK9L1DXb7kmw+YiFqsigjSytkPWNkKpIkpZd0WJvXrDQzZmZOkqb0klV2d+6zNp+S6wVxLOinGfu9ddbClLNFjhYVtZ6TBtBhzmZZkDcFo9ERL1+MOKwX1M0CrSvXXK31J0K3v7Bt0/VRSyqTmDKkbmo3JBhvSqUi5kVNt4iJVcq8qhwXG0OcdFBJRiddITAaGZ7w1u4uf/Xnf8LkaohpKmxRcHBnk9pozs9esvb6HxClMYtqjlCStfV1Li/OGI2vQPWQQUZTjikoqJOYZJCRBnP6B9vsHewRxRH1Imd4fsxkfMmiXFBWFTJQxGHIH7z2Gg9ef8Tq+ipBJCiLnMnVOefHJ5weHTMaTQiSlO7KKvN8wXQ65unTxxwdv+TO1j5KBdR1QaAEx2cnzPKck/MLDvZ2ODo+4uj5U5QK6HdSQvXqQeKrxRGBJIoUaZqQphlpJ6Hb7RKJhKbR5OUUa0BK1zyMcFp7AkHTRu8sLGGoWBus8OzFMYEKMLVe8hytcQYsTVMSSOfij5TESUJVFN54ovZQgDebtsJjiI7yZS0+9NB93oUfai/u0oSBwlrt6UAWFUhKbZGBotTaPQxqTdbBJxM7jDZSikprlDEkYYiuKqQApQRVYzzv1C1fmsal5kopsUpgvNl3ICRauinX+pvbChc/0k6zTvarvcuYQJsaK0CpEJdMHyOlYwRIHKSh68bdLMIijPt+MklQns2hgoCqMYSRQsqANPSiBG2QQUgYGMIkofYYdRCGSKWgqUgjhQoV3U5GGMaUVeMggSQj662QdjRyNCafS3StPcTijIaCQGKLnMw42EcbgzAOuy90w2JRujBIj/9/4yXc0AB+L9AyEljCuh7L5UuTbMvgwS/U3BQsvtScBWCkRZmCxs6IbUJqNWt726xV6wyLHKKArYMudyclx4ucwtakccxe2uOgKhkupshQkEUhm2HCfpUyLHLyxRVlccLl+DHDpmZRLSirBXVdYk3tzIs8zGWsxpnzaIzVfqJ1/909xN1J0nov5DYCK84yNtItrg6HGPcKCONOQsJYhA3opwPm1dglm4iAO711QhkhxAw5HrL3+kPefPSQJFLMlOTew4cU8znnl6fEIfSykHkx4YNPn3F5dsp0tmA6HDGfz9yCfHqBjjJqlaFOD5lFgnpvm7uDlI2dHZJuSjGfko9HDC9PqIoZTVNSNy5ZZrAyYGtjg26vAxiK6Yh8mHN2cszzwyMuroZoI1gNU2ID+aJkmk8oq4Ioitnf22d7e4Pj40M+e/wZaZJyNZ7w4eefI6Ql63YYXy0oFwsG2ZpLDH5FfbUMWAVEUUSadOlmKyRRFxUqYpWSJBnzMseYhkC4BZQAamGw0tGqymLGdFoiPVXJGEOkFKWu/FLINx1rEMItzK1xi6LAu2FZbdxUaa079kgJQeCeyk2DDCRBEDnTHCkxjVN/CT9ZaqOdwCFwHq6B8Ms7Iamqyh3b65LGaKraInEQRBgqh9Fax52NE5e2a7DOm8CzCVrWhghcIrAAbGOxShF69Z3yzVUblxRhcIbeLuFXY6X1ajnvvWAsSoVoY1Bh6JZpBo+NupOBsQZpA4rFnCTJ0LUmyAI6SeY5tMJtUm2LSQqapsYaUGkX3dREKqZSNca4SSVJO8ymNVYqZBhT1YY4Cck6MYt5zmQyROs+YRTS6WRLqKaoSzpZl6IusbaHFpJZsSC0AmkFnmbsTgXGYLQF7X5O33y1Bgv4qB0fS38TyJXtjs1eN1X/0TZe8RuoQk45bGlMyejyGbPRMeFJwmh7l27aQ8mQIAq5mAeISpM1NREN1bzg2ekMUTU0pqHRFRflnKd1iaQB6xup0UsZshX+AdbeN8t/e8EQGmvbD+MNoLSfct3Ea4x2XHTdgAwY9O7wxw9+xC/q9/n0sw+IvehlMhnRNCVbWwNS1cEzxwmAlchQTeZ0TMUPvv0Oa2s96rpGSTclf/Dez909HicQhMzqmn/4n/+dPJ/T6fSQSDrdDioKKMoatKNw9nrrrKYZUV2yYhs2+j2yXpdGN0zPLjk7PeZydM50tqCo3J4jEILtzTXiOMLWmkU+ZToacXF2xdHxKUdn59QaojjBCkGjG9bXB3z2yfvMZnPCMCDLEvLxiFk+xrmSGvLpgtPzKcIadrfW6fe7VFVJnufI3m856UZRRK+7ympvgzQZoGS8tGAMPN/VWnNNRRXeUUoKpAqWx5UoVj4lwDqxQACIwNG8tPV6f4HEuuBE4bC1OHHyV2eIoz204HDaAEFjNaZpyNKOwze9uQ3WCQzce1NIQPmFThtdHip3bIqiiNlsBn4ppZQkEC5NWAgDGLS1xGFEEsdO1GAsgZJL2az2sIJaQggWGQREKnTUOG1odIMIHP7dnlmttEtOLtJ6xZ3yNDlxTXezDYYAGUiaRrg4HGNorHcYaxrPGHHyYm1BauffoIRwmHmgPHfWeSsIFRI2LrLHWmd8oxtDtzfANBWGgLJpUGVJ1snodHtMJmNmkxFR1iUIJGnacXzn3D381nubjMcB2sK6XqO5OmGhG3fCMJaWCSuFxUgBr170/j8vd936WHWc2OUaz3W/RLaT7g1IAf9rz4Z5FeXYGo2hpDYlhy/G3tZSezjDQxze3EEIi0I4JZWfvLFgWzmJbR8V/jrCN1huNlvfcJ1UxZ2k/KRr8Tnzts1pxk+5zRKHlzJiZ+M+f/ja91iMDZ9+9gFFWRAEAVHkls26qjE1SBSpTNjK7rMrEx78wS6bKz3y8RV1XRKFiqbK2b9/n0BKvvj0Y6ZFzunLc44OD9EaNja2WN/Y5LPPPqeuS6qqoFgULEpNIFO6vS6DqGavv8vWWo90pU8QKhfA+fKQs9NzRvmEi+GY0XSBsYKNwRrrKx1AM5+OGZ2fMB7nnJ1fcXwxZJz701sUuQXvYkq3k3Hnzg5hmHB2ccoHH33Av/7xXzCeXDEeTckXc4R17oqjSc7GapduFtLv9xAoJpPpK6+5r2y6ve6AXjYgCbuEMkEYRTnXSO3sGIWwCIy/aN2fCaS7CKwxyFAgFIRCEoYBgRRusjOgTe3AeinQ1stthfBG3IIwCAjARYpLAa0cVikaXSNUiK0rJwtuXCClkE56q4VZ4r1S4Ohj1qDCCGtcWrBtNEHkTMTdIrCh0tpNLggiiQu7rBrn84AgiiNEXTv/YCtQPntMSoUKJIFSGGupqooobOWA7paSUtLemcJP9m4CdOmygVeDIUXLGPU4sPUJEu59SWExjeNBG3+ElKIE4YJEK88aSCNnhC2V9LaMLobeIpgXM6IoI+t2EDPX7HXT0JgagUJFIY22BKEkXxRoCyvdDquDdeaznCgKKcuCvNEuWTmKGU2GNMawurbpGnFTM+/0MYucsizRokYqR1+TLk6XpY3XN10ej6dtXsKZybvb4xqjFQIIDMjAT7fC+zM7xsI1xtvixEv/Mre4NXgNtGfW2GX39PePm1Zb1oTxcfCi9VY25joeqG2ywg8+Hj4AP+was5xytW+uLYRgrcV6L2aDk2oba5y61D9z4ihjf3OfwcomnW6HXqdDnueEoWLQ75IlEVEQcnflHjEpu909NlfvsHd3j16/wzzP6fX76LrixfNDhIC9+yFnl1ecXpzywccfM55O6Pf7HNx7wHgy4vGTz8lnY/KZG/iyJCEOLUEIW1nITq/Lw707bO7cIU4TFrOc87NTXrw8ZjiZcnZxxcXViLJuGKys0u3EKCkwdcXV+Rmj0Yh8XjKczClqx+uXgWNNCCH47LPPeXH4BW++8QZ/+ic/4u/+199SF3NOT19ysLdLXQt++fEnpFmOsQXT8YLhaM7W5j2KxRTQxJ3eKy+3r2y6WZQQyxhJAEaia1jkBXXRUJvCJRRYF1Xi9KyOCO+SUt20G8cxumJp+m2M9gY2FukxUBVEfuhxx7c4CJxZt7UoCXUQUOAuJKz2clvrsVt80q+7iQMVoMvaLeJMjfWyYd1odOCgiiiKqIxTgJVFgZKSurF+Gr9ejoRBgFIKbSEIAqpGIY1BCusVXW5zKIS7RY0Q3lNBolTkPH9F6KTILV1MSudXEbD8PcJvwxHopiKKEqRSjgqHU8IZ3RAmmTMvb2rnfSskgZTUXmCidYMxDVjlpNCBRIRuAjfWYEVCbR3TQOiGQMXEkaKqK4yHZuq6IOv0HBuCgDBKqOqGRWXopCGdbg+BRakOo9GY2uNCEsH5xRlVWdHvD0BKZtWcsi4pqwVpGtFJInqdiChWzqM5+ObZC1+abn0tF2bCgjC/QhWz/gR0Hc8ubvy560Xa8tVcE/aTqtP6uObqxDN+WvVexcKzIqxvwsa4waZlRLi3ZT0u677G3vD2td583lqD9lCCe+hqjG2um671UE/bjLn5AFR0gwFmYXny7DPOz4+xFm/0ZGnqmkJaRuMxqyubbKV32draYdDpUs1yzmcTqlrzbDphZ3ODg/v3OT8/5Sc/+XuOT46xQrK3f5/w7ITZbMyz54+pq4LpZO7CfK1FSicvX11do9PpsxalvPngIQd3d8l6KeVizuGL53z4ySecXw0Z5XOuhhPGswXWWDZWhdu/hAFNUzGZTBgOp0zzBYvaooWDTrMso6hL0jRlpd/j/dGUv//Hf2IyGfOHb71NKCVPnn7IcHjJgwfv8Fc//jFHLw/52S/e4/jkjMOzCff2Bdvb+zx/8Zx8/ltOusjWphCMdpSgRmqErWjsnIZm6dJjArmk1zhDHDe5qVAirKXTiVEC5rWPdfFBgNZYZKj81OsaUhC6UDnl+bRB4Enn2mADpznX3jfW4pgQbqJsCe7SQXEqIpASFcY0dUF71RrjDadVQF0WSD+1WFxzjcPQeTpEIYmxVHXjHw4BVenSG4SuCHw0kePwWu/w5Ti0gQowTe0DL6PlA8qtNPyx1DrGgvB3qRQuKEdKx++1HjO01niaEs6+0Wh301uDCkLq2qv76pKqjIiUQgNxmGC0RYaSSEq0dS5uYRi6Bq2DpTS7qipUmFDXzvGt319lNsvRuiZNu8wWOcZaup2MOJQgLHESUVQNVrsjqdU1s9kU4QZ2tte2CKIIMRQI0bC+2mFjrcdqL6Xf6zhRxTdcwp/X26O7m0097tH2XsSyN4tlc2xVbMZ/obzxmtI35+vXaB0gXSy99b9u/8T1uCva6dcTYlrYwDV64Ro17moXxjXZFr5pX1TYazjBNVjPWze++S+bsL7+nH8b1lp63W3+/Fv/is1sk08++YgnTz4lkA5ya3RN1VREcUJRVqRJxGZnjW6SMhpOmJUFoZLM8hnf/953SaKYTz56n5d+Is3SjCRNOXzxlLquXG5iVdDUDVEcoQJJni+wRhCGCWncoZf1eePgHru7W8SdjKYsOXz+lPfee4/HT54yzmdYEbBYlFhjXZRUEmKNoSwKAuHi06fTGXnhoDOhJFkno7fSp6xqXhw9ZzIa8u3vfI9//Nk/8eEnT5DE3Nvf4eJqxNnFBYcn/5v9vQPu37/PD/7oj3j24gW//OBjnh0ds7W9yd7efQ5fPn/lNffVEeze1xYjnVrJGkytsbrB2AKhDDJWzujXyFaPhbSB91110y5Wk2QRYaSwufWek8LzWSPHFlAtRuwoZe0GvvZ4pQBkoNyVoY0n+huUSpZPauX5k0qFICQqsE4eGyjqUjiGBc7X1goQBs//dTxfx+mVnqcYMPe81HbSSeKIRVESRhFlXTloIXQcZYlwk7gIyLpdkiRElyVhpEBEzmy9rpmMhlRNg1JuwjXeAF6qwL1XC0mcIKSksc6TQltLnKRemGEIhFOVVVVN0JQOV24adO0MZ4qqJI09TCGddDpSCXXjZNV17aTCOowpy9LJqf3ko5SkXORk8YAsSf2UBFGUonVN09Qug65paBqN1vV15l0gmc8m1Lqm319BBiFr/TWMrTFmwe7mOns7A7bWVsmyxBn4fON1Y8Kz7dTbIqbWwwjtkd99fYtLC9liwW3jvf77uGWbvf4WfmG8xF2X3/Iamlt+Z9vms4kbXwdL+EH45q9bHLdlIeC+R7toa+lfOMN82358qeF69gKtw3HARm+T777xffbvPGDQ/5gPPnqXxhhEIAmsotYWVEQYxdzZWCNLE8bTGVoY5kWJrSvu7qzz9PFH1BrGoysuRlMCFXP//iMuLs+5urygrEq0cadPrS1WNKg0JIpCVlcGbK5vsdJd5d7+fXburhNlMbVpODs65P33fsF7v/yAy9GYOE6J4oQ4iel0uqz0unSSGFNXnF9ekkSKsqwoypKq0cggQImAKEmpG3fvnB+fM51OuHv3gIf79yiLgjt3tlBZAjJCiIR8NuXzL77gxctDsixlZ2ePH/3ZD/n5z9/ji2dHvPHGa6yt3XnlFSd+F6SYt3Vb31Ttfyf0N4BXmEkfVNkqzgLn0haIa38MKZRLlA4C77cgEZ5f3YpebuxL3c7DL7gcbeP6nvtSQxftzOzdTKSHKmzbjr/8IU3LTmgZCXa5FLNcT7HGXFPBrr9We5y3xXz9T0HEHKy+xvfv/ymr69s8ff6Cf/jJ3zKb54Cgrmu2NzfZW9/kL//8h2xtDLi6uOLkfMzT58fc3dtjNh0yX8zcewwUz1+8YDwrWB0MuLy8oPLRWouiYLEoiVMFImA6zVntZ3TSLvu7d9nZ3uHB/YdsbW0QJQkqjDg/P+bjTz7j/Y8+5emLE7RpGKwMUN7CdG1llb07G/TShLqYU5ZzLBbdOD69kQFRnJF0+vTWt1w8VekCdHsrKwxHVxRlTl2VRFFIUxWkWZemMYzGI+/1LairBePxkLff/janZ5cMRxMe3j/gYG+f//if/vP10/I31O8CqHZbt/U7UO0izYCHrdroHgf/XE/A7svtcqF1jd+2k+hND4ebQ43jodulebtPT6bN7btmI7jkFLuEHK5fxk3WFutYLEsaWDtBeziBmw3X2436hrt8++0rWTclW+HSp6tFw+PPnxIfjji7PEOJiEcH36KsFhwdf8Gjg33++Ftv0u+EXF2ekGZdumnEo3t7TEYjillOJ8uY5FOOTk6ZLRYkcYTVjduVRAkrvZQXR6eUlaGxJYuFgwibRrK9dYe9nV3uHRywubVGEIdo2/D8yRd8+unnPHt5xiSfszpYdU59UhLHCWGgSeOEbpaysdanKhLOLhpmszlNY1DKeeaqMCZbWSdc2War32G7G/DBh+/x7vvv0u12OD4+Ik1Tdu5s8+LFU+eRGwSUlROGdLMOcxuw0l/h6PCQOE2pq4pZXnB1OXnllXbbdG/r97vsTRc5BxO0/c3y5YHlNwnovryCY9n8WnmEo3O1r+a5lf/C4fIawAAtHMQg7fV3sDcmXmONb7pto/UfXE+zZrlEaxdnLRzRvopdKgn9T4GAiFCkRHHMn/7oL4nTDhenV2RRzGcf/ZxObPiLH3ybMBBcnl8wmeTcuRNimpqLixPm8wUgubocMVss6CQrbKzfZZKPuLg6c4vr0B3X9/bvo+IzZvmU8WRCFEZsbtxhc2OT7e1NOt3M7R4awcnRIR9+/AlPjy+YTqaoKCFNHOZblTVJFJJEsWM8xAnWtpRLhfaCK6kUoYrJegNUb4M6W2cehpxeveDlyRFPHj+m280QQvHmm29xdPSM2XwOIub8Yojb1bufe11r4jhiZ2eb6cUEaQMe7T/k4YNHr7zkbpvubf1+lz/S32ye0lhs4BuwNdilicn19LpswOKaaSCWyzSP8dpfG3TBClwEfcv0ufnJX3ljfsG1fG/Xu7JfmWxd83QN9abYwVw325Zp5OdsLSxYt79waIebzoVWFHnF06vnND/5Hzw62Kfb3aO3coer4QU/+sHbBEIzvLgAQtbXN8jSLhcX55ydnhAEEa89vI8QMesbOwzWtzgfjXj3/fcYzQ3fee0uoYJON+L9f/6I1dVV6rqg308dzhoGzlc7jBgOR0RRxGQy5smz5zw/OePl2QXVvGCwvoGMEqyF9cEq3W6PMAiIlNtA5rMF88WM2WLheOzCsSJUlBH3V9FxQqNSzrTAHF5weXnJ7u4eb73+Oo21fPTJB8znM8I4Jgq7xLFzSXTQvCFKjMtFzHOKQrO7eY93/vAd9h/de+Uld9t0b+v3uiz2OnDyZuOzy3/85j/1a59qF2qAbY04b9DPuDmpumopYtd7lRuzrm1TN1pPhPbh4Dm17YRuPWRhWU6xxuD9Ezx8bFsKmTNXcn+19vveUHUYsURZdN3wd3//E5492eFv/vo/EASK3Tsb2HrB8csRm4M1ykazvrXFi+dHfPzp56wP1nj9wQGHpyecnF9xOr6kd7JCt9Pnh9//DgeTnKurcz7/+EPOTg9pjHXLXWOJ04g0TpGBZL4oefL0EBkE6KZhOBpydjXk5dklw/HUKRnFmHURoVWKtYIkTolDhTWa8XRIPh2Tz2bOj0UGTlKvIUwyKhmzaATFvMQKWF/doNtbpciHdLIBizqnk/Q4P71ic3sFGUjW1gZM8wlgKIqSuqqdkKlR7G3c59/823/H7sP7rG5sveKKu226t/V7XtZzdL9y89F+7XK6xFFf2igiazy/1r3WErNd9lCPzS7/Y/vhoYhfwy3c71sTqbbD32zX1jpHPyeSED6eyTfbtuHegB20FRiEM9+/QVmz9uas7bitoVKIRhMIQbGomM2mNNUM3cBoOEMFlmwv4dmnn3N4fM5gbYdu1mH/YI+Tywt++u4vnITXPCYIFYO1De5sbXJ4ckKjDZM8x2hLGIU04trfRWoQKmA0yRnaGViXULIoCy6uxgyvJhgLSZaRZB2iMCaJEpI4uaZNNiXT6YRZPkM3DUmSEUaJ+xmpCC0UtRFc5gVX4zOscPa1EPLXf/PvefDogH/66U955+236fc6PH7yGLLGBW7OZi6kVVuq0pAmXd56+01+/OMf8+bbb7GysUn624ojbuu2/r+vpTnNl5DZpTHRks5lrefeXuOrS/y2bYo3hBKOj9tipXgOOx5aaJVqdkmT/PLE274L57fR8mevG/7155fTs7U3lmaeNnZDhGEEvuFekyd+dVp3Qo/ACW9wQa69bpd5PiYfjdnavs/Rk1MGKzHPXxzx+PEX1FZyT0sePXrIydkpP/3Ze1SNZufOOsWiYFZqnp+ccDW6Ikki5ouCNI5Y768yMZaiNP4ILwit4+7PFwuUirHWZR7qomCazymKkjCJCeOYjc1tdja3Wen2sKZhsVggBNRNQT5fsFgUYKHTCcmyLgTK5S5aqLXlcjLmtGhIuwOeGVjPeiyaKf/tv/4XmkJz9+4eD+7tc3L6kpPTlwiB+x5S4ILIY9584x3+7M9+wL3XDuj0uy4p/f+CBnlLGbut27qt2/oa63cgGfC2buu2buv3p26b7m3d1m3d1tdYt033tm7rtm7ra6zbpntbt3Vbt/U11m3Tva3buq3b+hrrtune1m3d1m19jfV/ALScQt0GCuCLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from PIL import Image\n", + "from torchvision import transforms\n", + "import matplotlib.pyplot as plt\n", + "\n", + "fig, axes = plt.subplots(nrows=2, ncols=2)\n", + "\n", + "for i in range(4):\n", + " img_path = './data/img%d.JPG'%i\n", + " img = Image.open(img_path)\n", + " preprocess = transforms.Compose([\n", + " transforms.Resize(256),\n", + " transforms.CenterCrop(224),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n", + "])\n", + " input_tensor = preprocess(img) \n", + " plt.subplot(2,2,i+1)\n", + " plt.imshow(img)\n", + " plt.axis('off')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of classes in ImageNet: 1000\n" + ] + } + ], + "source": [ + "import json \n", + " \n", + "with open(\"./data/imagenet_class_index.json\") as json_file: \n", + " d = json.load(json_file)\n", + " \n", + "print(\"Number of classes in ImageNet: {}\".format(len(d)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def rn50_preprocess():\n", + " preprocess = transforms.Compose([\n", + " transforms.Resize(256),\n", + " transforms.CenterCrop(224),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n", + " ])\n", + " return preprocess\n", + "\n", + "# decode the results into ([predicted class, description], probability)\n", + "def predict(img_path, model):\n", + " img = Image.open(img_path)\n", + " preprocess = rn50_preprocess()\n", + " input_tensor = preprocess(img)\n", + " input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model\n", + " \n", + " # move the input and model to GPU for speed if available\n", + " if torch.cuda.is_available():\n", + " input_batch = input_batch.to('cuda')\n", + " model.to('cuda')\n", + "\n", + " with torch.no_grad():\n", + " output = model(input_batch)\n", + " # Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes\n", + " sm_output = torch.nn.functional.softmax(output[0], dim=0)\n", + " \n", + " ind = torch.argmax(sm_output)\n", + " return d[str(ind.item())], sm_output[ind] #([predicted class, description], probability)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./data/img0.JPG - Predicted: ['n02110185', 'Siberian_husky'], Probablility: 0.49295926094055176\n", + "./data/img1.JPG - Predicted: ['n01820546', 'lorikeet'], Probablility: 0.6450406312942505\n", + "./data/img2.JPG - Predicted: ['n02481823', 'chimpanzee'], Probablility: 0.9903154969215393\n", + "./data/img3.JPG - Predicted: ['n01749939', 'green_mamba'], Probablility: 0.35704153776168823\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAD3CAYAAAC+eIeLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebRlWX7fBX5++8x3eO++OebIyDkrS1mTSlUlqSQhW5LnsY0xAmNoMAKaZtGsXtBA08YYGhbdC3qtXjS97MbY2BbY7UHCwpYsW1OVpFLNmVU5DxEZ44s3vzufYe/+Y+99zrkvIjKz1BXpTPx+mS/efeeeYZ89fPf3N+zfFmMMp3Iqp3Iqp/L+iPrHXYBTOZVTOZV/kuQUdE/lVE7lVN5HOQXdUzmVUzmV91FOQfdUTuVUTuV9lFPQPZVTOZVTeR/lFHRP5VRO5VTeR/nQgq6I/KSI/ELrbyMij38X7z8SkUe/W/e7z/3/jIj8lYdw36si8ju/2/c9lVM5le+OfOBBV0R+UER+XUSORGRfRL4oIp82xvxVY8yPP6znGmN6xpg3H9b9T+VUTuWfTAn/cRfgnUREloC/C/xrwF8HYuDzwPwhPjM0xpQP6/6nciqn8k+2fNCZ7pMAxpifNsZUxpipMeYXjDHPi8ifEpEvnDj/94jImyKyKyL/pYjU7yci/5KIvCQiByLy8yJyufWdEZF/Q0ReA15rHXvcff69IvJ1ETkWkesi8mda1z7izv0XRORt9+z/4D2+Xywif1lEhiLybRH53hNlerz1938vIn/OfV4Xkb8rIoeO/f9a+11b1zwjIm+JyJ8QkW+JyO9vfRe5sn7iPZb1VE7lVL4L8kEH3VeBSkT+koj8bhFZeZfz/zDwvcAngT8I/EsAIvIHgX8f+CPABvBrwE+fuPYPAZ8BPnKf+46BPwkMgN8L/Gsi8odOnPODwFPA7wD+IxF55t1fjz8A/I/uvj8L/D/fwzUA/w5wA/suW9h3W1jPLSKfBH4e+DeNMT8N/GXgn2ud8nuA28aYr7/HZ57KqZzKd0E+0KBrjDnGgpkB/jywIyI/KyJbD7jkvzDG7Btj3gb+a+BPuOM/BfxfjTEvOdPBfwZ8vM123ff7xpjpfcrxy8aYF4wx2hjzPBawf/jEaf+xY+LfBL4JfOw9vOIXjDH/izGmAv6H93gNQAGcBS4bYwpjzK+ZxSQan8eC+J80xvxdd+yvYDWBJff3P++eeSqncirvo3ygQRfAAeWfMsZcAD4KnMMC6v3keuvzNXcuwGXg/+HU8UNgHxDg/AOuXRAR+YyI/JKI7IjIERbE10+cdqf1eQL03vHF7n9NKiLvxc7+XwKvA7/gzCn/3onvfwr4dWPML/sDxphbwBeBPyoiA+B3A3/1PTzrVE7lVL6L8oEH3bYYY14G/nss+N5PLrY+XwJuuc/XgX/VGDNo/WTGmF9v3/4dHv3XsMzxojFmGfhvsaD9MGUCdFp/n/EfjDFDY8y/Y4x5FGui+D+IyO9onftTwCUR+a9O3PMvYU0Mfwz4DWPMzYdT9FM5lVN5kHygQVdEnhaRf0dELri/L2JNBr/5gEv+jyKy4s77t4D/yR3/b4H/k4g86+6zLCJ/7DsoSh/YN8bMROT7gH/2t/M+36F8A/hnRSQQkd9Fy5whIr9PRB4XEQGOgArQrWuHwO8CfkhE/vPW8b+DtXf/W1gb76mcyqm8z/KBBl0seHwG+JKIjLFg+y2sI+l+8jPAV7GA9XPA/wfAGPO3gf8C+B9F5Njd43d/B+X414E/KyJD4D/Chq89bPm3gN8PHAI/iQVML08AvwiMgN8A/htjzC+1LzbGHAI/BvxuEflP3LEp8DeBK8DfeqilP5VTOZX7ipwmMf8nS0TkPwKeNMb8c+968qmcyql81+UDvTjiVL67IiKrwP8WG7lwKqdyKv8Y5INuXvhQi4j8PZfD4eTPv/+PoSz/Ctah+PeMMb/6fj//VE7lVKycmhdO5VT+VyQichX4l40xv/gdXvd54C8YY576/+c+p/Lucsp0T+VUTgW3wOaph/mMh5VZ78MmD8Wm+9O/9nUzmUzqv0UEG90ESim01mitF67x54gIxpj6p31clIAISimMBl1pSl2RdnpEYYyhIgxCsqxHmqaEYUgQRERRiFIBogxBAEoBNPcORDBGo3X7eYZACaGAcp99ORfEGDAuaLf5p/naHTLYuC7jzrfnnTi3pXXY5xgQU9/IuBsZY6gMtg40dT0pJSBQVYYqLyjLkqIoECBKEgTQRcl8NmNa5FRG18HJ7xp0bJpzfB206+JHnz7/sOOWT+UhiZwmeXpf5aEw3SAIiKKo/rHgFxAEgQW51vdhGN5zThiGCz/1tRYta8BWShG478MoIkkS0iwlTdPW/QOUEpSCOBAipQiV1D9RIAQBrlxigVYJYSAECvATRmviWBARUIJRgkbQUP8Yh6sPMuHY4/7H3uq9ikhzQXuiwgDagDaYsqKY58ymM/LpjGKeM5/PycvigWW6Xxn9ueImvHY9+PY8lQ+WiEgiIv+1iNxyP/+1iCTuux8RkRsi8u+KyB3gL/pjD7hXnTjJ/f37ROQbboXnr4vIc61zz4nI33SrN98Skf+9O/67sDlC/rjza3zzoVfCB1QeCtNV6sFY3h6w7zbw/SBvztcL3xljEAQlijAICUJI4qQG3CAIUApEQaAsw1ViEAyiPOO12GUUgCCAwp7jvr2nXO1vFrPM3HtefciYBVQ1rcO2DG3gbd3oAVUkIveUTGuDGIMuS3RZUhYFpqoQoJjPHUM2juG+N9AVLHsW5B6wvR8In8oHRv4D4LPAx7G96GeA/xD4P7vvzwCr2CXyChsPf4+4xEl/B/jXjTF/12Wl+++wMeRfwa5w/FkReQqbE+R/ds/6E8AF4BdF5BVjzN8Xkf8MePyf9HDFh8J032kQtoH2JOiKiON9AqIQFVo26xiyIFbb1sahlRAEMSKKIIBYRUQqIAqEKFREgRAqCEUILFm1xFRZoAZrRhAgEAjE1Oc5mEE5MPQk8rfvdrRlF6emS/tGYmj+u/e6e0wRJ+q3bY4pHNgWRUFVljU4amMojaHUFdosPkdoGGvY+lEitr4Q1H3atG02OpUPnPwk8GeNMXeNMTvAf8xiqKAG/i/GmPn9kjw5uV/ipD8N/L+NMV9y6Vb/Eja/9WeBTwMbxpg/a4zJ3SYAfx74Z777r/fhlYcap9u23S7YZlvq8MlBa78TtNaEoaBUYFV7NIoKY3QN1kYbwjggCAOUUiglBMp9rgHBQ6WAsaCutbEMWBwBtTDPyZS0yloO7LPusbe6z++hHuw7LZ5rxPNqT3Ub1ttW5+vzT2oF5t5jxhiqqrS23KpEGzs5afdTWqMHtZFZFu20QRCgWqWsqBbar/28U4b7gZdz2KRPXtoJoAB2jDGzd7nHTwG/0k6chGXG/4KI/JutY7G7dwWcE5tUykuATaV6Kk4eCugaYyjLkqqqmoM1yDRg4oHX2229ucAP7iAIUFEMCKYqAY2pmmcgCqWsacGCrkIFwT3mDWMMWmsMFpjt460JQSms/eE+HNO0yli/hkdqxNpseXfgNWbB0HB/tmzaH1z9+IMnwBhaZL8lXhtABEJFpSt0qTFaOxvzIvIvTAKtOq+fofU9YHvS5HMqH1i5hQXIb7u/2wmg4L0pbT8F/Lsi8l8ZY/5td+w68J8aY/7TkyeLyOeAt4wxTzzgfqfxqTwk80JVNQzJEcwawKBhwO2/m4HtogEkIIxS0rRDHCcEQYQQIGJ/jAgSqNq2KcY51pRyhgErurZjGqdWN/q9Zd0WcB0HRsRYk4JYYCsNVAiV49r3M0O/R5cUGlNzzUWx5oP6v5baXrvaDGgjlBWUFRhzr2pvJxaDEVDKOiRVoGqH3v0iJvxDvOkjDAOiKCQI1Al7uuGkOeGU6X6g5aeB/1BENkRkHZsz5DsN17pf4qQ/D/yU2HSnIiJdsTur9IHfAobOQZeJTdb0URH5tLt2G3hE7rPLyT9J8lBefj63W5h5tbpmiy3ny4PEqsgVIIgKHHhEhGGECkJEFModV2GAclENItZjVmEdRZUxlunVIGsJrf9RgQ2xUq4SbBCC1D/gwry0BblKC5VxDLMuq2ObrXds/yy8F61IsQWR+/w0Fxlj0MaWo6psiJjWNlzMVqmz2WptJzv3XOXNBa2oj/s9xU9QImIdkLH9CcIAUYsmoZM/vr1OF9h8IOXPYR1dzwMvAF9zx74jOZk4yRjzFeBfwe5ycoDN6/yn3LkV8Puwzru3gF3gLwDL7nZ/w/3eE5Gv/Tbe6X8V8lBWpP2lf/gl49VSa0+0rDdQAYFSNbC2VVqv1hpj0BWoMCbr9siyDBGhKAry+ZyqKqkqDaIJwoBO1iNJUsIoduFnIUHowFMp6yjz8bgKAiWoQAhEE4igTIsEAriJosICna4sW7aThYuCEOt4a8Tc18TQBiZE3jVO96QY49ixlhpkfb15m6o4Z1dV6dqk4+u1qiqKwsbrlmV5T9xzXU6nJXQ6HaI4QgTKsmQ+yynLsnmH1judBN0fenzrlPaeyqm8B3koNt04jhecZdr99uo/WECoqqoBRGfT9YM7DBVtQiwiBGHowE8jSkjShDTJiOPYxes6tVggCBRBILj1AvY60c45Zizgcm+IlgG0GIwRp9Kb2vFmjKBbVhCPW0oWw8j8FwvTmXkvQVqL4G3c30pAiy+LRlcaozQS2MgOy2oVItY27s03bXus4MH/RPiXONANmnhm/woqEAJaMbimecsFJ9+7vtepnMqpeHkooBuG1rFVg66z2frjnrm2WZM/X2tNEDjQDG3okjGGOIoQDNoxO1EBSZISx7FbRNGARhgGBD4+l4aVKcdSxYUKmAUnUeO80njQbTF1oxDtLL/KAaLBMmOaKIfmTq3PLmTrfrLopGpK4a9tr58wxmC0pioKSmNQYQgJiITNxKL8u6p6YrNaxKLn7SRjtU5IVU8kPrTOGLnv+YJdIdhetHIqp3Iq7y4PlekC94DugsrNvQ4a/zkMI6IwskZn55XXyttbLeuNosiBbuAWO9jvQxfqJf63w4R2OJRpxQTbopj6NyILS2yNY7s2cMEg2tmGpQn6Mq6cgX2p+4bC3dcL1xJjfCjZvREPAFQGU2l0WZHnOSoMGlu0m7TqZ7XqsrajPyDkq47RDUPHmD2AByeWRredaKa5zynonsqpvGd5SKAb4aDDAonWGGPZKw+I0W2bIxCpmasHNm18ZIEgSjnzgWrMCKoBGdqhUbJ4fx+768HW6Fb4VR1Ma0HW/1gsNlRuJZs41tgAGhjVsFTlzj9hufCBGfXn5qNFWzcNuZpz5XO/rVmhQpcVVVnaz1pTBjZCwS8gARuHbIvQgLASBWJNPGEYWkeZq1tECJQ3VdjJJQyVm3S8w64pr8jiMo5T0D2VU3nv8lBAN4ljgJohGt3YdP1xCR0IO/EkzBgDCgKlUMbYAW4qjClt0JZjaIHLoRAILgLBGlYFgxGDNjZ0jMqDccN4tXNm+SiASpt6IYGjs9YOrU2LHDoA0x59KsQxaxUoZ9qwIWEKaYFUm92eYK6OJmtnOzZaFsANF7OstaYqtXOIFVRV4dg/lEWOKgK8nVWkHYJnIxL88mlbRuUcl82z7Jn270CaUmqvDZycKcQvJ/nwys/8tf/MGBdCWPs23VRSt0HL5ynWuEVTO6ZuA29wsb+kjrSW9j1pnrG4uEbq+7f7h13co2xstTnxDOVNZFZjsxO8H0v2nQJPevydjdcqQSOoOjTTls7WgQudNI2ZTeHb32CMRmq/i72zRp/Q4KQ2vRmgEvtZezKDNbUJBm0EIxoxghZPEtx71Pc0zsSlXSUq/M1t22iaGBzfPxU2kMKWEGw9St3OXjvVKGx92FJbf5AGxDSGPnG1a0RhjEKkwhhbhwa3ysrVR1MO4U/8yT9z30HyUEA3TdPamaOrxryw4NhRUkc1wEnN2yBiHUR1dKs0g8Grw+1A/sZcgW0f8QsfqCMYMKppGu8o0zYrl251Jh9j7P9untF2TjVxvsqbNgKc48vF/7bLfJ/BajuUsxtXup4E3FnuWg+6FWWeUxa5HWTu5SpjF6KIA1MwTkNQdlJQCkyzuk6c4VgJTeHq91zM5+Anqca23DINiZxosw+XeFBp/x04UKAeOga/XrupHatJyYloy7Zj8qQ64+8m2IFrRSGi6+9FVOuZzeAVYxfhBPidR6Uxk4kHDNs0yoFbWNvhVQMOddGFQFp2rLoE7g29Cc2dqx0Qe6euPceFRYogRmFEOxBspg7jYE0hVGLvUgHi+prxjmUjtePa1pfHhJPak7j+Z+o/FytcbJ16Y58obAyS1N27mVgtiHtN1DaxjdfXBhSKhfHgTJoGUFK5OlEYadYEmMVCvaM8FNDt9/sU9fp/TaWr2sRQg64RVK1Ss9AJLHAp7CIIywC1AePicQNlVWOjNablsGsDbx0VIeLiTRvA8eChNXZSMAatrbpeaY3R7eYx9XXGrfLwHUY8QxG3KKO284pvJ/dcz+qNO+aHjWOylY2xrUpDUVR15IG/VhsLuroqURiiMCSIE2t/deuZgyCw9RIYZ8d2URzKz+EeJtzAwiwwXW9CabNayyS82afBZmPc0GhrJx865mvZYFUPxYarWFCoT7OQVI/tBrA8S/UTKQsfHWvz17SA17cBKJtWtF0s1zdsGzUaiPZXGsGIQdWA2AC+iANkcQyVBnBtMRrGJ1iwE2OBygKodidqjPFATAuYwPFAW4665IKRgEIHVECAwpiCUFXuHYzrg25SM6bZuro14dcNsQCk7dpxxxxDrhupriyNabUiBK6fe6BvWtqCsq7bwqBrUNdOFwBrlrNj3U0pxmnVom0PkqaviCeHRi226Ql5SEw3JopCyjImz3PyPLdMrlbrHaE3JyvaFV7a2asMWgm6Uk2FilMHbFJdKvzaYFXbZj2zrhzoKlFWLavtnroB66pC64qyLK05ZIGpNLZbH9Fw0mF1v1As/3zl4oKjKKgjC/x7NXZssTG1eUFRltj8Evb53uIhKMIoJI4j4tjmCLb9JqAoNbPZHEyJNiV5UVDkFYEyZFlMlmUkcUCaBI7lGDRBDbJVzeYaBmcnGA8OfpGL/zGujHZmeVBkxgdZahZnanisu2E7GZE4mi81KfBsThpNxniNyyNua+iLY1YepN1wVDVgW8Zr3OCvAZ5GWfVXqfq7wAKiWMBUrq9ZtdhOsPWTPGs2VmNU2BWKxoBqM0dPWKAmJf54A4Hipm+DFihNzEG1wtuTLfbyPncnCaYsKRBMNWc1mnGxc5dHVw7ohWN7F+Pe1Xgu7DlihTEB1lzgGL6fVuqJzoKk73eNb8FORHWNGQ+KNO/knuLb049ZzxeMscmtdK0luLEgjuOakwagZp6157UmjhN96KQ8pNSOXu22IKS1ppIKcaaGZmb2KkQzNzXRCzYMDMGttiqpqhLbSQOUKGeX0ojGMmKjLSvWps774AFcKYUEbaBrzB66siyyzZgX4lBrUFGtz7TOdSaJZuJ348+WNdC2TtqD09DkjPbPiuKQJI3qemkvl64XfgSKILSd4fh4Sj63tl5Ek+dT7t7d5ehoCEY4HI25evUaly5cJJ/lXH7kEk88eoFzZ1cJVQO0ldFs39nntVdu8ZnPfYQkjVrv6JmfGyRGagcb2M9Ve5B+SETXvxu7pV9BCVh8cIisHMhY5iNuQEk9MI14siU1hHhfrq7HoTcDiANwaY1RCwYWEH1dOqA2xpcQwEXveCJgWZVn1raIjYlIuYnCmEV7o7RQwWFPwzUXbKnNZGSrwtQTxNis8MX9Z3l5tMKtkSYpcjohzHXEKC+YzkO0XmI6T1mWTX7nlUN+8NJ1QpU7e6uH3Ia9WuBVNTOuWXK9jr1V/kYPqO/lk7JKDbjGjUN7rREaguAB3DWDEn8/6nbBZSD09WWJoqqvr6333rzSnh/eoe89FNAV5wEXwIQ2YbnWBqRZDGHPa8DXh4IBRC4huQ0Fs2CqtXarq5wRW6xqJra3OruojTBoe9YXluZW3sZjY29N7SxzAK2sg847nAQL4LqyZgcbFdA4Rvw7iBhClweivVLM3scuXAhDmzPC9xGtvblB6oxo/lobHwu+4xtjmgUQgV1YcmfniOOjMSuDLv0OzGc5s/mUfhJy4Ykr7O8fcri3yzNXLvHx73mK7ds7/JWf/uusbW3yuc//ABfPX+Do6Ji3r10jn8zpdBKe/sgTRFETBVGXoa7M9gTUhNVV79jFPqjSNkc1aqVvWT+AqB1j1p3SNjepepDb+wkOJN2kacSBpPHfO6W/HpSNg8YDr9c27B1UnVrU226hKY9yA7wB+haC2kP+bRrwr0+x5gQ7keqmP9PAGZjarFIDl1EMi4Rv7pzljcOIr94dMR7NSeOQXITIQBYaZqVBzyfMUezlAX/h2+f49l6ff/7ZV+glI2onnANGnFuqAdCAWpv17238hOPMH2LPq80EaJDAV7fD6drI4sDcM+RFzcP1iAWytegu9gDrW0DVWihYDLO+J3GvtLgzTlseDtP1FN45sIIwJDKCyeeUpiCIAgtELiOYZYS+e9hlwXFkoxMQhUFRGbsYICgKKq0bG6ZX57ShLDUUJbpsZkefL3ex8Qxo5zIREKUII1WvaGur/ro0LoFPRdkyLfjY2CCwiwqCenGB1E6qejC2gHUhNG5BjfXfa5dwx87+xjGryEClDPtHU154/lWWVpbYWl1iKVGYqmJezFnp9wiWlxhNpxzs7fDomS2SJKKaTtlYHzAdHfDGzl12bl9l7cwljsdzLm0M+PHf+cNsndmg041JAscz3JRf5961NA3fSGKaPBQfPuOCHWDe1VIrokac99pxVlcHnsXWdr2aJDi7uGOu3gnmuVpNKF0beo7WjhdHlFsZ6SDVUD/HslwP8A4ExNl3jQUZC76+zTyfbUwC7iEO7lsmBNfGVo0XR3kd7Lnx69VqlFBpOB7BK9eOkUgzu/H/5fVvVuTBM+TxY+RGk6qC3796yGz/KgPp8LPppxhLhkkiSgNfuNXncPwUf/pTr7OWHUKrnNb04bUpbFTDQnmtlmsny3ZWwMZu7HSLul3acFrXhLPv+ugEhdT5Wdy0UreTv9KWUdXfN+DdlMNaq50ZomXnvZ88nHy6rSeKwqrDrvPGceTSMSoXiG9trp5DCs0CBx8OpkUIjFCJIVRxzfzaiWm0gSAwFozLyuZncHTFO7fqacmJ8vZen5NBqcVTDHVUg83g5V/KDw5nQlFS24sV1otcn+cH0ILKccKeLfXpbgLyHUCjjA150Qh37g754le+xcH+AT96aYvlbkKAJi+12zkj4OjggN7SEp0o5H/+m3+Lj378Ob7nk9/D29eusb9zF11p3n77NS5f3OUP/PE/zsagz53b1xkMOmyuDwiwTsvah+xt4OBClZz4BSK69b4fJjFQ1Uy+5qBW/ayZkGOsuMkUcyKZu3ey2MFeK+Ziv/OajOBZWTuc0NsBaT1JqBoVyh3x6i3uk2nZdqX+bEldywbvHGYLttr6aTg25jkvDaPFXWPqFUDs7s+4en3MymCFi+fP89iTT/DS85rvu/mzvH7nK7y8f4U0nHAmWOaF628jK5uMXv8GP/LjW/zt6aPoQjCqi6lmvHiY8H//rY/w733mBfrZkPZuMA0t0m4yoJkQ/FuIO1Oox5Bg7JZZ7n19GFxTY8400DpqWqak2sdSX9Hm+/66hunWjLs1jdWTnDSGqwfJw8mniwcQyxzCWn2ObAFFueQzOPUaF0fowEn52Fs7oAOsbUyJoF0FKdMEiGhx8YCVWHtvqNAVeKYLTcVaIHTVK7ZaAzFNONUJ0b5qzeKKL2m/I/WYoPnlzzX1sbZxvTaDnnhke1B7VqQR9oYTvvKtV3nr2tv86Oc/xfpyhzgQirxkMplQacN0ltPrdrj59jW++Eu/zNHxEWmvwxtvvMmv/uoXCBQc7e+xvr7BYH0Fred84Ze/yud+4HOc2dwgTeyiFv9unox7xq6xtmltwNu4lFp8rw+LGOPjbg0BOFuqoXGa+ZAiaYDIMd5m/jbODmsc4ImnaY6des6pHXC785ojuEdYEdevWyYNH/fdMCq1AB7OMtly9NEwVBp2a9mdZ5JOPxFvWhB3ZnOuEYWZl+xuH7L39bd5Jo4Z/dbXmJclb//4J1hLV/g3/uQf4hvf/CJ/+xu7bB9NWZrt8K39fY7evsrjq10u5ncYDJ7lyGTooykEAboSru7Bf/eVR/jXP/cKcThz+Uz8s3ULEM0CKNeAaATLcL2d3DN20/RbF/9bzzD1/aWui1pLqb9t+K3UfzWGHT826n5gbGhrneQbXLneebHQQwFdF0zReFHFECobheArTvk4Wlz8aJsdu38F3LJaB8Cuvo1xzrr6ea6jBvYZlZHGZ1Xf7QSgiXc8eAC/hwjjHt1IOw1ozUb9LOhVFFm4sj1LBtLMjZomZnnBclSzL2/lEnaHM770jdd4/a2rPPnYOVaXUiKlbOxuqZnNZ3Q7y3RTxWQ+ZDIe8q0XnufO3hHZb36VyXzMPJ8yn02ZHB3S6XeRuMs3n3+FGOGxJx+ll2U1CBhnpzZuNZ7Rrt2kyQesXR2qZoq/t/I+wGKkcjhqgcsYUKLrNvS913u3AxE/S7NgIBDHU0XbOFl3zJrXPJi1ekXdb+y/3kzhAbQhWVKTAvCMDdcvGj5W0fRD3NPqYP925zXQ3M1FBegmDMo7gPzkohDUt97m07/8G2TH24x3hkw7He5cOkuxvE6UlRxef4vk7k1+4pFlfu7lHscc8ZM/2GWST/m+9Fn+QXyFTpVTlhVqJeLIJOijGaD4yuEKP/fKJf7AM68jboLTdeihj1LwBW9Gup28qP92CGhruR6fup44qVHIjkM/smqmsNBtPfTatl7QgcQtO8UvugDnwa9r3NOkhSLfRx6aecGDo2drqKbTgLOJus/iQK+pTadYiNRsXdzX9XzVTOw1KzbuYDuGtC2y8LnFMsQ/v/X4hb/l3kqU9kc5seeZvcbIYjGMV+mM7T41s2h5/8XN4KUWxtOCg+MxX/r6tzkaTTm7scJjly/SzzqI2DCz+XyOUgFpJ2I+n3Jz+w6/8qWv0Dn7CB//6AZFWSFaEQcxZx+JqbQi7S4hcUaQ9MjSEBX3bR6HE9VW55aw47MeoO3McVY7+PAtA26YlNiJ14GUz0rnbbh2smkGVIBnn35llwM6F9faVu+9p0VwOTlak5plk1I/C2gcYc7EZFrPNqaZmv0AtwsivNprFrutafDb2w5qYK2BzYGVj7l1DFiMoKqKR37925w52oGNK3Qul3SzNR555mO89enfTZBlxGHIUP3f2H7lBXT0Ga7qCcODO5xZO8ML1UXm04BoSdgKS8ZhzLTImYcasDk9fu76BS5nO3z04i5hqBbKZVcJeRbaYptG1/XVUhHwttxmgmvibhsTkAeltgrndYoWUspC0F2jAbfirS24+tVxCpHShrzhwP0dInoemnnBzz7KNOkV22ZM5d/BiQ+BAcuM/ZntnXQW6rjVCQ3CgnPCn8PJQw3s1wqE76HvdK3c74sTzLxNk9thZfUhY0Or3AHdQvl2ESoU00Lz1vVdvvbNlzg82mc0Ouby5Qs8/fhlNlaWiVSTtBxgMFghL0peff0mv/YbXyPXGWtnLrO3v4sxhq2zZzl/YYNAhNfOnOXu3V22Ll5mOi0ZzXJeePEqj108Q6waG9Z9XgUfU7zwvfbOxQ8X0xU/SH0HExDTrEWyUQPNziRK6mHfSuXpIl+NX07qJybdGuhWtBgQ5QZcYzZohrFlVzUvM+56Y01noXu6t/0CrXpvKcfGu6McdfHB1bTG1UJ3d+FZNR65yWA6YfbVr6GfuEg6nJCsXmZOhXzzV/haMaVYWyPLFLdefp3nb/WZRFuU6SVu6ZJbUcZSLKxWI7qzIVMUUZnTDftIrJijIcqYVPA33nyCx85O6aqRVdU9MNpaO9FqXm/UDQHAM1qonVj2iwWStrDEeKESPAC3jtWTnz9kTlwjuPwC7jkGFUClSijUiWvulYcTvVC7JWxDG4e6UhugmznMv4LC26XkBPNjYTzXMCUNgKrFU+6RBeCoHRSLvNe0T2zj58JzFzv5A6UebHZgayMu6Np7pR2rcc8tdcVwOGc8ybl2a4/Xr93k5s3bGF0ymxwxGPTZWltmZalDpGAynRAnMWVRkRvF3e1dXnv9Kq+/dRMddBiN95gM9xkdHZJ0MgaDLt/3ye9hsNSj1824fn2X5z71PXz7xatce/1t5mVlveJtp3CrwiuDWxsvdXKgepGJY70fVml4q1mYOBvgFQJpbQvlvtTimK1p1HgfmdLE8joO5aMeapD1Swz8b0s4fD82rX6CQFA7jOpCt5isaY+2GnD876bL2snRM3MxC64/FkOcDFW3w8F6l6W3rrPeS4jKHNZ6HD6+iqg3uPObf5+DYcDRKKA89wfohwGd3irl3iFqPsckKSUhA0p6QcktoxkbIe110AQkVMxVyK35gL9z7WP85BNfRihre7PxMcaNHkAz+huGilQ05p6ayrt7nCQDVW3HFWnVkbuumSSdHuOdeWYxUsFGJ/g+Y59RloKOpuieJjZ9Ot3eA/vcw4nTxYfGmKaztjoh0MwmuOqU5ri0vmhXWU0Oa9Wgud878iw/ecoiSzsp5j53aXPj5jlyzzkLN67bXdl9x9z3Bm1DlETINUwmc+7c3uPrz7/GF379a8RZyiwfs7q6zGR0yMHeLiuDJR65dIYsjamKnDIImFclo6MZRkNeloxHQ5b7Xb7348/y2lvX2d/ZZnNrlSwNWVld5WNPP81Tly6iAsWVy5dZXl7nmccvsXP7mMnyIb//n/oUiTKUNJ7w9qTvFTfPctsZ22rH2odQmhCuxdChEKlV//YQ9+DmbZB+8UCFZ7+mtg+LB07Ah5R5YPBhgOLIg+PUNAPCRlEELXObjYBozAztaIMaOp1dzf9XO5J8BxUaUBPjYvpttGyt1QPoElTI9F/7o7z1X/01wvmYzu7b3CgH3PypP8jZYsbjd3bACK+rPj+zu8vwysdJKRknERMTszLcJzAzJkzJg4A7gyeR+Yw87RF0IqIoIUNIUsX1Wcy3957m2dUXajLVjClvhmmbT5p6aVZN0lznR/LCEt1F2tSwYmimL98CFsjbVkXvIwVaIWuyEKsbFB2kmlIN9pin7zPThQZIlZ+x2wiLZ7f2k2qN8uY4NfP34Nu2nS7aYN65LNbI/g6n1Spzc0+R9roYanvs/arSO+G8t7/pHDYdZWWEeaEZT3P2D465s73H17/xMl/60le5u32XMA44e+483Q5UknP35jXSRKFMzmh4QL+XEocKXZRMmXE4Gjr2XLG5ssLZ9RW6WYdQBXz6e57iaPRZ4jRh7+CIKElZW+6QxYZSw3wyY9DPWO1nfPwjT/BjP/AxVpcywDhH0CLja9DXvdMC3QKfHOXDJl6DCozTxqCOQPDxrrZdbX0owWaYc4ZRTyS0NIloPHPS4tN74lT6Jj5AixDiQVoQY8MjT4qqR0ELYtxEV9tf26hQM0T/t4vOWNCwTLPHXw3Q4GNyTc0rxSL4lcuM/sy/yst3d1jeu0Vy8zYaIYgSkotPcXH326xzwBvZPr9YVByLoMOAMrf27j3VITt6k1nvEubuTUoSdH8LmUMWQKJKLneEQRJwbXyFC91t+vHtmpn7d7OLQJxJQQTMSbND3aLUYIhxq/X8+G2MkELrH2/fpZkoFwmd2Moy7ZG9oEIslEGqBA4CcvbvU0YrDw90vfe1Bbie+ftVMRaYG9XL18F9hjx+/murGjU5XoC6+5TlAZ/rZ0ib4zaVKU59aLM7f4ryHlZRCFUdjqOB6azi6GjCzRs7HA/n7B4PuXHrNjvb2xzt7/PiCy+Q65KllWWW1jo8+T3P0e32OTzYg/mUYj5ndHjM1sYaB4f77O/tcO7cJnkUMppMKIxhd/+Q5cESq8t9ulFIGAQIQhrGrPbXqIxm7/Y2/+3/6y/z1FNP8Kf+5B9hPs+ZTXI2zqwxHpWsrXS5dK7ve/V9Q79EhGCBOQhGUa9G+9CKuPSH9YQvdvUjuLSInqB6tug7rdSLFrTC5TqgYaB4jdMCrHL3sU4vRxakWevUaBaqZl5iTvbShgx4wG2sBidULGkW8DSsT7uEOXaciJ9oTMOK/T1rs52xmQ/ClT75yoC7PIroEm00SjT5hXP0v/I1zNqTfEoe4Ve7A+Y6IkojzGTI7HibPOmhki2OpUesDFEakYzeZHmpw6X5ARezfR5bGvM9ZyfIUsDmIzuMjiJu3UzIZ57dNzZqXy4Lhw5cxbJ1+0520lzwFdWg4365PuzpU7O8+d6arkNXpM2Dm6nJ7h7ejrJweG1C1OHyA7veQzIvNGEttF6m/b1fGVLPFl79qutIFjqUMcbF6N7rK29Z296DtGa++tEuEKq1Ht3fN9CqXixQd3ttmMxL5kXJ4dGQ46MJxSxnb2+fL/3mV/n2S69AHKIVrJ05AyLcvPo6o6NDprM5yyurrCQJG2fOcvHKo0gYIKZkcrjH4f4exXxOmoRcv/YWnU7K7Zs3OHf+LJPRmKIs7XJoFPF4RllqJJbGjOOWQRqEJx6/yE/82Od59bXXyUubdOiRSxdAhG+/8Aaf+9wTRKpRrdpTT9vcE0jTSX1IUnPqydn+wyHephq4pbxIY2YAO3jqRTUGHx7TOGeM1Qy8PdZgqEzT55v72Fyx3jxgs35JE6lQd3hnW66JSaPLWS2qpXHURKapdw8e9vu2K60pr2VsJ1qrnixsWJQxTbiWbWuDjT3VQAhGow2MuwkSBIR73+Kp9QGfWM54ex6zPxG0TNCDPuvZTbaOr3F5OeBS/xssJ4d0zymq+HG2zozobb5M1s/p9jWrqz3WemvovOCZZ3+EV15e4vpbFWXpyZsHPxrAbKWBbELxXH0s/NP4kUyrDWuyu9Dvm+ubSasB22ZWxdVTuzYbdbB8Bz/HQ2O65kThTsp7hcj39qxW53s3Xde0zquDxe0xrRVFUTGb5RwcjhgOx1y7ucf+0YSy0mzv75LnBUbDzvYBk9GYu3fuMBrvc3y0izIlx/u3mE6GJFmfy1ceZzI8YuvcJZZ7fUw15cy5LQ6Ph0SxcOXRi2ye2+TG9evcfPsad2/eYvvWDZI4YmVtlfl0ginnHB7ssb+3S5J1ODo6Js9zlpfXmE1LvvrNF/nej3+EpW5KrEBckyqBLI35iR//QX7ohz9LkoQEXUWaJWgUj50/y3LPTo+1ZUtODuWG4Ss3o/vVZyVt+W625vspbhW9mMZEIG4Ze3sgQq2m09LE6oFr/JIFVRPnemAbB/B+ZaK/EGkWVGDqSAUfHWoWBrY7xywaAbzdtk7v0u7MC+qwL7pYFcWB+EmWbAHXq9iVu9xmGbbXV3iN0yjYvbjKxfGM7TzgeDwhjEp+cOvnOffoP+Rsdo0zZ6d0UyEohbIsOHMOkkwoi5sEkSFNQeUGqaAaHVMlAVWpQP8dnnvuUR698jGe/3qf3R1boXZSVE3OhhbE1lOU8e3a0jzq2mrapF4s5amUN92YRQyRVl+o7couHJQTpNATx0oM/+DaP+An+c9PdjjgIYJuXRD8TOVnp9ZsUrPb+yr9DeWv40GpG92bYpqZz31yM7rWQlFqRtMZ+bykyEtGwwnzvGJ//4iy0pRVSVUWTGdzdnYOOTwccefOXaazCW9du2FXdKUB3d4SSZqhkpBu1qHT6zLNZ2T9hH6VEnVX6PRi9ndus7S6RX95jaO9O7z+wpfp9JaZDncxgbA0WOP1l77N8nKf/pl11tZWECrGoyGj42Pm0zFKlwwPjkniiCzL2Nu5Q3IrZTSeEMYp27dvc7B/wMbWlHMXH+HOzh6vv3mVx69cYtBNCN1yZqsN2HyfnSRCKbtZ51I3RlRAqEDpgEq1ljC26r6RRQdODTitDncSpD4cYneHlhosTb0Awi52kJYfoA3ALZdOg8N4G3BLEQbEmRia6324/eJZ0rqwYc7t43aM61acbZvzOU0QDwzNEtW2A8qlZKnNCk35m89tIBGanSF8Se1Is+UYXfkoV29s8WejHyKRX+Tf/tRf4vyFbfoDyKcwnwudDJLUcPUtYTwxVJWhnyrSzJB1IsoyJw2g0Iad3T3SrEOQTxkdvcjSym1+9Mf+Bb7x9TFvvKzRxiYAapxiUi+C8Aktvabhc6+0LeN+IYk74b74okKpF5g1y4kbPbdukLqaDCdJ7atHL/PW/jd4kDxU0PVSJ4nBNKtpWiortOas9gziZjftOp+Pb9a1JcDgvVdahHxe8uabN/jaN17ma994kes371JJRKHnHI0PkLJifXODRx9/lCTNSJKYKp9xeHjErZu3Ac1odEx/aZmPfO9HyHpd4jAkz0vG4wn7O9tMRkeU1QxtKmYzIY0TwjAkDyPOPfIY0+kEZeDi40+xt3OHYjYmShIGa6tMJlN6nQ5plnHlsSuEYcDxwQEHu7vMJlMwEAUR09IwOR4hAnEUs7+9y/7eAYfHx+zu7HC8f8h8XpJ0ugyWexyPxtzd2UPMCsvdDmFLNW5yVLigd1EohMAoar/QQjduq6Ntexq16olnxOLV8IfUcR6i2LSgqvYpNElnnHmgDt+VmuR6huhXfPke3MTc+siCE1AtdVBas4LPgWdNF8T95WK5Fe2sW80Yt+3VSl3or6npCDYq4Z5wUcdsxb9XC3z9zNHw2PoaoLb/Un9rGeHh2vfxVw/WuBL/Vf7oH/4rREsl44nd3zDSmv4SUBq0FrYyiAJFZ6Ax0woZwWQcsrammB3PyCIDERyOClaXFLFoZkd3KNNf4LmPbtHrXOaFbyqqKqwZpQj1O9fv7uqjJml1H7ff1Qmy2lXjzUhSUa4NUZMuMooak83CRHdSWiYn9/dWusbnL3zmPudaeUipHblv+aRVWcKDTQE1ALv3XTirFYeHMRQVHAxn/PKvfolf+kdf5Le+9GWqYsRkOgRTESc91rbOcfbSFS4/+RiPXLlArxez1Fuik2ZU+Zxr129w6fGLjIZjDg+PyDoZq2srdPs9lChu3rxDUc3ZvX2T6XBInKWEUchsOiWMIrQKOHv+ApUIa2fP2hwRpuDCk48xGQ1JQ8X1t95kfHRAmmacuXiJixcvUJYVhwf73H7rTSbjMVGSMlhfJ4hCppMJ49GINE05Pjjk1Ree59KTT5ClGaNwyPjwgOPDI1aWl5nO56AUu/v7VEXByuqKTQWpFpc+NztSyCIiYFrMVR7YvXzbLsSsfggBF6DOHeHB0mtdbqk6Xk31jpkWK6yzH7TIBOJMLy32ILScvdKqVwcEiPWwW3tkc78GFppn2iI1K7Ps5cYNh5aD2VQud0ETMtaArVls2AXwN/itdNpf1+eIZb2+mxQs8T+92mHn+Gf59Mf+BpO54VIMcWAYzSpMJVRT6KQJh8c5aWoQLaxvBexuV4wOIJ9PMbpL3Imobhf0U+gEObvbAZvrS8ynMw6qb7G8ccT51R16P/AcX/5SzDyPkVYOCnGzlrQq2Gr7psaLJgGQbx/qtjPOlm4QiqOcWfcO/e4jhON0cbaDltYndbvoyi6HD+OEsihZDTfZWNl4YNd7aI60Rb2o+fieWJEfAO66hSW6blYWbB7XX/vq63ztpbe4u32LZH2dT/zw5zHasLezSxxFZP2MJAnZ2lpnaXmJ2WREQEo5nzPvZDbbWQgHt3YYDseAIgwEdInSBZPxjKuvv8J4NEWUJsligkgxGR6ye+sWWa9Pd7DCdDhEBxHnLp6n243pRBGz6ZTp8RGvvfBtbr99lV6vx/KFAU8/+yxKCVVVcHR0yP6dW4zGYzYvXGb13Bar5zaZHA85OtinmBV0+33efuN1TGVZRlmVTMdjNkdjJpMpSXYGFQZ0k4yD4yFBlBCFId0sRYJ24nXDfF4QRREqVi48ytXnQpiMU6raHdSf0yghH2pRbusaa4Jx7+aiWBoy0HrZGpCkHnC1CaDWxGThWGM3dDHrtBLYiGYhhMmjsWdhPgDUGIyyBMM7l0WadvJsvLZzSguwaz5XU73G0+7fx7Ry0dLoOn5SsGWhrhvrFAx589o53rz2LQbP/S2mZsC33rhLFWgqBfOxkCWwtizMAg1dw2wMEhl2dg39jZiduwXTqeFgd0S/F9DPFG+/qnj0QkVSClwzrKwuI6OI4EyX8oymX77Ipz52iS99dcMmtBKhvUavnXWsNjU4aScaEve3casEvTMRhHS+RmEOOYhe4vzq91EeVlS68pVQ389P1EZrhq/dhscSzpx5ljt/7W9wbT/l+564/MC+95BWpC2a+/0y4PY49W3/ro4vL64zefZbVpovfu11fu23Xmbr3Aqd7nlu3rpFqQ35fM65y5cIAkWcBFx55AJpEhAHAVEYMp3NCEQYDocA7O/us33zNlob9vYPWFpb5szZs2RJwiyfgyjyeU5/qc/B/j6z6YSjnTsU+ZiwSJhNZ+zv77K2dZZ8OmVzfQBVSV7kzGczxqMRaENRlczzKYPBEqsrK1wf3kCXJWUxp5iNQKDTX+bM1gbD4yOuvW4YHhwxnRlUmHD75nX6gxWiLIUQgjAASsqyAg2RBPSXB4ymM/rdHnlZIip0M7PBaGGSa6p8wnoYkjodWtdhL84u6T7biW2RHCjsYogAg8+z+mFckKbF7yRtwNtwaRjpQgxRrY8LfqNIaMhjvaOu7dCtfm6BzO5UbUdAbWN0pgzrYGtbeT1QO4R0D1k87m9nGstAS1vx/hNj7mWBC9tx+neiASN3Jzxb9HfXjlWLwFyv8a2vX+OFr/5P/Okf3+LS+QzUXa7ejMmrgnwCyz2b/3k8L8m6MDPQq2A+NGTdgrWNgMOiIlszTK5qZnsBkRhe+oLiY892KOMK80pAEA2o9iKyuzF6vUdUDLjSF944bMXstxJRuc2EsGF5zWv6N6mJg9jWaCsBUaAojdAvHkPMbY7SVzlz/iMc3Z6iS91K2WCIJKBDyOzgmKPVHdZXz/Lq28/zP/7tr9FLFOXoNn/sAX3vfbHpUr/sdzg6W3jsgcBIiRHhxs6EL379OssbIUWec/P2VY72j5hNS9bPbRGHARfPn6HbS0njiCQKCYKA4+Mj5vMp++Mxo9GQ6XTK6OiY4fERWdZhfHxEEAj5ygrjyYR+v8cjly8ixlDNZwQYXn/5RabjIaVR9AZr9FfW6A+WMWLodzMCgcpodFGQxjFRFJP1OsymE6bjMdPxkCjaotfr0O1mRGnM9OaIydExWoOKIs5fPEcUCm+99hbl9l1M1uH4eEhUlDz6zGWqsiAKNP1eSj6fcHR8BFozWBnQjROUUlSVYZ4309/RaMpLr11llk/55LNPcPnMWg0GDStyc77vmy2NdMGssDCFfvjEmxbwWava4Yie2XudzbNOzzAdA9Qur4gPOatrUlr12K6nlp2ite7Sc9vF+FzRjTXAWEj3urR3k3kCottLeD04ui2s6mfU0QpCs11Oc4133tWv7/IZNBYJb9wQitEaZvgSerjH+MZPsKvGbF7cBrWLAubK8OaOcHNH6PUhVmACQ1/BYFmY37ATQ68H6XbA5Wd7vPjlMf2eYuOMgddzss0ObArqMMRMYsrtLmosUE55Il5hX4UcYPcFFJcno85bIX5Bta0dV3vuiA3Z89OkbyUlEIaKqigRieiX55ns3+BO/m1WNi+gj2P0VOgnCZ0iZzYZMa+E29N9rpkvI/tPMZ/FXP7ICl1KxlHxwL73kGy67z4gF85oTUn3u7I9Y2kUo3HJz/zsFyiqI9S0A3KEriq2b92k31/j0uWLrC51WFnuYkzJZDLl6GhMVRWMxyO0NoRhQBzHjMdj8nzOdDKkynPy6YR5HHN4cEAQKM6GZ0jSmH6/x/W9XQ62bzE62EOXBatnHmGwvkXS7WBEGAz6hKGgy4Kjg32ODvbZ3b6LChR5WaLLAl0VDI+P2NvbReuSCxfPs7G1yd03rzIbjTg+HhKEMVk34+zF85SlxlQVh/uHqCChN+jT6fdYW10lDQLiKCBJIgpdoZUiL3KMDtGqIso6zPICY6Ayhl/4xV/jL//FnybLMv7AH/w9/Bv/8h+tnRH31LlZNAHKybM8yPw25tIPgtQhXo69WeBxqmodEuS1fmmiZepZSBBpNlhtnDTcE5Dv7YmNccKbMhbZZOPWMk0ubGgxXlpM2iw4uPx5PsOVB1wf2uShvs5WVl+m67hhXwrq6z0lNDXZF+Dmy29STLdJsg6TO5e5c3DA3evP8Pgnf5N0aUaQGKIUpkMo5oLWiijUHGthlEMwVphc6IhiSWviaUm80uPgSNGbFgQCw3FKOu0TzjuMh5revCQol+nImGJ0i+/vXOLrnU1uyx2MsTkVbNIe796saamrdW8qaezszQILgxAwy0t+41d+kSce+ygbFy6Qqgvocc7+5IilrnDhTMbe7Sk3C8GEKUTAaoe3v7BHceerbJ07xw9/9rMcHw8ZzY4f2Pcemk13YYav1YDFobuQTNy8G3dy7EILf+8ffZWbB3ucOb/K0fEx88mEg+09ilnBo598BJNPEB0iJiEvSsqiYm//gOPjYxsRkATEUUgYKjqdlDLvcXx0SD6ZogJBAsVkNCYIArSLeIjSiHI+4/YbLzObF5y98jRnL12hszwgzRKqKmd50Kco5xwezti5s83RwQFVOUcwBCqgs7LO2pmzpJ0uVVGgBKJI8cjjT/DGN7/J6GiHydEhujTEcUa/2yGf5wyPDpnOZkgsrG+e4dLFiwxW+qRxTBzGHB8dIcDS0gClQsIwIo4C4lDodbrsHQypKsPK6hppp8fmmXU+/tzTzpPedEItYONlLJA0G6Y0PFhjVVG/2XWtun7IpAlUaJkTnPPL1KgkjYZWO8L86jzcuJaGKXtXOf7e7j7GO33svYxyMFCDaR2dWwOxZ68+uqRteKC+VwPXHpjbGNw42ppyey5rpLL39iGWNIzbfVFPMt48BaAJmB3sUs5HnN84y/7eiI+sZtx+5RLDZB9z5i2WN4Z0ExgsGYZ7gp4aljYNwyNhVkEeGnShmU5ShqViZAK0itivzvAIAXpWIFXCURWTBiGhjphNKrSaIN0IE/bojPf4VKF5ZXmZ1zm09WP84pLGyVU7LPHQq1t93terS0QvirOPPcrf+bm/Tj9cIkhCokcE3a347FMX0cF5ivIKiN2/LVUZk51rMO5wdTwlS4/oozDRnI9+/BMP7HsPLeGN6xNNUzYa1+K57Y4PNMP8fjfW3LhzzC//+ldY3VwjEMXOnW3KqiDrJ/wzP/m/YX1rg/3dPW7dvsl8PsUARV4ym82YzeaEoUKUYTqZEEcRURQRxREYKKuSJInRukQXOft373K0v894OOLoYJ+bb77EdJ6zee4K6xcuceXpJ+ku9SlmU6oyp9/vEYSK6XhMVVUcHR1RlQVGhKzbJetkdPs9RsMRvW5KmqbEUcTWxXP0N9YZXb3Jzs2b3L1zh7W1JTpZlzTLSLsdNs9tcXw8JU5TOr0+q6urxGFIHEYURcnBwSFJ0mF1aclu0R4GJKGiEwmd9WXysmT9hz/FD33qGXrdjOVehhGrMirjdubA2jrbWd5cEwJ+6yLXtsbtCvwhXQosWHZXp/aqQ4xa9N4ecX25YXu1yi9NwhPTMjvUm6yK4R6zmn+Ojw01jeLuYc2lAHPlaVslThgkWjbdGuDrEppWuJTnz54Btpi1u0e9L5w3MjiGrGkYsGflYRHQl5JJf4nJ8E2CwaNclDnV8+eZfX1O7zM7VMszVJoT7/SJNyaU8wqtQpZWZty4EaK7mmlRsmzWKHZDoklEaQL+0RvL/J4ehBNDIBUzBVJqhAiqDpqQJIP5rCTXwrNGkw96XDcjtFSIW8Rd15Rb7t16MzxAG2nSa+La48rlx1n65OOUL+eM7h4wvD7ikc9kXHr6OW7ceI11eRQxmjhM6csSH33k42TRFs+//GvcvvEiT37KcGHt+1jY8OCEPHSbbt0hFthu83ddPZ451Oct3sUIFIXhZ/+XL1KKIU2Et69eszGx58/xI5//DOfXV5mXOVWec/2G5sat23Q7GfOZ3UUYjN3CXClmZcl8NiMMQ/r9PmmWMjw8BFGoQNjbuYsuS4aH+7xRVUyGI4qiZPPyk1x44mkGK2t0sg69NMEkIVmWEich+wf7zOdz5vmcTrcLGIr51G2vntBfWqbIcyaTqWXSWpMmMZ3+MireJp+M2Nve5vjCGZJYobVmeXWFtNshiI/o9vpEUcry8gAxhigI2Nzaoiwrup0eIkIQBIRBSBgF9n3EkEUhaaRY6cWADdqvEALvpDH4EFEX1YBjXCwyKm8ZMxZwTy58+rCIYDCqzVJxSf+bZZ8Ne6UelO0ohjaL8DkVVKs/ezbqSUibUkij+zdWRxc3Wy8kOmnbaRHpdipGf609T7dMEFZ1NtqtKBNDs/dHA6Kmvod1smkfXiWCcnHJfgNPMYaNXsSB++6WCnnr+CZPpSnrUUk5Wib+WkLV1eggR83W2VGa+NG79DZmzKZH5HlJOSqIxMA0JB7lzPMd9u7OuHo74M5kzp/+5Hmy6QyjI6IggCAgmFUE4Rb58ZQ4LZhUY14axlyOVim7JbeZt9rGSe34tOzXrw5c0B9akSKC4hOPPMuXv/yP6KgpyyshP/R7P8bueAdT2Tpf6q2T6D66LLl2/Q7zac6FNOWJJ3+Cggn1yr8HyEMHXbnnQ/OnX1L6bmYF//uV12/wzW+/xPLGgPFkxO7uHTa3Nvhdv+PznNsYQGUoc0O3k3DhwnkmkwmT8YiwG7N/eEwYRURhzMHuHtPZBBUout0u0omYTWfk8xlxv0fS6RJFCeOjI+aTMZPJhK1LlwiTHo8+/RRrZ8+gjOHM1hqdbgIYtDaMxyNCZXc4XtvapNObUBY54+ExVZGTJAmBUhwdHLK00rNmjMmYIAp59IknuHvtFv3lPqOjPcbHQ7q9DvN5QRjFJGlGb2nA0cGQ6WxGHKQsdzuAYamjUSogyzKyNMMYQxIIsajaAWm3ggmaWnXM1tjtb20baAjFqsJ2Ox67zl6LjVhQLnk6+JVAbouVexK0fPBFxAcbWfVfcNt6O9jULdspeOLQopVeE/cTFd400QJtfwcPwP7SNnD6lVFO1V9YjCIenO2D2st/cWqzAUS7740+YcJrgNSDqs8+ZsFbtxigbuy/bjKoWmYFu6eYQci5cLZD+uIes+4j/Ew+Yhgv8w19zDNxhOqukZkCmSVUSnGQpsyqPeT6MsV2RZSnrC4Z8p6GLKQo5+xpTT9OObfRZXIn5KXhhD//rX3+dxe6hMpQmZhARyAB5aQAAkQbVroFOTmvbFdcWu5QrkfsYJeT+QmlvYJwsVU8CDfAa1+74snNywz+8I9wdPAGK59Yob+6wrU7L7MVPspKdplB2uP6tevs7e5xsPMqQTjikU98nDDpc2fnDWbzA5J4+YF9732IXnDdpGZErUB03g1w7RkGgy7hb/7Nn6escqIYbt66xdbWBn/4D/weLp7dIMQw0wWT+Yx8nhOFIWtrayz1uwCsDPrcun2b27fuIAiVNja2tbdEr9sjCiKOD485s7TEymCZMAiY9Huk3R5rm+ssDQaUeclgbYUoielkKaJgNp2jdcVoPKYsSgIXFxtFEaaTgUlJ0gjRhrzICeIIgIP9A6IoIgxDQqUYz6bEWUrWXyJKEooyZzwaMp6MKcuSs2fPsDJYJno0oSorZtMZ64MBCsN0OqXTzUjTFKWEUAlJ2NogRmgN+Xq8NiagRSSoVROp1a9mBVbggsM9KzYiH0bMpWGqgs881da6/EIHb/trmx0au6/7W+6tV78wwpsiaoTGgqRRjR3XVSS4HSgq8elCfXk8J7PrMw0saIKLJhGnkxgbB2wf3WwOZW25gqFstBfHki35tgCkhZrl2py7xk0KmuBcwJPrHd443uMRFaA7CcPgiFeyMUknQM0iyqqko0viGFQcErLLqDgiTQvSqqQ7EQhmjDszCp0xmV5m6daAT60Kjy2t8829Of/DzTn/4vkAFc2Q0Nhk8pXG5LFT3zM2VAyzI/YjxdZBxnAwZ6Z04+AVv4S3NVs61m/f3lgzkMHuguImzfVLF+l9xFClOaNxRVmMGaTPMN8fc7vc5ebVl5hPb7F64Rz9jScBhTYl66sX2T36KuvRpx7Y897HkDH7iielPQvdA8F1B4ZrV2/zhS/8Ok9+8lkMhq2zF/mxf+rzXD63RSKGfF4wmUyYFwXzfM7du3fp9ftsba4RhwpMxXI/JQ4DDo5GVEeG5ZUVwjghzTpceOwxRpMJgYIin9FdXeHs+bOMhiOMQNbtMJ3M0UaTJTGYijiOyOclx8djZrMpSgUcH9uENH7bdlGCBAFlNSdKYqIkJk1T0szmVoiiiMl4QtbpkPV79FZXWN/cQhTM8xlVVRHHMZsb62ysLtHvLVNWBlNBWRZ0spSUrNm+R6ATxYRCi3V9hxaANiD79kNqzSTwIOBG/ofRrKucrl73P1EOcMACpN9g0Pu4/bvqWvW21zXhSLVJwUl9K3f9okXNmRNqADCuzj0otEaEX1nlmHY7R6x9tk2lXrv6anwx+CQ29kCdjp4GikxjQanLV2ETdePOtaBrzR8Vo+yYtSvnWHlln4vDGc/fHZOcX8MMxqjuLmpaEuYwnwb005hS55BCHCsmxZxkKWI6KRgWhrQDOTPUToiqFAWGgeT86LmYF8cxfy+P+SNZRD47xnQTJIwh1pSlIquESmnms5j50Q7q3DLnu0tcS2btKaVu7wU9wphWe9u6DsVQJEIRj8k7B5TlMSY3HE12iQPDbK+kOH6T3VvXibIx5559liDpuEgfg7hUj2naIS9HD+x77wvoChDUrMGKaQ3qd2K9Bo02hp/7+V8iXu4QpQlZ1uPM1haXz66TBlCWNs2iUgGdtEO3OydJUybjCeNxQrzUo591SMKQ4uI5kmwPpRSdbp+bt28hotg6c5aVlWU6ScJoOGT/8IDpbEoSRywt9xhPRoSqQhdTdrYnhLFi5+5djAkoK02RzxExTCZjtDYEQUCSprW6Fycxog1xHLO6tkKv3yeKQsRoullGf6nPk899lK0Ll9jc2qIoZkRxyNJSn9XBMhfObrDc69DJeigVoithNp0iCFESgTEUxZxup0+cRN8ZyPral6ajmlZrKGOTX2s3Ov0CCoPbrflDyHS1uK3XvfLdkFxq77aLaLCMD+owr+kY6fQa7aA2MdiBrNwBs/Ad1CwLD32OYfpwLW/L9ZpJbWv0YOrPg8a4q2niUj2BsaCp6xiTOmDK/V+rnVSCtev7ZwEYZd9Z7Eo3bTSGCtwqvpKcnccv0T8cc+F4xL7W/Mpvvkm8pbj0IylLW3fpVVPKQjGf9cjSCXk+hEARdRTbVU5noIg07E1CVLBEmqXkg4zxZMp8BBtoPr4Ku5LyrTDj2XxCMT5ArYTk0x7K9DF5TBplrMZjfuH1t+lPdrkSXqZ7fpkjldPE6bXqjkaD8HZ4L4XRzJJtpukBEQoChckVZXVEkg8Y726zvf02Zy6t09160t5BN65GrQVEkURXOBi9/MC+93BB13ci+4f9fJ/4IrP47o04BrB/OOYr33yFp599htFswqpUPPn4JZa7KZiKeVEwK+bWByx2l1xRQhzHJEmCrjRlWTIaHlPMp6yvDuh1+4zGMy5duERRlOTlnLWVZZ648giT8YSd/T22797FYCiKnP3dPQ73DwBBqRAVKdKsSxJnTCZT5kVOp5PR6XbRGuI4JopCVCAkycDtPKDpdFOWl/v0+st2sFUF+TxnsDJg88wZ1tc36fV7TKbWHry01OfyhfNsrK6QJQlKBSgJMaEiCq0jTgkkcQLGkIZhnTj7nmTY7UmvHYR78kv/cUFlfSdk/fChrk0YrqiTZBvtPlNPlJ7hNtVk37OUKSEd7K6xqs6Na79V+KVg/tqaUdZTWavuW4B7v4myuabRXHzbadyiBs9mxeOMKwOWfTWKtF9WYRwQNdidj7YJemuEEqLFmhe0sQ44ceGDHsS0GIY9TfjMBTZffYtPDUtuXrzMN5//Bl1zgex3bJIPvk0UT1DdY8SkJJ0IrScobdCTkNGkDxIQ6YD41kdYmik6cYle0iQ9w+1JwZ1hRNop+et3D/hDnZhPdlaQeQcTAbndjUUZYTkdcOXCGf76nbf4gRu3WNEVcmkJm33M2s11bU7yE4xyVebt2raG4smAWTJjXs4IBPZGVwE4vhkz3n6Nyx/9HqIsc+YWlwPZ1K5QxGgCFWN4nxdHfLfEOHb1q194nuWNM+TFBFPlrAw6pKFBGRuDO8vnzIops3lBpaGqKpRSzsZp1aSq0mhT0s0SOp0+JVCVOwyHk5pJPPXYFZY6KWtLPc5srrKy3GX/4IDpbE4giqXBMkVRMTwecXR0QKACdFkwPDoijBPidJkk7bDUXyIMI0QMvV5GGCqUAqk0SRqRZQmBCtFViRFFVQrnz52hvzxgdXWNIFDM5x2mkwkbq+tsrq7QiWNUEBAEIRibWTQMAw4PDwnDgCSM6CQpWRi3lvK+l0pePPfdLjO4LV987Kr41I4fLvFbrzeWXJf/zpsIxC8zbYdeAQgqVRTVlDjsuSNWmt1FpA4mwBuGfRytA7tmUUQreqBtqqgRsZ2qW1rlabaN9yLGOtN8FISdTJzjDL/CzdTPMM6ebW1SAW9s/zyPn/09TQY/nKbpFoO3t4GvRLN7psPZZ86z8uJVPj58keLZj7J76zrly5c5PpuhoiPi3guwemB3zVAhuqpIspLhXcXK3vexpAMCkzGbHTMdHrM6EHqZIevPGVc5t/Y1RRbzlw9K4miFT8SQySo6jVF0KSdjyqjPTzz2Ce4kMS9Pb/Lk0THpdkh0JrULXupIgsbY0Exnvs2szTiJVxipGxTlhHyuqMo9knBA2lnmzKcex6jIhk568PaZpWsNpkJMyHL2xAP73sMHXWMQ1dJcWl+9+1gVRuM5v/APvsDqhXWO9vcYLK+wsb5GtxOBqSiqAgmEIFBoU3E0HDKdlXSyhHw+ZzY1zI2mjCPiKKGqZlS6QoWhdXbpirs7ezx25Tz9bkY3S4mTmDzPeeKxK0xnZ8nziv39Q8ZFzniaMxpPufH22xwfHTCbTzBiiKKQOI6J44gwCkmTiH6vR6eTApowVPQ7KQBxHKGLgrIoqMqQsqw4s7nBYHWVTtax6lw3Je906Hd7dLMOcRxT2+9EuUxmhixNUEFIGsX0E5tPtzVy71vLCztyuN+1knTCltvwpZrK2a664Ax9Nyb8wZMabEyFjepovUNts25tQOhrRQxKOgz1kIhevbKtXvpb09IG2uz/99lO3IV3NazUfvZhvqAQ49OrC4s2X5wx3d/X5xzwZoTGhCCe6dmdKFEuTLASQ+AmgygYMCqusj16njO952o7ZXP/llHEv5oo9j79GGd2trn45jbZzS/ztXPPEudz9t9OMWXC8Z2neO4zHcbqdTppQJFHTIcZqlTow5wxmvVM23wFKmO0c8x4CZY3YKU3I16ZsX3Q57i/ws+Umlg6PJuswOiYTF/FHNwgYI0gyvmnzz3Jf7MLB+mE4O1dzi+fh8y7gBs22uwdZ98qDALWl9cZrD7J29O3qIoxugo4HL5CHEZopVndOo8prLOsWa5osPbvAKjABK4fVETqfd4N2It1AohLPMx7HJftkwyvv3mDV197hYtmyPaNNyFIefrpR5lMxhS9vmMXGqM1SkGnm9Hpx0ynM44ODynyOd1OSlHMMTpmnpdoycmimH6/T17cIAiEpX7PAmYYkRclKghY6nbp9npgFEtLAw6HQw4OR8wmd0iSDoO1EK1zhkfHZElKlqVkWYcoDOhkCesry6RJgighSyMyF7kgIhT5jPF4TBSGRJHNz9Dr9YjjGLB26jRM6GQZKggRCew6f9MsJQkcmw9VQC9L3dY7LIz99yqGuh/WrWAJj9AOm/fOGr+TxHsl1B88cSyHpp/61C8Ny6ttAPZfl5xGJKEK77acaKa+RzvO1rSuWzAnOMZZm9GlYbt1tISLG7AmkIYRW4z0QG6a8FwxNUDTYtFON3EnLU6sxi2JsJEWMYNkk+3h1+gky2ThRXRtC23sz43zzvaDvJNw9yc+y+bf+WX6xxPC4ze5e/gisnGFu90zJEtrmIM1uuWA0egApTWddJmiKCHRiJ4zzHO6VHQx9NOM4WjC3WMhfSSmszrl/KUDlmZwNEr4xSBjZTrlkclVEIh7fVTQQx9fo5vn/LH1S/zFg21y9ghe3OfsJ9YaItFqFxFFJ0nZXLvM2vJ5ZmXJ9u7b3DK/SiGaw4NtVFWybJ4ilIw4CdG5M8vgJyPB7wxs27Ssd/d4J/fyQ2a6LfXlOx6eBq3hC198nvWNVUxll80e79/lha99nccunaUsC0AoyxIfn6N1RZ5PKIqCIBCMDphOp2RJzHg2YzydshTHlEWJMdDpdAgCy1LDKKLT6VJqTRAEIIZQGYxRLAcRURTSybqMxxO2d+6SBClVFWL0Md1ej5WVFZIkYWNtnX4vY6nbI4sSglBQyjFcrTHGMFeglHJRB4YssyFf4o3zlUYFdhcIn6ykzoWLZfb+u24UEYfN/gS/HSA82UIn96e79+x2S334mK7dKFJj6thlN1A8g/eamQcw8cl+DIaARBkqXRCqmAZ6jQNVzzapmazDVkdADcZt4059ZStLmWmcX3WO21Y0g72Xdh+0s0Q0ra9rO6VjydKYE/ySX/8MX06lhK2Vz7J9529y+/jLXFnpAMs0uo7918Z3q/p9NDDtJXQ+/wmSX3mBrSDiSn+F6XyPL20fc23zSSoVkcZdgnJIaUqmx7v00g7zqaGKI+ZGmFQFYz1noDRLacSyidm7XXF9H/qXFJsXDNnSEbvDHv+wjPln1Qad8i7zHKIkBgPhbM6jy5rfOzjHz6Upb199i86NIUsX7SIlg03iv9xbYWv9ETrJKsOjA25ffZn93auMuoZy9ZjJaISZD7mU/CixWcXMK0yuFxyZdWyvq3NjfLB7gDUxNDHxJ+WhgK5vEMBl/ml5Xb3K0/acycmr7UAfjue8fvUGaTdheLzHdDQipGI6mVBqw2ye2yWXddA++HXiSgyTyQhdVYSB3axxMpszneX0lgVRirKak6QJg8Eyq6srpIlllUnoFhWIQQI7UJRAT/WI44onHn+Mza0tXn/jDfb299lDmIwnbJ2J6KQZy/0uq0tLZElCFIQEoUL5LQMCu9x4jpCmmY0NNMYt3AjtxIHdMULrVoq6Vh2FgSIMQwIR4jAkCRqguNeW2zpgFgduq7XucxxnU287eBrGa0466T6EUmcjaC2EELdJmnd++eWcdkt1n7tV6JsOY46I2KQG2DZIggvFahxotofqZvMXUzdJfcwCmdt8RhrtQhvjcik0m/I0z4Wa0da81CK8T3turzXNJS6fLwa0aJSBLDlLN+oxye+wf/xlVpZ/xL2zsdvKG0MTSNb0G4Nh7/Ima9/zCPG3bxIcT9nqhvz+SPPq7je53fkkR2GGikLKkd1ZZe/gmF4WAR1bRpUy1pq5FOSFoS+wEUf0VZebVwte28/ZuLDCxnKf3b2KX44rfqJYJokPqUq7ZLjQFfHkgE8nq7y0u8/z/S6339ilf6ZDlESsLG2wtXmFgIRyMuTu/uvcuX2VOzeucefOVc796FmqQphPDrkQfz8xK/b9/GTp7fFUjYmhPRa8TV1a5qj7yEM2L7SSbPjN9e4zVu85ZAyI5rW3biOxIemkSNCnygcMD/e5c+c2hweHPHLuLGkUMy9zgiBABQFGa4o8pyxLinyOUgHD0YgwjsnLCm0giVOiOEGPJgwGSwyWepzZWCNLM5I4qkvkDeba7U0lQQgoVgfLZEmMMhX55fM8/cRjDIcj+v0+3V6HzbVVumlC6CaEZoLRragBsYlpgggRKKuKqqzsuSJEccQ8z60H2RpRQRShCFEghKGQBpFtQNf/38l5tmi0OVHdUNsxF49LM4DrphEq49/G7xP74QPgOs9ss5GOM8sI2sXF1pEC9oomrExA1BoTfZ2ebGIT2ugaMP0W7XUYKM36/nqhScusYMTHQHum64DX1Ekc67s096kDleox5mNp/V/1rhj+Herne5Zc1ROOAQKjONf/NK/s/Tx3uYFKX2Q5/mgNryd7R70+zjlV9597hPXhhPjNuxRErJ0/x7O7N9m8/Twvx6tsd1co4oQyz+mlGcfTKTLbZ7W/hEhMHnQYKihUQaVKKhQ9Ea5ky+wVITe+OaO/aQiShGurGdcmV7lk1khChVSGkAmzPCQN7vBHV/s8/1u/yfFal6Ptgu//kR9E6YDJ/l0OdrcZjY64ceNVynJMZ22FK+c+RtE5Yjza4Vz4cRLWLZgaXbeh/aDr33W1Yr0eOH8Lrl0eJA/dkeY3woMmt8h7kcoIhQlZGnTRZoKSjMHmOkFo1e88z5nP58QqqBcizGZTGxo2GnF4eEhRFKgwodSG8XTGPM8Jg5CqqhiPZ+jS0Elizm1tsrK8RJZEJGFIHQivbdo7rSuMcVtseyeHjrl4/qxdATcoyPOc1IF2FNosZvUSTrB2Z2PrIs9zjodDup0OvdUOAPM8J89zW09KEceW6Rpt3w1jFyVEgU1yk4TBwkaITYzndwqA73R+w9rax5phbdDG7oH1YRMj7cnQ2U0lAJpFIO3dGxo2jHv5kMrMKMkJTUjLFWnByFPZGrKk9bdl0K2z64gE3PaJHpTtKS4hjjNJeGCnnvCajGT2mCMLLdJjS2FB3Bsf/IRj2Zk9Y6n7BNz9FY7nQ8Ljr5OtCEn0JFoHGKVJJGRaeo+9wUiFW0RNFSj2Pvs0F2Yl1Z1jyoN9lipN2MnIwpxbB6/xVrjCtkClEnpJTFEZdo+HoKCfLVOkGYUOmZmSzU5AEYZkRtjIIpa6KbtVQS5gOhlvrA+Ib98hxtDpbtjFSpNDdrTiwuAM/+4nPsaf+/pv8fwLb7I8OEevvMvecI+Do10qNWbl3CW6g8dABXzzS69x/fnbPL3ZIXtiy5n0NPW+gJ5+GJdn74RKaOfwJiyP99u80BZdF+jB5zQzaQPOhYa3rt+0oVbOHnp0OEeJkA2WUGFIlmU2ttLZO4MwpNIVQRBQFAXj8Zgg0uRFQVloiqJgZbDCZDIhilOyNGF1sMTacp9eJyONIuuM8gUKLKAbFWKwoBsqRakNkVKUVYVSQh6GVElCmiQEQeAYjrbhaq51qspQ6YqyKJlMp4xHY3qdDuJAHYxl6WVhgbnIASFOEsIgJApC0jAkjiLiIKh35/DSBHw3/z5YxWlMPrUlsIlxOtE2UjtQtHHhYm5etwsGaivjO3WDD5z4JbW2LmwqS+/E8jm3mjhbv0ulj8G15yVByqQa0ZcBdXpG06je7XvUXn/aE6NXUTQiAQ1r9WUxzfPcpI1nyG7psuPY7imehdWbwbf0EL8dT8O2PXgIxm3NpAkk4OzyM7y2+zUyNWRv+JtcXr3Bvu4zHA45O/gddZNr9zxvI0YUZRxy6/PPsvkPv8Zke49JPqbqpsS9VZ6NKjaru9wIEt6qYg5VDxVkpEnMJM+ZVVPy4wlx0ifr9rhbhkwElvpd0rJgkEacjVNGespMx5THI65XR0hZMcgrgmCLcV4SA5PRDldWNvgXr1zkL+2O+Ye/9Os8upXTWxdWLp8j6vSRwIJLWQTs7mpe/s0X+f5/6UcxRmETvZ9wqtYEqlEtGy0EP3PWmuyD5OFuwQ51oZoj95cm8MWW/XhUUpmKbjdjd7cgL6aEYcA8L8hnU/b29ymKiii2CWbQiiAMEVFEUcTS0hLD0Zjx0CYtn88qOt2E0XhE1u2w1MtY6fdZXx3Q73XoxBGRV7Xa5mZpBmMARMqqnHmoKCpNGApRENhcDiI2KUyL1fp7IHYCmhc5ZVUyWB6wub5OFAaUpSGJQuIwoKoqSq0ZTyeUlWapv0QWJ2RRRCeJ7PpzQx1n2ha599BCjdeqcrtJBETXOGLbrPbyesDwJzqblngTg+tw6sHt+kEVI7q1Sc4iKWgzVmmBrP/sIbmjVjjUx/TNkr1H3d5YEFbNQPWmNc81T6YwbZR1qCNza02pvTOwWTBTLPBY8WW0A99f02C1qZOTt62y3oZcORa8tfQcL974BsOwItWam8M3GGvDUvADaN1K5yN+ImmciGAospjt3/m9bP2jLxPezglmBURj8rTHWqJJypKV0U1uBz3eCgYchyvEYUSUpMx1yczM2NmbMVhbowyWmI5hc+McOZquVISBJty/RTovKKSH0UccT27Tl5xKG64fTFk2XaTX4dLFS/ze8Da/cDTk1nGHz37qClHQbChmCsU3fvVFvvxLv8gf+WOfpn/uHNZoZmgWPbRjn937tkMCawrTtApSPbDvPbyNKX1HrY++94FZGri9e8x4NCQIrMMpCOx2HEkcsL9/wHQ6ZV4UZHGMNlCW1qaSJBkaoagqyqoiSRKKwhq+gyAmSWJ6acLG8jIb66t005ROEhMHjfffFn1xpmoDqIiQKojDgDhUlJEmLyoKU1lTQOXHi7V3KaVcLlq7PDjLMjBCFMeIsWw5iiKUUiixtsVOp8Pe/j5ZGpHENu43ENWovidq15axUWTfscZPElNpjW/vE7DounhuG2id1m0dgR8ulgu43SFO1KDzJbgz7FCqO7MbXH5CEiHUKaXsUlGhTNjqM3aC8s+oWWptGG1nvtIuo1lL05Aav2q+Sj3kvQ21cU77c6Qe+M2eZ9q0ILtuW91kmXM/lTUQYIwQRn16aZ8yPGKaz8lLgykDLpx9wqWA8MaLVt20xosxUKYRt3/s06x/5WV6L76BHk0xUYcoVgz6CT1lGAxHDIq73DQ5u50NRmTEYUIoKYHKmc0OKUxFsH6Gnf0h/SRirgtkesTGyjJHK+ukV18gH+YUagnGc4KgYinu89b1bXpLG9ypVhgMLvI7u7f49eGcl756k49+7wVEDNUc9u/c4s6Lv8T3f+95Hnn2MVQY4uOTje8neJOCfc9Gg3Q14J2UiJuEFgx/98gHY0WaL59rt0LDzsGQyfiY/f0dptMJcZygwpBQpSwPBuzcvcvh8TG9TuZsoYLRQllWjCYTSl2RdTqEYcp0OgcjrK9tMOh3OL+5xsbqCt0kIYtD0iBoOrf4bttS3TmBwe6rAFBhQKwC4jBgpi3Ql6VlrB507VJdIQxDlFJ2tZobwFVZ1VujB84RqETRzTKCtTXSyNqZQ2UB1yus+kRZFquzdfDd8LA+tW39a74yJ0/DgbE3Wyqxm0186GSRENj3U45lWlV/QUto14SfgJVNeD9lStfYbHY+YsGqmw1j9lEodrt2q756+5+dKBU21EjcLga2nn0ynIZtefDUiMuvYN+mxX6NB+cmmsFnHDPOMaQ8I8bgt2z3pTXA2mCTm5MjhnNNFgqh6RCoFBskJPW5zYRs3CTWPLuKQnY+81Gmgw7d578NOzvowRIdUURxwmoyp5MHnJEpd+5+m514jd31RznqDIiyLpP5BCMwO9wl6AyYiZDlYzpxyLwoKaUi27rCgIzDckJeGTaVIVAxKysX+ZVvvM7nP/79fGM8J+1u8rlzFa9WR9x44zarm8tEYcX5JOEH//DvoHfmvGsXn7rUT3G1IY16NvRahJtrGm1eWrHb/5jMC9+JCI1qPBkX3N29S6HnJGmG1nukaUgYJOzuHNPr91ldW2dpaUCgAlQQMp/nTOdzRpMJk8kErSEvKjQ2XndrY5OLZ7ZY6mesLHeJExt3G4dhvdbeq9ffkbiKjwJFGCjKIKCMrH22rDSl1nUGMGNClyDDvbMou0W6Cw3LiwKDIQkiBEjjhCiIiFRAYBYeuaAa+2P3KdqDK7s+xw9ue1zV3ayVvrA1KSrPtFAueP6dO9gHV4yryKYmBa8uewMCzl+gm6Q04lxResR2fgcdwCQc0cm7Lh7WOaiMqRODeSBVtbPN24hbJgxc4hp3nY+BVdAAYgS6Moj2U69p3sPZfRt48CkgLe9tDMI20Y+rAfs+3u9iqFMeqiiiE0FZCp04haLb4tvNBNR0DZ9j2etati61wPCZx8nX+6z/ym+iR/sQghqk6DSiE2riICBTEzbMMaPpy+wdCLs646i/yWRpkxlgdIEqQaIIQoWOuszHI4bTEcdpxBnZ5NZ8yN5swmZnAEqzvl7yhVff4MqTn+CrezfYjTSPDAKGPYVEEMYxWu3S27po691UzWTi8/LWfcW/k67HTONjbSJJbL9R+Cxt95MPDOjWIjCc5nTShDRLmE7GhGFAGIbM51NW1teIoojlwQAliqIoKKuSvMwZDo85ODhgXszJ5wUYw6DXY2tzk43VNXqZNdqncUISRqRxTBAsGBVq4F/guicxRZoPzURv57tIKWLAqAAdWueboWG87UUOZVUxnWtUYMPSRAKqqqDUGiWaILA7GPv8Efcz2zRq6nuoWmmU1Vo1cuBqavYsDeiefGdj73ECpt5pZ5IPsDikatlHFyIaaoeYoUlzWCFaYZRBSEhmhklwh7wDuRqQ6KRmPQst5D7avbgq9007J4D73uh61wbjyqDFRyEYhrMJr45f5BPLn6q34XFKbcO+sEM/wO9UrB3MVjXTbiYPP4H6Tq9tuxdzlsI1ljc+ymvXvwWmsDHktM6tHXw0amA7R60vFzZ2db6xyd0f/2FW33qTcn9KrygJ1jZgeEhVaNJORqANiUA8P6Q7v8V4+CaHr6UMVy+Tf+QppmNNECqi7jLTw33yyZSQgmR5iVdv32G51+MgShhVhyQmICZnuafY3b7KpZUBVw/uMq1CLhcRWWQwsxHzlWXqsLDa5+FNZs37NjEhrWN1VTQx1e8UGuvloS2OsGU3da7Od7/CnlVpw3BeUOkcUTAajen1+pRliShFp9thPB5TlCWT6YRqDkejI44nIw6OjupctipQnDt7lkcuXGBtZZUkiohCIQ4j4jCiGyf1slk/y0PDuH2Mpd+uppYFNG6+aOeWMI7FKEC1k2MHwcJtclHMy8o2uvZ2tgBtDIWu7NLf2vTRrqVWcTyQPiBI98HMvRkoBrtbsL+FNnanCKsVeyfJ4pU+yTfSJGT5sInP2uXzGtR1227fE/ZTI9q1acByeplUD9grb3MY7HCGC037g4vzpFHjsdeZelCKA1ZcfgR7TJ0Y2D5oqRNmXB9vk0Tf4NnOJ1r91hsQQEuFqu2QLicwJXYdma7t2A2EeEjW9f0kiNnofxwtcwhfRZQm1N5eaU4MGJ9Y3flE3Dktdxue9eb9JbY/+hy7pWbj5Vc4P9EkYcysyJlVFSquIO0ia2eJgxhZXSftbbBuNGqwziyPeOWFu8xGY1QxIQwjtATkRUnYTVjODN2x5iCIKMOYsrMOh3dJRXG4B1vLq+yOD3j9UPFIGNHlEMk6dv2HeC3EA2cTuVB3DtPYyaWudW9SqJe8vCvgPRzQlaZN2ozqQWWpJxUM47lhe3uP8XiILu3qK1FAELCytMF8NqOT9V0D50wnE4bDY+ZlQSft0Ek7ZElMmmWsrqzQ73RI04RABQQqIlRCmsaE0b30TExLbXfAG9DMaHrR1Pugt2nf8d5ntBA0VIpIBRTSbJ0nqmFABkOoFIHvB9+pLJgRWmWr+5ZHGl13Js9e7XmeBdfNU6u1WhqGHXzHscEfABHD4iaGfuVXk9PLYoZbhu2rygGOQaMIyYJV1nTAvrrNPJgTVzF+g3fLeJoBqVv9vI50WOCrfvuYhjH6mFw/uT47eJrn977OVnqBVbVW82qbdxr8VjtNEsnFKbH9VB/eZs9V9RM9pATEdIMlZvmQNEgcWDepIv15ftKifrK3VDt9ydupDVQimChi+yNPoa7PUbf2ODJDZoM+yUevUCFUQUCZ9qjCECEgMDbHwa039vjFv/e/sDuBz338WZ772NNIWTEdHdPtJATnNkjH18mKiO2jirIICFfOkk9GDNQBe8OCrS4czUteurnL+UGH5Ze2iS8PKJcTmrA6feINXYIcp020NyS183IT50w9/T1YHt4y4Psevf83/luN4e7+iOlswnQ6ZmfnLv3lZUajI0ylGY3G6Kpiub/ExXPn6GUphTKE4wkdlxQmTVK63Yxup0OSJKSxZbZK2eiHNIlIo8h2iwV1mwUW26Tpaw57dmdOlLst90wtjU3gnqsUoAJFoF06bdOoY4ImdOaFk7X6IFZ7X2mrywvXSSucvzEp1AO80XGbEptmWOoWA/4OSvPBEbddt3VyNSDXuCmbPcNgsQXbvBWETA3oFoccR9uscrGGXA9Stgs0cFdvjV6DeuXAvwVYRtfahvKJdICL2SVez97gK9u/xafPfoZVNUCqxhTkQdP+p5vNAmqnGk0fB3wMsjJ2Ax8P2T7cYik9z+7wBcLeMnb5a9Pabi/putS1ul1PI+6tWiYTN2VThYq7S0t050u8mh9TmNe5uLRG4/Tzk56hmGte++abbL/9Fo9dzBgMR8wm1zlz6aPc3lYEErOyNcAMYmZrjyIY1mYFN6/fhVmEyQZUxZhuUpBXIUthSYDh2uGUzU6PrZs52VxTbCTU63x89EmrZm2WNg+sTa/w72rbua2X3l/eP5uur/T7Ya6jcaWpmBW2ybQpKcocIx0MMDo+RoKIIAh48sknefbpp0komEcRmpBKl4RhQpZlJFFIEFrAipXN5G/DzUKyJCa4Xxlo4eN96qtlJACcmd2rGSevuef+i1+2px6rnjQg7w3xgcud62fVxoT24MZ87+BnWVdlqIG+Mj68CBfv65euNoPIhwv53WFx5+gPYfSCTU3ZyguCV/UNKrAOKzfVgts1oekbqgY0MYKIZlldYKd6hSKcEpdpfap4JyWCGI0yhgqXw6CVXaz5XdOn2kRVOUebiJCoiPPZWd4sr/Pzr/8tfvzS72Q9uuT6oudozco16/DxirMPTbM+BH9uM606bm0ElLUkr3Qvc3vvBZJkmZMbZ1qC4CIt6jApz6Jdlbp3aeyhUmsMksRMy4JZecja05u+l+FD90QChnsjXvvqtxgejzgeDkl7HT730Ys89clPgwpJsl16KzFqOaGUAjE2z8q3jl/jxcMXeFz32Ug+yfLSCqbMCY1CFyX9OCcONENjuJtHrB9o1PCQ5NI6RVy25hZffjCmeTc7NrwZZVE8G36QPBTQXYyVb2aDyhXkZNJr3+nKKmA8m6O13ewximKqUqOrinw+ozPI+OhHnuMTzz1HFgdUpSaMU/pLoV21FcUopey+ZMZuToeyoVhJFJPFkU2QU89UTXlPLip4sNjrvQLhJuN6QLa3IXon8UAtIujKOItC49UOVIDyCyHc+fcro4eG+z7jZMmd/dV2IGrvq3+fxs64OPf45NlaGgebjdF9Dy/6QRXXcAv6l4AYhVEV83RGMknARZbUHcYteLDA4fUzQSRkqTrLQXWTTXnUgnRtpbXMtQ3jHuQ9mTZinC3Wlcs5LLVjqC6CDDHwSHaFW/lVjqe1JdUBq42ywMeN+r5jGlAHHD9tg7RpfQM+767B0Ek2CCUkTfosrtDyHZj6DiLidodu0woH5q1FIv4rHXa5U9xm3h/S23rClp8AFFSFYv/mIa99/dsYUyBS0euWfPT7PsHGxUs23NJoNrZWHCmpaqQxGL5y/avc2DtgEt/loil5TH0/vbCD6JLjOWRBRKZK+sWYkfS4Placy3rkrxyRXezBwGucLmxvQet1n/0q0Jrhn1gq/gB5OEy39gK2CtFqnJpC1V5P+2eRV8RJRK/XJc9zm2mrKhkeD1GieO7ZZ/nBz32WpSxDVzmiAsJACKPYbmPjUh0qlyUqcMnF0ygmDqPW2FlE/XvACWir4vfOWk0WqpOV/N7ZZrtaHI/27MYlyalXw72Xm76rXbUxTbSx0idD93kiKuMV3RMPdeOocZC4w01//HBJewZrsxoRKAStxkx6OdlwuR7MNrZatdRM8LTNYEjUMqq8TR5PSaqOA2NTg6XXisQBss3rYep7IC3mLTa1aQPVTZ/shz2UKRn0zpJjwwwrtN/7ojXGoAnyp4799Yal2pxh7B38BGxNLva6QEIur1ymG2YU9T0bQBXnGPQgbVcGOaebWXQueW0NoCoGvPWN14l6Ex575iJexwNhvD/npS+/xp03X6W7HCBxxtaFLa4882nC7rJbjl7S7OCsgdCBpO3Ln7n4KcbVF5jqnJeHV5Gwy1PdH4KZIgqFW/tHZGmXlRjC+YR5lHGjTLmQhBy+OSZdDcgudahk3uozrb7eNkmJCxOrK/2dB+37Huxj/Ox7v8IEQtaxOy9sbW0SxRHD0RHD4ZDv/d7P8MOf+36WuxEihVtya1MchmHgch7YPLNhIMSBopMm9NOMNAwJTCvb0v3KJc3P+yaCZeVQh5IpaQEui9PDO5kW3ot4dru45PXEOWIdhm3GbmpQbl3hA//N4gT1YRFjWuu3xK0cE+8AMmTzVUwxY9w/rGNXgWawLdiilL2fClkNn2ZU3XKREe6cus/bFhX3HJ+G1A7Z1qJeN0gEy36VSySvnHqrtWE52mRrcIlhOeJuecwXr//9hrW6srUdcgY7oXquauOAF+HXO9Xs/l9N257vfZL1aW6/Ny6vrGkWXNh38hWk6kHkOK6vOPzEoosBb//GNVbOVJx7egMVZ4BCVxk33xzyW3//i3z7N78KgeHW/ogzl1d47BMfIcj6aF2htdUMjTE26se4icPY3WO00Ty9/iR/9JnfTb+zzNMXLvFDn/gMW49F7CdzZhIyWO4zmo3YnscEUUpHKiIKbukUJOD62yNuf/MQM3fbvS/kP7bbZeFartFd/DFB3iGO8qGArm6R2VohaVEinwTH1L9tQaLIMoDl5T5Ly8t0uinGVJw9u8XnPvMZsji2JENDZTSBi98NAquSRIEiiyJ6ScxSt0snSQlauyngynTPDy3QhXoNii+7z6blO9tJaV9z32e8g4TOlCCiXM4GNwgdCNR5VqmtYQ+U9/bY+9+l0oZ2NgJv1qiwZgWvMIqBwNiIhUBBGLwHkv0BFPHLOn2r+c0dTeNe7M7WUbpgvnTs+o8miH2GWlODsXd8VmXF/tE+iekwD4Yeb08816qtGM9+3UmthDn2njW/dXXfQKMYw6PpE0yLCVWgeGP3Jr1wqaX6OpNEa4L0kOr3S7MN7AaT37C8Nr15KLU7Ac9VQjwUupW/v7ufsck9vc1TS1uH8vXqHdKuB5kl7nx9l7VHQpYvDhAl6CpgfpxycPWI26++yevX92GY88Zr+3zuhz7Gox97zpIBU7oJqaonALvwo8ImqHEs3dgyneme5fc98bv4/BM/TKgScg45yH6OolNiul021leQasrBHCoUUpaIVOxIRJpEvL494vWv7lKOlhBj45QbJ/PJyQSa0EC4d3umRh6KecGGuVjVqg54tS1Q/9tqhrrgCljqpqQRTJaXOHd2C0zFcrdHGkcYrakcU7COJhvyEyibdCaLIkKl2hoNTiduLB73Ka85cbwdW3zvoLmX2ZkTN37Qtc33jfUpEHGJ3m0daONCmcz96ug9SpvJLnibpe4frRPcNcqFjLGgEitXDm/qEOykidjfWiCMPpSo6wDPOYKcii8Iej5HkhBDQDZZZTLYp1idER51mCdHECXE09jT0tpuMFMpeZqQBjA3+yR0ofbu05gPvBrvIxqccxIXX2tvZ2rTqPioFnSd8nE1XGFQ9NnMtjDJAZd7zzVMx8WZmtazGkXfuGD+xp4NONACvybR3sH+W4Yh11c7PJkLL6XGRWQ0jrMmW1nbLXnvKNBVys43DgmXj+mdW7KLgWYZqfSYjLYxKuRrL7zO0f4Bq2sZ//Qf/wFWL5xzhEfTLIF3A9rYLeJFQtd8utFAXL9eTlYRqdCm5Gh0l+nNCW/O/x6Pb/4YKlmlm2RMj4+5tj/mzGqPFMF0+wznI7r9Lq/cOUSrHbYe2WB5Y4hRpYX2hva6ML3GLWvx931ekVYJLgHzg+HipG0QbAavbhwSmpCttVWiQLG+usKg3ydLYsDUq7OC0G7poJQiC0OyKMBHApwEwYctC/PKd3yt2OxpRVGr8Y2KaRyL8Krob/+lzAM+Q2vSduKTk4Nzevq4xKbU9X2aafRDBry+rqU1MTngVVHIrNrjQA7pJGtEecakc0xnRWOqipkcMQ8hqEIowVQGZWLm5pAwVAync7I0od+rGA0bk4JLKYO0bMIWO8RtFuk0QRpVUVxnbjvS/GLTJ9IrTOSItTAnCXvUnk03Y3vrbQ2MUGtR2jSM1nP39mbk2jTaHwbKQHG1HHHWdLjpIzf8C+Btu1KX2+O/F60zdr81p5Rtth7bIEvWKccxZjbkYHSb6TRHqj3KEr7/Ez2e+Mz3snz+rMslbayKbzS6XsQs7v/AOea9/8PrpwpNxbwYcmf/Grd3r1HOS+JslfVexYVzE+bmLAd7MVEYsZx1ubG7w1oQk5cjm+chiVnZXGV7LpidOatrPbQ6XADXmsDXL+vNRw9GhIcXMuYmG9Ht0eoL24RNeTCxfcvuSaajgF6aEa0FrK2sEAchSvzW3xCGQa2mRUFAEoVwwg55P1Dnvkfc8RNM+J7zpO7LCye2Aes7BV4fJqZEuc4tLi5X2SQkNMrePWFp7bKfxDtzosm9ltmCyFYpqFM2OkZUaUPlR7l7VWWakG9/vZL2YP2wiVv4ob3KSNOYKiBlkxUdM8p3GJZT9EwxDu4Qx0tIGCIuoUslOSaY2f6m5yRaqNIJSRXSvXqVauX7maj2IDUYl9wGQ8vz7cHU21ObrXFsCp6GrfocCSkx09GcLhp0hYh15vi8Dbb3+CWudoNY38a+Fa391pfOlYv6Ibae3Iw7jhM2D+ek3ZBZbJxu2kp/iDeEYZmphHYdXPAY892Svf1f42Off5QkXCWhyywYcfP2NuPxHv2BkKyvkCm49NgZls+eR2u/866L2TWqxg8X14hC2B/doZzB6uoSUdhDUzKc3eXNWy+zt32dTpIS9Zbp9nvk1R7Pnf9hwniFjhzTiTJG8w7jSUyYKGI95pErPYzMmY6nVDrFkBAFM4pgTt1oxtt5/VTme5Uv4/vMdBsMaGZqr6Lao9Qxf02yGecsUJXbkFGIA2ezFUVVzgkCGxJWVZoARRJFZHHYhKCZ5hknS/JOROx+W5LXl7Xurf3YbN/zu0DwlLiJvMLm1o3VAn024NL/tWyAJ6VVMIMzAdCYLeygbkS3bFJ1SLy47iJ260GbN8I+r339guOedpf7sEmzbgtOaCwCWbBCyoDSjJnMdzmorjJUN8jiLkk+Z5pk5GWOLucYIKg0menRUWcIg3X20pgLN/a5cXGVsu3tdg/R9TFvQvDfObaJ0xidKUCZhrN608NKfBYmOaIalboyhun+hM6ai6BwIWT+Gm10nQTf8+sWBNfaVV0b9ZJf4e2+8NSB4aV1aZGcmkIRFIKppui0g4TP0Ome4dqNMXfuvMmzn/oEqoiZzebsHr/NKL/GsNzlzKNnCFWHWy9e5elnBiwPtjA1YxXXTotLbT3YHeVH/IMv/wLlbEa302Fz8xLD8RHlfJ+lXpe1Cyv00ozQCGf6j7NXbFFWOYGx6V6TeEycjFldUpgtgwpSRAoMXbpLvgwlPjubJXseF5q9cOwUJNjUoO8Mqw99N+CT0hS4daz1pViFAaUEE9rtU8SYWr1VDmFDMTXgNuEmv325N0TM1OW1b/JwgEWwziglQoWg/PY8fiXafTT3RWZ7UpWz3dGqsbXGvIDT5sTV3mkjYBfGerCVRuW17KtB2w9ziC7g4mLbfQ+vsQLNoBYlRKbHctSnH11kr3iJidzF5COmOkcRsBxtkeRLJPEK3XADn8eriOFmWLBx65idc30qZWpeCM4WaPxuEQ3Qivuuto86tJyNh8S9BDERgbhl6WJTi84d4VBAVgUcDg/orGWIOFORgWpaogKNiqM6naPVzLXLZubtko1OauvCh0NpyiDgblKxManY7tqsaNXUEMQhBMJgP2CeBYzVE+RFn9s3bnPrxjX2b7/Ox849R1kM2dm7w2h8h8P+NarYUN09otMLOXfmDFsffZRwVmIkZDq+S9ZdAQKaUDcQ0eS64PredX7961+mnE2QEMxkQn7zNTa3eqydWaPXNaQSsJleppOcRSTibLwOpsQDihEfZ20cebPjwe6K4XtHM8ZMO+N/fczXmKopzDvpvQ9nGbBpmq0dWL7QwaG2hXiHhjtk1dYgQJRCadBuCxttDIHrnEkU2Y0f/e3cox4UvvRue4e1v5fWv/XHFot8z/IARnqyiAqXS5fK5VJtU/d7QRIWgbdt7zV1mjlaHvB768UyJqdxOANdbeXz9Wja5pamHbVxoL7wmh8utitYtq+kSSjTLEBxKoyvJA9BErGafIQxI2ZpxkX1KMooZtGUjspIgjOgG44oCFUac3fNsHntmOFGyDSOqVzC/E7Vw5iSsRq3TDQuHMs0be1zG4ieMqu22Vq6ApMcjGJ67W2+/NLbqP4tPvnpzxAcTTg0IWsXHiMKIvAxrVozP9glWFYQ2pSilVRoY9fHKSxztYRHoSsYjQSVloDNEx3GCpGK3aWAJ66NOEx6zEMFkWF2NOHtN49YLQdsfmSLtW6PfHiDt178VeZFSllWvPTS14hSobcacebCWcLjGXe6bzGViuXeWYi6HN4+IjB3uXMw4q1rNwmiDgQh/S5cWXmS1bWzIIp/+KW/z43duySJcPFin+WlFEn6zIodsk5JTynOphfpJ4+hlE2VaoeAQqm4zknsxdR241avdsDSWhzt0le2sEZcX/Gdxxu7329Hmu8+dos9CwgtK0JtG/XrnMU059jGF4yyHnytNZWuQFSdek8JRFFkK8MtGNJQrww7Ofxthb83uLwfdLTtvQt3eZdbepa5MOn4sLnW9X7dUqBco7ryGrFB7yCIburrfs+uodb9Clw9anPvJX5S1Pj8/6oGW+olvVKDtpYGoD0A1bZm50X+0InxQ8l74tuRGn7RQHO6TyQjIshcOBc+RyQZgtCpNAfFDi8e/QafOPcxsmkXKQMwMBvOGI2O2L59yMVtgUdWiY3Qmfd56vacsirZPZdy9VKOUsqGD6qAOAgRFREFMWhNRYjuX2ZW3SQ/Tun11jk+HnNj/zbDY8NLX3qNi1mPw/09jqaaC48/y9LqElm3h6oqjK7orZxB6xI9mhNFfaajEdV8SpoN7AaoVWHbWocgEewecu1wxu3rbzFWIWc2OjzzxBJmSXFjq8O514+4/dgasxDClZSL5zXhtMP3PPoEo9EUvdLh05/9FG/saL79+h0keJXzzzyFMSFIxUb/UdbMFQpdcju8Ta+MMet3KY80XZNy8dIS8zkU84o0Dhjl15nuXSMMU9Y3Y9bOn0cHOZ0sY1ocEalj+mEEwCNrHyMNNjAmwIcBarC+IQKnYbgl3q38JAsLX/DACs3KQ39uY1ZoQMeNbVMhvM8bU2pfOOOA15VbnErnU3I0+8UvlNkZ4e09KtMspQyUsqDrTAyOhCyIzRTmGMJvI4DUsIhn74Bz3/G92veo2gMam/jGtFmSc6RV2tht3M138nxZmCHau9oa49UnN7m1GaufICyaWtDGxSAbmo7mFxYYP4e0ZpYPifjpo9ZrHNP3iplfoefzftlrBNGKM+HTRGR1/UoQcfPObX71jV+kryOejM4Qh1uQF0TjCTe/9Trfeu06FzbOshELF7Y2GO9dJdq8zMq5syT9Jc6uLqPEJuSfTibMZzPysmJ3/4B5PqXI5/TPGF79jVdIumucWT/klTfeth1+tUO4ofiFr77Ihc0UE8a8dvXryHVNURkkTIjDmFAFqCCimNt37qUpgQJt7tIJYH9vn7STcjiZM87/f+z9ebBtS57fhX1+mWvY85nuufN98zxVVVdXVc9qSY1EA7IGwAKDLYnBBgI5cBiMA2MsBwgRmLCMjUMyBIEYhBEESCBhDa2hW2p1V6mruquqq96retOdxzOfs4c1Zab/yMy11znvvvteddWt10Wf34v97tl7TbnWyvzm7/f9DQnohLffuYNdzCimC57+1FPIHcs3fu5tnnnt0wgHDN8ZcGgbzp/JeG7zIvnGE9y+dYPKON799pvI+/cxqyvMdg3P/9RrNDomNohXpoCb8i4HtqTfaHbL+5zrXWZtvMl4tkI926e/usYW+2ib4qTEiWXY26RuDhEMqS0ZTTbAVjjJKBdHJMkQ73gziFPeHxO0MuXh15fBbCEwxPm65dhxLMP6aIkX1WqNrXXZmtqah4/64/J4QsZiurosAReWBZR9nv8HU4SBoA0LWlQAAX8iUctKShGQPqB2duiGaE7Isd+j0dc55kQDojbaDsfuLHiScjjR8Ic96q4S2DpAWqiTlgOIYSbWgbUOYywo5QeNSHs/J1ve/cHhQm2J9kY625fc7fLjgdfHei9fVNxunQtdMVzbxeI7yzC2k8/vB0ZkCbwSzENpTSVp9zkeCeJwjSHV486jdVhjePXcp9CimD+4xb3XLpKpXYZmQLaywXMX1znzQy9iZoa14Tr1wYztwzn76X3O6PPUe1vsvfvr1K6AeoqzFRaLsw35IMdi2F484Io+x8Wn1lDaMJ/d4sXXN0Kh+/P82G//dBuJsCws6QvbOGIWmUWM5fY37vO3/vrXsLakrksuXBjy2o8+z/CZPqPxkKEbIdpbSeef7XHwYIvd+/vc2N+lMCU7swNWZwfc2DvkcH+Hpy+eYbpjyD7T55d/4W9yWMyx97dZ3N3nJ+5Yvv7cDjZ/Bvv1G6g3rmDEtI70/WSPmbkF6gzvHvwqq2oTnSYIwuroEm54CQBtM2b1PgsxFE2BbQ4Y6AGr+iwrcpGsv4LFMbMHPJB3Kew+A0Zem5VljYr2rYs7NupjYSn/NTgYo2UnNhzfSfQIoOtkGbXhY511O2F/mDwmR1p46U5aj78ErVfj6C4IGEGoxbAwGLQNmVBKIcov4OjiTUrCBxZDbG9UsCc0XOloelGt9pf6kAIVHYriQ+PtTv58ArAevquc+O7v3AIimqTXo678yhHOQZaAiF91WFTUyIKW7040OPxrne0UFOp0FLcE2e6ji8Wzo9Yas88IcaVRK2n7movZdzEjSFpK5AdLbAu2fimdKDElNyQRdI8IVocPM/P7RlFK8fzGq3zp7hf51r0pOj3gmdHLPDf4fWTpKoO+ZrFYsHv/Jlv7d+jfuE31pa+w++f+B9bmBYPf9QrJT30BrVZBhaRgUYjA1Z0bHDY1k+E66BTrLIPJpHP1plUnwtTdGfMegn3OkMYlQkPGmQRWX77Ep3/sZbLxCKdisRobLBtPPA3X4dyzZ3HOMts74u67Wwxyx3axz4NpxbUbN1nrzdmpLbcPt1l/aoXLL19CDvbouwtcPXyTnfEbZPkqt3/9Gzy1sUJzaYijIevlvD//FQa9VYq6xM53kcFZer0REPsh4ISe2qSXnsO6GdNkl/umYVNPWB9+GhfSixSwokeIwP7sOsPxRbCCkwQVvBDRmjkW+EzUfQLIuu4o7iY9tOWFQvtc+5yjFry0VL/PoGs7NInEqIrw3QCuLeSB12I5nkIb88L9Awr+XufQATwWRUGTOHp5fuy6bTJG+yCW//enjtxyp66BHGve8fPE9nzYjcYdOu/ow6qMHeMHCR288wwUwiDLWaCoqwqBALYWZ72Do7scfHy9rbMs0gcIxystRg5gmdvfWQEstG3pzOwkj7ZgG8Ziu6+LAO7iYocnrIAfAGmD6TparYjqPBUvx2Obu+6u8H8XKhA44d7urzPDsNkkPLfy93Nu9BMs5nDn7n3K2X2cOWAwTHj25Yv0v/xrVN98n1QL5TPrTJ+9wpm0B0Ez9ae3IJq3p29zObsMcaVaJ5w0h5chmFG3CCxm8A3EmXbtUDPpZ1z+Iz+OrKyGEFjnOd1Q9MYRAcV/iYXdNzfXGa6OwWmKQ6H3jeuUxR53Tc0rn77C+PImw80B2WKX/bXbTOshWjUU77xHubrPbHaf+sEm7tIQ5xRlUdFTY/JkyE6xx1o+wTXzEG/MctB0tEolAybSp+7VDPUIG7PrnODCqhmT5CJGLbDqCO1W2x4dtd54Uok8UhxD+Ofq4g/d8U0n09V1+0jkIjyKubDO3aNy4x8P6LbV8Fzgd0MbfBHRjqUewc03XEJnUaEGqXHxxftOgfKOtdligbUFk8mErAXe1mDvgGiXc1lKt3hLvHarHYYHHU165aTz/OKrkY5mHd/j0vlyLJzquErfniWCF9AmRiQiaJVQ0lA1NakWqC1aa6z28coOFVKHw7OkDWfvFGE53t6WXnGhloIL0BpGaBue1OksMaohAm53ECzpBf978+GT+m9qiZOrZ+Kk7ZLiYkx2F3KPz6ZxoUoRUCqjP1jhyuBTPPPUz1LPEqb727x7/SugFvRHPdbOjEmzc9jgkCv+qd+H+slPURVT7EvPcibv4dNpO6sWiB/IO/N7PJtcaGf0lvRxBGCFXr9HUZTEeFLXeffKWRSK1QdTVvYt154fo3Xqw6KsC30ovu9OXlr0AQQvzKJpSPv32b/2Eofvv8NkeI7Ni3e48rpmfFnQcsDO/lv01GWaFy9wz91isp8w2DqAg336mzlfvXGHlz9zJYwVR1/O0NgjJskAZfc9LbqcEomgFt+DL/yjWOciUi6QvmJZOCjy75rVwXNk9S5GAhB2QVA6CRbxexui18036y4i65bY2mlLnBDonK+j0j1UHk/0gmetI/i3gCvWd6Slc62TjRa7eOtc84BgEGxjWSzm6CRlNOgz6A1wFpqmAaVQaQpOhXo/jiXAuWOJE237jnGRbqmthXfcvguJS1VHAD6mQodBuqy1tAw+apVLXPd72wCItYYcgHV+gsFz140TqrohawxpmqIbR6ohTROUs56m0Ymvt3tCR+fkZYjgLqEQUSybQscT2QXnMPishPAzdyzSgmiaWb8EuHMn6yf/YEgMkfIAKyHdGYi/B2XBtJplnKT88aI0qe6xOtpE56vUJuXBrYTte28j5ojRSHH20hoqPeMPcL46GF6f9IXSX3qG5YsI8dkQ6LBwGIJRJS4dEeNGnFVYGrSKS+w47s53+NbB27y29goDlSE20kqOHimTrR3KxLJzYUITKJJlasQSarxSFLVoR7v6rTiMBXOYUGzdZ31jnb3993j5d2gmgwFmq+baN65y5QuvkCZnQY0p1r/J4B9/gyf2EmyiGT1/njPKL03lxGvhWZqSZWvMp0fc2T3k6XND2gpdjjZGGemOIYdOe5AMw7laOF4CKlCrdZSV4PuSjparWa6bsnyG0J2sjkNwq/CGdi0ZYen+iM8mPR4BcVIeD6fbes86zq9WrevcXDCLYjrsydVqYyrktCrZ3rvP+uoai4XQ72UUxYJe3xclFiMonfgVIhxt5MQxT3T7DJYPo2O9+HJxAXBiETfXxkHHIhahtkNMcW/Rt0NIhEpDSOA63fKOlhNM1CC8GBc/jspY9qcFRwcHbN29zdrqGv08YW11hfFwDHWNspbhZIJxFb1+L/bJD8ytrakYeFtDLO3n/LpTyxfW6VCRx6VNuz6+nTZsr1sK9gdNIkO3rMAnSyBGKGufgGPDcueJStA6J0l7YDXFosaWcGtvj53dd1nM7lGpBzz31Atk2Xk/sTnrAazN4fZmw/JbtByCKRGyxpbv0rJbHjIzh1S5X0ynahzXb73F2pkh66OLYXIQdosZf+2tv8MXs6+yOb7ExmDCRm/MJBtw0cD+muHFzZe5tr0HLmEZqNiWxgnti8AL3WoM0cdo8wHaWX7+K++RZ+/ymR8+w97WXSb317n00hskeh3rIE1G5HrCnn6b4fnLrK29TFHsM8zBuPMtaPXTlEPbcHhvwcGRIzl3khyLtQwAlkqGh1Yb6CFf/NzDRyeCQMDpoEioZRyKsARZ//zFa4SBZrMSq8CdVEggwrujXT8EWEZr+WemOorYB+XxrByhokm+BFIfkbAcpGEsE0lDtVQ1UALGeM4lUTArLe9ff0DRQKIaqsWCW3du8czTz5Box5OXz7O6MvaarixXpvC1ajteyg4qxfrK8Vm5OPpaZcb/v0sVtGZ2aPfyxS1V38iB0pmBlwVVhOgNN0gLvMb5iI/GWmxjmQwHNIspylkSsRzt7WNry9b2nMVsynDYZ9PCpJ8x6IVlvx8ysUZ+T0SW2qiNa5y5dj5YcrfLjmJbDleIUQvgfBTJMY/+ccvtB0W08gVaorJvK0svzdnfKzmaVTy4d0BqS8YrK/QGAyrTsJjtcjidcbS3y+61d9BJyWs/9hkm62PK5B6DXkKaDYNlELUjPzTje4/OFycxmidQBi3gLjUBEeEb975CluTMbQ1Y3rv5ZYrBDQxPssoFjuqC947u8Ve+/bcQBbUrOJjdYLfQ3EwTmqohc8JPXXkFvXmPWlXkrLagFa0YIdQ2oUN7tVo+oIQy2Wc62+bmzQFXr93gh37XjOm0YDV5AnnqRdKkF+5IsE44c+Y17pW/jCR32Cu2SPUBbiH0e59HuIIFBtmQoq55cOMemVKkqh8u3hmghOciEeqCc0siFKsOtdYdk8HR2x3T4ifDpSbmOp+wj4sWcAhdPabi+m3Rvm0pDeeAxN99mKA+TB5P7QVZ8rhR0xTxgcmK5azpkyHUBx4V+Nq4zjlq5xgPRlx+8jlECYPhCoPJKoO1dVZGAzQNk9GQTKKHVjrtoKNlnChBEde9C1/b5yot0XFsBwe4Y/HOHY352G/BudFuW04mXYeT65ISvqIJoHE9P1eeG1/m1acvhWcnHXPFLZ+x82c3sY0fIK9pi2ODQ5wlCdNQ45aTSuss6yZmtANPwmQTOqYJGoQ9fswPmnzj67sUxjHf3WPj7CrD0TqpW3Dj6lXu3b3O1sEew17CmbWMwTCnPxiQ4rj3/l3eufGA82fH/K5/6Hcw2TjHL/zNX2H/zC/w2ad/lnbZdRfffUz8da2J5K2mzuQM7UvwkT1RAxauTC7zrfu/RrnYgZXnyDYOqLVwVO7wc9f+Ku9fu8a+qbAjx7CX0stSymlB2TiSps9L4yt85uIbZOMJs3pG3+Y8KG9wtv9EhzZyrQW0tMQiVWYRDQt3g7ndIZ+/xvrZAZ/73A4bT+8wti+RD1/EQ4kHJX8Ow6B/gUvZc1TJDbRolLpE3dTM5F2UPWAgL1CqmvEiJ5M5Pa1IpB91x9A4H1O7HNl+PNmgySosSLcEfPe4zuANdUUkRKv4poaCNa0zzXXeg1tqEx1lqevYl1ar6fYsE67z4dD6WNOAY3vDr7SAEVTCmCt+HHSXM5tDQFsunelxeeMpJHZaEWwIi9B43jZe5gNaVzsDLs/fXeW3/V26/8pxRA5/2pPn7l6i8+1Dw8w+RCXsnteDYBe03XLiYvl84j0sUxEf1q5O8kM4Pk7y7VQUEKB7zVh7YlmhP6YHh0kl/majNvTBp/CbXf7GX/15RMHZjVXee+cd1jZynn9qg6efW+fVz7xBmudkeQ+UXr5NY1CHv8Sd92/y0z/2O/ipnXVkZxf3xHluj3+SkR4gzgYl14FT7ZpqcSkZX2u666hbRqB4KzBaRR5anlp5jnP7Z6iqHaw4klGOPTxgkI2YDB0bG4aNZoVvu13mjUGM4afMKitnnuLS5dfIdB8nQiM+FDGVHot5yR17jfPDJ4m1cB2Rvz3et5LcUaT3ceURTEccfbthOn3A6sWKtf5LDLKXcNGkd5zo+Ypcf4qBHtMf3KWxNU2yyrQocfaIsvomarpGTsHaIGVhIHN5p+jP8T7lizF59SnqosccRq1CE549QADlsOZxAFppARgxnREb3kfraHNtDPtSDw7RCe3U0FHluo7oD8MAvg+rAbv2AQYJJvdxnFh6jgk8roq45zw/olAYUa2GnOBolwunW6/g4bKMWPgo+ZAdH2LBP/R03Vv9sDbF6IGHHKZZKrUOcKI4Vnn/5Lk7XNOjZTkJunB87Lii/PO2Zgm+x7TygM4RD2xYGsS542nGP0jyUz95kdXJKk1jGUyGbJ7boD8YBb3K0QRtPzqT4uN/8Wd+hKdeuMCP319n/cav44aG327u87Wf/Gn2enlLLUjs59brkTGka2mpxvoK8c25doLsDhkFvLbyw7x3+CZNWlDNt8mGZxGEgRvw8oWXmSSbfBb40s2v8ePDi1xINnEXfV0I5yzKCdgEY3wu1uW1Z/gf3/rLfP75PmeyMx4rXNRSl5XG0oFQZzvYpuGoOqJXPcWl55/kq7/6dZpsRj99mW7N0ejrD8OY6Iqq6+dRi1UGq3fRakZlS7AFVVWQ3d2nHqQcLSryLCNTQ99JI7vA0pxfyok4aYkVgWOPDg611qnmQjPDBIgH25A1sAT5VnloTRWi4zlWmF5SDWE/iS8r0g3uhNPug/LY1kjrmqjt82jjxhTWhTTgh+BS7JyRkvArGTgUFo312m1E3/YCH0ci8MiHfuJ+xygS6dwCtK8hLu2uWGrskQ74qEnAdT50ryNLXlqJf5U6/P1RZxRxH7h+d4HLpUPRtf3F18QN0RlKjp1DKdDa/xtb6yvudTLTrOejf9DkM1/4As+88iIvfOoVLj/9JNlg6EEjaqrWtR86Gr0ozeDiFa5f/xY2FeT8U6jtLS793T+P1yiitggehkwLRjEYLA50G62YoEB4IA7bnG1DKJ8YPs3hYo/7izeRbIVEjxCl6OcDmsSxZ3Z5cvwS/8snfzcXe+eQ888hVmGtr9lrMdhyzvxojjhBi+aVs6/yF7/6c9wttgLGLTU7gLSX0+QLjsopR9MtshIupM8wHk9IewvOrm4g5CE9PGqXge8PdXi9U0MhGKpynfnecyjG5OmAYQIDfYn+yqdx7g329h2JzUjzsT/uGKXm1a5lH+5QZsFqJnwnPtPA/7bLxsfY5i4YhmV9bBvJ4CfIpScnhkX6KjISLWCW7VpeN1zTJbiPgFV5HIsKvnlogzUaBrsKTjE5vsiH4NcIa6GujWIIOSaRBgjnaRdI5INa5EfBbgSWh+33sGewLO/4Yc/nYWcLzGe3H3yH8tClgB5yza4J2GaRfWi7lhNZnAxN0LW7nC6AsRbnVOf8+PAxfB0IZzuA6zzgOif8yKUfRHfaqZzK918ei6b7cCB3y0HOEiQeutDjid+kA2K/2VeejQtYwnHt9buHpIefQH4DJ2/jDk+0NZ7vpLZ8cr+uFaM+WgU/lVM5lY48puQIPLcduckImBLJ53bPtpKVBM7F/7M0863zgcYdNpNPdpR3r/3BCUBJh611D9vjO7nU8r5d96TdFgSOqhuVdnK739A5bdT6RTrBtmGfY5xu+DkE0x9vB+11zW/uefBUTuU3lTwmR1rItorOGAcqiTXGuotcdCmSZSZJ1IQ9BkjHhdSBa/e90B69fPwSkEuy/sPgdMn7LHf/TpTzblseSTS0ji1/PZGHGy3RSoiOjciaRJpHqWU6b/cSSsmHWiHeYvHt7DJgp3Iqp/LR8ljoBZ0sh2KXe2zTCt0StJwLoUldDUoIGVSBi3Q/mMO6y5U+xqt8xHY5NjlZ62svdBVn+yGNPPbOws7dc7ng6HlU9s2pnMqpHJfHoummiVA30Kp5x4KLl9ps2GP5PWplLS/xwXN/t9rtb3Q5n+9E2sgBHuJUC1r9xwXjj+SwY+jXsSDt4/eyjP46TldEz3mXEvGMQ6CBwn1YG2N9pS3LGalk6wT9gzknnsqpfCLyWEA3AeqQWROVWkc3jMnvF3NNvERQPgnHXXHETBB56PaPlpM888c44jv8/YS4ExPLd3LtD+woH9gk+NjeZUHAD2lX5A9kyenGhQm7lZMQH6BjjQfeGDHSUhR2SRF5S0R8UZhTb9qpnMrHkse+GrBSIVhJunrWyZIT0Mb64Y7xk7GMYhtm1rrZf6PDXIhm8keD33cJuHwQcL97WZ6xWyzoo0mG43zzsn7xB8lxEWmdZxKCe0URAnK7/ALHwvhO5VRO5aPlsYKuAMdLWR4vnh1dZDFvuptdfUw6uOAx4jhF8dBjPk77voODliFTJ0z3h/y1dAg+BAodnSfwG5eYkXMMcD/ESFhWQFru2B7/YefvnC4mQXjw9YS7dXEi7V74VE7lVD5KHhvo+tVsxSeZh+SIGNLpaQRvFutY+cN10hc+ZAx3Afd70MLO39/dObuxDCcD2o6tiBG3CydWd/iNiBDX9DoZefBREvxfxHqrPmcoTCouTIOhocuS2p3jY3ZWfJ8fVpTiVE7lVD4gj7fgjXN010NT0ZPuonbb0Ww7fK/7EI0tnB0Q79yJTMPHAOK28MsnxT0KbQaic7FFYdNvYCL5oIMtOi0//PrLg5eacru5G6rWff7tRBfiF+xS4491WM0pn3sqp/Kx5bGCriNqt4FHhePFJdoaj7SDuwsmx+L6owLcxZoIHt+ToN0Pd1pBaNuJveTY3w+D9G4hHzq36jpHPEK6M5B88AG04XiPoAk+TE5GVMQmftR6Z6K8mh7DzJz78JCzUzmVU/mgPBbQ1ccW+FtCjCOUtHOgHa3ueXKQd1eRiGtKxfoXjlB6tgW5CIWPhrCOsvYQeTTgPmwv+ZC/P64cr5n08KZFCyDWp+ropcc53Xbi+c7a0PLBrWFyfLkh6ex3kohuNePvxXx3KqfyW0geS8GbUzmVUzmVU3m4PLbSjqdyKqdyKqfyQTkF3VM5lVM5le+jnILuqZzKqZzK91FOQfdUTuVUTuX7KKegeyqnciq/6UREnhIRJyKPfR3H77ecgu6pnMqpnMr3UU5B91RO5QdA/qeo8f1WlVPQPZVT+QRFRH5IRH5NRI5E5L8RkT8nIv+WiPy0iNwSkX9VRO4B/4mIKBH5P4rIeyKyIyL/tYisd871IyLySyKyLyJfE5Gf7mz7eRH5N0Xk74Zr/TUROfMRbYsm/h8RkZsisici/5yIfE5Evh6u8x909n9WRP5maNu2iPxZEVntbL8mIv9KOHYmIv+xiJwTkb8c2vTXRWTtRDP+KRG5IyJ3ReRf7pzr8yLyy6ENd0XkPxCR7Df8Ir6Pcgq6p3Iqn5AEkPjzwJ8B1oH/L/D7O7ucD78/CfyvgT8K/D7gtwEXgT3g/x3OdQn4H4F/KxzzLwP/rYhsds73vwD+CHAWyMI+H0e+ADwP/EHg/wH8n4CfAV4F/uci8tviLQF/IrTtZeAK8MdOnOsfBv4+4AXg9wB/GfjXgE08Hv1vT+z/28O1fxfwr4rIz4TfDfC/A84APwr8TuBf+Jj388nKckmW08/p5/Tz/fwAPwXcJmSGht9+EQ+cPw1UQK+z7S3gd3a+XwBqfDr/vwr85yfO/1eBPxT+/nngX+9s+xeAv/IR7XsKn/x9qfPbDvAHO9//W+Bf+pDjfx/wa53v14B/4sSxf6rz/Y8Cf+HEtV/qbP93gf/4Q671LwF//pN+px/n8z9JTVdE/rCI/OIjtv9lEflD3882ncqpPEQuArddQI0gNzt/bznnis73J4E/H0zqfTwIG+Bc2PaPxm1h+0/ggTnKvc7fc2D0Mdt5v/P34iHfRwCBKvivROS2iBwC/wVeE/2Oz9WR7vO4jn9miMgLIvKXROReuNa//ZBr/aaU/0mC7keJc+5nnXP/6SfdjlP5LS93gUtyvLbnlc7fJwuj3AR+1jm32vn0nHO3w7b//MS2oXPu33nM99CVfzu0+XXn3AT4J/nua6l2n8cTwJ3w958CvgU8H671r30PrvV9kd+SoHsqp/KbRH4Zr6n+iyKSiMjvBT7/iP3/NPDHReRJABHZDMeA1yp/j4j8bhHRItILzrjLj/UOjssYmAIHgWP+V74H5/w/i8hARF7F89F/rnOtQ2AqIi8B//z34FrfF/mBB10RuSIi/52IbAWvadeb+u8Fj+tVEfnZzu8/LyL/TPj7DweP7p8MZtn7IvJj4febIvKgS0WIyJ8RkT8tIj8XPK6/EAdB2P7vh+MOReQrIvKTnW1/LHic/7Nw7DdF5IfDtj8oItPOpxSRnw/b8nAvN0Tkfrh+v3Pef0hEvhra/0si8sZjetyn8j0U51wF/AHgnwb28ZrhXwLKDznk3wf+B+CvicgR8EW8kwvn3E3g9+I1vi285vuv8P0d4/9X4IeAA7xT77/7HpzzF4B3gb8B/HvOub8Wfv+X8Y7BI+A/YgnGv/nlkyaVv5sPvrTu14A/CQyBHp7H+sN4B8M/G/b55/FmSSxl+fPAPxP+/sNAg59FNd6JcQPvFc7xXtMjYBT2/zPh+0+F7f8+8IudNv2TwAbeufG/x/NovbDtjwEF8A+Ea/0J4IsPua8Jnq/734TvfxI/2NbxM/xfBP5E2PYZ4AF+8GngD+EdFvkn/X5OP7+hPv0l4I980u04/TzGd/xJN+C7arwPFdkCkhO//2Hg3c73AZ5rOh++nwTddzr7vh72Pdf5bQf4dPj7zwD/VWfbCG8iXvmQNu4Bnwp//zHgr3e2vQIsTuyv8NrOnwrfBZgBz56476vh7z8F/JsnzvFt4Ld90u/n9POx+vBvw4eGJWHCXAAXPul2nX4e3+cHPcvlCnDdOdc8ZFvrqXXOzYOv4sO8tSc9qDjnHuVVbT2qzrmpiOzivao3QwD3Px2+O7zW2vWqnvQg90Qk6dzDH8drszFecRM/aXyl428R4gIa3mv9h0Tkj3bOm4Xrn8pvfnkR+K/xltr7wD/inLv7/bq4iPwTwP/nIZuuO+de/X6147eS/KCD7k3giROg9f2Q1qMqIiO82X8n8Lf/B3yg9jedc1ZE9viYXlUR+ceAfxz4nHOuDj9v40H/Vee91CflJvDHnXN//Dd8N6fyiYlz7j8E/sNP8Pp/Fvizn9T1fyvKD7oj7e/hw27+HREZBo/tj38frvsPiMhPhIyifxPPy97Ea6gNgfIQkX8Dr+l+pIjIZ4D/F/D7nHNb8XfnFy77j4A/KSJnw76XROR3h13+I+CfE5EviJehiPyDIjL+Ht3rqZzKqXwP5Qda03XOGRH5PcD/E+/8csB/CfzqY770fwn8X/Dc6q/inWfgM4D+CvA2nof9kxwP7n6U/F5gDfjFDo3wd5xzP4vPNvo3gC+Kz5e/jedy/6pz7ssi8s8C/wE+XXKBz2r629/NDf5WkS/8gSddfN5yYoVNEYeIBtGI1ijRaJ2gVIJSqrO/IE5o13r2XK03bzp+E2sbwC5XxMZirMHPq/76J9sQF2XttKr9bq0lLmtqlYs/IthwnMNhEXFYZ7DOYsXgbIM4iwsf6wzWNv58Dr8C7AkRefhaivFXUX6BUpETi7bK8r6cOCygUKA0olKUSlGiO89T/LXCyZRS7Xk+cG33wQVl/ftSaEnQotF6+WnfM+Jb4QRx4FDtPTvnty2/OxwG77axyxXMO8vJisQ1vv1//82f/NojLdvThSm/QxGRPwPccs796590W07lu5fP//4nXBfoIkBIHPQRcFWCUh4clEqOAaQgCOo4CETg8uvaYwPA4Tzo+n0NxjY4Inh+EPjbNuHbExaB5hi4S1xzG3AWxLCEwyVoWGdDOwy4BusMzhmstVhb+++mhdETbXg0TgS8ROI9yLJt8XRxVXAQ0AF0pTuJxY+LJzr+nDtNOolb/rsgKgEELQmJSkiSpAVcpQKoE4HVN1MCyDoXt6vlSubOhUkxAm73usvJsgVdcfw3//dHg+4PtKZ7Kqfy3YrXZDpgEUSUQpRGKY1I/Fe1Kp0LA9drduG/ruaLeCAIY1RZP6idU1hnwfkzSPg7toHOGYjnPgY8QZ08BrrL76JCG7G4oDDaACgKrwU7BCeCOIVxgmfEFBjjAdz5ti/vx+FCIM3yET0EhMNNOJYKYYSpgIkIDhUtAwtOEawAi1dq40TmOlfxB8f7edg7XLbTeG037N8+z1aLlmXDjh3fBXbbtgLC/OlcmHi6b0r5a2KXZs3HkFPQPZXf0uKI2mO0j0HpBNFB+0K1gCtKgUo8YAXgAnAiHkgiODoCQEgLCAqFcxI0TUGcAwtKaZzjmOYWTfIlSBzXwJcgy1KjhKDRtlMITuK1dWANIvCDjSDaAqkLgGza6y2Bd4l0y2b6K0YQPA6IbnlIB3yXImGi8Q/KA67CWodSLgC/O36CJZHRtu/D3+lxOfnsXJcKIj5D1zl9Z7IJ/6mWNjl+XeeiVr68r4+SU9D9DsU594c/6TacyvdSIhHpQVVpr9USzV2kY/Yqr+GKCodFU5UWiDkGUg4VwUsFw9opBA80DhAb2hB0wi4HGtvXBQyllppud4C7YOr63yJQRdoi+MudtMiowtZoySsBKzbwwG4JJscgbMlzPlTjDP9rWy7L3/wtdjXHuM231wVN0jmLtUFZj9fsaPRxImjphBYkuxroB+mIePyJH9rj3MnDI1sjnoPwz6k7+YTf5eR9PpJZAE5B91R+i0vkGT2Tp1CSIJKgukDX8RKJ8gNdyZJSkIAQTgig7M8GRPYwgIxDnEPjEGsxIogJwOsiZ+ilq+l6wBc/KYiE63haQgUgsPFqgTdehnFboioWuUojDrGhxGALPBonSdDUDRaDw3aY4aUcB68I7p1fOsDb/S1aBjjBRZqmA7r+b99e57ymHkiclm6ArgbugtYa2xGf9hLcvVL7QeongqOnPqQDtO74zcazdZRYfy7bsSQCHXJMS/5wOQXdU/ktLSp4sZWo4NAJnwiyErSpqNIEj3qXx22/Rw14aW968JUlEEWQEWsRqbEC1qrgZDMdrS567f15lRJQKmiJ4drKg3jcj5Z39U49D1XRpFbelHeeCkF5qkPR4JzyHwJ1IirQIZ6u8K44e1yZDPIwrber8baGuyiUC+qrqDhDLcGvQzP4HwRnVcBSOQH6D3uTHzTrW3vjJGfePqvl5NaCf4u/rkNOW6JB4mkl297cMUUbEDk+AT1MHgm6f/pP/98cTqjqit29Ax5sbbN7sIPKFa88/xzPP/kMm5MVEkkxdcP+/j7vXrvGV9/6Nu9cvcnh4ZyyMtTGYIzBOYdpGwc6hIkkSqG1hLlZUCItqb40txQOhXEOYxtsY2iMxVmLtc7/Hh6UDU6K+F4JPJYLToSWyfN9L2gROlA7LjI9uGBSDgcjXnrtddZXVvhtP/FTHMzm9IdDXGNI0xSH5dzGGeZFidiGrZ1tHmxtc/fuXW7fvs6bb71FVVdYpSHVuCTBKId14KzF2WC+OAfW4BqLa2pcYzHOayW+f7qWO9TRdA0zvriutuNnXhs7hniNILp/EBW0Lj/GbeC0vCbk/NOJ3g+xCNrP6s4FXpKwf/ukgr4j8Wii7ays8ud3y72IfdRBvX/vo1WDxygebHWgFRK0JEGzVaCkozd5WkFFMERaj3s35GkZ+rT810trTyPOYa3BiNCIQwzY1tHmKYEIll67DeFO6vij8l5+GwAivIH2nUfgD+qeRKIhaMYSjnGeR7XWIqKDhtkQ35Zz/q2q8O5sSzssxbkOlx1aH/3/oaHtNhGFjU819HkfTuafk7UWUbH/AE5j8PezfBfHrh4vQmuzOBU0UyFGJTgXjg7acwcniZxu3OLiVKE653ax3y75X5FWb4YQnvdda7q2rjFAVVU4Z9GJpjcYsn5mhYsXLnL5wkXOrq7RT/tgLdPpISvjEeNhn+FwwLffuc7WzgGqaqhFBeA1WOvfgLHeS2itQ1tBiyAKEvFOh/i31gqtElASZkSFTSx1U2MaizEW7Tx42fjiw+xmCD5GcRinWmCSqBW0pqWQpAl5r4dzjs2zZzl7/iKT8YSzZ8/zmU99ms3NCyRp5kFHFDrV2Loh04rZfAqS4pzlXNrn4sXLfO6zX2Br6z7feu9t3nv3HW7eu83+bEqjhMY5FmVBU9cg0aiSMAmEbyo8s7Z/+cHjx5NqBybOd5ClP6CFzrYzxuNU1MSCaRfGeAuICu2PlyVAS3BFu9D3JHYv6T7Hdli2s7+gQQsqDFQXgT0QaPZj8F+PXZRCOhpuBFGUwoVnKuJNYwneFA+4EsLHNDqEPCmdLKkA8U64YHgi2BDN4D9itdeanAl90rZOrmg+exDX7Tkhasq0f0cut+t48potftKlAwxEQFRhkFgs2k+sohCx4Tq61bjb6bQ9vzkW2fBhIacmaPd+H9r7ifcoCE55ULTRsRg10EA1SMtP+7vo/tON3FhGVkjLtXZrHSzlUf3NK3iuvaZt+318biclkiF6eYaPg7mPBt26rvzLMw1ZmjEZTxhNVrh4cZMLZ86xsbbB+to6w7SHAKNRn16ekWUpWZozyHt86/3r3L2/zXxeUTUgRjBivSPBeZC0YjDWD1utBKcdWhQJCpSfZRMlaK2xeE3WWYsWqGjQSvnzWa8Z4vBslMN/x4fNKCdY5/Vd/5784Emic0Hg5Rdf5vkXX+bVV1/l4sUrgCLPM5RSHOxPOTqa+XaIIk0StIJpUTJbzGmMoWkM/V5O08CimNEfDvih1z/LKy++zv7BHov5jJtbd/jqt7/Jrfv3mBuvTVhnwvAM5Lzy5p1y3bnVcWyikKDFAsf7hCx/D9tUMNOU+MktHmKUfw8nHTrh8QTQ9Zui88U/yxBvGnqZ6rRuCfjxJCx/jUpZnDA+YRHR3sppQ8MSlNZBQQxhQl3vNyqArUJrHwOqVIgF7cTveu3UD0cXAC46trwB4blXZRPat+tc0MwCqHU5ZZZg7JMiokbcBab4bWn3umjRte/Wg7Qimu4O43QA3E40guhgMdkwufvzKae8xRhN9oe8wmiat9vdCXoABSgfMra0I1gqwAF8rQfQLv968nIRcE80YKl4tcC7jEJYvvuwu6UFXJHlvu3J2r56sgVuub0zrX2UPBJ0q7oGY0A0eZ6R9/v0ej0unjvP5voZJsMxw/6QvNfzJ0s1ScgwEVHoNKXX75H3c+7cfsDR0ZyqbjBGaIDGOs+WuCU9YPA0gou+CxNiD631WknoAKLwGrD1M7RSGmMFTAhAx78zbQWDReEBV4VnF0l2rTRZmrBxZpPnX3qJz332Czzz1LMY21DNFxxN55RV6SkL0SRpQl03NNYxGPRAFOV8zmw+p6lrtE7Z3TFUdcmwlzMcjTCmoaxqmrphPBjy6ede4olzF7l66wbv3LjKezeuczSdYp31L8R52sBnEIUOEn6PJp+TwNe5pTnkAmC7oJVKpFnC+9RASiARRIJO6p+LC5pJDJGJ3Uiwnt+LjiPlEOMwHVPNSdRKlh2ypR6iVhM0Jt/ZfavkY3TQxy1KkuBA8+ApKsGpEOcKHvgU7dOIEQ4+yyntAG+gAVrKIQALMV63nbKW4WRaoY3GucYDUVAYROhwm+7YOI7Opm5CxdKoX4pvrcKJa0+x1DajJhdNct92KzGLDWKCQguAUSGIWrIEiyY2rwtmXQByEYRluXMLomEQWocTizjlKb3Qr6MS0A1Ta/XvDtrHCaG9pkTtXxGTG5yzUfNgqYWE41UE5qXS0XXcLRNDPkxJCPy5e5g+/EF5JOiqNKVuKkQcSTogy/uMBmMmoxHjwZBe3iNJUkgTP5tKnz6w7gzGGox1OCWIVqSJ5vbdBxweTilLgzSCMwZrwRlDZKqdtVgHxgkaS4OA1C0YKFEh/MYPZK1ViPGLnVCwVgVT2xCsjfAyPJXhRLx2kqS88OLzvPziizz/7Iusrm1gGsf29jbOWeazOUXd0NQ1RdPgrKPX64EIxjakOiXPc+q6Zmdnh6axIBqHYzDoUxYl87JiNMi8yWQadg73QaCsKtb6Ez734mucWVnh1995h+n0iHK+CByrRUKEZQguQmHbmNC2Q8fZmtDZo3IQJ5aO1hOfgQhoQkRmOJ/tarhApCwQ5fn1YFbbMNKcP9gfKx3N2i67pgqNs1iUk+BJfni40SclPsssQes00AtJiwuRHGgfn1KgFZJolA4prDolCTG9/lxxYJ8oaxK03aglxmvrRGOdDtaZba0vpdRSS7POc6kPlQC4Ha61m9TgHT/LaXS5xYSdo+MnUERBw42evzhVeKeat2dakIsUhNiHKHidH6IjzC3jEFqjPU5A1qdudPtGG2UQDnAsYffhzyGCtAn7Ly3q6KiTwLl3IyC6QNtaDp345w/KyV/DdWWZVvEoeSTo9vI+GENdl4izaKVQWpHohFQnvrMlOqikDhJQeUJueozGYzbP1BSmoagqalODciSp5uBgTlVUSC3oxlA7aHC+Uzow+NlJrPJaWfC6Ghu0W6WDZiIolQbT3GNEkmTUgQc1ReF1AgeihPF4TJrl9AZD1tbW2Tizyeuvvs7F8xdJdIoxDaYqmM4XWGdZzOfsHxyyWCxAFDpJOEB5H0vQdpIkQ7RmsVhQNw1WvCZweHAAzjKarDAb9llf8ZOVVsLBdEbdOO9AVMKnnn2J5y8/wdfefou33n2Xo8NDrBN0miHirQ0lwtrqKsPRCNc4dna2ME0dhpF/4Z5Iow1lWRr7EUihDcmRkE1jw4DtalPxDyuoQFiJkwDWgeNVrh2bkScW5x001sVZv9VL2n4aKQaJE8InLL4PaUQSTzW0dIjuaDgOEQ+4OvH0g1aaRGt0kqB15v0RwfkW+flu6JR/JxqcQgUiXbRGrO/LThw60BFKL7l6Yy1WAp3wiMfVgtWxMS/+PgKV0Jr9AYSdRKANGq8nr4nRD8uzOAiuMRGLc8EdJ7adm6O4OCl3jw4hYr4deqmXy/LangBRrXUBISwv9LulSkCrPS955eWGJWjb4F+wwVlt/di0tnXgx3ts7zX6MVqNNzrel5ZOy7XFQ+L9Srz5j+7THw261rY52+IcTV1TNzWEeEM/RTfBDLJgHUop8jxnOBwwmQw4c2aNaTmlairAoZXm6HCKLoSyCtEKxnp6wFp/q2FmshacFpxrfJSC0ejEkaVez4qmhtaa8WSVl155nf5gwO07t7lz5y77+3tUpglKW8bm2Yu89tqrPHXlCqPhGCfam/7KUlUF06MZ88WiddLpNCMTYTqbMds9QJylrisGwzH9wZDREBKV46ylqWoWZcW8mAZut0djLVVZsFgsWBn2WV0ZszIakmU51hgSJTTG0s+HfOrFV1kbj3nv1m12draZHR6BTfnhH/4cr7zwEi88+zyzwyN++ct/j1/7+q+yff8OPhwkONG6nSZaUbFThgBvZwkODAfOIc77kqO7Liij/s06h7ESuD4XdCGLEsFq5SmF0NGWOO8QGxw57VDpmHVR83KC/k2g8S6jYyJnGwAg8rl4B5rSylMKavkRnYBOvAYckitsOGnrPFrOYLhAb0UHqFIKF7jhiJa+PQEUIx0WJ7KuyXtsOo2T2lKH7IqKka6tPyNOiJGJ18t3LKFLHQOP5d+xOI//O2rzS7DxloGPgjEBiPwEFhJLYvxyS20Ep2N4D8f5/ghyS8h9+B12dOcI0iHyhraoj239I9adiK5oI2ri+Inarg3PjSXYRnuhbYQsMVgiOD9aHgm6iVYkaUpmBz5yQMCYmvl8RlEW1HVFXlfoEHrinANjfUiXOFwiZHlKf9RjsjpidT6mqBZYa1DaoY80UpToskHX3gnVWEGsifjtX55xGOvQ1qG0IyVBK4cSP6y10jzxzHP89E//Tp568mmeeeY5EMXVa1d5//33uX79OoeHh5w7f44nLl1kZWUdnKUsaw6OZowGfaqqYH405fDwwHPIKAwedGka5osFs/kM09RoEVYmq1jT4KznpLVWWNswmx5QmxqdZp7KsIaqLElEmInnp1Ot0VjSJMWYGgHSLCfP+1z89HmefWqfd66/z727d/i9P/t7+Mxnfoi//bf+On/jr/0VMp3y6gsv4hT8yi8t2D/Y95zssSHo2n5jcWFwhB+cp3BEgbgl39ftfgItP+U7rELHLWFgJPFvG42y0AIbuq94LXrZO30wuQrDsm3jJy6Bg20HUxd8XeBwpQO4nq+V4Chbpgdrlg4n/ITWHYROBRCIwApaFE4SnPL8qgvH+ffk2oEe93fKtA7PMB2097DULrupuf6Xpb62/M07xJynhtqIlTjpBl1dTvCUAUCX6cZeuqnCDoK/IbSv5aZU24ZWuw4fFZ9bvH70H8R7j+d1IVZDheiOeNVW443/hu3OpzUbp3wmoDWer3e2fVahQUQesjO9tO/qAx116Q2mc1P+fx9KAy3lkaBrGl9HO0lSkjQhSTQ4YTqdsre/y6TfI001vdx7YK3xMbNl3bAoC8q6osGitJDnKcNhj/FkQG1rnAKdarJFSjGvKGYVZV2jm4am8XSD9eoSzjkaBwZLErTixjQoEtI85eLlJ/jtP/XTfPmXv8h//9/9eT7/uS/w0z/9M6yvbXLlp55kcXjEjZvXqW3DfLbgzt17lGWJKGHQHzCfz7h3/wFlWTGbz0h0wmA4QquE+WzO/t4O89mCsqwBzwsVZcFADdFa44I2O5sdBQ5cIdbSBG05SRxlVYI4Bv0+Kk1Jsx44R1lZqqKCqqaXZcymU1b6A37ohZfpf+azvPbK6wx7PX7Xz/z9TCar/Nn/4s/wzTd/nc985rNcunKF6XxGU9WYNpB9qXUsg8It0YPsrEOJD9FzEqJH3HIwxs7tldhwjLE4UahI94XRESMoDBHAXRvyFE3IGB4UNW06Bps7QXt+EhI1LUSFmGcVEiNouVWlfaUxUb5soNdqdYihVSE2t0tN0FodrhN2JCHLChupCAdag0uQYEnibPBPgAfQwKnjWodTrJAVUtmW4zx6Q+O9dQjSrid/qYEvQ9NE4sQcwsdavjYw/kFzj0kWy5jUJQA5CXHjYWKWljKIjtjugw/f28peYdqQ4/u0gBceo7e+HDoWx2n3d51/4zNRwU8X/Dwq6LeOjpXloinYTpTxd/+8TgB5DGftHv8dOikeCbpFMfM1RJOEPMtIVEJjGqazKQ92NONBj7yXkeghIg5TW6qmoagr5ouFN8kXc8rax/kmmdAfJQxthhNLliuKRcYsr5gnJfNZQVmWVCIglqYxWCFoTC6Er1msNJgGKoQLZ5/g9dc/zV/9C3+B965dwwjMDg8oy5JPfeZHGA4HJFpxNJ1zcHSEcz4+drFYMBoNSdOMYj4nzTKO5nM8DztCnGZeFuzv7zNfLJiXBVVdkSihlyY4C4PhAGMt5Xzuw7Cc5+UW5cJz0kojOJJkhaw3RAvsbG0xGY9YmUzoDwaM19aYLwqqqmA2m5ImGZaafpby3BNPo5xjf2eX/Z0dXNWwNlnh+rX3+ZUv/iIvvvIaiyee4Oq1q9iqWWqZLeRF7cPHgMaoBQ+mUQuKjpLODO38sdZ6Z4sJIKQJg0lJ0NK8NhLD9ax1WAsmODBjB/eGkG3BWrvAENpPHnV9NTHVgmkcQDELLIaE+ZCyEL0QjlkmQ4TfOnVoXeR1AlC0ScEuuOZcoDBCfK9z/hmKhQ+WUfTXlVCN1ln3AQ1smRl2Qts6gQdx4pWOiRPvS8LkGvvQkiroWEp4MF2eOPQzkZZiiZZDJBsifxwu1mn3Uov3m9yxbd02H7+P4KcRu4w5Xu7Z+ddPFtY2WBGU9W20EJ5zfNftkznGD3/wIfp95MQ9tDPCxzTdHgm6TVMhosm0Ikk0qfIa7bQs2drfZWNlzNrKhGEvRymom4aybrzGWMzZn02ZzmfMFzOKeoGhQmeOfJjgVEaWa/K8IU0yUklIRDETQakKH1QmNLbBmRCdEGbqxlhEDIPhgBeef5G//bf+Flev3yBNErIs5WhR8JWv/ipJ1ufihUsoEXZ2d5mWJSKCMYYLF87Ry3Nm8zmuMWAdw8EABgOsg6OjKUVZUVQ1tW3IEo2rNcZUNI1GAXmSkPX6zGdT6rLGGsNsdkhdVZRNTZ73AEWSZqytb5ClCeNJQrGYc3A0A6Wo6po0y0mzjIEbcTSbs5iWDPKUd99/n36vz+HhAQeH+9y/e48kzVhZW6duGrYePOCJC5fY399nZ3ur5WU/wBeEH10HFKxEMI7a7dJA9NgdgvUDYeU91J6DTMAnDsQygTiMBWMdjTXL8zkVjlvajuJcuPaxxn1iEkEC1eF1g4bbcrcSKQU/2cSMtZZeCE6iNnU3TmkSQk0F2iyU1myPP8VBrPD+LofCT2Cw9LL7wt8qJKS6loWI5jhw7P16cXSdRTHhwLpYTBwiN7zU+D23azFtn/D3RohgoLVyvAXuvJUQ4py16CX4wzLUsIuaHSqhjWYRIZi1tOE3Yedu5mO3c8d+Gs99PIxsqaH6TLoGY/37Q1SIuDl+DJ3rtBNBS2LEz/E2LK/x8eWRoDsYjKjqAuO8Wa210Bhvci6KinmxoClLTF0jSYKxlqbxMamzRcF0MWM6nzErZhTVgsY0OHEkqWWoU0yakKYpiaQoq9uXqxYaXImVGhpBxGAan8Hmc8AViSieeuo57t26yZ179xkNB/T7fbLegN5oxGAwYmdvm9XxhCRLvXbnHE1tOHd+k36es394iFKa+WxBYwwiikQrivkM01Q4Z6ibiulsymK2oCoWPiFCJ/R6vRCOYhARjmZH1E1D1dQsygV1XdMYi04y5vMZDx7c54lLl0jSjM2VFRazGUcHh+g0RfSCwaBP3u+DCDrR1IuCt771FmuTMQfTIw72D1hZ2eDCxacYTNZoqpJMJ6yurrCxvsn86AhjDE3TEKNALLTJRce6hbilJiJ+8PsMIm+eqsAnui4t4MAq2x4XBy3OtVFHzkUHkN/DycnO2f7lB+N31lcfixx3oAUHl4RqYzpBadXus6QRYlHsEPEQIgTiOY757iWa9N37X2aedQdx+54ireN3DRastJp0jDI4HoX9wb8/qC/7XZSL2WrHtTOJE0LnGBeLezs/MXTjuGM7USqArQ7xxcvz+vgj74JtcTdSLuLwSRmdpyAxerxtcWjIia/BERz7aFfjbJ+1xAA1vNUWtfFgmSzVjKDBSzxDJ5Qt3EUsUuCi+dZp2Eka56PkkaC7duYc8/mUopjjrMFan8artAYjWOsfvNcANIl486goPejOFyXzYsF8saCoCsqmoDEloiHLEkgUWlvEpjijiZ5wlfiXpwuhKGuaRlEjNMaEHHHFeDziwrlzvPXNbzAYDhmPxkxWVlld22BldZ180CfRKTuH+2ilKaoK62AyHmPrit29irNnz1IsSg72jxiOBvTSlHsP7mOahl6ecjA94Ohwj6ODfZ8BpxW9PGXc7zGeTBiNx4CQ6ITJeEKqFGVRYOoaaxqsqZlP93CuJk8Sdvd2yaczhsMh4/GIZDxmsZhTTmc0VYEVCVQKGGOZrK5RViWLecFzr7xBbzBiMZvxhLU0tmF6dIRWihdfhMODPQ72dtrUSocEb613pC3JBp8k4eMvQ6eSWHFqOdBj2T+v5YrXwhyoTu66Cu/LikMpUFahorMomKXScfLBcuB/ZyzY4xOJmhXRzBQkRCoofZxGUCHEz2lBkrCShHTBNmqeMfffo2gsVL6sl2U6YO+L3cTiMhDeSzRh3RJMCBHVAq2XH/fBgb4MgVpujyF8YWrxEyvLFFrfTgnx1AFQIwh1Jotjby5q+UqjCJMRUXuUTgRVDDrTwegJxdLFn8PFugWivPbtAikRbzQUZY/pvd46iCRaF/DC+wslLCVo4YTv1taIaIzSECgaCVTmBxVxb3PEqJ1oXURA72aofU813bW1M+T5gKPpPrYuqKrKO7BU6JRJ6jseCh1egLGOsqqYFyVFUbIoS+ZFQVEX1LamcXWItRUkVdhGkeUO21fY0O+yPCPLcrIiJZktWMzLMElJyEzTDAdDFvM5SdZj8/yE9dUzrK2vMRqOWV1b995kU3FwsMfezjZFXbO6ukZjDEfTKc8+9yy2Mezv79Pr5TRVw/W79zDOUC4KGlNz/95dyrKkl2UgiizRDPoDViZrZHmP4WBIY52nB9KM0XBM1huQ7WbMZrPw0nzlpOnsCBGwxrA6WaGfP8FkZZW816OqKvZ2tn1CiXPMZnM0gg6ZUVl/SDlfkGd9Lp4/T20alCjmiwXKNKysrnDzxvvU5YL5fOqrMzlLY+3SeRP0sXYsOq+3iAMbQsgkdGKH14aM8oM+draAvaFjtioYUQdKtIBVbZQCQdvwFEVHRxIh1m39pOW4ArXkbLtroC1pB4WLS/eIj689puW2nHAAMRy45rhiJEuNcklLLHnCmKV1XAc93t4IAG0tBzihOYd9bXfbMoyv1UU7x3Yb2HWAtdpkZ0b2fSFy4HHi0YEbj2AVtNdwIysbz3Lmic8zWZ3AYo/7977F1oN3sfUCIcS34xBM4HZDLPMH7v6kee8CFUP7rmKmptWeolQotFfJsdZ4rbutFNclDkIonvij2jjr1kpZAu/JN9J++2413f5gQJrmKK2ZHu0xmx5RVRUIpGmKDjnq1jka66iNoawr5mXBoihYFCWL+YJFWVA1NRYDSpFIijiFbSzOaRKlSRMhzzK0aBpryHsVWZGR5xmHyYzZbE5SiS+OkyRcuniRbDBivLLGZHWDlbUNViYjsixnPptxsLvDzt4u87IgSRLSLGc6mzIcDnnh+Rcoi4K9gyNGozFVVXDr9i3KomQ2PWA6mwJCnqW8+MKLXrNXQlPWlFVNv99nNBzQyzMk72EdNGVBURQ4N0YUbKwber0ejWvY3dmjriq0FmxtmM6OeLC9RVmVDEcTRqMJdmWN6fQQ5xxVUnH77h3qomA4HJDnPXb3dnCm4fKlK7z4yhusra2xIV4lXRQzfvTHfpKDwwOKYoFooa58THSs/uQ7T6cTBy0iVg9T7aAnaDvRfSJt3YblkPedS7fmmNeGtXI4JUtaLuwsxPC/eM3WEPzIDvrYxYXBFieVlkZYAi1qGa0gca20CDYBeCLgdDHBJyMcBwSIWlh4RtYGE1udAE0/cUY/RowM6Z5fYhUt4iKTy5vySvbyfQGBYvNwFhMa/HHuOFi4CEfBgdaeO4bV+Xv2gBusGpUwGJ9hdfNZzl15ncloFessTTHl9t2b1Fslrw2fYq8Svny/5LOf/l/xhTHsb93g6OAue/t32N67TrHY98lXmWY628E1C1SwyWwn0qHNFDzxMp0Lno2gWahAmbVxPDZSHbF85fGJ1YV/lyUdNSpaIcGq8SUnj4eXfZB2+HB5JOiKaLI8od8MaOqK+XxGY03gunztTWP8iqZiDHVVsyhKZgtvEi/mc+bzBUVTY5xFtCNRGiUJzmmaxs/AgkJpR5YlPmkAR17XZFlGP89J0oQ0U8xnBXVZkyYZg36fqqhY39hk88Jl+r0+ri7YeXCf966+x3Q6xQL9/oDaGESnOGMZjyZs7e6ilaLXy9nb2+XmzZscHR1RFwt0krB54RKf+dQbfO6Hf4hzZ8+jk5T5okBpxcHhIdv3t7h77y7FokQ5Qz9PcZlm45wvAHTmzAa9vMdwOEanCU1dsbe3x/vXbvDWm29y7f33uXX7DvNFyQXRDIdDVlYmNM6yv79Plmesrq5w986MBw/uUS4KsjynaRpuXL/K9vYWn//8jzFZW6dYFBjT8NSlJzh7/gIPtu4zXyxw1gRFNAKvCwATXy6Beojd0bUgGTOqun0oAnDEXiuOBmnB1XusXVQZWo99jK1UMfymPW30iH+yYvGB8zpMUMvqYctYUlEatI9giKUfVdBSVTCvgaWp7yKYmfAcIn3hB7jXltSJj+sAb+R8w2lb0F2mNsQdooYbrrA8JlghJ0MBIeBJyBq0D30F7gPfLJHv1jjxoVgKn42aD8/x7Mu/k2TladY2znE0L9lpStJhn1qV3N1+j+e3b7B4L+Xp517h3fkDfuHbb3L+yad5df1TvHj5R5nOpyRiGaaKSa/PuD9kZ36P9259hV/6pf+EptyLdtpx5aHTSk/RxIxLQbmQLRlmq/iUjA29XXtOvn0nEdSjFaI6foegnEiINF/6SY5B7yN62lIeXfCmqtEhzVfrlCTJyTOf16wQqqpmUZYUZUWSCvOyYL4omC/mTGdzZrM5ZRFiSBWgNZlO0ZLhrIALqr6Aw5JkmjTtoZQ/d56n1CYjyYU0F/Jeynxa4IyPpez3ckTnLKZTTDFnMTvi1u1b3Lxxg7zfZ2VllaauUImmqSvWL11BREiShH7e48GD+9y4dYODgwOyRHPuyhN89vOf44033iARxfbODjv332S8skLVOKqqZDQcMBwMeeONN6iNYbq/jyBkvZzhZAVxjrIoKOYFR3u3QBSj0ZBemvHqSy/w+isvc+36db74xV/m7p073L59E1PXnL9wgZXJhEVRsr+7g9IJo9GYfr/HztYDtrbuY6yjLn04XlEuePHlNxBgsVjQz1LWV9fRKgVbYBrfDWJGU7eTRr9D1JxscJZFcBZ8zVwbdpZO3YRWywqZbeKCUwyHE0Uirs3KipEK2kGEHotDI54Hth8cOt9vaYuhBJNZ6SXgilJ+rbR22fWwDHsHLOmkzLYaY2d5c8BbDa1N2iEzItVAGOTicwmcEyzG1+CwEVwdba3dlqoJv7kloPhXGMzkmD3mlldu63K0gA3LCdC017ItUPmTxnq3LkZt4LX+1Se+wNqTX+DrN3cpd27Cm29jkpxyfZOh1FTb26jrN1H3r3H71i3U177MfZewPd7kwY273N+8xEAaXnz2OYz0Obuyyni8jkszJv2MH3v9OaZH+3zlV/4zkPrD3yORkvDRDF4ZkPbG/UobMfNMgifRF8qKQNsy3iEVWlxMFybsE2KYo64dtRQe9u+Hy6NDxuqSpoG6brCmIUlSer0BxjRYC0ezOTv7B6SiyfM+87LgaOErbs3mM4qiomosTnl+Ms1TsiQDp2gaX1XI14U1vpaI1uR5ihaFThSpTbAk6BzSVJGlCUma0hSWJNWU5YKD6TYiil6eU5Ul9+7fo3GWLIRjNU3NOB9x/uIlxpOJB9wkZfvBfa6+f5WdvW2SLOPVV1/nx3/sx1ldGXOwt8/hwQGzw0MOj2bcvXOTre0tGmPo9TLOn7vI0889T38wpK4bhsMRd+/cJc1z3nrzG9y7cwvlYDTskWYZZ85e4Ny5i0xW10nThEvnzvIP//4/wN/78lf4la/8Ctdv3mQ2n7OxeY7hYECqFPsH+2g0e/s7rK6fYTqdsXXvLnXtTZ3r199nb3+HXq9PnvXo532KaoExlqL2adoK2qD0WHWsBcio7VgXACcAqItpugGRXUgjtc77b0UwEvqv8ynBODy1EAA2BtdHi2vp2AFl/QBpgfwTFmsbCPHIoqR1nCGCa8s1pr7WQoxDjdxlpBPoAqNpwa7lA8O12lAxF9ZIcwSnlY/xVeID+aPlEDOq3LHLuJCBGCqNOYKJ7DrcI+31l5XGlu/AumV7u1RI1JhtBF5iWZzIWQe+Ft/u5OxnOBi+yte/8S6umVPXFlfMyccj5js3STc2efDgPvmioe9A1xXbBzOK8SUm6xOS21cZfvtLLFLF3/xFiz3/LPr8K6w+8QwvbU547dIlNkzDFz77B7l946vc3fpKO2U5jttKXrMPqe7YoKF2gDE63xyALwHraPz9SEKMPZY22sKfK1bg9rZgtBz9hPtQzfZjKLuPXq5HFHU1Z7FYYI1BifNVxZyjrisOjwpff8HCaDDCOMt8sWAxm1PMC+ra4PApsnmW0M9zMpXTNIaaCsTXzZXEA4LSmiTxJgwacq1xokmymN7uOd2pqSjLgqZ0HO7v0dS1D7nqDXy2iihsbVADYTDss7p2hrObmwz7A1bGY959713uPdjiaHoIonj11Vf50S98nqP9HQ73dqnKktu3b7O9/YB7d+9w5/ZNyroEpUmTlJs3b/C1r32FldU1Ns5eJE8zDg4OuXnjXXr9AYdHUw72dhjkGRsb6xgDO1vbjEZDLj/5DJJcQDnL53/4h1Fa88Uv/jIPdnZZVBXra+tMJmPW1lYQcRTlgOnsiM3NTY4OD1ns75Ikil6/TzGbUs7mWOdYW91Ack3VVMSaqzYCaZzDQ5yXRdpaGq2J5JYaMFZa3i9u94H8fvRbGzu38+t8SayCEdb9ctbXGIgaUzCZvW4RLGNxiPsYPfQxi7UN9gRQRoBZhor5+iDdClWRkol1cpe86HKQtnLC8dLWd+1wqa2GGvZVQftqRFoQjAFM3gnGMQ33+BXiPj45py10Hj/CicgE1wGLTtvC1UR8HV3CJOGcQlaeY19f4PaNb5CmjuHlFVSTsbF5iZ5ojootziawdukZ9ncusPflmlo3LK48yeiVn0D/3V+k995XcMqRXn6B4XBCfbjPRvH3+JV7X+f2ky/yjZuXGfVzzmxexEyegQe/6rlk8JPRwzDPeY68fVJxrokaayhAIuKrGToDIqYN/1vCefRxhHrC7dMxCBZxepkJHB2u+Enpo+SRoKsVVM5R1wXW2OA4AERhnaEoaw7UglSnlJWnHabTKdPplKIqsK5Ba0WaiNdy0x5aEkzjSzSi/JI9VkCrDFRYKiUCcAaiffqpsYbGOIqioa78kj15lnN0eEBjLNiGVCcUixm1cayurpJoxWS8ypVLl+inCfP5nL3dfXZ2dphPj6irimeefoYv/PDnyftDnBPef/9dvv3mN7j2/rscHu5R1xXGOp/I0PhYv6PZEaPhCJWk7B28RVlXJFozn0+5ffuGD2vTmrpecHi4z/Xr11FJwmQ85uK1azzxzLM899zzTBrDk1eeZHtnl2+/9Rb37t1jsSiYzddI05SiMjjrmIzX2N/d4vy5syzmM5yx5InPoCvKCusso0GfM6vnfFex0QO8DBRrO6iN4fWhU3YoAz/+Qk9yti0pacWRyLIuQzDWgsYVOpsTlA2RnJ24yRgtpWRZAdZ35eXZPknxSz0ZtK1xrgGX4QIZEu/VO6r8UunLCOXj8azxqbZhZ8d0svhsXRvbHR1YbXQIHWAgPtOQaCCNd9y45XbvQFNYMYGLV76oiyQkSUKSDskGY3rZEOsgz3vUpqGY7VOUM+azXWwzb31/nsMP2YXh3fs7DXfSOmQFVEo5vsID0zBYqfnJl1dZUQ4lu7yTwKJe8OMbYy6OR6yunqdp1vjapQ16kzH63FneO4DpH/j9PPviM/Qs3H32dUpW2L53nfG7X+U8h2h7n+33v8ZWssnN2Uuc3b2GJlYd9FZGTM0JD8zjRksTnHAOtlNOt5Rly/KG1GuNUmnUafF6rm0tn/jc23RrF55LOwV/vP78aE3XLQt91GUBKgHRoWBNQtZTOEmZ1Y7aTMHUHB4dMp1PaZraawg6IUkVvbRHotLlGFchNEWHMB3tTSxxgsGnR2qtkcSHk6RNTppb0jxBp6kv0ZgMvBdZC0fzhV/+RxSIYf9gj838LKuTFayFsqpxjWNvf4ed/T2msykXz1/ghedfoCpL3nvnbR7cu8ebb36Nq++/w+7+AUVZ+dJ6+JeZZim9NMMkCdY45sUCYwx1U5PlPV+DwTTUVU1RlhhjsMYvT2QdZFnG7Xv3uPPgHsZYzp09y3iywhOXLrP14D5Xr+1z7fpVzi3mrK1t+HC0PMOYhtHKGlvbD8iyDJ0mlFURaB7jOeUsB9GkaRJCuxSmXWE2aKiRZ2Bp+kY2TGIHcq7TeaLTwk+MMdS8y15FLVFcyJgSQTtfkD7677wmqLBBA/F9QH5TaLrigtYe664uyYDlygXWBWI6FIiJfC4BKINz5Zj36+T4C1q/DenSrTnv4gCXMFF6g95FHtVBXDKsiaARXoKzDqUzxuMN1tevsLL5LE9feZGsN8GqjFFvSD7oc3V/zooT1oZ95k2FSEV18IBvvvdlrr39RXa2ryK2CpTDclWIeBMRVvxXhettcnMxI1854AuXeryRTdm+P+VoOmVdtugPc9Sg5sHRVaaLV7jF27zxyueoszGzpsfKuKY/3+Xyz/yDDFZGVMWc6XzBbDzmqH+F13fvoY722Ny4wNQYdoeH7N+70WXDu60K7zG07dhkvtweM/u8EzN2/SWNIOJwYnBG8KZ3E8A2vlJFjOpwnVEQ9eG2D3wMeTSna5pQaDkD8fVik1CFLssH9AcZhAD4RXlENTvi6PCQsixwGLROyTLt427THK0TbFWjnM9gsdqC2OCYkDBbK1QTy9GFyv4a0hRSbdE6w9qCg6ND8vURiU7A1hh8icbVlRXu3n+AS3xV/7quqJsGYwzbOzvcvnebsqqZjCasjMfsb9/nxrvfYj6fsr29xa07dziaTjlaLJgVBY11JKJJUkXZNCx0RSKaTGtU4geeVpr5fIFoTbkosLahaSxlU1M3xufUI1RNg3UOc/09qsWUJ594ivX1TdbPX2BlZcxw0Kepa+5tPaCqa0bjiU8IMYaimDMYTdjd2SZNEg7297CmIc96NNaQZZ4/nqysYOqGRbGIfoO2n7bjm2XqJ075ziYEjt0GbsxzVnGpcX9UPI6gzbq241pCTHAYAT60xrVcZTRyxUbNuy2j/YlKzFQEjpv7zk8KKpj1zoUkEJa0g5foCPOEtrPBKRfIFI/D1ltLraZrW9BdnoNj323nmfuQLI04hxGvzY5W1zh79mlefvFH6E2eoDBC1Si2xbB90LBiBdWvePedLS6hcZMe357XNLXlc+M+6eAS60+t8vqLP8OtO1/nl37xv2K2d9VznWEiCiwLCsG0YWTCYTamtAs27SrTIuOv7+/SzEvqBVAbLup17t+9zatPvsziwTWuXHmFa1ev0x+O+VqmaCYr6LMDtmQXe+NN0jvbTK5d57W9B7jKcMMaNvqrpEnGSM15Y9jnK0lCVQSIa7lZogkBsizE462GduMxaRXW46pFmMgcDuOtCrRPCBLnaQfnaQcP2tJOltIieHivH0PZfSTolmVJlqUkSYpOcoyZY43xOelZRm8wRLmEqq4oixmLomI2X9A0DUpBooU0FXpZTprmOOtoGteapQ6LUo5E4w06q9CNCjUEHLGikThFrDrvKwcJYpcxg0lYHLBpagTH2soKDo21UFvLymSFu7dvc/v+PYqyAmdxtqauCt57721m00Pm8zm7O7scHB0xLUqqxjIYTlBKefrCWXIlNNZgrKUSyKyQJLrtqHVZ+sIvxlHVBoswHIzJ84yyqnwIXVGAcxhzl6au2d3bYXV/l8nKBs4Y0lST9vq+JgSW0XCMcZ4uWJ2MWWycoZcmTKcHfjBYx2g4ZDQc4pRldWMVpyA5PPRrvyW+o5iw8gXiaUhjvUlljcWEgjVBnSUG3Sulce2y4KGTBUdb64wRCRCxNMoiwseZP/JcynmqIprT+mNqBo9TXBi0x8YwMXEheLLjFueOtXhpLbAM9+osXhkjGaxz3ilm/SrALtYYAEAvR71bTgBLhsaHkykLovtsXniRK89+njo5SzocsispO7sFWlJu1AW39hf8qLNcy+Dtos96bVmfJPzdpsQ1DS85zTu24eioICVhvrDUG6/yhZ/5F3nzF/9Tblz/EiCtdh2X55Gg5QqKhVmgco2a16idPknZI1caocClDfPZLsmgxzcP7nFu4yI3ncHWB9j9m3xzep+8l3FFRpiZYuvOfQ4SxbcP77Ha3+BOdcBk7Ty3pGS0MuHS+BzaQE80ZXwPrbkcvQTti+tow0ttNAKlF59w5Np76mQShuNirK81viKfBGvPc76dWg8xzleiA647cX64PBJ0Dw+nrK+vorUmy3qYuqZpKhSQJpo8zUBSP3ido6gqqrrB4UgShUpB596JlipNWVUYY30xDfFFa1TiKQZloTGdzh86rHOCtZ4/NC6WaYNe5hMnxqMR09kBifaB2mmacPbceQ6mC9LcZ4rduXubB1tbFGXB0cEBSaoYD/tMpwdM9/d48OABs9mMWVlS1oayrlFKMxqMmM1n9HoZg+EIU1fUZUFTez7Zrx8m6ASM9WFslbWUtackEuVXGnDWYhtDr59hGkPZGOx8gdt+QFFXHM1mnL/QoBKNmRsW80OSNGU6n2ONo9fLydM+i/kRLz77HLOjA5qqAAd5ljEer5D3emSTPlmvz3hDs372PBsrEzbPnqXXyzyeKu8Uck5oqpqiWDCbT5kfTVkUBdYE0xahLCsW0yOqxQJnDGVV+2XkjcUavxSTcc53oFBVyi8p7weCuKiVENYL8xxcEqzCD1Q2+4TEx7weH6zdASrSzdHv7BdHbedHFSMaWGKqc86vzhFqK/saALY9v2pN2GBFdNOdnFdMSDJWzr1KcuHTrAzP8dZRwZXRgNu3H5BkipdHm/z/7t3grsp5Y17zzsV13s4SNq3wQ+M+b+o587THp6XPWi/lel2x3u/xqdVV3trdZrdWPD++yLM/9I/y4P5V5sWDEHKlArXUIRtESGnoNxWGkltb97BFQZpoeqlg6orhMCFLFYPMIHYLffs+OY5MNJ/Z36fXOKxs8y0cJs3AWN44+wSaHvvVnLOSUyWKsZvjZkfsZxNmxV4bK76kFuKk3iVDOo/PHX+f7YQWaLP2IbfnXf4SNWbrTKAfgq9J1JJBiskuTnOyLY+SR4Luzt4evV5Gr597cj7LqE1F3dTkzvr1oMRTBNYYqtqbpkmGj6vNNVmWoBJf2atqaq8pOoOIQbSvMKa1oqlifKDxpoIK63EFlT8Wc6lrQ9M4DoopV84rLl66yI2bDYJD9RS9wZBLFy5zztQ8ODigl2rubj1gf3rI9GiKqSuSpMew12M2O6IoC8qqomwMjbU0zqKcYXXQ58LZM1TlgOt37pOnKVmaIiZjkPfJexl1XdHTCU4UlTHoNKEoFnA0wy4KemI5f+kpzvYVv371fRbTI7IkbSscVUXNgTpEgGJ2CCr1jjvT0JiG4XBC1TTk5OSpcOGJp+llKVcXC3p5jrOg04wLFy6itGZ1MuGlF1/iweEhVVFx5dIVnrx0iSeuXGa8ukqapUGp8svA1HXF9OiI6eE+RQDxuq6pK4N1lv2DHfZ3tpnu73N0dMT+0SFHhz4U0OJAW5JUobUiQTCNpSwryrLCWUeSp+SDIf3+gCRNSfPcrzGnEhpjWExnH9lBH7e0RWRa4A2OkmBVdZ1my4UdodWJWyqBeHQYwFGzDbG01mBt40HURl54mVQRNTdfcN5rTw5hZe0J+hc+y1cPYL5lKbcfsFnMuTpU7JiST/UG/AWleGeU80yVk10Y82A150d7K3yqMPwdVZMNV3lVctYayy/XczbzlGelx9v72xwMMy7XKYuqZLZxnh/6kX+UX/z5Pw2EGHqiRdlGFNO3FSpbJXVC3usztyVNPWdRg1EGMSl1OqQphKquMfM5PRSFbch1yoErGI3GFIfbXBqMybIJTgtaBrx27hl0MqTX61PVe4zSmvvv/hKmLsOz8uGLMRTMBvxtF7I8BrCu83dH25VgMRMLT8ZX0AFgFzXg4K4Lc6ztAG6w/cJxkSz7aH7hkaD7YHuH4SBnQ68hAloJOkkxdYkJPKkS5xeYNA3GWXSqSNOUNFfkfZ9RpkVTW78yhHM1IgZ0hdIOlYD3/TpsqBkQuRKvOdgQ8xyAommom4ZiUVEbQ5olrExWfJtwpKlGKYc1MB6O2Ts4ZH9/n8PDKUU586XdTMbu7jY4S1WW1MaXb0ySFJ3lFDPH5WHCmWabd/fn9BJIsz7i4NyFTdbXz6ATRTE9RJywKEqOpocMJys4EXbUXcp6m42e5Yq7SzNPSI3BaY2RhH4/A2vDMty+etrh0SG9gaczTNPglKIqC/r9Ic6KX6JeCU1dUZQL8nxAkmiSLOWFp5/i/u4+w+GEweoqhb1BPXDkwxGTlRXOnr3A+fNnGQyHy84YAHYxm1HXC4pigbGKxXxBVReIg7IuONzf5f69Oxzs7bO3v8/27h6HR1Mf6pMpBv3E00OBqqgrQ1GU6CxjfeMsGxubTFbWmayuszJZo9cfYi0UZcXR4f5HdtDHLSJLLvfhIUje7PfswiO0mBjJIYJzXqO1oUDTMadZyymeHJ5eG46OyTQdMjn3EpONF/nSdsOorrg/P6IpSqxu+PbGFX58cJE1Z3g3c/zu8SYXj+b8NTVltXBcqYfcODemZsGqLbl4oLhzXnO5P2a8KHAHFc25FWR7h4nJedOVXF6Z4J75LJe//Sr37v46S31PiMVsQOgVM5KxUCOsTtYZakViK7R1TKspkmjyRDHuTbDGF+evXU3dzFgZrFAWeyTW8NqllxglYyqXcHt+h83JJs/rAYfGMBhkNKbg/t13MLOtjmYa3hsRAJfEAMcMjw++Kx92p1ufAyEpZrmntJbP8irxXK4NOYvUkeostNlG7HyMyvyPBN3dvT3WJn3yPGHQ7/mkMqXROkEpsMZX7bGmxtkGUQ6VKtJMkfUSbxZnGThN7epwkxalDaIsaarRKdimCZ06cIbBLLU0JOKXUI/xdQphNBzy/NPPc/HiJe7duct4MGD/sGZlNAKlmRUF86LmcHpEVde+5KKpcQ6SNEUrRVUsUEowpvZ1eBNLfzTGkTAerDDLMiqTYPOc9VHO+uZZtFKsra+xMlmlaQx69QzWWXb3dukNRwxGvuCNmZdYKxxM97ld9Fg0sLJxAZ0oryGKUMynLOYzlAhNVVGWNVnfYeoG1xgqW5EkKdY0LIoZejhmZ98XHlKiGAzHiDOc3TzHt9+/ynB1jb39I5x2aBSFraiaCisCWkgzX0Son3nu0VpLYzJGgx6LoqAqSmpj2dwUmqbGYamKgsWZDVbXVtjf2WFn74Dx/QfsHexhnaHXTxn0UxLtNQJrDE3tQ2xW1s+xvnaOyXiV8eoaa+tnGQ0nJDr1E2dVUpSLj+ygj1siGPp1AE27UGc3ZtYXjvErMVsTLbyOORo4Q2nPZz2VEGN/4+KfLDWwZYy0z4jyyyLVGOfoDzexq8/z3jxhd/82ujS8bR2qMqyuDPj66hmeqxyDseFvrkKvSUnmFV86NyHrJQx1ydqe47adcjGtuZAJbjTm56a7pLszfofOubW6whfv3+d/NspZTBdMJgK7Uw6t4coTn+HenW96TVyWsBZrFiRKMUgyyv6Ag/0tLq2tkYnDlCXrK2MMlnlVYmxFP0lQxuCqiklvTD8ZMl5bIdc5Gs0gH5M4xQsrLzNI+8yKBedXV2hUxd379zjav4kHPRWmgODjIUbHxJC7wLs6HQBQwQlXbVsZrNVWI1UQ45i77K7/LGN0l5ozAadarVqM53aDL+Oj5JGgO50vODqa0ss11gzJkhQFZGlGkiR+XnAGa3wxmyRRGBKS1C/xk2Y9Ep1R136ByVhEwmERLejUp1iaxnhng3eVhtv3//kydz4GMklSJisrrK1kaKeYzWbk/T51WXA2P4tSCb1Bn0VVMV0csKg8BztfzKgWC5T24W4Gy7xsSEPGUb83AJ2xvr6JiGIxn5P2eozHK5zLcgb9QcjIy5iMx0xWV6nD8jooYTAY0RjjnY5pjxThfFkwPdwnTRK/YGHTMJtPwVrSvMeeVhhr0cq/8rKqSeZzX1gl1VBZjLHMywWr2YTFfIb0eijrY5CzNGfY73M4n3I4L0gHE85tDukNelzYPMvBfIakGlPXPNjaZl7U9LKcQZrhnGU06KHTlKIqUeKLO/f7PfqDDKUUdV1i+32q4ZC0l9Dv9cgHA3SWkE/6mLpmMEgZ9zPSxBuixjXYxjDojxivnGM4WmUwnDBZXWM8WqWX91EqwZiGuq7blSk+SYkTkI2ORWsxpgmmf9DtlPLxxjGcC+eB13Xy9DsUoXPLpb99+EK7aaktCzhnQowOwS8CWW+DbOMN3j7QpNbyoCh4bmWVw6bixcMFRwOH2xzzij7DNQ5p7BHPpxs8qRPuJnNW6pon5oY7Z3L+3GwLc7TPP75Y5Vq/4Jvl+5yREcqc5W/M3mIujpm9wi+qEnVvxrMqZTJIGF16hf7oHIv5lncQiUJUik7HrG5cYu3KG8x657m7d5tc3ebocI/VLCPVCWnjsw4nyYA0zwHQMmRl5SzOGnq9PlppFsWcJO9jezmjGsRaEqXonz3HUbnHO+/9HR7cfxvlSq9LHjMNutRPSI2ms8sHzYj2XccwxuPrui1rXnQp9e57g+48Kx0odm2CycfNsHwk6C6KkmKxoFikpKmjSVJSnZFkfdLguLLGYoyvaJUmmkRSksSRZj57Cwe2cSHzwydcOOWClqvb1DwTPOfSWd5ZBJ+D7nz8bZJm9HrCIJ8wHkxQkrC1s0vjYNjLGfYHLBrLdL4A51gsFkyPjljM5/7hKJ/dU1Y1WeIDoZvaoHXCUOekWrOyskY9mVA3DePRGOe8Jq6Ur3s6GI1Roki1wtYVxhqcaRj2eqjEL0m/tr6G3dtDmKAQEq2oqwKVKpSFqqkZDIaYpkY5n2aN1tSm8Rl1SY6rGhrjgelgf5/VtVWcc2xunidLFINej/2DPbb29rCSsLu/j9YpF8+fYWU8ZHM0oUHYvrvNtfdukiQZK5MVJNH0ezlZljAajejlPbRWnD27zvqZNfIsQcSRpgrneqj5jDFjr7kJ1MZgFTRNzSBPWB1mpFp8ndkQ59rrj+gP1xkNxvSHI0ajIfnAL7yZJBrTWOqq7KwF9slKzJyz1gUnYYOYUGvAKR/mppYeau2cr1bVyVqD5VBcpuqeCJdvzeEQWob4Qv0OrAg2P8Ptasydt6+jZwt2LGyMV/m1zPFSOsE+kfFgNeWHjxqONmdsbSSMKCjMEV8arPFzRzdIioJ/pL6AHF5jY36LQbFLZi+SpZY39q9yXq9SD6ak1T2eyFaZjRT7zS0+u/o835A5ryw048Lw4qt/Hzvzbaq6YTheY239MivrT2HTMXMn5KbmAfD+zn0u6R79poG6IktT0mC5q1JIkoxev49DaFJhVjWINIxGm+ikT1NVSJYyGowQJdy4+3XefvsXMPUMrWybwag6tIz/I8bMBjBsJ7fI6XZ49g7Qdv89RkHIiThb1/1juYwTJ5yuECN6lq60j5JHh4wVFWVVorQiSzMQR20qxKStmWSdwZiaRCk/s0mCTg1pmqIkwRjnY00xIAbRFpVAkiWkicYZaUHWgU8BxnlfmvJ3qETIsxysotEJicpI0pRyUWIaQ+2ExlSsrZ+n2j2iaRqm8xl1VVLVfmVepaxfDUAJZVGi+z1IhbTnV+3VOiXPMpSzDPM+ZWooyzmjwQhnDPOy4MqVJ9BKME3JoNcLCQkSCiILtakoKw+ojXVsbz9gMhxSlDWHB3tkWYYkCWVZUheV52tN7Z0USvklb4C6rujnPQ6P9llZWcMpYVEUjPojcKBF0+v1ufPOtziYLZiMJ15bbmr2DqbkeQ9rKw6PpjzY2cE4KKuG29rXrhj2B0xWJgzHI85tnuGZp5/g6ScvMRxmQMgSxFGUBShLkiiyPCPv9ekNBvTLBU2tGPQS+oOMLNU+TduKLwqTpvR6CXkvJc8zklSRpOLTubX4ZcclxTXVR3bQxy0tvRDCuYxpkDo4UoL1JSKIDjVjHRAWOeyWgASWTnUiF0ygEeIwDU66mIDQ8oOCa0bcnQ+oFhX27m1kbcKZJ1/kwnidu2nN5nCDN/UhRe8IJmcwVji4f5u1ZMCLdcKvpN9muPMtekWJdfs8kSg+e3CXenqI6D0WNGzODxgnuxwM77JRl5wdFkwXcy6bipHbQZsjbvXXyes5r7/weX77c69zsCjp6x57R955W5mKo7riG3t3uC815ZOXeO/ar3O0d8QkzRiohJVej0Q5+n2F0hmN9b6gRPnltEbZgCTJOawP2Zndxh015Pua3Z332N6+CtSdiAOWBd0j1xG0y7bil18alaUrrOsI7Wq28d1I+6p8AIq3SJbar+sc7+N0l3WOO9mI0fkZWuH8C//IPvdoTbcsaYxhMJqwtnEW52CxmFM3FVVVIHiNpzEGnaT0EKxY0H7pG2McdeUXmDTWBD5TkaoMrXNEklAw2KE9LPtOGir0K+1wSlC2weBNMC3Kr9XmIM8zXxgnzbBK2DlcsL23T1kWiNJkSY8kKbDW0BgPCMYaVJKi8x7OOV8oXDsmKyvkaY+6aSBNcdaQpSmzw0MG4wnPPHOFPM/JEsW5c5d8tak0YT4vyJIE4ywKD5i379yjl6e8+urrXLv6HnVdcObsOfb2drGNL1k5yPs0TYk1DXO9oGoaD3aNzymvar+q8Gw+Y319gzTP/dpiCkbjEdfu3ODm/QfUjS/hmKQpUy3osMBhlqUU5SI4Cn3MLdaB8e10xjDs99jY3GB1fR1jYb4oPYCmqXd82sZnvTUGJSqsCp2iE40x+AyqdjlrCTVmfS+vyrnPMkwUJGA1PktNaxpjl0sLMf7ITvo4pXVwhVVRjG2QJmi11rUFbsQ5EgdowWiFWG/e+m1hdYmgBcVwuG5Ug3PLQQy06pK1FuP63Jrl3NnfZu4sejiimIx4ulrwrtvnyX3HYn1IvQJnFvsMzD5vYtjdfY8FGVN7ns+qktWtfdzRHGX2mPd7JMWMxDqkZ5mXJUMnZNRs78/IRFDKcVjtsUKPe/MFZ3XObb3Lxc0LFMZwe3ZAL8mZuookSymVZV/BkTUc9B3nzk2YXX+bqtjn3qIBq2lSTTUrWBsMaGZTsrpiPFlDkfuoocEQg+PmvV/n5vUvU5X7y0p44vtUp5Kz12nEYF1ISXbxCeMHQ0jSkZhk7qCNxY30kNfqWrBtHW6tcuza88WlkJYrToTX5aR1nMWT2LgvJ6ijj5CPoBcqKutN6jMbZ9E6YTqfsbe35Qt6FwtqX0OQNOuhE0ttaoytsI1gnKMuGqraUhuDCctyKJ2iraZpNLYJ6xc53RZn8XUFdZi3/GxljCPPBmTSI0979PIe+9OC0Xjs1yFbFOzuH2KtIUkzil1fwFwpRVVWPhLC+SiLvN/3FaPEotOMQRp45UwYjidhsDmUdVx8+ikGwzFVWbI2GbO2vk6v12dne4u14TqJznG2YW9/j/F45ON5Ldy+fZuj6ZQLZy9w+84Nbl2/xnA0Ih8MEYvneulxcLhLmqSBM/Rp05kIi0VDL+/RGL+SxXgwYtTvM5tN+eb929zb3sI5Q6IVi2LO4WHia+iahsOjfaYLX1pT6TSkR/vwnqw3YDqfsdas0R/22dnZod/LGfZT1lfHaBHKqvIhe01DVTdUdYVzzldoGwzIZinUilxrdMzOd74ehzM+A68x1jtylU+mKJsSWRxiERpTeyrFOF45d+5jddTHJW1pRGfBGKDB+OkTrR3S0Wr9wAdL4ov/4BeRFAnFsiGM8Ji7Fa/RIXw7mpFPDxf25322b2+TOMvqeJV0kJNeeIZx03CVIy5deYYvjNbY236fo3KNc3bOXO+S7+7RLw1FtcN6rtkoCkon9BJNYy09nTDs+/T0JE0ZpjnzpiRNEnKl2JnOQgz1nEVl6I9X6CcJ8zxlf2g5JxUm6zEzDdO+o3HCwpU0YnlC9WB3B/XgFqacMRyuAMKiLEjyHOMcqfMZfHVdozKHEcO1W9/k3v23KKb3/HNT8XkFVjYGAbSaaZi8QuU6kfgMvWutLcrUZQZammEJyselQz1EDVY0ueozTiaM8h5FY7lw/kXu7LzHg6M7OJpQVU7aYk/dyy5jgD9aHu1IWxRM5yVWFP3BmOFwxGA0QZRjb2ebxXTqF1/UGWnS81lKtaYpG5qqoa4bqqLx8bXWUlGj07CgX1jwz1loSjC153M9tatprEMa5aMh9ABSQz031MrS66eUtSFLEha2wBlDU9cczqbM5zPmizmmqXHO+TA1AZWGYjrW0e/1GPR6NFVBniY+xripfBKI1pw5u0m/P/RrP2lFUZZcvnKFzc0z5FlOnvYQJ+T9Pju7u7im5syZTfI8x6GYrEFvvML9u7e4+v5VJiurDAYj5sUMU9cYY1Gu8QW0jfHlA7UvN2eNpapKkiz1lENVYoDSGBZVhTUVV2/dZjabkmQpg34flWQ404BtmE5nJFqhsSgc88Uci6B0SGFUmkRrjG3QmSbNUiaTMUopyrqh8eYGGK95aI3f3/i40ySs+JokKYlOSRLlQ8bEQe18PLYpkSRFpwl1XSPFAlvPMfh0WF+8yLBc/OeTFRccwiZE43g+N4QF6ZAg4JSf5CSNRqsv5u1nFu+MCeThw5053YEvrQOvanK2d0r2raHaPM+qsexcWuNidcS3nhxjBSb5gl88LPjm9V9lXQYc6bO81hdW5466bEgEmlqTikaUkPV7zMqSNOuBTilsRZ7nzBZznAipaBZFQaJSrIO6qRDr2D/axvZyju4s0E8k5O+/y6VLl1ibDJgoIVcp++URVw+OeOfuDd5+6xvYw4baalaGGaauWcsGjHpDGleT9MfkgzFJ3udwtsWDd7/NfHYPMK322T6nSJmGAuleobQ+izFotCKhMt6ysjhL68FxPFwraq+2cwHpUECuDTYQFAk5I7PKZrHG5f4FnnjtNV5+8Xeyf7jF3fkNvnHtS7x765scFjvBiokha50JNZQy+Ch5JOgezQv2DqccHs2omobVNCXJUhpzhqZp/NLjxjDIPFdoHX5VXSuY2lKXlrJoqBpDaSwNkNkE0drncgfC3VRga0cqypvBIuC8CVsbA84gLifJhGFvQF01zOdzZoXxYU3FnKosME2JlmCGaEGTIE1NojWJTjGm8QVjRFMWC7JU+0D+MLPqNPFF253nNVWeYWvDM888w+r6Boui5ObNd/jU62+weXbTF9ExDUoJ62vr4Bx37tzkG299ixdeeYPnX3iJ8XDE17/6qx7ckgnOOYr5AuUasCXZygqpTjmYz9ne30enGozCGuPbbB1N05DolLKuyZL4rB1V6cPKMlHU1rK/t4exjqJcICJtrV10gk4TEqX9Eiq2oqpLtnd2WVlfYWdvh+EwZzjI0IkOjqCGRVlRV54+qhvjF8ksFpjGokT7ZVXShEQ7alN7za2xVOUCKz6N2eBrFvhsUheW8wmrM0j6kR30sUsIFxOnvLPQ+HW1HA7tEhwasX7AO+UHuP81wd9UrLkbSwdGkzZwjG2Qfhztts1Maxrh3s1DtqdCmuas6IQzkxHN/oxnJiuwM6MwitzsstXs8XRRsmZrClsjix4XkoQDFbjNfIiuG5R2NNpRuQLKmv1y7qN2GmGQr1NXJaUtSJOEqqn9vYYm9pKECqCYcvPW+9RPptza3oX9HRpbs107eiJcfXCH7TtXYV6xpjI2xmus6CHpIGegEob5ENXvkffHGOvYvvcerpmzun6R1bOXKWtfflRrjcOwKKYYW2ObwkfNNAVWar+UkasCPgaTXxygQ53bLvh2CPVjv4XfXXS4Ld9RDO/KkwGb/fPIjub6N69z4TOXefWpH2djY4OVlQ2uuFf4wku/k/vT+3zr6lf41o1f491b32BRz2lc5a0kCdTHx2AYHr1yxKJiZ/eAu/fus7O/x2Qyod/r0+8NGA1X2e/vU9WHfvXUREPjaJqaqvRZTXVlqSpLUdUUpqFxYJymCZqXT2hzuCYQ2VrIU01V1UiisUqjk9x3DKtYmazRzzJsLywNNNunLArquiJJFKlS1I1BrGHYH2JmCxRC2h9QFoVPFVbQNI2POsCiVUKaJFjTcHBw4F+TUug0RZmG8+cvsraxiSjNe+9+ky/+3b9FphzPPfcyw8kaiKY/HKCTjNvX3uGbb32TX/3qVzmzeZbJcMCZzbO8/sanuHbtOg64f/c2VV3SlCX1YorWmqcuXSHvD7HGcVQWmCz2HwnhagaxjjzLqco5k8mEpio5mk1xtsEYb/o2hHrHQFkWVHVDv2dQicZaXy4zy3tUZeZXoXAO3ffOrl4/Zzo/Ik0SBv0crNf8DqcH1GWNMVAUJaaqyLTCOo3W6pjpbIHGhqKAIjTWp427piHJMlTizfImFH9ROv/oHvqYxdMLUfN0KGURa1qvuXaeD4+rajRCJ3ZIB2eZ+FU0lG4zlzpXaD8+aSLw5NbiKo2TjPHGkMpq9CBjZ2OFB3aLB2uaq/s3kIP7PNu/xOeyPjvJCkVVMEwTanHkKiFPNYWDOlEcHdxhNntAVU5xJmQNgo8zdlAMLjJYf9HHA1eLkJwT6k9bA5VBVMZQa9xsxtb1dzAPblNQ0tgaazWaGjObkh7scznvoXTCxmCMdQmpGjAcjBGtyQbr/PDLn2GQ9VkYx7DXp668s1KpFKcVSgvKWZLEkirDrCo4XEw5WBxhyzmH020e7LzP9t4tyvku5XSH2hyiA18uMXGFE59YeCkCdZdrlVhLwlswGuHy6hNc6T/D9evvszZa5+VXXqHYvc/9uiHpT5BEk2Upq2qTH3vx9/CjL/8DSNowKw+5t3eTt6//Om9e/So3tt6mdB++ukWUR4KuMZbtnUNu3rzLvSfvsToZo9Y3QJTniEZjbz7iHQJVXVAspt473zhsY6gaS1U7qsrRqAQrCXWjMQKJEpQ4tIMUqLTBNfjYWwdV7TBlzaA/ZHU0JE9TfC0Gx8HhEabxpSSrqqSf51RFSdNUrK6vMy8qDmcztF+oi0QpEu3Xbo2DIkl7CFA7H9HgnM+/GY0m9PM+OsvY3Nz0ldaynI2zFyiKmr/4l/57nnv6m7zxQz9C1hsymKzy9a//Gr/0d/46V29cZ3PzIsPBCKUSyqpkZWWdCxcqdrd2WF9b49tvv0WxmGECB7p3cMB4vMLa+gYNzkcxWOsrXInGasV8PvNhY9Yync1Is4wBI+q6BGpfbc1ZmroiUYrSOcQZr4mmGY0JqdS2QVxCURf0mxFbW9u4pmJrZ4uNlTUGfR9ClmhfanDQS8nzlKpuaOoarI8tFRWrwIFSCdpaDAalFYn0fLxxkqGUr+/ay/qkaeoX+GyMXzMvyT6ygz5u8Q4Vb+ob/Fp/vmC3IO1KvhI4XRtCHwU6H3G2XQJn6bRZDvRoOXjANSEW2LC1O+P2viEdNeTDCSuHexSbKU+XwvrhHmcPt+lVDUqOcFXNk70ec52xaAwHTc0ozUj6CbOdqzy4dxNrSiI/GmsFOKzn1a1jNruFXTuLOvcieuce+uAAMT4O3onPKNS1gKQMlKJaHNDMdhEtpAKpCImIVxryHsMwiZdNQ6+f0cv6TCuDcTmXRxt8+9YBgxXYGGi+dmMHSVPQGpcO0cZTGmfOrIFy9HXKUGVcWD/HunHMlHDGwAu2xtUVRtXs713nnZu/wu79b7F1701UeRjuVwWHblyZI/K5tqPZevohrmu3mq/wqWd/jJXhkGvvv8PNt65y870b/MQP/yRPvPA6m5cvc7AzZW/7Abvbu5RlQ5b3GK2scnBwxEuvv8Tm+nkujS/w2ae+QPPTlm+++yW+/OYvfWSf+4h6ujCfF2zt7bK7s8XuzipposjzHCWWXq/PcDikXCyoq4LFYk5Z1zS28VqC1mSpB0+UkKgMXEJj/MNpRNDaaxBKGXp5jgBF0TBZPcMky0IRFctoMGGQp9imZnt2SFlWzKYzqtJHJ+zsTlEI+WBM3h9yOFtg64Y0zWgaS5oklEWB0sIk9+Fe/cGQYj5HbMN4OMQ46Pf6AShSLl26SJbl6ESTZD1WJis8/8KLfO1rf48vfflLvPmtN/ncF36cq1dXuPbet7h15ybD4YhXXn2dM2fP0x8MEa2RXo+zylf2erB9h7zXZzqfAYrBcIipSupQ+Ka2lrJc+FjgLCPVKbWFLM9DuUbPJx0eHZLoBGssi2qOEkXTND6bTIRUpfRHwwDe1gNfv09/MKCxkKU5iWjMomar3GFve4+tyYTxeIwSYTjoMR7k7Ij4ynJJAjgy5YvPJwpq8W4la8FaoW4E4xRIjhOFkgznNNYpjLFoHVInTSylor9zlPweiwtORk+FWBA/qbQlTCSka+PLjSKet24BVwSFBy1nXQgoPV5kxVqDsXWor2yxpvHlOmeGjdEq6WDAroL55iqLWcXdnSnPba7wI4Mz7KspfRGM1tTGkesESRPmScphs8f+vfeoy2mYADtgHzLkIsfosFglLG5/Axms4IZj+vM5eQKuLkPRKV/C0LNBDZlzZMpH/TgsqbX085RpLfSHQ6ZlQWMsSZqxdzBnf2+Xw5lhc+0Jbm1/g/GFSyR3FFlTcNOMmA6HZMZbYZdXz1LmCaWxnKlKzqc5r22s8X5xwFwUZ5Kc8wgPDDid00tG9FfH/OT6K5wZGr56/Yt89Zs/x4Prv4It9sNS793qbR2+OGjD/qvwqac/z+/90X+Mpy5/infe/Qpqrrm9f4Ot/i4XLz7hY6idsLKxzrxccO/+DjYdcHHjLEkvZ/j/Z+7PfmxL0/Q+7PdNa9pT7BjPmJknh6qszBq7u7rZbLGbQ4ukDHMQJAg2BME2LBs2DAv+E3xj+FKQrUvDhuELQaZlC5YNWmpCIlvNbjbJGrq6qqsq5zOfmPe0xm/yxbcispqWKgnTcvUCshIVJzJO7Ii13/V+7/s8v8f1rE9fEfuevFTU19cIIzkRx/xrv/5vfuE99/PTgEkdV9dZ+r6nbxvaZgfRQxRkJulFrR1od01azuicapLhBkvfJ5C5jyE9YWSK34lj9IsREilSIkWV69SFSsl0MkPrDB9Smm+VG4zJMEbTWovrHUPfc71a4b2jbhqCd2RFxSTLsH1PcBaTZUCSnrVdg7WWXGYIYzA6LapCjORZxt7eEjd4bAg47zg4OWS+XCKEQpkcozRHJ3f5pV/5dYSIPH/6KW294/L0BXcf5uRZzr27r/H2l97j3fe/QTVdYEcesbeOtu3I84yu7xiGgeUyJQaLEPC2pWlbtk2DdT4xJbQhryq22y2ZzhPG0SUlwXa7oWtTYda5QQrw3mO0RkqZAO+jjlibJK+LweFtxLukn86ExiCYVjN88LTNmrPunK7ryScFddeyaxTGSBbTGV0/4GygMOnv01qC9zgnsTrpTvvBgfRpiSY0wiu8BDekwi9Ge6x3HinlnxG04+chjEl29LlLTsebYvz5x8aDE2HUOHgAlebCUqrPZUWfaxfw/qbgjkyG4PA+UPsIMlAHC3f3MLJmvdsxDRuGpuDO4oC704w+ePrBsRkiUnjUtGRoXnJ59tGYEnLja7tJ94q3y54btYQQEh0jXkTcp99FP/g6zWIPu9tRCBB+QKsxt9i5lGsoYlr6jpxH5z2DFQw24IaaIATPXpxSX++4qh0+3+Pg6C6nXcNq1TKJgcEYGp2RmUC/vWJxeIer5ZzrUpP7lmobORGK/1w6/uluw31t+GpR0PcNH+YZzwcPIfLVaLgrDZ90jtoUPHr9L/HOvT/HT5/8Ab/7D//3tBcf3Oi2RipYeu23+7Txg0YYvvHwlzkqHlBmFXcPHtCfnfLx6gc8PLnP219+l8xorp89xpQFsd7QDzVt3cMwsPeN93jr3bew3UBWVZSzisG6cenncfUXQ5y+oNMNyMgttIMI3nm6tkmpDoCWqV2PRPK8oKpyYhR0XcfV1SUMFm1SdpbWPvnXYyq6eSaJPibSnZJJv1pN6YbExRVKExCs6xYj+8T4DAGPwIXUvbVtnQqKs8lSGSL90CUkmxxFPdbirUNpwbSafO6EilDmGVmeJ0WFTG+MPDMoJRnaDoSm2TVM5nvMlge886WvsFwuefHsM9rthulsysuXzzk4POa9977J62++zd7+IderFdvNNVpJnj55TLPdcnR8iM4KolQYlTEtK0QMWKfY7nb0bkCqDKU12miGrkcg2NVbjquSWwobJPaDhtB3Sb/rAsjEV6jKirzIxy5MkhcjJU6nUUPvBsDRtg1SakyeU1ZLYkwLz+vzc3xwTIqcqsy53G6JQRC9ozQZmU4i96EqKDON0ukoa12CHmEcVanQ3uMciDjgjMDZ9HDApTmz/MW7gFM4hLjh3X5+GhVR4oW/xVL6f1aXRMTFEVKjYuri1RhweTvUTW/6EH52tOAhOIiRUuXILMcpxdRLQmt5r6wIuaGQinWw7AuD8R6tMrxWDLrgqvmM9ekH6ctLgcB/zv0dN/JBpKifKDTKFGTZhLKaM50dMJkdcHz4BvnsDj98+pjz55/Qbc5RzqHxxGBBktQcWtKtegqTs9msUmjq9YrV5RrbdFyvGkI+wdx9yOLoEDEt+NKjd3k5ODYm0eSiiwSd008llzn0tmFZ/5KALAAAhkZJREFU5uRe8VxGXprApCr5ZpXz2cUpvx8XLKdzDpQkKEsuI+u642KiqEVkc1nz1qTgtfmU997+TWZ7D/mdv/fvsn76Bzc/9VvzRByXlze/i9eOHvHGnfdoN1ua/BR2Oz750R9z+uIVr915lBglkxlt01F3DjNf8Df/jX8dXc3wXY/JFG1TU8xLYgQ7BPZO7uKGFoGjKosvvOd+btFNDNuAHWVOIUS8d8QYsTaiVDYeayRZkZPnE8pilsIj6x1NV9PbngKJCgGlAwjHjdoxzzJwAu8VRZ5R5hVSQp4pXBhwrqfrdsSoqPIikcZ8wAWYzvdompbVeoWUirIqmMxnaetvJLEGIXTqtG2iCVWTKSbPCAHkjXRqFED3XTvKmCL37t6nLCqkUkwmM8rJLL3d7ECWlTx4/RH7B/vYrsU5y8M33kRKzXS6wOQlXdtQGMn05JjtdsvJ8TH566+jJCyfHfLi5Suc6/GuwBidsqikhuDJqoKmazBmyrZtKEzK7IoiLQ6aXc1kMqNrW9IjJSUlkwnyrCDLSwDsqMrQSo9R4qnQC6EpczOaFBxNvaWMAZNlODw2WK43a2z0PDlrKXJFlmVoIdDSJK2uMczKimmZURUZmTG3LAJ380Ate4qiSss/G9GqR0szLvATYV/qX/x4IYzKBCFI2tsQCCIFFyI80cvxuP253jNF2khu4DYyBkKQCC//lPPphtsafRovhJA6fXEDblGGWgz0E4Xra7x3vD99nYWW7Hyi5p3VG4hptNFJzVvf+nMcX51wfvQwdc22p+07Mp2hpQIpUTotuieTOVUxZTZZUE72iEKn5CGpcSFyWtcc33+XxuwT12uayxcM23Ncc8nV+XPa1QX9bkvTt+A93bYGJXBGQ1kiVYE5OsDnhjDP6ecT3GLOd179lL5aMpvco8xK3AAX1Rwxn/B+XvDx+SXXVcH13QPeLguW50/5vt3xT4Rh/vAe1B3/6HrLu/OMXzYTvics26libi3Cd1Te8Oxiy1YpsmhZVG/yF/7i/4y/9/+4pLn6cZqx/+lt5u0+c1kesL+4x3JxgIieSnrsELl3/A6//hd/myA19XbHdrtjs96ijcFbycnrrzOZTYhu4OLiJdlsD5mXKCkIwlOvL7h68jFCak7e/frPved+btFNAOYkzt/uarq+xbkJWkv6vkWpYYx4iRRFRTWbMS0XI4/BkRmNkA4lHUEGkKlzUCKBbspCIKiI1mN0mW6eLEPpAm8deV4ShcC75F7qB48fXWSz6ZRdVbFc7qGEYLA+aWClIgzJ+aRssthKqdMM2acbXQpHWeTECEVW0LctQWpQiuV8wRuP3mCxf8B2vWG7XSOkJMsLlDI414ODTOcUixIpPp95eRdwNknUlMxx1iKJaGNo25bFfMbbb77Fk88e0zdbRGzZ7kbQt0rjF+8dbujpuoahbcm0Rgh5q2jtuj518UpBCJRFgdaS+WxOVU7QKiPEgLWJExwjiOiJtsfGgBUpY07ojLIoKYoiLc0kuMGNLhvFtm0YnKfuLUK0OO/obE9pUk5cmefMqpIqyzE6S0YJpcdCn+DtxhiyPKPICjJl0Doj1xrBTRTUn4HxQrjhN5OSM2QKZxQyjIsXTwrplChSAqwSSToWb7LfQkiWYPl50f38TT/iGsNNGKXnJtY7l5JcCvJsilQlWam4dgOFyFmqnG1Xp1m6lAzWI+4/4OFbX2Px1i/TO8tECHo3MLgxnFJp+sETfEzRWDGAG5Bac9H22OhR0tD0LTvbsguCs80WLzOeuYiRFZtBYVxGPcDLJ8/TvVYZYq7ITh6RGU0tBrLDO8yWd1nGnMcvfow+ypH3Jrz18B2ef/oJr0xLdyR5585D3mpy/o+Pv4fLjvjp3mt868GXWb045af+mld9wd7xEW/HgZ/4nszBv7V/gCk3/EgrdoXkN7KC55sdz5H8ip6xrjQ+eEz0lEKyGSyz5bv80m/+T/n9v/u/JLZXBNIp/Vb/GyNGGo7nd5A+waSkkFydn3NxfsF73/g17r31FZp6R987Dg4PuffgAV4pdldXPP3pH7F/uE8IcHl6Sr5pKJdLXq03PP30Y558/AFKwHxxwG9+wT33hUU3gWM61qstdd0ynw94L+naZGHVShOiRJU5WZZjsiwtTbREaQEEnBuwcSCKpCIQuiCSMfQCrQVGVwQgy0yiD+mA1Dm7pkXIRHuy7UDTNWTG0DrPbrPBGMVib4/NeosdOwkjE0jHN57BO5TI8CEtgsJoPy2LCUVV0Xctg3X0g6WschbLfb763vvsHxyxXm/G+aih6ztijOR5JEqNFGPHHxQ6zxEidftSp+6671qctdTNjsHaxELwqUt/cO8+v/Vbv8UPvv9d2t01dmjwCIrZgnX9Em9T99e1DdYOCGYYrVAqJW9oo9hsa5xL0J5pWaS593TGZLbPYrHPJM/ItWKz2/Di5RPqrsPHmzQLwEeiGhGEMaBVhhSSIiuoh5bZZELtBy7rDXaweG/JTI5zlvVmg5RJY2m0Jjc5mTLkOhVVoxSZlGlsoVOoqVAKIWX6M6OQQhFwt+jDX+QVx623CGl2mTLcRjs7N6oEgQij7AsBMv37JuA8ilSgCX+66N74+lP6b0xjgBsqVgRlAqvoabctX3ntiHle0NuBHsdqsyWOs2+EpHWOJpdEHWgRhJjzdBjIZYkxgX5URVgpcVGw6y0lMChJ0zuUFAyyJDrHWkQetwMXrmFoe3ZdyzKPhLonyJ5nrz6k2Z6iHhygQgQTqV57DX1wn+niiLuFYRcDV31PP1nwq195j0+eP+a8afj9s0/4pa98nTu25UfdBRu/Rt/7Er89fZc/thu+PJH8d0+WfLwo+d+tP+Yb80MeqIr3RMF/cPGUq1zyRyLyl+YnbC+f89QGXoWMP79/wu+6llOdc5+kNporxUQKTodA7+H1e7/KZ+/+NZ5///9MsgHfSMrSqePN4y/zxuGX6ZseoRqCbfnBH36H6eIeQx+x3cD9199Ajg1Ns7pmd/mMrCq5PnvCj7//Bww+4/1v/0tYpekuLkEJjh7c5/D+AyazGXb4YlzpF8x0R31fP3C1WrNab9hbLCiLHOfSx73doLOCWVGhZNpwx+AIzhF9YHADdbvGBo8QAmMKRIQsk4SQEaPGZFOGwWJDxIdIdBrbD2ORyZAjx9S7wPnqEustkyy5ndqmR+sM7RxKG2bzKUNv08JPiNRhAFql4um8ZzqdYKTGCUHd9WkOOpnyjW98i29885sIIbEuGTB22y2ZyTBK0nXJFJAVOVrp1J0qifUOJSTWDjhrsUOPsy4VHBSbzQYETFVFUZZ89avv8/DhQ/7JH/4hT558zOXFBTLLqeYL+s5h8pL1esWkmqQRyAjcCDHghgFFOu7OZjPyPKcqC8pikpx2kwl7yxMIlunykLwoefzkUwY74ELq2oRMEeN26EeJDcynE4J16JBSaA/nS5x3rJua9W5NO3QYJJNiQm8HrHW0gwUaJCm5OZlbBAY9EuVGyPPoMpJxxN/FEVv/ZwDtCIzSqptRQxyDD28Yzuk9IH1CLwpSCCpIZJRpKSxSYY63nW6K+Un113ODhBQxGYDDeNYVxrMsSubLOVmhWBZTTJ7impRUxFwRELSDZ3CO69WG727P+Ksnb1IHQdEbhiBYD5FMgo+CzimCAGdyTruOc+eZZYaNtdih4To4Puq2LKYl8w5WLhD6a376yZ8Qo+MgtMgqUk6WhCCxZc69B4/YEFgdzbF3H/Bv3f8We4Xhx+vnfLZd84bZx2UlV9tP8Nrzweacv33/Xf7R2YbvdVt+dPmS/8X9L/Hx8yf81Do+cgNfW+zzP4ie62HAKovZn/MrsWLte7ToOS5y/u07J3xPrwmiIijJr+0K/qDb0QnFX1kseC4DJkIlLKHrEarg7a/+TZ5//HuIzVNiTIiCpL03fO31P8eXvvRrVFlFVuScPrvi3ptf5y/87X+ToW9YzOdMF3P6tmewA7rI6V3Pbn3B6eUVP/7kKUJPkcsPEcGzuj7n1fMnXFyccXZ5SYyCtmn47X/9v/Nzb7cvXKRFAsE6rq5WnJ9fslwsEchRl+vo2g45eMppimgJPoyFJyXhOhvp2oHO9ugsp+93xKnGmDlSTCBW1I2j6wa6IblPhqEmeIeLAW+3KTstOLSQKWKnrdmISN+2KK2oioKDvUWSVCE4v75ACZUCLoMnNxkWS98FMmNQKmkNrfPM5lOWe0veeusdvvq1ryJE+sEJqciynKIs6bqezXpN13WYLKMsK4RIXOEoFUPfkZkM7yxd1yfb82CRWiXbrU7d+m63w9mB2XzG0eERv/3X/jq/97t/nz+8+j2sdRidI6qMttmhtQYhcd5RVRVtV49HVECIlL8WwSjFfDanqGZMp1MW873EP1UKbTL2D+7Q9R3nF2e0fT/OjwVaBHwEO3QYo2l6S3BDsjfrtIRRCGSMaCHxwRGkSA+UcWYmkbgxcHHwPX0Yu8MgbgsMN7bOW2dQOvPdzEN/0VcYnZFi3HxHmdQMMqYFjEAg/KgBGKchN2joIEnSLJk6KZG2cqloj5kLcuQFiBsqH5+/ZiMdvndMdcnxfJ/WOlZtTb3ZEMOQRmPqxpIM4vqaP/joA769POHeZMLLCEZpnIxce4kMkWjASPB9h8wKvmwyPrq65om0mFJhh5YvlTO+9/SnnHmPNoa8O2d6LOlP12xDYO+1d1itLmhlDcs98tfe5F5m+Kh0zIucfnfF919e0LqaEx+ZBMd8fcYjO6Cs515c0b/4gP1hR5sJjvXAZNewl1U8nBqe9B2dW/FOecg/9mf8EVt+f+X4dyZ3+Y/XL/hDt+ZPYuB/vDjhbn3JQIM2nm/szRhCBnJKH2HWRj4dWr6mM4Z5ifSeuzzi3tt/ieff+z+hxkRrouBgeo+3H/0yeTmj214TKXBDy3xvj+WdE3ZXFyNuE/LcjIqTSNP2fPTBp9Sd4N7rb/PTjz7iP/m//9+YlAXTrOT45ITr+glPXr0kRMEwfDE57+ePFyAtR3xgtdlyenbJcm+O1oI8y9DSkJmSINPTPViHF5Zh6PHejVbRnBA06/UKYyJ377zBtDpMnvUgUCrNayUpsbbrunHLK24TBvq+h7H4b7Yr7JDsvnvzGYvZjEik61pEjOw2G2zXo7QcHwKePJMonSdZj1K4GNHIxABoB+av7fHtX/tzuL5jvd3SdF2yI0s4Oz1Ncqi2w8eIdw5kSkvV4+a/7Tsm5QQpoNnV5EVO3bQYbZBZNiYNSGbTSSqmJMjPneND3vnKV/jeH32X9bYmSoGWmjzLsXmO9z5lltmU5Gu9g3Hc4n1kt92SG0PTdph8hhCGoe8xLqlEVIS8KDk4vMOu3jIMI/gHiUfirUUqc5tSa13SkAovKYqCe4t9gk9BnT5E2r7DeYsbGQoSPgd8j3SzlHwbETeKl5H2NJpiR++8+Och4P3/5fpTMeji85FaYgP78ftOneuta22EqEQxxnXHG9auGr/SjU5p/J/xa/3p0MKIkAO93dGHnqnKkFFyGepEuYsSHwODSwwTAFNvsE+f8O8X/4T/4Vfe56AokdGRTQvmg+VZiLyW5/xgdc69xZLd0POT+oKvHy852l7zg+GS1+ZTqB3XM8H2+pqXzzYUasodu+Cn7im+yDC55K03XufD/opqccCRMcx9JD/fcBS2eP+S+voMF3oyFDuTo3Y1h9IhtWRZDNjrcx65Fq4KTmZrNhdnTKLieptTLU54c3pM7+BiaHk3N7xGhvGCISuYGU/LwHnXcWX3+Dt2w/3S8T8vKhZdjdeeia64PylwxUDjoAoaj+RQTfn6N/4Wz3/69/C75xAFucr5K9/8m9zZf8DqxWNWL59w9uolXeP4jf/2v0a/2xGGHjlGcKksuzUhLY7v8c3fOuH6+oIP/vg7LJd7SKVRUfNX/9p/iy99/X2+80//gH//f/vvsq0bZvPlF95zXzzTHeU0dhi43q24Wl8xmeQs95bkWiNjgcg1eZ4hRMQ7OxoWHJk2lNkEoyZo2aBlibcCfHorbm0Ldc1NvLEkIEVkt9tgXUipEt5i+47BDtihxw7JL250slzutjvyMkdJSdv3eGfT0zvL2dQ1eVFQFgXRB6waMFonmZoW2H7g8PCQX/+N36Asc9Z9Rzv0rFYrnB0oJxP6If293gUQMqESbZKnOe/QeYaIYLuebGQi6BhpupZppeibJoUySklwBaKUhJgeKJvNlvv37/OV977GP/3Od+jtwOAtPvik/RNJ9tLUNVopOjuk428IdLZDipzBWpq2pigq+mGCaoCiQhDpg0MwSaaIosT2PevdLi27RE5VzbHO4qxlOpmhKkXTtDRtjbUDaMVeVrGRW7yUyLyksQrb1xDHyD6f5pXyZrkfUj/3+Tgt/ozS6sYOO57c+cV3ujAujEUqtHK83wn+lsdzMz5In3wTVZ9eYAKm3Ex7PWlwI2473M8fPOMP6OZnAghhKUzLJMvoZeR6t2W1XYEfEIxp0lIhZKTvW7SWTM6esxGOf6/e8M37b7CYzyhQvLO3h9i17GzGiRb8eHPFgTE81I7vrl4x1RXvyyn/6elzVlbyMOyzvvyYujml9tfcKfcw8zm5iLyWT7grM1pbMm0cR/0r/HaDvD7l2lraIXJ1fkXvLTJ6nkdN4xyiypjMJpR7B0Rp0GWG9JbCR1a7FRMf4NqgZs+wy4d8oksOCklVVRwVAT9I7oiBUksWQrE3ODyeTHdUUfF421Ax43ftiteKyF8Tij0siyrHdIIPmp5CZ9y584jDB9/i4k9eEQncWdzn7Qdfobu85PSTDwkxUFQL7j28AziazRWhb8lms1TvRAIdTWZT2m7Atg1SwHJ5hCTj9OyM68sVVxev+ON/umNzccGvfvtXubi6pqq+GFX6880Ro3BRGoEuIciewe2omxVZJlGTBVqlRActFTGGBEcZUnJDnufM51MO2yXdUNN1jqFv+OzxFbPpgrKsIAiCGDfAaET0zGYFddOx2+3Y1jV919+qAqQIzMqC6aRCa433Hq0UQ9/SNQ1SG4RKywcl9XjTCpQyo8MrDcm32y0+RN7/6jd59OhNdrstfT9g+4F8JHxtVus0Y0ZQNw15ntMO/W2+VRSgpRpHCoGd31BN53T9BmsddhhwpKXYdDKh6/vENGBLNyyoJhV3jo/4zb/4l/no4085O31JFCTI+ugu8jFR2mLUY35X6r6UVCmdQICQCmst29UlcuaYTqb0XY2zHVqAVIrlbMbQtTjn2ew22BCRQlGUU5x31F3L0cE+Com3PU3XUBYTlJAcVDNc8NS7BCbJTU7vBkL4fOZ50x2mqjsunG61ren/f157/6yU28873Ru0YAzpiZCihARIRlT2WIEDeHkzJrjx8cdxlADp9aaUDXnzM/ln8YK3/NaQFCybl8wfvkMvJVZrwOND2rB3gyUIwaIsWHcdVdMyeXXGtm55vlnx93LNlw9f4+88+YivzU74vtvyW5M7/F77lE5V/OVij/+8fkHvM35dT3m5u6KuO7RVzB1cesE0OPa6hvt9QHjLpL4iRoU8f8Vqt6NuBvrLFVeXlwxtS+hS7mC8ETZDSlYBlFF8WpXkk4rJ0ZKDO8dMjk7o8wJf5BQho7CevvGsfSQrJZQVcXLEU10QTaQqNYf5FOSAJPD1bGBfK/aNpREBZM2mG9j4gpVT7CaWL+VT9guBsQLbK9792r/C7374u+Su4f0HX+NgtiSXFeqdLxGd596X3icrStavnrE5e4VR+nb06GHUpQe6ekNT1yip2T+6S1ZM6azH+cjgPH61Zr1ak6mcTOfMyskX3nNf0OkKkJJqYlguC2bzDFVEUBbnOwaXo5VBxQxvByw35on05hZCU+QZB/sLBt+x261phxadB1q7woWOIivRpkSiE6dh8AyDZbAe69L8rx96ohsQmBQ+KZKXvGlqhBA0bU1db+m7gbxKL9o6S5Zn+BBwLiBFuJUy+Ziyx7Is5+79u2R5humT08r2PXXbsmtq6l2NHQZUZogiAdx935EVOWVeUrctJs+JMVIUBZv1Kknb2h6hJIO3VHlG0CVeJK6oVhpTGET0TKqKzBiqKkcqSdt3lGVx+/CKMTAMAwLBEGwSKbmUL7aYzenaBu8cbhgYdIfJDG27S248rQnBs9ttCFHgkOi8IhsGirxgcAPD0BKFoCwqFILeeg6XS6y3NE1N27XpQSUU83yC0Iamb2iGPpHZkg4PNyTerrgppj8bFnUDgo6ClA4yznb/1FH7F3fdwsZHeVHiOSei2K1hQsgxpy85u3wMyYwQAkIKRDoEJb5KDGP3e5MkkNwKt2Nt4Easn7pZS9tc8L3nT3CDRfY9uAElPJkyGK0IPtD3lqk2qBhp65ojH1iv17y32KO+ukJkOX5/S+tqzqY1ma8Z1BZR9Bx0V1gPCz+hvDiHtuY4asx6Td/ULEKkCB355QXb3TUv6ha77bm6uMJaDzq9z2M+xxezZKLoW5wdUvKJS6M/vMP3ge3g2K62XL084/KTp1yeHDE53Kc8OGBvf4/p/jGbZk0toXCKSe/Ju8CrYaCRAVloKBc8x7CTkbySzMoZpoycR8fd3HKQLyic47Go+axtkfGYeYT9QiOqkocPv0q+94CD9ppfe/+3WO4d0axWDPU10Vt8v0PNpggjOXv5nMXeAXlZpt+htmTVNMlTs5JlOcFZRzmxzJYHHJzc4fL0FVmes7m6Ytb1BCTT6RTiFy+Hf/4iTURUBpNZxt5exf5+yWyeMV1O2JvuYUSJdQFrB5pmR6YzBjfQds0t6MSYDKMNRWHovQHt8UGiVA4YCArrUrfYtD0xCAabFmomS2MDTaSrt8TgsX2HkpJdSN3A0LXpKBw9Qkr29/ZYbTZIpYEb9YKg61qkNhhjqJuGtmlS+oPSlKXh6ix9nel8OmL3PK5IT/N007eJyzAuqLquI/qYtKjGjHrdpAcenEVJTSEUQmmMzhn6Dm0USt+MRiKr6xWRyIsXL9ls1oToscPADf5PIMbwSknfdRglGYYe8Ag0ZZFDDGnOanuCy9GTKf3QJp2vHRBSURQzkBJvh2QdNppm6CA6GHqMydAmpxsGtp1mPpuz2e6omxph00IhSaUkOsuJ3jE4h3Qe7QOllAyDS4doSUI5ckPqH4ur+Gd62zCepP4sXLf0//GREACSWiG1sGnUoEY9togjTCaCjyNyJQAy3qAXRilaGHXiYuz8P3/QiLHXFwKwG6zdMinuovyaKBTO93R9Au5IKSm0prMDhMgsK9jVLaVRFNcr3EXP1/cOaE4veDfPWeY7Ph5W3C2mCDNluj0nExItK5ZnL6j8QCEMcbtDbS9p+54XbQow3TYtMeq0H1icIExGrgwhz3HBgveoKJi4dBpyXYtva3AWhrEIhwA+zfjr7Y56u0M/e8H+nWPCG69D3XNdlMhJSeammIlkO3g2wSGMZBZzTGg47zqQkdkaDiYdF3LDKgyEiaGYOC5yR5NHljOJEZ7PQsEz0XJXBQ4XCw7uvc/i+Y8ojaHf7XDWkhUFq9MNzz/8CfrJU1ZX53zwox/x6K23ybSiGCZkeY4QhmK6IJvOGLoOqQyMY1bnLdWk5OlHH7HdrXn42kPuBcfpi+f/n6aM/4rrCx1pmRGUpWY2y1ksKuaziuVyycnyDlpWNI2jabcMbX1bAF2EPM9J0pmUeDutpqhM4KJlsBHbFdjB0PYtbbuh6y1d247H+YAWmqjS1lyKiPMOEQIqMyAidZPmjlpIpEghdeVkCqSIaGPMqPOVKca87ymkRAmRzAIxZbednr/ixaszTGbwfU+329yGSd6794DT09Oku3UOZ5MuOdcaM85Ip1VBPyTHW1kloLiPUFVVSlxAkRc5RZ5R1w31ZsPdu3dYb7fMJyWDt1yv1nhvU+ab9oRgk4ZVSoQPDM7TtA2ToriN9g7BMZlMMVqRKYGS4NxA2+xQArrBMvgBozLkmP8WiGR5zmAHMqnobE/v/RhJo6l04gsTLFWe0zZ1wmzGQK4UXgqGPiQ9bogEmwhQ1jm0EHgxFpdx9CF+tr0bVQuEgAoJIhP/DDS7f4p3eztqYGxGU8d7sxxM6EeQIYzdcdIoCCFukw7ShGFUPghGzu7nxKvP35Kj0iFGEJ529SHFwxNWO58ehD5gpITo6YcW6zxKZ+RSUu+SHLKQhnWzptASrq7Z1VuKwnCJohpqyrzkIma09RorJa9ERr+5xjvHWgjspmazXSOHgNIFdnKCnitsjAwqcVJMhKlU7IjMsgkT79gFT20ULstRkzmy77G2J3YtwvbEdoew3djpS4RWOBs4e/kSKzLa6TGx3XAwdBwgaC1cAyFTVNWEqRa4wSKkZGkUmRQU1nE11Eg8+ZCht56PwhPWiwkn7g4zEfiELdd+x6Hax+mCe3e/gr54xuXTFwz5jpM3vsTxl97gzqMBGyXt6prNdscwDFy9eM7h4RHzwyOiUAy9pZqlBst7j1QaCThvaTY7ri4veP7qBX/4+3/IL33rW1SZZm+5pJxUX3jP/fxOl4gSCmMUeZFRliVlWTGZTpgv96jMHkMPl1dnXHYNTb3FuoAuqlsNa4wKoxRFWcHg6K1mtx1odnZcpCSFwW67oWkahEikr7zIyPOcfhAMbmA+nSSoi9IgAm5IDwU1LivyIqfQChESrSyOeV29tcnVEyNuGOiGjkwrlBS0zZZPP/6Y1x4+pNls6bqGtmm5ePWSPMvou5ZcCUSWJ+jz0FGYnLIq8dZxcvcEmeVI7VBKk8bFCQQkhKLIDNY52qbGWsvjTz4mz3P2lvscHR/z7NkLFgeHfO+736fve0yWRgJhfM8bIccu1iYZWwgUmSYfo3ScGzCmQhlDIMHOd7tkXkgPLxBa0Lc1Q9vQtQ1aa6qqwgWHC46m6xMLoqhGSdn4/SuJMRo3dKmdc5aoIkobKiJ4h5WjrGzkaSAVUUuiUokxy1h4R0WAGAlpMgTUGND4i77ijXD4xp8PtzU4yJR7RhgZDZAWbiJRqPBpLBGVSLbhcNPZ+/RvOf438gaCM0rLkgCNm5B3ESW+vWT3/B8z33sbYY5orq/Ytjuc69FCoAQMfUd/47IUmvXmEgvoLOPi6hKLJ288131HjA6vB86HgabvyKTkMgiaegc+MW1RBXtHbzKr5uxsYGcduevQ1iFixEQJOrJWAhclKMPBdAohcFSU9F3LmWsT3tUFTLvDN1v8bEHsG0Q/EF2fjtzREkPg+vwZw0c5r/3GXyFWJSs7sNluUSYylzNKJ/DWIZVkUeZk2lBJQ20HTJZxohRzndHsGjrXMY0dS5lxYXPWueBkNmVtBJ/aLQ+Xd/jav/Q3uDM9YegD5WLJ3vHdcTHpsXv7TPYPsMPAq48/JrhAVlTILE97mmFAkdRHzWadFuhK0jRbfv93/wEffPIpWV4QxkxCpSVZ/gUllX8Ona6QoE2SMVXFhEk5I89KsqygqmaUpcbHSFPv2GzWDM5hxiWWVslrL5UhWo8US/pui4yBzCi6fqBpWta7Hd57JmV5izMsy4Iyy9PcS1S3GZwiena7HWVeMK0qjJY0bYNzFiEiXVczWAfKYJ1NUquhQ0mRHFXrFfPpFKM1282WDz74gDcevcUbD+9zfXEBMkHPHz/+DK1ecXJ8RDWbo4xBCUGV50zKApclMf3m8oqmaSiKgjzT7HYdzlmsHRiGgdOzU5q6pqxm3Ds54f2vfR1lNJeXlyz297nz4AHTxYwYApIRBiRS3I5SivVmNWpePc721MGjRCTXBuMTe9dFSS4ToD3ThmEYMMYwWIsdBowpsC7lkkmryfKcoijp+4FM+4TkzCu0VCk5IKSlnTFm1E7HZIBwDh96nAwsJyVCQTQ10Vp8hAZBIyRBqbHapEgbIHW43iNtipcxwiPDFx/F/pu+YvzZJL5IvAmZ5GfkZDGNHpKDb7QJi5vymTgiQt7oE0J6mIyj7JtX+KdSg2FUptx0x+nh0zWntN011dH75Ef3kWca5a/p+paub/HOo4VCIGj6DT7CpKwIYQDrmWuD8pIiaiYyQ4+c2XnM0FERhWA+nzJdHjFfHrI3nbNbX3FRr+jcBrylI+J1+r2VJke0bRoVmhxvDE9wSAnHWvP2oy9TXFxzWa9YtxtCloEukM7CNBlxVLfD12vi0IG3xOConz/lo9/5T3jnb/+blL/y62x3l+ydPWc2bAlasCgnlGUqdkbq9L4rSkoBKopE4lOCuSmotGGy2/LpZo1Z7nFXPeJlvkWYyIHJ2TcnuKaj3fWoNzJkniEJaBeRucGWOdVszsX1jpfPz1ie3GdyeIAxeTLLjGOkrq7puhat03J+vtxjtVrx9sO3+Nq3vs5iOeHTn/6Yf/IH3+Vv/Pf/Jz/3nvtCna5UiiwrmE33mM8OKYoFCkPwCecnpaQsKiazPcz1Be2wvv3vQwx4P2BtxFtJOzgyM6HrJC707HY9q1VN27ZMqwllnmPtQAiOpmlxfY+RcPfwgLIqiT5hEK9yw/V6Q9t1rLcDru+ZzSqUMrRtYnwGl2axN8yCKAXRQ9cmTa0bAzWn0yl5kfP2V77MnTsn/MHv/kMWizknv/ptXr4458njz1iv/gSTGaqqYn8xQ0vJZrthu9ux3u7Sm5BUhBEkGVfTApL9/SPe++rXeeftd5jPJ1xeXdF2PYfHR7z+1iM+/vTZOBvOKXLLMEA/DAhSsvDQp3m1VBpvBwoh8YCTEes91gfazqKVYVJkZFliLyAiWil61+NdRxAKGyLB9VjvKMopWVExeIvynq6tUUozNRldP6AlKGnQQiUAjAflHAUOrSOliuzNS9QsIwaPU5qti5y3PZvB4260uTfFJgbkjXVZBEpxo3f9xV7xxqwB47IvfU9RjG66yK0zLYzmhyRLD7dLMsIon7sdVcRR+JDK7o1r7Wa9JsblYsLvptRbhEFkBYvlA/YP7nBy/Ijs67/BTz77jPb5R+wuTunqdZKiBdCFwZic6XSSEjyEwmiDCwlMlZkMIWVabouMUM3JTE4fLFGXnK02fHp5wRxPFJKlKSl6x/ngCNKAs2wmGdFkeJlxWBXccYFQ5ND3nG4u+Uf1CrxgohSHec55vSVWJTJWGG8Zuh1+toea7iH7Lb6riU1N6FuGzRU//b/8H9irr1l99VvEgzsUO8NyaHjPO96Lhiyk5XdZZEyURghF2yfN+H5VJZh+gGvbEXEsa8WgL3HTKYfzCdebC9YRlsWU/eMTsrJEyPQgInrs0NHXNavrK54+fUKVF9x/4xFmviAry2TsGR+yw9AjtGSymCG2cOfkhG+++xW+/KWvcHTnDj4M4xiw/8J77ucXXZG6nflsn1m1T2kWZLIkeknX9GSiwWRpLpXppPts2xYf0tE3Wkvb9rSdJUZJnpWs11u6vmczwmS8sxzuH+J8OoYTA1mm2J8vqKoJk2qCtQO7uuF6dcVqvWboe7ztyY3GKEE2KamqSUokcBbrI7u6Ji+rpMsNY+y4kjjn2W43RCHIijQc7/uBF89fMatyXn/rdV4+f8l2s+PwcJ/X3niT3W7HZx9/zMcff8jHH35AW9e0fUc3ana1ShzbPMtZLPa4f+8hv/ytt3jrzXeY7i3Y7jZcXJ3y9HmaWb/7/ns8evNtdnXLyxfP+f4ffYftZpNeu9ZIF5AqUDcdN4GJOsQ037UpqVdlGdankUIwgcF7bBBkpMSPLNMMric3GVEI2t2W3vkE5wkBqbrxWFTS9kPqzl3qWMcVDwLPpCqgB+UkwgkKXSKyQGkCR5OcaZkjlKILcNU65LamvVgR3Hhcl2NSRxBoYFppjiYZs0JRml98XA/hxrwg+RxMPqoOkJ8rMUa1Rgwp5y2h6kZWLYxups9TbW8LdhS3VLL08RRTFYGoFKpYsjx+k/2917h79CZHx69RlAuE0FztWt55d8nLe19BXJ9jdleI7QX7ItIhaN3AojAsqwl129INDfenC6KpuKobVm1HFxVmfkjjHcPlOVf1ljZuCbstg2+o40Db7tKSVUuUnrCnCvK24XpTY8sKGXsupeAqeuTQsSwrTk5e42zX0NiOtfCUuqIyFXYcO1nnwVSQPFAUfk69OidmFXQt9A2h77n+T/9jRN8S3n2PRkHtLC+uL/nd05ZcO740m/Ll6Zy3JgsOpnOqTFFkCh8i/WBp8eRKs5Sa6DwXly/Yzx5wf5ixOHqfu/nA3mxCDJK8LMf736e4q8srLi7OaOs6RWD5gd12x6zukCqDTBGxtHVN0zTjgk0mGmFn+fKX3mT/oOL67CkuOHbbNV3zL8peIIUbVllJpnIkkhgEtg/sQoPrIS/7pIUVgaKYUFVz+r6l7wZ8iNRtj4+CEGFXp414vduRZ7CYVYQybYK99RgpMNqwt1iSFxMQinXd0rUNV9cX9M02zTKHboSupIyj6Rib3rYJMNP1lrppkCZDS0mmJC6kLXAgsqlrtFYc7B9QlCUfffwRs9mEL3/5HY7v3kVow5PPHrParLm6uub46ITf+ou/yW//y79N3w+3v4T1ekUIgaqaUBZlilgvKoSU7DYrms0VH/7kj9m2NfPFHsvDQ4q8YL7YZ7vdst01PHv6hL6p6duaySSZFSDloe3qBiUUISbMpVaa3ibzRxgBLAksPZBlGRZB7yLdkH723DgFAxA9w9AhpE4kLQSZTmqLPC/TGENopNRMJhO6YUDEiFKS3ORYhnG+7MiMZFnOOFhUHCxnqEyx7S1q0zJIyVldM2y7sVscj+8xkmnB/nzC3YMZ+/OSefmLL7rRJxbtbQKtkBDluBEbF4M/u/6KjAu1SLxpdtNgFoi3ml24GQ3fLOkSg0LqnHx6yOHdr3Dv+BHHB68xX9xH64IEtunZ9I5N33HVezZechUFTbFgKBfIvTv0GTTe0gbB6TAwXF8itltUVHwkNEMM6E1L02wZTEl1/Rltpim0SKze9Ro17NgFTwyR42zOafOKxgpapdhGS1aVKFmQyZz7xZRXZy/osopeCS6GjjWOyeSQuQpcry7Z6hJVGBaZYXN1gZtMYKYolKCvr2ldhjieQN8igkM2a/zqDDZb4j/4Hcpo6d57lzgtCdbSZ9CLjn/arvje9SVfyiv++oO3eLQ4RGtJaRRKSiohCS5iXQ/R8Ev33uRg7wihNLrrKHKdCq3UqGyMhxrDXvumgRC5d+8+89+o6NqOerPl6vSCBYpsLomSFBigk97fDQMQyedTjM3Y1VtOz56zul5Rr3fMptMvvOd+vjlCiIQpVCOoPECwMHiHGwJ9M6B3O8qqAqHIs5zJZE6IMAxpWC9koo41oyRMCMFyWTJYx2AFmkjfNmQSMOkNP1vs0w0DTb1NiRV9y9AnrsLgkyhSS0lmMg6Xc3oXuby+IpLy07Z1SmDo+wHhHeXeIuEfXaRUGbu6wQdASM7PTun7nv/iPzujLAtOjo4pq4rX3niNy/MLnj15wuPHH/HJxz8mU5r9/UOKyQxTVSz2l1iXIDTb7Yqr85dsNhtW9Y6ubZBKUk7mzBZ76KJkOpux2+yo6xrncp6/eMHF5RVVVSZVhdIMQ2JXtH03yuYMfd98zgMYl1YxpPkeIjFs666nqAJER0ThnEUqTZCja0oqMpUA5jEqBmfJjAEpMcFQFiVNvUGZBC2qijKBi0KaUQohEVIR7IDrfUpBVhqTabKswKHIck+eWTKjRzutHQWsqRMscs1iPuHocMHR/oT5P8em97/py4WAivK2sb1xvcQgxiLM7XBWyJsMLp/kcOJn9Lk/i6m8rbppESekoVre4+H9r/Ho9W9w5+h1ptND3PiJg3N0PtI5x67vkVKy7R3btmdtHdvtCtnX2O2G+vwZn569YG0HwnSJNRVHjWViDJsyx11s8UWONJr5fI8qDjzQJS93LadXK/rzFwzNlmFWgU/xS/M7D3gwn1I3W5QVnG6v2QTNkE8IxvA09GRHh+wpjfGB59tLelUw2A0zUbKHYeV6nArUnaUsp/QiYpUgSEO2d5ehrxEYdLfFNRtQMjn28oK422K/913Ecop4+y1i5onba2hBdqB8OiM8323ZyyoOphUaxSTTKBRmUjGd7jOp9sm0IaqUJF7Np2jZ0O025NNlGre4Ad/3hACqKMl8IM8K5vM5q8trnn/yAq8uoKiYZoZIZLPe4rqGgbQXOn32jPOzM0IMXL56Ru86tpstb7z2Gnn2xYzoL4zr4eZIFYGYuqboPSE6cKOcyw1JvmQURVkkq67whKjJCAQxoF1HlQvyvKB3PaenPcFFhnaXwNHBpeifKFB5jg4JaNP2PcOQCtAwDMSQTAWFURws9wgRVptrjDFsN1vquqHre1yMNF2HyA1d15Jlad5pbUTrJGkaRs7DanVFUUx49vQZbz56xHqzIStyjk9OQAiur6949tljrupzfvLD77NpG7rBMc0z6i6Ry3I9pgoLyd5yyZ0Hr1FNp2R5iZSC7XpDbnKmozNsvbpmvV7xwQc/RgiPkSkCvO8HmrZGG5NmgXhiSKnFN4AYoTJ8TB3trMgwWU7bdWzrmumkQgSfOA1YyrKisw6tc4Ty4EViXci0AFUiua6KvGSwnr5r03jCZCgp8N6htE77fZcA9m7w2N4ydANNZ0EprB3wzuGdS/P04JBBEAgEASp6lNJMqpzZbMJsOqMsfvER7N4nh5+UKsWwxzTHY5zlRnlj2R3HBKNjTcQxnDMknnQKg7xRQoyfL2Bx/Ihf++W/yVuvfZ2DxSFSKoYQqZ2nGRwiOrZtl8YbPlBfvOT6+pp2t6J+9Zwnjz/is88+YtVsiEXJfO8OZnFAVUwZLq8IRcf5dEm9PGAveE5Cy9Vqy1YZbDhn111zKmHw6eFyNKsQSnKBQJgMW1/y4eljkBKpC5bzBY/2D7hab3HOcn51yq7QCJ1DWXCiMt40M87tjl1oWbsp2XTK3GhWl+f0szk2z9nLDKvLVwzFjHK2Tyahtx6mS6LMiLFHThb4bofYrPG7K/jO95ncmyNkQe076CPlEDjJC96eH5IpjSWlMzfOUWU503zCwf5reFkQpOCHHz5mOwjKXPL+gSSXLcNmxX4xYxh62nqHrWtC9NSbHVenZ2R5xmwxQ5qaQNLbZ1mWdiJ2oGkaus06hS5IOD875dNPPmHoGvJMYsPAbnfF7/3+h2x2Nf/O/+p/83PvuS/UN/iQwOE3M5QYRBLx23TkzYRAKFBKUuYVuVZ0JgXOVWXJdDon+MD5xUs211e0fUfbCna7NCtxtidTaaxQVSVlNadvG66urmi7mrpJ2WbeWYxWLKYTFrP0z7btaboE11lvdrRtS2/7RPpRkugsUSf2plIKpSPBO5RIEJ/OJhaDUZrrq0vq3YZXr04RQrBaXXF9fUVVlvRDTzWbkE9KvIDu7Iyz62fsth5nLYGUjvzGozdZ7B/QNQ1d32FDoCgdi3kCu1tnsdZSVhVX1yu898xmUy7PXqGqEh+gHxIJzI+mh77r8SHNYl0ISDHKlMaOt21atMkpTE7XdUglmeYljrRQoWtwSPYODun6NKJw0dMPfbJva5UKrJBkecYwDLihZRhairLCuoG2aymrCUWW0w89KjPUreXseoXDMe1n9MGzaTvWu5qmbYnW48YCdKOFjSM4OpLytvrhF69ewKfARnEL6hkXXDKOhTa9htuIJ5lGCGkwezO/leNy7MZNkT66XLzGX/31/x7L5V1i2/KiPaMdLGvX0XaO3dU1T04/Y7CR2NWYAJ8++ZDtbst2tWa3usT5PsnyjMErQx0cauhAGe6UE171A/7qEvviMZeF5rSaJxXLYNmbzFCzfZ6trwh9D82O59OSICVCGJaTgrvZCZftGsolziiumhWv/IoYDdPZjLthSIGTmcN7y6ui4MJoDpf3cfUluwg2z+nzOdVJSRt2BKPosgmz199i13b0WPK9OXLXEkSOmu4R2hVqqJN92ExB5YTdBYvvf4z49vvUjUd1HcYPHE4W9MNAVk7ITYY0OZUyVNmEwcz58auG6dKw6ho2MUdOMi6bHY9fXtD35+TasLgHw9DTXF6xXV2jy5Kzl895/KMPeO2dL7F3dMLi6ISD6w5TTZjMp0ymE3wDWVlhuwZTZEitEVozW0zZho6vvPsWnz35lO9+52O2zXiC/oLrC9ULEUHwkb4dqGVLl1m8b+m6HYU2SGPoWw0kkIseM74mM8N874BJOcf2A8PQU28bmo1jdV2z26b5LN7hpWZazSirKRFBvdtR7za4YVzw+CTQX8zmHB3skxnDalvTtD1aSdqup2k7nEukrIhAS4USoJUa89RSekMUgjwz9L3FDZZplTCN00lF13V89tmnlGXB/mKPvihp6ppml+zGXdvSW8vB8TFIiR166u028XdDwIbkwtlsN3gfmc3n2MHjXGD/4IgYPIu9Jd2QouOvL6+YVhMuibdRSNYl268Wmm0/jIQ1uGUcyKTdzchTkq2UDH1HXk4SuTVE7MiLsON4wHnPxcUlRV7QASZahuBo2haT5QQPs6pkMYk0UrBr0xw9FeWcXZNkS2U1TVEv1rF1jvVuw+nlBdP5DJVlNC5wuW3oOzuejsJ4HyWGbN8NbNc1q0pj+ybR137BV7hZgImQ1AchJkh5jLfSMPhZyVdMQRM3arKYHoThRpMMCBSZKXn0+p/nhx+/wMvndHYgBEW76XnqanbdwHE5oegGznZr+m6T5t6DY3t6RicC5BoxRESmqcoKmVXMdUmzvWbXrfjUpOTqRVZQtVvOdw5XNAiTg/A8t3VCQ8qM5eIAv96wfXWOreZQKSId69kCVRoW1YL7uWH4yXNslhEKw67e0GeK4vU3uCM1r158QNAKl0Wu6iuOjo/RbcNaSnbTitn0kPz5BzTa0E4nTCYK0a6J5RJXLSnLLe0AaIXoN3iliSYnFjlSG2RV0D5fYfc+RS5y7ucFWiqWWcXD+cHIcEujTmkqxPwhT8+3rK8uyF6es9aKZntNf37ObP+IqbxEdRc8ePgmuiwxJkeaFGm0u7rk5ZPHXK9WvK4U1WzKVM7xfWC92o6Ev55+t8UNPcVkgusbrl+ec/bqBfVuRfSW2WLKW++8zen5jg8/+ZgXr15+4T33hTNdJSR927PZ7MBHtBG40BPEgJKeLIJzPbENhOipJntoJZnOZswXexiVMygFl7BtHKvrLasxlaEscprGk5mCaTWl7x1Nu2HoO7x3DC6BNfCBqioRSrNrB4ZNQ9u2SSoTEnokjJ5N58Otlk5plSLIpWToh2TPRaC0Ic9T5EfwgWlVEX1gs15z+vKUkzvHTL/xTe7ev8+zJ09ZLBasVyvqtsZ7z25Xj8GQGUVVoaTger2m71uapk6zZFGzt9xL+MhhIHpHNdlnu9vyRz/4ASYvWF9fIQXkeQEBBjswdF2KjRcD+HTKSKbROMbBpPByF9Kb37qYEni7DiEim65HLZOTTylN11uUkvRdg9QzUBplJCqkwERnB7SUtINlkicYfBagbWuyoqIqJ2RZQdvUI/hD0fcRIRWXV1u6dodTz8mmE7zKqGNkCGmGe0sbiyQtd9Pz8uUZYWioCj1m0v2Cr5j4uSIEEOFWhhRiQEh1W2xj/Hx8kMQLaSYpxA2zFW4J7Tj2F68jxILddotTgouzLY0JqNbh7UCD4/HmkkfVFBMi1xfnbIcG17fkRqLaHrWraXNF7yJ2s8JkO/bvvs6+nhHbLW23xQ2Wq7xgs1iQmYqjvOTOdMH64pxn56+wRQFlyUWITO/fYy4kWVAcBfhw9ZKN3aDKKTsf8IPm4OQ+hY20q3Mus4jTOX1QxMmSu6+/zy7UrGyDrUpeWc/D+4/w3cDWQKfgwTe/zdXZCzZKsylnHHz5fc43W7zJMULSvTwnZnP0/mEy3nQtdB7yCjMpENsVk6uWfGa4W+YczQ6RUWCdpTA5TdewMSVtUHzw7FOeR0knA3K14+7DE5TPiNM9PANqaMiykv07dymnU5TWZEWBVIIXjx/z6cefMK1m7O3vUU6S/Tf4dJ/WTY1lYHt9hYiBYlaybq95+uQzPnvyCd1uxcnhAX3fsLc349d+9dv85b/yV/mTn/zkC2+5n1t0lRAIH7Gdpa07jNLkSKKwRO0IUoEWRJnALNYnaUxZTcnzDCOA0cxwdrFis2lo2+SWUSKmLjZ49ssSowV10ybXTd/ig6d3jsFazEgya3rP9foSpdJ8zaj0xs3GSPXB2mTHFAIlRUItWkdWlGkM4B0IidLJ6GC9wzlLUZbYrucnf/JjDg4PaD7Zsb884PjeCVoJTu4cs1mvyLOCYB1nZ2c4bxPpywWKcpSSWMf1eo11llJO2NU7hNQsDw4py4LziwukkLx4+mScL9VoJanynG1dMwwOa3tEBCWLMRocbjgGUqk0K5UZSpDGPG5AKYWNQ0qxcJ5tvSXPsrQMkoa63VHmOV29w+QTYrTkeY4PGh8CwVuchU6SOMgETJbTtTvMGMszaIWzA0KlRRtRoISib1N22mrTIsoKypxgNJH0O7rdKQVP13rO+o7NaoUWET+4/69r5f/vrvSzDYyyLyluqbhpoiBuC28qukmyIJApgUOOYJsR9yhk0vhmas6HH35ImWlebVbMiwXXT5+yNYKDbMI973m2u+In5x6D5CA6mnrD4CxN8Ahr0UaRI8ijQAgFEU5XZ6BzlMk4ms0R6zXPmg0Djrao2LU17bZmcfcO95b7ZEIhOsuHtFx7h1EmjR9sy3HbUa222KllO93ydDoj6oKsLDie3ye8WrNTPV5HNkQ2k4qjvXvMX33GNtOEzPCsH3hwPKN7+ilOHVJ7yRuLGX+8qxm0I1vOmIaeXTkh5hll8DT9QHlywObiDJnnRHbkfctCGWbzfezQsrRz5iZnaQpKnSfbe6Y5nO1ji0P+5HrAC01lBMFF+qEhXJ2nk0qwHKE4ms04Xu6xd/cOeVHgnSN6T7urefzZE16eXfBLX79PXhVIJdGZoZpPKKc55+dnzA72yMoMFTQieNq242J9TV10nL86Y39vyvXFFWcXl/y9/+zv8+677/OX/uW//oV33BeyF0II2MExdAO2shg0SAf0iQ2gkxA/uIi3PX4X8UJQdj1adtTNwGdPX3B+eQ3BMvQtbdejgodgKUxKmj27OGfXdFTZiCmsG/q+p8wU08kcIRRuaFEy4l1ITqcY6PsOJZKrx5OcNDFa8qxARIExihgcg09FQOoIcbQKx8RhSIXB03Y7Li48WhnOz17xwUc/5e233uLO/bss95fU9Y5YFCymUy6uLjFZiQsW7z1FkVMWJV1v8c6jpGI222Oxv7xNGm6ams8++ZSu69hsrlKAoBTMZjPcZk3fd/RDUnikRjfJmZLFViJIEPa0RR+XawIGN+BVUicIEWnrHUJMEViyYoKICZyDTcoFaQw+evK8uJ0DS6WS9VPp0aASiR422xV5XiAjaFPgrR3//sj+/gkXV5f46JAyT6qK8Yh+2+XeLJZiItDVvaUZOqIdUmz8L/hKXIRR4SHSPX+bEiHS0iwpFUQiisWYULvyc/7CLZx8bHiFVKyuaq4uz5iVBeurNasocVrSrjpeiFNOFksmQtMNPT4MvAoRPZsz6VpMu2MVLW1u0FqhpebIlLRdy67eEU0PRcWVd5jplOrgCN0PlNZSO8/FSUXb9WAyZiJwUK9ZXLyiyXKyWUXoB17MZ6jXH5Cbijv5DPfpj9iIHXJ/gtOKUxXJHr3JcfScPv4+3nlEfsimFsxef4uT65e8WL0gKEHscu4v93jqNlx0jvuvPeLwbMt5adlMAt86eMA/qXuGbMqxOaY9XTFUE+TqiqBKxGDpVWQ1RKZZwdRq9Hbg6O4RisAiMxxM9qjyDK/2eO5K6rDBvXjMpDIoG5iEDReffsJal7Rna37lN7/NpCjYv3uCqSaESKpPQ8/QdGzXO3prkUox2I52t0VIQRARbaC+uqCY5JT7C2KIdPWGy+0VZ90LbOX50jffY/t8R+9yXn/vK8y/8xM+/OlP+fYv/fkvvOe+AO0YcNbRth2d7ZmHEiEEPvYoGZA6gPYIEVEhAxfxQTAMlq5p8TZwebXj7OwUFRxt21C3LX3fI8KAEZK9xYRd33N+vaLMc663Oza7LW3TkCtFkc8IQqatukv0sRAjZVmxaxqMIBG2QsCHFC+dYt4j1lmqIktxgMGjtURJgQgekxtibhAC6nqHVhIpZUpjqEr+8J/8IX3fE2Ngt9ty9/5dJlVJZjRXWnHnzh2cT4u5yWTCxcUF88WCuN1xcnJMcCkZQmY5Zy9fYXtH3dRcnL3ienXN8ckJL1+9oiySdzvEgB26hGqUA3YYUrEVAqJH4JPGFjlm0YWEcCyKW8utDyPL1g/Uuy1VUWL7BqFSSkaIisFtqcxeKujWkpmM4IfRURcYrEVLTQgWFzyuS91odB4vIDM5ISbamZCCu/ce8ursGUEpnJLYGAjBj3E3o+kg/dJGKWsgpHTz0cH1C77EjZVBjrybiCeghEypvTH9eUQm10hMho8oxhj2G3SjuLEKS7TKmVQHEEpebK6Z7u1z1ltckfFgNmfTNLx0A1oo3lgesVlf8qpegRIo0sNR+0hoO6KWWA+nk0A2nVLKCVNTMisqPu437ExECkE2qZhZR376irLv6A8OyGLguulYLZbIh68zkYb59opXXU1zsEDZSGsiXgxk73yJOzIjrC45Ex1eFjgtMdMJd+ffJrjA2eVjei1hEvnS/h3qfkMXdjxrAt9+/R7t84/omPCwXfBi98ccqDt81b2Lt1eUJVTTjG8e3+dKa7wHc7DP4KDUiqZusfWWS6M4znJ017EXct64e4AWkolR9CLnRy+vuaw3rDc7Jiqwsp5Hywmb64HGHfNx57h7PL8lCso8BwK23WGbGtu3ZEbwtW98mfsP9phVhu3qCoRg0jVIrejaGiEF/dAha01W5ESt6EJHPp3wN77513nj8AH/0X/4H/LBxx/z6P13+Vf+9r/Kf/wf/B2uLjZfeMt9oXrBucS39d4TSG9cISXKJKBNypgNKB1RMsPagBRpztu2Hadn5wQ7ELxjs90y9ANdW6fsraqks57Tq2tEjHTeUbcNGihMQVlVBKnou456u0HKlAk2nU4JMRCdxWlJ17ZEqUBpYt8nCLkQ+Bu2aeRWxd40HUprlElAc+ccdV2zt7dkMZtzNlyyvl4hRZIRvXp5yv5ynw8/+JCHD+8zdD3Xq2uqasJ6k3CT2mTM5wuMyclNT5ZlTA/Scun5yxd88tkn5DrDFDnXqyu8d3RtQ55lCCGp25Zh7JBFTDZiSA8QQdKHCiSZzsfXFIlCwRhUmZUTtDIjyzYmhYLz1HVNXjiKYkL0SU0ghGBoWrKySryKTKaHGQLH5xKqEEJyXY0cgiF4BjfQ254iLynyis525FmJKSd07vNsqBjCCNVKQCMg5YeFcQaqdTIN+F/8Ik3En7U+jN/t7QPj5pM+VzEAidM+SsLi+EXSqSk52KTIaZsWtMSHyG7ocV1PO+zYqYrFfIm9fEnvGp43NZPFgqW3YFtWzrOdJYF95j2TrmPje4aiYABUjKhMszQFB13HrhtAOvr1judljjk5IMtKpl1LPD3j/OQOAYuwHqs0cjplEgLBaqKBYHesjCeKCpMp7i33WXZb6jLH07HZdayqCYcHE6pTy05sKUPked/yjW99le9++HtkWcVhP6VbbwnbwPXVZzzaOT7+0R/x0+wz3rp3xKPlgruPTnh4uKEyll1+RDHd4OseqXOElOSZRlqLkhU2H7joHO9LyOSAjTk/OR/48dWGKptwd7/CKMn5y2d89+KMs4sXOC+5yPf4xv6c7cuXcH+PLDeIGBjqDV29YWh7lI4c3FmQVQEVNMFbuqam7zsigc35BRFLsD2ri46iqgjSs1fN+Lf/1f8RysPv/e5/wavTK1Rs+P3f+X/yS7/+F/hb//rfQjbZF95zX6jTjdbjo0PgkSLNsKRWZFogpcRHyxDAiIjRilymuHBvHfWuY2hbCqN4fHqF7Xu6rsUOPVKAMXtcrZNKwSiJu4lQ1wadp+OcswPtKBsrckMQaYnUdclu5/oeH0Bqg+07iB6ji2RnjeC8G2VWAecDu64nN4GicOR5BkbRdi1Dn4qQlIJJWRARyehwfcXv/6PfZ7lYMJlMyMuC47t3iT7QDxadKdYXV0wmFWU1w0eP1ooYHb0dePb0Kevrawbb42Mgz3KUUDR1jcmT0qNvG/q+JfgU0X1DvvIelFC3CnylkpY0eDvaVyWD65BSI4s0IkCkN3oMHi8i1kqKPCKUxPUDWZbTdzVBRLz343lYpYI86rFTX5dm3oRIL9XocYi02y3BOmbTBbnJ6eiRWY4PAz6O+tUREpLqUeCWMiYiQiVDB0r9meDpiigJt6DxcREmxuCdm4Kcfig3JrXU/YYxgFIGEIpAMq/EoACDR3C+XnG8OOKnu6uUot20vKpytm7gXjVnVe8417Bta2bGsGctqzgQTA5SYPueHkGVl6huQFQSoWBXX/KR6xHSMDUZ89rxaVngJxU+xvTQNobl3h5xsDTSEOIOqw1nsz3Ew0cU0wWvO8/HT34IdoI+UggbOHMZ2d4hb1Qln5z9GFtMURhkH7n79ru4ruHx2Z/A63eJrmNPZEz7kk9++oq9ZsJ3Pv0h+SDIdztMmXP/AHYvz3kVenZvveLev/yb/Oqd13imZkR1nx+cbRmUhBdPCV4kMA4VWhjOOsezV0/o6s9Y84Dz6deQ+YKCgWZ1xuPnL9jszrkOGSETLM2Md+Y52e4ZOt9jb3GfvMyJztK3W9p6xXa1Y311zTC02G6LNhOKyRJlDHboqDdrdts1UkiC60FImu2GSVXw+tED1s/OqPbmPH72islkih0iP/zpR/RNw7f//F/g/puvfeE99wWUMfDRp/eIFiiT5h0qSyBsIQU+OHxIR7KoBJmaJO1dDOy2W7QWXK/W2KGHkIImg/MU1ZS6H2i6foxrJ7lUVCLzK6EYmhohJE3XomLEI8dE4BbrunFOk4hiLgRs15AbTWYy2sHivaPvIyrejOfG7bQACGRaEdC0TYtRkjzPmTqP0pLrq5QCcXVxhnWe6AOvXrzk8OiYy9UVRqU53zAMzBZ7FHnBrmmoipKma+msJStaun6gHTq8SxbaPCuRJiMS6XtLKTTD0BNdWvQJpUfzyShBGrGAYYynTwhJhXcDLoxmBWcJHRitUdogIGEZnRu5AB7nHbZvuQletLsNWmds7MCkmuKsh+iJBCZFiR9NMd4NlBTJkOE7Qoy4fqBmS5Zn5EWZXEBSjrU13lp/U40SPxMkIcEIbqCGIv7iO92bKz0sbtBgaRk79uhJl8uNOOHm/rkZJ8DtE2acYc+KJSKUDO0p5VGGvuhY91ccZnPEdo31jot2S1lM0b2HENhtr3DTOZP5DHN1jW831EqzW0xRRpMLwWHMqL3lSlmCbZBojKgo9hY8HAbOfUfQMu1EtKBeZOTlnDdm+7Qff8YnuiP2KzASKR2XRnL3nW8houX05UfUswkx36PvFRMROFB7bKoJmV1zft5xfjDnV44qnq6e8bbTHLdLwrDHD77/XZqrS+aXWw6C5yv33+DhW2/wja99jbfefY8sMzx98ZTNasPmjz/kzp2ev/LwTf5xJnlaeWQIbFXJN6eC99od1cGC3Guy4JBhzW6z44XrKQrPbHVO1pzyu2crMBWbbA9ZTCiwHFQzTmJgT2YcLaZMF1OUhDDUuH5Hs1nz6vkrri6vWG+vaLYN77z7de4tlhTTCfU6pH1RHOOHIingNgZmsyVXr55jg+OTP/6EZy9e8vjxM2azkrNXKzZ1zdn5FW+/8xN++9/4F4hgT2mvkSwTZLnEGIFQEW106uYIY+KuJQqPURlCCrQak33bFh8C1vUUmeS87+i6PqELjUmZZLfJwSBDUhZ4BLau8W7AW5vywkYwdmctQ9uiFCA1PiZLcN+36f2iEj9ACEcIgqgTnzPGm+yuNAODgJQRow15pjFKMikr+q4nyw0mS3lJboR015s1u7pm03zGk08/4623HmGtY2+5QOQKFwMXF+dU0wlPnr+gr2u223RkEUSUlBiTIb1HmYDUmr7tk2C73mHdQBjTIoRIQBUhPFJl4xY9hX6azAACrTOi7YlEFBFn+2TNDY6inCDGmPSbeBnvfZI+uWRZcG5AFCOeJUQgpCw273AmS2OKLCN4R7SWEMJYUNPiLo4cY53lVEWJHGqcd6N0b5yTxpQkISOpd5YktqxUMEaL/5m4bmtm/JnC+/k/8eZjt588qhiiuC26QtzAbyJu6Ilux2K+5PF2zR0Mn+YV66rk3lXN1WbF9cE+rVEc9xG/uuJ0McfKpE45PjqAVx1NTA89hGfQGl+WLPQU2jU2evoQ2NiOD2Qgyw33p8fIqy0fscNJBUhC33ChFXdef8Tx5Qt2MiCUp1+dclrMkO3Ag/0DDkNOs9uS55Ji8Oy2Hfm04Kv7c370+GPC0YzDRcG87Xm4k7j6gr+/fspvPnob8/gp8slLptOKb7z/Fb721a/y2oP7PHjjTVzsscPA8WzGzGS8WxXs6oby1ScchchfnczITx4gHt7nUBuW/ltMqxKtYLJc4HrP9z/6jH/vd36Pl9/9L/mV+3s8lpJu8GT9DhEt03rF4t5rHHUr9qPj4ck+r7/5gKIqCEPHUK9o6y3b1TVPH3/G5WrLEBzL6QHH915j/+QOWW7QUuMGl9gmMRKUwjtLkRcsj07QmeTFZ08YvODhyQNmRUXdNezv7/H48ad8/6NP+eGnn/G//oLb7ed3ukqQl5qy0mSlxBQCkymyTCdQ9sgXjcKjlKIoJhSmQkSD7QaECLRdR1VkuN5hnSeQwDjOe9quScd/BDak462OgrbepiVSHNF3UoNUdF2LdxZiJJNFmhFKyeB9Wt5olaRmdsAGPwK5c4ahI/iAHxcjLiShfqs7ylIyKQu8H5IfW6Z4cxcDmVJYIVI0jdFcnL3ixatTrHVMJiWb9YblwQHT2RQ3dDRtz8uzM9arFdvNhtV6naLbg8NkGZOywkWPHgE/IQTatqbvOlyfTBFCpm16EubfzM39rVIhxpiCNo0BIi44UJJg00xYBo8UkmI6J0rwxMSy1aMu2VlQmhCSYSH4lEyQ6ZQDh5QpU06GtJwk0g89WVURg0NJlTTUQ5+KT71jNpmS6y39iMuMI2s2yrHLDTc1S4BKH0dJkF8MfP5v/Io3q744drc/A6y5GZEIuJ0v/DPPiVsm7qinRkS8lLR9ja4qdlfn7BUz8tWaNvbMckWBoF5f0JclWxR7kylmvWWYGhSabdcxOTjkuHfs2hXKGLYRnvsBHT3H8z2Odx1PqGmNxAtP5wUiNLx9eMTBWnHhd8hMEn3L+S5wJrfM93JebyOffPIJdq8kigFNSb6C/GjB1w9fp3n5kk/dGjtfoIrAnfoM0684ahz7w5yPXeD+3iO+84O/T+bhu598RPf4lGWmuHO4YOgbfvCD7/Hpxx9w8KM/pqgmvPfue3RNS/COU5/0z1luaPoepTQHmxWb9Yq+LLmupnz1G9+kGyynP35K17T8vY8u2VHQHR7zSRf57vWWmOc0g8Ut7yJVxftHxzxornmgGr76jXc5fHAHYwTN+pJ2u6JtarabLVdXV5xeblBZzuv391ken1BMpygpmcxBKc3mekLT9wzBEaLHtx1nzz9DZxnnF+e0zRqdBQ4P9zgQS56/esFkPmPb1Fxdr7/wlvv5Ot1MUk4zqmlBWWVkRTIVaDPCKsaRnIqaLC+ZzhZMsgXeKbr2Gm0SLyDPxqjwpkMgKbKMumlumQLeueTxl5q22+J9uBWsy8ykSBmXlnnRWUwxJQqdui8RsH2TXoyQRB+xMhUpTJpbuhAZnEtLr9H2a7Sh7wa0VpRlies6UBqjBYOzFFoTi4K+aYgo2qZhq1J6RN92fPzRhxwcHPLxhx+wt1xgrWPX1ODTLJoYqHdblBq5BSHgRjtvP1iCc3jnGWyHsz6BV7RO89vR0BGF/LxDHYtC8IEyL4mA9ykpQ8WYZlDeEWMKqkwuPgXR471DaJ2+jk50Jq8EbuiRpOOoEOJWx6ikxIxqDimSwcQNyUTho0MplZjFIT3snLUczZd0K0s39GMEzU2jeAOOGf8tJUFI4m25+sVe/+x38V+bcRX5HIhzU4R/Fv0IJHmDomkbyKb4LGNPZVxVktf0CVf1mnOtOHz0FpPzMxoDV8rgFdyZT1EX15wpx6YwtEKQLwoeTO/Q1jtWoSdGQ5SKNZbFbMperen7FWFi0EFQb1b8uOwol0se9TnXLx5zvsiIeUTkU3qjYT7j/mzKxvV4nxyVH5g1YphxYHoe7S3wl39IGWbc5R539X1Ojr7O+eUpf/Lyj/F9QzAZ81XL7tkpl7VlXmqO9qcIAsPQUU3KJGXsWk7Pz/jpT3/K+++9T24UQ93y4LU3Wa02tF3Dy4sr+OEPefjgISspOdhf8nf/r/8RP/3gI2Jw6PmSz8rX4fAeC5FzdnnB8mifqppRb655VGS8piJvsmGatbx5fMDhyT7lpMRtr+k31zg/pEV0MWG5PODV5Y7ZZM7D1x8xWy4hBFxvERGq6TTBuGJAyozV6pp6veKjH/8x00VKfPm7v/P/4tWLl0yqCcoo2qHn4vqStu2R8l8QeHMDsCmrgrzIyLKcLDNIk+AsBsYlBBRZyaScUeUzCIp626G0QqsAJNlZ27QJrhxTUQ0+4KPDDja9UZXHWkvbdkgpyTKTkmydIwSPImKKIuWZeQ9SMrQd1lryLMdFRwhQKIW1CaM9WAsx2XMT2zvlrSlVoJRm6HomVYm1PcGmv0dLmZQNKiWxCpG+h6btUhLFqC5Yr1YEZ6k3O+p6R9N3KJWR5SYlysaIyTKsT3bcfujJlAadTB3BDWOSbgpBzJRESn0LohZSELzDmDwVqTGLa7BDQkimnIfUNPoIWhJ9IMZA17SUZUlE0A8DuUhF1Nn09ZRyBOcRRtM2DTEm6Ln3IS06ywIVGXkMPc7asdBbbjJ9pUwPBdv3SCOZlVOIIXUII6UrilH/Os5Jk9zq87n6L/wSN+XzhoT7X/tpP4tWYJxWj82tuE2CEEikjvRNgw09wlnOty1TU5ILaFzLmVG8vTdDDAOntsaFiMlzXj8+ZLe+Zje0xDwSKemnFeV0zv7VOTZ4cJ62qfloEikP57xuc7oXp7ycWlxVYmOgHTbM9o84cA9p7TVdHCiEw243fFDvoMr56r3XkM8v+P50A6YlywTf2H+PSS+501gqLOurNb/z4T/gznTGW9MF+e6SfVOQvzrj/KfPIXqmVUE10Wm/ADRty65rMUpTlEXSgjctf/LDHzCZTnl49x5N3/Lhhx8SheB6u2NaZGw3W/Ii53vf/wGvPXiNe3df487d+/xk3XL+/BrBGqtyQjVHy4yDGHj7/jFv5oGFDrjrFxjRUU4MMVr63YbNxSn1dg0I5AhBn0wrMiOZT+fsHR8iJQTnicGjxqQaAfRdg1CKajLhn/7Df4iKng8+/ox7D+4zm87IX68ospy79+9gXc8//MM/YL3e3I7Xft71BeoFiVaKIs+pyoKiSLPOKNIREqmQEaSQ5NkEJQ1ZlmMHUoE2Gq0EdnCs1pvk9lGSzvY4P1D3Nd55jDZ4Z/EedrsaKdLnISVt344xNmFk6CbnmRCKOFjs0KWk2zG1N45jCeeTVtS7AWVMurG1TsdtUrKrFOmo242ErhDA5AaiYOh7pBBoKRBGMdiB7bBKybkqybWGoUVEaHeblLI7OsbckN6bSmmsG3C2h2CQQtL7gSzczFiTvMqFdP6+WZ5JKZESlNZYmzS8WV6ilB51uDHJsrQmumEEaHuMznBhSEoNZ7FWY4zBWocUPaYo0DpPRgckFosPHmSkaWuKLEcgsXZAiEiVZUip0sJRKkIMKKcY+g6EwroBIxWCmHTUcQAh0dok66/3tz9vEeNteKO8mZXeRPn8wq8kSRAjxzH+V5Tem3iem+HDbef+M3+WuAAK5weyvQX1akN5co/F5SueNx3HyyNm588QquV5kBwfnbB8/hlORrq25dksY37vLuHpE7z1rH3NU9cj8oKD4yWLZ2dcZAO20NjgGWxDtdhjrl6nrK/Y2S15rsgxXGxW+LnmcHaf46uOF80lL+WKWFVkZsY8NzCdsH+1Jg+Widzns2dPKRZ7/NI7f43v/NEfct58glIRqR0H8xlfKUrs5RWhafj2Vx8ldZH3NH1H8I6m7/A+UmQ5XkbWmy3T6ZQqz6mbmuVyj1cX13z46XOyTHNwcEBcb7l3/wGTqsJIya99+9eophWXV2uMFlxbgTM5MjPoxSGydWRZzhtF5OvHM47Z4lZnPDl/gQgD24MF29Ue2+B58dljri4uUFKilKDvWi4uL2l3NTIGhr6n3bVkeYbJMrQx9G1D29U0zRpvHUEpDu8c8wf/5X+J9ZZPnn7CdLrPn//2rzGdFaxWV/zwx4/xzrK32KPIv5ic93OLrnOBrvEEB0YVZKYg00mbi1CJGOUjoNGiGPWdESkF5SRHZxlKG+qmpWk6vA/oXKXPc36EQCvatr3FBhqlUlcnFbYfkCot7EIIoHJ8SHPPEEJiPsSIlpqx6UDpLEm/SB1tjCJ1fyEV7RgDSiWY+dDfaEvj2MEmUwVC4oYBMVpghQh0Xdr8R+kw2iCjH+NbkvY0wO3DIQZPlCnLKjh3C0+3dsDIVOid92PiL2PxT0wFQkQpg5cDUgryPMf5pHdVWo2vU4wZZjm2T2kUIUoKbdLr8H6UbSUgTvoZRoLtKcoZPgYICkWGcw6jFP3Q4WTSYGcqvf6gNZnOQBmkiLTDgJLJPCHHsYmzFkkComs3jJH3KcuSUV98o3vNlKQoDXmZo4zic5PwL+66GX98/oFxqitu4nbSdYNWEDejEvhT9uCbpaWQEhE91rVEb7nwNXv9wFWueCIt99Bs24YLLbnuN9yvpvizl7ycaXbtmsvQ8NrhjOHVNddlSsQOCjoTKJYzJjZgY4cyEakEV3XNRTlhevg67+82dLsNn9hnhDxD6IogFPdO3uT0+YpJqJmZgqmactr2VPcO+fLklzn77FOe956d+xh1GvDLe9ydHxJlx9tHR9wvF7DbciQFz7YbtusdwXb0g2c6q1hMK4a+57ob0Mqwt9hjsJah73B2YFCSGCJXV9d8+uQVe/MFITiuViv29w+otzveeO11Ll495/nTx6w3DXbw3H1wRH09UFV3kYcPEEhUv6Moc966s6Boz3DtKc8++jFPn77i6GBJsJ56s6WtG54+e8Wnn3xC37XMphWT0rDe7pBCM53O8T6wulpTFiXL4yXeOZp6x267RaLZO1jy0Yc/ZnV2yt58TlGVfP+HPwTR8OL0CZ/94w85PTvHuvTu35sv/rkiqH5u0fUuslrVnJ3vODnqWexNIEudmJAiJYrKhLWTUiZOgkxRFzFGsixHak3btTDKa0L0KJG2hDEE7GBH26kny/PRDZVA3tqYkfYzkGc5QiRylkaNqoKU9CtFKkIhRHSm8T7gXCB4n5YjP4On1CoZDpzzOO8T0Kf3REQqsDCOAQSddeRa41xHBJSQKBGQSiCFxDs/wr8iCjASYlR4YrIme8s40AQ8Qqdtt3cuzZGch+DRmQHnU4co09xWRJFOAXmO9A4pFUqaFDevFDF6tFJkWYmzHVon3oSQEk1M0jlt0veVJyC5GLXUOmqGEAgEnAOjND7LUmmJHki/T4FAqpjAW8pQlInQFIHBWfJigrOWvu8p9JRZXrINPc6nUYWLySgjhEBqwazMWS4qjg9mzCclnyfY/QKvn+lW4fOCe/Nnf6rpFfzpAjuOSW4/Jm/4DAOFbrGTnIkU9LmiUgFcQ59HTMxSMGcc2EnL5GCJGmqElkzL4v/d3pv1WHZd+Z2/PZzxzjFmROScJEVKlFQqSeVSqSzA7YZheOj3/kT9HfqhP4DfDDQaDfST21VywYWSRJYojpnMITJjjrjzGffe/bD3vRGsKpMGBEtCKxYQZCRjuhk8Z521/+s/MC4K0vt3GJYtMpYoDVezKW+SmM4w41GVkFTw8eKEIlIINUQ3c3Z2nnBpFXr+jFwt2Ux7jKJNxhsp72z8OW8+bdC2w7PLisXZByAsb4/26GUjyotXJLpku7vB4+EWdzpdDiaCWFp6tgZbkMQKu7nBy2VNv9ulqEu6WYTEJ51004Y4y7iajFnMC4S0JFlCVdX0uh3OLsbMlwusa9FCM+xvMuiP2N8/IFKK4XCDqmrIO32EqPn0yy85agbMl2/Y2biLSHuY4YC8rmB6hW1nnLx8ytNnz9nevcu33v822/f2fJpKa1mUNbW1OK0wWjNvLZWB/Tv32X/4BJVkFMsKrSJviFWVzKZTFvM5aZp67m7jT+KNqTh9+QYlLJPxKf/5rw5RUnA5ntK2htFohHMt/Hec3r4eXrAO07RcTiacX0wYDjLipEsUhSWLFOA0Aj+dmtZQ2QIhvbVfkiR0u32a9hhwLJYLiDTYGmNqDylYP11qpbEWWhdcWJW3MLRhW6eiyJPWTYtWgroqUFKB9aGNrWsJgeAY29BYr4JbOXP5m8nnIzWtpahqIiW8Ry3QmHaNy61W7s7ZYJPo+6YLBPpEK6wToL3fsAz8VGkdSnqMz7tXhX4b6Gq2dURRTBMUYMYYrG3ROqj8gkAE6fnRHvLM0HHsMSkp0EoTJzl1620q4yxHCd8UlTA456eNNEmI0hSBI45jv+AjsDOsIIoSamcRsqE1rYdejEVH2ivRlGcYKKV9vlkc4duy5wyLskA463OjtGWxmJBlGV0dc9kuaQ2eeeG8R0EaRfS6KfsbXR7ubdPL0z+QVZq78bZqotcfXf15BT0IIdbXvlw32tX94F3JJAJTXVGLHsPG8VyX7EUdlLN8Rs2g0+GxcSxNzctywjRL2e302BYZzxbHjOsC4Vr2RiMeTSXP22Nse4FTXSq69PceE08d6eQMJ8/IlOBu8haf2CX5w7s8uWgQ00uKaoNfTl5hXn1MksT8uP+Io+MLDAtEO0XGEUUx5p3+fWZ2yN5Gh1E8ZC/v49ySDQxDZ7DLKa2tMcJyZ2eDLE1YLJfUdY1pLGkSIZBcXM2Ji8YrywLeP76acu9gj83RNn/92a/odBKUStgYbPHDP/kRg+0N7u7vMp+e8cWzz3jx/BWj4S5VVdLIGLHZQamcZTVhONpAlJYo9urL5XLOeDKh1+ny3e9/l4Mnj4jjiPOTE85Pzzg/v2AynVE3FUXpA2mH+QZvvfsdhtu7pFkPlUu09vH2dVkwm0w8o6csaJuSWEV0O33e+9a3+eKLz3jvnU3fnGdTatPy8tUhR6cnnhoqM7T6LZuu1IK4I9HaUrVL5os5WSdGR1kIHLwmuQuHJ+kbf6TVOiVNEjp5FyH8xt7YlrZpaWpvs2jxhjpS+WnV47Y+ONHYEIniBCrSSInP+BKSYtFg2hYV67ARD9QkJYNYw4D1izotNbZtfTNxFiX9EdA6P+2q8EsyrQmvA4y11GWBDEIEauvp/MLHuyRJiDxvJE3tvJhDSlqk5zavKF84EAodxbRVtbYBrJqGKFC+HOCMRSmN1jF1MSOKMoyKaBsPr3haU6A2OesncpngnPONMvcLLNF62Kebd+jmGUZ6xkKqFVm3Q1mWOCGQkcIReazY2kCN8ovGpq5Io5hIaYSALM1x1iG0QgjJKE298kx6jw0hBGkcg/MshjSJkaIM3GD/eQ5HJKAba4ZZyjBN6WfZV6W1v6fyFLwgVxY3uMMCL4SQN3dn19Os8DrxGw1XogLkhoRYS/Y6KZFNGErDIE2xy5Y0r7GRphePaItLorzERY7ecIN0JslUTZVXxHnLZjdnGSf0FxNkq6ATk8Q7PC1qusOcd3rvMbt6SpLs8/RywsycIJTgnc07jKzk9XyCbScksSRF0lKzOxgyXbY0cZ+93pC3+tvsRDlW73i4rp5xujxmOT0jryydbo9Ya67mS14enQCSfn/A/r17iP5zaluCqXBW8s67dzk5meOModNNmS8MtnVcXEz54os3dLoZQioOdvf5y5/8BXk3pz/skiaaN5Mpk6sJ3/v2eww2RiyWJYvaMr1qmLQVOh4wTDLOmwXYGCsMy6phsWx5+OAxd+7do9PrMx9fcPrmiKfPnvHm9DWHr19TFhV5lvDo7iP+7Ac/4f5bD+htjFAqwjqDkJaqWnJ5espisUAnMUdHR5wfv+Gtd99jc+8On/7mQzY2epydH7G9scn9+/t8+eI5B/u7ZJ2Uo5MT8iwh0r8leyHNFYNhynAjIcm9haNprT+Bah9rIZ0GGy5W62W3prGkCLI0p4xjkiQB4WM2mqqirMqgdvIS3SiO/PtI724VmkmkY7CGJE2xwZK9aRrapvbLN+OP5ta0EKALK/zEbZ31LJ+wLIvjCGdCgqsUNG2LxSKFxgiP9VrjidEqEPiFgCyJKWrPpsCBlN7yz2IRwiGVJ/1bF6z+QmKDs16hF2lFrCQiCk//YIwd6ZimKRBC+mWUFFTB0EcqL6VuGi/kEMJ7A7emJdYpQoCWCqm0p3tJRdsUNNaQZRlbmxtopSkbg5OCPEvpZrnHnp3Aae1buGkQLvG5cxhoWh9GGUVkeYckjuh1OgipfFQSCh1pNgeS86tLcNAYvxTUytMDlRPEUlM0dbgk/N/BtC11U7EsliyWS/zz8g9l0l2ziFlJfa+XY24tkvgKlBCa7erPN98XCIyticolVmc8Hu6RREOK3PFe1ZJ3dzifGHq55n0EWbbLq6nlKrNsdh7RaSb00i0+uSho5YKHowM2FwO0yvj1ZELppkxKjelt8SR+xJtFjWlLtGhJZExdl+xu77CYS0qZYYRBq5iNtMt2r0u3ybG2JI8kO2lMubykXb6hWJ5S2DnONAirmZxpLt5ckSYx86KkrCuiKGE6W7K3lzDYGvDrN0/9ClEIUj1g+Nb7XJ5eIk1NguTw8JSkdGxvjlhMF7zz1lv8q3/5P4EU1OWST3/5JX87n5PEmjRN+fLVS5ovv2Q+n6GUohjcoyokZyKmk2k2t/cZOMHy6HPc8RsGnR6P3nlCb9QDZxifn3N8dMR4OmG2WFJXLZ08Y297lx//8M94+7vfZmN3B621T5hxlqasmJyfcXl8jIsUGsNgOEQ4x+ef/Jqj41c4Z7i4mGKcYbGYsb+7w+nxEVGS0u92aNsR89nM+298Q3190+1E9AcZGxs5g0FKd5DRH/SJoxTrWqz121ohJTaExxlnPf9UVMRxilL+pjfGK5iauvT2eMEG0PNLvRViY1u0lFgjUdJPIVGS4Izf4BvrI9aFkDip1rzWlRtXW3sv2tY0SLxhjTefVkQqpnUeQjDGR7NYoKzbgPs6IuWwApI0oWl9c8+VIk9SyqICrH8wGP+1QkqQFtN4K8PV1IyzKO0bZ6S1909QzlO2WkOsouubFIcN/NtIWiyeubESSUjhNf5RnFDVNdZYWtv6Hbt1KB353K1yAU6y0R8w7HWxDlAeC47jlKptiaOI1kGWZDQWmkKjpcE4zwpRXp5GFsckUtHLu0RxTJ51aFvLYlkglSSJHIN+n/F0itLQhpNFa7yktZ90KNtmPe0LoK4Ms8mSM0AYy3iSob/Zb+l/eK2FD6s/r0FcL3S4yViQeCzf85f96U6KGzDDagoONMqmXWCqFi03SNqG7lafXfUuxdWSSdaAjNiUA5pxTWsXNFpDNuJhusXJYkkW1SxdwcSUHGzsUV9MGXR69FVDoiWDLGZje5dsWZA2fYxoyLOUrazP271dutMBbSaxdskozznoDKjnM+RsycnZCdViyvN6Rl0vsS5QK/ECJuEcIpI0pUA1jroM/z+130kUZcHW7i7yWGNtjQGWrmQpoRxsUl5dIVNBb7SBKGse3L3Pj//kBwz7PfrDLr/4u19SNy13Dw7Y3z9Ax5oPf/0BZxcXRFFCFCdcXV4y0wtUZx/nai5n5xzs7jKyDdYsaOslDx4dsLm3QxRp5heXXJ6eMplcMV/MMK1htDHi7p0tfvi97/L+995jtDkkSWLaekk5n7CYL5hejlnOZz5ZptEUl1eU5YKTszf86oNfUNctw36PJEkpqoLLiwX7OztsbWzy5uTY+67EEXNnMO03G/N/7VWfpJpuxwcJ9ns5/d6A0dYOGs1sOfWUIAlCuOBw5U9oQljqZkFZaCQWpQRpEoMxaw8BL3n1mOhqM+xTL/0tEAUj7CjStI3BGuObnXOo4HsglaeaCeXZDMYYVOSP1CbkcVlrEFJiAt+2Ni3KgW0tcXDrE/iFVpzFQZHVYp3wlC/T0Ov1GM/mNLUh1iGRIpjB+IdJiOwWDqXU2iJQKIWW0gsOlD92ePaET+v1N7L0k33AlhHKwzZOIGVIvgj8XREsK51zwWClJU2841ptW2KtvUxYKLRWJEiU0J6NYEAnGmWtl3Abj/VaAW1ZkaUdWukpflJYsjTxD8LGUMmGTqdDlmfUZckCQWUM/V6f5XJJrBJsMAKfLWZY16CF8H4cIUWibWFuFriqYXw195HW/y0hwu+0PJ7rH4CsF2vrWqENq2Z680P/aKkmv8JscFgiVaPMnO5ogzTRZJtb7Pcl+XJMIRryOCfPamSzYGxr0jSjl3bYWDYM2gULuyTNMnrpkP29h2wsZ8xNQZII+lnOvd4mG1HGaTHHiJrGLMkUdFiyXZXM25Lx+DVvXo05bAqatsCY2jdX58KJ0O8v3KrphqglnUtsFdG0jR8SbDCl0jHLsqFbJiQ6Y1nXnouNJUk76DSnkw1Q1iCjY97b3+df/MU/Y3p5hW1rXFly/842jTWcnb5h4+1vEWcJRb1EaMnG5iYX56eMJ5ege0iV01YTSkqaNCEd5WRqSf/+Lgf3D4iTmKaYc3V2xHRyQVEVVHWNVJokivjWW2/x6O0nDDeHqFhQlXOml2ecHR1z8vqI8XiKSjO6gyHLecFsNuH586e8PnrDnZ17aK1omhKlBUenxyzmc47Pzrl/sMfro9e8fvkcrRX9Tkakv3mQ+HpxhJLEsSbLUrIsJ+ukdLtdYpHStoZ5NcNZkNI3Dyu81h4laFfRO4UjijQbowEvXh2htMI2Zs1zdNYbsLRthZLexR8pSdKUuiyD8UQToIBgNu1EwBA95cs5Quih/7gPPzRB3GWIlMY5E+hADq0klXFIpamM8Q+DxpB3CMnEHqONtaY2Bm0taRRh6hopQGtB3drAO/XLl7b1qblSSpwW2GD2rYTESD/lunBzO+HjR1bTrJf9muAyJjC2wQnQOsIn0ydI6RkBEg9pmKb1N4twCOt/nkxTdGBzaKWoW0sUa6RUZFEQJRiLVBGRskRpShMwahVFSK2hrclijY403U5OFCVUdeshgTQn7w3IOgY5njBfSkxjAsTijYaUkrhyTm497GOsRViP3ZempSgqHwYZ8P/fewk/NEDYC6wYCaxh3YDl8pVJdsXgISzU/BQsvtKcBWClQ9uS1i1IXErmDBsHu2zUm1yVc4gVO/e73J1WHBVzSteQJQkHWY/7dcVVMUNGgjyO2I5S7tUZV+WceXFJVR5zMXnKVdtQ1AVVXdA0Fc423rwowFzWGbw5j8E6EyZa/9/9Q9yfJF3wQl5FYCV5zla2w+XhFdZ/B4T1JyFhHcIp+tmIZT3xySZCcae3SSRjhFggJ1ccvP2Yd588Jo01Cy158Pgx5XLJ2cUJSQS9PGJZTvnosxdcnJ4wWxTMrsYslwu/IJ+dY+KcRufok0MWsaA52OXuKGNrb4+0m1EuZ8wnY64ujqnLBW1b0bQ+WWY0GLGztUW31wEs5WzM/GrO6fERLw9fc355hbGCYZSRWJgXFbP5lKouieOEewf32N3d4ujokM+ffk6WZlxOpvzmiy8Q0pF3O0wuC6qiYJRv+MTgb6ivlwFrRRzHZGmXbj4gjbvoSJPojDTNWVZzrG1Rwi+gBNAIi5OeVlWVC2azChmoStZaYq2pTB2WQqHpOIsQfmHurF8UqeCG5Yz1U6Vz/tgjJSjln8pti1QSpWJvmiMltvXqLxEmS2ONFzgo7+GqRFjeCUld1/7Y3lS01lA3DomHIKJIe4zWee5skvq0XYvz3gSBTbBibQjlE4EF4FqH05ooqO90aK7G+qQIizf09gm/BiddUMsF7wXr0DrCWIuOIr9MswRs1J8MrLNIpyiLJWmaYxqDyhWdNA8cWuE3qW6FSQratsFZ0FkX0zbEOqHWDdb6SSXNOixmDU5qZJRQN5Ykjcg7CcVyznR6hTF9ojii08nXUE3ZVHTyLmVT4VwPIySLsiByAukEgWbsTwXWYo0D439Pv/9aGSwQonZCLP1NIFeudmzuuqmGt1XjFf8EVcgrhx2trRhfvGAxPiI6Thnv7tPNemgZoeKI86VC1Ia8bYhpqZclL04WiLqltS2tqTmvljxvKiQtuNBIrVnLkJ0ID7DVfbP+dxAMYXBu9WaDAZQJU66feK01notuWpCKUe8Of/bop/yq+ZDPPv+IJIheptMxbVuxszMi0x0CcxwFDGJLPV3SsTU/+t77bGz0aJoGLf2U/NEHv/T3eJKCilg0Df/l//m/mM+XdDo9JJJOt4OOFWXVgPEUzl5vk2GWEzcVA9ey1e+R97q0pmV2esHpyREX4zNmi4Ky9nsOJQS72xskSYxrDMV8xmw85vz0ktdHJ7w+PaMxECcpTgha07K5OeLzTz9ksVgSRYo8T5lPxizmE7wrqWU+Kzg5myGcZX9nk36/S11XzOdzZO+3nHTjOKbXHTLsbZGlI7RM1haMKvBdnbPXVFQRHKWkQGq1Pq7EiQ4pAc6LBRQglKd5GRf0/gKJ88GJwmNrSerlr94QxwRoweO0CkHrDLZtybOOxzeDuQ3OCwz8a9NIQIeFziq6PNL+2BTHMYvFAsJSSmuJEj5NWAgLWIxzJFFMmiRe1GAdSsu1bNYEWEGvIQSHVIpYR54aZyytaRHK49+rM6uTbs3JRbqguNOBJieu6W6uxaKQStK2wsfhWEvrgsNY2wbGiJcXGwfSeP8GLYTHzJUO3FnvrSB0RNT6yB7nvPGNaS3d3gjb1lgUVduiq4q8k9Pp9phOJyymY+K8i1KSLOt4vvPcP/w2e9tMJgrjYNNs0F4eU5jWnzCsY8WElcJhpYBvXvT+Dy9/3YZYdbzY5RrP9e8iV5PuDUiB8H5gw3wT5dhZg6WisRWHrybB1tIEOCNAHMHcQQiHRnglVZi8ceBWchK3elSE64jQYLnZbEPD9VIVf5IKk64j5My7VU4zYcpt1zi8lDF7Ww/59ls/oJhYPvv8I8qqRClFHPtls6kbbAMSTSZTdvKH7MuUR9/aZ3vQYz65pGkq4kjT1nPuPXyIkpIvP/uEWTnn5M0Zrw8PMQa2tnbY3Nrm88+/oGkq6rqkLEqKyqBkRrfXZRQ3HPT32dnokQ36qEj7AM43h5yenDGeTzm/mjCeFVgn2BptsDnoAIblbML47JjJZM7p2SVH51dM5uH0Fsd+wVvM6HZy7tzZI4pSTs9P+Ojjj/iff/aXTKaXTMYz5sUS4by74ng6Z2vYpZtH9Ps9BJrpdPaN19zXNt1ed0QvH5FGXSKZIqymWhqk8XaMQjgENly0/muU9BeBsxYZCYSGSEiiSKGk8JOdBWMbD9ZLgXFBbitEMOIWREqhwEeKSwErOazWtKZB6AjX1F4W3PpASiG99NYIu8Z7pcDTx5xFRzHO+rRg1xpU7E3E/SKwpTbGTy4IYokPu6xb7/OAIE5iRNN4/2An0CF7TEqNVhKlNdY56romjlZyQH9LSSlZ3ZkiTPZ+AvTpsiqowZBixRgNOLALCRL+dUnhsK3nQdtwhJSiAuGDROvAGshib4QttQy2jD6G3iFYlgviOCfvdhAL3+xN29LaBoFGxxGtcahIMi9KjINBt8NwtMlyMSeOI6qqZN4an6wcJ4ynV7TWMtzY9o24bVh2+thiTlVVGNEgtaevSR+ny9rG6/ddAY9n1byEN5P3t8c1RisEoCxIFaZbEfyZPWPhGuNd4cRr/zK/uLUEDXRg1rh19wz3j59WV6wJG+Lgxcpb2drreKBVkxVh8AnwAYRh19r1lGtCc11BCM45XPBitniptnXWq0vDMyeJc+5t32M02KbT7dDrdJjP50SRZtTvkqcxsYq4O3hAQsZ+94Dt4R0O7h7Q63dYzuf0+n1MU/Pq5SFCwMHDiNOLS07OT/jok0+YzKb0+33uP3jEZDrm6bMvmC8mzBd+4MvTlCRyqAh28oi9XpfHB3fY3rtDkqUUizlnpye8enPE1XTG6fkl55djqqZlNBjS7SRoKbBNzeXZKePxmPmy4mq6pGw8r18qz5oQQvD551/w6vBL3n3nHf78n/2Uv/p//xNNueTk5A33D/ZpGsHff/IpWT7HupLZpOBqvGRn+wFlMQMMSaf3jZfb1zbdPE5JZIJEgZWYBop5SVO2NLb0CQXOR5V4PasnwvukVD/tJkmCqVmbfltrgoGNQwYMVKs4DD3++JYo5c26nUNLaJSixF9IOBPkti5gt4SkX38TK60wVeMXcbbBBdmwaQ1GeagijmNq6xVgVVmipaRpXZjGr5cjkVJorTEOlFLUrUZaixQuKLr85lAIf4taIYKngkTr2Hv+ishLkVd0MSm9X4Vi/WdE2IYjMG1NHKdIrT0VDq+Es6YlSnNvXt423vtWSJSUNEFgYkyLtS047aXQSiIiP4FbZ3EipXGeaSBMi9IJSaypmxoboJmmKck7Pc+GQBHFKXXTUtSWThbR6fYQOLTuMB5PaAIuJBGcnZ9SVzX9/gikZFEvqZqKqi7IsphOGtPrxMSJ9h7N6vfPXvjKdBtqvTATDoT9B1QxF05A1/Hs4sbXXS/S1t/NN+EwqXqtj2+uXjwTptXgVSwCK8KFJmytH2xWjAj/slzAZf3nuBvevi6YzztnMQFK8A9dg3XtddN1AepZNWNuPgA1XTXCFo5nLz7n7OwI5whGT462aSilYzyZMBxss5PdZWdnj1GnS72Yc7aYUjeGF7Mpe9tb3H/4kLOzE37+87/m6PgIJyQH9x4SnR6zWEx48fIpTV0ymy59mK9zSOnl5cPhBp1On404491Hj7l/d5+8l1EVSw5fveQ3n37K2eUV4/mSy6spk0WBs46tofD7l0jRtjXT6ZSrqxmzeUHROIzw0Gme55RNRZZlDPo9PhzP+Ov/+rdMpxO+/d53iKTk2fPfcHV1waNH7/MvfvYzXr855O9+9QFHx6ccnk55cE+wu3uPl69eMl/+lpMucmVTCNZ4SlArDcLVtG5JS7t26bFKruk13hDHT246kgjn6HQStIBlE2JdQhCgsw4Z6TD1+oakIh8qpwOfVqlAOjcWp7zm3ATfWIdnQviJckVwlx6K0zFKSnSU0DYlq6vW2mA4rRVNVSLD1OLwzTWJIu/pEEek1lE3bXg4KOrKpzcIU6NCNJHn8Lrg8OU5tEorbNuEwMt4/YDyK41wLHWesSDCXSqFD8qR0vN7XcAMnbOBpoS3b7TG3/TOolVE0wR1X1NRVzGx1hggiVKscchIEkuJcd7FLYoi36CNWkuz67pGRylN4x3f+v0hi8UcYxqyrMuimGOdo9vJSSIJwpGkMWXd4ow/kjrTsFjMEH5gZ3djBxXHiCuBEC2bww5bGz2GvYx+r+NFFb/nEuG8vjq6+9k04B6r3otY92axbo4rFZsNnyhvfE8ZmvP191g5QPpYehfeX33F9bgrVtNvIMSsYAPf6IVv1PirXVjfZFfwzeqbCncNJ/gGG3jrNjT/dRM21x8LL8M5R6+7y19891+ynW/z6acf8+zZZyjpIbfWNNRtTZyklFVNlsZsdzbophnjqymLqiTSksV8wZ/+4E9I44RPP/6QN2EizbOcNMs4fPWcpql9bmJd0jYtcRKjlWQ+L3BWEEUpWdKhl/d55/4D9vd3SDo5bVVx+PI5H3zwAU+fPWcyX+CEoigqnHU+SiqNcNZSlSVK+Pj02WzBvPTQmdCSvJPTG/Sp6oZXr18yHV/xve//gP/6d3/Lbz59hiThwb09zi/HnJ6fc3j8n7l3cJ+HDx/yox/+kBevXvH3H33Ci9dH7Oxuc3DwkMM3L7/xmvv6CPbga4uVXq3kLLYxONNiXYnQFplob/Rr5UqPhXQq+K76aRdnSPOYKNa4uQuekyLwWWPPFtArjNhTylYb+CbglQKQSvsrw9hA9Ldona6f1DrwJ7WOQEi0cl4eqzRNJTzDAu9r6wQIS+D/ep6v5/TKwFNULAMvdTXppElMUVZEcUzV1B5aiDxHWSL8JC4UebdLmkaYqiKKNYjYm603DdPxFXXborWfcG0wgJda+dfqIE1ShJS0zntSGOdI0iwIMyxKeFVZXTeotvK4cttiGm84U9YVWRJgCuml07FOaVovq24aLxU2UUJVVV5OHSYfrSVVMSdPRuRpFqYkiOMMYxratvEZdG1L2xqMaa4z75RkuZjSmIZ+f4BUERv9DaxrsLZgf3uTg70ROxtD8jz1Bj6/97ox4bnV1LtCTF2AEVZHfv/5K1xayBUWvGq8138fv2xz1z8iLIzXuOv6R15Dc+uf7Fb5bOLG58EafhCh+ZsVjrtiIeB/xmrRtqJ/4Q3z3ertKw03sBdYORwrtnrb/Mk7f8q9O48Y9T/ho49/QWstQkmU0zTGgY6J4oQ7WxvkWcpktsAIy7KscE3N3b1Nnj/9mMbAZHzJ+XiG0gkPHz7h/OKMy4tzqrrCWH/6NMbhRIvOIuI4YjgYsb25w6A75MG9h+zd3STOExrbcvr6kA8/+BUf/P1HXIwnJElGnKQkaUKn02XQ69JJE2xTc3ZxQRprqqqmrCrq1iCVQgtFnGY0rb93zo7OmM2m3L17n8f3HlCVJXfu7KDzFGSMECnzxYwvvvySV28OyfOMvb0DfvqTH/PLX37Aly9e8847b7GxcecbrzjxhyDFvK3b+n3Vve9H4QYICjMZgipXijPlXdqUuPbHkEL7RGmlgt+CRAR+9Ur0cmNf6nceYcHlaRvX99xXGrpYzczBzUQGqMKt2vFX36RdsRNWjAS3Xoo5rqdYa6+pYNefawLOu8J8w29BJNwfvsWfPvxzhpu7PH/5iv/y8//EYjkHBE3TsLu9zcHmNv/8L37MztaIy/NLjs8mPH95xN2DAxazK5bFwr9GpXn56hWTRclwNOLi4pw6RGsVZUlRVCSZBqGYzeYM+zmdrMu9/bvs7e7x6OFjdna2iNMUHcWcnR3xyaef8+HHn/H81THGtowGI3SwMN0YDDm4s0UvS2nKJVW1xOEwrefTW6mIk5y006e3uePjqSofoNsbDLgaX1JWc5q6Io4j2roky7u0rWU8GQevb0FTF0wmV3znO9/j5PSCq/GUxw/vc//gHv/b//5/XD8t/4n6QwDVbuu2/gBqtUizEGCrVXSPh3+uJ2D/6W690LrGb1eT6E0Ph5tDjeehu7V5e0hPZpXbd81G8Mkpbg05XH8bP1k7nGexrGlgqwk6wAncbLjBbjQ03PXLX30n56dkJ3z6dF20PP3iOcnhmNOLU7SIeXL/u1R1weujL3ly/x5/9t136XciLi+OyfIu3SzmyYMDpuMx5WJOJ8+Zzme8Pj5hURSkSYwzrd+VxCmDXsar1ydUtaV1FUXhIcK2lezu3OFgb58H9++zvbOBSiKMa3n57Es+++wLXrw5ZTpfMhwNvVOflCRJSqQMWZLSzTO2NvrUZcrpectisaRtLVp7z1wdJeSDTaLBLjv9DrtdxUe/+YBffPgLut0OR0evybKMvTu7vHr13HvkKkVVe2FIN++wdIpBf8Drw0OSLKOpaxbzksuL6TdeabdN97b+uMvddJHzMMGqvzm+OrD8UwK6r67gWDe/lTzC07lW3y1wK/8bh8trAAOM8BCDdNc/wd2YeK2zoemuGm1443qatesl2mpxtoIjVt/FrZWE4beAIiYSGXGS8Oc//eckWYfzk0vyOOHzj39JJ7H85Y++R6QEF2fnTKdz7tyJsG3D+fkxy2UBSC4vxiyKgk46YGvzLtP5mPPLU7+4jvxx/eDeQ3RyymI+YzKdEkcx21t32N7aZnd3m04397uHVnD8+pDffPIpz4/OmU1n6DglSz3mW1cNaRyRxolnPCQpzq0olxoTBFdSayKdkPdG6N4WTb7JMoo4uXzFm+PXPHv6lG43RwjNu+++x+vXL1gslyASzs6v8Lt6/3tvGkOSxOzt7TI7nyKd4sm9xzx+9OQbL7nbpntbf9wVjvQ3m6e0DqdCA3YWtzYxuZ5e1w1YXDMNxHqZFjBe948GXXACH0G/Yvrc/OA/eGFhwbV+bde7sn8w2frm6RvqTbGDvW62K6ZRmLONcOD8/sKjHX46F0ZTzmueX76k/fn/zZP79+h2D+gN7nB5dc5Pf/QdlDBcnZ8DEZubW+RZl/PzM05PjlEq5q3HDxEiYXNrj9HmDmfjMb/48APGS8v337pLpKHTjfnw1x8zHA5pmpJ+P/M4a6S8r3YUc3U1Jo5jptMJz1685OXxKW9Oz6mXJaPNLWSc4hxsjoZ0uz0ipYi130DOFwXLYsGiKDyPXXhWhI5zkv4Qk6S0OuPUCOzhORcXF+zvH/De22/TOsfHn37EcrkgShLiqEuSeJdED81b4tT6XMT5nLI07G8/4P1vv8+9Jw++8ZK7bbq39UddDncdOHmz8bn1P/7pr/pHH1ot1AC3MuK8QT/j5qTqa0URu96r3Jh13Sp1Y+WJsHo4BE7takJ3AbJwrKdYawn+CQE+disKmTdX8n+11c+9oeqwYo2ymKblr/7657x4tse//9f/K0pp9u9s4ZqCozdjtkcbVK1hc2eHVy9f88lnX7A52uDtR/c5PDnm+OySk8kFveMB3U6fH//p97k/nXN5ecYXn/yG05NDWuv8ctc6kiwmSzKkkiyLimfPD5FKYdqWq/EVp5dXvDm94Goy80pGMWFTxBid4ZwgTTKSSOOsYTK7Yj6bMF8svB+LVF5SbyBKc2qZULSCclnhBGwOt+j2hpTzKzr5iKKZ00l7nJ1csr07QCrJxsaI2XwKWMqyoqkbL2RqNQdbD/k3//bfsf/4IcOtnW+44m6b7m39kZcLHN2v3XysPnc9XeKpL6soImcDv9Z/rzVmu+6hAZtd/8fVW4Ai/hFu4f+8MpFadfib7do57+jnRRIixDOFZrtquDdgB+MEFuHN929Q1py7OWt7bmukNaI1KCEoi5rFYkZbLzAtjK8WaOXID1JefPYFh0dnjDb26OYd7t0/4PjinL/5xa+8hNc+RUWa0cYWd3a2OTw+pjWW6XyONY4ojmjFtb+LNCC0Yjydc+UW4HxCSVGVnF9OuLqcYh2keU6ad4ijhDROSZP0mjbZVsxmUxbzBaZtSdOcKE7970jHGKFprOBiXnI5OcUJb18LEf/63/8vPHpyn7/9m7/h/e98h36vw9NnTyFvfeDmYuFDWo2jrixZ2uW977zLz372M979znsMtrbJfltxxG3d1v/va21O8xVkdm1MtKZzORe4t9f46hq/XTXFG0IJz8ddYaUEDjsBWlgp1dyaJvnViXf1Krzfxoo/e93wrz++np6du7E0C7SxGyIMKwgN95o88Q+ndS/0UF54gw9y7XW7LOcT5uMJO7sPef3shNEg4eWr1zx9+iWNkzwwkidPHnN8esLf/N0H1K1h784mZVGyqAwvj4+5HF+SpjHLoiRLYjb7Q6bWUVY2HOEFkfPc/WVRoHWCcz7z0JQls/mSsqyI0oQoSdja3mVve5dBt4ezLUVRIAQ0bcl8WVAUJTjodCLyvAtK+9xFB41xXEwnnJQtWXfECwubeY+infF//sf/QFsa7t494NGDexyfvOH45A1C4H+GFPgg8oR333mfn/zkRzx46z6dftcnpf930CBvKWO3dVu3dVu/w/oDSAa8rdu6rdv646nbpntbt3Vbt/U7rNume1u3dVu39Tus26Z7W7d1W7f1O6zbpntbt3Vbt/U7rNume1u3dVu39Tus/w/8NNyo6yc03wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for i in range(4):\n", + " img_path = './data/img%d.JPG'%i\n", + " img = Image.open(img_path)\n", + " \n", + " pred, prob = predict(img_path, resnet50_model)\n", + " print('{} - Predicted: {}, Probablility: {}'.format(img_path, pred, prob))\n", + "\n", + " plt.subplot(2,2,i+1)\n", + " plt.imshow(img);\n", + " plt.axis('off');\n", + " plt.title(pred[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Benchmark utility" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us define a helper function to benchmark a model." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "\n", + "import torch.backends.cudnn as cudnn\n", + "cudnn.benchmark = True\n", + "\n", + "def benchmark(model, input_shape=(1024, 1, 224, 224), dtype='fp32', nwarmup=50, nruns=10000):\n", + " input_data = torch.randn(input_shape)\n", + " input_data = input_data.to(\"cuda\")\n", + " if dtype=='fp16':\n", + " input_data = input_data.half()\n", + " \n", + " print(\"Warm up ...\")\n", + " with torch.no_grad():\n", + " for _ in range(nwarmup):\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " print(\"Start timing ...\")\n", + " timings = []\n", + " with torch.no_grad():\n", + " for i in range(1, nruns+1):\n", + " start_time = time.time()\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " end_time = time.time()\n", + " timings.append(end_time - start_time)\n", + " if i%100==0:\n", + " print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))\n", + "\n", + " print(\"Input shape:\", input_data.size())\n", + " print(\"Output features size:\", features.size())\n", + " print('Average batch time: %.2f ms'%(np.mean(timings)*1000))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 162.87 ms\n", + "Iteration 200/1000, ave batch time 162.92 ms\n", + "Iteration 300/1000, ave batch time 162.92 ms\n", + "Iteration 400/1000, ave batch time 162.93 ms\n", + "Iteration 500/1000, ave batch time 162.93 ms\n", + "Iteration 600/1000, ave batch time 162.93 ms\n", + "Iteration 700/1000, ave batch time 162.93 ms\n", + "Iteration 800/1000, ave batch time 162.94 ms\n", + "Iteration 900/1000, ave batch time 162.94 ms\n", + "Iteration 1000/1000, ave batch time 162.94 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 162.94 ms\n" + ] + } + ], + "source": [ + "# Model benchmark without TRTorch/TensorRT\n", + "model = resnet50_model.eval().to(\"cuda\")\n", + "benchmark(model, input_shape=(128, 3, 224, 224), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 3. Creating TorchScript modules\n", + "\n", + "To compile with TRTorch, the model must first be in **TorchScript**. TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: **Tracing** and **Scripting**. \n", + "\n", + "- Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it sees. \n", + "- Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do. \n", + "\n", + "Tracing is more likely to compile successfully with TRTorch due to simplicity (though both systems are supported). We start with an example of the traced model in TorchScript." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tracing\n", + "\n", + "Tracing follows the path of execution when the module is called and records what happens. This recording is what the TorchScript IR will describe. \n", + "\n", + "To trace an instance of the model, we can call torch.jit.trace with an example input. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model = resnet50_model.eval().to(\"cuda\")\n", + "traced_model = torch.jit.trace(model, [torch.randn((128, 3, 224, 224)).to(\"cuda\")])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can save this model and use it independently of Python." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# This is just an example, and not required for the purposes of this demo\n", + "torch.jit.save(traced_model, \"resnet_50_traced.jit.pt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 162.96 ms\n", + "Iteration 200/1000, ave batch time 162.96 ms\n", + "Iteration 300/1000, ave batch time 162.96 ms\n", + "Iteration 400/1000, ave batch time 162.96 ms\n", + "Iteration 500/1000, ave batch time 162.96 ms\n", + "Iteration 600/1000, ave batch time 162.96 ms\n", + "Iteration 700/1000, ave batch time 162.96 ms\n", + "Iteration 800/1000, ave batch time 162.96 ms\n", + "Iteration 900/1000, ave batch time 162.96 ms\n", + "Iteration 1000/1000, ave batch time 162.96 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 162.96 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input\n", + "benchmark(traced_model, input_shape=(128, 3, 224, 224), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 4. Compiling with TRTorch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT.\n", + "\n", + "As mentioned earlier, we start with an example of TRTorch compilation with the traced model.\n", + "\n", + "Note that we show benchmarking results of two precisions: FP32 (single precision) and FP16 (half precision)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### FP32 (single precision)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# The compiled module will have precision as specified by \"op_precision\".\n", + "# Here, it will have FP16 precision.\n", + "trt_model_fp32 = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(128, 3, 224, 224)],\n", + " \"op_precision\": torch.float32, # Run with FP32\n", + " \"workspace_size\": 1 << 20\n", + "})\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 117.05 ms\n", + "Iteration 200/1000, ave batch time 117.06 ms\n", + "Iteration 300/1000, ave batch time 117.10 ms\n", + "Iteration 400/1000, ave batch time 117.14 ms\n", + "Iteration 500/1000, ave batch time 117.19 ms\n", + "Iteration 600/1000, ave batch time 117.22 ms\n", + "Iteration 700/1000, ave batch time 117.25 ms\n", + "Iteration 800/1000, ave batch time 117.29 ms\n", + "Iteration 900/1000, ave batch time 117.36 ms\n", + "Iteration 1000/1000, ave batch time 117.41 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 117.41 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input\n", + "benchmark(trt_model_fp32, input_shape=(128, 3, 224, 224), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### FP16 (half precision)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# The compiled module will have precision as specified by \"op_precision\".\n", + "# Here, it will have FP16 precision.\n", + "trt_model = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(128, 3, 224, 224)],\n", + " \"op_precision\": torch.half, # Run with FP16\n", + " \"workspace_size\": 1 << 20\n", + "})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 62.79 ms\n", + "Iteration 200/1000, ave batch time 62.78 ms\n", + "Iteration 300/1000, ave batch time 62.79 ms\n", + "Iteration 400/1000, ave batch time 62.78 ms\n", + "Iteration 500/1000, ave batch time 62.78 ms\n", + "Iteration 600/1000, ave batch time 62.78 ms\n", + "Iteration 700/1000, ave batch time 62.79 ms\n", + "Iteration 800/1000, ave batch time 62.79 ms\n", + "Iteration 900/1000, ave batch time 59.37 ms\n", + "Iteration 1000/1000, ave batch time 54.04 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 54.04 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input\n", + "benchmark(trt_model, input_shape=(128, 3, 224, 224), dtype='fp16', nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 5. Conclusion\n", + "\n", + "In this notebook, we have walked through the complete process of compiling TorchScript models with TRTorch for ResNet-50 model and test the performance impact of the optimization. With TRTorch, we observe a speedup of **1.4X** with FP32, and **3.0X** with FP16.\n", + "\n", + "### What's next\n", + "Now it's time to try TRTorch on your own model. Fill out issues at https://github.com/NVIDIA/TRTorch. Your involvement will help future development of TRTorch.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/v0.3.0/_notebooks/lenet-getting-started.html b/docs/v0.3.0/_notebooks/lenet-getting-started.html new file mode 100644 index 0000000000..b47b666bb7 --- /dev/null +++ b/docs/v0.3.0/_notebooks/lenet-getting-started.html @@ -0,0 +1,1529 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + TRTorch Getting Started - LeNet — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ +
+
+
+
[1]:
+
+
+
+
+
+
+# Copyright 2019 NVIDIA Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+
+
+
+

+ 5b0be119fb6740deb264c806a25f167d +

+

+ TRTorch Getting Started - LeNet + + ¶ + +

+

+ Overview + + ¶ + +

+

+ In the practice of developing machine learning models, there are few tools as approachable as PyTorch for developing and experimenting in designing machine learning models. The power of PyTorch comes from its deep integration into Python, its flexibility and its approach to automatic differentiation and execution (eager execution). However, when moving from research into production, the requirements change and we may no longer want that deep Python integration and we want optimization to get the +best performance we can on our deployment platform. In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. TorchScript uses PyTorch’s JIT compiler to transform your normal PyTorch code which gets interpreted by the Python interpreter to an intermediate representation (IR) which can have optimizations run on it and at runtime can get interpreted by the PyTorch JIT interpreter. For PyTorch this has opened up a whole new +world of possibilities, including deployment in other languages like C++. It also introduces a structured graph based format that we can use to do down to the kernel level optimization of models for inference. +

+

+ When deploying on NVIDIA GPUs TensorRT, NVIDIA’s Deep Learning Optimization SDK and Runtime is able to take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family be it an A100, TITAN V, Jetson Xavier or NVIDIA’s Deep Learning Accelerator. TensorRT performs a couple sets of optimizations to achieve this. TensorRT fuses layers and tensors in the model graph, it then uses a large kernel library to select implementations that +perform best on the target GPU. TensorRT also has strong support for reduced operating precision execution which allows users to leverage the Tensor Cores on Volta and newer GPUs as well as reducing memory and computation footprints on device. +

+

+ TRTorch is a compiler that uses TensorRT to optimize TorchScript code, compiling standard TorchScript modules into ones that internally run with TensorRT optimizations. This enables you to continue to remain in the PyTorch ecosystem, using all the great features PyTorch has such as module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch. +

+

+ Learning objectives + + ¶ + +

+

+ This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a simple LeNet network. +

+

+ Content + + ¶ + +

+
    +
  1. +

    + + Requirements + +

    +
  2. +
  3. +

    + + Creating TorchScript modules + +

    +
  4. +
  5. +

    + + Compiling with TRTorch + +

    +
  6. +
+

+ ## 1. Requirements +

+

+ Follow the steps in + + + notebooks/README + + + to prepare a Docker container, within which you can run this notebook. +

+

+ ## 2. Creating TorchScript modules +

+

+ Here we create two submodules for a feature extractor and a classifier and stitch them together in a single LeNet module. In this case this is overkill but modules give us granular control over our program including where we decide to optimize and where we don’t. It is also the unit that the TorchScript compiler operates on. So you can decide to only convert/optimize the feature extractor and leave the classifier in standard PyTorch or you can convert the whole thing. When compiling your module +to TorchScript, there are two paths: Tracing and Scripting. +

+
+
+
+
[2]:
+
+
+
+
+
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+
+class LeNetFeatExtractor(nn.Module):
+    def __init__(self):
+        super(LeNetFeatExtractor, self).__init__()
+        self.conv1 = nn.Conv2d(1, 6, 3)
+        self.conv2 = nn.Conv2d(6, 16, 3)
+
+    def forward(self, x):
+        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
+        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
+        return x
+
+class LeNetClassifier(nn.Module):
+    def __init__(self):
+        super(LeNetClassifier, self).__init__()
+        self.fc1 = nn.Linear(16 * 6 * 6, 120)
+        self.fc2 = nn.Linear(120, 84)
+        self.fc3 = nn.Linear(84, 10)
+
+    def forward(self, x):
+        x = torch.flatten(x,1)
+        x = F.relu(self.fc1(x))
+        x = F.relu(self.fc2(x))
+        x = self.fc3(x)
+        return x
+
+class LeNet(nn.Module):
+    def __init__(self):
+        super(LeNet, self).__init__()
+        self.feat = LeNetFeatExtractor()
+        self.classifer = LeNetClassifier()
+
+    def forward(self, x):
+        x = self.feat(x)
+        x = self.classifer(x)
+        return x
+
+
+
+
+
+

+ Let us define a helper function to benchmark a model. +

+
+
+
+
[3]:
+
+
+
+
+
+
+import time
+import numpy as np
+
+import torch.backends.cudnn as cudnn
+cudnn.benchmark = True
+
+def benchmark(model, input_shape=(1024, 1, 32, 32), dtype='fp32', nwarmup=50, nruns=10000):
+    input_data = torch.randn(input_shape)
+    input_data = input_data.to("cuda")
+    if dtype=='fp16':
+        input_data = input_data.half()
+
+    print("Warm up ...")
+    with torch.no_grad():
+        for _ in range(nwarmup):
+            features = model(input_data)
+    torch.cuda.synchronize()
+    print("Start timing ...")
+    timings = []
+    with torch.no_grad():
+        for i in range(1, nruns+1):
+            start_time = time.time()
+            features = model(input_data)
+            torch.cuda.synchronize()
+            end_time = time.time()
+            timings.append(end_time - start_time)
+            if i%1000==0:
+                print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))
+
+    print("Input shape:", input_data.size())
+    print("Output features size:", features.size())
+
+    print('Average batch time: %.2f ms'%(np.mean(timings)*1000))
+
+
+
+
+

+ PyTorch model + + ¶ + +

+
+
+
+
[4]:
+
+
+
+
+
+
+model = LeNet()
+model.to("cuda").eval()
+
+
+
+
+
+
+
+
+
[4]:
+
+
+
+
+
+
+LeNet(
+  (feat): LeNetFeatExtractor(
+    (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
+    (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
+  )
+  (classifer): LeNetClassifier(
+    (fc1): Linear(in_features=576, out_features=120, bias=True)
+    (fc2): Linear(in_features=120, out_features=84, bias=True)
+    (fc3): Linear(in_features=84, out_features=10, bias=True)
+  )
+)
+
+
+
+
+
+
+
+
[5]:
+
+
+
+
+
+
+benchmark(model)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 1000/10000, ave batch time 0.58 ms
+Iteration 2000/10000, ave batch time 0.58 ms
+Iteration 3000/10000, ave batch time 0.58 ms
+Iteration 4000/10000, ave batch time 0.58 ms
+Iteration 5000/10000, ave batch time 0.58 ms
+Iteration 6000/10000, ave batch time 0.58 ms
+Iteration 7000/10000, ave batch time 0.58 ms
+Iteration 8000/10000, ave batch time 0.58 ms
+Iteration 9000/10000, ave batch time 0.58 ms
+Iteration 10000/10000, ave batch time 0.58 ms
+Input shape: torch.Size([1024, 1, 32, 32])
+Output features size: torch.Size([1024, 10])
+Average batch time: 0.58 ms
+
+
+
+
+

+ When compiling your module to TorchScript, there are two paths: Tracing and Scripting. +

+

+ Tracing + + ¶ + +

+

+ Tracing follows the path of execution when the module is called and records what happens. This recording is what the TorchScript IR will describe. To trace an instance of our LeNet module, we can call torch.jit.trace with an example input. +

+
+
+
+
[6]:
+
+
+
+
+
+
+traced_model = torch.jit.trace(model, torch.empty([1,1,32,32]).to("cuda"))
+traced_model
+
+
+
+
+
+
+
+
[6]:
+
+
+
+
+
+
+LeNet(
+  original_name=LeNet
+  (feat): LeNetFeatExtractor(
+    original_name=LeNetFeatExtractor
+    (conv1): Conv2d(original_name=Conv2d)
+    (conv2): Conv2d(original_name=Conv2d)
+  )
+  (classifer): LeNetClassifier(
+    original_name=LeNetClassifier
+    (fc1): Linear(original_name=Linear)
+    (fc2): Linear(original_name=Linear)
+    (fc3): Linear(original_name=Linear)
+  )
+)
+
+
+
+
+
+
+
+
[7]:
+
+
+
+
+
+
+benchmark(traced_model)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 1000/10000, ave batch time 0.58 ms
+Iteration 2000/10000, ave batch time 0.59 ms
+Iteration 3000/10000, ave batch time 0.59 ms
+Iteration 4000/10000, ave batch time 0.59 ms
+Iteration 5000/10000, ave batch time 0.59 ms
+Iteration 6000/10000, ave batch time 0.59 ms
+Iteration 7000/10000, ave batch time 0.59 ms
+Iteration 8000/10000, ave batch time 0.59 ms
+Iteration 9000/10000, ave batch time 0.59 ms
+Iteration 10000/10000, ave batch time 0.59 ms
+Input shape: torch.Size([1024, 1, 32, 32])
+Output features size: torch.Size([1024, 10])
+Average batch time: 0.59 ms
+
+
+
+
+

+ Scripting + + ¶ + +

+

+ Scripting actually inspects your code with a compiler and generates an equivalent TorchScript program. The difference is that since tracing simply follows the execution of your module, it cannot pick up control flow for instance, it will only follow the code path that a particular input triggers. By working from the Python code, the compiler can include these components. We can run the script compiler on our LeNet module by calling torch.jit.script. +

+
+
+
+
[8]:
+
+
+
+
+
+
+model = LeNet().to("cuda").eval()
+script_model = torch.jit.script(model)
+
+
+
+
+
+
+
+
+
[9]:
+
+
+
+
+
+
+script_model
+
+
+
+
+
+
+
+
[9]:
+
+
+
+
+
+
+RecursiveScriptModule(
+  original_name=LeNet
+  (feat): RecursiveScriptModule(
+    original_name=LeNetFeatExtractor
+    (conv1): RecursiveScriptModule(original_name=Conv2d)
+    (conv2): RecursiveScriptModule(original_name=Conv2d)
+  )
+  (classifer): RecursiveScriptModule(
+    original_name=LeNetClassifier
+    (fc1): RecursiveScriptModule(original_name=Linear)
+    (fc2): RecursiveScriptModule(original_name=Linear)
+    (fc3): RecursiveScriptModule(original_name=Linear)
+  )
+)
+
+
+
+
+
+
+
+
[10]:
+
+
+
+
+
+
+benchmark(script_model)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 1000/10000, ave batch time 0.59 ms
+Iteration 2000/10000, ave batch time 0.59 ms
+Iteration 3000/10000, ave batch time 0.59 ms
+Iteration 4000/10000, ave batch time 0.59 ms
+Iteration 5000/10000, ave batch time 0.59 ms
+Iteration 6000/10000, ave batch time 0.59 ms
+Iteration 7000/10000, ave batch time 0.59 ms
+Iteration 8000/10000, ave batch time 0.59 ms
+Iteration 9000/10000, ave batch time 0.59 ms
+Iteration 10000/10000, ave batch time 0.59 ms
+Input shape: torch.Size([1024, 1, 32, 32])
+Output features size: torch.Size([1024, 10])
+Average batch time: 0.59 ms
+
+
+
+
+

+ ## 3. Compiling with TRTorch +

+

+ TorchScript traced model + + ¶ + +

+

+ First, we compile the TorchScript traced model with TRTorch. Notice the performance impact. +

+
+
+
+
[11]:
+
+
+
+
+
+
+import trtorch
+
+# We use a batch-size of 1024, and half precision
+compile_settings = {
+    "input_shapes": [
+        {
+            "min" : [1024, 1, 32, 32],
+            "opt" : [1024, 1, 33, 33],
+            "max" : [1024, 1, 34, 34],
+        }
+    ],
+    "op_precision": torch.half # Run with FP16
+}
+
+trt_ts_module = trtorch.compile(traced_model, compile_settings)
+
+input_data = torch.randn((1024, 1, 32, 32))
+input_data = input_data.half().to("cuda")
+
+input_data = input_data.half()
+result = trt_ts_module(input_data)
+torch.jit.save(trt_ts_module, "trt_ts_module.ts")
+
+
+
+
+
+
+
+
[12]:
+
+
+
+
+
+
+benchmark(trt_ts_module, input_shape=(1024, 1, 32, 32), dtype="fp16")
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 1000/10000, ave batch time 0.41 ms
+Iteration 2000/10000, ave batch time 0.41 ms
+Iteration 3000/10000, ave batch time 0.41 ms
+Iteration 4000/10000, ave batch time 0.40 ms
+Iteration 5000/10000, ave batch time 0.40 ms
+Iteration 6000/10000, ave batch time 0.40 ms
+Iteration 7000/10000, ave batch time 0.40 ms
+Iteration 8000/10000, ave batch time 0.40 ms
+Iteration 9000/10000, ave batch time 0.40 ms
+Iteration 10000/10000, ave batch time 0.40 ms
+Input shape: torch.Size([1024, 1, 32, 32])
+Output features size: torch.Size([1024, 10])
+Average batch time: 0.40 ms
+
+
+
+
+

+ TorchScript script model + + ¶ + +

+

+ Next, we compile the TorchScript script model with TRTorch. Notice the performance impact. +

+
+
+
+
[14]:
+
+
+
+
+
+
+import trtorch
+
+# We use a batch-size of 1024, and half precision
+compile_settings = {
+    "input_shapes": [
+        {
+            "min" : [1024, 1, 32, 32],
+            "opt" : [1024, 1, 33, 33],
+            "max" : [1024, 1, 34, 34],
+        }
+    ],
+    "op_precision": torch.half # Run with FP16
+}
+
+trt_script_module = trtorch.compile(script_model, compile_settings)
+
+input_data = torch.randn((1024, 1, 32, 32))
+input_data = input_data.half().to("cuda")
+
+input_data = input_data.half()
+result = trt_script_module(input_data)
+torch.jit.save(trt_script_module, "trt_script_module.ts")
+
+
+
+
+
+
+
+
[15]:
+
+
+
+
+
+
+benchmark(trt_script_module, input_shape=(1024, 1, 32, 32), dtype="fp16")
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 1000/10000, ave batch time 0.40 ms
+Iteration 2000/10000, ave batch time 0.40 ms
+Iteration 3000/10000, ave batch time 0.40 ms
+Iteration 4000/10000, ave batch time 0.40 ms
+Iteration 5000/10000, ave batch time 0.40 ms
+Iteration 6000/10000, ave batch time 0.40 ms
+Iteration 7000/10000, ave batch time 0.40 ms
+Iteration 8000/10000, ave batch time 0.40 ms
+Iteration 9000/10000, ave batch time 0.40 ms
+Iteration 10000/10000, ave batch time 0.40 ms
+Input shape: torch.Size([1024, 1, 32, 32])
+Output features size: torch.Size([1024, 10])
+Average batch time: 0.40 ms
+
+
+
+
+

+ Conclusion + + ¶ + +

+

+ In this notebook, we have walked through the complete process of compiling TorchScript models with TRTorch and test the performance impact of the optimization. +

+

+ What’s next + + ¶ + +

+

+ Now it’s time to try TRTorch on your own model. Fill out issues at + + https://github.com/NVIDIA/TRTorch + + . Your involvement will help future development of TRTorch. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_notebooks/lenet-getting-started.ipynb b/docs/v0.3.0/_notebooks/lenet-getting-started.ipynb new file mode 100644 index 0000000000..85b9a206f6 --- /dev/null +++ b/docs/v0.3.0/_notebooks/lenet-getting-started.ipynb @@ -0,0 +1,589 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright 2019 NVIDIA Corporation. All Rights Reserved.\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "# ==============================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# TRTorch Getting Started - LeNet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "In the practice of developing machine learning models, there are few tools as approachable as PyTorch for developing and experimenting in designing machine learning models. The power of PyTorch comes from its deep integration into Python, its flexibility and its approach to automatic differentiation and execution (eager execution). However, when moving from research into production, the requirements change and we may no longer want that deep Python integration and we want optimization to get the best performance we can on our deployment platform. In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. TorchScript uses PyTorch's JIT compiler to transform your normal PyTorch code which gets interpreted by the Python interpreter to an intermediate representation (IR) which can have optimizations run on it and at runtime can get interpreted by the PyTorch JIT interpreter. For PyTorch this has opened up a whole new world of possibilities, including deployment in other languages like C++. It also introduces a structured graph based format that we can use to do down to the kernel level optimization of models for inference.\n", + "\n", + "When deploying on NVIDIA GPUs TensorRT, NVIDIA's Deep Learning Optimization SDK and Runtime is able to take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family be it an A100, TITAN V, Jetson Xavier or NVIDIA's Deep Learning Accelerator. TensorRT performs a couple sets of optimizations to achieve this. TensorRT fuses layers and tensors in the model graph, it then uses a large kernel library to select implementations that perform best on the target GPU. TensorRT also has strong support for reduced operating precision execution which allows users to leverage the Tensor Cores on Volta and newer GPUs as well as reducing memory and computation footprints on device.\n", + "\n", + "TRTorch is a compiler that uses TensorRT to optimize TorchScript code, compiling standard TorchScript modules into ones that internally run with TensorRT optimizations. This enables you to continue to remain in the PyTorch ecosystem, using all the great features PyTorch has such as module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning objectives\n", + "\n", + "This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a simple LeNet network. \n", + "\n", + "## Content\n", + "1. [Requirements](#1)\n", + "1. [Creating TorchScript modules](#2)\n", + "1. [Compiling with TRTorch](#3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 1. Requirements\n", + "\n", + "Follow the steps in `notebooks/README` to prepare a Docker container, within which you can run this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 2. Creating TorchScript modules\n", + "\n", + "Here we create two submodules for a feature extractor and a classifier and stitch them together in a single LeNet module. In this case this is overkill but modules give us granular control over our program including where we decide to optimize and where we don't. It is also the unit that the TorchScript compiler operates on. So you can decide to only convert/optimize the feature extractor and leave the classifier in standard PyTorch or you can convert the whole thing. When compiling your module to TorchScript, there are two paths: Tracing and Scripting. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import torch \n", + "from torch import nn\n", + "import torch.nn.functional as F\n", + "\n", + "class LeNetFeatExtractor(nn.Module):\n", + " def __init__(self):\n", + " super(LeNetFeatExtractor, self).__init__()\n", + " self.conv1 = nn.Conv2d(1, 6, 3)\n", + " self.conv2 = nn.Conv2d(6, 16, 3)\n", + "\n", + " def forward(self, x):\n", + " x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))\n", + " x = F.max_pool2d(F.relu(self.conv2(x)), 2)\n", + " return x\n", + "\n", + "class LeNetClassifier(nn.Module):\n", + " def __init__(self):\n", + " super(LeNetClassifier, self).__init__()\n", + " self.fc1 = nn.Linear(16 * 6 * 6, 120)\n", + " self.fc2 = nn.Linear(120, 84)\n", + " self.fc3 = nn.Linear(84, 10)\n", + "\n", + " def forward(self, x):\n", + " x = torch.flatten(x,1)\n", + " x = F.relu(self.fc1(x))\n", + " x = F.relu(self.fc2(x))\n", + " x = self.fc3(x)\n", + " return x\n", + "\n", + "class LeNet(nn.Module):\n", + " def __init__(self):\n", + " super(LeNet, self).__init__()\n", + " self.feat = LeNetFeatExtractor()\n", + " self.classifer = LeNetClassifier()\n", + "\n", + " def forward(self, x):\n", + " x = self.feat(x)\n", + " x = self.classifer(x)\n", + " return x\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us define a helper function to benchmark a model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "\n", + "import torch.backends.cudnn as cudnn\n", + "cudnn.benchmark = True\n", + "\n", + "def benchmark(model, input_shape=(1024, 1, 32, 32), dtype='fp32', nwarmup=50, nruns=10000):\n", + " input_data = torch.randn(input_shape)\n", + " input_data = input_data.to(\"cuda\")\n", + " if dtype=='fp16':\n", + " input_data = input_data.half()\n", + " \n", + " print(\"Warm up ...\")\n", + " with torch.no_grad():\n", + " for _ in range(nwarmup):\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " print(\"Start timing ...\")\n", + " timings = []\n", + " with torch.no_grad():\n", + " for i in range(1, nruns+1):\n", + " start_time = time.time()\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " end_time = time.time()\n", + " timings.append(end_time - start_time)\n", + " if i%1000==0:\n", + " print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))\n", + "\n", + " print(\"Input shape:\", input_data.size())\n", + " print(\"Output features size:\", features.size())\n", + " \n", + " print('Average batch time: %.2f ms'%(np.mean(timings)*1000))\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### PyTorch model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LeNet(\n", + " (feat): LeNetFeatExtractor(\n", + " (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))\n", + " (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))\n", + " )\n", + " (classifer): LeNetClassifier(\n", + " (fc1): Linear(in_features=576, out_features=120, bias=True)\n", + " (fc2): Linear(in_features=120, out_features=84, bias=True)\n", + " (fc3): Linear(in_features=84, out_features=10, bias=True)\n", + " )\n", + ")" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = LeNet()\n", + "model.to(\"cuda\").eval()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.58 ms\n", + "Iteration 2000/10000, ave batch time 0.58 ms\n", + "Iteration 3000/10000, ave batch time 0.58 ms\n", + "Iteration 4000/10000, ave batch time 0.58 ms\n", + "Iteration 5000/10000, ave batch time 0.58 ms\n", + "Iteration 6000/10000, ave batch time 0.58 ms\n", + "Iteration 7000/10000, ave batch time 0.58 ms\n", + "Iteration 8000/10000, ave batch time 0.58 ms\n", + "Iteration 9000/10000, ave batch time 0.58 ms\n", + "Iteration 10000/10000, ave batch time 0.58 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.58 ms\n" + ] + } + ], + "source": [ + "benchmark(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When compiling your module to TorchScript, there are two paths: Tracing and Scripting. \n", + " \n", + "### Tracing\n", + "\n", + "Tracing follows the path of execution when the module is called and records what happens. This recording is what the TorchScript IR will describe. To trace an instance of our LeNet module, we can call torch.jit.trace with an example input. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LeNet(\n", + " original_name=LeNet\n", + " (feat): LeNetFeatExtractor(\n", + " original_name=LeNetFeatExtractor\n", + " (conv1): Conv2d(original_name=Conv2d)\n", + " (conv2): Conv2d(original_name=Conv2d)\n", + " )\n", + " (classifer): LeNetClassifier(\n", + " original_name=LeNetClassifier\n", + " (fc1): Linear(original_name=Linear)\n", + " (fc2): Linear(original_name=Linear)\n", + " (fc3): Linear(original_name=Linear)\n", + " )\n", + ")" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "traced_model = torch.jit.trace(model, torch.empty([1,1,32,32]).to(\"cuda\"))\n", + "traced_model" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.58 ms\n", + "Iteration 2000/10000, ave batch time 0.59 ms\n", + "Iteration 3000/10000, ave batch time 0.59 ms\n", + "Iteration 4000/10000, ave batch time 0.59 ms\n", + "Iteration 5000/10000, ave batch time 0.59 ms\n", + "Iteration 6000/10000, ave batch time 0.59 ms\n", + "Iteration 7000/10000, ave batch time 0.59 ms\n", + "Iteration 8000/10000, ave batch time 0.59 ms\n", + "Iteration 9000/10000, ave batch time 0.59 ms\n", + "Iteration 10000/10000, ave batch time 0.59 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.59 ms\n" + ] + } + ], + "source": [ + "benchmark(traced_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Scripting\n", + "\n", + "Scripting actually inspects your code with a compiler and generates an equivalent TorchScript program. The difference is that since tracing simply follows the execution of your module, it cannot pick up control flow for instance, it will only follow the code path that a particular input triggers. By working from the Python code, the compiler can include these components. We can run the script compiler on our LeNet module by calling torch.jit.script.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model = LeNet().to(\"cuda\").eval()\n", + "script_model = torch.jit.script(model)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RecursiveScriptModule(\n", + " original_name=LeNet\n", + " (feat): RecursiveScriptModule(\n", + " original_name=LeNetFeatExtractor\n", + " (conv1): RecursiveScriptModule(original_name=Conv2d)\n", + " (conv2): RecursiveScriptModule(original_name=Conv2d)\n", + " )\n", + " (classifer): RecursiveScriptModule(\n", + " original_name=LeNetClassifier\n", + " (fc1): RecursiveScriptModule(original_name=Linear)\n", + " (fc2): RecursiveScriptModule(original_name=Linear)\n", + " (fc3): RecursiveScriptModule(original_name=Linear)\n", + " )\n", + ")" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "script_model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.59 ms\n", + "Iteration 2000/10000, ave batch time 0.59 ms\n", + "Iteration 3000/10000, ave batch time 0.59 ms\n", + "Iteration 4000/10000, ave batch time 0.59 ms\n", + "Iteration 5000/10000, ave batch time 0.59 ms\n", + "Iteration 6000/10000, ave batch time 0.59 ms\n", + "Iteration 7000/10000, ave batch time 0.59 ms\n", + "Iteration 8000/10000, ave batch time 0.59 ms\n", + "Iteration 9000/10000, ave batch time 0.59 ms\n", + "Iteration 10000/10000, ave batch time 0.59 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.59 ms\n" + ] + } + ], + "source": [ + "benchmark(script_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 3. Compiling with TRTorch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TorchScript traced model\n", + "\n", + "First, we compile the TorchScript traced model with TRTorch. Notice the performance impact." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# We use a batch-size of 1024, and half precision\n", + "compile_settings = {\n", + " \"input_shapes\": [\n", + " {\n", + " \"min\" : [1024, 1, 32, 32],\n", + " \"opt\" : [1024, 1, 33, 33],\n", + " \"max\" : [1024, 1, 34, 34],\n", + " }\n", + " ],\n", + " \"op_precision\": torch.half # Run with FP16\n", + "}\n", + "\n", + "trt_ts_module = trtorch.compile(traced_model, compile_settings)\n", + "\n", + "input_data = torch.randn((1024, 1, 32, 32))\n", + "input_data = input_data.half().to(\"cuda\")\n", + "\n", + "input_data = input_data.half()\n", + "result = trt_ts_module(input_data)\n", + "torch.jit.save(trt_ts_module, \"trt_ts_module.ts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.41 ms\n", + "Iteration 2000/10000, ave batch time 0.41 ms\n", + "Iteration 3000/10000, ave batch time 0.41 ms\n", + "Iteration 4000/10000, ave batch time 0.40 ms\n", + "Iteration 5000/10000, ave batch time 0.40 ms\n", + "Iteration 6000/10000, ave batch time 0.40 ms\n", + "Iteration 7000/10000, ave batch time 0.40 ms\n", + "Iteration 8000/10000, ave batch time 0.40 ms\n", + "Iteration 9000/10000, ave batch time 0.40 ms\n", + "Iteration 10000/10000, ave batch time 0.40 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.40 ms\n" + ] + } + ], + "source": [ + "benchmark(trt_ts_module, input_shape=(1024, 1, 32, 32), dtype=\"fp16\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TorchScript script model\n", + "\n", + "Next, we compile the TorchScript script model with TRTorch. Notice the performance impact." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# We use a batch-size of 1024, and half precision\n", + "compile_settings = {\n", + " \"input_shapes\": [\n", + " {\n", + " \"min\" : [1024, 1, 32, 32],\n", + " \"opt\" : [1024, 1, 33, 33],\n", + " \"max\" : [1024, 1, 34, 34],\n", + " }\n", + " ],\n", + " \"op_precision\": torch.half # Run with FP16\n", + "}\n", + "\n", + "trt_script_module = trtorch.compile(script_model, compile_settings)\n", + "\n", + "input_data = torch.randn((1024, 1, 32, 32))\n", + "input_data = input_data.half().to(\"cuda\")\n", + "\n", + "input_data = input_data.half()\n", + "result = trt_script_module(input_data)\n", + "torch.jit.save(trt_script_module, \"trt_script_module.ts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.40 ms\n", + "Iteration 2000/10000, ave batch time 0.40 ms\n", + "Iteration 3000/10000, ave batch time 0.40 ms\n", + "Iteration 4000/10000, ave batch time 0.40 ms\n", + "Iteration 5000/10000, ave batch time 0.40 ms\n", + "Iteration 6000/10000, ave batch time 0.40 ms\n", + "Iteration 7000/10000, ave batch time 0.40 ms\n", + "Iteration 8000/10000, ave batch time 0.40 ms\n", + "Iteration 9000/10000, ave batch time 0.40 ms\n", + "Iteration 10000/10000, ave batch time 0.40 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.40 ms\n" + ] + } + ], + "source": [ + "benchmark(trt_script_module, input_shape=(1024, 1, 32, 32), dtype=\"fp16\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "In this notebook, we have walked through the complete process of compiling TorchScript models with TRTorch and test the performance impact of the optimization.\n", + "\n", + "### What's next\n", + "Now it's time to try TRTorch on your own model. Fill out issues at https://github.com/NVIDIA/TRTorch. Your involvement will help future development of TRTorch.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/v0.3.0/_notebooks/ssd-object-detection-demo.html b/docs/v0.3.0/_notebooks/ssd-object-detection-demo.html new file mode 100644 index 0000000000..3e892a60b5 --- /dev/null +++ b/docs/v0.3.0/_notebooks/ssd-object-detection-demo.html @@ -0,0 +1,1770 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Object Detection with TRTorch (SSD) — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ +
+
+
+
[1]:
+
+
+
+
+
+
+# Copyright 2020 NVIDIA Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+
+
+
+

+ 90b283a7796c4d44933ace7a7d3e33ad +

+

+ Object Detection with TRTorch (SSD) + + ¶ + +

+
+

+ Overview + + ¶ + +

+

+ In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. +

+

+ TRTorch is a compiler that uses TensorRT (NVIDIA’s Deep Learning Optimization SDK and Runtime) to optimize TorchScript code. It compiles standard TorchScript modules into ones that internally run with TensorRT optimizations. +

+

+ TensorRT can take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family, and TRTorch enables us to continue to remain in the PyTorch ecosystem whilst doing so. This allows us to leverage the great features in PyTorch, including module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch. +

+

+ To get more background information on this, we suggest the + + lenet-getting-started + + notebook as a primer for getting started with TRTorch. +

+

+ Learning objectives + + ¶ + +

+

+ This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a pretrained SSD network, and running it to test the speedup obtained. +

+

+ Contents + + ¶ + +

+
    +
  1. +

    + + Requirements + +

    +
  2. +
  3. +

    + + SSD Overview + +

    +
  4. +
  5. +

    + + Creating TorchScript modules + +

    +
  6. +
  7. +

    + + Compiling with TRTorch + +

    +
  8. +
  9. +

    + + Running Inference + +

    +
  10. +
  11. +

    + + Measuring Speedup + +

    +
  12. +
  13. +

    + + Conclusion + +

    +
  14. +
+
+

+ ## 1. Requirements +

+

+ Follow the steps in + + + notebooks/README + + + to prepare a Docker container, within which you can run this demo notebook. +

+

+ In addition to that, run the following cell to obtain additional libraries specific to this demo. +

+
+
+
+
[2]:
+
+
+
+
+
+
+%%capture
+%%bash
+# Known working versions
+pip install numpy==1.19 scipy==1.5.2 Pillow==6.2.0 scikit-image==0.17.2 matplotlib==3.3.0
+
+
+
+
+
+

+ ## 2. SSD +

+

+ Single Shot MultiBox Detector model for object detection + + ¶ + +

+ + + + + + + + + + + + + + + + + +
+

+ _ +

+
+

+ _ +

+
+

+ alt +

+
+

+ image1 +

+
+

+ PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our SSD model pretrained on + + COCO + + from there. +

+

+ Model Description + + ¶ + +

+

+ This SSD300 model is based on the + + SSD: Single Shot MultiBox Detector + + paper, which describes SSD as “a method for detecting objects in images using a single deep neural network”. The input size is fixed to 300x300. +

+

+ The main difference between this model and the one described in the paper is in the backbone. Specifically, the VGG model is obsolete and is replaced by the ResNet-50 model. +

+

+ From the + + Speed/accuracy trade-offs for modern convolutional object detectors + + paper, the following enhancements were made to the backbone: * The conv5_x, avgpool, fc and softmax layers were removed from the original classification model. * All strides in conv4_x are set to 1x1. +

+

+ The backbone is followed by 5 additional convolutional layers. In addition to the convolutional layers, we attached 6 detection heads: * The first detection head is attached to the last conv4_x layer. * The other five detection heads are attached to the corresponding 5 additional layers. +

+

+ Detector heads are similar to the ones referenced in the paper, however, they are enhanced by additional BatchNorm layers after each convolution. +

+

+ More information about this SSD model is available at Nvidia’s “DeepLearningExamples” Github + + here + + . +

+
+
+
+
[3]:
+
+
+
+
+
+
+import torch
+
+# List of available models in PyTorch Hub from Nvidia/DeepLearningExamples
+torch.hub.list('NVIDIA/DeepLearningExamples:torchhub')
+
+
+
+
+
+
+
+
+
+
+Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub
+
+
+
+
+
+
+
+
[3]:
+
+
+
+
+
+
+['checkpoint_from_distributed',
+ 'nvidia_ncf',
+ 'nvidia_ssd',
+ 'nvidia_ssd_processing_utils',
+ 'nvidia_tacotron2',
+ 'nvidia_waveglow',
+ 'unwrap_distributed']
+
+
+
+
+
+
+
+
[4]:
+
+
+
+
+
+
+# load SSD model pretrained on COCO from Torch Hub
+precision = 'fp32'
+ssd300 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=precision);
+
+
+
+
+
+
+
+
+
+
+Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub
+
+
+
+
+

+ Setting + + + precision="fp16" + + + will load a checkpoint trained with mixed precision into architecture enabling execution on Tensor Cores. Handling mixed precision data requires the Apex library. +

+

+ Sample Inference + + ¶ + +

+

+ We can now run inference on the model. This is demonstrated below using sample images from the COCO 2017 Validation set. +

+
+
+
+
[5]:
+
+
+
+
+
+
+# Sample images from the COCO validation set
+uris = [
+    'http://images.cocodataset.org/val2017/000000397133.jpg',
+    'http://images.cocodataset.org/val2017/000000037777.jpg',
+    'http://images.cocodataset.org/val2017/000000252219.jpg'
+]
+
+# For convenient and comprehensive formatting of input and output of the model, load a set of utility methods.
+utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils')
+
+# Format images to comply with the network input
+inputs = [utils.prepare_input(uri) for uri in uris]
+tensor = utils.prepare_tensor(inputs, False)
+
+# The model was trained on COCO dataset, which we need to access in order to
+# translate class IDs into object names.
+classes_to_labels = utils.get_coco_object_dictionary()
+
+
+
+
+
+
+
+
+
+
+Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub
+
+
+
+
+
+
+
+
+
+
+Downloading COCO annotations.
+Downloading finished.
+
+
+
+
+
+
+
+
[6]:
+
+
+
+
+
+
+# Next, we run object detection
+model = ssd300.eval().to("cuda")
+detections_batch = model(tensor)
+
+# By default, raw output from SSD network per input image contains 8732 boxes with
+# localization and class probability distribution.
+# Let’s filter this output to only get reasonable detections (confidence>40%) in a more comprehensive format.
+results_per_input = utils.decode_results(detections_batch)
+best_results_per_input = [utils.pick_best(results, 0.40) for results in results_per_input]
+
+
+
+
+

+ Visualize results + + ¶ + +

+
+
+
+
[7]:
+
+
+
+
+
+
+from matplotlib import pyplot as plt
+import matplotlib.patches as patches
+
+# The utility plots the images and predicted bounding boxes (with confidence scores).
+def plot_results(best_results):
+    for image_idx in range(len(best_results)):
+        fig, ax = plt.subplots(1)
+        # Show original, denormalized image...
+        image = inputs[image_idx] / 2 + 0.5
+        ax.imshow(image)
+        # ...with detections
+        bboxes, classes, confidences = best_results[image_idx]
+        for idx in range(len(bboxes)):
+            left, bot, right, top = bboxes[idx]
+            x, y, w, h = [val * 300 for val in [left, bot, right - left, top - bot]]
+            rect = patches.Rectangle((x, y), w, h, linewidth=1, edgecolor='r', facecolor='none')
+            ax.add_patch(rect)
+            ax.text(x, y, "{} {:.0f}%".format(classes_to_labels[classes[idx] - 1], confidences[idx]*100), bbox=dict(facecolor='white', alpha=0.5))
+    plt.show()
+
+
+
+
+
+
+
+
+
[8]:
+
+
+
+
+
+
+# Visualize results without TRTorch/TensorRT
+plot_results(best_results_per_input)
+
+
+
+
+
+
+
+
+ ../_images/_notebooks_ssd-object-detection-demo_17_0.png +
+
+
+
+
+
+ ../_images/_notebooks_ssd-object-detection-demo_17_1.png +
+
+
+
+
+
+ ../_images/_notebooks_ssd-object-detection-demo_17_2.png +
+
+

+ Benchmark utility + + ¶ + +

+
+
+
+
[9]:
+
+
+
+
+
+
+import time
+import numpy as np
+
+import torch.backends.cudnn as cudnn
+cudnn.benchmark = True
+
+# Helper function to benchmark the model
+def benchmark(model, input_shape=(1024, 1, 32, 32), dtype='fp32', nwarmup=50, nruns=1000):
+    input_data = torch.randn(input_shape)
+    input_data = input_data.to("cuda")
+    if dtype=='fp16':
+        input_data = input_data.half()
+
+    print("Warm up ...")
+    with torch.no_grad():
+        for _ in range(nwarmup):
+            features = model(input_data)
+    torch.cuda.synchronize()
+    print("Start timing ...")
+    timings = []
+    with torch.no_grad():
+        for i in range(1, nruns+1):
+            start_time = time.time()
+            pred_loc, pred_label  = model(input_data)
+            torch.cuda.synchronize()
+            end_time = time.time()
+            timings.append(end_time - start_time)
+            if i%100==0:
+                print('Iteration %d/%d, avg batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))
+
+    print("Input shape:", input_data.size())
+    print("Output location prediction size:", pred_loc.size())
+    print("Output label prediction size:", pred_label.size())
+    print('Average batch time: %.2f ms'%(np.mean(timings)*1000))
+
+
+
+
+
+

+ We check how well the model performs + + before + + we use TRTorch/TensorRT +

+
+
+
+
[10]:
+
+
+
+
+
+
+# Model benchmark without TRTorch/TensorRT
+model = ssd300.eval().to("cuda")
+benchmark(model, input_shape=(128, 3, 300, 300), nruns=1000)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 100/1000, avg batch time 362.25 ms
+Iteration 200/1000, avg batch time 362.47 ms
+Iteration 300/1000, avg batch time 362.57 ms
+Iteration 400/1000, avg batch time 362.75 ms
+Iteration 500/1000, avg batch time 362.80 ms
+Iteration 600/1000, avg batch time 362.86 ms
+Iteration 700/1000, avg batch time 362.93 ms
+Iteration 800/1000, avg batch time 362.96 ms
+Iteration 900/1000, avg batch time 362.96 ms
+Iteration 1000/1000, avg batch time 362.99 ms
+Input shape: torch.Size([128, 3, 300, 300])
+Output location prediction size: torch.Size([128, 4, 8732])
+Output label prediction size: torch.Size([128, 81, 8732])
+Average batch time: 362.99 ms
+
+
+
+
+
+

+ ## 3. Creating TorchScript modules +

+

+ To compile with TRTorch, the model must first be in + + TorchScript + + . TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: + + Tracing + + and + + Scripting + + . - Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it +sees. - Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do. +

+

+ Tracing however due to its simplicity is more likely to compile successfully with TRTorch (though both systems are supported). +

+
+
+
+
[11]:
+
+
+
+
+
+
+model = ssd300.eval().to("cuda")
+traced_model = torch.jit.trace(model, [torch.randn((1,3,300,300)).to("cuda")])
+
+
+
+
+

+ If required, we can also save this model and use it independently of Python. +

+
+
+
+
[12]:
+
+
+
+
+
+
+# This is just an example, and not required for the purposes of this demo
+torch.jit.save(traced_model, "ssd_300_traced.jit.pt")
+
+
+
+
+
+
+
+
[13]:
+
+
+
+
+
+
+# Obtain the average time taken by a batch of input with Torchscript compiled modules
+benchmark(traced_model, input_shape=(128, 3, 300, 300), nruns=1000)
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 100/1000, avg batch time 363.09 ms
+Iteration 200/1000, avg batch time 363.00 ms
+Iteration 300/1000, avg batch time 363.09 ms
+Iteration 400/1000, avg batch time 363.05 ms
+Iteration 500/1000, avg batch time 363.08 ms
+Iteration 600/1000, avg batch time 363.07 ms
+Iteration 700/1000, avg batch time 363.09 ms
+Iteration 800/1000, avg batch time 363.06 ms
+Iteration 900/1000, avg batch time 363.08 ms
+Iteration 1000/1000, avg batch time 363.08 ms
+Input shape: torch.Size([128, 3, 300, 300])
+Output location prediction size: torch.Size([128, 4, 8732])
+Output label prediction size: torch.Size([128, 81, 8732])
+Average batch time: 363.08 ms
+
+
+
+
+
+

+ ## 4. Compiling with TRTorch TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT. +

+
+
+
+
[14]:
+
+
+
+
+
+
+import trtorch
+
+# The compiled module will have precision as specified by "op_precision".
+# Here, it will have FP16 precision.
+trt_model = trtorch.compile(traced_model, {
+    "input_shapes": [(3, 3, 300, 300)],
+    "op_precision": torch.half, # Run with FP16
+    "workspace_size": 1 << 20
+})
+
+
+
+
+
+

+ ## 5. Running Inference +

+

+ Next, we run object detection +

+
+
+
+
[15]:
+
+
+
+
+
+
+# using a TRTorch module is exactly the same as how we usually do inference in PyTorch i.e. model(inputs)
+detections_batch = trt_model(tensor.to(torch.half)) # convert the input to half precision
+
+# By default, raw output from SSD network per input image contains 8732 boxes with
+# localization and class probability distribution.
+# Let’s filter this output to only get reasonable detections (confidence>40%) in a more comprehensive format.
+results_per_input = utils.decode_results(detections_batch)
+best_results_per_input_trt = [utils.pick_best(results, 0.40) for results in results_per_input]
+
+
+
+
+

+ Now, let’s visualize our predictions! +

+
+
+
+
[16]:
+
+
+
+
+
+
+# Visualize results with TRTorch/TensorRT
+plot_results(best_results_per_input_trt)
+
+
+
+
+
+
+
+
+ ../_images/_notebooks_ssd-object-detection-demo_34_0.png +
+
+
+
+
+
+ ../_images/_notebooks_ssd-object-detection-demo_34_1.png +
+
+
+
+
+
+ ../_images/_notebooks_ssd-object-detection-demo_34_2.png +
+
+

+ We get similar results as before! +

+
+

+ 6. Measuring Speedup + + ¶ + +

+

+ We can run the benchmark function again to see the speedup gained! Compare this result with the same batch-size of input in the case without TRTorch/TensorRT above. +

+
+
+
+
[17]:
+
+
+
+
+
+
+batch_size = 128
+
+# Recompiling with batch_size we use for evaluating performance
+trt_model = trtorch.compile(traced_model, {
+    "input_shapes": [(batch_size, 3, 300, 300)],
+    "op_precision": torch.half, # Run with FP16
+    "workspace_size": 1 << 20
+})
+
+benchmark(trt_model, input_shape=(batch_size, 3, 300, 300), nruns=1000, dtype="fp16")
+
+
+
+
+
+
+
+
+
+
+Warm up ...
+Start timing ...
+Iteration 100/1000, avg batch time 72.94 ms
+Iteration 200/1000, avg batch time 72.95 ms
+Iteration 300/1000, avg batch time 73.00 ms
+Iteration 400/1000, avg batch time 73.06 ms
+Iteration 500/1000, avg batch time 73.10 ms
+Iteration 600/1000, avg batch time 73.14 ms
+Iteration 700/1000, avg batch time 73.17 ms
+Iteration 800/1000, avg batch time 73.18 ms
+Iteration 900/1000, avg batch time 73.19 ms
+Iteration 1000/1000, avg batch time 73.21 ms
+Input shape: torch.Size([128, 3, 300, 300])
+Output location prediction size: torch.Size([128, 4, 8732])
+Output label prediction size: torch.Size([128, 81, 8732])
+Average batch time: 73.21 ms
+
+
+
+
+
+

+ 7. Conclusion + + ¶ + +

+

+ In this notebook, we have walked through the complete process of compiling a TorchScript SSD300 model with TRTorch, and tested the performance impact of the optimization. We find that using the TRTorch compiled model, we gain significant speedup in inference without any noticeable drop in performance! +

+

+ Details + + ¶ + +

+

+ For detailed information on model input and output, training recipies, inference and performance visit: + + github + + and/or + + NGC + +

+

+ References + + ¶ + +

+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/_notebooks/ssd-object-detection-demo.ipynb b/docs/v0.3.0/_notebooks/ssd-object-detection-demo.ipynb new file mode 100644 index 0000000000..320d663815 --- /dev/null +++ b/docs/v0.3.0/_notebooks/ssd-object-detection-demo.ipynb @@ -0,0 +1,754 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright 2020 NVIDIA Corporation. All Rights Reserved.\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "# ==============================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# Object Detection with TRTorch (SSD)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Overview\n", + "\n", + "\n", + "In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable.\n", + "\n", + "TRTorch is a compiler that uses TensorRT (NVIDIA's Deep Learning Optimization SDK and Runtime) to optimize TorchScript code. It compiles standard TorchScript modules into ones that internally run with TensorRT optimizations.\n", + "\n", + "TensorRT can take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family, and TRTorch enables us to continue to remain in the PyTorch ecosystem whilst doing so. This allows us to leverage the great features in PyTorch, including module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch. \n", + "\n", + "To get more background information on this, we suggest the **lenet-getting-started** notebook as a primer for getting started with TRTorch." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning objectives\n", + "\n", + "This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a pretrained SSD network, and running it to test the speedup obtained.\n", + "\n", + "## Contents\n", + "1. [Requirements](#1)\n", + "2. [SSD Overview](#2)\n", + "3. [Creating TorchScript modules](#3)\n", + "4. [Compiling with TRTorch](#4)\n", + "5. [Running Inference](#5)\n", + "6. [Measuring Speedup](#6)\n", + "7. [Conclusion](#7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 1. Requirements\n", + "\n", + "Follow the steps in `notebooks/README` to prepare a Docker container, within which you can run this demo notebook.\n", + "\n", + "In addition to that, run the following cell to obtain additional libraries specific to this demo." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "%%capture \n", + "%%bash\n", + "# Known working versions\n", + "pip install numpy==1.19 scipy==1.5.2 Pillow==6.2.0 scikit-image==0.17.2 matplotlib==3.3.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 2. SSD\n", + "\n", + "### Single Shot MultiBox Detector model for object detection\n", + "\n", + "_ | _\n", + "- | -\n", + "![alt](https://pytorch.org/assets/images/ssd_diagram.png) | ![alt](https://pytorch.org/assets/images/ssd.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our SSD model pretrained on [COCO](https://cocodataset.org/#home) from there.\n", + "\n", + "### Model Description\n", + "\n", + "This SSD300 model is based on the\n", + "[SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) paper, which\n", + "describes SSD as “a method for detecting objects in images using a single deep neural network\".\n", + "The input size is fixed to 300x300.\n", + "\n", + "The main difference between this model and the one described in the paper is in the backbone.\n", + "Specifically, the VGG model is obsolete and is replaced by the ResNet-50 model.\n", + "\n", + "From the\n", + "[Speed/accuracy trade-offs for modern convolutional object detectors](https://arxiv.org/abs/1611.10012)\n", + "paper, the following enhancements were made to the backbone:\n", + "* The conv5_x, avgpool, fc and softmax layers were removed from the original classification model.\n", + "* All strides in conv4_x are set to 1x1.\n", + "\n", + "The backbone is followed by 5 additional convolutional layers.\n", + "In addition to the convolutional layers, we attached 6 detection heads:\n", + "* The first detection head is attached to the last conv4_x layer.\n", + "* The other five detection heads are attached to the corresponding 5 additional layers.\n", + "\n", + "Detector heads are similar to the ones referenced in the paper, however,\n", + "they are enhanced by additional BatchNorm layers after each convolution.\n", + "\n", + "More information about this SSD model is available at Nvidia's \"DeepLearningExamples\" Github [here](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub\n" + ] + }, + { + "data": { + "text/plain": [ + "['checkpoint_from_distributed',\n", + " 'nvidia_ncf',\n", + " 'nvidia_ssd',\n", + " 'nvidia_ssd_processing_utils',\n", + " 'nvidia_tacotron2',\n", + " 'nvidia_waveglow',\n", + " 'unwrap_distributed']" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "\n", + "# List of available models in PyTorch Hub from Nvidia/DeepLearningExamples\n", + "torch.hub.list('NVIDIA/DeepLearningExamples:torchhub')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub\n" + ] + } + ], + "source": [ + "# load SSD model pretrained on COCO from Torch Hub\n", + "precision = 'fp32'\n", + "ssd300 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=precision);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Setting `precision=\"fp16\"` will load a checkpoint trained with mixed precision \n", + "into architecture enabling execution on Tensor Cores. Handling mixed precision data requires the Apex library." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sample Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now run inference on the model. This is demonstrated below using sample images from the COCO 2017 Validation set." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading COCO annotations.\n", + "Downloading finished.\n" + ] + } + ], + "source": [ + "# Sample images from the COCO validation set\n", + "uris = [\n", + " 'http://images.cocodataset.org/val2017/000000397133.jpg',\n", + " 'http://images.cocodataset.org/val2017/000000037777.jpg',\n", + " 'http://images.cocodataset.org/val2017/000000252219.jpg'\n", + "]\n", + "\n", + "# For convenient and comprehensive formatting of input and output of the model, load a set of utility methods.\n", + "utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils')\n", + "\n", + "# Format images to comply with the network input\n", + "inputs = [utils.prepare_input(uri) for uri in uris]\n", + "tensor = utils.prepare_tensor(inputs, False)\n", + "\n", + "# The model was trained on COCO dataset, which we need to access in order to\n", + "# translate class IDs into object names. \n", + "classes_to_labels = utils.get_coco_object_dictionary()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Next, we run object detection\n", + "model = ssd300.eval().to(\"cuda\")\n", + "detections_batch = model(tensor)\n", + "\n", + "# By default, raw output from SSD network per input image contains 8732 boxes with \n", + "# localization and class probability distribution. \n", + "# Let’s filter this output to only get reasonable detections (confidence>40%) in a more comprehensive format.\n", + "results_per_input = utils.decode_results(detections_batch)\n", + "best_results_per_input = [utils.pick_best(results, 0.40) for results in results_per_input]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize results" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "import matplotlib.patches as patches\n", + "\n", + "# The utility plots the images and predicted bounding boxes (with confidence scores).\n", + "def plot_results(best_results):\n", + " for image_idx in range(len(best_results)):\n", + " fig, ax = plt.subplots(1)\n", + " # Show original, denormalized image...\n", + " image = inputs[image_idx] / 2 + 0.5\n", + " ax.imshow(image)\n", + " # ...with detections\n", + " bboxes, classes, confidences = best_results[image_idx]\n", + " for idx in range(len(bboxes)):\n", + " left, bot, right, top = bboxes[idx]\n", + " x, y, w, h = [val * 300 for val in [left, bot, right - left, top - bot]]\n", + " rect = patches.Rectangle((x, y), w, h, linewidth=1, edgecolor='r', facecolor='none')\n", + " ax.add_patch(rect)\n", + " ax.text(x, y, \"{} {:.0f}%\".format(classes_to_labels[classes[idx] - 1], confidences[idx]*100), bbox=dict(facecolor='white', alpha=0.5))\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebilWXbWB/728E1nvPONuDFHzpVZWZVVJalKUhnNAkugASwxCRmQBd0W2A02ot3dhkYYqWmwxGhJRmBhLDMJATJIIIRKY81VWTlUZmVGZMxx53PP/A176j/2dyNL6kqreUSZ7Ee5nyci7nDiu+ee8+2113rX+75LhBB4a7213lq/eZf8D/0E3lpvrbfWf9j1VhB4a721fpOvt4LAW+ut9Zt8vRUE3lpvrd/k660g8NZ6a/0mX28FgbfWW+s3+fq8BQEhxG8VQnxGCHFNCPGnP18/56311npr/caW+HzwBIQQCngF+GrgLvBR4PeEED797/2HvbXeWm+t39D6fGUCXwhcCyG8FkJogL8PfMPn6We9td5ab63fwNKfp+ueA+581ud3gS96owcrpUK30wHvSZIElMI5R7VcUmSaJEvxQWCMQcgEHzy2qcizjNoYtEowTU3wFgAhJEIIdJohVUJdLfHO4HwABHmWk2Q5dbXEmebB84jf/dVLnP7VflMgEEpT9PqYqsI0FSF4CKB0SpLnlMs5Smp0ntOUi3jtEJCATjKClNi6hBCAQACsC4QQ4vNWEq2gvezneFbgfcAHH5+PBCEEwgcE8Y9SKj7fAEWuaFygqS2pFMhfE/rDr/ndT3/dEF7/Wvjs10BIgpB4JDrL45cF4D0+BIIP8RoCpBAQAsF7jDE473/1awsIKdBJQpZlKBXfO3l6zfb/qyTBOxevhUf48KsuEoInfNaXhNR47/HeYXz83bNMo6VESIl3DoEg4EGARCCkQop4rfi+i/i7SPHgPQwh/hu/LUDE96KpDY0xWOcRUlEUKd1Mk6h4PRB47wmIB8+vrhryXCFFQEqN8/FFVgoIHqlTnDUQAlLG1+X0TZA6xdYVSxNf1/GsRrY3qxACQXydEwWdTgbec3dUH4UQNn/tvfT5CgK/7hJCfCfwnQBSCi4Nezz12GOMhSBXkhdf/jQz1/AFX/AEurdK7QuysETLFF2sMx7vkivH3uERw9Udbt+6yexkl0SCFBKZJjz1nvfjkTz7S/+Wxgjw0Ol3ufjQk1y48givvfhR5of7qKzApx2apkbaCrOcIoLFI/ECHALtASniDeVh5+pDPPr4U+zd/AyHr30G7xs2HnobR7OS6f4dLlx+gpBn3Hj2ozz2+OMsqoby+A5rZx8iX93i7isfQwmHEgJnGhaNY7EwuCDRScpKJ7CSK3INCEUIgtrConHULt4IgYASCi0daZIgvcDZhjQ4VlLBSk/w1Be+j5euvcr9127TVynDjkLJAFIhgkcqhfEB5wN5qsBZQgAX4m0Ub3yBcx7vBeCRChKtCYlC6IKQ5ORrW6S9LSbLivlygWtqhllC0e+Tr6ziqzlmNsOUJVU1w1RLvI8bUAuB8wErU1Teobu2yrmL51jpdchFRa4gK/pYU5J3V/F1jW1mSMBJhzABZ2uQGt84hBSkWYeyKnn+1dd44b4h05r1QcbD211WtSRkGZsPPYmbj5nef5Vet8vOxct0+z2qxQlSKESSYr1HStlGZI8xnsY6rPcIIQgerHWYquHg4JBPfeLT3DmcIbXi3OUzfPl7LnCm70mlxBpwYoAPc3Q65OjWTXbO95G2ZOPMJYqVdWx5giYglcYIhSQBFRBtFHYhIKRFB8Ht24f81PN7vPjxVxkNEgadlAvn1nnbk09x7SMf4NKw5JHzAuE01yYFf+rH9259rr34+QoC94ALn/X5+fZrD1YI4YeBHwZIlQqIgK6nbBcaJTXn11doVlbR3YKgE+zCMkgFo3JE4izd9TXs8V0kDqU1aIVZ1lR4pFDo1OOswyeSSWXQSDpJAs4jpaJ2jso5vPQgLAJH1unQG+4w2b8LixO8c9jgUG0kD0EyXdRoqZjdeoXbWnDpkSeQQnP/9iuMpyfUi4qVostgY5M7d2/yxJNvp7OyhhufMN/36DzHNSXVcokQoPM+OIf3juGgIE8U/c1L1LVjfPQa3juUlCglUIliWtbMa0gTRTdLKDSUBtY2N1lfHVCO99HSUSSaibP8m+dvMbq5y5meZlgolHBIDyY4IJ5mxscTz9iAROCsxxLiCaQUSkqklJRlg1bxtHTeoaxHuBmumlIuR9TyNdKiR8cnrF5+mPXNDeqqYTw6pshz8vVNnKlY8esEb3CmoZqfMJ0umUyWLMoFxh5hb97lM5++xsbmOk88+RBrhWZLJEgZMGaOJKCzLgQL1iCkQwiFo82glMCaCtuU3DsoOZ541lcSqnlNtZLR21ilX6So6pAkkaxf3UFnGVmmcbZCaU0AnKvxLoCUMUPwHiUg1RLpJcZagnP4EPCJYuvsNl/8W/rcv3OfF1+6wc1rd/ln0zlf8UWP8tSlgowSU49BxwxpfbuDViCdwIcpWbqKdAqHh6BRqoMUEifieyGCRwSDIgHhWEyWDE1JP5WsdzWdYYe3f8ETPPPMk4jDj7OtKx655FkuKiqfvOFm/XwFgY8CjwghrhA3/+8Gfu8bPThLEx555DxrO+t4KZmXlvWswHlJVRnMoiQpOqwO+6ieYDlXLE5OsLUjKzKe//iHyYXjbEdRm4AJHutqRvfvc+6xJ3j6Hc+gpSfVCfNpxebWOY5Ojrj+2m2GmYKlAT+JNzuKrDOkrhdkuSKXAesszjiccyQ6ppRKWQ6uv0AgcPbKE4is4NqLzzKdz9l88u04ISlHR6j+eSyB6WREMVxFdIbcfuVFBIJEajbPXma8fwtfL3G1ozKSnlIUwx6u6oIzNMbF06cyOA/OGSZVzaxU5Fs9VnKYHtyjNgs63R7TpmExmjOZzPDugF6uqdKCAxyJD6TeoTV4axEhtAmmx9gQPxcxlVdIRAhoBcYJAhKlFUHE01GKeBqmQRCcBeOo6xLvBAfjPe6rjP7aOkmekXYvkKeKRipWVlZZ76QIVxHkBYxxnOwd8/IrNzk4WbIwFaYq2b1xm70b9xhsrfHwY1e4eG6DtZ6gIz1Ii5KWJO8TbI2QGb5eEKTAO49SseYZzxu8lzgHVSIwzoFt6Kxus7G1wXw8JjhFIgXWVm1pE0sGPEgCBEcIIm52ABm/ngjwWhK8b7OwQKff5eoTj3P54kVeePFVXrl+h3/7Ky9TlZd45pEhOg8IawlhgZJtaaQVCIU3JTIEBBKvU4JUBB/AB5yIlZEMkqAMygu2B44L+ZJPeYcXgsYEFlXD7vEJ8yahIEWlgY70bC3eGP77vASBEIIVQnwX8K8ABfztEMKLb/R4oSR3pw13xns01uKtxbp442dpyuogJ/eWQ5mw3suQvR71ZEon0wQCuWs4c2kdMxqRLHxMX4Nnvn+b6dYZikEfmiXWw84jD2GF4tarL0FjSDc3kEpzeP8uikAyHrN+bod7d0uCN6RCorREKo2UktWVPtvnLjGdHNKcHHNw+xW896ys7XDx0SepZnM2zl7i7p3XEI1lURlsc8jxwSFPvuOdHI+PWUwO6EqByhLqpmE2n5JIjQqBXm+Fze0L3Hj1RXb3x/gAUkqKTKGTDKk9AyVRLqA6Q1zS4f54Fy0Fcv+AkTxEC4WSAuk9SimETBkvPFPpkUKihEbVggRJJh2JCGghSXFIAVLFGtgjyGRMQRelJUnStoSQbYosYzmDIz5RwAeECAghkbZhvn8fnWgGa1tsra3SSwQ6A2SNCxKPB61Zu7DDe89s0JQNs9mCxXzJwd4R127sMtnf5xPjES8P+2ytr3H1ylmefupxxPIYaZqYqUsQSoFMoJrhTKAxARNi3b5sGgbdAoTCOQvNElfN2rIv0ISARIOAIGIUDKe4eThFbmI9H7xHhFi7iwC5FPGekwHrPM45bDflqfe8jTNnV/nUJ17mZ37+BaaLy7zv6UusZgZnKnxwSJmhbIkk4hJWODwaHzx4h0dwiiSIFqMRXhGAtZ0dHq4bwkdOOKmgqxXTpWP3zoK9CdBJqIxg0Cs4+/Bl4OBz7r/PGyYQQviXwL/8/+WxzgfKqsY0FucDwTs0IEOgWpbsVUu0XnLc6TBe7eJlyVAJtjcGmDwj85L7r76KN44g4lsnlGS2nPDSJz7ExatXyXRC3hmwNJbR3ddYzSSsDEksFGtrzI8OCNUCs5zTNDVN7bDGUYuAoCFIhZSSbiehs3aGZe05md3H+4rZ8tOsbY145Mn3oDbPYoSl2r/LpafejkwK7ty9zvqZHUrrWRzcpp9rXGOZLSZMjCWYBpKUs1s7XH7bO3h1d497d26SCIm1hgZNpzNk59IlXnrpRVIJWksGqwM6nTWWx/coG4tA4BB4amQQBB+RwaWzZEmC1hIl2xMFSRAKbwVSQBICaZAUypMLR6YVeIcoFNY6glRU3hKkIAmiBVkDBJAClBKYEFpQTZAAInis0ljjSeopO5uXcUFSm3i6BRwCSRCBIBwqSSmynHylz5ZQXH3yUd41nbN/+z7Xb9/naDZn//Zdbr12h2c/fZtLl7Z57PwaG50UhEcITd2UFHkXU1umy2N08BRJQZrlKEC1QKNrgcTgA945ghB4GcsfKeQDRDh4FcuiiJDgg2+BwQgOStGCqCIgJWgdSytrBY31nLm4w/r2NrdeuclzL9xgNC35mi95nDMpeCdI0hRTzgnetUCxjNf3JgZIkSKEbAHRWJoEGbEZ1emh8wKLpfQpwUkO54KlXbK7cEjdodRLtocFqrgCfOBz7r//YMDgZ68QAqZ2NMYihIcQ8AiUECgd8W7hLc1yzjxRZB1Bsqo5Kucc7e5zcfMMWXdIM9rHCXABNBLvHfPpCYd3bnPmwkUmJ3ss71wnI9DtFVy8kHN4MqdcLtnaOU+5ewPnSnZv3iDHEyR4b/EIrLHUAQgLvHMUK2t4D87DYlFj7t3noccdaZHwyqdfIusN6RV9dg8OWRwcsvH44xzt7bNYzLh8+REmkwnlvVv4ZtbWh2c59+Q7efn6Ne7fuIYQCkQsYRIlGayuUgcYrKwhg6BIE5LukP2DXWTwJFKx9PHmTuIuJ0k03jus81jbIBBIJRBSIBHIJCGVkkSCRVB7xTxIEqFJnCNBM/WQoNEqoEXAOVAEPA4pBR5JEKJFzaE9SrEEhPCsDvsYBLO6giTFNwKkxXuDEArvQQhPEPGkVUIhVTwXA4Fipc+V4WNceuJh6vmck9GY/b1DXr52j0/e2eWFfs6FnU0uXtziys4mCsdyMcfVjk5nhUFxxObWZabzGaE5QfocKRIEsg1kcb/7EAjBITwxSgqFCAFEzAE8ot38khj8fNsy4fS7MU+QEZ1PJWSJjF0uJXn07VfZPLfJzdfu8s//9ct89fvPc7Wv0UpQhxADMgpP7AZ472J3Qri4J4iZViAGVykkSZJwc8/RuIjvlNazaASmWWC9pXTw0U8nJGmP9Y56w/33pggChICWIFMNHowzseVDe7PKCKQEH5jNZqSppGlyslxST2vmqwvOPnSZ6XyKMiXgQcTWjgDmZclofIIjdg4Cgcm8REjBzs4WewcjZGeF7s5DLHZvwWJKmkpCIhBeohBoJag8OOdppmP6a2fopjlNU2FCIM+7qCRhuZgzPzlhZTig6PUo791hdXUNWzru7++iUfTXtpiUJTJNwTacu/AI5x5/O9dvXmf32ktkWcHwzA7jwz10ktE0NfNlxeHJmPVhD6kyBuubHB/tMzk5oJCaxjiWtcUhSPAUSiISRyY8HQmOmLEHAs4KGiRVvSCTCiUVQUAqBXmWIJTCe4VBsHCQa4F0DSmCTEOeCrSQqADOxbRYCRlblkJhAeM8ioBOFUpnlMsSZy3eB4R37VskCThAIHzcPEophJZ4H09t79uWnBIkgz5bgwFbF85x5bGHOLh/yO7+Mbt39vnQjV2eW1vj0uUtzg4y1roKJzLWVnrsTadUxpCIADLg2+Q+bu6AI7b+cB6PAOFiSdOe9qHFTcLrf8XO5elV2lZsvLNEDLYy4iuJhjSRuCDoZEPWVnsc3jni48/ewz024NLZAhcTKpz3+CAfBNTT18YhERCzOyQKybTyLEdLrJmSotBKstq1rOsFzgayvmS7L3n0nEOYE+4dzd9w+705goAQ5FrjQ4vEOknTNGhEGwVjR5cQsI3l8HiCSnMuFn0ee+QqRT8hKzrc3N/n6O4eiXakWtBRjoWXKJ1S1Q1pkmKFx0tBY+JLe/9ghBJwcPsGFx59krQoEDdfwrsG52OM98LhpUSFgA+Cw/t3ePTMBR5+29Oc3LuFl4L1Cw/hlGS5GNPr5sxOjiibiqpacGn7HONqiW8qNnZ2yDsdlouSxlg6nRW629u89OInON69R9UYusMN+oMhidJYF0hFgx5sc3B/l7wzIEkTDvf2mO3doicEQkdOBGEJQoFSnO3kXMnnDPIEpaA0BhE0IQTmusfNaWBsPKJZsrCWsgmU3rJYSNIsoZMlpDohz1KKlT46SRA+MJ9OGC1LtHBkAjIZyBOBEj5yAkQ8E62HICWjkykqzUiLDk1ZEdoNFzeYQ+EJKOKW8jhnkSGeWkGodjMA7WHgXATTil6Xi492uPDIRSTQ1BW7N/b5zKt3uW4tF67uMJ4uaYLlzm5NYy0X17tIEbBoHLHcCcQ+f/wJ8R7zwSMJ+DazkeKUO/H642K1cPq5aLkG8WvilAsQwwFBBxIEnUQyzCUbvW12dgZcv3aDshpzaS0BL/DBt/dbbP9KZMsx8CAELkhU8IwXluPZgo7Z585r97m6IRkODF/+hODu4YvcXUqKNc3jVwTPvL1Lf6PPq6985g2335siCEgpSdMskoCcI09TtFKYssJ7gfcO5w1KSEDQNCW2ril6l5gvDsHnTO5c55GdIfpkF2898yaefFtrG3Q2Njk4HoHSCDwueLRO6BUdAh4zn5IJw/1bn2Fr5yLJcB1zvI8THtGCaTiPVpF0c3x8xKdf+ARPvP1pzlw6T13W1ELy2kvPsZZKLqym2K0rVMsSX1WERJH7hHNbG2xvruG9ox9q8hxkL2M+nlGODvBNw1a/y+qgQEjJYrEg73RIexvU1rF2ZpNupmByxOj+Tc52JGfXNpiiccDVvKEJUPU26GcZPVshsNReYEkYFpKioymKAnt2jQshwc/3GC8T3HJJ4SY0jaUxhrpusI1kXirGkylohU4TEq0QUiO8pPSx25CEQCoUItgWr1C4EFNYWVc01ZKiUxC8IwQXkfAAUvg2uY6PFUEig6ftyMasO7iWJBOBsdOgIGOZjG/RsrTIufL0FS4+fI6jwyN290+YlwuOjhdk6RClNEFYCCLiIFJhXWgJPO0KHh9AeBn78YCQp2Sq+INFkJHEREzBEafkHOLvIHQMEsG9/r3g28fEEilVgc5WzsbqI4wOR8xsw3oywKdr+PI4kqNOwQZEW3VELGMyWbCYTclszcc/cp2BNjz9ji7r51OeeLLPpRsjKpnTXS/obSQU6z0oOjx29o3lAW+KIACg0wS8RwqojGE4GDD2geV8QfDxJnG4iEoDi8UClaZs5WdIkgThFpSzEy5f3iJM9thc63MSNrm5SChrR5LlGG9RQKo0aaeDUjqCPoMVatdgplOWoxHF+jZhso9EEazCB49rWWWJAmMdR3dv89z8mMHmNrnULJdzpvv76PUB2aBPcnYLuzgml5K6rJAsubgxQGQFxycT5tMTrnQlVlkWUqC85Ewv5/yZLlmhORKBbqHorm0wncxQOqUoOtSzA0b373Img4fP9JitXkYvZqxWhwwLh9Nd9tIBmTkmDRYQVHWgNJ5cS3KAfp80CNKepJmu8VA+YP7pF+lnKdKBcQGkJ2JVgrpx+OBZ1BXjUlAGgVWxrg5KYwI0WuN9ggigEaRKY51FJZ5Exs1+SrjxQcRTvt3sIoiWHQg+uDYogGxrbdWeq1KAVjGDOE3VPbSswkixDB3Nuctn2dhe4VJpePXuiHtjDc0M5RfoNCFgEd4SfIJzntAGAikUhNPNGlP70DY9XqcjxlIzMkAlMrTnvhAtftC2/UQsBwTx/wtoAb3IkBRB0M0k+fl1AoEkSbDlnIBo25s6BjzhHzwH4Sw0J2yt5th71/j6L4PNdz5EbSXpznk6W1sU76kg6yClJrgKXAW2xJv/g1uE/64rhEBjDQkSKRVJIqjLmjNnz3Lvzm2CtQ/QUSEVGliWFYf7I9a3V5G+oVhZZ69yLGxgagVNepaZUVTVEcY7jDUxWktJlucMhwOaJrYi58s5QeU8flZhO326qaccJoyWjpKAcwke8MKjckFhPaYyhKbBTI6prUPLWK+JJEMGQ2d+SGVrts+cofKGdD4m7Q2onGdoFuwBOlU0vgRvuXLxAn1Z44THFivMRxWenK6tMNYymxyzuvIY40ZQrF3kqbWabGULowb0Dz9N7pfMsxXGyVk6Yc5WMiMEifcCIzxBSqZNwNSC5cGC/qUNlo3BipT7+yNmc08yq+MNGCITLoSAkBLbtimFUmRZIAGMi7yJU4pyGimVKOHZHCR0s4TxwlFZy8IsUXVNbRqSJIlpLg4nHvCi403uQ8sVbjePCEgRry8ID07/U/xRBGKAECLSbENE1r0IoBS/8vFXee1wxtnzDxHKkrxISdKUwXCIE5qqsafwEeK0Dy9km+VHYBpoAbr2BwYZA5AQWFqcxcdgZH3AtWxC6zzO2vga4ihSRb+TMMw1whuE1BAUUgWUkIRg8D6WqA4Pwr9OA0YShMdrx3BjleGGYPP9V6Hfxyc9OKlJN98L/fcihgMgIXATql9CLA8JxqEegJj/3+tNEgTiTSVUfBO0lFgXWzFZp4srZ3jncUHEWq2FYA72Drh4+TKz+QGzxRhvS9JOh4fPXaZaLJH1kl63w8l0inAOoTVKStI0pTEGbwzBWFKlQGvmScagP+Sbn5hwNsu5f1CyLMELxcxIDueOeS24Pw48d8e3bR1PZ9ijn+fsTe9TzSbkvT7C1JRVhVhLObxxnUtdAbaiS4kpDb1BH5053KLi5P4drj7zdtY7OWW15MZJyf7+Hc5sbRFcQ54mZLWnXi5YXV+lKx3HbokvFZP6kOq4YmV1hWlYoz44xoRjZi1g5ZE0RuB9wEmPmZQUvZy3X5Z4F2+02XjJUvUpT2qUcOTak8qAEpBITypodQk82KSFCqAg0CCCQPpIeFFKE1BYndIZ5mTlguXMIlshxCkxKW5w8foBKyJbUbTaBCFC5CxI0X4sWl5/7ElG8KxNJdr6QPhIdPLB4b2nKWuCkDRVRVU2dDsRL1k5c57R5JB6ZrHe0zQGYx3GghexQHE+xHvOBawPNLbBeo93gWChcY7aeoy1scXoA9YFbBODo3UutkuVJHhLmigGnYyd9T7vettZHt3KIFikJ76OIomEoADBO4R07Wul4u8O2DynXGpytWS87CKqgAwLrM3Q3ZzQexQp8oi7mAY/SWmmFpYVwdVvuP/eFEEAQpuSCVBtOiQEhUpYXd1gfzHjdS1JiIQKKxhPTii04sV7x0hnEElGr7tC3Thm0xkagW1pwkIKtIzXnc6mBEBLidYapCLNJZWH8uCQf1lXvGvHsTXMeOrhhPOXeqRJhq2m5CsZz79W80f+/G5MVp3jytktjo732RwImtriUThvqJvA8a1bCAyNztC2IVWKg7pC5ClHBMbGgplTzk+wgwvIPKUe30SFgNYKaT1JkpL1Oty9f4dOlrFflfT7Q9K1LhzdYVikzPU66ew+ia2wUpCunMdP7hO8QfuAcR7tJN4GilQyF0u8d+RFF60FWadPb75PL7NocXrqtr3wz4LFXIhgqRAtot6KaKSxkYhjauZ1STnRJP1Be5pJVnodikSitUA+qHfbdz/Ejd9C7pwewIiAEoJEgxLxpG0rgzZVl/GeEZHN50LcsDYIShOofaA2htlshnCOyhiOxzU/+s9+gf2jUYsxSJAyCrKcf9A5kEIQpEBL/SAjCN6jEo3WCbU14GNwctZGCrEUqNCS1Xy81ulKEo0hp65LPvjCh/gdX/0Uj55fj3wYFWBhCcE/aFsaY/E+/mt81KxcyY4JYcbapcsU/R70txGii67PI3tfjJcZp5mDUDuo4VeQFB9GLO5GrOEN1psiCAgpEVLgCHhnCUKiVYI1lieefpobN2+QSoGQAXnK+AqCyhjq5QKjcty8pKcLlnWNbWpOlWfCyEjzVAofYwxCyqgrwONoQRipEAg0it1a8kufPKDjF+S5YGtrTtGVbG4r1s5JPnPX4HBoJUlSwWv379PXgfVBDzef00kDC+OYWkdTzTh3bpWj0ZJzqSbpCA5PlmydGfCugUEOoRCCsZywOEnxAbaHKZ21qyybiBYHG/DFELUMzBdTwGNCQB3c5+nOAjnIuFM1vGd1gakt15p1lr0+XWNYOqiMp7SexgUyIcmHmnppSBNB3dT0Ntcwd0ac7cfTBx/aVploW2On2re2py5bRp2MjxEBSOL20YAKDkUgzEc4KRikkpVBQp6pSMclPFDkRdCvDTMtuw94sLlPhXO+Bdd4AJLFztGpbvI0pYj0XvBB0hhLogVpGpDOU9WOX3r2OtZLdK7xPhBE3OjWWkBGEpHzJEqCFwTp8UrGMkFqvFTULhCCxDlLY2sErXJSaKRMsN4zqyrqpsFZhwwxo9ndP0ao2Er9oR/7MHmRIWTsAAQXs5fQYhJ4/3p54jw2BL72ay4y3T/hzBdfZWdtHXrnCWEDUa0h8w1UCAjh8ChQKeRDEjkg+AGcUpQ/x3pTBAGIp7JzkW3mrAMUk9mcje11UDr2TIPHi8gG8sHjraOqKqSWBKVQicI7z3w+p5ulIAI61chSkKcpXki0iGxCicC5+AZpoVtasEaqgPclTdql1yxwPnC0P0dJwd4dQfrcgpWO5KvPK6yTjLKMhZRMJwvO7vRJZKCrK8rQo5eA0wqpE4KAlX6GEJ6yMQyGQ45WU3b8CWtuj+kywZc1IQRU2me1SNmg5GAUqEiYLxqU1HgtSUNg4I4JpCQdT+UEQSqSJKCVxnV2OGv32V63GO8xVlMayaTyjOeeTjOjGiv86hBcQzUPDJUlVS2BRgl8e9J7B0EqaEEyITyamBects1lEAgRs60ouAukiWRQaESbBZzdWiNJIuoeQjzOYyIREXROe/FtShwzv/AAMJQtCceHU+DtFBSMT0KePk5E7I72VFUiY9Df4Hh6gtACYyy1abCliPX9aSADlGwpugGCjRhIIAYfKQRaaXRIcC6Kupq6pjYG9eBQaQBBWVbULSfC+yhZVlIi8AgXXyOPYDkv20Tq9WAnW7BDikCSRKDSK0mK5/kXDrm6kfPitTlPf0kXyR74+zj7NmSY4UIn4i3SRKCCEpEkhP4AuuaN997nZUf/u64Q60GtE0LbBw7OYwhMp7PIerMWrSXWG7x1kXAqFKPRiLq2FFkaU0mdkKY549mETp4zOj4mE4IL5y6yf3yCVD6eKkGQaI1SCqlOteyaopNzcuQ4oUtHDRgwB+FwDi7urPKFT0ne9a4OQgiyfsIP/2+O7V6H+b2GfmfGS3s5R7NApjXDQiCKHrWHzdU+nY5kPF6SZCnlck7XGbaHE3JRAxaZyVhbBhis5MxKwc7qCefHu2wPFZ86lIzTIU1V0ShPkqYsQ4dzak4VBvzK5CJKCQY9zeV8jg5p3FRO44TgnFDUNsqjj4rAOEvopBnJ7ICdTUmRXSDVCUiBVFEXILWOn8vI5BOnugQZEEqhdIJSGi0VSim8dywWC7IsYbgywCuFlBk6ES0LTj2o+zn1BGg1/dBufnnqJxBQUpIoiZAeLWLG5rwneBHFVCFmDUK0JJ4WSffeYp3FesXJdIyQCu8tzjpK41AhUoO9azc5IvoMEJBSYWIkiJTotjSoXU1jTauXCPEQAYILWO+pjcEa22YgCaHFJpSUSBHZkO2zxPgo3hJSoqQkuPAgGGkh0KmmsQ7jGiRRRTqZ1PTPdvjJH3+Fr3x/ynZzB2EWTA/+BZ3zP4Wsc2Rvi2y4iV3coV4eomRFtp7js+wNt9+bIwgQlXFeaaSWeB9FKsY4bt26TVXXaAJOSqyxEaSSkRZcVkvqpSFLFdYqbDCEECjSjOOjI8rFHJlmDFfXKJ2gXI4Bj9CQ6zQSkrQmywuyPGM4XKXfX+HGp495+PwGvTT29TMFl3Y0z7y3z8qFPuQ5cn2ddx4vuXJ5h8zd5+XdPX7hn5S8cmDZzKGbQZA507ohlZ7UWRY2UHRSZF0zyKErG+oQGWWhTQcX1RI/1djSsBN22ehZVlY0t+c90BkLJdkbjbBzw2DoeeJ8wpf2xhy6NZKVTS4PGlx1jjTvoNMUUASd0tjI6DPAp154lVFZgsjYLAIZcPmRK3R6/QjgiV+DxBPrbk7bebQgn+ABSYi2rC/WBvGm15rgAt7FjRtdRsKD0z+8DvS0/fR43dPS45Qn630AT8vbECBkBABb4lFMo8FFeR/Bx/TZEQVU3TyjnFskOtKTQ2SfBhkPBCkiQce4top3kZsgpcSLSOtVEtRpl0SAdRHhd0TVYgSuIzgYAGMNAVAyAt2n/L94s4eoDPQ+8hDaAMbpy0HbGiRgHSg8wgvqUnBYGYr5kh/+yx/i2x5ZkAnH/qGgWN1ndmjwaeDCBcmd1xpu7cKwDw+9fcBRmb7h3nvTBIH2boqRU8Q3OlOC+7dji9C1qG8UyYD2gUTHIn9xMmWwvQoBbGNobESjB92UzKekSlGVcx5/+5O89KmPg4+dhzTLSHRKXuTkRYesKFhf2+Ds2W1Gt19lfdPS76b44Njc6JKaA7rrK/gsQ67uEFa+gGe+5gl0cobjw0/xj/7m/4vpQrO+tYKfHbXuRp7ESjooKkAkgp3VlP9oR3Jl09MbPsbh8YywTPHe4b1EWUHW6XLmzBrFyNBxt1BZxmC7z3yZM50tWNQNVe14oZZc3OrwxUXgoYvriG6Psqq5f3yfzbVVVKdHCDpeV0WV23Q85vB4gjszJCiYeodcLJEudjwCsW6Nuf1pxX7aC48352kKK0V05AEZHY6IZG+pFFIGEhEorSF4ECHgXdxIvnUh8pHL3HL32z8+tFgB0QCFGJCs99RljfOOoldE3CfEroRQ8WQPzkcatDFR2KECjTPknZQ0S1DTRawgBEROcltitun4Zy8JETdyAS0lvW6KxGMDLBsTvyujpkD4gHAtF1GAtYCQ8VB7cP4LvIttQB98zNKieAKt9esdEO+xTUuSanEZGzy+dHz4uRGbG11uf6Dk+ouar3p3j9JIxkeSy489xM72E/zS/ie4Xx7TaMeFTLK4rtno/P9BJuBbACQRqo3+HgVMTkaxvURb5hCBHyUFiZQsqprpyYTNlW48LaylXC4JviHXkBYphRCUkxPyvGB9fZt6MUEpjUpTkjRnbXUVnaXkecHG6jpXrl7k/COP4czLMXVDIIsM2zhGlSFfJnS1Jx2u01t7GkSX+rXbrKUpptuju3WeGy8sWC0Ezgs6uWQQAsI5lGt453DBWbUEOyCEgqyjEWmKtBCMJ5GB2WTGogyc1YJhCNw79Dx7WDI6GeOdRYSYXi+rwE8+V9MEzTc/nKEFTOfjloijMU0LgLpW+ScVzXKByBP6nT6LpsE4yJOUkGaYFgjwITzoxvjYBkAgCN6gdBI7LgIssm3JRYGSaGv3U+WbUvF5hJaOK4TiVDAnW63Ag3uA14FI2abQklapJ0L0Kmg8K/0uKollnJQJbfTBiwiyCe/p1DlaKObe0DQGaT15L6FINZWNDkFBxJJSqij08e3hIFrarg3xphNCMhx0eej8JrP5jGVVs7nSZTorOTiZE2Q8sLY21xBCUFaWEASz+ZzGOqImKWYWoQ14IsR8x3n3ANuQUSQDeELwsQyI0QokeBnoZgnLkxI6Oa/uOZ79pzUrHY0WKTujLl/4vkf4pZ98ltv3G6rGcuHcgD/1nz3GF7ztHHzvq59z771pgoBtte9Btqzy4KnqhuV83qL3r58WWkQ3nDRJOBrPyZUn7+TUZcV0MmaxKEkTTeNt/FcJcI6Dvbuc2djgWEHR6ZB1Ogx6fVbWVqkbS5amJGmCcXDh0hVmv/jz2CPHtLfFTCx521CwdiYl2dhADh4mdJ5BiB4CwaXH3s0XfcmX8dM/+4sc3b1FkiV0+hn9os+rN++htMMJRWk8HV0RLCxKz9GhoXIJlbEImaIFZEmK8ZbxyR5OB25M+xzNPSfzGQqHVBKtIwPMiBg4fuYly/mtQ568WDC6dY+17S1kkuBD7HloKVAiindXt7Z42CluBA1eoTp9tvtr5K0/Q6vFjmCdkLGNhqOV/GFVrINRccMkSiFQ+EieRyKJ0t6W63dKABK6PYIFQnoCsm0hRvouIWYVriXNnAKDzkfijXcOoROsd5hlQ5ILklQjhYu8wtOA5QMyhCjvDY7GlAwzyfrqEG1qkAZjasrSxFackmRSYk6znhBQSaQ0eaHItOLMSp/X7h2T55IkzQlS8djbzpJcu8ei8vRyieokeOtZKbp08g7z5YL9kwneBspqGcsdpR8EtkhM8vEVkw7vNYhoiCJDQAeBb1XNTggSaSnygpUi4Wg8xgVPNxEInaGLhNW1Hv2uo+gkdPMI1D75jgu871u+Dcrbb7j33jRBINE6RsUQ2VnWWMqyxDr7ADmNqHHbuxaeTq/gcDxhc23IclkBAesctEIULSP7zVqojaU2NTYvWN/aZHtjk26/z9bWNiYETsZTyuWCrNPheDRGFz3GFNw8mnA0WXL7o7f4o1++SlnP0AsDwy2EuE0IGzifY/2CC49e4txzH6czmlOFhsVohuo6uqGt/XxgVlmEbtudroZ6xmF9FucCojGEAIvgsFbjy5q9WjBbtqiy91HhFwJ5oim1imw+ISmN5B/80h7/p/fnvP2JDcTgPMZLjJMY63FSABrhBGSakHeYjGvwGXme0R10YsIqo7WWCKe1KW0LK7AoS7pFhqtqgozmJEKnD9h0WsRAI1Q8ZaMUt5UFn0rjVJvyCyC4WG5IgVAC6QU+OJSMwG3kAwS8N5SzKXfvjZkv5twYg9A53W4XmajPahvyoMtQ14aQDihQ0U4uWK7vl+ysn2VdLpiXNUU/PCAcBdoTGtpuw+u4hVIan6es6m78fdr25uGJY3XjDHld4lxgWTWxOyMSprVBpzkPnctRLXFLidN2awyM3geWtaOTSua1YaVIeSCQaFmQnGZh8RyMoKyCM+t9ytqxfzxlNYtEqE1zj+nLFVviHms7hkKlcHiPn/7+/5H7h29yngBtCyYIiQ8Ba0wMAMa2IM0plhJPHhU8g26Bk5K6Nmyc3WZZezp5ymw8iYzCWHzS+GimGWjlr1KRqZyV9U0CsDSWpo4nQgiBe3t70ZnYOu6LLT5y7TaL+hhrHP/gA4ZLvRMurJWcffc+w3fc5Na9p5gcbnJ0+1kOXr1HYiFBMguBJYJ6NqdX5Fg7QyYFvV6G1AYhA7WX3F4UnNkqOJovIAgSkRDqhtmi4vhkjpYS6aIsWiUqyl6JG6zIUpaVaQlzgpmR/NJoyFc9eRWxVBzOLa6K6axwsdY+fa0Hwz7peMZCNKwkHXpph6Akygs8vgWoIljnvWE5X3Lr1j4ra33qZU3ezTmzs0kIBudO2XwSK0E6YqcAcD6SYHzLACWcsgRPzTla0NFHvMATATu8eN0tuLZMjsfsH4zRItC4Lv/Fd347nV4HlSQtkBkA2YKrgaq2vHp/Ajoly3KUmyPQXN7qxA6UDxhjHiCfpy3J09Ii8gLiHpzUASM1PkRXZKk0ZVNSaM2g32F8cMy0iR2sNE1RUmGcI88yVmTNIBOt2Y1o634Rg4+UnMwNG4OUk1nFej8DQuvQ7JjWUYS0kseOzGnXRKrYsbi9t+Qv/uDfRsx3CVLw+DPvpOg8xM9+6NPcvLvk6bOOqVmipiUv3hi/4fZ7cwQB4ovtfKCuSry1VFWNMxYtYnr4AEj2Aa1Tzmyscv14QjdLGa6s42cLOlqRd3vYuo6lA+2b6QNluaTf61IbQ2c4YP9wj6qsQCUYU9M0DcFayrqJTjhaUIoIqAkvSJXAlp5f/oTgoYHnC6oDPvoJz69cv4NfGnppgs5WoL+KMSkiKIRbUrXPq5OmdNe3GQ6GHC2OWAhH6SW1k+wuIk22aE1Wt3s9Zjfv0dUJxgekgiAkQkYASoZ4omSJpnExXZZCIbXmYy9P+YlfOeEbv2Cbqm6YlYa6BmPBOoG3EUk/HM2xtaHo9ZlXJddHjjNj+0Cn4VsZtQCsa2iqElNWjPehDg1ZZTDL1q5dRCkwwlG5SHVNCQQfgzritI8fcEJzMl8yGHTITwEz8VmGHTIi48JF8NB6x3hZIXTC1uaQTMDuIeR5hneO+bJhf1rR66SsFjoangSwjY8BTMgog0bFQGhMJOSI6G0JEXBuUFSNx1oPUtBLodAx69ImEJKU4EDqBOsthU5Jk4RE6UhBDwqPwFgffQeFRKXRCl/q18si2bYBAxKExAbDSeXpdjKUOiVBBaZl4JWDilRrHj+r6Or4fyF6qQXAestgtUNWJyhj2ZspLq4XqExRWsfh3JGksXS8vJ7Dzepz7r03RRCwzrJYLqnrGoInGIcUkrzXQwSomxrbNCgURa65tLnGrckEUy65+NgTLBclSZrE3n+/ixkdPjCaDABK0hjDvVu3WRuu4Xpd7h1OCN5RNgZrI/fAGxO54gG8iB2GR3aGhHLJZkfy3idWCdrz7B78+L91pLakt57hnWRtNSfPJOvpKrKXIBpDqh1B1EwWNcPtdXRvwOKwouys44sC4QPOjZnPmkhCsY60oxl0Ozy+nmGc5qBsOFlYJmWDShKyENBSUZomtp90QnAGpQRaK1QCP/JPbnLj+X0u5z6aibSOQwBSKoKSLJM+SdHDaosznnJaMm9mgEMIiXGW6bJm2I38Ca01q8Me1sPd21Mu7GSt4EURhEFIwbLxvHTjgK21Fbb7up2bICOJS0bFhxCOjrSoxiBzHakCbW9QteKCyAL0SAmFTLCyIskUmdZRkSiiJbcncDQrmZcW03iGWQ+l42avGsOirtEefF4wPqno5hJP/sDg8xSEnJYx0OYCXPQXZTarsJ2cIhExQ0oSggJvavIsYzgY4r0lTxKi0tEjlEYqFbtCeJRrWlJVi4kQry3b9qt3numyYXJS8rZzfZyX0T8jCOZLR1fpVowUBV2unS9BS01WPnC8P2ITQ97p0Oxd49r+PsN6wldcSRHOMjaK4xLGRvBG600RBJx1TKcz8iyh18lR1rBsLMuqIlGSoiioVMIwV1w4s8at4xkH+ydsb2ygex2mswn94QoGQaoU3nhEEttUIQRoGV67e7tsrK1h8SzKGiU889kcU1VYa2jvQLwTWGlR3nNprcOmTkkzG2m8S0vu4e5tA6rkfL5CkSXM60AoA1W1IM0LQtLBKANCUXuDsw2q6GB1BOmsUPjgMGmCWdaYZhmZdypHr2bMVUpwNZ1E0h0qeknKcR2ZfFoqMJGDP+xpJotIcIlqPo0edrg5hQsDRSGic44L0RxTCIEXihNlsFjwEqUTlgjKQpFUM1LvkF5SV4Yw6CFFEgEzBT40rPYcKUTkWrhIvyVBOMdKpumlkuBUO7TD47whUQlaSErXUONJlH+gAgynTcgAtA7Hnig4cjKKu1SaRkmvUpG8xWn97ukVCUWikCr27CWwKCusdSAM08kJAsey9jQ2kCfylJ4QT+Rg6WWgpIKgCEKQJ4LRsiHXGdY6vLSkSULa6dLpFiSpxgZFYxuEVHQ6HZwBGxxJqvDW8dKrN/g7/9OPgvc8evUif/o//wOkiWY2L/mzP/Aj7B2OWNaGL/8t7+fKN30F+3f2+DP//d/GOscf+j2/k7OXruCs5Y//2e/nr/7f/8908qzFKgBnyHB0vGWznvHplydcf/WId5wpeDRtIvfBC7YLycuHFUfT5nNvPt4kQSBRCmMaEgFliF3VYVGw0hNUTrHSVWysDZnWDZ++dchsPuepy+eZNDWuqajqEjeKRBJLQCbxlMDHmQSnZJJFVbF7cEBndRXnHeVyTlWVBBuppADBOYKPNZsTHh0cWtYEA8Y7lIgGKC6UqBCo5jVZ2sWTUJaWRdXQyTrINMczJwhF5RrKtGB8fIhwBq1zpBBYJXFSYYSOfxqDqSrOyhTaXr2zsZdd5Al+WZMVOU1j2hZqyrBfRKWcE6RpTpamKKUZm4pX54In+yaiz0HGrIB4+ulaxklPBnzj8EiW3YTNSoDQKBnYXikQWJyMdl9SSASCZVWxuq5bsDGAl4jWgXdRNfS9j3W9iLLeQBSIOSXAK/YO5zxyYYD18bmF4NrfV7QnZ2QQ+hBb/fPG45RBJBJhA64d+EGIct/SQD+TMfgT8SPrI/Mwgpqm1eR7nLdYJ2PgaUG6xhisjy5O0d0qdkasDzSuBfOcJbQM0+AjbtUYh29KpJJ0e13K+QJhHJ2sw9wu+St//Qf5nu/+Yzz98AV++Md+gp/+wIf5uq9+P//wp36ei+d3+PN/+o/zoRdv8T3f95f43b/9K/gn//qX+S//s9/L2a0N/ru//nf5vd92gQ998MN8zZd9CWl3EB2HRFTSCgX97R4r29s8tL7J3U/dRCQZD73nMbZ6CiUilfvoYMInPvBJjHBvsPveLEEgS7lw7iyjg+PI9ityjhclWVqwtZpRGcdzt/fY3R+xniY8fHablfU1ysMjfLUkL3LmszK+od6hEk1dV6SJbn3cI/4bgNHRMQ8/HOmozjRxzJMP0VHX+3Y8VfvGBwdppM8KKdvJOzAvA94FOnlguyPwqWZRN2RaMa9qsk4gUVmsldsbau/uASsbfQZFhyTNIo3Vlg8IMgYFUrC2ukq1GCFpqEXA0hJlWplr7aLopduJDrpaJGyudRnPK5I0J00SlNSUwGujhu1MsyIdXhLl2S0It0gSyrkjyRNULmAyhmVO5SWqaXDeYqxBySLaiPuAxBKII7Nox6YhQckITGoHQThSJSl0ipQe431scwmF9bH/LaRCidPpSRIpA7K17Y7kwNhTF1IigmR0YigGPUSWYqslWms6eUYQgU6dcu3afb7ne3+ERx+6zCvXb3Fme5Pf+Y3fhEgS7t69x7/4Fz9F3dR0ux3+5B/7Tp56+Czf9d1/gUeuXuZTL7zMF3/RuzmzvcX//A/+KUIIOp2C//f3/N8QUvDX/87/youfuYaQij/8h76NL/qCd/NTP/OzfOjDH6WqKu7d2+WL3vNO/tAf/E/b0jOlajtbWmve9vYnWF/p8DVf9aX80I/+I779938LvUGf8XzByvoa3r1Gt9tla3ud/qBPWnTQnT46SfHG8MKLn+a//S+/j1SrB6+zaHEUAfTXB5y92kd88h5JXvDEFzzGRupbeXzKK8/dYZC9QBreaPe9SYIA3rO2sUJ/OOTkZEJTlmwNOxwtahrfJ00T7MmM8xsbbA57lMbig4ttF91a/npLY330oAtgjcWIOJNNqTh7TipNVZccHx+Tr60w3t1rN3u8yb11yBCNKE+prJUDLwSJj176zsd6DwKN9+wuSnw9QqcJK/2CzBga25CkOVmSkkjQicSYWHv7nAc3u0PSuEBpHWXjSZOErJNTzqdorQjVqcWVwDhB1ZJe0iRhuLKCl1EItbm5SapnLGwcChL97AVV5bk2ha99ag3vWrmskMwWS3xIqMcNOI8yDi9TclWwffYsipLSGE6OTji7tY5UGuctiXDUVUNZV1y4vEO3l1Bkik4uyRXUZcn+aM7bHr3IxlYfRaC2Au+jMlQIWCwqKu947ImHyVKJ0lGHIMVpqBYPOkG0GczuyZzzF3aovSUJBfdMzep6H4RkNDcEAXfv7/H7f++38o3f9M38zz/29/mlD32YL37fe/ln//x/4zv+4LfTKXI++alP8aM/9uP8pe/5rxGtMerf+mvfx/7RhO/+M3+BH/iLf4b1jXUO949ZLGt+4qf+FUEK/uYPfB837+7zZ/7cX+Bv//BfhRB49dXr/E8/8oNgKn7/d/znfN1//LUMh6skKnZK1laHeO959doNznzBk/z0v/1ldvePsLbmW77xt/Jdf+p7+Kpv/kPMF0v+yHf+QZRS/N7f+R/z3X/uB2gaw7d88zfzU//m3/C7vunrUUryQLD1WcYrSIlA4puGJggypchldG4yQaCs4969PZZB4ZV9w+33pggCp0MsO1lGtrHOfDEnbUpW+xJHYLC6ysU0w1hDN9WE5QIpJJ1OzsrGCs9/+jb9bg9rTNSV+9hIq+om+heSIKXEGYNMNHdv3uDqytupTYMJlmCjECS6zrYKRe9REpwwWHS015aRC+6l4FIHUDWmKrHdPt4aXK1pqoZyOSNdyeh0C2YzTVlF/rlzHqU1QkUufVM11I2hdp66sfR7XULTIJ0j1RoFWFyrbdfRg09qkrxD3u9TVTVSaVbXt3jokbfxwY9+LPIhmqY1tjB85v6S973jHBc2i0iXBtbCKvdvH9DLFVViaGrFOoEkEZCnFMOzPPf8DQ5HAdlzXNoeEqyJDDg0e2Xgom1Yzbt0ix6DAQx6kqNDSDpdhqtd1te7VK7GLz2EbiyxhMNOK7q9LjJXZEWKphXbiJglhCAw7SwT7wNaBqxtaMyC/fsjdrZXmEwWHI8mrK+sMJ4uMY1hZThkdWWDsqx459NP88sf/BCPPPIIe/v7/A//499qOx6Bfr/HKzf38CHwZe9/H3f2pzz1zNv54i/+Qv7i9/8gX/7lX8pXf8VvQUvF9Wuv8XVf9zUY47hw4QLb21vs7R+ipeSd73w64gCl5/zODnfuHjAYrKETRSIV82XJf/Un/gv+2g/9KH/lb1q+5IueQUrJbDLlAx/8JI9cucRf+m//JB/4+Mv8jR/6EX7X1/0Wds5s8Xf/5vdijOef/6sPcXQ04vz5s/zXf/a/x1rLn/gjv5+rl3detysLMSgY47HWtJQCSSBmXQiYTJZ0ez1mlQZmn3P/vSmCgJTx5m7KJXhPpiRBJOTKMq0quv0BDkiamiRN8E0VAS7nOJ5M2VjrYspoclk2Bt+OC3NNTF8ba0iVIksTnDUspxP2b9yIdFdn8SaenME7JAHpXRxX5QWDfsrFiwPyLInzAGUkz1w6m1Ekghf3G37lbuynV2WJXEi6ucJ1++hEURQF5bLCSIupa/I8JygV9RDeUNaGprEE19ArUpxtEIS2TGnl0614p9/vx5ZXlmMbT5bk9FZXqYIk6IRet2B2dIixjsYYnLM4J/jl5+/xu973EFmqY1AJklxkNNUSKRJC5ZgvluxpmDeWjWKTKxevUo33GB/dZaOXcby0vPP9X8/R7hHJnZJP3pgzWsBjD+UMVlK6GnY9pN2UrJujUkVhMqxssBaUhspp7k0r5k6Ajd5+IhFI4dE6lgXORcDT+qjZb2pH03jSoOjlKUkiyFLJsJthrWG2rMG6VtpwSiRr5cl4tre3+L/8se/Cn5qc+sDJaEpjI8twuLHO2TNn+N6/8P/kZ3/mZ/nZn/slfv8f+i7++Y//GFmaMp+XWKnIH2iV4xgSrRQe+WBClPOR+CSEJ+90qRrL2556kh/8gf+OQUfzKx/+JDdu3UVrxb/82V/k2/6TryfNUs6dOcPm5ga3bt9lc/h4tCmzjn/yk/+Cr/vtX89P/+uf41u+4Ws4d3aT7/8f/h7f/+f/q9hZiPQmfAjUjUHLCBp73wKtUuKFZrm0SOlJuxvA3ufef/+H7PJfZwkEmHgiJ1ojhSbr9R+MZpZCkKYpUitcACk0zgWCBKklaT/FuQap2qFNrTFEmiQPetBR6hndb4KUHO/uYZs6mkVqhVQKRCSoCCGiEQQCFWLpEfSD4hcpNStb63TX1+mt9MikQ2OonaEpS+qyxJRxrlyWJKRKkihFU1XYxrSCmTgUxAfAeFIhGPQ7CBlwobWmolWbObDEP1JHwpNOUjr9IVXTcP36q3zkIx9isZhh65q6KqnKJVXVYL3j7sGM0dLQstRZ2HhyOB+o5oHRrMQUEuEq7hzO+NjHPsmlx59keOYi148CH33uNi/emXL7aMb5R97GxnqfxWTMyWTGvPa8cKfiX74w5+9/4CajUrA/jm035wQuKF7Zm/Azz+3yUx/f5eeevcu1/YrdZcKN/YrFMrrmaC1IEk2iFakSpDKgpUc4w/pAkQ/7bO1so7KCLEvJ8pzRtMTYKEQYjyfcvnMbJeDZTz3Hw1eucH5nh+VyycHhcdQ6BDg8OMA7R9PEtuvqyjrjyYIXXniJrc1N/vAf+D2sr61x49Zt3vnOp/nQhz9G01j2d+9zcHDIxfOXIsgoBUUiWyuweH8GAUroOEjHWo6PjxFCYJqGv/X3fpxv/abfRtHvs3Nmi489+yJ5kTOZTNnb2+fiubPxJA+Bj3zyBXqDPhsbG9HspNVilFVNW6m2xikxi65NaEFVQfQqky2XQFLVDV5KeivDN9x/b4pMAGKbUGiN8YIkzyF4VJZj7IjJbEZvZciyKqnKklTArFrifc1iEfC1wyuBbESUcvpW6SYFykct/ClXwDuQ3YTgA0mAfr/PfD5vBXIagaAyLt403iHMElPlZJ2iTbVaay3rqIMnqRasyYZFY1mEBF1J5ouSXr6kM+iTpymJVq0gLzCfz1jrFK3KzSK9JyWQ6gQlRdQCIADZik4UjQ3UzoPMybKCNEshVRyOjmmWC7ypcdZGMA0w5YLauJaVBkejhpdvnbC1do7Gep67s8f9qkT3FapRTCYWKzrMVMJkNmI0GvET//QfsJyVNLWlylcRKuXZj3ycq+cvQ2eVjr7D4njKBz/8KqNZyTNPP83JWLBz+Qz7Zc7uCydcONvn+Vfu8pHnb/DuZ76Y//Q7fh9/52/+FUIzgnSFW7evI6RgtdTULrDWi6rFxjimNSwbzcu3TvjMTLNtBD2dEmzZAq6S6axEEZ2BNzc2+OCHPsI/+vF/xpntTd7/pe8jSTO+4zv+MP/oH/8TlosF3ju+8v3v4/zZbZxzHJ/MqV3DbHLC937fX+b2nbsopfji930Rq/0+3/zbfxvPvfBpvvv/+v8g0Zo/+Sf+OEWRolUbiNMs0tqBRMZ3LSlybNnQzRR/93/5x3z8k89C8HzrN/023vuedxCAP/oHv5X/5nu+n2/9jj9JVRv+wO/+T1hdGUR5tAv8yN/7R3z9N3wzAN/427+av/CX/gbWef7cn/qjpyxiTmcaEKCxETOKtm+KQPSlUFJQGo8NKdvbm2+4935DQUAIcZNYaDjAhhDeI4RYA/4BcBm4CXxLCOHk17kOSZo9oFK64KOi0AsUitHxCcXKKkpqhPBIGbC1YdBJaNKCNIP17S1uv7ZPZh3e+sgCs4ZURlDFWYcmgjaplqRCUjc1RVHQNIYsy2hMzWI2Q6cBVznSUCFs03rTxzl/Me2MNGSpAycmZatTcuwdzmiMs5i6oapKdLeDSAvSIidbzqmtpZ6XuHWPbH9HZx3eOfqDHlIoQhPBTS8giNarLjgUOVlRkBYZeMfR7v2ofHMOZ0z8uOWcx/kNMeOQQWJcwy988jrPPLFNkWp6ugBXY23UBOQpNJVB9DPefqbHS8cTTDlBziq2CLhgOD4pmS8t909G9FfO8NLBB7n62Ns4Pj7mwsULfOt3/hf84x/928wnNzi/c5EP/OzzqPwymxsXWOkdEHQg63fIV1YJsyULZynyDstZTT9XnEwsaVJw/2jMJz+zh+7ucOnCZZ599RVsLbi2V7PZVahgMSFgPfTyjAzBtzaenxCCj33DN71+U1UWqhlkBd/7+37fr77hlpbv+gPfHj/+t78EwM99+Vf96sd89DkAvvKrv/ZXX/PnP8T78z68893wL34GgK/57d8Yd8Bnrv+qS/yOd747Pu50/auPA/A24INf/02/6rH8zCcefPiR3/HNkck0nsAYvv33fBsA5sRxK3KkP3v34F2cxO1Dy5YkBoCIGXiyVDJYW/8cOy+ufx+ZwJeHEI4+6/M/DfxsCOH7hBB/uv38u//3LhCIIg3bVFy+eoUbN24jlcIay6DXZTwes11V4GFjdZPFfIRdVmydO8N4WmMSw96de+SZZkxDXijCMpo2NMGSpDm5UjjTkCgRR3T5aMP9mU9/hnMXd0iSqKATSYqtl0hr2BQzpC2xpomgWtsvD3iECmjhSbOUSbZGWk7YcnNuhhUa5ylNTddZev0OMwRmafBBcvbiDkgorY16GhxKSXq9XlS+2ZiyJy0nPjrfKJIsAymYL2aRVl3XmKaJhJlW+mtt63JLZKVF7n0MDPfHJXf3Jjx8cYUs1MxPDHUe1W9rawPqyuKWDWWhOb+ZEsyCtfMDHn34MQ4Pj/iFD73C2GV84Ed/iNcOpiSm4qFn3kV27RWm5Yxbu7dptOb+vT1m9oMc709RnQlPPXMJmaaMTk545ZUb9Ht9XrvbcOcXf5m06PLU2R76TA8XBD//iT0+/Nx10s4K3/CNX8jX/tav4Obt+1SH1+nQkPfPc/3Va9RNoCyjrr92nh4wVoIf7ERWoREKJxTGOzrdIUIqppMJUjh0iIeECQGfpLz/fV9Ip5syO9gjLTpsbu5Q11NMXbN/NObO7gG91VXWV1bi4BUhCM7gTBxiOjo6wDqH8TFLXOkWdDsdZssSpRO2h4pCi9aLIWZ4BDCmQmvNK6/tM1zrcXa1FztGIXB8NOUT13dJEs2XvvMqnSTKth/76Y+1Q1vadIBYDjQtEC5dnBXhZGizBE+RC7xKGA47b7j/Ph/lwDcAX9Z+/KPEUaj/u0FACrCmQYiEG9dv0tjWeolAliWYyZzJaITWCfO65mA2IW8q1rIM0w3s7U1JZEqQjo1zQw53ZxSdjEwrvBcsTIVzDdPJFJ0mbGxutmQRD9MFu/fu88TbHmdrc43q+oLFPLAmlmwyI1hBXcUNJ6UkyPhGyQDeCIZ5wn2VYsScZlmjkxpqQTWBO9OSynmMbVgdrHDx4nnyPGe6nGGtxxrTsu4kuZb40ND4KAjSOkFrTaIU3gXquqIpDbWpY01rYi0sVcuxN1Fq609dbkMcHx6n7EAi4TM3j3ns3JDBWpf8YIaZW0yQ+NqRe8+j53rMJlUcPba6TiUSRJpy9uw2l7fv8ezz++yOx1gC58+scfvaqxxO5hwfHvL8R57lnU+8h/LmR3jphWc5uj9namo2tjaZzRZ4Rty98Spn1ze4rQXJbM6dl2/C/T6XL59lVAmuPvIEn3zxJjrXVCIg01XW1jfZnd5jtphzZXWFajbGUUTpcUzLuLyywp/4Y9+FQ6JkiHMmWpu2slySZAV5CrmUaJ0xmsyxPs5PPFUgru1cQqcZQecM+wOqxZSj8RK8QAuBNw2ogqZumE4m1E2N1Jr5dI4XUZeRpAmzSuJkVE2qeOnPmiBE+/NOuStQFBlJlrVU6QhsNs4hpCLRGq3kA6HV6Tr99DQfcD60ZiRErYmIeFYwcdIiQjLIijfcf7/RIBCAfy0iLPtDIYQfBrZDCLvt9/eA7V/vIkprut2C2azEeBu924QgUfKBemp8csLa5iaz5YLFyYK8kAz6HQ4qy872Olm/z529+2x2+/QHK7zy0k2qssYaz9qg4PzVC9x49gU6G+tUtiErBoz29ygXJ/hmyYvVkp1HHmNZ1vSrKRfCCCEdtdCYtsSgbVuFVqQiRWD3pCL1cBAyyloyL+fsTmpWOiWbK0O0Tlk7sxVtu5LocGudp3E2eiQQeQNJnkfv48aikhThwoMhn9Z76qqh8WCsjZLS0NJ1Q+tzb1swUQjwHucceZLjgsP5QKYF++M5jbPcuXvAZFRTNTDUmt5GgS0rjpYVj27lNKXGakllDSejMRe2VnnPu56glxWUdcOwV3Dxyhav3b/B/ZtTytrwqU9+DC0kH/jIHarZiJ5KsOM5zz/7AtPpAusVo8mIR64+zPhwxv6NPagbDkeKw9GM2zPHV739nWR5SqI1e3v3uHn/FtYF5kbhZiPu7R9gpcLZuAt0opE6AeLcyNJ6Gi+jkafwIBRFEqhNSSdRDHJNbeKsheg74DHO0u+tk2Z9kiRluYyTrTLXIUlztJboJBKA9g/vUpUVVVmhlKCqGpyz7d6O96nSCp0kDLs9BoM+PqjWKamVZUPs+LTiqDhcq93VradbtMmXZEnSDtB93Sk4VnziwebzRKqyD4EmBJoASQCExtk6eiSoJOJsb7B+o0HgS0MI94QQW8DPCCFe/uxvhhCCOO3b/JolhPhO4DsB+r0u62c3cOwznRi8D2RpQqo1aEWeLZjP5mxsbbOsG1LXsH3+EqPRmKub61QYGKywmM8ASSdLePyRK1R1xXw8ZmW1x3Q2I99coWxqDu/sMhisYZwjqBQvDeXsCDNeZWdtA9uckM4bHODweBtNT1yIFlkQWW3OWjLl2S01TeOZlIZF4zhqBFfWd9jcWMWKBKUVSisSnSCCQ7rIk3c2Glk6CSJpH6c0tmniIIrWusq7gLUG294kvu2AuHZ8tWpbV42x8XA89dCvDd08Q2EjSl1ZfONYz1PSdMHJaMH6YMD+vsN7hW8mPLXRZ+PKFvdOKrrlErwhYOl0cs5sr1B0E+pyQVZknBlkuL37bIWEm7/8K1z/2EcoyxIhNIP1Pg+fX+XFF15lVtdM5TG/fHDIL+sEMz5iUcfnut7rYU3Jnbsjbty6R6fX5WQx4+61z3B44wY7a6sc3tFsbCS88IlPMZlV6KygKpdYD3UTXXQj1ySa0RQ6jWKdEBj2cpalBa1QOkqqbQAho/dgnmVkSqJ1LPOyTpfpyQlra+vR0NZZptMpZlkxmYxxPqC1ZlnWbRCOP/d0SIppDELWNGXFfDEn0VtsrxQoLXHGspjNyJJoJedCPABECA/IQAiJbaL8OknV614aD879llQVQAhJcDCZLDDOcXg04dbtY566sglKxIPDerQSqOSNN/FvKAiEEO61/x4IIX4C+EJgXwhxNoSwK4Q4Cxy8wf/9YeCHAXbObof+cICSGpUesZgtSZBkSYqUgWFvzmK+oDEV3d6AclGSD/scjmeUSjEjRc320P2Mk6M560mK7Wpy1SHPIuI/2d9lcjKhKWuaZcmsNpAX0Q03KXBOIlEkWU6TZ5gRuFTgBZH66sODwRBRAeawxhKMY1EHamNpgqC00Ror0QmLxQKdpuTZgIEWsR71AYQleBs3qg8kmSbtZCgRSLo59WTGsqmpbIMJHoRs/QcFUsgHIKD30dxSehHHdQmBdRYCaKno9ooIOFrLvLYkqebj14/59M197u+PIXju+YYkCAZakqiKcVnTEYq9/SlpkZGuDnAohKiRaaDTyXC2JpiajY0+K8MOvZlhr6opXU1HJ2xurvDe9zzC5tYKB/f2Ge9VLJuGcj6lyBLyJGFUeVbXB7zvi59gtd+n7/a4fvMWk0XFYlmxuibIN9Z51/lzfPjDH2DBkru3DzgaLbj08FW0kpiyeZBCn+6RIGjnU9Fulpb3YQMhiZOvrY/j7JIkwROovY2BEkGeaHyRtRqDOJy1Gk9YLhbRy0JKmqZ+4IN4akX2q+zQW23B0lnu3vF4u8rKoE8qw+sWYiG+l6E9I08HniJ4UOplafJ6lvBgtbY6Iv4faww3746wPgLEz37mBo9cPoOyjqqMPBClc4r081AOCCG6gAwhzNqPvwb4c8A/B74d+L7233/2613Lu6hK666vRcmrCwjfDoCwjkxrtFbMRmOyczsMV1ewlaE36DEZjbl7NOXchW2yXDPo5qys9JnuHTAdnRCkZ311g8tXLnDXw43xHQQOZz1u3uBTTZ52IOlwa++Ik+WSweKEvg/IBnxCdMylnWPvAeuwtqRuPCdzQ9EY5jIjKwas6IaLZ7foD7pga6qjEns0pur2WTl3DqUCwhikj2SZuqoY9Dcoii6+KVGJRiYJpu3jnw7FDCFgrUWp6D0Q2kGap5NzogVbW2kKQa9fcPHieaS1nNnZwQnNwa1rTI5m6CYgRXRsSoXDGodLMp54+mEORiO6awO2+gn3x0vc9pC7JzNWCk2n32VeW0g7GDJ00uWrvvzdfPpTL3Pm3ph8kHPl0Qtsnd8myTO8TLn08BXunbzAzMfNZ2rLmY0Bulvw3ve+jeHaGpW3dIXhhV/+KKPKIlLN4eiEl15+iUtf9pUsfcIHP3anNUXwlMs5f/mv/xCj8YKDkznTsuHH5CnwBt08aSnfnvVeDiHQeBgUKfOyYjyrUUnCYNDh4V95HC1CZDHqFK3icFmlNNdeeon7+/sPRpdrpeKkoXYS0mlf/0E2zylZiQe+AWmiKPKUTpGTFRkrvV6rT4mO2rujkmE/pZcnD1SNN+8ccLKoOLs15Nz6oPU5EVz8yMvceelDD7w1pFSc7B+yf3hMr1tQ1w0vvXCL+Vd+Af3ugKXxWAIpkHc/P0aj28BPtPWJBn4shPDTQoiPAv9QCPGHgVvAt/x6Fzo1ddxc38AQ/dn379xFSsHS1Mymc5QWzGZzevM5WiecjBecvXqGbmfA3ugVlIzqsG4nxxBQWeDsmfWo/HIe0pS1zSE6S9i9dZflsoxvZl1jrSFJEhoBh5MDMuloOhCcYGkhTC0cLSiWtGQNR3A++sJ7R6k6IKAqK85c3CTbHPDa8Zy+M5zZ7LKeSELdcHzjBZbGImWGQ+CURClFpxunyDaNRSpFkiXY4FBCkUqNFZZ+P2d5PMOY8ABj8iGyFwMxGAQvcC7SY/1kyUuvXufymXU6/TXuHxxzf7zkvq3oZorNlUGrvZCcmDl7swXPvrrH+dUO928c0NjA7iwguI+tHDrAeidq+RESj0VIjZSSnYtnOHtunWjK6Zjd28OLSI3uasf7n7nKbF7z2sGU+wsLax2e2VrBVnMOr78CQpC6iuZwl9nCkSjJfDLhf/1rf5X/5Qf+KuOTEyCgEoESnoudwKWsYjI7ppyX/Nm7h/xQP6cyUUbcPzMgTQLCeIp8SDeT7M4dV7ZXeWU8xS3mvO3KNnQ8v+1r38ulnS2Gq2cZrG4DgnJ+wuhgn7/xl1/hleMDKmNIEOgsp26a6AZsLa6lIp9ueFr7cqkgT1MInlIEFlKSp5oiT1HrfR4+t0ZXS5wLHNmGDRacSzNwASsE18a7VLVkuCG5qBxKSxIp+G9u3eIv/kdnH/w8hWD35B5KyWi+I2A+GfPsL36Q/Z7m3v0Rs9pQH+1x7ed+8t9/EAghvAa843N8/Rj4yn+Xa0mpyIoexljyPGMw6DHNc46Pj5gfHXN4dEjRXyEETzWbo7IULwK2CYQcNs6t4J2lqubcunaHtWGfZJhThcDGcIXlckq5WBKcp7/aZzzpM68MuAYRFM45gqsfjD23EmwImAALI0kXlunxArNo2lYPCC9onGGxCFQ+xQZPTUAPO4xGU/b3JrxweES/yHn8wgZXzm6wurPCOpEbMF/MmFUemResbqzQ6XbBW4SME3q8i9oCIRUheLpZyvpKn4PRPG5878FHgMm1UulTFFkrRZZIOkpzdHDAJz74AdIiR0vPvIoMtGEvoaxqzGKJUmDLgF3WFFu96KIUoOMNTdB0uwpRldw5Kel0FJlSdIuUbqpbowyJ0EmrbpOEVvLqnMdZQZIpVtZ73JrXDGTC6rCgW+joVhw8ZeMIWYr30SjDC4dqKtyypEYQgomAoAlcWu2ws71CkiSYVmsA8NSlDT59+xihNefWUlYGBfV0xsIYEt2hsQ0ET5JI3v22c5wZ9Bj7hEFvnaK7QXe4TlZ0CTZAV7JY3GO2qGI5Qfx96rqiru2Dbl9o3auEiAC2s6GdwhSZp3HagMCjqCyYeUWRajLpyNMUZyBPFVliyPKEEG2i4vsJFIkg04pEBWQLDiZE2/1T092lMQihEaoVX3kXCWSJpimnOBJkMCT1G1N13hSMQaU0veGAXr+HGQcccwbra9y5fZ3Z8T7GWnRlULlmuqhIfcAmipu3brGxPqCTdxkdj1iWSw52T+hawVOPPMaomnGwu085X9IddBFFwt7eKNJ1XTtdpvXTi3s7vnEIwdxEyWYuoUgTOnlCmiiEEnFMuQ+kRhFkYDmb0ARBt9tBJhmj0YgrV87gbM10suTF6/d55c4+QaRsrQ24vLOKrRxNY0iE5NatXQ4PJyR5ihIBrTPStYw0yVn6EdXS4KqGtUGCtQWj8awFlkK0tH4gtpH0E01d1UhSHnr7Fe7evgPKkeiacxs9Vh+6yGJe42TFtmgYzY6ZLh1X+h182RKVEs3J8T6mhPGiR9KRiKphZyMjVQnOOw5Gc9ywy2ovj/yG1kw0EDM7QTTFRESRi2ssN3fHCJ3S1dHvQQaPN44be0uEBNXrkdQTjA/U3uM8JMHidUT1O/2Cp5+8yKDbwRioy5qqiuq4px/ZppMIPnrziFnlSCixy4ZjF1hb7dKYOI+glyk2enmcr+BTlkGyun6OvOggPBhvmNcLTiZjdo9GGAcoRV7kCO9RKlKxI7HLEJwDKdBpEr0TRCBVOrJNtaZ2llRKXAAXRFT4GSCNgVYmGVqadpiKhOAwNtqcpaqdS3g6m43XsYN2ZALGBKQWDxiEQsrYzfIpjYvj49Ik+VXW7r92vSmCgBBQZB2Kok85r9hcWyNViu3z55nv7dPznsnkhPVsk9JXKAuL2nBzXNFJUna21vB+hWq5oKsE/U6PwcYKo72Shy9fjMqvVKNsw8a85OB4woqIcl6tBJnwpFLEEdxE8crUQaIFnUzG8dKnjEEfYSdPfFNFcFS2xhjBzHn0/pj5ZEb3oXN8yfuf4e7tY+68/CqFlhzWNYvlksksj/z4IkcgmE9OWE4ncRhmaMnhSpEVBUJnVDZwcDLlol5hc6VL8HBwMqYxUTYKkLStVF9WWGupRGB0coDOE8bTKUcnhpUVz8VHH+dd73qET3zs5+mmJXmqGM09aSqZjhYsZhUqyVhfHeA6hiybE0JCkyiCTGmEIk0VvY7DVAaKDBEaAup1DENEMQtE/odEMCkdi8qytdGL9mWNY76sOVk4FvOaXjfn0oUzZEqhgqEqa3QaSEUCacITqz06uabXy7DCUZmGJo4CAWKguXBmFRECo5MZZBnTOjBXWTvmy5GvrqIns+hj5EElilynZEUex66hCWWNWdY898nnOT4+aQG/gAmBXqdApykewbys0ELiqgoE1NaipEL6aFOu0zQKpIiBNUkSnPGczGvunCzp9Tp4AvPpCflmFx0kS+8wQWCMA9NORmrl31LErRqEamEfgXeWxsXfA6FwMkrTay9xRO8JJAQpQb/Jg4BSijxJKfKCM2fO4IJFyoSzF65y9/mX8a4iJIEwndHbWAERGPRylnsnCFtTHs05e3GbypTU8zHZIGcxniBC4Pb9fR5/9Cr3Dg9RpePpZ97BR+YLZF2xnC8RwaOEJBGQarAuUAaobKCQEi2idLh2HuNF64YbUwePItGOjUwydTWTBo73jlnt99vZhgl5olEC+lurcZKsFyRmESfNNjVSyTZtlNgQQEbSiZJgqobaeEDS7XW4uTvi4mYPnQm2tzY4OBi1oJXHlDXOeWb4dtoPHByMKfKCk9GMREuOzTHXX3qFb/ym30cdMv71v/qHXFpRNKbmMzfGKOuR45LVc9skaZejvRMOZjWj6ZjKKoo8o8gVm6sD0gA7mwM6nYQ06SEIVMZhQ3T2cc6iBDQSpFAczBY4JMNBTtrt8pkb9zg8WDI3FcIG7oYAWlD0ujx87hxX1juxNJAedBxsen13xKJy7B1NWenlNC6WZQCDbo7qCNa6OR994Rrr3QGj6TFCJnjnoiLTBZIk2pwF6dGpotfvRkfrIMi6BRQpz33yOr/8Cz9HkWiMMaRKs5wumE3mcdKR87G/f0rNDZGdKZSm3+9i6oqyqgiBaEHuHEmiUVoxWVa8fHfEoMjo5yn4QLU0HJQ1QmkOThZUxiOEx0pLZWIWeOqZWdU2ZjESnIluQSJ4qmoZZyE6S+Mc87KmthCnGycsmze5sxDAcLVP1kkxZaCsPVon9AcD8jPblNdGJBqqcsnA9zFZl/7KkHJ0wnQ8Z3DmDPZkjsZx6eqjyFSxd7DL+YeuUjaWj3zsBbbOrFDOSkbphOHWBqM7B4Q4ZwonBCaAsYGlBWclTnq8F2ytD7jyyAXSLGt96MMpCI0UgqYxbI6mTCYLqnsTDmcNTgRee+EaF9/+EKP9XVLhEJMx+WDApDHc3j1iY1DQ7Wi0TVFJ9KTXQiMTFY1G6grvJcYYKme4cH6Hg+OU+yczrDMkacbG+hBT1yxKizUOb2tCiPZTwVmm0zlZnqGSBO8sznkmR4fcevVVvuK3fjUvvPoJbj3/CebjJVUZ5y2OTio6w3UqY9gb7zKZzMgE5AQS47E24eb8KA4zGWyycekC22sdtBAsyurBvD0pouo9YLFBcqf8DDrRXLp8nv2J4dXrh6xoxdVuwn1Tk3jP8cwxXViq0vDo41/KlXPriOAQ1nD72m36WrKWC9KtAfPaxHFknQxO4MIjjyCQjEYnmOducmd/QmU8XjR4EhCBeW0ZDvtcfuIRtFLcHi+5ffcGD12+ymClwEeJKrPRCGdqdJ6QNjXb/QLbTbm+O0IlGusi0UcEQZHnKE4dnwXWOSrj4mj3EEikQimBtRZjHUollLVDD4Z0Oxn5omTl0nk+8+pdPv7payyXdWt0I/nF5/a4euks737yYTbWusAn2Hr8GTIdcCZA0uGRA8EnXr0F2lLVnsHGNmcfeYoMMPvP44Nn5+3vZWVjFfj459x7b4og4KwlNAvSoqDoZqytD8lShfMlZ8+eYf/ay5EYQ6BeLEB1KfqrbF99jHLvNutnNqmamlW1Tu0ltio5XExYvHyd4eqQpnEsRjPOXzyHrwz9wYA0T2lMhQuCPJWkqY4trKWlCZ5cJ+hEsNLLWR/mnPrRx5o3nrbOewwWZyrmkzm2arBNoHQGV1fcev4axpSIEMePhXJG2hkQgJu3DkBFTUC3k9DNUrSMAicrgOCYLhyT+ZKiyNl2DTpXXLp8gRvXbrI+7JDojKOy4erDF5gtK26+8hrOONJER7dbqaiXNWmSRCoqgXld8XM/+5M89Z730CsG5POKbRe4H+JhqaRkMpnx0ss3mU0WTBZL+p2cbqpZ1AGlPKmPnYu9l6+TC+g+/RBr/YIkTXBNE8sSH/kNIgi88YzGC5JMMzkes3fzPjo4Gh9AFrzr4TUWszk3j+bsLQzNouSll26ys71GpgVKS7Z21kl05ClkswWLxlN7WF/pw71DmhCNWZ5//lU60rO1uUW2fx8lDUqnpEIyn09Z7eYIqZBakouUal4ynpzQ7xcIGync21vnePLJJ/jExz9BUHBue8h6r481lqNZRa2jh58LYIzBK4lvdRuLpkYKQZ6kJKmiqqqWmewfEH+KXoduImhMw3I24xc++Cnu3znA+UCqFCpJoq9F8Nx67R5HxzPe865HAej0c7IiIdcdRNHnS7/6S0Bp9k7GqKzLM+96ioceukI9m+EQ1I1j56HHeOjS1Tfcf2+KICCEoNAJ62t9AoppVdKYhixNWd1Yo5EprmwIbe93mAbGe3s88e538bHJmLvXb9BdW2E8K/HSkac5ZdmwWBwzmyzwInDt9i7Fap9O0UFIDUmCUxnjuqZqFJtFQX+Yk+uSxcmSTqYY9BKcSAhKPkChEeKz5JygkbFG7uekU4tY1Oys5HQzzeTkOGIOhaSTSpbjCaVVuMahCCQyRLuz2ZJjGdCS6D2fxEnCvX6X9c1VtrfW8S4QmkB3M+fylW36wxV6gzWsu0Gap5wfDllMZsyPD+lKxf+Huj8Psi3Lzvuw3x7OdKecM99Qb6h56Krqrp67QaBBkBQJkUEKRAiyIcEyQ2ESIi3KEf5DpBWyJDscIdlymHbQJoOWaBpyhGQMJECKpISZbKCBBrqrh+quueq9V2/KOe98pj34j73PzaxGFUCLllU63VX1XuZ9+e49Z++11/rWt74vH22wtzfi9r1jBGEisXWeWWn4xrde4a/+lX+HkwcPyGcL/ujekPrBnHtNwwDHd7/1FotlGTbEWsFaEVLo2hlq48h1xihRbG4mMD3hO28IPvvxZ0mURorO0CMoHMvombioAkHq8GDMclky0prd9YwXn7zEE49fZv/WPZxtKRHMqpbJ0SnHxxOuXd7C40h7PdZ3NllWJdtXdvnK66+CVjxyZQO+Gxiczhp8Y+gXCcNRQX2mqJI+xWhIXpxQLuYUwnN2NmN3byMg/0IxOxtzyzSsrW+iVcKNF57mj0/+GO7gHvNpxvbeNolXfOzxq9y7e8Ld6YxGSUpjA2NRJKsJTkno7LQykI2SLEV4aJuKJNHgPNOq4tbBCRmCdnLC8WTGSEmUDm4nFkuiPQmBKyOaOW9/PUw1Ho0n7MkNCuXw9ZS19YI/9sM/QFlVoDJ6RU5PC27ffY/jWUVVt9y+c4snr344e/8jEQSsNWgtWC5rHI6yLHFtQ7Us6RUFWX+N6XTBwlpM4tnV8PBgn+TVNyjLildeP+GlT65RaEnjGk7GE+pJg84TJtWE3tYmk/GUyXzC4mwMSLY2BhSZxJ9MGU9rDsZzKuuiLrxnqCBLFMYGujAdQyyyw3wUykzzhEG/D84xOKsZlpanrm6S9eC2WeBaw9qwz9JI3rg7p9pfoiJJtJf1uLy7yYN37lJ5j7cwXF/n2qOP8OBkzNOPXcNLResN2nrGsxl1tSBJU5xtqRczEu1ZTEsGl4dcv7aDXcu5tDXi4XjJs09eojWOl1+5HW24BVK0TKVgvnid7TxlYjzfmZSs9xSnOsenGdO6JZGSREKCoKc1mYKByEgSRSoEaW9EUSRkPcnk9IyDg1OuX9tDNm2QtvIuzlh4mtawqCq8FbSNoXEWqVN21kccHEx54/YhxlhSpdnMPcvG4X3CYlFFQM1zOl9ydFpyd/+YO0dzDvantMCyCgDkdLoM5CtvEMJS10s8hiIpGA7X2OhljPKURCnu3H6Pnb0NjDVsXdoDKZnPS5rmCFC0UjG6co2xiJ4LEZzfGgyoenNun01pvUUFg8zIGQhzG1orhJc0ccxbak2RJqTZkPl8iRBQz1u+9dpD1vsZtrb08h79Xo9hkeCN5fJoiPQ1k+mMsjEoKVaf871vvoJ4/jnkFU2R5yQ6RWSWNE9pvQVqjg8e8vVvfpssg55WvPfaNzi6sf2h++8jEQQEgtoJNJKqrZkulitFFKEU+aDPSWRj1U1DvTTcvLRF4pZIW7JsLeP5nCev77HwjnZ/n2vPPcasrqjmLSeLJTg4eG+fVKaAQ9c1o15OnmqOewtOJgsOTmdoBOupZKOXUOTBG86jcN4Fjr7vbLMDNpCoBKU13juUlGyuD9jdXaOqZ2SpRKcpTz55na+9dYYTM5T3K0R/sSwZGscCSyYDxpAVGd5LxuMZdx/sszlaA+3Z2NuFu/c4vH+Il4obNx6hyAqklBweHpNIx97uGleeuEJPZszfvIPWKY8+ss23v3MH40N7KWCPksq2GFmQFSlvzWuuFZprOyPI+8xmS6Rvg8qyElgLrffkmaZ1jnldkziwc8mlrSG9XHL71l0eubqLlBrXVkHqKwJmjTFUrSFJU/I85WwsabAsa0ORKLQI8+9LY6lMYLnNqhYpJK1zvPL2fX7rG68znpSUTRvbYR7lBa+/GYw2f/M3vkahUyZnM3b6CrygNYJ0uI4QmmGhkUqS5SmHJxPaxlC1FVVdk6QpbVVhRTACbadTqvmcug3TlU3VYJHIxrE+6PHUzjp3ZgumVd1R+cM7ch7fhrKgc2au2yY4aPmYjdmWRAgaC2c15DojzzQ2yblzOsO1SzbXNiirJUV/C7KaS5c2ObkbpMGKPOfgndskvR6XdlLSPMX5mtZ6FAlKCL769W+RaM3mzga+bVksW6ZV+aH77yMRBKz3nE5nGKeZVXMOHjwMHgLWUdc1iRZkuaaQmtY6bt+/x3g+YpgHwMs7RwLcGS+5vLeGazSn4zmz6YzhsKCpK+azkmpR0i8CqWWUabQSDDLNcGfE1c0BbduSAIMsoUgjv9vbYPsV36sXnSVqMKsUSJx0gWefh37vYFiwtp7jjGM5nVJ7OBlPGWYJy7alMWEK0ZmWh+/dQwfGCQZBbSwm8sad9YhU4IzHt4b+aI3D+w8pMnDeMG9Kbjz+CNPZjMS37AxyEmDaVqzv7rAxHLEzynjh8W1ev33CMsqp4zzSOObLBRu9PCg69TIGWYL1LVoFMxFrW3QkUVghqFqDcYazssbVoFRClmSs9fscHBwxmS4YDAoSo2ldgyR4JzbWUVeW0VrO9kaPh/tgvWLeNORKkStH7RxrhFT4AEGqLHs7PcZnM371n3yDsgq+EAVB5Q0VXISJBK/bJyV2ccR2XyH7wzCYqwTzqmFWlqRK0tY1lUoo6wbrLW3TstYfhUBuZ5TTJtxzFWYMiiJDtIq6bYO+Rd2SmIa1TPFovsOd4yMsoQUXXJMdQkqsCy1BKSVJooPFnfcrUpdOUrxU1HVL27RkIqNaLtEuCOkcHhwyyDKmzZL1jTUmkxJVjMLnPBrz5CN7HN+5Ry8v2NpMwri5azGuoa1qjsdzVNbDKY01DmOaVSfhg66PRBAIgx6Cuqlp64ZUKdY21jmdTbHGkmeatX6OVgm1tUynC+bjMW5YoFTC/smM/eMJj2z1OX54xONPX+Hk6JRECkrTsD0qkE9f5b0379KUFf08IYv+cEiB9IJcSQaZopd0ltw+OFgYQ2jghasbCRdRF9/ZINyZyBRE4IoTNeeuXbvK5LTHycKB8RRaB9pwxBNsZH1BUE23MmgYKq0YDvqkeYbWGmtr9o8O6OWKIu9R1SWTsymZnlMkuwx7ObPJDNsuGKR96tmCQb9H5Vo2ipx/4YdeYuNrb/LW7SPmpcELRz/VbA16XL+5y6Ur29x7/U6YcjOwEJrMtdEenDD6ajwVQdAzFZqmdTTOcDqfsV0X7G5uMZ0u2Fzvs0TgnEapBHyNMZamrnj+xk0+eXObu7cfUhnLrDI8uZ6wlmTcnTQclSWz1mC84LEnruGc5Mu//XVSZ0hlS65TPAID1NYgGkcTo3O5bGgNbPjwTFESjUTJBCc1Uiomi4qqXVI2LUpoTOuoTUMxyBkO9jCNY1kucAgmzYK2abGNQVcBZ0BK0rV1/GxBtawYFH1Ol3Wces1pmybOlwS+h7WGPAs8BWttkJmLo8DG2MCotIbEGXqJopdK1pUmEx4hXJgGrRvAMInTkg+P5qxvrLGX9Tg7m7K9vUOShDaXxDFeLGiEJsPhTZhPECqA7x92fSSCgJQiuNgKz2Q6o64q1iT0i97KSqxINL2iR2lb5lWFqSzeBJVah+Ott25z46ldHhwdUy2WXH70KltXct595zZX97a4dOUSRw/OODsbo7UKjDUpgxQ2IR0NLtfdEIjCKWgbgtQX36PK6jsEXJD3crIkI8tnJD4li6pASis2trc5KU/RMvzcXpqEU995WudoWxOEIQEhPK5pwBku767x9lt36eUJk9mCVCX0c89w1GN6d8LGYESLoJ6X7KyPWCSC6XjJ9cuCUZFxsiwZZuukAvqjNX7o+5/nE8/NqEuD9QQwc5CT9Hu88+4DFmVNIgXOQSE8Wz2J84qqNbQ4Mi0RToZJSilR3iK8o64kxuV8/o/8EG+98Z1A3nFR+DK6ObUGlpXh8Ue2ePzpq3zm7qN8+eW3qUzDul5n2S45XbTcX1oOS8vO3h4b6z1+8Re/xmR8FhozaYGLWYm3jl6qSXsSgYXjKbKug3iHEyjpkdHTwTaG8XSGq1vuHi3ItOHqI9ukOoix7B8c8diN61jjyIs+qpBI25LnILXDaI1XGq8Uo90RWiquDvq0D/YZz+bkiaaVQdDTmJCVKhVMVZx3LMtl9MLwpIlGCEFjDbmQkXkYR4KdRxpLpiW2qWhMTZ4PwppLctyyDsvOZbx6+5D1nUusy4S6dYyyDG9anIdqsUBIjZYS5Txl1SCEorWOD7s+EkFAKYnxjulkynI+RctQY56enmLalnpeoaVktJ6TtBmLsuWsNkxqw/FySqo102XJW2+9h7Ge6eExw0GBGvbZ29nh6OCQ3UvbPPbUHm++ZlksF8zLhn4ezEFkqoNJSFxkwntkZL+Ffm/gZHsZokEQAPVRzFGSKI1KZTAPiUKPzoX0K/DAHUppGtuSaYl3gcClpUR5iVI6TgdKtPa0ZsnR8QJTLRj1+7TLiqynuXPnPptbW/gkpegPoG04vnePrat75IMRDw4f0h/1uHlljy0GPPPxT3Pru18jVRItC7b2UqKKBZJggWadYX//lKXzpDgGiWKQaXAWE0Nia9pwsvnAjEuUJs2CvZvKFE5pMinQXpPpAutqTLTuwrsABuLZ29titmh54ZPPcXg84d7DE756OKecz5g0klJqbjy6w8efeYyvfuW7ZKmitWBaGzZkmJhCyXCPEYpeHgblX7ixy52zJVo2QQPCB11JUo1x4aR86rFrHB0c8fjTj6JFGARbjk+wtaOxNdb56Ig9Zz6ZYpuW1hlUIkCpkK2ahtFan6d7T3D9kSVv337AndMpR3WDwZMkwZQUD6YJAjkiysZLEVykkjRhmEh6UjJvW5QE4QzOB2ajEiCcQ9ua5VwgewVpFqYAi0Iza1vuH59x48pl5rMFw0EP1wq8FMyXJeDQaUaep+E+1DXWftQzAQG2mnNycEzTNuR5SlkvsaahrpbMlgtM2VKfzumlGRujHuNFyXK6RClNIjyphAf3TlCJZno85eb1CkVLka1z7+4J47MpJ6cLmmWJtJaqNtStZZAnSOeQWhIstEXQEiTqtLnoT6dklO2KAg8OQASWX+z/KpkzbQ33jmdc2cyQQiKFZNhLg0CICVlFN4YapKsDDdRbR55JLl/e4WA8o13USKCsSvqjPtZBs2gYN0fYpuVk/wHrl/fAw/jBIbtXr2B6OeV0zrhXYCho6xowOJ/EzkZI77UOQqneeYy1mLpFC0miIEs1aaLC1G5jwpyEVLQ+6BVkOtS6Wmtsa3AtvHd4yO23XkFJh8V2AocYF/7MdF6SJYosy8KmSiXf94de4itfe4W7+xN6ww2evLzF3uVtqqrhN3/7FUzjaG0A2SwOYSATMrYhAyHKOkPThBMuxfHStV3OZlOkdCitkAnYpqVOJblMGM+WnE6XfPPbb/PI7qdDBiagNhatk9DyTTSFz5m2Hi1TTB3k66umQiEZ9AuOT2Ysa8N0OWNuLf1hytIU2KlHRIzCWbuSC5dKkQBr/T6ZgFRChqOW4LUic45MaQTRvzFyLJCKWR08NpQIP7efaYo05d6dY04eXbKdZnhrcdbhvaVcliuVaakUzpo4K/MRzwS89ywXU2xb09QNzhhmZxNs2zKbl0ym85BmuYyz4xnXL61TuWC7rXFkQqESyex0Gkwbjec3X36Nm9d3mU9vMT0+ZWt3izRL0FpgZRJOtbqBfoJOFbIb1IgEABsXvXUeb+NGj10B52NpIIK+W7k0vH73iFdvHUOi2T8c8+zVNW5e3WTQy1hb6zMc5FSnbUCQfVTCIWRBzkf/gSLHqoTp2RTvZETyBXk64O7hEWXToKwhF6ClJkkyytbSzKZs7exy+eoletJwMj3DW0O7rBA+WoipQHAJJp6hBEsk1LVnuaxQAhSgVt4LKliA42hdHK6KQTLViiTXtMpTtQ5tasrlmKQYUbYmGocE4o33nvF8ye7mCKk8IUFSDNb7/OHve5HZsiLRGWtrPcaThp/9x7/FvC7RJDgTwNdOwMMKHwasEkkiJTrO7QNkwqPrGVhDmg/Ie31QAqk15bJkLYHl8Rk97Tl5sM97D47wWMrFgtu332RjYx3hJOmgoNCSxXzCuJzz6v0DSifYHuRk6xqpN1m7tIVYLrHzgql5iFkKbu7tcc8dsGxbqqaNrWWPUpL1tRH9NCFXigSPamsS78KJ7wPtV6qE1sPcCpQDrQWtg8Z5lvMSHWtRKSWpUswWS9669YD1tRHGmUBWalqm8yXeipUeZovHdqfUh1wfiSBgjOX0dBq8AK1Dpym9XsHZyZKjkzPmy5I8SQPy3C44mszBeTKlEMKjEsnu1iacnFHWDV57FtMJhw8UlanBQTmfcWltl6JXsJjP6aWa9WFOr58iI9VWRj6gjIQg4T2NM1jjwqjmhRFSI2BeW96+c8j9u/vUy5ZlZci1QGeSB7caVLbL5m6PK2uKxx9dcjKdI5rgHuMRK4NJ54nsOc1sPIP6fKosK0ZU1RIhHGlW0JoGpOdksmBwORiWGmtomiUba9usFZr5ZMI7tw85PTtYCaF43wZtQimQSpPqgGgnSuKMIcsUWgW/QiNCeeZEKIca69EiTDgoFYZTfGWwIqD8EkldN6xtFrimRrhg7hoQFs9kvuSRS1t4a+JoNFihSHsjdnujoJOI51d+81tMxnOkSEJghNgOjGI8EMaHrSfVeVAIEmEwJkkEa33NpG1QSYJpa7yBfGuT8vCIsjZoBYlMsPOSg7snZBtDRqMhd27fQqePszbcppqd8ODu27z91nu0TdBnPJqcYWyfJz72Ek++9Gn6o3W8N5w+OMC7BmcFHse3X/4G79y6xXsPHzJZLLBJSpplDHsFoyQY0CTWgjNkOPrGc2gtpVC0dUuRSBrnyaSidcFPs3Jh1DrXoew5W9RkWYIH7u0f8Un/FLZtg9K0c6xvrnEwLWmtYL40eBRFP0Oqj3gQ8ISJvKauyPIClGSxnNGYhoOHh6HNIVpmR4f084T5rCJTkuFan7qpEFJirCPNNWVjkN6hcJycjSmKHIHDIXnkkUdYH/U5PTpkvVewvbNNlqaMj4+xxuKlR0QLZ0Hc8asRWbnqDOChbD1f/vq7vHfvCI+gJ+DGQLE/tzTSUTYzDr71KtduXmb7E49w5fI2147GvHv7IFqehZlx4T0KQS9P6EuPr2ucDAYogtAqVDLj9K3joHgMSKUpq4qz4xOcdchE46WjlyryNEMP1zg6foXXvvtNbty4iRcOoYPUtfDBqs1YKNKMPHVxtj9IZyU69LfbOrADQ2epmwwM96RxDh300pFSMOjlTKcljzyaU9U2+MPaQK/Ge07HCz729A2McyipA9eie/LxNh8eTnm4fxpbmG6louyi5TkiZgW4CFg2IVgH0Jyq9YxLSw2YpmbpDBaPaA3TxQxcGbs3Cf1ezWJ+BoMe+w/f4/hwilQJl3ZbhFvw9uuvU7YCJwWPPX6Dlx6/xMFJxebe5dAutS1JmnD5iccQWtG2LYvZnKeF5OpTT/LWd17h5e++xqRc0jY1mVbkSUKhITUenMBbSWsVqfbUXuJEENORMTuwkmBM48N97zKBw8mEtcEQYxyqbVEanDHRxxGuP36TnctXmS8rWmPRWpHkGevDwYfuv49EEOhScI9HasmyCUjo6cmY45PTSHLxQdMvVUgR7K1HW5tMTk5Jlebxxx/l6PQY29wHGwy3Gh/caXpFQi+XsJixtbmLlpJBUdBf30TojIHus6hrJmcTsuqMfnZeFjStpW0NOlFRVShIVb/94JR37h8Hj0SVIJXg8R3NiW2ZVIaycQz9nIPjE2bTddZHAz73qaexrePewzFeOJwzsfYT7Oxu8OlPPMM3vvUG7ijM0ivhOTi8z2C4wXJexcUUiEvlogqTZVqxqOFo/4zZzQnDnuZ0tuThScmNSY2PoJQwgeVoPRHg9DhTkaUJ/VxT16GGTZUgSzTz0mNNAD+lDBoK3oKLdavWGgkUeGzTMJlLdK9gXi0CIOc9jROcnC04OJ7w0idSWu+RpsIhqJxHSxVq5Ezz4MFBqGtjcPRRscdFgLa1Hq06LKXL1MC7AHidlg23TxryXsLQWJQIyj1ta1ksSpbzKdvDAQMVevSmsaRCYWvD4zcusRhPOBKWw/vv0cohVzYTdkdDphgGO1cY7mboxLNYnFJWU3SWkWY5WZaT6IQs0wy318n6PaRwvHd4wvi9O6RKM+wXrGc6zEt4gdYtVVvhFOgsC9ObBD1LI2SweY9u1qmFREpsbCUn1uLrFuMdtglZgTFNkJu3LjhrZQnrWRpwLSkQXuLL+kN330ciCFgXZLNRKfNpyXK5YDKdcffhEVVVo3xA2ZWUAUQEXOs4OzzBty0ih2eeeZHkwS3qcs5sOqepWzySvNdH4qicZH+84GNPfYpi6wrCBZCvsZZaQG2hrm1gwrmQyEovaI2jahoGvaBV5wEjBN9+54CFDW1GZw1HTvDyuMezjz7C67fuUNoaJRWZsoznDcORQ6Ypn/vcszx1NOF03nLrwSE7Wxvs7W4yL2uMhyuP7HJ//wwdlW4lCVVVBw8Cb0m1pGkds6bh8PCEqnJcvbSGxnP/7jHTccPpwT79THIyXXJ8PGFzex2bhA2mhFpViF5KWuPZWF9nf/+U1ghqZdHak+sQ9GaVYdkEc4tECLQTKB1KkFRJMpXQOM8TTz7GyXjM/t19+tR8884Z750tOTmdMls2/Ff/ze+wOcj44vUhaSJ5bwa6P2DYT7l6aZuTo0UELkOOICWBqk3U1dcKoueDaQ0ChdSaOGFLKhXjZc1WEmjorQNnPNPxGYmCXk8zKSuWBsrac6nwPDrKWdu6RH+QwsmE6YOH2LJiZ2cU2otJytHRnF/56nfY27vMD9y4RpamWGMxdYl0hvnkmKzXQ0qFNDaIiaiUS2t9bjvL+nBIP9dsjHqI1rDwMxKh6fmgpFS1IpqTqCA+KwI4kwOZ0jSuCWzPmM2nWcrCWYxxDBONFNA2Lca0K5zJBz18AIQXKCW4++b9D91/H4kgAAT+tfU0dYNpG06Ojzh8uB/IODKQiejINdYz6Pe4dv0qs9kY5SzvvvcWaS9HpzrKtwdwanPnEvePjmhPJ0ih2d6/z8b2FkprMAF5ts5R1w2iWVAUkSIcin+y6BXgHBHsCjX8vK4I+TA4L3FY7s1qBusNrZBkieLKzjqkgIzK8dYhtWLn8iZ7KmVzs8eiqrCmxNQlrk3Jpefy3jr390/wXuKFRScZiQasx3pPayzCG0xr0N6SpgkPYzqdJ4LLazBMHeXhA745XbB+dZcnru+xvtbHJxIZacveKxyWrd11jo+DnLa1UDUt3jqcbbHWUdsO8Q/AoicoGSmvmFlLVmwwnYyZvPkGD/YP2d0qEGc1w8ahNexuDZjVLe1izvS45nDacOu0xnqJFYJLm2sI5TEupLUd+i9lGPEOVgqh7AFonMUYT+UNrsuT8TgRjF49QWAl2JXZQNgxYTDJlSWttTzS6zPo5cwPH5Czi5Keja0Rm7ubgagjMz718ReY/+43mZY1RyeHfOOV1/nBz75ErhVCJuRpiqpDq9SbUL5p0VIk8NxzTyKl5fjolGVtqI0ntZZUaFINRWFpW4tGUggVS15BpiTKWRAOiWa93+dwugwq0gCoaK5iyYssuCnJTpIsrDMfyWhyRbCG8Wz5oXvvoxEEPJgmLLimqTk4POLuW7cQVRM/SPhAzrnw66iUUvQLhLLYuuLs6IArV3YYFAOaoqbyYCrDnffusaxrpHU0taVeLNFbO+RpTqtsSL+SBiksSoUVJ5Bx9FMiJJStoReDgvAepRS7az3G8ypaVXu88dR1zSu37qK8Z5goTF2ysT5iNOzRGoeSERhD4GjY3Byy4YZEKgJVZZiNx3z640+yNhry2lv3uHv7Hmtb27RNoDQbYVhbL7iSr1M2ht5Gznv3jmmbltQHVuJiHHr868OEm88+z5v37/Jbv/F1Xnp0m+1Hb5D2Rkgd3rcUsLE9JO+ntG0ZGHimRfuQLyTSk3qB8VG5iGDpLYwP/P8Gmtkh6WxMu5jjrWUiBVd6grRpkT1ofMXdRcvx0vGt2jAvWxIl6AvPUgiol9ReBhHTuKeF74DIsKKdsbSNIEmDnl4QLnEdz4rTeU2eJ0HD34KTUDeGrSuPcHLvLs4r+sOU1gq2soRHr19D6BHrvT7CGtIiQ2nFyghWJazt7vGlz73Eb3z1G8ws7N/Z5/WNO7z47GMUeYJOUvpaRa2GmM0SdSznM9q0R8UY17QcTxZsZJo0SVg2Na1Pqb0nycIYcqIF0jgKpTDeUyECQzItKIaCejpfbRZjgjr3Wq8I2YM7Z54GEFVGOTIfs1fFWv//vzZk/19f3juqJvgBHD7c597bt6jmy9CDJ3wwpVTUAgwtNWzIHJRK8KqmNQ3WOQa9Hs4YmqKgOZuyLMMp762hrBuWZcViUSKTNERNEzjkdR3EqrwPM/A+HnzWC2wdxmMjRoa0LY9f2+L2/jSYeuJinerwFiyecWWpbcbVy5cxztO0LUpI0jS6JEfdeXQc7BGhLTQcFSjtefGFm2ysF7zy5l3axjLqFwyLlNHGGo/dvMzxwyOOjs84PT7DVOGzz5FMFxYhoKdkWCxvvUaxKLmxqVm3c8SDO7TblxHbO0gcChj0C3YubTKfHpArhzGWsjUhI5JQOLDCxxxdB109YFl7qqpiR0vKseGwrikSj51LHpy2AVgUEudhoAQL7ZmUDWta8cJOnweTklwKchyTFrzqTDXiuDYBwwgkKvBCYlxwnpYiBGQTvRuX1iCSDEkNLix86RWzk1Nm5YKktbzw8Sd45onrzEvP2sYOvV5Gr9dHpSlaR+/HOA3YHwxIs5zdy3uopOCf/vY3WLYNr73xNtdvXGHQD0a23nXnb2hXHhyd8M47d3jrnXeomnbFQG0s1AasN+RZgW+bsJ6NR6iQfepEo3QoeR2KhRPMqpokSci7Tew9UnpqK0KZF7vXHflEifAZbGzRCkBZz/VHdz90/30kgoCzjvHxCffvvsfhvYeYsl7NZ/toviFVhyc7UunIRY2bvIcTlrMlZCINjsNZwmDQo24VaVmSWE+aZZjaU9UNWVbghcA4h3MW09Y0VUW1nDMUPgByeBCBEqxTjYlmHyHaSowXXN0acG17wLuHM5wXq4cdJOol2jn6wz69NCXRaeixSxE2kpAhEMgIgIXwQ5Yn7O5uBf04PI8/cZk8Uzx8eMbes4+zvb1N3TY0ZcXaeo/Xbu1zeLYg0Qovglmm9CFrWjpDi2d875R+Llie5Rgn6J+d4e9O2HspZbiziYuB9dmnr1GdzTiaLOgrxaINg0xCSRQO4xVaa7RtaZ3Fi4RFWSIxTFtogWmrMSUUaXA8KltFIwyp0jipyNNgOZfjOZpXCOHYGwx483SGT8KcRColbdPgfLDi8sYFNSccWjkEEuE8SRqASRkPCu89s6phNJAoBc62yMQznc1pKxMIP1bQ729BT9Dvjej1M/Kih1IKJVW09oY0y8iLAh2f19PPPc3+vQd84/Y96mXJt7/zFpd+4FNINMu6QiqBNZZvfOPbvP7WbZZVibGghKKXJbzwiY+xsVZQjU+Y7u+zXBo2N9ZxTUs5nkcdwZa2bhAqRaUZrQ3BcDJdYO0suHERCZ/O0x/2uXZlG1YWZV00kAjpkRHXEsKDUMj/Dm3I/n9yVVXFd1/+FuVshjU2TGaFzAovAlIvhEIQ2liLGuam4dKmI5ENZ+OaQVIED0MZ0ObWlGRK0SxnYWoulhWeUHu2dYOxhmVVMj47xSxPkYXCtIFgoTSkBLagbW0sSYiiD45eXvC5Fx7BfvMe7x5OcD6mrg6EcVzeGfLYE1cQvQSpFKkM713oEASUiM41qvt8AmSgLONB+qArX6Q588WcK3KDPBNkvQFircd3v/oGBydn+O7hi9BIlzJ8So3AGbDKMa8UD2zLtDRk1rLVkzSvvM7NT79IMepTt4JUaz77fZ/kN37r2+w/OCbJktBRsI5EaoRMsFJQG0ftJY11nDUtQgZxjV5WsGwWJELwaKEZYploaJ0kU9BTlsYF49XjynNgLdZr1qY10oBKJXmWIrzHNUHyzTmP1iKSqwIfIUvUag7DebDhbEAJhfKWxkpqL0mUpAF0qmkFVNYzHAxJkpw+0F/rs7m+iTUtHo9OshDwlEYnKUmSrIaner2CP/Ynfojj//LnuTeZ8e7tO7x28yovPf0EQsB4POW3fvdl3r17PzwDpbh2aZdrl7a5urdFL8+oqoper8dwbZ3y9Ix6XnK6NFidQGtx3pD3CqROAsEp2pwVvRRXe1zEBJamwTjBp565we56H9m5HnWrO+IBsSMcfuOC9uOHXR+JIFDXNctxEKb0kaVX48PYbjfR510QbIj0VyM9JBnzyjKSFYPMI6WiFcGVVwgJKNZH68zqmvk4WFYJH7z9losZTbVgOplQjY+hbhg34fvWGopUsz4agpARnY2qr5F37zysjwb84KceZ+Ot+7y3f0ZtPZmUXN1e44WnH2E4GtCYMCg0NQYtFVYIECnL5ZymbbExI+mISEKEMkHEWYbZZMG0spwtWopFTa8Hs2nFW2/fD5Zk3kZT0zBfH0LLeWCwhIm00nkGesTlR3aZHLyHWS4pT49IBwVKSbyAPFP8oc89zyvfeYd3bz+giaic1gnCBpFLoTJ2Lo949Y1DprULgct58DUSgfWeh0tL1pNsZYFdkWiPMQLvLanwfGJDcVR77pWeZDhCnE4xFkZrQ6bjSVzOIir1BDDV+lDjt8agVMBtpJSIiIIH513NbFFxx09IpOS4lPRiK6Qohty4+ghOpyip2djYRGuFdS1pmqOTNKgFC4nSHc0akGHYTPcHfPGLn+Uf/NI/pTGW73zrVa5f3aOZzPj1L/8WRydjvFAkieTpx5/iE88/Q6JhNhlTN00obZXCpznr124wGU9Qy3dZTlu8DWCzkIoS0D4K3tY1yoVZgja6IC1ay2A44MknH4ly5wHDIO6d2NyOtLfIghXn/gwfdH0kgoD3IZ10MXRZAgruIpEmATItaUwQcewngWarhzscTU6gmpD3PQKFdU1gpPmgCtQsFwyUZHstp8g003tvsjxQeBeYW3hPYcMNs45YdshQ7x6O0Urgs4a7D0/CIpHBXAMJKtXkWvPiM1d45tFLGCsxXjGeN9w6q0mWcHw6AQtOBipnlvfI8wEPHu4zm45pmhrTttFf0F2wnovlhwdnPW8ezMkSRZFlCA/LKpBlVJyyFCKQa4gAHoSWqidIb3knmFvL6PIjwY9v8YB0fIK7tAv5ACXCaZ8PFB/7+JNsXd7h5e/cpddPybRCK8+t/SnPPHGVX/vaa8zLZQjGbYsUsLQOvMR5T20cxmsWxtA6ias8uQ4yYzPjuCzh0Z5gJC2vLyaoNLhEzcoGmaS0ssLG3jmKKMUmkUkSAiZuBaauJjsF5KnGGEkiPYX2NF6xt7bJ7GzKpz/+LLt7exgPRZGTZwXOWZKst5r916oDBcVqQ4UMKyglXblxleuXt3nzvQNms5KvfPl3efjgiGU1A2CQZnzfD3yepx67TluXaKVWFnHHBwe0QqLTnGrZkI82uPbUU5zOX+HuyRkSgVwYpNJI5bAm9Pzr2IUxMQgkmeaHfuCTbPaLztIQG9vZAF44VicKPpTTiJXn4QddH40gANTm3NTROo/15x58WaoRzjCfG5wJEuG1k7z++lvMa0dVORYTy+zd+5SzOXVZU5Yl3lr6acJ6FgxEtFJI24Q2l+9Ap0A9RqsgHmoNjjDqa5qWJNHMrKc9i1JeS8/ds4q97XW2NoaMBim9fkHec5RNy9Fpw50HB4HlpVNOTs+4fHmPxnoWsznrXuIJs+xtEzoWxlpstBPvNj5+leGHXnldU9ae8WyBBHpSBaalDN0SLeXKGy/wnIJevogtTQEsq5Kv/O7XGOWaT+4UbOaaalmy9AotU6oygLSNMRS9lBdfuMLR8RRnE1paRj3J/fsPOD2a4qyJfng+KACFBjVKeHqJ5rRuOKsFE2MpJAwSx24muN5X5FrhvGc9czyO4ZsTy5KUw3uHbG+MwIWyKNhth4+UKB/TXBlagRGF6Ug0xgeeh0SS6mCPphJLVZc8/eR1Pv6xJ0nyDFPWjNbXg2uQlqEdKaKrsAz+Ej6qAnV8exk5y3mvx8dffIa7Byc4u6Tefw/lNUqlPP7oDX7g+z/LaDTCWYMSBTjo9Qc4bxiO1qiaGm9a7h6fMcwSKAqeePoJxl/7FvfPJggv0dqQJBJnW3Ip0UDjWtoIxn7pi5/gsWtb4bT3DudlTPqiU5LrsLSOKBQ/hf+IBwF8ADyCpHs4kW0sB4QQQbZZSBpvqZwJ9eci9HxtCIWMJ0vmk9tIEay7tZQo6TFWUtdxQtC29PKELMpDC6Vp4oTVrGooa4drDMM8Y3OYoQY97k4r9o8WiLFhlKV4KXhwNqG1AZwRZUXjgziEkCI48lzbY3pyRmsdhy5w9qdnZ3jv6e9s0x/0OTjYRyiBTlTwNnQutBvj6LFQ4YE6G1qV3XCTiKq1ToYJxqLXx5o2EIqkCLMBuIiyn/eLw33xzOolqchJi00qodh/913c2gZtL+HEQdXYoHzkWgwyBCLrcQZ6wN2TCaZpwrg1YYPYMAxAkgiS2Mo1UoJ3DJRgpxCsa8WlwpN6z6QJTq9CCBIhGUlIhOXEWE6nM9bzDK3A2HCKtcaFlRx1JwIAGu5H5wTcOg/eIIWlqh1GhnWjneXFZx5jNFxHpxnKWISWNNaQdNoO1pInWbzPnQRbQPt9vH9BL9Hx2NPP8NR33qBfnSHaOXWS8UAO+ENf+gLrwyHeOwSCNM1om4YszzFNw/rWJmfHx5AXjLYCmNiUjq1rV3muNhz/5u8wa9oQ8BC0xmJ9MK5tvUcnKQDPP3GZhMiuleGdibiHugPjfFho1TdYAdcfdH0kgoAnaNh5F6bYpAJhiaKfIri6YGm9RZLihKQyQfNPSRHmsH1IfA2hx2yswNggw5UqAVUQICmFpxKBkitkUHvJehlZnmLrimG2Rp4rhJKclYaHJwtK4/CtYbqoI7dbMluWCJmws7WFVCqg3kUOznJDJ+hEc/d0xlv/zZd569276FTRKwo8isWyAiRZloeI7nw42VbyX4GMI5ABbCSUSlIIhAhaeVU3p76YowhOSkqI8LXYZusWgev6xQ6sd0ybmlfuHGAminzUI5WQa0VtDE4aUGHuXYsQiJbGsTBtGAwiTBf6OGvgvQtDRdKzmSkqYzFCsZ4mLDBo7xlKz0BacIpGeOpGBUk4BRLFVua4X1tSFXwc6kwzTDQKqOMwUmMdwkkaE4KgIuAY3eW8p/SennQMRyMSLPOJ4bmnbvDI5SvkRY+8PwyqzT6Q05IkwbRtsOgSwdZd66DtICNwG/7fZVUKJSXXtnrUZzOapSZJHH/oE59g1C9CRolAKgkimMh4H1L12tT0+32mVcPOzh7z+YxU5aR5wvXHH2Pv1bc4u3c/DG5Zi2katFRsrPV57tGrvPjcDfg//hcIpcIhgcA72Snhx0AV3qt3caTZBXxIQMBtPuT6A4OAEOJvA38KOPTePx+/tgn8v4GbwG3gx7z3ZyKsvP8z8C8CS+B/6r1/+Q8OA5HnLyVhJix62QkRlIOkCoChDwYSVbsIH6wbyo/2XZZAlBBKkmpJrhVFmtIvEvJcURRJGOnMNUmSglKhY+egKhcsp555a/FWMMgzNpOc528q9k9nTOcNc+Oj266lNpbj0zFX9jZwTuDaljxLwrivVnjT8uatO5i2jeacltYY9vcPaK0Jp6WxNE3QtSMOygjE+QOMLUkRGXQQRo8Rwawk1SqOo4oLQ0nd4o2UWx84+FnHr/U+CLjUHi8VCheEVUS4hy5O/+k4nSeUIlWOsoGqteF9KA3W0LmwOBPKmFwq0kRTm+BO7IwlVQpHkAFrEJwuHWtZSFdLG0hVo1QxNpBrQSEVT97Y4fBkHnAGIaOyUwBtIY7fysi3j2u7mzE4awVmXKEVXH3yST727FOkeYZM09CHVwprwmb3zmJMS9ErkFJgWtdVYhf+iTBbLLMdjqQomD1YhqlLY1nf3kBYj1cdXyS8vrMyl1ohrERnGbqqcEKTZDmJDqedkoJPvPA00/kYpyBLUzbXBly7ssOj1/fo9dKOBRwOSRGkzS/s0dD7EkQZ9YsaWGHtmH9OTODvAH8d+KkLX/srwK947/8jIcRfib//d4AfBp6M/3wO+Bvxv3/gJYVAAZ1MdVjsIR0tTUsiNAqB9RZrJakIE29aQy8v6OUZRZ7QzzMSnaCSEJFV5BgEvE8G/nu0EQuaEgFAS1INIrABe3nB3uVttM65dNVhGsOsbnntvUNeeechUjpsC6eTOcZ6zmZzysWSZx5/lHsPT7h6aZeiP+Sddx4G9SEV01jCQE6qkzD9SFTJiZJUIvBjQ0rZGVDG9BTinottK4VH09lchc27Yo2JkIqHPx9OybZj33mPcB4rVRgVtp5ESYxzNK0Nwz8i6ON7CUJYiiIhLxIaW6DEnCTR2DhmGyYsw5Rl42Az8VTS4W0CPnQvhOhUmixOes5aRxV1L4vE4KxAC0GWSK5fWefRR9a5sTfknTvHvPNwiu1YnFGOawWY+vMEuLaGolfwsUd2aMqGBwt49sWX6OUFIg26jU6EoFZVNXmRY6wlyzK0VhH8i2cKcdw7BlDvPHiLdwqUoBIpr51V9BLJxtYW/eEAWhdIZt39JxxqUki8CANh1kOWZzinaKyl1yuoqyXguPb0k3ypnbGoJuhEk2cZidZMzo6ZzRJ05AlMJ3NSrUPZp0XAgqQKytwRC0LEIWwZfRBax8vffu9D994fGAS89/9UCHHze778Z4AfjL/+fwK/TggCfwb4KR9W428LIdaFEJe99w9/v79DCEgAROBeCalItA6RFkhU6PumiSbPNP0iZTjs0ysyilzHnmgA80KN2D1Jf14PCfDCB/QUQag5Irva+zhjrylSFfTrtIJEkKBIk1AyPJ+nvPPeMWXboHQgDTW1YbGo2T+akCT3WRpLcnzEwLRU1RIHsasQgpL1NrAPQ0+IAHEFEpSIGMhFGmi3JMPqUpjGIHAUOokCPsFpyDlCGkpAzK1tY584ntZxQXjRldeSR6/u4LKUKh8gFei2IXHBUlxqhVesNrhHkAjF3tYa1zYX3GpMlKwSeAep8EGV2Tu2EtCiYZEIelqRCBM0EyxspZKhDh2Wd6ctloQah5WeJEvZ3lojcRKtBR9/8hJbo4LfeeeYaVmGtmD3LKNun4unnlcZH3tij+1+htYJz+w8yuM3rqOzLOA1SkUQOJ6iPpRhWZ53ySQ+mrqu0msf1HpWlXek4i6M4NQPOZ61DJ54gkRnNDQEA2O5emo2kq0gkNgm5RKpU1wVnk2SphgTadjKsLa3h3nnGN821MslpbeR2MYq47nz2usrLojslG1kYKGquH50kiCUitmI5GxhaH36ofvvvy0msHdhY+8Dnb3JVeDuhdfdi1/7PUFACPHngT8fPwZGiDg+Kyi0ZmdjwPr6CK0EeaJJUoXWkkSHlE4qVjfCxYeqFQFA8yFN9JFauiqcAkyKjXWTFMFc1BIPTh/EIWzkgivtEATBUe9gLU157toWr9y+j7GwXJbMZjN0liK1YjqZsnflEg8eHrLtU6wPaDbxxOrkvToACkLG45xEeHVO/orJnvOdTLQI6K/vDFAkQeocdNgR5GmKlJKmNZhOq0CEhS4Q+Nbjk/BrRyCTJJki2d5lZ/sqRT+hrGqWZYUx0Xqb8Pe18b75pqapa7Jeyrv/+JskicJbh6ET+pDkiqDYjKOnHKPUM9Ka2kLrHN4GQddMSbRWlDH/GzeCy9e22FjrYb3BesmDoyW3ThoalVHaZcBMpIw22+HYtpEFczQr+errh2z0Uz7/qRd4/pmnSbIkMD6ndQhk1gQMAIFrLWm/iGdF6MxIJVfyYN5HIVri3qdD4SV1VSMI62bYD6QiGYOK1DJoU8SlKHChlSkl3jmc0iyXy6CGrFSYJNcKZSy99R2WgxG2qRDK41zAJpzwq8xwc1gEREAKpIscETpQMGaDtsWbBvC0CNp5hQnH7Ade/9zAoPfeC/H7FBwf/uf+FvC3AKQU3kWijE4S0ixnMMjJc3neDI6tLk9s6TgfBBoJE4YBIyCw8eLQSdMaXAQYw4kfTg8f20HEVlPY+p7aWFKZhCEZF/5uJ114GB6MsOxc3iLdP6Mta7yE08mC9d2MPEuZNyW7NlhTzWbToCtIoAvHRL379Citcc6ez3xHy/OLj9RfoCN3ohr4cNrs7W1ycHyCUAqVBP6CNQbrDMaGVlkAMV2UR/dYG04zZ2FvPcenBa4/ZNDPaGxDVZcgFTrR+A6HEJAKiWkbjk5OSBMdBozSnFGRMF+WFFqSAKVztE5Sk9DTkn5f4H3DBIWTHuFbWjzTBoYipVWSgypoEY4uX+IH/vAnyVPFbF7z2996h69/9wGlDVqCQqQoHeO5DJtDAEkClBUq0ZxOSwbDEVcfe5osL1Bah8xYSYRzWBvAURfXU5ZltG2DivMNnUYCdPmXXPERfMzOlBA0TRORF0F/0As27DIIoiofVH+6/ryJI/ChW6OwraVpWlCB7KSEQKcJzjiSwZBkuIEfPwzPrOvudDU/gNZIH8BRL1XAg+IJF4I2Yd1IsSoJJS1p+uHW5PJDv/P7XwdCiMthbYrLwGH8+n3g2oXXPRK/9vtenXBlJy/eekttHWXdUlYNs0XFbFkxX1bUTRMQadnRgMO/EynItI4U10Cq6aVZZJUpBHp1OhJ70IEr4LAd8CQDqHN/XHNydoyNY6keT9NaXn1rn29/613a2tAaz3g6Z7JYgIB+npH3BjRe0BhDqpP4QFjV684HAwpEaCER+9Fyxfry0Lkei4sIf2z8eB8RccEnPnadjfV+4BcYS9O2tCboA+tOi2u1sB3GQWsc1oYs4IWbO+jNHYYbm9S2ZVk2WKHwSsRNAlEPG+lDxtEr8oDMa83Gep8/8YMv8Pwz11FSYR2hM5PlLKRmTIIZDKlkRomgUhpRFCATajRHXlIJyZmUrN+4yR/60kvoVPHweM7P/dorfOf2KcvWxdaxQqlA5JIxAEil0EmC1OHeJFozWhvwA9//ea5evUyaJnTHcT7ok6YJXnnSTIeMssgwIigSu5VjkFhxLbpW2wpn6coEISKNPDzcYdFDEaTDhHcYa0JGIQJxyvnQ5tU6jLhbG8q+yWRK3bSoJEVnGUJKdJIx3LuG0CnGBFUl4x2tsys+RKDT+zDa4i+GrAgqewiu1HaFbygV6Nofdv23zQT+PvCvA/9R/O8vXPj6/1wI8V8SAMHJH4QHdFcHgLkIITnraRpHG91eWYQ2GAhSJfFakCRRY1DK8EHThKpqaX3oMada4/HUrQmnrFRBsorwYBDBZst5h/BhkCnp5RyfLnks3Y0pnKeuWr7x6n0WJyc8vruOOZ6yqA0CQVlXTKYL6mXDYDTg4cEJ08mCK9vbaCGxUa6MiLxrnQRyjQl2Wl3K3xGjzju7MdETHdh3oR8mBEWh+fhzN/nK774B0Qsvfiugw7LrH8cmket+rufpK+vsXN9jsLOLEoqqbjGouAlCbiR9yEs6cT8hBaP1Ea1pSApLnidsba/xg5d2eObRPR4ejLl1b5/j8RxbOoy1HC0qCucpMMytp59qskzQZhlFPuDS1oCXrmxx9eoWvSzj/vGU/+rLr3BwPMe0sR2LxfsgvXX+GeMB4INyEARM5ZEre9y8cQ2VpkBouco8Je8VYQMrhbEWrRISnWFrtwrSWhM/v4/BOdzvTshUQjwkHE0T3JCQgnSQB5uxUIBjnQ01uQvmIcIHRWetNalOqMqG/qDPeDYNY9EOyrZFJUGXIFvbJN+4jK/OsKYN3RzbaTYGMNT6WCp6E8av3TmiuXpm4nzNpInk4vL53uufpUX4XxBAwG0hxD3g3yds/p8WQvwbwB3gx+LL/xGhPfg2oUX45/6gnx+eYFywEZ1XSlI3QbW1bgK/XkhJqiS9NKOvNaShXksIC7+0ATzLsxRTVtRN4Az0ipyttXWm8zkCybyuadomnswumEoK8ELRIjkel2wXGb1UgVM44NVbZzBbcGNzxLwsqZtIXcVT147jozFV1dAf9jg+OmU6nQdQCIF04GWHYgcARyoRRkgFEXxyEWWH85M/HuUi1vSxRgViNuB59tGrYCW/+41XwRBbfD4WN+HGdD9XI3DKsb25xhc+9QzZpcsR11jircPGU0R0NEXZwZVh8NEiaL2gblpMK9Ai+CcILNcf2eGRq3t8/nPPIIylrlrKqmW+mINKENJTJAlpkpFkBVmiUMpTORvadT5hPKv4hV/+OiezBts2ccjZoAgIe9ce7K7O+KXLkvIs5Quf/SQbm5uoJKOulkgv0GlKohIcDpVmqLom0QqBw9oW5yxShZkBEcHAkJlFifl4Pzq9Q+taqmh0orSiXxR4E/CE0BJsA9AsZBCsMZ7WOuqmRicJVVVS5CnrayOUVkEgRsugrtwYXJox2LtOz49QosMWYnDiy9x8/pkIh/ioUu1wNqoNOw/WYZsWF/UNrHF429J0YowfcP2zdAf+xx/yrT/yAa/1wF/6g37m773ibL0Pp1hjHMsmuLkYGx5KmNsXzOuatFIMdaBlYhxOuPAArMe1zUoHwOBJjSdJE/qDAYlQJFnK6XSGrVssBqzDSYHwgta0SKnpSR9uqjeULufh3UM+98QlqnJOY6pYWIQN04FwVW1oynLVnVBaY30wwRBx4AgCm87aDriTq2jd1X8+bnjfbcgIer6f8SXAKcBy/UqBtNd5486Eu/tHpAo0nlb4oArsgnuylZ7t9RF/9AsfY/PSDst5E5lxKmIpXRDyCOkxsRuwrEveu3fKg+Mx02lJWdVImfBwMudXX36bDNjbGXHzyiZb6wOQiiSTJHnGcKMPBG+Fi3vYeYttQ/tNJhpjHL/1zbeprMK2JhwGdEzJ8Nl9bH91aXs4tcWqf/7U449yaW8nmH/ImLLrhLpuOD4+Ju8VaKlYLhdsbW+FDDOWTz6WonFOFy8U5x4T5xmqFxLTGhprcLYlSbJAgcYH7EVwfvq7c95F2wYmYJZqnDPsH07Z2dkI68E61gZDprMZKI1yoJKM5Rx6WcC+6DpexGxRhPelhURIDTrFp6zmA7pSpYvn3hOncb/8gbvvI8EYJKLQxJrJRi69lKFe7k444zxla5lWDU55ejYlTzR5qlAqimFGpp0kkGIcntl8yWg0QghBXyeBx1+e4LyjRSCtwDlD6z3louGwtVTqmPVZy6xWfO6pyzz3+E3euHWLcrlcKb8KAgkoSRKquqZuDDrRQZKrbmJTIBTYvsMgrMU5ibUuEnO673clQffAxSo9J/arO0GVEBzb4IrUOq7urXPl2iXeuLXJrTv7LOfLwLL04BMoeik3Lu/x0gs32dwYhCzF+MArlx4RWi0436K8xEvNoprz6usHvPLaLcazMowUC4/QmiWS2jjeun1I4lsevP4u3y0S9nY2uXHzEa5c3aafa0SsjWMu09208NmCKR/OeV595y5vvHfKYrFEhNAVg+SqwRvS24iKh2ZFlymF9/7II5cYDIckSYZEolUSRoO1Ik9TyuWSalEilGLTh+fmW4MTnrQoQASXKXGhFOgwnTiXiRPB1quJQiZplkY8JAjfijhcVjfBUdm2JgTziE14F57hsgyW6+WyJMmDdmWaptSuRXqLzjLassD6RegKCLr0j84Ru8OTYqQ6Bw67986F241f/f6Dro9EEPCAcTbWZyHyOUCpME8gujTXOVolqKRESQmmReQSLTVpEoAYvCdTml6S0niLQOKFp59JGi94+GCf0/mCs8kMmWjq1jFdtswWNWfTJYu6xlvJG/sznrgiuNRP+PwPfR6rUwa9Q6ZJhhJV8NrD0xpDolXwl8t7qKrF4kmiHyFCcN478RHH6LgA3dfPF97FcqD7vovbqGMNCiFYTOfsu5rxeE6eKKSe88y1DZ66tsF8PsO0JoBiRcba+pC8yNAyga6tJIL5RdhLDmFjRwLHdDHjH//qt6irmuXpjEJ6BnlGr9fjYD7FNTZgJfMalXikaxk0Ne6g4rv37/Fqf8iLn3yeR67tkuVqdSJ1SzKMQgTco65aXnv3BKVT8HMkEd3uJl/kecovQ3/1/C6J8+V96dIevaIIk3vOI9OgtuuEZLi2jl4umY5n5FoH5yXfYK1Bp2Ejex+CcqKTFZ8iPAMRM9SwmctlibceJTVF0QttaBGciJXW6CRhWZbkeR5AZ2djC1KgEqKFmkdpwXK5YHMQpMC9s6hEBSNXnaCzPq6tQTRxfVzEhrro1EWYwBh1rsvlumOE1RqU4sPDwEcjCHhorbsQzeRqcbqVq1WYHsSHllvXc69NxXLWki0rdkZ90kwhZRg9JdpHTeeOyaziaG5459YdpouSxngsQW2obm1cePGUceE0enhyzI7eZDydYlToOKyNhoijGUJEO2jrkBKatqFsWybTWQRxzsc4pZIRMYYkSQO+kQT+unEGYn/3PBD4FZAT8SCsd+cy3N7z1e/eQWmJ9xJB+N6gOCBJVXAJSlSw4mKGVqcorRBSkChNligSJUhVJDFJGQarssDXf/2dA27dO0JIQeo9a3nKx67v4tOMB98+ZStRLITHuJJyabAIjBOsK0UmLH4x4VtffRnvXuTJZ27gJWihVkNHyGBqInE8OFjy4GROVTeBLUmgCq/OLh82mV/dDxffc9Qfjzdqc32Doh+6ANYG8hcEG7ez+ZzlYs5wbUSW5dE41EacJWwob8/1Kztw0HsQLhK11KrjxpNPPMZ0NkVlOca0JDpblQKJ1kiC6zBCYG1QNWpqEzGAFp1o6qomTbMwEVtVCKXQXuClo1USn2SYNiGhDeCf725HDAYdWzJ2tly3UPx5IOgyhg7b+bDrIxEEINBpu7eulIqecyHSORtcg/MsJUtTMiUptCARUDaer795H+UN3/+Jx8gyxXxZcTxdcjqtWJRBZDRJ01CnCUFZNbQmgCpSeDp+fvdeAmFEkAnBzDv+X7/+2wzyjCeu7qAyjUxCf7ZL46UMp11jLbPZIgQ103Z6DnRJv7WWqqrZ2NrC2XkUpuwiPBcCQYj84Xn61ddDbRrO68Np9f6ILwRMyvizIs0WET/fORtRxkWDSoL1tY9lgXcgHH2dQBwnDso9glnb8s27B7TGUeQZy7qmbCxaqcDFByZOMpkFG3elFNLCw6+/yTtjh0hSFsuSyWxCUy1DD1tKBnnBydmYzfVN2mrC2cRgjEZYi5M2FgZhEUspsDbWw+J75yvAS0FbNmgVno8TQZdfOBe4Df0+/cEarm0DFuCjgIwLZB4X2X2r5MzFduwqXQvjvdtbG8x3jnji8T2WVU2iFMZbUqmCg1YiSaViWdWoJEEgaZuKpq5BSVprg1V5aynWe5i6QSZJ8ElAYHXIIrVS1D7FUSJwq1kBfx4ew7P35xOO3dTjKmCIsP2F41x85QOuj0gQYBXVu83YDWEkSiJ0AA7zVJNpRaIkVV0zt56yDWQSJ+Cr370dXGwjD7yzPNdKhU3oPFXThFMVCEBd+HvkSqc9bDKD56XnnuKZJx/j7//Sr7MoF4wXQcjjdNEQG41YJ5jNF0ghOTg4WrWL5su4Sb0FJ7BWRGUkqKsla2trHB0drbKfDjPwFxbdCiuhW4sybubzDCHihueBgFUGSFfNShkBNB/ANiUVSoaAYuMEo4tISoLH+RYbC/EGwdhIsDaM3lpHUgyQqWOyXOLbMLXY6xVUVYnzIfVU2rNe5ByXnnZSsr//gMl4QtPUrMZfRfiYl/bgS59/kUEiWSwrZsua+w8POR7POZ0twwkcT2QXA1bTlOEkjR0TKTVOnUuBe2VwiaJOGmQlKU+r4KLkIdGhLOratl27WIkQqFfUYhEnMKUIZZS1HN56g+nb36XuDUnWRohHbmJ9i5MalehADtIau1xGT0YfW5OOZjanXJbM5nNGwwHTyYT1jU1s46icJ8+LYPRqgsN1rQvqZkoR8a5ufUaI4byrxoUsdrV+xPnh8fsBAnyEgsCKMBMv5x3CiWBbJUK0W9Y187KidYE/0Fqxmnrz3rFsQ+9eSYlKAvtLRcWdxrXx9PernjwQq+0LaZYQeCTKO965/4BlUzOpSnpJQpJ2yjYRsY2qxMJ7tNLMpjMi5L5i93nB+zay9w4J5Hl2/rX4mQNW0A3+dEEBiHP93T8rTsGq2PbnkaC7hz7QorWWK75D4BAInLVhnkEJ0kTTGIvvbM+0pG01Pmoy2MhqXCt65HnG/mzB9uVrPLOzzZtvv82Dhw9DW1fLOAXaDdzAoJ/z4vNPceed9zg6DGmR1HJ1CgelfMnBwSmvvvEeP/DpZxHCM18syLMMKRYREwvttqAG5ciKHktjz41hgTt3H7K9tct0OqE1GcPRCKxCZwq3qJlN5qxv7SK0joQdSKOIbOjShI6QIBwcjijS4X3I+pynrZYcvvEKO0+8SH9tyO1vfnX1DK21IHUcOQ7ruXGhxLUuSMw5a8E6br17K3AXXFAS0jplfWMjgIyIgC1ojUpzmkqTqU5CZcUeWQVS77ueEhdBgKiaHL7//ozm914fmSAQrtWZFk4oAdN5HQCWbvPGV14kSwoZ5sulDMCideDbhl4WToqzRRlP5SjkiY839bzd1J26QbI98LUfno4ZT2dkqSZLFcv5HIVHduQQBEIq1kdr7B9PKH0giOA847Oglddx0bsNbIxlsVyyseXDwE/L9yDSXVfg/JOe42HnXwPO68Du/RPJrDFb0FqFaTMhaGN5IeL3TWSzKR/KhURLbOvpJUEPP41ZlPOeujYc2AV+VuG85c57d9EqgGFrwyFSKZZlTZqFwCZFYBVOZ1Peu/OAlz7+OEfHZ8wXC1Ln4rw+5JlGIjk4PeXtO/dwAk6Ox0ym84BnyAi4CRHNNYITlb2gmdBlUr/8q/+UK9eu8exTj6HwuDaUeWVVMp5OQQUweTKfkWjF2sZa6F6YQBRTWmPaJpQKMiDvbTS+wQfBl+n+XaTMGV6+QZGAK5eMjw/Z2L2MjTJrYS4sbGRfVkG4pgmGoW1VBxHRo2Pu3LrN8Pln0UnCxsYGIXwGfQwhNSpJ0GlLKTIczQoUljH9X4GsELNoVrMn3RoIV1dAfvj1EQkCAZzq2GkynojGBGcVuHiadu3EODHYIeiycwkicvWDcaYzJuoSaJx3FGlCliYMiow8z0iSjDTV0bTCYmyLcXB8NsY0DYn35FJQljXCGAoJWUSvRcwCpotFIADF9+WBew+OKIpi9X5X6bkPWvlHh8cry+3uM3S4wMWHeI4ThODlLgSH8+LwHCAjrgcZ2W3WSVrbEtWp0LlGCEnZNLFkCkGql2cUWcKzl7dJEsWvf/ctGm8h6h56FweFvKcqF7zynVcZ9Hv8yR/6IlJC3Vpef+c2J+N5IN6IMI1Y9HJMK/nipz/BF774SXKtUdLx7q1bbG+ucfvWPR4ej5nPgpS31glKSYr+gMVywXJRBW3GLLIACRZoIp5unbLQ4cEBP/ezf48/9Sf/OFcvXyHNUkxjKKsli2VFnvcQ3lOWS2SRB9xJa6QNCH6qUzKR0lhD2wQGn/WCNPpDNOWS2d132X76BfJBH9tUZMMRR6+/yvbVa+CgrpdhA6dZ1CtweNqgW9A21E1Nv5fx8Y89xsxpEAmNcSyWJUVRkOok2IrHqC+UwMmExkAv7tRoArVaMx2zs+tAdRlBJy0nEN1k8YdeH40g4H2QkrKxNhcigmbnpyOAiAKTXb0D50BJR67pNpKxQZkWoJemrA/65Jnk0tYGa2sj+sMBWZ5TFD2KvKCq5lR1xXJecv/+A4a9DJNpqkUJ0f89iVZP3oe58lCjhum+RKsVtVMIEcFCEecGwhBSAPvCZq7rOnIGOnspscrYuhOdOAHYLfQuYJyf+6s/ysVfBkDIIoTCNC1aK7Jcr+6p97FMiAIYrXXUdUV/c4NsfQs1P+HG3gZ3jyehn9faKH3mV6QnIQRN29JYwxde/BjHkyn/5CsvMy9rpPIkKsE6mM1nfP3bx1zb2eWzn/kEvf6Ak8N9/tEbtxmur7P/4EE85WNHQ2mqqqIsK/q9fvAdFJKuJJJSoqTG0tJZzQFkWcr+/ft84+VvMX9iQZGl5HkeOPlasb6xTl03JGmC0KEDoJRC5RlV25D5nKIo0NbRVBVtY3DRi8D7lvntW2T5kOHlKySJpnSKbG2bs3feZDGbMhiOMC6IiHgjSXWCEoomCoaapiHLM7Y2N2gXV3BlyWIaqMHFjZtopVdlXiiNFVJqZJrSlhmIOq6BuFZWJYA4lz8LZ9C55gIxMxH/A+AJdMBcALTCZlBSY52JJ1p4mY8L8Hs/0eoDu3Np5Q5Z73ryxrSkwwEei2lK2lLg2wZTlcylwPqg9lM3LaP1NcgSTs7mzE6XJAmkWtA0jgQVNQJkmDC0PlBCVThhpVRhfv1Ciu+ciw+vk0ETtG17ofd7fpBf/DxceJjdZ7qQOMRbcQ4GQpcih4fvfGgN2ZjldItBShHaUbH9hrNIrZlOpnzlu69xJVdkRUaugt6BIngLOBefRfw51ljeePcu/8If+QG++84DlmWNUl0ADO7Rs7MZi+UcX1dcubKFtY7JfM7DkylWpZzO5kHdN2ZxdR0Wu1KKPM9ZLOYrAdagB6BWG+V7cSQvAtby6M1rSOtZliVOCIwx3L97D6006xujYGrbNPg0I8lScq0wbcO8aUKPPtEgBdY0VHVDc3bC8d13SDZ2ybIcHKRpxnD3Cve++Tvsv/smj3/iM2RpgbUL2rpG5QU61ZydTJjO5lhjuXz1CkWRsb13hWwypuj3MN7z8P5drL/MsD9AS7Xq9wsBWoZ15VdIcMRBYsnoIldgtTcQkbwUFky3XsTvEwY+GkEAVuBceMPy3GHVd7nMClNe4V/v762HFN1duFnho4f/1Y3BeYFKMmSaBw57mkbCmScRSfg7RY2hxZeSxhgqY5lYz2auKB1UPohY4kM/3uJoTItKkti/jq0suuGTc1bg+fU9nYAV6Ccu3IzVhzz/L+cZD939uvBHVq2CeDnn0UmysqzWWkbZsNAybEWQPNNa4WQYkX3Ytmibki6rQLqJeYmI78HHFLNbWIdHJyyXFXfvP8R6QyIDDiOEY3dnk8OTYySWibDsH09Z76eUjaFtG/YfPsS0NqjvqO5zhec3m80oy5LzDkk34ORpmvbclm6VLQbU//r1R9hYH2BqQ16kTBcLwGEaS9UY3LCPdZ5yscBZGzQHtEYpTZImKC2pI/9f6JTF8UNuffUrUJdcf/olLDKQeHTKYHsXKRTHt99h9+Yz9PsD0iSlqRY0sg0CIz4wO9c31lFa0BpDmqbkRQ+d52R42kRR1aHsydM8zLPgg4GtkDja98mJnefA8ZCL6aEglKc+ZgTdYXBhgXzg9ZEJAqsJughy+E4gIXx3tfjD5nHvOwEurvz3tRgjhNK4sAjquqFtGppEYlyKdtEJyHs8NmQM1tCalrYxVHUQ6Bh7T7N09BIVcAYbwDQ4794qcZEj323JELykvEgNDuzHDrkF8E7wvti1ynziifC+T3h+vZ9leKEovNCNEAI210ckSlKWFXXT4glqRFqFEW7jPHXbxhpbcVC27ORJmNY0DazGnc8nFcNnsRhjeeedW4xns9XwlxCCflFw89GbHOwfcHZ2ihCSo5NT1kdXUEkRXINtINSIWNxorTGxhHNRgl12c/Wiw1Z8/Lp43zroEPqvf+PbPP74DbbX17DGBvNS55Bba9y9dZfJfMpGf4jxFmENBw/OqJuW6XTGeDJlMp1xejpmNp3SWMNiOmcxPub61Sv8qY+XnJa36Pd6bG1ugkrx67u8+fpbHNhf5pOf/xyDoodHMJ/Pg4dg3mM0DHLlWqU0TYvUCaPROlVTUbUtWaqplwuqZUmWpBRFL2Qmy5LF5IzMLRD9ND7eVRvoHNCOWZ2PeFTntvU+wPgj3x0I+xUtRZzBvohkiPdt+I4xd3Hh+1j3nP+w898LATbaMJ3NloxGPXSWUJkWhESb0BHw3tO0hqo1VHXDoqqYLxYB3BFQOYFrLLlWIcxemDYb9PsYFze+7LKWiyht2PTO2biBbOhrX9j5Fwdj3netwL/fe9u6h9vVid/753p5zuUrl1hfG3F5L7TP7t27z4PDE6y1GCOwtg2zBB3WIDylg4dly0aqGOgU0bZoCS5PWTQmeA7IoKjrCWz/zglHxM8ilaJtWq5eucJ8OsV5WCwX6CRHyCpq7wVLt4uZ0UXSVpLoC5lPuKdJklIUyaqff14GBfbka999jb+bpPzEv/ovMywKdJrQtmGCbrFc8OVf/iecLRb0ipzJ2YTxdErTNEFNSXbP4ZyPIaXCecvh62/z8v/6f4dMJMP+kEuXLtE0NYcPD5kvl/jfeYuf/fu/yPb2Jo9cvcpwNOTylStcubzH2qhPohVtvURFrMBIQ08XzA8XnE0mZHmKTjKsqZmOJ0zGM7zSTB68y3OPbwa+yeqpi3OC0+r+RD3E1WEKK2fi/0F0B+KDl0oiPFhzPjUF5y3O1QLx4v0n7sVUOrwALmyQrg6fLUpOxnO0DnVWm7pAopEeKRTWehZVxWyxZDKeY41DqzD5hRDUMRUVInjWoSReGMplBTK5sJE93ttVr1ZFFZnuMwhAyTAFZ+15IHgfV2GVBVwgfaxKgvPf/56gEa9EaS7t7XLz2vWA1HvI8h5PP/UU49m3ODo+jRTZwBSUQiG9QHmP8xLr4bR2nElLIh05ccIvjvCunG0iAUu8T+EWyhhE01QzGI04PT6iGA3Iix5J1aKVBu9WHZ2Q5jfvuw9JogFJ0zRRUiwAgy4Ol118bci4BDrJeO211/nq73yNP/nH/whHh0eBvyA0GM/jN6/xX//ql6maFoRbBS2tO/nubm05glCqQ9qgYiUBrGA+W/Dm5K2Ygluk9iAk5WLBncWC9+4Ehb1ev89wOGJra51Hb1xlb3uHF156kWGW8PDgiP5gQL/X4+jkhJOTMbPpDNs6VJGwMVrn9mvf4YVHd8gStdoPK5WibtOL92dEInbYfKxAQ4lwQbnuA66PRhAgnJrOhf4vq4jWJYqxArpY37wvR+4qVwC7Oj2Cft95MJFSMZ4uybQmU4pEKHSehYcf/85O9bdIEoaX9uJkosW15zPb03IZBCJjizIsSsB3cw1cKFvC++xS84tgYTcxeJEt+H6B0fcTm+BC2QTnaT8XEob4Wq01vdGQxgdR0o3NLRQwn5zw5BM3ODo6iZmJgOjb0EoRJNiExQsVMwSJs5pGCSw2jkaHh9CBrm0baujVaU5YeE3TUNU1VV0hVEpZttRNHbnw3WzeB5c654HcrYJV9/eFwB6IOB0dVhAKYecFwnl+4e/9Q37zN347rAOpmM9n/OHv/wKfeOkTjEZr/Ppv/hb39w/CunIhifYuYB5cOGCcDVRzKeKsgozGLlH5znu5Kry9DDJm3VpaxJmFg/2H3Lv/gD/0uU8z+8rv8MXv+zRra0PmsyWL+YJMJ2SjnH6vD1KyGE+4/87rPHltxNXdtWg6ca4lsToefFxY8QY6ukwmqAs5d95D+rDDAj4yQSCi1ELi3Hlr8ILI04VfrdZ+3PjxpsdCNaS04bX4UGcmqSZLNIM8R6YJOpFkRc5w0CfPs2Ce4T3LOFOghCLNM4TSATySCUJqjGjRwLJpqdsW4UXUpwvGH92bE1IiXeB7W+fxqnv/kQsvYoimAz9/7zbouhsfhOj47gWeOEMe7tD7yiYl6ec508kMm2fcfGxEW87pFQWboyGDQZ/ZfEE3RLM6/FahN3oYdIyz2E8XccCnwzs62m2WKUTk73Xzjk3b0jQty2UVvmYdTUzNOz3FFSvye3CQ1c92XTANxKFg8b6a5V4t8jgXvQLKjLNMpnP6/T6Hp4dRiUfQGMuLL32cJ598gt/+6u/y21/7BmfT6epQ6cKSiOWK6IKw8yuNgdVz6DZ/l7U5cSGQh9c6Idja3OCL3/cFdFvxT37xl8lGI37wCy+RZUOy3pw15xHWczYdc3x0zIPbb/PMk7s8srvGBcJw+HdkN3ob7+CFAxN8bAl29/McNfb83jXWXR+RICBW7LBuga3qfN+BazEohF2DF2GoKEtzQGCcDSQSFXjuQkjWhwP6g95KaDIREqU1UitO5yWLuiVL9Crlro0NOvxpjifo02MsMs8QrY1mpKBThWgU3ofJd+s9QV4ytCiTJKVtGjqypxSKcxMRIuNY4Jw4r3U4xwUuboSL1/uChbgY4X+vfFRdNxwdHLG2voFD8Oabb7GYjennmv3Do3iCxsW+ylK62CLfd1J3mU3sD65S6HBSW5yz5EUW34Nf/bcqS+ygH0sOMM7gvESpDuTqQkn3d51/iHPKdFcusAqy7y8Pvwc08d0fAKEkJh4q1riVTFddN2zs7vBn/uy/xGe/8Fl+6Zd+hZe//Sp105xzMvArnn7nRnQOTP9+FXZ47zIyFB99/HG+74tfJEkkd99+E2ErvvyLv8zOzhbP3nwEKVxgKlqLkh5fT/nMJ66xMSyik9D7H2ySpNG8NhC5bKQmB9GT8Hd32Zog6EMKcW7S8kHXRyQI+AvP7jwdfl8KIwTSh8Ve5GEuYF0nDHoqnM4SqtZxMl+ybILuYJEpCi0whFHl1jRgFNKmaN2jKVuasqVtoyOQDXx5IWVwqvWCIknxCMqqwlqH8UG0ZL3XY3M9QSlF0e+jtWJaLsmSgl4vpakr1kbrpIlic22Nw6MDtFb0ih4tCe/dfYAUbsUF/4ADnw9aaxexAK3VBwaMAHK2vHnrFo/f9IzMkDu3b3FydIpWEi8ly7oJ47j4KIzRjdZe2HDds+lOlwtg7Xk54Gjqhl6/H/gBBOBWSclyueT+/QfxPYefb01HGxYYf2ETC86HY7w7B7cufKaLLdVuTVy8L847dIxmgfobxrWlVKRJStbvhUPAB12AfCPnicee4IV/+wVe/sbL/OIv/xrvvvceZ+NJ4PlfzDRWz+m8PF2Rt7rAHb83Gg65fOUyzz33HJ944XnOTk85m81olgtkovj8M5f59b/7d7n7iY/zxGM3UG2NM5aDoyO0XDLqb64OQX8hu4Sgk+ilAmlpow6jx6/cqxCErtOFh+i7zfUh10cjCHhBCNgiLsS4GrrcRjik0AhgLUvZGhY4Y7gpFJcTRT/NeZgoHixrlNScLktMa0gQ5MIzWitYzCvq0rC3NWIw7OFxWC+YlQ0PF2XoIlgXW4aBn96Y0C703keJqBCiEin4wmceZdTX9Pp9hE7w1rO3e4n1wXpA/ZVktLnNclmiXM3Na1doG8dwbcDOtRv8g3/0X/POO7eicGRY9B0p5iJAGDCNiP52s+4Ews9oNKArUIMeQthAHbNPCc/6oGA2G1MIw/OP7TEcDDialtx6cIwQLqgkZzn394+o2wbvBVKGe91hJWGA72JaGrIHeaEeL/ICEQUzpJBRt++849G9b+stK0Zk9IgIkJu7UBqFDEXAShX6nC4e0HtPN1Ycl1D8+Q4fukE2DBt1KsE6TUh1shp/dtYxHU9wQ0ea53z6s5/hsSce5f6Dfb758rf5za/8FgfHx3QmqOetXUkgS/kuSQ33yDiyNOPTn3qJz332MwyHA0a9guMHB9RVhXIhqFy/tsuzz17i2s6Qt2+/xT/83a/SWoXQnhefvsHzT18N/hJx+St5ji+FNQGJTLAonDVYfAhYyAucjnMHpS4e/H65y0cjCOCj6m6Mu1HgI9gohVaUQuKV55mtNXqJwtQV26VhVjkOF4ZSCrZ2R+w9soGRkum8wjWGIksYjfrI7Q20VqSJpGoMMumBBD0vuXs0CYsmglk6TWmXFdaFef8wdeoIbyXgB9JLpFD08gSpNd5Jrl/bQViNwpH3+1gJrhK0bsi8atDKsigbrirNk1fX2EofoTYW6ySmCQ/0nfcOWJZl6BoIVtZh51mSX0EKbWvwLs7E++h+EzdMr5fz0tM3ybOMlw8OGI0GyP6QSdkyWZQkqSJLCxIFOhWsr/XIsi3m8znWeba2tjg5O6GqmgiwdtWpW53U1oYuR1m1ZP0EgYstXovyanUah/feoe02LlaBUIGMZI2Pm8y9H/yVgL3QCZFxvBqPlvocGwFwAi8cbVvTNgbjPE1qyPMgGzbqjwKyHl2qhAilwtl0TGsMeZ6jk5Qb169z4/p1/vgf/6O8+dZbfPe7r/Pe3XucjceBgegDjVlKiVaaPM3Z2t7i0ZvX+OTHniXJEwyC2WTO9PSMk+Mj6tagEkmSJTx9+TqZSuldyti5vMWna8vp8YT5eMbjL95ErIbTztvL6iLZTIhQMktQMiGaQBF8vMOvO7nxsLNiafRBqWa8PhpBQECqwghvF1llAAECvuL9StBzgWfjyjaJcdyZLjg6mZAmcGlvm2xtBM7iTc0og6Q3QmaSNE0x1uJUytGi5v7BCfsHb2OdwVtB03atqYBE9+Ji7FLT1ob+vpJJWDzCc/veGS8+t4dxDjM3SJljhUepoG0ANdXCUDaS5bJm0FPsbG5ipeD2u7dpFwt2RgX9UZ+iN2K5aJjXDSfjJcuyPKd9cmFWnLAFgtRVGOQJ+gCCLEko8rR7EVIJ3rhzl7ZuWS4bqqrh6GhMaw3WOByOtq7Bd0IjUFXNCok/OT5BSujnKUqFEdnpfE7TnhNSZJyFaNqSXq+HJ0z5SQc6Dh7hRZQKDyd/OVuSrI1Wm1frhKYxMa2GFZW5Qwv8+XroaMIBp4ujsnFxh4zNrrI2Y93KtMQ6S39QkCbBJdg6RyJFECBRIbsqyxIzC0IzSkt6ec71G9d57PEnUEIwm044Ox3jvCdJU1SaoLVibTBgMFqjyFJMWTKZz6hdmC+x3pNlGdPJmMVyweW9LZ6+nJyD186RZJreMCPNU7S159mF79igIv7/HIQU0odSYcUDIKolRwWqDpvxIlIF3PvJaN9z/XceBJ544on/zfr6+vXf7zU3btwkib6DvA8XuABKxYe9SDT3xzVporFZj2I7wVvHSSMYnyzIigSlMxAaU1umpwtaM+tgu9Dy8TBa34ygCqtaTsQjdiXgyHlKviLyxPzT6IRb+w3q2CBVjvUNTXOKcy1pkgahUxTOBE37s7Hi4PgI4x3z6QTX1igl6ZWaJJthbNhkOivY3bsEnNfB561FvzqFuuzAeb9S3O3u0nw2Yz6dIr0gkaGD4m04fVWeMSwKZos54GJnwKMIfXYhPJkO7TBrA6Ju6xqlFb0oKmLfV6tD3bRhYXa1qQ/3LNhEhLkFh8daQ7lYsrWxSTd/oFVAu8PPErETdl72nDMHReBmxGciuqgR10Xd1JF7Ee6C9z5MPhqDFLCztUmapWGTeE+qEtIsCx4BhFFiROQkaI0iSIV5PFIn9Efr9IbrQViFEGgSpZgvl4ynE2ZCYpqWs9NTTGwTNm2LaUNmOVKSs4MzvMtomyVSanSa4LFoESzNTh6c0BsNyIcFjm5CtoP6w+d0xiJl4KFIznUGpJS4CHx27VM471TYfx5r8n/ea319/frXvva127/fa/7D//A/uCAieTFtuXj+AQi0VDx29RJrG0VI74CqbKjbNtSgWobkKXIOHp5OOBvPY6uH99VxYSJNrXr27yfrRGUirTFti1Yq9ovDKbW70Wdj2CPJNDLp0VhYzOZoBWma0rXJpApMQWM9Rd6nNi31cg62JUtTBqMhxgqOxzPu3L2Hiw7D4sJ7FBGncM6RpumF1PmDkGrP3/7b/w8WixkeT+uIQyYhdZetxWIoW7NK630MJOcpZHjjSga1HSGCEE+iFOu9DCkMUikcCmst92+9S9u0JFoihUf4YINmbRAqcTb4RjhnaEzLd175DvjOnANSFU5oJ8NJHA4vQSIVo80NWtMGi/eYFQXiUHhd2wSacZ7ldLwNMBhrcC6c8P1+j0s7O3hjaTH0+mFeXyXRn0+K4AeoNFmRkWU5vmlRpWa2WHB4eETdVGidkGgdXJmtRfjAQjS2xbYttXEMhiNsbXFti5QC4wxn4wk6Pqvj/UPyIqWuSrZ397DeBvp2ocnWch7cecCG3aIY9cLkprfg5QqTsU2LqQLRybQtbWtJsjQ8NWejJqJfdWQ6anpR9D90/300yoEY6FatKlgFhPOR4S4meo6nU2bVMmaMAbiSUtIaQ2uCeovDYU1I5UMQDKe5FAH9lxGhRog48MLKb65DxDvN+FD/RrKKPG/L6awgyXOETDG0LBdLNtYGeCfDohKhPu6AnvFkTCh6AgEly1Kk0rRVzWQcREhknMLrWnIXlYbAU1X1OSD3AQSQLiQEE5KQNksZPiMyKAkV/QJbl9hu+qhrha3+nrB4nIW6bePJ1gZJ7U5ogyC+kUrNcK3P1s4ut+8/pKoblAxjyisij5Ir16X9gwOaZUmiZJR8M6SpQhEp4QT5bjw89vh1XvzYc2H01zlwEkmY53h4cIxKNPWihV/+FT710gvcuX2H49PpalbDWEOCZntrm9HaOipJybJQ+4t48nd3zLTRLdoKvvPKd7h96w4HR4fM5nOqqsG07cqApGkaWmMwxtLUdcBmvCfrFfz4v/rjPHXjOovpFCcgyTOyJOfs+JCT+Zz5/gG9Xp9emjArH5ImCmyLyjIS73HGsBiP0WkgIWV5ATR4H4JdOZ9x6+4ZB5MSQYPUkl6R4tuaVGt6RZDhV8KRJglahXLPVosP3X4fjSDQEWzEuVJMt5i7k1DCSnp8Ol2GkzuCy0LoUA+KSO30oBAkWUqRZ6RAVS672ayA/lvPORubC+2e8LUVKt0BK+IcZMEL5mXJ1ewqKklxXoAILjRISd7v4YWjWi5IlY5WZ5Y00QQZqxaQBHdMS5qo826Xv9DN6TJBzrOTVbC6WDJ1pcqF67wrJBBCh3TXBx4GUVcQEaS2I9wYsgsXA4FwZGlC0R+ipKaqauqmCerIEWgSzoHwJEqxvbVJqjSlF3Qjv1LIoAOoNVIqijThxvVHWEyn7J+OqdowsGVtoCOHhCWUPJubm3z+81/giZvXwkarG5ypaazh4b0HXNrb4/DwhLQXJLuffvI6z93c4B/+ytc4mczjTQgMwKu726z1+gyGg5W+oGkasDaIokoZaMMIzs4m/MxP/z0eHOyvsIeVq5M7V8RWWiOFxJg23G0haWZzfvXXf53H//X/Cb31UbAVM2ESsKr6FFlG5nOEchhbYRZQOR8MTX0ZwGlAjec8PJ5gTANOkPZSOlb2K6++y62DGQ+XQcVYRN8FYwJgqbUmVRIpHUmiwFuUCM7eH3b99x4EfuzHfuwHx+MxP/ilH+CXf/lXePTRmzz55JOrOv3iRnBe8Oobr3N0eMAf/tKX8Hh0kjJYW8e0DYvplNxaMg/9nW1629vUTc10Nsc5T1OX8YQF8Lz88ss88cQTrI1G56VA+FYsxwKw8n//T/9TfviH/wRXrlwJNa+QWAe/+Ku/zhtvvc2//Zf/LbxzrG1sk2cpKtGcHB2S4JGDBOsFSaZIAWcNB5Mxf+Ev/S/5iX/lR/jXfvzHkBL+3X/v3w/moREA+8mf/EnA84u/+Eu89dZbXLlymR/90R8F7/nmt7/FcrnkC1/44urmfC+1uBuyujhlJ2VQ08kSHU5171etRSUEQoX0WIhQCmWJRklJa0IAU1JQ+tCCw5+zM52MPXqpkM6jCUIX3SCOVsErMksThINEKoSL/Ennzr304rOWAj7zmU/yiedfoGmWuLbBAPNFxVe/8Qpt20Y/PolQQX8AY3h4uMBbT6Y1ldJILcmyhJ2dzVD6JZ13VMBZZHxfq/cp4Tvf+F0e7j/AGHAEPckAuoW2Z9d9wcMFlkcIsB7efPV13r1zh6efeAzriCYrRDKc4ivfuofKErbWB/QyyVqRUiiQsqWXJvFACu8pkSlHt48Y7q1hIm7y1p19JvMW33pa4aLQqkDIKAXXQC0VEMFUFRymuwnQD7r+ew8Cq8t7/tgf+6NIpVZpfwd+dhsS4Xj22ad57tmng724UCAEdV3RNC1DBGuDIb1+jywrOBqPKedzajxtU4cH6M5P+5dffpnd3V1GoxEQEVh/fiR717XmWNmi48OCH/QHK237jt3WtjAYpEzGZ9imRqdpcKNRYeBICMDB3/rPfoqPv/Cx858Z0+Y/9+f+HL1eP5JEHFVV8eDBA/7iX/yL/MIv/DwPHj5ka2OTr3/9ZX7iJ35iJbJ6ngR8ryxZ+KpzJk7JScqK89MLT5podAAuECpKYvkgJ25bg/FBJNOLUKNnWRrbqQ5v4kkkgnmM0holJFpIsiRBaYWWklwKUq1IlSJNE5aLOIbtowGKknSUXwQM+j0+99nPRv/ABDv31MbhVcqVvctMJmOEVMzLmtN46l9/7ElOz2aMZ3OElPR6wZF6fVAwWltHZylKqNBVkLGj7jxOhoAnpGQxPuWrX/1a4Et0eaP3+NirF4QAHfgP5yI2HT8DgtDK/sEBzzz1OCt8y4U0XycZ6doG40XF6eESa1q0N6zlkt2eZphmQflYSnSqkQKqxsBkCVlIBZq2xQlPlngUCodF6zSAT3GbWBedrkyLaSvsBcnyD7r+WQxJ/zbwp4BD7/3z8Wv/AfA/A47iy/5X3vt/FL/3V4F/A7DAX/7Upz71e37mj//4j3//L/3SL31iOBwutre3J+vr6wD8zM/+LM888wwvvvgC//F//H/gU5/8JK+9/jrOWn7iX/txtnd2+N2vvcy9e/f4l/7Mn+anf/qnyfKMe/fuM5vP+JEf/hf59Kc/RS0V/9nf+pu8+cYbrK2vIaXiU5/6FM8//zEgpHff/e6r3L//gJ/5mZ9B64Sf/Mm/wJe//GVef/0N2rbl+vVr/Ok//adXD/Kb3/wmP//zP49zjh/5kR/hE889x9vx5LLGMBmP+ev/1/8bJycnGNPyYz/6Z3j2qSfp9/oIreLQjOMrv/277O5sB6AxIthenj+Grq/eqRS52BptW4OSit/8ylf4/Oc/H8Gx732wAZV3zq80+i+gBAghadvQBrU2AINJEkQ1vPe4ujlnDkZQMpREQVm5lZ1BmA9glZTgDQ/3j/m1X/sKVV1Rm4bKtui2RkSjz0SHsemiyDFScHBwQG1qVKKQiUZ1Bh9CIJTi+3/wS1zZ3QmfvTE0teXB3QecTuc88+RjuGqHWnvefPc+Mg3ipmuba8wmZ3GIBjIl2eglXFofMRisBdOR1pAXOXVTr0BVT/BqFEJw6733ePPWnQjqutWBsHIExuKdDXfdnd/7i+Wb8PDeg4egErxvsI2lS3Z0lrJ76Qr9smE8n4QBq8WC8bKJnowtEo9GoWtL1TQkWiCVC3qPQGMVw15KnmvSrMfb949pDUjl0WlKf1Cwu7nL5tY2bdtgbAMolvMFb7x7/wP3+D9LJvB3gL8O/NT3fP3/5L3/T963BIV4DvgfAR8DrgC/7L3/jYuv+Zmf+ZnLv/Zrv/b8a6+99jfrupYf//jH/8KnPvnJmAGEQZxuMCMvcv7iv/mTfPWrv8Ov/fo/5c/+6J+NvWdW5JnZdMa/+ZN/nuPDI/7Of/6f88yLz/Obv/YrHB0d8pf/F/8Wi/mCv/bX/i+89NJLkVkVVskLz3+Mr371q/yJH/4TXL1yBQ987rOf4wd/8Afx3vNzP/dzvP76GzzzzNMAtG3LX/pLf4nbt2/z83/v7/Gv/OifpSPzOev5m3/zb/Ev/+iP8MLHnuGVV1/lf/+f/DX+/X/3r6CSBuUFCstivuCnf+4X+N/+e3+Vn/35f3ChGxH++amfCrf4M5/+DJ/+zKfJsownn3ySv/k3/gaPPfYYeZ5z7949vvSlL63+XLjOV+FqnFnK2Gm/SNhhBW51DDxjgjDI+SxA+Ek2lhSdBgKE+tj789q9q52WZclyuYw8FolBUBsTwVwZQV9PUi7ZPz6Ob9UjLKymB0Sw6Hrs5g1+6AtfZHk2ZrCxxmSxZG1zg63lknFVkQ9yptWc9cEGjz/iGS+XANx67XVefeNdVKIYJprttZQ84hB5mqKThFWKLOQqu5MxE5PAO+/exrhzVyJWXIXzgBpwAmLvvmPonQOsSivuvvcedV0jhaBsaoIQiiH9/3D350G37eldH/b5DWva4zud+Zw7zz2oW2q1BE0jWRjMYAdsExy5ymBhM6RwpewiVXG5XDGVFCmXq0hiUOwEG1s4cSAKIAzCKgkJkBCae7zdfe/tvvM98zvtcU2/KX/81tp7v+fe2y0i27lkdZ0+733Pntba6/f8nuf7fJ/vV2eMRmNkamhDVBhKEk1b18ybmkTBnlYoBUWmEcFhEZQBhIs7fTZIGOVZF8gDjYXBMGV/f8rhpSsoCQ/uPeStO3cxnTmKUgrZG2h+wPGbcSX+BSHEE9/pcd3xB4G/HkJogLeEEK+3bXsEvNU/4Kd/+qcf/9znPvfq0dGRAfjsZz/7mnPu+3s5sUjyiJH3Yy+9hEBw/fp1vv6Nb2y+jAAdSy7wwgsvEAIcXjpiuVxhreOtN9/iYx/7GAQYDoY8+eST8c3F+6P3dkeAN958k1/8xV/EGENVVVy+fJkXX3wRgE9+8hMIAU8++SRN23azBB0f3lm+8vJXuXPvDgIw1nbSWJ4siaWAsYa/9jf+Nr//d/8gSZd+9srBUgj+7J/997A2sFqt+at/9cc4unTEE088wec//3k+//nPA/C3//bf5od+6If44he/yOuvv86VK1f4wR/8QS4AJ9C1QOmCamSXhR3W2XY45/16BBcHmNh0KjqaQlev7ux+3XM29fEGcokrJQi/CerOus33tpUS27aFZSb52IsvRG5DnhGURKjIzLtx4zpmXXH24IzaWFTdMpkOCESi15vvvs2iabg0HfPdT05pViWrypAkaRzDlYI8zTcbgexmROgBUQRvv3s7koe67Kuvz3u1/37YKmr6xaEdJXnkYsB6MWexWHI4nUSzFbVtbdblitl6He3Cm5pEa3SRkNmGSZ5QaEndttTWYh3kkwSpJFUT18SoKEi1IisK7h3PQWl0kqGSlLwo0FKyd3CIWq7wI7/VZ1R86PFbwQT+HSHEHwV+A/izIYRz4AbwKzuPue29f+qDnvxTP/VT3/PKK698z2KxmAwGg5hydelZf01lB3ZIFYUkIpIbh156iqmUAmfdZgnY/qTpdpkNv327VPpFv9kZien2T/7kT/Kn//SfYjrd4x/+w3/QWVfHYyPaQAeIdeCYlBLRpfb/2V/6i2RpyvHpCavZKTqJHAPhPVpJ3nzrHX7tC1/mv/3x/46yrBBCMBlP+EP/8r/E3t4eJyfnjEYjXnzpRW7fvs0TTzyxuV737t0D4OjoiJ/92Z/lj/7RP8pP/MRPcHp2yuHhYTy7wGZHF92u159Ar5gDuyDiRZmzeM3lJjD2R9R5CLsxlIvsvs6KLWz/UXSR4tEgo5RiMzEYtuWFQJDohOs3biCzlKTIEdYxyIc0ZY1KFK4qOb13QjIescg0hUi5fOUQgPlsAQHyVHHzaERxNKReGc5F0VFsu4xk8/15pFSo7l6xznE+W3YYZUT74zXoNR/6PUR0n7e7V2NK0NmBxddv64bj42OuHB6CiJqTUicEaSjrNavVKt6/QjIaDTm9e87lXJJLh3WexhhaC2mWIBMVZ1y6EewijWVg3RgenC0JKkWEgGktTVXT+NhGttaCgKzICEEw6oxPP+j48Bzh2x//OfA08CngHvAXfrNP/L2/9/e+80u/9EsvfN/3fd9XfviHf/jHXn311QboevUCrRSJjmGrv6i+U99pmpa2bXcQfkCIrk24/e/Hn3icr3/jFXwILJdL3n77bfoBkN4NOIRI6mnbjgdg40UeDIa0TcvXv/6N7vXiXy+//DIAb739DkVRUOT5pk2ntea7Pvld/PiP/w1CgHww5I13buODIB8MSfOMLMv4P/0n/zv+Hz/2f+Wv/N/+Iv+zf/H38a/8oX+R3/d7fzfrsuwyh2hs+sbrb3Dl6tUL1+3nfu7n+KEf+qFNOt+n/aY13ZIXO4FqG7Q2bc5N4r3NEuSGnNWXJdsF25coFwhUFwLKlsgU+Rc7pUgHnD06Btu/vhQRlY+zHLr7k5BkKZcvX0KkcfdDa4q9CelkSDoaspzNaFYL2tUSLRN+9qd/nv/qr/6/AfjK19+gqmveuXfCz33pPeo2YBtLyHKEik6/pjWRyai20mhKK4KzIAV1XbEN9WzOo78JNq3CEC3oemMXIfqtQXQYkePh8QmB2Ep0HZPPekuidPS3MBatE87PTgnWIAi0zmF9FF5FCpI8ujW1jUeLHoSOQ1Gz5ZqqaRGd16R3nsb6jhnoaU2DaVvqsqKtaxaL+fvWYn/8f5UJhBAe7Hyx/wXwk91/3gFu7Tz0ppSy3H3uH/7Df/je3/pbf+trzz///P9yPB6vn3766btCcNBr1kGHmBMHYpRSsTXzyJciuodLIS/YLkvgpZde5I033uAv/sW/xGQy4dq1q6RZtpswA/DpT3+av/t3/y5JkvAn/sS/zfd8z/fwoz/6o4xGI27cuNEFi36hJ/zoj/5f8N7zI3/sj24DUcfO+uM/8sf5r3/sv+Lf+lN/CuccL770Ei+8+DxKRkRcishK8700WadFWNUNy3XJX/gL/+fOh8DzyU9+kueefXbz3q+88go3btxgOp0CcO3aNf7SX/pLXL16lWvXrl1I4d+f3kdarpRbUdSd726DD8BWGn2bMfTdh373ExffY1MWhJ0spP+n7WMufp6eqdkHkK2hyv7elEuXLtG2LXmaIrRCK02SpGglOBiMYNQyLyuklBw/POF0sQAiiq6UpjGOu2drisEArxULGXkAiVIEF3d1H/rUvmv3BkeepJR13WUxXTYkuJjqb67JTpDdaGD090rESmaLBV4IkiRhtVyigGAMw1BxSVY00hHq6D0h00ittkQ7iyQReBFnG4KEtXMk3VyIDR4ZFOfzOPka+pFnrRgMB1TLFVXd0hrbZXUAjrqp+bBDfCeBhO6EnwB+cqc7cC2EcK/7+d8Dvi+E8L8QQnwM+H8CnyUCgz/33d/93f/4C1/4wlsf8tIA/OU/9+f+oz/5HT/FP92xaltGacppWfLZ//K/5J/88T/O1W+TEv3/0/HnfuzH+HPvvPP/64/xocc7QvCJ4SgG784sNYTA7/4Xfjf/6h/6g1RVRZalcQBGSJq2ItGS137+l9FScnx6TvH4Df76j/9NFus1Z7MZB3t7XdbomOQJ//bv/jg+OI7FNW699EkO9vYj3mTjkFSeZYCIo+BSMjs+5T/83/95mrZlI/sG9MGvLyGBDnPpiG0dRkDYBgEhJJ/+vu/j3/jXf5jV2TmL+Yy2Kjk9vkdS3mWcAcHhIIp+hEhOc663WnPdn0DdGF69vSZJFL/w1Tf55z/zDEmaMV/UVK1FpAlZlpHmBZcvXWOxWFBWJav1GrpMxwdPWda89trrXwghfObR7+M30yL8a8APAkdCiNvAfwT8oBDiU8RL8DbwpwBCCF8XQvw48A3AAn9GCPGvfaf3uCcE/4fkYs+9j7jbWixuKkp1FUz3jfieGLP5kuKD/+u/9teoO/Ducz/wA/zljgtAnxrvpMsfct4f+vO1S4c89tgtrHEkiaL1sFyVTIc5Sjo8miwfcD47x1Zr9vanMSrTg2MWgaRq2miwmaW8e+8BJydnsOE1bo9HP+O304sD+L8rxX9SFF2q2DENu9q1vwYR1Y7kl17duS8apOwVnfs/gl696EJ50D+jL/E/4HO+j8kYouFooJPCCrETJ6XgE5/4JNYakiROa8oO1DStQcmUarEkm0wYXzridLnclHLxvWLZIyEKw3gPQuFE/Nm5Th1aqjhBaRrSJMVYx2RS8N6773aTiF1m1F+77np1H3735DbXchsAxCYQeGsjD0LG2ZHGtNjgGSaCVHg8AgUkWkb+Qn9b+1hiJEnA+MB8XrNsSnDxAe8eVyBW6I5PkxsHwuNxnN5/F4BcwHiviHqZUhGExO9Pee211z/wfvnNdAd++AN+/Ve+zeP/PPDn+//+zGc+8x2DQPe8Td0ObFowWsVUtE87e8rsTjbevcDF9PNHfuRHPuSdetAKED0w9sELa9P5CdtJPiGi+wwdNCSB4OxGX0BpjTHtpqaMPWLfO1USCLGOl1EUQkpFa1rSRMc9J0RihxfbOh4hdj7n9jy6T7dzDTc/EUJvOdal9B1Bpp+Q7IMsQiBClNKV9DyDDh3vz79rhfXXbtNR2enWiAvrY6dsuJBSi4v/BvFzBsl4useN61fxrUGlGVhHUFEqA+8J1iGkZH4WfQLu+4bWtrtfaxdQRGQKFinLVY3PNTpReNtSDIfUbUOap7H2TjTOGSSSr3/jG5uuVA8fbq5wd6MJOpnvbR3UBYzucWL7PNF5UDjrQEWehHCeVGtS7TfAokR2g3ABgsfLGJxFkOjg+OI3j1kZu6H91l5gDQQcWiuakKJFgnKC1HiE1Dz55OOsl3NWVUm5XkYc5KNMG+6PXkZairD5Cno9yQ0OGNhOmX3Qwv32G+R3fmy3ysROlN8Ggvi3FFG9NkCcd0g03pioGQhIpWnWa/I8LnrrDdbGelXKXUafxzqL3PFYkAgyCTe04i1jO03+mEH01uI9kn8xGPQLlJ1gtdXOj48XF2/ezfnJDbU11rN9Z0BsXz/spMYXAtJ2QYdNhHoks9o8bgtabj8P9OKrR0dHqODjHIGTWOPQUiG0YrGYUS+XPLj/gCTJWLeG4+VZBPf6t3NxYMnRWdcJ8EKi05QkzQgiiou01qB9EmcIiDX9ulxz58H9HU8L4jw/F8NBvO+2smJ+V22py4R6gDZJ006iLE6iCiJzM0h2YqIACV52WEwQJMg4SUpAK0FpHeuqZLmOA0CLxTICjWwxG9kNaCkZNTTnizn7e1MQAuMlTdtSdJTwDzo+MkFA9xcKNul9rzQLW7Dw4g643WH+aQLAhS9254YXHWodYEPJ7b+w7eLqV5pEJx1A2c+xC4UL4IwleI9WijSLgE6M9t3OLCVlWbGYzZlMRrigYnuKwBjBpyZDbp/MsGyzkPhZ+/PeuRnZ/q5/TGQMXjQ26f8WXDQ4jc4+F/a9eG/2EfiR6717PeJ7+fd9jt3gvPEH6MHDTWbdT3VG78bLlw4IpqYua7LMQPA4CeXScfvd29z51tuU53MSndIqzXQ8ZZzlzOsIeEUQrztPGWcXaiuRSqCTFATUVb1xNE66gSrvPKv1ktlyuQX2uvOOVuPhgg9g2MkAQn95wm5wjy3t0XBIL0GWKNkNAHU9hE64RQo2ZqLbQBOQqnuM9RjrkEr3rODNKHnf9QnQjbdvy5LFYsFsNouv0b/nI74Qu8dHJgiErhfdj8Bufh+2u8bu779TXfzt36wLBJs2V/eaRDOQfhZ7dwfbPZI0iR0Lbzv+f48Oe0KQJFLg7RpJ7FwEH7psIH5Znkh2ao2jaltOz1Zde0pgBZRtg2UjC9Ht/tsFttlF+zq8O59HL1Kvjbe9luHC6Vz0bdyWOwJwnYxWpC/3AWjXmSc+R3ZqS9735ZzfvM8GOAM2zLruYqtO7bifYTycTMA5TF1DW+OtJchA1RiG4yGVFLgsJa8bnDUkgwnjomDRtVY3KqXEgKukIOgMJSRpluGtpayXEALGWrI8j0YfUnM6P6Oq+3kKdr77cMG1Y3esezcj6CNivF1E5ymYYNs2Zkk+EqYSqcg1EOxmalYGEa3DVcdIEBEr8CKyNp2Lbb8+SLgNJhMzB3bu3Rhou8DQm93Qu3o5Puz4Hz0IzGazdz/zmc888e0ec3Jy0sk6f/ixOcn/AQ6B6AQou8osXNzloBsq2aSb23RbSsmtmze6QZ9ocFLWLaaxZFn0NGjWc7QGLxK8c+hoc7QBB1tjqOqW87NzhBCU/Q0oYCDgZ5Xk5bZPNrdnfaFFGv+Kj9gAU/FYLpcXztd3Ckob+OQDALxtnc/WzkrsSHh118F3tFrn4jXrR3H7xEx3WYUVES/xIrIWez9D38kSKRUl5oUArTMODw6iTLsAtETKDGRAOTga73Hp6iVm65K0bbl59Qpl3XB4cMS98xmbS9EFnm15kmyG0LSKQ1Ja67hQOtWhwXDA7HxGWzfb9IbuR79d8O+7hzbXaJtDba5Rdw2dMaRJRhXKzbWRhE3GEnaBlE5Xc2suIvHOYP0HkXm2GYvYyeEe/Wz95rB9zQ8+/kcPAq+//vr/9js9Rgjxx5Ts3Ia6CBw3jdiv7fudj+5c8dgpCfrfXEiVt4dS20mrXkAkpnRxQqx/nvc+OvhqjXd+K3qMYDDI+fznvp9LBwdkRUE+GPHenQcsTldcurxHUghm99+iUCtEuo+ziryQKJGgutdbrle8deeMl1/+ehzy8JIgHCIIDqTkX5pk/PxZyapDu/q0U4Q48psmkTa6XpcgBN67TSDYvV/76yV2bu5vd0NvnhcC/cBRvyHGoBhNSXslpn72QMp4U8og+cN7A15KEv7GbMGDNKEMcVjJiYuWa1HtSCIFjCcTLl27glfRwEQnBUJpRFBYs2QxX/PpT32aN5cV9x7e59LhmOVac+PJm7x97zac98sikniklPgALvRCJQEtI+dEpwlSSuq6jk7NaRLdkW20k9+k1+GDr9XusWuFtiVq9dlUP3LtQXZ4kYyS7oqo49Bl8Bu8JT6/Mz0hfq82wNZ/g62EWthsTRe+x+1nE5v7IWZkH/FRYiHibPfGNEFs41sEQPrHiU0N2l/4R2vmnYwzbq4yUlp7D7v4Zfev1wmWdKBYbJz1G8IuAi63qXQAqVKMc4ySyFiSSmFtFKgggJcpKhnQNiXWCPJsTJIqRKJAweXBEW+8e7+T+O5uNi9AOOrgeEjGJrj1VmZ0JBZCDCYdc1DKC3s8jwbD91/s7rrs1LD9td19vBCRsx93fUccowUpo3Owdz2VVmw6OkHAJQyXmprfe/MmvyYsZwJMY2mD5OF8wbqO8//OdtdTwN7eAaPRlNBrDVgIzqGKhGpdIpVnNMrZu3TAWZqwvHsHqxWHN444nIzgTrf4ujlx3RGxnJAkWsWaPtE4YJTlQCwJpACVao4fPIwjxt0FElJGSTTxwdfy0d9vcY/tUvbBRvu6ju6eJCnWW4ToBFjlRZIbInS4QWevhse67SL23Ssr0ftDbXGe3e9w25aNMy09x+H9+cL2+EgEAboMYGssHFdy6PCBuCj9ByPSQD/TvXk1AUqoze7Qi1XuvlcsAzrJMNi4u27Boa1opWC7vJQgOvT6Ft+WBG87MCiSMoLzSDlgeukm995+lbZac1Yusa2Nkb2J9WD14Jxrw3wzMGWEwJiIGfyTylAHgZMS4TtaLtH7UChF2bQIRKftD8H1t8i2l9/fDLv1a38O72/TvT/l3QYnKPKMLM9YLldAQCswj+SYQYL00KqCepzhvGc0zvBSY7XBAauyYrmONXwPFLrgyPMRTStQhcBIC1KSiITGGLySaMALRZABmUrGRxOSoyFBWS5POy2IAMKHrp8CtjUEOYiLyVhSnWxMZXqXYpUkZEnK8fFJpy0gEFLRtzbjFXMXruFm4+mAkt0Nic1i641roa0qApBlOSWA7DPO+GXI3uZtE5zpsr6AtR6HZDvEtNVf+Q5JysavYksa//DjIxIE4kLuQY0YXbcAmI/FWfe4R5+5y1XfziB4FzatlEePXnNwk2cT06fReIwPntVyvU2txTbDAFA66bjoGSIdxDaQ90gt4zx7u+Lk7rscv7YmOMuwKCikZ1hohBYEGYkdk8cOePz6lNYHFosVd+4cE1Y1l7yivTTgciIw1tI6T9lYjPdYF7UOjfOdc3C8ObVWWN959xEIXnZ1YBfQhLhwI21vCkG/8yDEZmHGDEp2qHOPJ4gOoIoPiKVU/y8gfXx+Ix17Tz3G28uGtlyhBSA0WkImd6vbeCcrlZJnBfNZw2K+oMg9C9Ny9dotgrM0TRnnNLzDyZSTqmUgA08d7KOC5Nr+XvdqEmTc9XWiuu9OETq/SNO2FEUOovOWSBJ0kmKN4eTktLvXYjD1rltlYnubxGRsGzR3R4gfLVOd95zP5vE78w6kRucpIvjOAn7LNvSblnj3HqEL3ELSms5chG0m0gPoPflrt1uxWRHdd7lpd+6Ugx90fGSCAOxsLP0N3KGvG6pKl+bsRuXtn16eetfAoovLu2iu6Hf8/h1jveQDrJareBN4vy0BdpZLCKClIlECgsB7jRSBenHG7O57PFg+JNWBPEk5mBTkSUIxyNEKKmv56ivvMZ+vSRPJwf6E6bggzQtmxwuq2jIMIILjicN9RkfDqKwjIdFElRjbYF3AGo9tLZV1WC+wLlC2hrr1GBvwQrM2jsZ6jLG0zkKQGB+RZh/kxuyl1/PYllxhs2305UZVN5RNE1uh3Wv0169HxON1dHx1XjH+6tfRSQFFipc6imlKvZEg31zPDkm/fu0Iax1NUzIdjrl6cBlcoPGRS2FtQATBpRuXefbpJxhNBojgCWnC0ZXx5u7xIiLhUgraykKekOQDnLU4CcPxCF83OGPIixytFOfnZ5ycn3c+AKHLOON9ttWZvJgPii5L3Wyvm3qUjXbper3GONdJfCUobaOWJLHUktDV/v22vu3MBARBKIyNXSXnXXQg7j/BDvAH2zKA7l53zm2zlvjLTUD4oOMjEgR288ptigV9FNtJXdki0luWob8QCT8IGLwA3LzvXaNhY6wD+4ZfpHtG5DumGT1yrnwg2Jbj229xdvttTh7eJ0klB3tj0rQg+JpiNEApiREglOZsXvLqe6c0TYsMAn1vTpFlTEYpq2VFSGL5UouAznNUVqDwZIqty1Fb472NLTvvMTbiPUpJnAAlA94YvI2pbW1NDBgeGuNYt4baeJrWYlqHsY7WeFrraI3FeIHx0Dgf21M+Wn338LKzW2p27xWw+70IJCcCTrp/NyJmXd57MA3Cb9tUoQsgSiquXJ4yGjrqtadpArZTUZJa0y5rRiHBOYMWCdeffpJaacR4j6IYc9Rk3XfuolclxOnFPEXnGcWgwHrHcDhCCIExEQAUUqGV4vT8mKpto+4APcbh6Ft7vtulP2jetseJ4sLsmJjQjfa2WGMpiiG9ACj9aHcfdUWcCOy7RptOTCdC2zrf2YvHa7577FrSbT7Lzr2/KfH6QPBt6oGPRBDY1J9AX4tvlXE8ott5o/iixnUA3wct9g9Kj+D9YE7oCqvg/VYauw/ofZbQpVuqS4WVlEg8p/fvcPf2G/jVinyQMZ2MyAdjZDFAYPBVy/x8RVmWBCSmaaicZzLKWavoW1e6loFrKReGJE0JImCV5EHbwsNjLnuPCJ6DcY4UinEWyMYZyzUsKsuqrDmd1eh0yGq5wNQ1w2HKpz/xJAmQpApQcVYBhwsRlY7GIA6EwwdP0wUD5xxl2dDWLa1pqYynbTx147BBYYVg2TSsmxgsrI1Zl+98G633CA8+KO6iENbTGE8tLKrzLDBRHTReY+LurrSOitA6UJY133jjPR67eZMrBwcMxgcArO/chvMzJi8+TbZ/QL2sSVWOd4bp1Svxu/Mh0usF6E60RXUzCErrODZe1xhryIqiKxsV7777Xve9dwtmlwuAYO/ggMXZ+aZU8h2OtCFThf6e2ZZaKkAiNYnUqCTFtNFjQoUoxR5kpL9LJBemErtNJgYJT2t9twa27XG/fcNHcKz33+d9WfBBbcTd4yMRBKBP/3dT9fizUlGOOzK3XHQQ3pS6/artNAW8A7nTWdhcnG3rbJNhEPX9N50A+hsgdBwChUSBiOlhqgPTRJC7krde/gJ7w4L8+pWY0ioBWuCqNc40rMsV3sbZ9cZEkcymtWgEwyxBJDCwCYV1rFOQqUB5QdVYlkFxdvuEN0/mpFKTiCgkMSxSLh9MSFNNVUfbc2MN69O7tJWhDnCgc85mDZNCY4MnTyRZqpEijuN67zDB4YKgqaEto0OOlJAVCdNxTougbGpSJbFVw7pxhJCi0hRjBUFmuGCxLmCaliA8rYO6sTTrNU1Zca+qaFuHa0vKIGhcxGqMizp7lFVHvZboLGE8maJFwImW+WrNa29/i7q9yRMovLAMru7jT0tOvvIqpCn6aJ/l3fsML++jdQFEkC90o9g4sEiMC9FlSGuEUtSdFJnqVJ29c3zjtdfYsum62jl0yZ+QfPf3fpZf+tm/T2VNBza/P63uS85tVgRJliKUJMsLmrpGoJEqoTNYZPMmXRYAvf5NvN8kgtZ24iVhp8Td4FTb+zjsvP8myw1hi/Hs3P8fdHx0gkBXYwkpNuAehOghuDEFiUdf24cQ2JuOGY0HPHh4hjF+w6K6mAls0XAhtq/veimzDo2Nj9HIIFCqm+2WgkmumeaK/VHG/mRKnmsGwwF6OMEESV2ucFVJ1TQYGx1xV2uDsVGxxuOiU44XaCFxwlOkCa01KBVlvb0PiDynMSvyfICzjqVvYy23iG3Cb90+I9GKLE2YDjISLckGBanKuXawT56nPDhe8VA4Uq3RSkMiwbcMsoQslSgFaSYgmChyMRh2ElwOpOLKwSVE4gm2wdUOkQ5ZLucYv8Y3HusNMijqFnR2GRckeTFGBqjLNW29Zr1cUa7XnJ+fsViuWdnAeW0orUfqPu2ObbjDwz2UUizmpyRZYDScMhrvMRlfoqoryvWcvXzI9NYR9VnDerUEDxYRy4bqPgCDPGW2Wm1A3NYLXAhMJ1OUVNimoW4a9qZTBALfsRNv373X+RHS1c5b4G08mfDCc8/z+pe+xO3jBzhAPLKYdvGp7hcbrAMRPRKVkljncF0nqv+QXnQdiB5g3CTDAesCTSd2Eucidu7kfgMM26x2C9Ne/Pce8H0kYb5wfGSCQO+SI2TsO/fpPsQb5kJLsItsWsDv/O5PUdy6wi/8vZ/ieBYiGvtIfbQLHsJWn7D/hQii02aPwJiSMMkUe1nCdJAyHOUcDnNGgyhMkg0Gnb+Ywa7WNNWaunEsKkvVeqz1Ha/WIYNjmObkkzF1abC2ZV21+MbidBz6IAiMjW601yZD8mGBdfFGHI2HPDiJzrlN21K3htJYZqs1SqpogT3MuVwMaJ1jNltzeHRAwFM3Db5qmYwEutBM94Y4UzHa22c4GrJaVGSjMUJomtUJrjWsqhWhVAxHGdlIMJ83WCeZHNzElUtW8yXDYUJzeoJZnzEcTVBBobIx1mnQA0g12XiEUxLSBH82I1OaLJPcX0Suv7Ux60pTRdVU3HnwAOsjtVoQeO31V7m8f0hjGlSSIgrH+LlbuIdnOClQgxzXLoH4eoNBztlqBUKQpJrWS6TUSKXJ0pTVekmaD0jSHGtbgvPMz2bM5/MNW9V31nX9anr+Ex/n+pWrPPXsc9x9+DC2EHc7BB+AO/V3qJQC4R2hwzeqqkJqjWvddpCsu+eC2E4nCtFNcxJi+SRUhBIebY3vZLY92Bgx7vje/bRtX158O7btRyIIxBpLRblr1wfKnejK7qKGnj3lA3zrm9/k037OrVywTAKrenuysZTYBo9+TPbCFwkEfOSYK8E4TxgmgsNRxv54QFZkTIoBSgVSLZFJivGOxfGM87LEWEXjPTrLCEmK8hWDTHDpYMS4SJFSkCYpOoXVsqWxltdvL3hw9wSVa6SLzDIJHI0Fzz19nSTPWZcVVSN4cFqTpQnOe/I8Z1gMIETLq6qq8MCqtnz55dfQQiIJrBrDKM/Zn6TcuDJhPILL127ivCARU07PVxgZGI2GtPWCuvEECqaTfcp1tOCeLyumoxQlAloE1rMFuJb9oz1sWTOeDBFKoVVBUy+5/+4DXNCINN10VsaTKcv5EodAKUG6o3YplUAEwYN7D5nNF0z3DyDA+fyUvckI0zjmy1XEhNIhUkBTzhBFQpZm6EShOsIPwDCJ+pOu81QwSJI0iwQdVdAay2g82gDL3ljmizmm22zixtIBlyGg05xbTz5BlmU89sQTFF/4AqumvrgZ7XadNkdsESRpQppo2qpGZ3GiUMkkZgqBiP11sGPfCRO7tnA+RJu4Drfa3NUiMhpDl7UE2JE4ix2HPhMQm/ImvE/qbff4SASBHuH3XUoWzTf6jXq7g8f2VfwSpIgMw2/ePUbXaw5HCfu5o24rXJAoFbGFLUloB2Ogw17oU36YZppLo4JxpplMBuwdDNFSgpcEYUnThLZpqGZLFhbeO12DDdy6dpkr+1NyGkYDqCoVQU0Z0MoBEiUb8JLpJOHOacvx6Rwn1YaVliaaaaZ44tZVLt+8jnSem7dSgvAslpZf/PXXKJSnaT3WeIajEWmRcDAd4oTi+OQU56O89aDIOJ6dc99annvyMi9MpiRScffd2xwcHJLu7XPjuuX0Ycnr91syBXsHI06PT3nltQWHl/a5ceuQZH3OcrZgtD/i6uPXmJ+tWJ8b5suGctUyyhN0GhBUnJ7MOHlYY01AKY3rqM7lsmS9LhmmKcYFvBM7O1j8AlaLNd/4xis89ewttJA89eQzVOsl1tYY0zAdDsizI2wmuf/OOwwme4yntxCrM0IweB09+i5f2+eN+ydxR1QCVEaaxtkN2xqcdQyKgraOUuBN27Kuqp3R9J0ZDWAynXLzyjWC9xwdHTHen1I+qDcbVH/IHe7DZnBKSJRWJKlmWTXILI2W7UmKW/lOVj/SiEMcNLiAhfWfwVjXybxvP5sPYad07XqK7HBlwtZYBUI34h648OKPHB+JIAC7uzLEYZs4drs7NNOheFsghpjavzGrKDS8tJ+iQ8u7qygz5YPYkCqQMhqDiki7lCIwSBXTVHBQpOwNCw72c5RIyAYZSiVoKairNYt1w511Td06GiexHjKtEJmgbmv2UUzGBUon6Dwl0xqdpggfsQY9zHHWo5KMf/zF36CtDChJcGC8Z3884OqlnE98+kXy4ZAQWqT1OO84nEiuHH2Kb3zzLq9+6wGJSpFK0DYtbRPlp3IRODzaB6lYLFc4lWBty3sP1ty8V/P0k1OyoFjOj3lw7w6XD3L2L12mDa6TpIYbN6/xye96jpOTM1bLkstHNzg4dJTzh7z1zbfRMuWxx68iRaytz89nKCV55701791ZkQlBInxsjxnDclljTGxn1s7T2l6MMx6iK16NM3z5Sy/jfMtwOkZnAw6nU5JUUNWCLB1wfDpDFwMm+zewvmR1+oCBErSzGXkeg/yNK4d4+02kFKxWBi9ypJTYzo1HawVCIpMErMWGaJdOv/j6lDmA0IqDo0Omw4LlYs4gL7i0f8Dx8cMoErOTTT5KYY/drejpqJVGyArbtCQ6wfoIkg6SmAVET4ZYD8T2M0SLE0HY0Ia7wNJdO9llGt5vZw+k3PJhJGLznH7dy37tfMjxkQkCu0d/gfuBnzxPY0uqaS6kX7GMEFTe8+6sYq8Y8cLRkIVZMq8VQYRNuhilqgRSBoZKcjBQTPKM8bBgPMjJpONgJFj6nKQYYKqK09M581XLrGpxDrQMeNcikLQu8MyTj3H9+pBBkZAPRmgRCCIwGI3RMsE1BiEdIskQXvGt++cc35tH/oCNgOS1G5fZGyheePFptNaUqzXWGky9xvs2EmwkPP3YFcpS8N7bd7GA9XEy7sblI8b7B9y+f5/1akUqFUJqgk5JNdy9v6LxcDBUTCcFV594jOBaVuuGIk3wXjHMmrhrNg0jLQhZwt179xgPChCKa9ev4gMYC1XbcvJwxptvnrKqA94ZhllCQgAvWZcl82UVW3VZSmk6Kq8imo1s0jo2WUFZ1nz1y6/y2c99D1LAu7ffIc0ypGxpm5Yz0zI1LdnkgGIw4cHJQ+RkgFsbiiTqRl699jhS/DIuBBonESpBEAVgkJKkAyQJcRHrNM5/eL/jJxgRYhSSo6Mj8jSnNCt0kvDME0/xjW++Sgccve+evThEFD0nhXOkUlE1NUoqvAPnZNd9DnjfbVCiS9k7UxQJtAFsuNj+6+7ki52ITqq/xzI2U7HdfwsROQf/THQHenIGbJH9viswKAZRj72Nvuy9aWesyaJb7IMm8MZpxccuD3jxcMBXHlTU0UccQdRsGyVwKc8ZDVL2JhOGe2OUCvjGYddn3DtxDPcH3Ds+5eS0pDWO1rRoImgZ03eNE5APcg73cg7GIxIF+UB3Cq8JobUIFcG4pBjhm9ja/PUvvoZTMeLHLogiuIBMx7x113H7/hmL42Pm6zmsSspgyaXgyUtTxGjAg4czgoDhcMzewR7OO+7dO+ab79xGacHedESqCxItOZwWqKaKjj1B8LW3TrGVoSgeMh4PuXQ44vBwTJEq8pCzaBSpl4xH1zja04yqJfPzJedn8Na7J8yXNbP1inpZYb1nMMopMOQEtPME4VmuStrakGmJCZLW2kixFrGBH9zWzSi6APVuRtBULa++/BrPPfkU0+GY+XKB9w2n52uuXDpkXa2ZDvdpqhYTHGeLFZPhANPEW/jawS1Gec55WRKkjDJdKl5j711s2QkZ5zecBWM5fXgSLcnjsu1vRJwXPPXMs3HwJ03J85xPf/Z7+ZUv/DoPjo/jZOLOIFt/9KVCEKC1IhDngIWzrGdztPXYTvZeiC13qC9ObTdZqIXAEmidYTsZ+kh3rHteP2EbOvr3ZlhoA6L7DWD4YcdHJghsKbrhQnolhODk5JRoo7MdhNno7/c2V8D9ynJt3XB1L+WNUYZbW1IlmKSC/SJlOCwY5gMGwwHFZESRJchgOWmWtNbyzoM19n5JmuYx5XLdhe1kz6SM/WitBDjD+WxNkSVcvbZPmmTkwwlpNqKpaoQImKZmtjgmU4K7D+ecPjzvvOYiEUprhTGO2bzEiwXUDfPZDKsFGkHrAixr2kXNXGjklSmjvSPSXHNyesbDBydILZmMYudib5RRZBl5niCammSQ4kyLKksOgsFkUJk1xyc1x6dnSJ2R5Hn0USgKBlmK1inFaEDZNCzOT2nqlqYscc6jU00xHjLMErRvCG3USDRNw2pVxtFdLbC2R7ZFt+v5mEa7rb/fRt2oL9fwnJ6e861vvsmVo0POl2c4aznY2+fxG0/QlGtQgsq0pFoi0pTGOPKeubiac/PKEedvvBeBuSxHas26XHG0v48LPf8jHuvOj6K3A4/4mUMESIdDnnryKaSMPhgA2SDnc5/9fn7yZ35qR8770dZ13ImFlyidkRdjZqsTggjUqyXpqsQbQZv46B0YIvdgozokoB/VdjbQtm4zCPToWhHbaLoZi9/GiYv4xhYB++DjIxMEenbTtm0aNqmM6EZDN2gsOwmcCN2wC5QWvjkzTPKEFy8PefesYaQ1VycFe1f28V6QFRk6SVFK4FzL2/dOKWdrjsaStXFMhkMC2+GjQOzxqlQzLIpusMOAELx3/4x37z5EfFEzSBRHR1M+9/nv4/qz12mbhuWiolUDzs9m/PwX38E5kE4ABp1oVAAnFNlwzGiyR9iTqKNDzNmc/fMzXJ7ywAea2nD5409z2ra88vZ7SB04nA554elLXL+UMR0X5IMMLz3TyT6pSPF5gXGepqpZnJ2yXlXY2kDd0LjAatnSepCJR/kKsaoplxHv0FlCPkgYqsB0lCKHEXV33uKdQ3qL8BaLYV3WVGXsYHhraYwnCIUPDtGxO5VUuBA4my9B9LfctrUViTmC4B2/8qu/xnd9/ONoBdkg5cr+mGEGQWTUqzV125AMc8bjCbPjB6zMDICzO69yNMyBKNWdZhlJb/yBRMkYjIwxSCFY1SX3Hz6EjSBrx60LgseefJrDvSnONPQENgF87BMf5yvf+BpvvPXWlov/KE8gQvsYYxBSI2wEvPPJCCkV9WKJNUuUDZhgCDKOPicdjRkZ1YOMNVSt23QP+vDlvO9GkLssmF7zYWdqFDbdgECsNvwOQP7o8ZEJAhejah/pujk4D+DpVbb6SKg6gcVeDyDPFLrQfGve8l2DMe3lKUo4skFKmhYkaULZWmanS05nC1bLGhsc48xze27xSBoT205pmmz4Cb5rIZZVG/3jkmieaiwILUiywNwbmrMFP/Uzv8CVlw9J04LBIOHgYMJb9845P68QTYnWmkxSNgAAkeFJREFUCVOhCSKwn+dcPbzEBMVwtYbRgPP5gtnxCfb8hPHhEQf7RywXc+6++S7na8OTzz7OJ16c8uLz17h+/TKHR/tkxRipNFo4dDeTrqTEI7HW0tQV62pNXTWcn5xycnzKnXfuspitUSoHK6Mxh9adEpAA7zrev6Vt6o77b1FBoKXCNDXzssS4QKI1rQ3RHbcTYU20ovUBrTXrxnDndM2yduTF9pbrxUuiiGrUdWgaw9e/+U3+1d/zL/Dw4X1EmpCkCYlpOW+WLCsLzZp28ZDW1Ig8ovN6nDHMomJzUeToJKWqai5fuRbnBLTC1iZqPQZPUze07VatWEiJ9AGU5FOf/i5s3WBM0+3OAolkvLfH7/zc7+DBwwesynKz4C7OuUTMoKpK6qaKjkN1E0siqdBJTq5KtBYxJ+zk0YUQnQdDzHRNWdEa260NNipE205ZBItC56P4/lHwnTKFHbrxBxwfmSDQH7sz27spTM81D11UFqLTkUOgJeSpZm+QkiWSZen41sryxKdf4t2vfYmwOsOUS/LRZc5rx2wxozEWpRVl3TBVkvnMkOoUqWNUzvMUQsBZh3SBQJzW0UqTSsnaGkobkF6Rp5KyrtFdNnJ3eZvgFZkKeFPhgqCuV+RCsI9nYh0TobnUBExdsj5fsGpqmqJg6QOrpkKOhoxefJ5vvnmPpR0zuPIEn/xdL/LUdcHHn2g4OipI8xxnS3xZ0bQNbVnSVGvatkEJRW1jhyQEUElOMS44PJySZxnOSZx7G6kEszPbMSUDzhiMc9i6jdbjCpS3CNsSvCPPhxjrmJcNQmgyHeK0W3cjexdnPaQQaAGzsuWth0uq1kV7uQ1X/mKvvR9Aiguo4Xy9Yu9wj3wwjW0xtSBVGXmqsGGOzjRBpBvtPJWmnCxLIFBkOXiPULFVp7QE0c34S0lbNxhjNkpHYgdJHwyH7E2GrMs1SaJJ0wytE6SQWGe4+dgtbty4wTdff/19HIG+rS0QNHVNW9ckWYZuakxIwHmyNkd0smVKxO4RIUqxEeJ/SyXQYit2s1sMbOTTutWxdVK6qB/x6LGVU3//8ZEKAn3P1ftHU6zI6hNSkKZJlIlSGkzLMIW9QYLUOVkiWa+X2OB5MF+z/NIXsOsFbZ6ydgWXJlcpw5pzXzGeTHnyqSd55StfxtmK0XDC1cMxjYn1rDeG1rQIIZF6K0WNFzgUQQrGe0Xs41rHSCdxYAWBM56AxXiFbwPGWSyBSkqOpWClNPeV5O1QE85OKIZXOXrmeZLhlEGaM0kzpvuHXLp+mU//gSnXL40YjyXOlLz9yhepy2Me3n1IU1W0jaBqHdaY+L6dmYlzcY5CaYGUniRJKFdDRDBkWcxehNK40NK6hkyNEYCSEJxHJQHpLaGxtNYgBQyyjLptWDctQgeCddQm9qJFN9kYGW9Qt4a7M8PdRRtHapVCKMlmHK+fm9/pu29YcwHunxzz9ONPgPMI5bHrOVlaUIuEYPZYrBakylEuVwD8Fz/xD3k4rwgS8mIQAeVBNODQiY6in1rijY2Brm0xnWln6DoGIQT2JhOOxhOGwwIPjIYjYmtIoY3ADIcc7u91USO2A7dH55shomFKvSoZ7e+j6bEMjc8zfK02HQKBxwWHRKC97Ma1Q1StDrDByfzFnb0fbX6UvLR5zCNdtG93fCSCwEXuNR1yuh3q0EKgtOTSwR6PP3ELrTUqBMrzc0w94/r1a6gs5fbd+6xmgdoGsjznfFWS+IAvK0I6oDYtxd4UdX6Ks5ZBmqOD5dwEbh5N+fhzT5AUY9ampZotWC5nWCeoqorGQVXVWNNiPAgraJsaqRMEUap8PBjjEgVtQ7VcxlHgIiPXCYtjS7AeL6EUIIPEKEGmEm48+zH+9H/wH3J4dZ9BohlmgkQ6vK1ZrtaslhWr+Rmz2sSOwO1TlGyi7r2XGOdiDRpi/Y2IY9BIjXSK4Fo8DYmO/gfe1FTGUQwGVHUTXX9EQPgWCRt0n+AJeULiNbY1zNY1PgSsi7V/07hNj9oET4LCCYc1noXV3JmvscHHgR0luzq16/x0323chbflX38f2KbFNnEsWkhBOjjAlZ6wqlksVnzzrXc4f3jCg5MZ/xlwb1YiQ9R7mEzGBBcYjffiTtkJDgoJzlqEjvyP1phNMIpMPsEw8Szf+iLidB8xmKAmh4SqZfDYNey6ZvnwDolZbltwj4B2scsY75nlbM54bx/hAu1iTXJwiEgL2rUnJQY3GYhqwyEQJDgf/QasjYzBXYB8c2zwiC5DfnSRh57/sDNW/M9CJrCJaDIqwUSkNV7iRGtuXjvkxtEBw8GAZDSiqktGaYprxlQuwLxEqIx8MKIODa33mKYhGw9o6opEwOFgyI2PfRdnpycsTx7y67/+67FVpRL2xiOu33qcRA9YV0tWWcHly5dw65rGW0IQrFfn1KZhVVnWpaVsWhrnEVpjnGNR1/g6AkO5UgyylDxLWdUNPZWTELZuvlISJGSp5/GjhKM9TVnWYASns3OMczRtFXu/SpAVOUUx5rwKKF2hhCLVGhUMSZZgnUcoSAcD7Dpy1ZVOsFbiBbSVoWlqDq5f5sZkwtdffY+HD2oyPUIpTQgO56KZpVIakSUIE80sZ1U068R51nWL8wEp1KbdmQtNcB7hFftXrlD4llfvLjZZW1S62e5WwYULN/BWTSqi5NZafBA0RqKySwySA0Je8cqv/jRf+cYbzOrlRs0Ieot5QZpqimLAYDJhOI5gnDEdvbbbfWWA5WIZaeo79bQScDjWDOQauVrgS1jMMoKVzI+/Eh/X1FzNO35BP9Szo+kvEAglqG2LFfE3SZoCAqsETihW5w3e1iQ6kGjB/mQYswEvEJ2MmjMe4WNrur8+/Xm+T29jZ/0Eolzl5n7rH/PPAk+gl63uP28gdLuSYDQquHzpMtdu3eTJZ1/guec/waJa8u6b3+L1N97iza9/lVwFtC0R1jMoMmwQDNKMJE9RSQFJyseef54mUexNJmjTYFxDvS4ptGY0yFmva4bDDHRBMtAQwIoVsrOL3ts/QKQJy7ahXJWcPrjP6ckxrdIEmyDyaHcVbItSGTYEFmVUtc10QmvMxulWSmIrK8/isIj1WKkQSQJ4Di4fUdc15VpTVWsQKhJeBLQ6Z28QSISidW30M5CSIkmRKsE0BlUUse+MphhOCEJRpwa3qjh+aPjGV9/EIRmPhti6wpsSGXwUUvEBbIPTCauqZbZakWiJs46mtYQgCcLHultGbUURAlIXvPDcTabjIV9/9z5Kq013a7NjPnLT9j8/eljnI8goE+Zrw3CUY3zJ+XrFfL2IK7qz7oivLyE49iZ7XL50mWIwQBBHcoOEIFRU3FGaarXg/ulZNATdaTWlScKtwwkZHknU/3OtgSBjHR+3bA7HOVJGhyP6jlV/Xp0qs20srYmA8qZnby2yXTOeZBQqIQTLW3fOKSZjEgItAYXFe8GirLD4DyUm7R67Q3Kxw7ZlFD7KZfig4zdjSHoL+G+AK93l+sshhP9UCHEA/L+AJ4impH8khHAu4tX4T4HfD5TAvxlC+OJ3fJ+dnwSQKcE014yUZu/mNVSANM155tZNvu8zn+arb75NJh1L53j3rdeYTqeUizk5NaGsGQxy8iLWhHjPzavXqb1jeXrC5b0xmauwRrMKgaqpWLYNb7x9h8ngHKElSTFEpQWJTklUtCZPlMYLxUDnDLIxtqoIzlIGTZ6Nuffundhyah3pIKWqSgoJRZajVdUZaMb/ha4GbdoW6y3WObSMqkLeW5yxCBd3R61TlKpYNy06zXj3bs17/pzrR/vkRUKRS9KsYP/yTQbjm5RNgytXlNWK89M57907o16XLMpIl90fZAyLjNa0eNOiNCgkoW4joSfRtE5QVi1Va8jzhGAt69YQgsQHHzkT3cRf8J7KCD7/257jpaeu8K13TtEdGeqC6UVgwxNgN1UNvWKv6IAuqJuWJE05P6s5PJB4LzHGo4La3CcXJTRjujueThiOx6RpHqdRXUuSaHwQyKA6CW/Juqyh82eM+TjkuWY6ynEu4DvVnzjUExF45TxWSAa5opCStY+LrMcThJCdkYikrBpOlwtUlpBojdCSpqpRCKSzoEAKxWiQIpwlYBE+JQiHC5qyMp264/t3/t2fN1llH4TC7tXYBgz5W3QgssCfDSF8UQgxBr4ghPj7wL8J/FwI4T8WQvz7wL8P/G+A3wc82/35PuA/7/7+9ocAiadINKNMsZdLDgcZv/0Hfg9v1g33336LxeKcN99+h4994pw01ZTrktQ6Ll++zGc+9WmSZMQ33n6LX/6HP4v0BsSQxsS2kEo1XnhSrdjf38NWM2ztsFnC+WrFuraM9gvuVTXVakUiJMVgyMHBAYNEc3A0IcsLqrbFNC1pVqAGe6h1y9UrVzlZlOSDlEESVWt0mrA+h8X5KTrVoGMbSvgQ/ec6fTkpJM45jGnx1hGIfP62NVjvN7x2LRIGRWSv6TRnMde8/s4ZwQbyImGU5wzfbsnz+6wbw/HJOfkopw2OvcmYbCi5mjusqcBYTFnHGj1EqXTrfHS/STOqxrAoa5wzKAl1ZTA27jCEEGW8u93ftg6ncl544SZP3zgk7Wp7KXaltLrMbict9WzJLX2ZFOgfHyjrGicck5Hm7u1TLl2fYEyD6XY4yRaNp/s5ENNlYy15nqK1wgewDujowUFAlkeBUd3v5N0tOB1mHI2iW1Fc+w48hB43EFEdWRHYKxJWqwZ2xtxDiCWJDA7XicmEznQlzzKWTYtUCqUUzrVIpYmmuB6CwgaHChC8Y10ZbJSNZTeX3y2f+l9v8bOtlqASckPI6tfXhx2/GVfie8C97uelEOIV4AbwB4Ef7B72V4F/RAwCfxD4b0IMQb8ihNgTQlzrXucDDwEMteDSZMB+ljBOFZePpkzGY575vt/GP/4rP8a1y4eMp2PyQRH95IKgsYGqaalaz8uvvEpoDJevXOWzv+Nz/Pqv/BO8MTgcUias12uCdYzH44jcB0FrfTRzlJJ102KbFcJYCiWYLRc03mGCJ88L3js+Y5AnjMZjmtbg3SnOBvKDS6BS2nZGmqYQHG1d4WxL21TgA/v7e5TWUZZ1XBcbZDnWvqYxtK2jbk1s5YRA2zakaUqSJghKnHNYU5OlGVcO97g2AqU0w8kEjyPYqLyUJpqpLLh6eYRWgsXxCevlGbUxBG+RwYF3KJWgpEKjaNsWqQQ+zVjOSxZlQyoheEG5rnFdS8sTSLWO2jgh0FpHyEa8+NzjsUMDm3r+Qg3a34AfglL33gk9PdYHqJsmKjgvjynSnLtvPSRNJU3T4EVX378PEOvHx+MYcWyhxclR521E3YndjNOz2eY8+tc5HOWkMtBKh6JbXFqCUMRoANYHhBc8fW2P29+81/lFXFycvpOsC0pgquizkA+HLNuGxjRIF+c+fDc6D7GF188TeAGrJipTsaENb9ZjFyy34F9v5htC33LtL3f37zuB7oOOfypMQAjxBPBp4FeBKzsL+z6xXIAYIN7bedrt7ncfGgRSJXjp0oDpsGA8GXKwN2QynaDTHEkgyVIeHp+hB0PSPGc0GlGlDhOicstwOGY4HFGmNddv3uTJy9f44i//GtZZgojuM8ZYzs7OuFrkrFcrjA/UxgKBURENKZbzBcvVmiTLuHz5kDTLSFWCUIpWeNqm4UFdslpXCB/IBwN0nmHKJaNUEsYjZqcnrMuK89kMTeDS/h5aSVSIhJNeCX5X900Ej/CBTKdIrfDek2gdy4W6joIrWgEiAnZC4UL80st1RZ5pvLPYtmW1aDojF2JwqUqEDiSJIrSWQEDr3go70FoDWhEcLE7m1KZlmAjKqqFp2ijLXRsQgVRJhHcIoVhVlvHRJZ557DqJcrEjQRygCsETnIsc+5jR7gBX23ZWBEf7qyC7YAAIyJKUItEM90Z4C43RlIv5zmhtxAT6o097E52QaEWaalw/hbdJiSN/4Xy+YrFab9qT/XMPxwXeWWIKrjY2aVtabySmSam4dWWP9M37WM8muIUQ2asAwXe8hFQjBymiig7LdVmTegcqWpJtlIY6RaPeV6A2dH4SFwOdu9CS9Ei/kxnAhYARP3Us15T8rZUD8XsRYgT8TeDfDSEsLpIkQhA9++M3/3p/EviTAEWiuH7tiOEwj6lr2tXfteX2r/5jrtx8nNtvvBFbPI2lXpeUPt4Eo+GIWb5gNp9jfcvxO+/y/GNP0ApQ3kVbaB9ronVdIYUkyQqUkAwHA5azMwaJQgdPlmXcPztHG8vj1w7QGLx3uNZR147GRVbh3iBn7+CQYjTCmpayqQnOMi5SLk0K1lXJYrGHspZCCoJdkygXwSRPrE99QERCPc4aWtcik7gjRjPNSMNVQuGlI1Gd9bSKuny2EQhrsdaxbgJ1tY7257qII9TBgYvS2oPBkKZe0dgG1zhUliK0xoUQXX6N4ex0Tl2tSJWkqRx13SKUxJgWrSQ+SLSUWOdZGsH1W4/z2PUDhHVomW7aXAJPIrqyZ/NlX/jit/cN27Q2LrRtW2synlCkGZNBgUJx984xp6czTk/PtyIa/mIvPITAe+++y4N793ji8VvkeUGa5TRV3dXagkRIXvv6qxgf4ng5vVq1ZX9c4HwAofBixyEosJGtkyFCkePxgFGeclaajeDnVtgjch0WszmNtSipyScT0nLJoqkRUagMiYjljQudn0AnMeajAKxzvdbBzvXrf+7LgZ4e/Ig5z4Y0tPPZPuz4TQUBIURCDAD/bQjhb3W/ftCn+UKIa8DD7vd3gFs7T7/Z/e7CEUL4y8BfBnjs+mH45/7A5zFWUC4W+KalampqV7JY3mV5JvDCEbygsY53Hpwip2OSNGN/74CzsxOWZcXk6Bpf+vrXmDc1iVTRCTjRNC5ahbdVjbWW6d6E/YMDZicPEEKRphJhHZO9Cc8NBnjbIJO0s6ZStKYhSySmbjjc32M8HTMoEjyGpq0QpsWZCPolOI5SyZWjMXW9IlOapNjHpCtOTle4zpK6T1UFnfBJ6CFRuWmT+RBAho4y2q0UIREBZIh04ESxsdDyPiCFJ0lSkjRDa0i0JFiD9xadJCS9qUsW1XpXiwXz8zN8sCghqKoWG+iEQEFLiaerMW2gCorHnrrBlYNJDFKd81LStXV9iHYZPWa/Md/ssp8LAzfxH+LDfNgAdEIIRqMhB9O9CECmOemw4JtvvM5itY6Zju0Hf7avJxHMFwv+5k/8bV75xjf45Cc+wfd893czmowp8hTjPPWq5fVvvYEPoZtu9AipkcGzN0jZeFxwEXqMkl90yj2BNIFRpjktzRbk7BOZAEjJ8cNjqroiT1N0lrI33ePs9huE4AjouLj7he7jHGDwAe88LduZht3zFBd+vpgFPLK+4rmJeF/0Y/kfdPxmugMC+CvAKyGE/+POP/0d4I8B/3H393+38/t/Rwjx14mA4Pzb4QEAg0HBSy8+Q2UtVVViqgovJXVVYq3l+oMlZ8s1KnhGyZrWVKRNgZeaqoma8aJt+Zf/wO/hZ0YjvvXr/4TrlyecLZvOG16SpSqm2m3Dtau3ePPttzCtRSqFMRWZlsjQcjApSPUQpVKCkGR5jq3XtN6xN84pBgNcEJh6TVbkpBi09CT7Q9arBWa+xFUVXgr2Dg5JBkOGe1MW8hT12luxPx7vqlivdjba3tv4lXZo865tGiLuxBJBuW54cP+MqWyAwHIdFXSnBwdolSGEIE1kXPRSgjG4eo12BpVobBIn3Jq25fx4xmIxI/hIoW2bBrobUSrVtdckIbR4By05Tz11g6P9McFahIgtwNjZUAQEPkiMj2O84pEb+MPAqYsdggjunZ2fIRKNVgqzXvHl3/hVbt+7s6Hlxiz8kaxCxIC4XK34tS9+ia9+/RV+6md/jquXjnjqiSf4+EsfYzjMOT47ZWP02nXhtE4YJAIZumAbuOAavF128T2VCBSJ2mQL/WAbAoSKAbExNQkqzpHkKaFaUC/mSG3Q1iHSODAUI07vIxBLtd71+dGj5wlcYNN+wC4fsdb+ce7btgl/M5nA54B/A3hZCPHl7nf/AXHx/7gQ4t8C3gH+SPdv/z2xPfg6sUX4I9/pDZbLBf/gp/8eWgi+fmfO3fslv/93fJzDK3sErdg/HDCeFIz2Cs7eex3zQFDPj/B1A96wWs25vzjn5V/9Ddy9txlpRaZh7+YRy7VBac1oPAApaI3h9PiE1XKNMQ6PwDtBOlDkWjDKC2QWnWuyJCFXEkYaj6Yt10iVEFTsTPggmUwPaKoaaSvOVktG45zBpX3yYogUUeDDIXBNGxehdUixXRQeqJuapmo6FD2q0iip8baJX6INLE5mvPnGu/z3f+cfMJJzhlczqrIkTxSj8ZAk04S2IqDwMo9TcyJgbYNzFpWkJJ0st2kb7r53D+MbEh2oG0fdRO+8vltAcNEFx7cQMqzI+dTHniJL4zyFRyJlVMVNdXzdWND6zf7Zu+vEtl80NVWb9D1egn7xP9rPfvf2HX71136NwzzlH/3Sr3FntoZg44DNrk7kNj+OwStsCUS1abl/7z4Pj4/50iuv8hN/9+9y7eoVjs9OCd4RRGwROuc52C8oErmDxvdyX50iUteRECJaxmsZyWCC9S52v+luQKCqKlpvqO6/w69//VV+5hd+idE05fd9/zOc3X/AdDzYWOLFv3xswXqB7a2wP4AU9Oii350d6JmXvmMM+a5rIX8rmEAI4Rf58AbD7/qAxwfgz3yn19095vM1f/3vfJHLBwP2buyT70n+3i/+Bo2A/emIwWBMrhO++/mbHB1c5q03X+Pw8Ixm2WD8HjhHlqe8/fUvMR6lXLu6z8tvvsszR0d4mXHzxg1mJw8p0pSz1Zr5ugHryPIMs7Y01nG+cDx2PaeYTAmmZX9vxGQ6ZpQP2T+6wsn5CffvPaBZzkmVwBmFkArTtijX4o3haH+fJM1J8o5M0rRIJNJYLk9yDvZGPFzVKB3ZgkLFLMC2hmA9UgSEjMl0VbacHS/51rfu8IXfeJm33vkWtj7msUO4cfkGEk8+GBJstCoTWuF1Er9UlWCtw7cG7xxaZ1hnoitRbXh4/wFSNKSuYVlaWhc2wyp04JmQ0UG5XguG+3u8cOsyRSYw1scAIALOedJE4b2lSBKqsmExrzEm4KyJN/ZuX5vtot2Aox+yozln+dmf/8eIILrhl/i8rcVHf8N1z40cXpzoeaZykzGErtxCSR48OImDfsQBnSAgWM+lg2H0ImA7rt4z7aJhaK/OE0FXISVZN03ar45Yovc8kMDyfMZP/72f4u03Xud0ucIRsMFx9517TDPdZVzdJKCPpVTfRe0hld0gCVu1rc3g1Q5Zafunjx9dufMdCEMfCcagD/Cpjz/OD/zgxzm6/DizxvC1r9/mwckJb92/y7t37zIUkvPbd3nu+ZtMJ/tYUyOkxZQVKMlwNMT6hunlq+A9T4voQnvz+gHBW7ROSEc5pnLUnZy3aw1YCwiSPKEYDblx8xIHR0fYtqZdzLC1oFqtEVZw6fAIcXTEbH4OyRrhW4rhAUjNaragXs6iK7ExVOUaV1akRU4yKNjPBD/4qWd569oVjh+eUdV1FJIUEi8sv/bLX+Hu7Tmt9ZzO59x97z1mD+9izYzrV3I++fiYo+EVULFmtdaT+YLg40I3xpAMB7imwZfr6BfoHVmaELIM5QUnp2ecPLiPFi2urVmsaxobQVPVoehCiw3YVDUwOLrCC0/fQIsoi+5CdGIKLpAlKQFHmiiUlDw4OaP24H2vcOM33RB6bl/oSS2ya631epLb6bf+b2svavlt75ftfP2Fvjns/L5Pz7e7afBsyogYkOjMZOGJS3td+r/NVGIu4yItOBDNZEOkGutOmbpv1fWv2T8/EGjbli9+5atbAZUgWFUt7y4tv/P6IaZqIhhooyBtCNHtygaLFaoLYR0pSHUj01p0qtlbwHD3uu1mCiHE4NdnNB92fCSCAFKxMp5FlRHO17Tlguefv8zRvoRU87XydRbrltXas3j9lJeuBvbHBd54jAeJZlgM8U1gbzKmmEyYhcAb33iDQqVMDob4XDNIU0ajIbX1rOsVstP6v3npEi89+xhX93Omkz2aJqZl44MbZMMBo8mEG6M9kjRhPBrgkZzPFjy4d4eHd+4R2pq9x26xWh1wejZjdfyQbDRETcakScpiec7i9IS2NVxKJY8/fxlwCJXTekDlmJMvcbf8GnleMMoVn3gsZfDMEVl6BazHuihA4V2sVZWGplxTLWeEEEjSFN86mrLE1A0yWNApCMnyfMG6aSlnM7LQUDctq1UNQaJFf8MHCBIR4iTc2khuPXaDx67sIYTAONfhF7HdmmgFRHBNAvPFCmMFUkuU2Blq6RehAHbMTns2behS4AsjsGLzfxuDUXbKANFDdjtouJSRKtvPI4TtCok9dNEpGxEXo5QS0dXfoyLlcJQC8Zzi4lPdjh+djkWfEvQBIcBenhKbYvH1YykSw8t2MtLvXIv4vPNlQ6olrbPduWzPTXZy6NbHgSIZYhbQM/523aUj6HdRkg/Y8Aj6a7R93gcfH40gIARvn6/hV76IR3Dr+g32rmZcvvIC2fwO5eJV8JajUcblkeJgmrJ3NGFxd85kPKJuWrCWpbc8PJnx9P4+tI5bTzyOcAGcIgo4ZNy6+RgexWg8oi2XZErw1K1L3Lh6SFk2jIqCNIt1dl5MMc7hqpJmtaLEYVaSIi8YKwF7BZcOPh5T5HZN0zRcvdXy5mtfY1hokjTh4e17nN5+h3p5ipaByglMe8hgOOToIGroF8WAwWhCMSqi0QaxLkRFqzGvJEFogrEEKTG2pS0rlmfHuHpNXgxwQNvGEdngPS5JyIZj7t29zXw2g+BJXU1ZNdRNlAUDCCbW2QiJVQHrBU4kPPfMY1w6GIMSeBNnJ6SUtE2DkmrTwdBSslqVGCfQieba1THH95dsGuzBAxfrVejTWtGpHW/r3m1ba3t7bNLz/r/puysfeDN1JYjfLIDd1+8ZdXHxCFSSMBqkFCnb53WrPC6mTh8x9ISc2MuXwHSUogW0PnQgXB+UusJnd2HufIYkSaOlno+albE16HsMmOjbKiJg3FvH9+fi2bz+hWt24X12CUbv/yyPHh+NIBA8h23NzaVmPUp59bW3+YHrT3N4+Ra/6+ZjfOy7nuXtL/0K6wd3eO7WJQ4PRhw/OGU5S3nsxStUVctifsbNazcodMA6wc0bB1BHT3qbJjRv30WGmtO3X+Xw2nWePNDI/QMGB1dAeM7mCw6mBdkgI0GQ6xTXLgnWslyskMUAbyyL2ZosHWHWC8hja2l+5zat9/gkx5qG8XhIuVzz2pe/wuyd1zmYJEwPU4KFs7nh7PSE6ZWbnDTgyoap1aTVKfpMkyYJRTFCJlHEItEKLxTBgAsGYaP4ZF2vMVWJHhaIJI+1o4o2Y85ZnHHcfuNbLMsVzhtSFTierfDeR90D2wKyG3gRUR/Qa4Iq+PTHn2aQKITwGBOBPSWI0lxaobuZASklq+UKZwN12/Cppx8j15J79oTQGWf4zjhDhLjLbY/4vkqJTj9CxrpQxL1YdG3DaBEWwLNR3aHf4eQ2NPTMuQsLQO5mBNtgssunT7TgaJxTJDH9jrMAgr69JjqloDhtKDaZhveB4ThjqBVN67u2YCxDeube5vYO28UaAmjpAUlrA+iAxUUdiDQlSzTOVl3QDXihOm5J3PH9TjDZxIId/tAmQ+qucXfq3/b4SAQBJQXDq/uoPGNWtSykZWY9k/2c5bxi9srLXEs9N7/vE6yqJa+9OUNlj/HSb/8BlqtzBnlBKvaY5AlHk5TQrJiYgFUJtnXkMuETzz9LcJ40TQhS4XyCkZJ6tWZvmiKLIc3ac+nKFJSidTEtlGnC/sGEZHhACBrvG2anp6yRhHXFer1EDycMi9g6rBYrhGl4ePoQc/oOhxOFzhKk96xNw7L27F17krqObbnxeEjbtixLixSaQZ6yKEt0lkXtOREFSnxraa3DdJ3DREmy0YTWGVwQSJ2A1BACq8WS87MFTb1iOtCsGstq3iIEpJ35igmiA58EzkPZOvauXOXjT14jzxLwHuN8d1NG0ZJeF0BLcKZlvaqxzmNs4OPPPsbeMIuj0KoD2ESPs2+Rs55BsKHXdkCWlD0HPpYj8erHGrlfAFvcPi6A3Vt8ix30873x32S/U27Shm0+4fE4a7gyHZBEkkMHGG6VrQJug2N0gwSbXX88zHnscMLZvfNYWvRIf9h2FvpSJh6xQ6JV3w2JBYjzkKd5LK1E7FYIyVaZuK8juk8khIjmqCGegxfbkqC/NrsMwm9HFIKPSBAIQjBrW75w74wlKZ/5bZ/j87/9+zF33yA1C77r6Sm1KXjzjQd89ctv0jrNn/gzP4zPUpbHKw4Hmmw6RXpDtVrgTBTfiLMmEYXXIcO0DavzM+brMnrVBYXKUkZa8eRTT7J/ZY/Vcsne/iVcInEttIsFgpaimJIMBrzytdc4O77PZH9KmqdcGl6J9GGdELSm2as4PTlh8fA2RRoJS/Wypqw9pyuDzfeRVtAsShKtSHSU8fJCIlUAEZBJEr/QEGiqEmMtdd2Q5hnGGWQAFxLWxtPWNeMx7O8dUJkl5w9OOFnO8eWSXHmWVcWq7JyQRDTi7JtooQO51lZy6cYNPv7UjU6+TUZBy07DDgIqTSLtVkVB0KosaS2sS8dLL1zn0v4AfBxF7tN5JcTOTRkp3n2ryhrT1ctx4UcEvF/gMRXWSYc7KLWtcZFRFixcJB/tdiDoftrswF09L6Tc1PdSRuPZVCQ8eXmAJg77hO7Db0A5dpLvjt6t5BavePzKlJfvzzoG83aQp/8TOlyh+5AE4RnkaczWnEelMXAlOgHhCELQOAdiC37upv8beEV2k4EXsoztnr+dbOwD7kdcaFQFSNYwunTES9cO+Z4nRyTnX0MmLQ9nM159+Q3effuY+bpF65Rnn36Sd177CloHVAgkxmFbT2MaTFMjQlQKtkag05ygE87vP2S5XFK3cceVRUHrHO58RZkownuK7P4DxuMRo8kZ6XhKmmYUiaatFrz99hep64o81+wdTtE6IdMpWZ6TJRlaK6TWjA9zRpMxb9x8nLe/dJ/zZaANGpWNUIc5mUpwpt2IehpgkKQopbEuTjzu7x/y1htvg7dY29JvJus68gbyNCHTGpTjYG9IMRmzqtfcf/cu6/kZ3rdkylAZQ+slWstuLr5PIwVSa2zrqJzkpZee5erRhIBHCk0wJjrddKml1tFaTUowdUPdVFgH6yrwiY8/zs2jcRxL7utt48il5nB/SmVclFczDtfJxAPb+bju5t1MvG2ArGhn7kMfBHyHkF+cP9g9dkHCELag2eachYwjwiJqGdoQ+NgzV1BCMl8HpHKx8yDiDq5EXCBKh82i60B6bIjEqL1xhgK8FHHTuUDmCQihUDLpdu2Yf0yGCc45auMYFXS8fr8pO2ofg2H8HJ0qUHeqcTpz22jtz7cPip6wOe/d4yOPCYwnA/7n/9oPcfXSlCRNqRbnvPPN17l9+yFvv/eQujR459EqYzAYsb83oq3ntCHgRbygplmjVYIzMZorrSlGCVmWYaqS07NTVrMlOs0QaYqbtTjrSLIMISXvvXObvMgYjaKm3HBQsH9wSDHIsbYiTeHKlX10mkeLMq1jGitEZ2gRGBUFUkaG2P7VJ/hi/UVEMYhgo1Z4NB6P1gVJlhMCpEmOROGDJEkLzs4WnJwusd2uKaWKGUXb4mzA4fFZGvXqhWIwPcCZlvtvv8Py/IxEWhJhqI3BAUnicU2IJB0R7boRgqa1GDXixWce48blyUYa3FgbBUKIt5jWuuM0gKtbmrrBo1lWFc8+c4urB+PIbvQu2rzBBuBKpCAkXUfFRadp5z0sVxzt7yGICzUGh4BztmsqdsHB+ejk03VFjHH4YDftuIvtsIstRtG5+fZWdr3ZiRB9C9STKs1zV8eMMx2zFQHexV3TWEfjBU0IiE7irFe8iu8RIbvaxAJF66xTS242vX3Ehg7YKTcFNDBMI2U4CEmiRNTL7PgZSnaMy/78iN2gnlLdISZddrUFXekeK4Mg7HRn+onVj3wmUGQJB1nCq194heMHp6zrmrqMfXTjOlTWKaRMePrpZxBpQm0Dw9EeiIBvIyFGEmiaJZNxHvv/vqVpPWVZsyorVusasSxpvKNpo0TWY1ev4wtHKkE5w3oxj6motgg5oBgWDIYHSCSpliidkmRx6hAfCT5KCqyN0txpmoNzPPncC4R8j2o+RwqDkxadCLLBmLo1IBx5npMORmSDITpJaOqKzMNydoYIAddEkU5XRrUk7y2YFpEn6FRz6cpVbn/zde4/vAfOMEwdbV1Su7gKUwnBxt0nSOIC8pK29dRqzG/7rmcpEo0PHkVs/QkESmustaQywYvYflyvZ1RVtPR+88FDPvPdL/H4pTEQOuadBuFim3FTBluU0PimBR+Hmlx3M2ZaobWOpY2Lo8c+eNBR/lx3w1LOBoRScYcTkazUtg1ta3DOkSgBa6JUmN9tD8b32aD1ArTUuNB1I3xgPM7JE3YQ+Chjr6Qg1V0AIU4N+hC1HIOMOJwMDk2gqqOMWOo8KIVSyQWvQh/cpkPivCPTioGOQcELQZIoEunRMipKQYh6iEIhu3INxAVAUIhelIZNMBA9oCrZaCf0ys6wgRQ+8PhIBIHFfMXP//1fxBqLEIGmq5dCkCihsCEgdcLTL7zA5PAwymcpgbM1qJxsOCLULc4bvGuYn0QvPKUEdeNovSMbDFisKpp1E59brvFC8603X+eFZ54lJJJiWLB/dMggk1y+cpnJdEqapQgh0DKOkETXI9fVejvMv26XDQKccVw92ONTn/8dfOGnfxrpHXpwSFZMyUZDkrSgSDW2WsYv0Bm0hNn8jHq9plouOufchrxTppmvVnjnyXTCdP+A8WjC619/hZOHd5HCkEpLU7VUJtIDVAewCakRBLzxiKBZGxhducJnn3sC2ZlX4IgCIl0N77zrJMsEmZKsF6fUVUtrPfdnFS889wRPXJp0e7bfccAN+M6PMZGCo9GIqvZxJFZ6WjR5pwyUIFDeowio4COYJiXeg5Q6LiY8IlhUCMjgQUhyrUiGe3hE1OUXAc7m0fugNRvAscceRLcbSxnPBxt3e6kU08GApJvslKo7F9eXCxGcREIQjkBLnOaW+LDtSuzvDRgoReMNvhs5prNX2yXpCEAqyY3LIya5RAEKR6JS1Ka+D0gf8DZ+Pi/AG9thG6o7n93Mp9vpu52/RzJ616I+gITgPrBE6I+PRBAgBEQw0PHmZdhObcURVcGV69fY29+LNN1EkxcFqc5ojcHNTvBty8nZnNo1DEeDKFJZWwiORMD5+YL12TneRPcfl2acz1aMioLR/ojhuODK4T4HB/sMxkOyvCDLi0jxReNd1JpLdRTOtM7F2XERmXnR8jxQV2WsoxPFP/+Dn6UqLeVszmBvj8FkP9J4VZxDWDpDs15i64aFjRJT1pp4Q3iLc4b1uqGp4r4WnGTvxiFIxevfepVyOSPTHi0cVdXQtBalNR0DgGieEgjOEYRnVmuuPfUkLzx+BUzoaLKS1tcdGBfdlqRSJFKitKeez6kMGB/4jdfu8ImXHue5G0c479Eifktxx+w46qIbgfGedVViXQS9NJJMbm/iw0FGsBYlPEFrXMfmc92O7zuijNSqgyZkh5R7goniK85HzUCArPMa7NNx59xm11RKxp03uAsLJNcC501Mt+1WoBNcN7ApY4vQe7z1sYXRySYKEXGN/YFiXKTUtcfaBt05LPlup+5JTEJKJJLpICPTmiCi+pRUUQNRyC1WYXy3wH2Isyad9ybd++4GgJ7mLPvSgb4cEh0T89vjAfBRCQKAVgIhNMZ5EiVBBmzrCTZw/cYNDi4d4ZuaLEkxpqL1DU5q2qbm/v2HeB8YTUeMZA7OkKVDVDFgXS24/cZ7zGfnCCFoW8/Zck2jMoqs4NPf8yLPv/A4070pg6Jf+ClZlm2II6kWiDTbzHojiAw97/HWRG86HVVurbNRlBLPJM/5I3/on+MXfuVlzo8X6LrGmoqyrsBZ3HpBs1yhtUQnmnpd4k2LCNFtSSuNsxbrPMVwyNPP3mJ+uuTOW28igmE6LDDrOatVg/NxITjrEB6yoqCtG6x1tFYxqzUf/8QL3Lq0Hwk6KtBaj3dtTNlFoDWGJElItURLz2JVUvtAWVX8ytfu8Obxmu//dAab/gIQJBKP9dGcRQYBQcbUVAmMM3F8GgHW0xgDwMlqTesM0gdynZAIEdueWseZDAAlcXIrVR7NQuLcwiCReCc7bf4ooGI3ZiI73AGieo+0USwEiBJfUvD2gxNOZ6dMkoTpIGFSaEaDgmGhGRYJeaYjONg7UXVUbKHkRmjk7skaqwrGQ1gsLc65Ha5/FJQN3UJNtGa2shgXPRulVKju84ouQDrnqV28nk3bbshUWuvunHxHGd4CgIEYwKTc9H3ouyO78wUfuvZ+68v3f4gjoFQ0vpBaRTfg2gGKq9evcvXaTawL6DQlKwakwWPbmnK9YFnHyeuDowlFloLUXY0UqNZr7r51m/nsHCUFddOyaKBqFbeeuMxv/96P8fwLj1MMRpGokWWdnJck6RhtQikS3anfAt51Yg8+4KwlWNe52tRIYnComxpjG6pyCUJxaZqxPDWs5iesFqeY1nB+/wFtbSgm+xEg1BIbPCE4dKYx1pKIDIlCacETt66yns1ZLM5QwaCEoVzU1GVJEFEpN7huhFdKjLOE4GkMtGrIZz7zFFf2R1hjY1psurFUFaWzIodCkyUK6S2rZUlrHeWi4Ze//h5fu3tOkWWY4BDSbwi28dtjk3p6Hxl1DuJnILap8B6URHW3nAserRNaZ6llwIjYEqVT921tryAEWksSpaMcWpISuu9Ah21TbgM6stMu7DgIAY9xLUqoziYtvm5ZG2YrQwixhSqIQO9AK8ZFwihPKTLFdJQzSCSDLCFLFKNck2WKVCtevbeCJMdUC7RUtM7vBIK+fRevkhCCsrFxrsM5FJ2NHhCiJDLegnEhzmn0rk5dZgNsnLpDp7DUA4LxvAGxNTDZrvs+MHzw8ZEIApH8oGmdxztoSs94fJmja7eYFgUgkJliWKSItsESmM/nVOUaay2Z1MjWkI2HOB9ojee9Ow84f3AHXGw/VaVneHQZd7zkj/3Jf51nn77BdKDwQpDK6GefKY/K4k0mu/pUSAlSkyhwpkbIOHsebdKjZl21WkQFoqYmHxQ4Ialaz/HJGaGtkXgev1awnkqqKsc5z+zqZWa15fHnPs7ifMXDd+8zUC3L+++Bs0wGY5AK51u0rZif3GWxXDHIBYVynJ4tsCGQZynOxpQ8KIGWCa1p0EKxdoE2GfOZTz3HMMuxrSUIgbdxGWitNwBTmmjyNCEYy2ptaAMs1yt+5stvc/t4TUJ0dtYenItCojL4DrkWHf3VxjZX97sQJCJ4vHFdhz9sTDCMMwTfMfGIWjtaSggS6z0mxJ45hI3slvQe0VqUlCyaNqbcalP8vI9C29OUNiBdvyMrjYg5Qiw3fK90HFP/ynrqZc3DVU0gchaU6L0vIZWxxMk0lKQIBdbYbtFG+/PI4FTQDUg57/CtI086ebkAQQeC8ljXlT7CYpyhNAbTRiGc2JrdEqac85sORT8TsavptUEgBBv24nc6PhJBIASwPiEtRiTFlCujPYrBEG8tLlFoH0h1YHZ6TL1asVwtUf3cu4tTgfPZKereXfLBgHVtOXl4zChLKF1k47XABMW/+7/+XzFKJfVyjirh4PpjpLkmVRCEj600qZCJjovGxzaV0hohoxeBdy720YUgCEGaZbRtTd221HWJVpIkzSmKhMob2tKiZWAyTBlkCUIqDqYNAkleeLIrN1k/fsS92w94oCRKBvI8Yz07Z33+AO9qAoFxprHlOSetAVSnnRjHlelops4aQLCoFKOjx/jsczdQXc9c6QTXSWnBdmglTROyNMVWS5brEhckJ8cLfv7ld7h9ukYryWSYMcjTTr1IdkM4dDd9DCQ+hKiBF6LPXqZAo2J/X8RxnX4Q5tJ0TMDTGovxISLv3qNk0jEIO5+ArtD1HXnK42lNtBCzzjNIJ9095B/JAETXJuxeQETarwgBJTz7kwFFNsH7QNtajHXUJr6mD/FPP4npXcCEQGti+7QUAkGLB9LUoXUcm1ZKERXu43j1pjPRtVx9CMyWJe+cVDwxycDJyENIIivDW6jrFuviwFisOCR+Z5qyb/ltW4N05xxP84Jy0w5L8rekLPQ/xaGSnKc++dvQgxGJ0jjjaNsWZxtCtcIgOL1/zuzBfaZFzsEoJ8l07D07H3de12IcnXqrZzydsFquOZvVpPmQZ25d4dPf+70091+nXBwzyBx67xLLTKNcINiS68+/RDoY4ZomRmsZ96lI49QokeGFJNg2YgFNvYPABpwgag5WBliilKRIcySSxjQI60nzHLxBqwQhNYGW+cl7GAOnD+8yzFJuPvMM5XrO8XtvUKSwf/Uyy+O7zM8WGK9IsxTX1rEGT3TUpw/x3F0QPJxZnnnuSZ55/AgtFI1xm7l1Z7ubM3i0im69WaIx1ZrFqgGhOZkt+JkvvsnDxTpSukcZaZri8NjNzHvYGKn0dNstq69DDbzv2H0SpSLN1XWtO4nHe0suA4pA2i9YASmaTHk8OtbJvmsTWk/rHRaB76zfdAcMBik2rfTtEE+/KMJmgQgCgzxnlGkSCTpJcKmOCz4QU3KiwaoLkWFpraWyLbWxBBuwLqLtMnjapkQwiGi+77QDhSQIFWnBMg5Jee+72QnFb7xym7dHCVmScXKWMRkmjIc5oyylaj3eBoo0i+eiROx67BCkIg9hS03ukco+6/kg9uBvSVTkf4ojTTPGw30CXdqnQNkS1zSUdcvJ6TH1es3hJGMwTKJij5AIHWhMi3OBQZbTCo8XAZlH/4KyrhnvTblx4wZXJgOu3LjKnd/4WQ5GGuk1vjqmuleiptdpj9/h4PIhxWgCWQauBS/j/HiSRLHSROGM6VJEhVQiotFeUGQZo4FmIQJNE29O5yytaUmznGI0RIdAa0vKpQcp8C4gFCRphpSOx559htM7D3DVnLe+9iWqckY+VJhFydn5Imraa4G1DSrR6BCbQo2P6TYyowwJn/ruJ7l1dS+abxiL1vG6GheV7GWgk1zTaCmo6zXL5ZqA4L0H5/z8l97i/rwi1ZLJqCDP0k2fOgQRFXZkP6raqeviECJsbMmEiLJussMoXIhlRE/tjyl+rF0JEtVlJuBiyi1iuish+oOJmLU7FD5Ea7HWONJOSCUaIkVSz2bhdx2SKEOu8CGQphotNYQ4NGU7K/pYrghccHFmQ4EjOiyrPMORYbyPnzN4Wh9ojaO2ntYYTGPj/FNwGyAwgombyBSDQ3DMypazqkaz4tX7CknEw4pUM85zjFI4H23RZYgSa/2unmUpdKxA77sx6e79Nkwt+rfspyJ3s4L3Hx+JIBAAZxqatiUIR7mc0baO+fycal3hgqXIE5I8xblAberIO5eKsqxIpCJJE1SICr5eCKxzZFIwHOVMJwUi06xWC5r1nNPKcvPGZbQaIGVLO7tPWdfc+eYXmB5dp9g7wtRbkUmdpNSrNZgW6x3GWKrVqiOeSJxrWJcWawxJkpJnOW1bRgaclfhgmRYDFmdnmLYFHXcxGQSpzpCpZFVB3lYMk5Kv/ZPfoA2Go4MCX57x4HhNmmvqyhAcJFkGIXoNOAdKpVgbmJuEj3/yea4e5lFAw0V7bmsiSIgA0d0Uuc66VuWSxTpq+d95cMbP/fobnK1bEiWZjocUWRTO6Il2wfpusUUWokTg8JHwI+LcgZJxF4xNsT5NlzupLHgb24nOx52XTtBDdkCYENt2l/c70KOPz1Pek0pB01Tx9bosZNe9d1ezUMg4witVpEAL0Qu0is6jMDIGUVHyPZWxCxGIYKEzllT0epARiddJLMnIEkpZMVu38Z4REY2Qomf2xdO21uK9QyWxBSs6MNI5R+M9xnh84slkt6iVjixJ7zeZQFU1cRMkBltP3OVjoNuSgnoCUV+u9aPjH3R8JIKA94718pzGtczmS04ezMA70lxRty3jQYrzhrpy6CSmhXVT430gTXOEkqxXyyjiGSQWOF2vuH8842h/D+lr8IJXfuPXkccPuHZpQLs4ZTzJ8H6I0AWXnnkeGwzvvvFNrlw6Y/+J57DzObZpGKiUMBzRVDWubePiEiJaTTtPs2pIdEY+GBAImKrGWo/zgvF0j8F4ymIxQ6UZMk3jhF7TIBKByDPW68BbL79KvbrN+WyGdTXjzNKcL2hbgycg2k6rXkhSJE56vIrc8tOlQY4v8dlPPsHedIDvEGohA8bEKTiBiq7FSsRx4FRTrZasG4OXgTffO+Ufffld5qsanego66b1zgBdQPouiAgQUnVpbxcgVCSrqK4Gj//f6eqLrXhpvzOaOB9LpzS+Eez0Xf0skQgXIqBGnMyjQ/tFR/6xxkLHivBhh2q7s+tFXCGSzryzkR2Z6Y08WgBcn3UIQbIRPoluQJFqzabtt+vqIwmkEgQekaWsymhQC/3jJVJJnG86CbHoLbA3HjPNc1wIXRbSdQNC9FuQAlZlVH2O57SVF5Mq0p83ugsuslW3PAJBnucYE52stNakafrPQCbgPZVpWdYldWMZ7E2o1mvWVQsuYKwh0wIbPKY0ceLKg0BiW4eXEUOwNpJHlo3heN4wnEw5OBizmp/SNhVDd8bhwZBpoUiEo5mfMbo8xmQF6fSIk3fe4s7Zbf7hP/oy/8ofTjl67BZlW1GZGuEDpo2tv7ZuaNsq6vZZj0pShkUR2111g9QZe8Mp49EIpeD0+JjQNkgRMHVDEFAMByTZmNmy5fY773F28gZtvcLTMMwd7bqmbVu8D+g8AevJQoLUgiA8tlWIBOZry+jSTT790mNoEXUNTejMM4yLUuEyBtpMSlQiSBLNer6gbA2udbz67kN+8eV3WJUteZYymQ4o0jTO9/seJPOxWxGItFYNHRTRLU7RkVaiEi84kALhQ3Qwppcc23zr0YU4YnYbbT7ZLzLRDRUpgQoRF/CdKYh1UREqZlNx61O9p0NX/25qY4hz+c7ghEYFT56I6JUo4uh1TN27ll4IW8o/YkMBjkJKkUXY8xGiFZuIeIQWFEVKs6q21N6ul98rGNFRz/fynFS4GDBVBAV1HvkXOI9SivG1A7yQNMZTllX0QziHQaa7a7Gt/ftsqQ9kpiNThRBp1nK3LPmA46MRBIhpjHYebEOzblmWNUEp0rxgXi6ZdnpuSZZgpcIIiTUO0QEv1gqEyEBplpVhPMg5TCy6OmGgakaZ4PJ0SJJqjLPMV4GhGOIXc+qzJacPjzk5W7N37Sm+9w/8TlYqZ7+tmQyGnM/W2KbEBRNFKzsJZyU1QkWW4Go2j45F+ZjhcIjAc356TFNXGFvjXeS2J2nG/uFl9HiPt994l6/+4i9izRwVLIMipa0qluclxrUkSZfmtTGtFwpM62I5IQN3Tj2PP/0ULzx+KVJGXd/6U1Rl22luCAI28uEVJIlgvlzR2Mgy+9pbd/mFl99j3RryPOVob4jWMZ3va81A1LjTWnUindF4s+/BCwIiyA2mE0LUO9BC0Pp+eCnu4H1aq4RAIUB1+nkhts28jzdsLPe69Nt1JYDqVX5it0ELiQu99p7EWIcIis2UnehEU7t03IfAOE/Jkw7H8B4t4+N7Jp7oeu3xXPwm+1DE8qFXgpdSgNSxby+i0MpgALNlGd8/OBBqo8AcnwPjQUIiXcdkVEgCLhAl3Lur01qL8Q4tNSMhKTK9IUUdjLIei41K2Z0qsXW+W/hgvQMX8RvRBTLPRzwTIHjK5Yz7D09ZLNf4IGhbF3cJo7j6+C1mszX1as7Ea5JBipHgcIxGU1wwpFIxOz3HNYYrA8+hbsl1Q5ZLhlmOVBrjPavzitO1JE0Uz1+Og0Bnp3NEnnDj459lsrePcitO790nafa4cv0qk/0hzg4xpqFtWwIe61yU3naWqU5jB8G1mKpiMZthXIOzPd9AotKMbDBgvHeJ0d4lHty5x9d+9ZdYnd8mUY409VSLkqaKO2QqdSSISEjzBG+jF6HQGU1jOG4yXnzpWZ577JDgBK2NlmpCiJgRiY4WHHy05VJxl10uVjTG07aOL77yDr/82j1qYxnkCUfTMYMk7rq2ry27XVop2QlgeAI+8uddJDdFuTEZXY+k7Loekf0WNQhD9PAL2wUhPHQ9RmJK0bXkusWvu9+LEEdtg+gEQkRXCviACwHdAY15mmJsvWmbhW5nEd3jARIJe6MMQsAS++jOG7qmRFeadE/uWpJCSnbFUWXHFJSyUyCSYcPXz7RCdUKwvUuSc3bTNcjzhP1RgSKa2kQh1gg2bkk/kREoQwwgnpj19FyAtA+YiH7cKGonRgQV/j/tvVmwZVl61/f71rD3PsO9N28OlTV0dfXcLXWr1RpabpCQBEKAhAMBfsEPhggTxg8QNg77geGFFx7sMDjsCAcOERAGhEwIgyxCFqARCU3d9DxVV3XNVVlVOd3p3HPO3ntNfvjWPplqugrR0J0Z7lwVGXXz5h323ffstb7v//0HpE4mmuoKrZhLKnBydPRVH7/7YhMYx8Bzz78MYhjGoGy8kGjbhs0YWb3yGt/+Xd9Kcu8gWE9JWiFYibDt+dQnv8iN29dYupGLLTx6uePS3NLQEYxhyI6T05EbR1tul0MefuQRLi9GVuvM8eqUdTjgw3/oP2Xv4DJHt18kDhFrYBMiL718nUeuXKLpVMgzn7U0viHnxDD25JAI/Tnnw5rT0xOMn3Hh8AIpx3oyGeZdRzdbQrsg5sK1p5/iX//sP+b89CbzRUPjIpuVmnT4zjIOI13bUZIn5sx6u8Vi2euWnGwjt3rPD33fd7E36yBnxqQsNOuEGJSEY52DXDeA1uDJnByf02dtSX77iy/z9CnMDi8jq2MuHSzonG4asWj7IKIn7JRDIOqfRSaqAWcBmU4bSuXb1yeqVERalGdRea1MTBfvXMUMFMzTqiXXh2dqESqHpPb1U9shRlSUnTJSEtec5ebR6e/uxXa6+rq9jv+da7uF47Ov+dNfdRZyrhVVrhR2bbUQ9T9Q4Rf19K8g5WTx9AbrvtgElFVZGPqROCSsha7x7C1mFJtBLM9+/hkee/xtfOTH/iTbnEmp4MXz1Ge/yMPvzOTNEQet4y2P7LHvBZ9XNBbGYeToeM3LJwazeIwnLl9k0Xk2QQjREqJj/9JjGOuByKXLD9O6hpRU7puLcLztsSEiORDjSE6BEgZyDIReE4UVvEIBzLHgW8dysc9svgeuIRvPtRee4+lP/BavPPMUY3/OYmYwectmnSnFYr2ekDPfaepyHgljomsa5vOOG7e3xPaA7/3IO1h0llySuhDngjNCDBVDcL7yATQuixQ5WqkRyDBGfuVzL3MrzXnXux/GGMvpjZtsTm9DCWpyWR9gZ6eEHWX1TUabIBUctVh7d2BHPemLSqwNynCztUe3xpB3/BXFDVLK9fsYCramCNXPRVODCzpC3DH/UlKWZNZy/Y8+dpFiHK8enXM+BD1RJ/5+nTR4Z3n86iVM0tgwbxQXKEVVj+pSpBtPzplSRTsGLf2lYgSKB2RSzCSMSqPrjx5i4ub5lrP+jufBNCosJfPIlYssG4sh460yVafqjcrdKAUigGjUmt7OpF2FoCzNQrUdr0W+CNlIlXRPjlB6jycOCfc7JiCgGXhJmM1aZlY16sOwxVNwszmGzFve9R4uHFzh0f0l/RB49pnnCOtjFu6chx+5zOOXO4wk8rhmjJbVZstrtzY8fyuxXF5g3yXi+RGn5xknlkWeM9+/yOEjD2OsKruM0/ixxnv8bI4xBWc8uQT67Tm+LFmfrRhCJsaC6RYsriyBjDeO5WIPfEsKI5vVmlu3T9iuTjl6+QVefv5pTs+OMCaxXCYkBYaxIulSaJtGi8Qxse57inEslx0CvPT6hnb/Eb7vu96Ft0YxhhQpRYU3MYyUpKKjkpP2/9aQQs/ZaqAYw2o78KufvcYJc64+cgWDgm4Hly9TSmJ7dkQURf9dkRrfMfl52t9BRPHi6ziPHZCWq+JTvfJUwehq3yu1n89VxJMokDXzkCKVoq0PekZJYNqGOPXQm6YD6ORgcvhJVO09mYvLGUPKxJQ16VntgPBWONxfYHOoc3Oz652Vaacb2879p+Q6inS6ERR9ECcTT8WDNHthmkiKERpnOVzOiGVLLFrh1H2KxjfMZi22RJp6alPl0WKkkopqSkOpDMj6NiKVOlyq6Whtm0THm6UUvLHKqEyJVPLOy1FB0URJ9/kmkFJm3s1o5zPIibA9o3GWg8PLhBgoY8A44dlPfZQ89DTzPYy1HJ3d4uT1Z8nxlCeuzpktlmxObrPZDKxPtrxyc8UmevYO9+kaQxh7clJOweLiRbrZkqZbIM7xynPPIDkwm7UM6w3OWIy39JtV7RUtxuoL//Chh9m/eBHjNGbs7HzFydEtWt9xPlszjiPnpytOb73OZrPi+PornN26qdiFLzR+IPSJMRQl/VSQawyR9aBpwG3VuscEz94MvONt7+QD731EH8TaO+eiZXWOI+qm1GBtIcdI4wxDv2YzaNzW6WrFL33mNbbNkocvPwxSzTUMNE3D/uFFtqsTbJlEP3bHUadUD0BTBS9yl2uvnU4zfaCNqZuFCN5asilIteQuFHztz00lFO0kQEU3ilKKTh/QlsRVG4Bc8wl0TKez86nCkIIStlzi4YOObcw7mrH3npn3tFYo1akZCqW2JsbUXnx6f51wSB0TAhSmXIRcZ//q1CNk/XmmjatowvZjF/dIIpTKgSglM2sapOTqvpQq+IhWTHX0ODkFWVFiVU6ljidlV9VM/6k82iL1Z3Wi9zfmTI4KvGY00zDndDeH6N9a98UmICLE0GPXA94JXedw1mPyqFZMrdNRUAsvPf0pbOMVDU2Bkxu3uLi/5MaNY1w+5pWbt1itApILbr7HpcOGpm1ovdfSs52B8+QC2/MzCD1n14STW0ekONA5Q8kBY532sM5gxSHG430DRE5uvEy32EPEMg6DymVzIoyJcTvgLPiZJ42BUAZOj66TQqT10EpQiSgZ572+gEphGEO9Po/3ljSOnK4it4aGD3zgvbzrLQ9peZdinYkXZTDW1si4RnvyZPA+M/TnbIZAwnD7ZMUvf/Zl7MFV3nL1ISRpiV3yNBoTZosFYj0mBMUAxOzYZlRsbFLvpQJOqLLh+kssoqlCSiIA0WlCqqIlLfPZmXS62vCnnNUToJbUu7SdnOsplu86qZVpKaInMdbgjSGFiFj1evAuMs9JK4kayCklIKnsvrYxtjoKT/iFovmy248mGvRE073L+LM+TPog1solV12CEgvwQIMKqXLR3t2lMBUziLDjCMiujSo7b0QK+jCjdOhpN1YvwarNcGpkY7wjVibo1JZZa7XbyncqBvkPoQ2LyOPA3weu6uXx46WU/1VE/hrwXwE364f+lVLKz9XP+cvAn0W30v+mlPIv3+x7WAP7ixZTnWku7O/jWse42SIx0h0u2PMd7bwjjgO5CBKFcewpVvjcc6/S+ob9i0va/UOaZsusU6GO8YZZM8N3LW07U5lyDKRhQ6zASnj9VUpjcCZwdnLGOI7M5wu8bxhj1Ihz58iAbxxN0+KNg9YTw4AtlrEfoFj83DJfHDC/+BAvPfkFTo9v4gT29lsKA2Gj6UAxG0JJemKPiRIzi0VLLpn1WU8fMjfTnB/8PR/g8v6ejqfCUMdjBt8oiBpjxEjBeYOkgPeFzXrNapsoxXF6fMa/+OTLXHj0LVy5dFkNTktm2/fKNPOWtmnot1sefvStnN56jTisoVSf/aJz7pQUd9ChgJbyxghJaqWuc67a1+rDEEL8HQw65+ydSC6pJBigammhUn8plSks1VhmMtUQSzHKA3CNZTLXsN7XdqRgRRFyirIEqQ9bJiO5uh+XomO0IohVD8UiRaf5dSRaCvgi1QS0KiALuqGVyUOQOy3ExBCk7nb11Db1BV4MuOqanGtbUfdDUqz3xKAtRNHEJzGWpvGQko4oUbWhgrKFkrIKr/THVTdoZxHnKKG6NVbewX8oMBiB/76U8kkR2QM+ISK/UP/tfyml/M93f7CIfCvwp4D3A48Cvygi7ykq2v6qK1dvuGyNhn2mTOkV5U7Wsl1tkdnkwKaClPPtmjiOLBdz3vOOhY7r4qjZfM5BMjSNpWnnkA3jAKvzUxqvApx2sSCXwnJvSbdYUtLI6dFtTnPBLhb45QF5jKoWLJlUgRbEqfKNTJO1hOtjxBrH8nCJ8S1HN4+4deMWJ8e3sI3hcD5HbOL8eFv76waXM5ms8ejG4meOmAqbMHD9ZODC1Uf54W97D3vzTl+CJWLEqjW5QauJEHGi5B9TXX3Oztb0/Yi1hpdu3ORff+Emi0ffwv6FQ2RKRQasdbhdFhiszlY8/MhjlJK4ee05vBWNx65zf2tlx4ITsWCMbgC1ty/1hBLJGKZwVSHFXLnx00k0nWq2DsmU2SYA1urpbWRnXe6c2z1sxgixTF7+unekSu5RHwMdoBtj1OSU6VSHEvPuZN8l9VqHrRORiT5MmXAGdq2XWH241bSjugCjwFwISbkYBS31jSHXzcfW3j+V2qFPJArR+2Gk6jhkqgf0h0ox39n4Kv0XUQWkiEqtS+UzTJRodbjKO8IQzpDHhHUO5ybr+K9xEyilvAa8Vt9eiciTwGNv8ik/BvyjUsoAPC8izwDfA/zWG32CMQbTOFLfK2BTFAiKORNy5tKFJd6pm4vJEIYBnwp7F5T8c+v4XG+MWEBZcY1vcW1LFuHsfE0omW4x58KFfTrf0M0algcHWGNJYaQ/33L1ocvs7R2QxBBzpN+ODOeGpvPKUPMGYxvl4ld5LElom4blUhWGp8ennNx+DRFYNMLeXBjHkyqUSQzDSN9HXGNwxtN1LWEYiGFgmww3jxNXn3g33/Xtb8dO+38ZgHpq5UQcgvaBxuCdxTkBAuerdS1xLc++fIN/9eR1Lr/13VzYW+K8VRVbzqSYmDXtTmzTb7aEELHOsNjb49h6Sh534STO6akn9SGqcyeYrK7rST8h+3qaqkW4SUoppkzOwpUsZEW9BynVN6CW3xP4hj5QQjXVTImcVb5MNS4pqX6aCNPgrFAfXNHPj9XmXJ895SuYqh601lY6b6ySY4OY2l8XnR5gDa5xavy6Y/9lBQWnGVypXUUuu3Jf6gZQctL/Tx9DqT4BINQwVqicEMOUN+Erk5BpjFomGfadaiaXjHFmN11wjSZF5aIbj3GTTqK82XDg3w8TEJG3Ad8BfBT4XuAviMifBj6OVgvH6Abx23d92iu8+aZRXxTgGjWSzCKYInTOY9uW5aKj5Ey/7enmc2Rh2LMN43Zku+5ZzDswgWC81kUYYgVS+tWA7xou7y9wxrI3mzHfW+KbhklfLiVjmzkYy/7eIevzFelkoGsbLLCceYZcME3H3v4linXcePl5hk3PlcfewcHVxzl6+Sluvfwsm/UKawqXlurXt10HTEmEnAhBfxld6xBvsSkzbEdyTvQjvL6GD37oQ7z7iYuYqH56kUxMGhSaUtCRWcpVRmtoG0tJkbOzDdtapj/54mv82lNHPPLEuznY31e78JIpYyCGAAL78xZvLGenpxydnmBaz2a75flnn4Ex7NSAeshU40yU/JKKglF2ItQgYCySY50mGMSKegtIjSKrD/805ks5QS47equOIMvuoRCj6sBSUs0A8LUSLGqhJnestqeWBfJO3ix3PYDYSu3dVSGCdTrOKDlX+3ZF6I0Y5TUYwbqqS4hp96DHUlscpG5C04i0CnmMbkR3j/5klxOg+yZFJlqPtld1/CcoiDdZvutJr5uc1FxHdYamXgPKE6gjzFwt26VUwNFqbkOKkRTf2HL8jdGCr1gisgT+CfAXSylnwN8C3gl8CK0U/sbv9mvVr/fnROTjIvLx7RhwIizmc5x1zOcLZvtLlnsLDvZbMpltH8lZe/J515Ki4fRky3YzksaMNzqz7gOEbEglsT5fYa2wmHVIpsZogeSExAg50/c92+2Ab2Ys9g8UsbWe2WLBcn9Jt2jJudC5htY0OGPIY2AcC36xxPiGs1df4fjGNfrVMY3N7HcgcSAOPaVkdUwSoZ21zOYt3bxBclb2YQycjyO3+5bv/vC388F3PowraoGVKZUkk9RgJap9tXGGpvU0rVJez9ZrhgxShCefvcYvPXmLR554G4eH+5QS6+go0282SCm0XseIJ2en3Do+AXHsHRzw6ivXuH3zpp5kRstfAzpeyoX6TOvftdauoF19RQr1QboLcS93tO13G2bmWPUIldEnRqpUIe+QcCsFN6HgVvRhFrDe1tNWcQp16602ZhVld1ZP2Ym7ZI3QeEfb6B9bAVHnnVaYxqjNedEph/WOUk1kY4jEnBRDQqqpin5/0IdQrcpre1Uf5DKp/4puGqaOAi2TrkFbk8mvMFdOsmZKauXrDDW2TKXOpoKTxWib4kwFCLUD0GsSvc+2JhTlnO/8nr7K+l1VAiLi0Q3gH5ZS/qn+fsv1u/79bwM/W/96DXj8rk9/S33f71illB8Hfhzg6sVlWRxe2Jls+qbBW2E+bxljZtE6ZvPCbDbH5IKbd0jjMasVaQzElNhsBk7Pe0YRQsi0RpjPPNbDGAe6dsasU8FIjIGSI9k4xSGWezqHHXvy+hwHxLYhjlmDRown1Xn4+uw2p7dv0ebE+VHk+tkR6+MbpFiYzwpdmwlDZDVq2m9OgW7W4Y0lVtuomCIlw1jgZDWybQ75oT/4HRzO54yVa25NRyKqxC3eebHhRM1AW0sJPSfHZ7rp5cTHn3yJ33z+nHe8/1uZGdVaNG3LrPEY6+iHAYA49Ny6fYoVwTcNXduSxpEXn3mWq4cLGq8vrlS3ImM8MSXcZHs9lfwy0VmnimoC8/TFbUot5ck46/VnmJDuYjV6SoAsZEFpufVMd2byJrCkkmuUnKLlKSacd+oZaI36C0a1K7HW4r2pzEM9L3NO9bTUqsU7pzP3FNUQRWorUWt2Zx3WWlKqjkF1ShRrlL3Jd0aJuVSZbjHkEOvmqb06tddXNyZRNyYxaqKbFeMxIphcq6ypekD3WOMcUrJOEqhOTqkChPbOuFa7AyHHijQarXxKUozEUl2b32D9bqYDAvwd4MlSyt+86/2PVLwA4E8An69v/zPgJ0Xkb6LA4LuBj73Z97DWcjBf1qSZoGyqpsP6hrm3jKEnh5HcD+xfepiL73wvz3/+0+xfWLLdBo5ubxmShdmcNguLuYESSamw6bc4v2DbR6wdkX5ktmhZLBZYY/HOAqlalA+cnW4pGA4vXcA2gaEXYo5sNz3bzS2Wyz0a33Lr6DaUnr5PxBQ5WDi82RJHiAHmXaslo4EcMpuqey9GkfQ+Rl4/K1y6+gR/+CMfZGalGo1qeehMwmSIOSJZnWmN1ZPLNY40bjk/3ZKzJQwDH3vyRT7x2sD7v+2DzLqGECLOKF6RSyZs1+SQGJJaehlxRBG1cRtHXnj+RWaNoWkdxtTytbAbLenhnImTtDdnyFJp9Wk3Vsu1n/eimvkoFQcomoa8iwYz7MhHVC6AegzW17G1O8NMb1zddDSoxFuLM6qpn7j5UolF2o5UDKKCapqizG4+l+5qA9htNnVzQh2KUkoKBmdlTuaYdc+qYGgdsmL1R9Oph4FJRKVfS+v86XOQvLs/OgrQ+1eqRwEiOwcmRJCcSFlPfvULLBhLnRDpwRCTYhyquHRaKWS1d8NUCbazb1ry/24qge8F/gvgcyLy6fq+vwL85yLyIX2p8ALwXwOUUr4gIj8FfBGdLPz5N5sMQNVeW4BC01qsddimpZvNiOPAOA7k2i70255rT32J8/MNxjY085a90nDghNZbYh/IuXB8usbZwqzraFpHM2so1rC3t491MISBnNT7T0T/TlHU2nczzs7PWJ2cIsUQ+hoVbYV+WHN6+1jttLeae3jpoMGZwnajp/SiE2JRznssBlLCuJoiExR9vnYC7/rgB/jQu56g8YacKjSdNQcwFzXvKBSM05MZq8KnGHrOz87JWXv9X//Mc3zuZuBbPvhBrly+wthvETbklNlue+2/RQg545qGmWtw3QxvDEc3b7Bar9jba3ns8CGVHsfEGEJNHNZfnTNOy3VjGWJi1kxjrqnXLpq2I4K1niIB2zTYXIhByTExxp3XXQFKKjtga2LmqW3RFGNeZ4UTIFmZepMLkZpsKpCHVd5DmUA4I1q55MopqFXErjuv3AVrtMTWB1PqEVyR+lIDWOt0QibadMUckqgbNaWo81RtYxS71D5+wk90tJqVzlxfZ9ZNasayy3vMGSVXkassutGNylStdBFM0ZFmKgVrIiKa2iRGcYA4cUdqYaDX/saP+u9mOvDrTHOd37l+7k0+568Df/3f9bWnZUTY6xw5a+SybTypRMbzc0JKzGZ7OKvEmDElGM9ZLhvtt0NA5habBd92xKYlpYj1lq6xOioSh3UWkxP9NrA6O2G+17K/v0/OiXFIJCwpjbSN5dbN16sLr3B8dorFcPXhQ5rWcnp8xpgDNgwsWseyg/V6yzYELHo9RQyhovTtvEGcpfGe7abnpWtHnJQl3/8DH+Ltj1xSOmop2vdXM9AcIqFm8Jn62vStxVlhszlnuxkZM6zWG37lk8/y3Mrw3g+8n73FnM1mRb/e6mipGqYKTiO/tr0apgpYidy+fUzI+n0evbjkvW+dMwyRsY9sxsAYC+OYGcZEPwQigmtnDDETU9FefHK0qf2yCBVMLAzjwBiDPjyAiN2h1MonsvWU1p8zU41G6slVuOMyNLUR04Ouyr0adjL1vqVo5p8O8hQVn5h4U4jJRD4qVIaignI5F51iMLETJ8BNH2SpoGGa6MgiOH2tq7uTTNh/UppuqTLfuhSfFGwdP05MRT0ATZVPVy7CNEGoLYCSiFQwlWsVoRVPbXdSUvJTThRSvRb0DgrYMlm3ffV1XzAGUy68duOM1qo4o/UNs0uPYBuHG85pnMN4gy22gmOJmCAUQUrCG0M7b7HW0YogpaF0TXXiFQVQfMHYjtU2kp1j6DNn+Uy/Tkgs9zqcCOena3CGtpthCnQzT7foWHZLrr92jfPjW0hOzGeGzvWsV4H1NuCdI1ntRZ0x6mMnhtnMMWtaxhD50mtnjO1F/tgPfBeXDhfK85aCiXqCOBH1Kyg6x88VQfedwztR34L1loTh7GzFL338WZ7dWD784e/k8GCPZjZjdbqqLDS1+gox0nVzxtCDsVjnCUPP+TDqSe2cph6VyCEDrim4hYN2TrENm6GoBfeQCLHQNp7GWopkSpW5TqfnxMnPRQ0zSskY5ytIOP229Q1nnVqUWS3rc7qziezMfeq9LCWTSkXojZbzqZQqwZ1aFsFg70LuK4VHtN0UYxhj3XArqFeq+WdGK6qYp2qg9vBGakWm2n6qN8I0gTBWiLHmGFYOASnfNSplhynoxlt/HgMiZuf3kHIkxlSxu0qQkqoYnCoP/VDlbphqzpKrxXkVbYFQkiiZqE5Ncq725m/y/N0Xm0ABjvsA58f052fsL/a4Ei3N3pJCT9M2xCFQkhJRinP0Y48xliyFVBIpRAzav0nJbIYBvCUbw7yd0cwM4jzHJ9fxJhLGge22kF3HwcEFZssFq5PbYITLFw45OLxIQl1awuaMm9de5uzoFuTIhbmhjFvON5liLK4TnLH41tE2FoMGnQgNw5hZrzY889IRB48+we/7nvcwb2ekpGUcMVPF9VU1ljFOA1RMEXzX0DbC9nzNpo8ULP1mw//z609xXBZ8z4e+hUcuXSJS2K42jNuAcV3ljic61BF3NWQOH7rKsmnZnJ8x3LpFCmOdVwvDMHK2SggJGwPzWcdiseBgPufC3GPFg/GMIeBygzOinhlkLePFQUkVkNOSv/GeGDOuouEyKfvQE90YocSkvBC4i96q40Vbg2RyzrvwF8m5jhBrdVFlyKnkyheovXN9Lej3Um7EFIZaikaomVqBxJQq2al6ATjLRACSXLCiwKukgveukpkyUpTMpEKiUkFLbZ2Kk9quFbyzdf5fNxDRyY+1Vk/3rM5A5S4vQKU3K7tT9PnGOEsjpmoC9J4p0alWC5WuveNyTFrMndLzq6/7YhOIIXHrhZc432xo5i2rPHIUX+eJx65ycHHBeZ+xtgXvGPtT/BgwRRj7rfZOY+TsbGBvb4E0AhYWewuaZkYuhf29js3Zis3pMZ0rrMcEpsHIyEFnsWHD9njLomtoLx7StC22Ck9WJwMvv3SNfjimbTJWCjJu2GxGsunwRhTHKIUcA/1kPSMW4xznZytePhp56G3v5Pd9+D1Yq22MymyTqtFyIiUNnqQ+XDYJTddgTKZfbVj3kSyWmydH/OxvPMV5e4nv+vYPcNC2DFFnd+I8iz09Ybebnlwsi72LzJdLHlnM2Xdw+/rrWjZWVVzoB31gmjl7ly7jLeRxQxy3nG0H2qgKNNdoyEbCI8uGNAaGIDTW0nqDlVTReKPkH2Nw1uNz2GUNTPJaAOd1nJZypb0CztgdgcfW0ZeetCqUskVHY1n0wZ3GXrmoYk/NTsqu309M4pxCVIodVsAYtyMwjVF9B8tuBAc5Rkp9mPxuBCcUoxuSN16nJ6XU1GzBiQbSZqvjuZgS3jsaqjiotgY5JqyrgSKV7zD9vMZ5bWuYLNJ0o5oAVGUWJnVDqmNfnWtUs9aiLRp1gyQLyenHlniftwPjMNAPA13XsBnUt/+tBzPm4ynzskAeeoSYlRV28/ptDh06b2/Uq370hdQkTnOhW4889NAB8/09QNhue/XrL5ksHUYysw59cRmz698We0tmixm2bdUkdL3h+u1bnN2+SR7P2W8sTY6cnm/YjJkiDif1lBqNqtKsrfHUlpQLJ6s1n31+xR/4fd/Du972CF4MJqstuvb8jlSKAmYYcFN/m2lnLaZkNquezVgwzrE6O+X//tUvcHPw/MB3vIelaxC/oE+RC5eusNhfcHL7NmM/MNtrMAgXDi5w6dJFjk9P+dLnn2LYbHAz9chPKSnwVwqbIXL9bKCxjsZ2ZDpmy4Y+DfhWKBacqyy/HLh184w+ZForPHx5n4MLizoP5y5uQC3JS4F6r3fdarVbm3r9qUqwQDYGco0sp3LiK0UWpzCelQJRRTYJ9HTMKoM2hWrvPbFPtQppbLUwz2WX8TctK6bm/enXyQjWO7zotaaS7wirmGbx6j048RtAdqM7x12bXlGzD20/TMUGlMiTrU41lEMhOmYsyk9ANCbOGLO73gkfUCzpjsRaudO6GVYF9Q5TytUB6o3WfbEJdK3l3e+8zLoP3HzthIcuNLi05vh0JBTHYbNg1jRsQ+SwhVAyYTsw72Z03tBYcJ2Dkpl3hqbOxa13+KYlZmj3LjP0gVsvPanpuHlERMdQ0jZgDMMQKGNkGEbCZsPRrRt4GzFli03CJoxY37DXGMaUMVlf3G3bgLFV8abhm7dPt1xfOf7Yj34/jz9yEUE951MRcow40dDOMUaMcepvb1SZZ10DRWnAY1DCySuv3uSnfuXzrOweH/rQe9m/eBlrLVcuXyElOLx0hZQj19cv0TSO1dmGppsThsCrr77GGAPGGdbjFpcs6816N9YrKSFeHZ5iGemNISXDyflI6Aedrng94ZwTUr/i5LTHt5ZmvyMV5ainGDFlkueWStIxeOurO5A+oKD8eC27YfLby0WlsKUSlaQoCUdj6iu5JumDbzFEUx/YSl4qU+4AE7qv/363PVqpPX6uP7vzllL0AdxRcZmmHvVriiBYMAo6qr5ZMygwynTMRWoWYtk9rHfMVxU0tNZWt6SiJiAV07BVQp1zIkshp8rFqKhwgd8BVCqhSnGFkieuxcTqVExF283d3EZVsW+w7otNQERobMO6P+PRiw1hjPSp4aGLcw6veGblNiYYbE7Mu8LRCOttJpbIehB822IICEIUr/NrY7ChYFGeeDy9xWZ1qrumbWjnvmYO2nq6AKWwPTnlxqvXiHGNby1eBENkOxpyMdVJFxazGaYUnEkqCXYNsQZi3D7ZcHtY8gd/6Nu4uJyxc4SrLDKMIsdhHHCuwRhLKQELNG1LCoHV+fkulPP5l17jH//qlzh3cz707e9l0S4I40A0hk2/JfSBg4MDhhAx1nLzxuucn/dcuXqV9RrWQ8+lw8OKgmdM4zR1aNTk2zEElsYTgkqwFbRy9CHWTcvQZ8FKIYxnSAh6yIutCD5Mp2CeSDQiOOfJOZBj0Bcppeo7UNGTKA+f+hBouVsfxpxonKsagDv0YiumxpGphXmqYJ4gSj6aCDklU6oG2uymAKJEDUpNl4LGWGXqiSHlWElPWt5HCsZXmfNO1afwYwxJLdOK/o/aMmBqCV/KHYsvfZUTc8Z6izVeK4L61CY01SglBRONKPaRxGByHb1CnXhMExPVBHhviSXdmXIITE4vEwVZpdz3OSYgCON2jYuJkKGZzXn7Ox9l2VgFgmLUSQCCnS0wQ8+eKzi2DNsR6DDtDONbxmpZlQeDhB7jPC4VcugxRljMZgCEcSSIgjc2C1YyR6++yurslEKk6wytA5ML0Xf41qg2Pmm0dhwHCtDHgHMD7XxOGhKffWbF4WOP88O//51cWCxIccTmagoZtRyMSQNMjLc4I/oxxuC7jjSObM7XpCA4J3z5hdf5iV/8PFssH/7Qu5j5hpD1BZPGgZs3brC3UFCzGPXTtxi8a7CuJcSB2Pc7xNs7x3a7rZ792lt754k5EqPDiar2xqhBGs5ZnNV5/aZXKbQQmXdtNRCFs7HQnGw4WLZMMLYUSwwj20F19N7WPrw+EsZV1R6T9FerACZHYYQxJxwGV5OKJnMNKdNGkfHWavVQmXHq0lPpu/WUNSJ1xFxz6nLGOt1QSgGpMnGxXs1ScyKXhEmVxuwM3itWEcbEmCIlajQdlSGo16PgIJP+wUoNaGEXAOKsR7J6DBQx6g6V1WyEQs0/rIrImLTaKdXZWn329Zpl4mYozVmpwVPFwA48DWFUo5f/EJ7AN2KVrOCXGMfli/s8+sgFDIYxaqtDFVE439HNFhwmWK9O2KxXOOMpY49vPV07I5SaETcmckh4vyQMAYkBMagRp0iVgBqMb9ms15xcf4VhdYY4Acl0xlDGQmodbdYXk100DKGQspajYQikYhgDnNw44eaZ5R0feB/f8/53QJ09W2fVByIEpcCmTBxD5axbtQJzlqb1hHHD+fmWWIRQEl/83Ev8g3/1eTap8ND+jBeefZFH3/ooBxevAKpPD+NA7OYcnayZ780ZRi2nm67DIJydnjPfn3NycptSIqVEtptN9SJ0OOeJKZJESCKQgs6VRZRbYCwihXHYsDlfIykxnzkaZzDOkZsZQ/YcrXr6OHDpwj4mw2YzsB2Cynqrh6BMnmDcaWMVkVPyi50YdEWvTVV/6tjM7sTWa4sV6TeVJ6+cgKo1qCO5mLSn1ulE0nSqyi3QlGGqIEqR9FInCrtgkzrmk1IgRqzYOj1oEHMnuETzEKSSidiRznR6qqNMKwZx2n7msSoSDaQYd5iFPgyFUNsVh/b/UnGIWAFg5A5egjV1462kI5lSkBXzappGsxx33IF/e90fm0ApYDyPv/UqFy7vY0pCxOtOKQlnOrrFgjEmzk83DJtTxmFETIedeWbLJWFIpD6SSVgndKao/U1eEfuREgLGewgjOUc1Z/Adx7duc3r9OvPW4eceG3rlxLctmYDJ4FqLaRwhjJAyXpS81XUtWztwdGvNa+eO3/t7vosnHrtcQSA9FWJMClR5pzPklPDe63y6mmw2XhiGDev1lpwFyZGPfvppfvo3v8wmC5cO9wk5cd5vufHa6yzme4xWHWWs9wxjT9tCjg5SxHuPDQlJG5bzOalEYoicr1acr87ptwNN21Eb8qpx0JFXEUMSq71yLoQQGceB9XpFykVJS86AMTTzJZ1rMHHLuj9l2DYcLlvWfc8nn36VbtGyP7NqqCmiD3IlrRiFQlX9ZqT6AljIqfrx66lvpdqHUdl2Rqsqb51uGqUGwcZUixDBTu3d9POlGjCadYKSsn6sKXpkusoHEDUooNTRXwxBNxQsGXVgFWEXvY6AITNZEpWsQmNbj+tSsQ5XmRul4g6l4hcGPQBSrnTinJX4o+IAfThSoRiNgNeRZSU/CYhxWukYIWap1580iSurlkLE4L2//0eExlre8/534STifKfz/zBgXYNpG4w4tn2qjMGgp4OzdN1MrbhyJOeI4Gg7j3FegZ46CrPeEYCctkjWNCMQbt2+zvnREQ6DKYkWoTSetpvhvJpDWGPJ44AJPZ3xROex3rFa95Rx4NbRyHG6wA/+4Lfx+MMHOmvWluwO68saYlLVoopC1HfPWTUJHbY9234gF8cwbvjNTz3HT//6lwjW89DhHt46tqXgvGez6Tm5dZMLzmvpmzNG9OTa9iO+aVivTyAGtpIZh8R63NI2MzbrjQJJRlWICuTpqRRKxouhOKvCE6Pz/hRGzk7PIAfaxrFoFcNoZwvmTYfENdv+nOs3z/mNJ68zc09yPgZO+sw79maKZteSOVVyC4AXBeWEQjb1exYtva3YHTPQVhwjwa4qcTtOj4JwKepDYcWqI9FkKyaKoGdTcY5pAlHty2INTHEUtUsTIUmugJ1gW6+vxQzemMoH1EqkkGvbIRWXK7swFS1dwWTNYgxoRSDZYEomlwgTKF0NTchT5qL273bq7SuACXXSgVZUxui9o2IlQsVUJpLWTi9h77gSv8G6LzYB7z2NgT4mJBZMCuQSWXatsvjOzyhFefniDWn0tA66WUvGULbnYDKnmxX7Y0t3YUG2LeMwkLY92WucuDVgncdieOmV1zg92+IkMe8ybecZg6iMeabATRhH8hixrSrI1KgUJGiS8me/fBOz9wj/2Y99WJVa1fUF7thCe+cI46i5cL4KYUrGO493wna9YX2+Rbxh3K75lX/zFD/z0eco1nH5YL5jxXnrsMYQQuDo5JQLVx8FhFgDK3MaMVYnHLeOjvFWWGKr70fVldeTfta1GCukWJSmK5bJT7DkiPX6vXIsnJ8cU3LAO8ts3tIYQ9t2zJcLtVwfBq7fOuWXP/sq1056MIZ5a+mM0ZFoLWVDLrXc1t+5VIPSRCYnFePEFJX1V5taW4ragRvLZILkai8cS6KYO1wAMYJFMZFSe+McNSQ1o9yAtvEQo7YF1hFjpPHqLhRTJI3qIyCNxxbBlMI4xmqeUpOQjFRps8atqnFJUlahVc+DlGLlBWjIiXEWjPIPKEoEovIPJKlx6i5V2GjrAPoziNU2RScP1VRk0lVQx5BFR5xFyg6kJGurlDE7NeQbrftiE9Co58Ssm7E6OSYOgabxOCy+y7sI8DFsd/l6kgtx2ILvEOeYNZV/nSJnZ7cppaHveySOuLnHNC04z/rohPXJGZvNFiGyXHRYa9kOwuJgzmzW4ayjH/ram6ImHq6QjKV4w/lm5FNP3ea9H/hWvvvb3qFU0ixkSaroqibx1qp8OBfwvtGduxTabgYktps1/RAw3iDjyM/9xuf4l598EVzLlYv7eOeIIRHioJyCXM1JjTCOAxhDP0SwDXEMLJO+SA4vXqLETIwJUCBzNpsR4z5hDEhJGNOQ80im0DSePGRwHieGXGDYRM43G5I1NHjm84bGWJquZbm3h8sQwprtZs0Xnj/i+jrUXhRyiKS2JaSkoJZVRF/JQPV3biwha6hIiEkj1HKhGH3x20pNVvltBQPR6Yp1BpOro3E9wanjwVSdg0pUx2SsOiPJxPX3loIlj2OVRFcGohhwjpIijBoOqv6JmnAtRU9WKWApdSSaqT6ilIKmVBvlikg1SVVDEKmsaoGkpCgVP+mQZVL6FJScpPyGRKq6gYkUZSbEr0yGJYUxRRrnVWMyRSDUsWJMiVwipnIR3mjdF5uAGGi8sDpfEcOodl5W6MeeMKrff87qsuu7GVkM0YArYEvAt57SD8TtllR0V85mZNsPeBFIDXMxrG6dcnJ8hJHC3rLB2AVeMtl2LGcdzmt5OYZQy7tCyiM2J5KzGOu4fuOcp1/t+d7v/17e+8TDlbddxRz19J/ENDGpZLXxfkdlbRdzTE6s1z3DqIyx1ck5/+RXPsOvfelVvG94+Oohs0bL7t4FtttEihGPoZu1DH3PMGzpFnNCUKfZzdCzt7fPdtsrVmCKujJHQwlbTk9OaJsG5x3DemB/3xNGS8HQOI/rOoxvIEZA2G4GxiFAjnQzdUC2vmG+uIAzljBu6ddbPvfM63zpxkbtrKzsEGwrgjiHd47WVlecnJE8gYNJQ0Sj5ieAMuSs3PH8SzFikV0Zr4h7DTApRU/imjlgpEZ+IdoaFuXp+66tjr+lVjtlN1lI6AZFUf5CEWGi1BQjO/bh5MhslGNNzpqLMEYNfiFXi3TRCYBYWyPoZGfyacWoQMqpcjGTNOlJlP/grEGaOjaNmVRzFyaPRFvHrxPb0FtLpuAnE1GpEfG56i+qLXzjXXV4vs+BQbWZ0uhrLwa7c1SF7B2l8eqlbh22bSqJxDGGkTxs2azPUTm10ifbZsa8m9EslCkV+y03XrlOGEZ1oCmZ1jaMJTMgzBpDyAO5Vx831cgrCEUUiteE3mdfPuJomPH7f/h7ecdbrhDGXA0nYbJ7nhJuU0qqkW/8TjratpYQB9abwBgjgnB6dspP/Pwn+NiXb9DNZzz20CW6Th2MVGKrZJ4xRJy39P3AZrtRirMRusM9tv0WZ7XsM2qPsLP/ciLsH14kpsym70kxM8ZEPwzEGGi7lpQyi8WSMWxpjdCv12yHDaRE54WusVjn2Du4QNt4chgYtuc89dINPvvymWIwISKi/gxFCuIN88WMzlty0OojpYSTyTZM8wynHACl8ZrqpqRcA980uyBX3SS0Z9YHRB9eMXdGaiWp285UAXjnsHXkllIhlazxZylhjLIBnTHEOKifY040Xg1kTKMOxsN5r1W6URJaPwx1o48KzjmLydMoUTcAyVkFVFkpwVJfc4LiOga1KRdTcDV4hahhJ9Y5stwhMxUjuwlJAayzO+m1ZAWWxxBUOzFtWtURyhirG48otvVG677YBHJOnJ+cVXKJ9jWp32CtB6+nlZ7LhpQtxqlGX+vsBucMMWba2ZxEhhwIMeG7joLn7PYpWar8NCaWy5ZYpbbOWQraRuj4SE987zTQSaymGH/5xWO2/iH+8A99G5cuLmtcl85pJauI6c6opv7CrabCWGvpmoaSBrbrDSEJpUSOT1f81C99ht966gbtvOXRq5eYN467o6ZFwHrDXjunhMjZ+TnFWvqQGXOgmze0tsF5JftcODzg7KwgJWKNJ6aAbT0nN492VtViVBATY6Et0M5mWO9IMbEeek43W3JKzLwwXyg+stw7YDZrYRwgBV6/ecynXjjiPGU6bxFjsc5OY34ODy+wmLXVwamQ68htZypSpbalgLcNYoSQpjBSHSuWnCqSr8i3lDrqoyBZJwepMgi19NbDQxF9qe1JqScuVKUypX6PnHRjstQDB6PWYrUlyRndnOohmoJaqtdiQiueyiEQKTjvdIOqZitBNFjHGbVIa73dTWJcJT3Fqp0wzqkMuujfpZrCGivVQajKh5GpO6hpUxWFrrFupoKYu2opK9A6maZ8tXVfbALT7q7KQIPbbhGxzA4OGONI186hSRhnmO9fZEyR7dkpy4MDoqjnXMp6AzqxbIOQQub0+m0uXX0U5zxWMr4EEmoZbp3XB7NkSorkFCqIBSWrmMNYx+npKc+9Gjh4yzv50f/kfVjjoVhiGuvgJ6sjEKo2K1Vd5r1HKjDYeENKG1Zna0K1iXzt2m1+4hc+xWdfPKGdNbz10at03mp6rxE9kZJqw5eu5fjklOOzU4x1dL5hb39/pya7sDfD+4ZhHDg9PiZTOF+d0/oWY2Bv37HtBy5fvsx8PmcYevphxHuLty2HFy4QtxsyllU/kmKhNXCw12IElst9DuZLyhgYt2tO1+d84pkbnCrOhbGauxirN8HDh3s8fuWAEiNJUBp0ztrSVYGVZOXij2UqyQtt1+xEO3EcoRgaqwEtsegozjkNoilFqnAoEYKShXxjsM5hUVAwFYixkJ0i6baxlWlTSETEZTyQY7UGzfqgN60mWJci2Ebp6HHUFs87rz13VlajESGmoBVSBSLxqmR1qdBYB0VbFdM4cip3bMIRTLHqe2mq5n8aATqjm3QNSrF1AlSkbqJZ9RwJfb1ITNoei6laB50CiVVrMXcXR+Mr1/2xCYjBtHOWjb5YxCacaTC+ZdbM8dVZx7ZzjG8w/Zbcbomp195urAwqEdbbNaH65dvcs7rxDHNfFNLPMPQZ13aK1EvCty390OuLlIrcWoNbzDk7PeczLw184Nvfz4fe98RO266BHzqKmfTpyt7SntMIlBRpGo/3hnHsWa+3jEVfjC++8ho/8c8/xedfOabtGi5fuogRoR8jKWUdxXmLKZHz1YbT0zXn242eSEXLWiPCfLFkHAL9MFKs01FcnQv3TaCZzWis4eb1G6w3G9zJETGMOGeZzTq8b7h0eEjXOm4dXefm5hiJA04KB/t7eAOunTHfO1CEOW5YbdZ84snXee0sKoXaNly5eIA1cOnCHA+0YrDUOLMCVqbRmtnlD1inp6+rsebsQLCElYJtPSEqm9RUEGzq0RX1BjJY26jyMSdMpclOc/eYdEpj0YPSTCdv3aStseQQFWi2CuyqSYgq9bLVsabJd8prUCZnjFFtzwRc01J/BKToAaSHS6LYuqlbS+hHxKnPxM5I1llKURPdXNQXUHI1GK0UayMqXa7YaGUWVi+HPJmY6BSlOBU5zarbkLomv5m52H2yCYjR0VyhVCWXkjls9W0bQyQhmOpUo+aSgdhvCP0G5zzGFoYxMW42zBuLddDYSNM5YigMSeijwVlRDlEZKaFoy1HVbWIsRgpd2/Ha60d84bkjfuAHv4e3X72s/PNcyPGOw33SWRTWWTV7SLUXLAXfNlhnGIae9WYgiSGnzIvPv8z/+fOf5tmb53SzhseuXtY+OilGsLdcgBRu3rjNanWuUtekCHbXtMoxz4lNv+XC4UX6fmTbrwlxwBqL846mdfitxomnmDlbnbOYdYRBU4etMSzmCx65eoW5s6xW58TNKWboMSZx6WBJ6/Vr7R0cIiWS44btZs1TL97mqdfXIAWxlscfusITDx2QStr1/yVp8KeUDBmiAUS5Ca4qiISyI/8UFEhsvEPEYo0Qh4BvdR6exoQt2rbFSpgxzuJE03/GEqull246GEtIiSyqUbB1rJbCqGadjdu1asV6sqSqG9ApQUw6AZgyF7OIsiNztVjPjqZrq7OPovlWhFRToUvMWpkaZXVGIETtzRunwJ06i8A4RlIda4YhkGPGecU0TKr8iAKx/iyT4KveRKVke68iKqsnf9N4xn5Uo9i78gzeaN0Xm0AcI5uTI7pZh9h9bLuoTraGbrFPiCPjdkUYBoRMGgbi9hxyII0juRdCDozDyMHejOXSKVkiG8YxMY4W4wVjQqVoZkxJkLIGjppJIgo4zxefv8bg9vkTf/T7uXS4pMQqVZ1YZTntlGvWmJ1M01irdFQnNFbYbs7Z1kBQSYHPfuFZ/uEvfo7TIfGWR67Qea9ilHHUyOucWZ+tCFErglyLDOt0Jp1rT+0ypJi4fevmLk5sSJnFcg9rHTFmhr7HzjtCyeztLyi5MA46ajzcO+SRq1dofMOw3XB04wUaW0gELh3uM+8afOPZ29unJRPHc8Zhwwsvn/CpF44I1QL7yuEFHjlc0JoaelHB0Fx7aqXKVKyl/i1XMwwxlhD1lCQVilO9gK0+gNZ5QKovIcQQaX1TufmmJkJlcgh4UQWmuJaYdbrR1pGYqSQfI4LY5o7noHKWKSVVJaGoipQCzpGkVgEooTiBYlG1+guD6gusc/rvlQ1K9TRIZIxrdNOqLMaQAps+KkkLr5WP5N0kwhjBOCU15QKxUpFrj8oU2T5xCZyzjIMSosQoECrWkEuka3wVfsW6Id3nwCAl05/fJm497vQE3ygJQ6wnrGeENCApQlZRRoqDOrGOEVMy3bzhQrevXgFeQznO+x5wWN9hQiLngJRIyZP1sxAFMAo4qief4YVrJ6zlAj/yA9/B/mKuPaSZKgC9wVPklmrWc52B6zU33mJcYrPeMvSJLJkUIp9/6nn+/s9/ltubyMXDBcTIph80eUbAWU9Jii+oes0qM65AnSZrPl11ow3DwCYnbNNUYpKiXqvzFZ3vKgNNy0aDGqnOlnMWyyUHyz2MGLbrc45ffQkJA0Jhf3/JwutGtlzuMfdCCRtSHLl9tOG3n79JX5S4tLe/4N2PPYQDpdRWjsYk1qGIIt5MouLKsKu+twp8WgX9HCT0IRIE6xU3UclYVQI2yr03tmocxqScfSt0rgPApUKUQqhCpJx1EzDAri/Qbq9Sf8FbgZRJxZCyPqzWGmLStqP1atISYlIKuAr1KUWtwqXKx6XK+HI9mVsRVUcK6vI8jmpfZizGuMqZMCSqMSsaqlJC2ukAJl5EquxJI0ap5xSi0arHNxpfR81dsGIQEkmSxr+j+EWcqoevsu6LTcA6ONjzmGJIeVBDBWoMdb/G1ZGRaz3GGVw3x3Z7tPMLzJuGvL7F6vgMCGo/VnRn9k6dZFQx5hjHQFaxuNJ3q9otJ5VrfvG5Iy4++i7+5Pe9X119UIQ+jOpVmHKqsVVaNk4lljVatvrG4EisVxs2fQWg+pHf+PRT/OSvPs16O3J44QAnerLlSkG1RjRhuCj11InbzcbDMBCy8sH1LL0rlso1zOZ7jMOoxp/tDIcgTYfrEvsHF/Bdy3a9Zk80i+HihQtsh4Hrr19jdeMlupzIaWBv5jhYznBGmC8PmM9aXBwZYuLmyZaPPX2T8yHhncU0hm9560PMvENsJkyJykZL+pSS2opVzfzO27P26aDy7iQwxkRrLQ6DpEgxljgmndJUybWpNF2p9lmERBlH7blRMpBBGMpIEWXzidEgkcY31TQ2q4CqUsFT0gfEWB0rC7bSzXWUYI3Sd0PsFWswatbqrFHiVohk0SxC77VVUNK/I9/lYJxC1H7de2bitFqqDtdilDtCycoMpVAap4dAVsMQKVCc2VWdWUkDVb2oDM/GNbvWK4UITu9brvyDkCpg+QbrvtgESi6EMdG2hlnraZqWpvXVeryhaWe0szl7y30Wy32Kg+3ZGf3xMcevXmOz3SDF0s6U/rqTbFZGWD8OzFpP21liRHuuOmbKSQ0evvDClife+0F+8Pe+t4o7Kq1150tXdkkuxlqm3Dl1l1ErLcPI6nxNP+hJtN1s+djnnuMnf/kLbKNwYX/OzOnXLkpyx4itGvZI66jVhhqnTGYa00iq5AxOzTeMbXDtnKaZcfHSI5i2UTcbA9vzU64czLl0eEl75v0Fr7/+OqvjE1575ZqeGGWLz4FcBvZmnoNlh3GGbrHHfLGH5JEQNpydr/j00zd46binOH2o3vbYVWbekMqICYUSdWZurBJTJEOqkm5jhLZrSCEyjlFFQmgl4LzFO0McenUYtlNgiGUMkVyg9VprYJSJmKvGIGXV97dNQxaUQWktTfVnHIYenKUPA43zGk1ufI37EijK5DRidwrFxqumgMry01FqIaSERTcARCgpajsJVQquFYIxgvWNugtV9yIpqjxMKWCcYHeYiOj31kF09SisDzuGXHMFBB0XGjTMJYpWTYKhhEypXgymCCklskgVENV5qBW6xpHv900gZ+HoNOFcYdYZ5q1hb5bxTURC1DSOHBiGU+KpYSTRr0diXxhjJhUlgLihGjB4s2N6GaBtHN5ZJNld+pCRFkok5sKnn1/xHR/+IN/xvrfpiWDK5IylvyC9SP1T563qAKS7s8ZEjWzO1oRgMNYy9Cf8648/zU//2tNsQ+HisqNzk0lJ2VlYUwpjKeRsqqutgkQpZaV95uqqU7n3CkzBpUsXuXT1IWwRDg8uYFx1kRHDeUrI3NHt73Pzldc4WZ1wdnLCydER/dDTefDhFDMOLPZalssWaw3dbMne3gVMChrS2vd8+doZzx9tMF7Lyocu7XNl2aoYKJUa0qF9tal+iYasL6xaGYSgGgNMo9ZhoNVeDfYQ7xVvKVT6cNqd/rGqItmZhQ7KJWg82YjatGUIuUBJ1cKsUFKmab22T0kVgOrkLNVtSA+LWJF11UqoPFfFSRkT1U7cGI/v2uqMXBRIjPWhRariUQljJifNMCwZSdrHaxrTZEuuB0cpen98dTGeBE5xCJSYMFbTpqukQ/kXSTfaVDfcRCIbzcMglTrdyJCq5kA0gCeXgm3vc9owaEqtc1nNJ1CCgxMwJlIkkLIQxVZBp0Nswi/AJEPZjNQxMoLaSzeiwdcCxE77KWc99IGYQGTg+q01L9wu/IEf/r28620P63VUx9lcZ//ak6VqBlnjsgSsKztyTCYynPdsS6GYyLbf8DM//1n+5SefJyAczjrtnWMkZN00LFJjvnTDjpUEYyY0sNbPgr4tbnLw0ZNk3K4pcQSxrFbHCgo6Txy3iC2cX7/J9edfZL3d6Fix2pu3NtPmgbk3GDfj4t6MmXM433Fw4SK2JEoZ6PsVT798zMe+fIsRPRkfeugKTzxyGRND3SD1tLJWPe9FdCJQqv1VyYW+7zXpyTdK967iGKVZJx332ULjPIVqvqnPkI7pitpsp6ov2FFkkz5YJhXl7xTtm0NUcLJtXMVFImEMkIpKoLOooYsRfKPofUHZd8kq1TtTFYWleg06TxpH/cWb6rPQeMYYtT2qv5VUFZ3qgGw0nMQUuqZV0xBDBXw1JERs5QZMY2YjlXU45TeIJgtnjXoPeuMwqHQ6i/785KyGNxUgTCmRYg2VrazDaYP7auv+2ASM9vtOcnVFSWTTEABrPWKqbNZZXNNWJLXsQCPbGGIYSSGTSmVaNWomSh2JFVN0NrxRX/YXXlvz2rrjj/zoh3nbWy7XQ978jg0gxbjTeKtfHLtd31vBOUuMI5vNQE4Zm+D0bM0v/Prn+H8//jyxFPb35hiTGFNW8pBV2mdCy1pb7ahcBf9Ub15ddBI73OHOrFz7veOTE9pFh8Oy3FuwGVac3jylOKXNxqg4Rj+OtN7ivdCZTElbbB7AGy4cLOl8oy7FFw4Vmxi2xGHLjeMNn3n2Nqugsu2DxR7ve/wqDZHSOIiZQsSJ4MSrMlL0XqecwbrqxBSJNYDE2ZqdBzvCTT+O+vfQ03adPkSilGKgnoZZ+2AJjLH+DtC8CFOltZILJJ35IwXX+AquCb6zhFHThENSVWCxRuPeROp4WO+3c44QdaJhRSc+k7/hFKGeSg38MIa2a8k5KmYjpjIap4RiIVf/wlLY0XlJOkkpSYNTqWPlHBT49cahRUaVBxdVKqrHou4XOp3SyjAVHSOn+j2y6Map7Wp1T7rfR4QGwRvta1QtJhOxS/ubpCW+GKUMN8aSG0/OkTFPtE+vYI61VdZpGKMmvSpKXBDbEo42fOHpW+TlQ/zJP/4Rruw3VIwIyDXvTu2eJCftG2t6jSQN1XDW1ZHPlvVmJGY9NYZ+4Cd/7hP8xpdeJZLZm89oqKhxqWk56M6tlWHZvWAm/vm0LJBFR3G5xJ2braCkl2XX0lrDZgiwWiMCQUaWTUfbWFJq2Gx7SuoZopBzoM3nChRluLy3oGscxhkOLlym9R4XenIMnJ0P/PrnXua11UCksNfOeOLxhyDFytyDEgKYQklVelwTolzj6WoLkELEVveiCVOZ2KtWHNZLLV8hVfsvV5H3GPVAkJR0E7EQ0IcEI5p/IG4XMWajGsroAMKqP2OVB4sxKjLLyjfIOencvxTGHbCn6T5SklqMFaUXx2rSkUvCNR7jq7uQaHTeGEc19nCOHDPUh7PU9sBXHkrKCWN9NQlV5mOOWsFmMq4yHXVD0pG0BromYtDcBYx6U2gKkoqEUigMsUayGYFqrmKlAknG0czaGsvy1dd9sQkUIMQaRZ1rz1SLeT+b6S/HN9hmpsCYdzjXKrNrHCgMWK9zdWPVAcgUS+siKVb/yZh5+bVbfPrJYy49+nZ+5Ie/EyeGVDxKTqqATdEeL1VjSVd7xZJz/WUrYyyPI8M2kBKUNHL9xhE/9S8+xm89dQtjYd55FS+FTNt4jOjJMpX5RnQUpcBQIYuhGI0klwkHEN0JrTEV7Ck7w8hh0JJ8MdP7cnp6TBwDq1AY3ai+CzExWywo40g+P8OmgVwKhwcd3azBWMdstsds1lCiMjDXmzUf/9IrvHIygik0ruN9j7+FPe9rcg7KmLyL5ioxQ6Ou/SVpUlGMcSfT3VmBObd7Kbr6c+VQdv+mZqS6adv6sIUYd/hMY33tlNQhSESBvJLUGKQYnZ3vHIyykoSk0pKlGLJBMyU6rw93dXpShkDl52dDjvp1M0JyBm9cjfrO6rvYuQruwTAGIqlq/60Co1nIxVZOSVDQs25ypl4jTkjjiPc6bZBSMMZppaDbQG0P78pBTFmzLesrti+xei5olWHNFGjqiDkhtdJM93slsBPiVOGEbxy+83QzRzPvlC7aNJhuptxwa3Bex2hUNlhJUeOzjU4FhEwuqmiLmy2/+W9e4fljww/94Ed49zuuYkVRdmdqsmulZuaS6wZQqaRxIgLpKMpZyzD0DNvCiG4fN26c8BM/+wk+9eItsNC1TsMpcibkjC+VuILOxlPR4BEvtp6M2h5oTVMBMqlxUlAZjRN9Vn32iwj7lx+m5MB8sSSlQmx6fXhyoE0bjGiJfrI6Yog9CVh2LfuzFmcd7d4eXbuE0CNpy2az5TPP3OBz187AGJwxvO3xhzloVH/vrACakqz++JlUT2cr+vElRSU/VXqu+umbnaNQqkiXcUJOkKxKZwlp1/JQFHUXUwgZbOOVCyFG/QhKoQ+KRyCqCVDGQSbXXl7NUiDX1wdSKvBqaZymDE+V2NhvqhmMtnrOefo41t+7q2QynfG7WqKPMSG50Dqv7sH1IUtq6UwhgmStYkpSanEdAxp0k8yiG0oRg/eaoal6COUGTG7KqXoG+sarNL5PUG0GlrOOMIxgNXIuTvbiGcUravjI3bmIX7nui01AjDCbO1pv6bzgvVEjCKM0UiNKExUrGKd24gnBuAaPqSO7BOOINQ5TMiWN3Hp9xTMvHHNr47jyzvfxX77vHVXZVllpxhCr1HIKrtRTTh1qU3XkVSaWzlyHfmQ76AvAmMSr117n//jpj/L0tVOKFC2xjc53jRgSGu5hpebLlzoj3vEMphpEPedKLnd60KzgWsrqzKO/ecUHymZF2x8TtgPl/DbtZkVnCm4AL5mYI9633D46Yuy3UAqdsxzuz1Q7MJ+zv7+nmMfQk8aBF18+4RPP3SYC3lseffgKb7myTwojXjQmTY07dCRINcv0pop6SAxDTw5RNQHOVFcgfcWWrIg5qOGFET3ZUsqor3/ZEXtSGFUPUntjSqWRZ8WBdLqQdiy7gqb1KqEzT5wk9dybRrtU4LmUCgCqe1AII6BYDVZDR1wujNWS3rm6CaAbV07aYpSUCMWqS5AKRmocWlZWoAizWUuKaTca1XYzEULCNo5idBOM1VBFRCc8IdfXmGjga+OVBZuzOlSpGYkhx8Cs84y5UIp6M6qxq+Y1JnTzk/zGI0J5M07xN2p9t0j5+L2+iAfrG7ZuNo7/7iPv1tbHqvxWVYBeJd2lKvZsM5kRUxKIU5Asp0ysG4Wp2npnaoZBne/npL4EofocKH044ZuWEEdM1uw+7bkH1ZCIAdERXxgiIapbcdM0tZLIysiTQsqaGiXiiDlX27RUpxNeKcVIxSh0pJST0qbTBDw6HV2DIcVQBUsFctHwVNEWq7FC45yy/oyGsaSS8G2DEf2ZYyykkCtFWYVFobpaWecwRfiZ3/7SJ0op3/2Vv4/7ohJ4/dKMv/HH3ocTnQB4W9iftcyXLc28w3Wexne03ayWdgZbzRnGcUO/3vDq87d4+pUt/sI+Dz98mZl3LJZLlvOWnJRBaJ3TNFwpOxLOxMePMd4x8cgFi4Jc1nlsjmyGLdtB8wJTTjz//DV+/J9+lOdunJBKoWkcnfdMEdC+utSUegKLlIqkm92YRxAdjdb5cagfbytuEHNmrIGVUTlzCPp1H710wA9893uwXYv0gwaopIl/IGzWa45PT9QXj8yFgz1mrcd7x/7Fh5g3Qgkjud9w82jFL3/6RZ45XiPGMOsWfOe3PMFcdJ4fqs9+SEEdg7LaZrnGa9sUA62vmL0R4jDgRGW9xmtvajCEcSCN444NmXIhjQrMWVHbMCmiD2h9qHW06xBviTXzQePK9OTM9cQsAiEEbOM0cKaab2jJokesaVpySLvfuxEdnWqLqcxRfdC0cPfOkw2kcSA7HTHHlGi8xeZSWYW1SChKcXYGStGHdhryh6J5mSVnfLUWyyXj7BSaYrCooUgaIzmOmFwQh2oGEEIYVU9TpyGdU8o6GWIedwYmWkFWjoxTINJas2trv9q6LyoBEbkJrIFb9/pa7lqXeXA9b7but+uB+++a7rfreaKUcuUr33lfbAIAIvLxr1aq3Kv14HrefN1v1wP33zXdb9fzRuvN3QYerAfrwfr//XqwCTxYD9Y3+bqfNoEfv9cX8BXrwfW8+brfrgfuv2u6367nq677BhN4sB6sB+verPupEniwHqwH6x6se74JiMgfEZGnROQZEflL9+gaXhCRz4nIp0Xk4/V9F0XkF0Tky/X/h1/na/i7InJDRD5/1/u+6jWIrv+t3rPPish3foOu56+JyLV6nz4tIj9617/95Xo9T4nIH/46XM/jIvIrIvJFEfmCiPy39f335B69yfXcs3v0Na8p2fVe/EHFcs8C7wAa4DPAt96D63gBuPwV7/ufgL9U3/5LwP/4db6G7we+E/j8v+sagB8F/jnKhPkI8NFv0PX8NeB/+Cof+631d9cCb6+/U/sf+XoeAb6zvr0HPF2/7z25R29yPffsHn2tf+51JfA9wDOllOdKKSPwj4Afu8fXNK0fA/5effvvAX/86/nNSim/Bhz9Lq/hx4C/X3T9NnBBRB75BlzPG60fA/5RKWUopTwPPIP+bv9jXs9rpZRP1rdXwJPAY9yje/Qm1/NG6+t+j77Wda83gceAl+/6+yu8+Y38eq0C/LyIfEJE/lx939VSymv17deBq/fgut7oGu7lffsLtbz+u3e1SN/Q6xGRtwHfAXyU++AefcX1wH1wj/591r3eBO6X9X2llO8EfgT48yLy/Xf/Y9F67p6OUe6HawD+FvBO4EPAa8Df+EZfgIgsgX8C/MVSytnd/3Yv7tFXuZ57fo/+fde93gSuAY/f9fe31Pd9Q1cp5Vr9/w3gp9Ey7fpUPtb/3/hGX9ebXMM9uW+llOullFQ04/tvc6ec/YZcj4h49IH7h6WUf1rffc/u0Ve7nnt9j76Wda83gX8DvFtE3i4iDfCngH/2jbwAEVmIyN70NvCHgM/X6/gz9cP+DPAz38jrquuNruGfAX+6IuAfAU7vKom/busreuo/gd6n6Xr+lIi0IvJ24N3Ax/4jf28B/g7wZCnlb971T/fkHr3R9dzLe/Q1r3uNTKIo7tMoWvpX78H3fweK2n4G+MJ0DcAl4JeALwO/CFz8Ol/H/4WWjwHtF//sG10Dinj/7/WefQ747m/Q9fyD+v0+i76oH7nr4/9qvZ6ngB/5OlzP96Gl/meBT9c/P3qv7tGbXM89u0df658HjMEH68H6Jl/3uh14sB6sB+serwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2Tr/8PtQF6RFb9vn8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebRsS3rQB/6+iNg7M890hzfVe1WarQmVJIYGLzdNI1vgBhojY4wWMjOyqxmEbZahkaBpaDA2bsQMclNgDJgWCLfN2JjBFjTGQIMN9LKYVKJUwxvvu/M952Tm3hHx9R9fxB4y85x7Xw2Lq8WLu87NzD3Ejh0R3zyJqvJ+e7+93/7Fbe6f9wDeb++399s/3/Y+Eni/vd/+BW/vI4H32/vtX/D2PhJ4v73f/gVv7yOB99v77V/w9j4SeL+93/4Fb583JCAiP0lE/qmI/ICIfPvn6znvt/fb++2za/L58BMQEQ98P/ATgdeBvwt8i6r+o8/5w95v77f322fVPl+cwI8BfkBVP66qHfAngG/6PD3r/fZ+e799Fi18nvr9IPDpye/XgX/5qotv3Lihr7zy8s5Ruf4Jsv9T905f0cczdX3NRXunpgf0WXr4nDT5LB4gdXQH5hHUPmXnPWR+uUiZcxVEBOcDzvnZwJRD86CoZlTzcIWIR0Qm9+zMqWZyTqQYyTmC6rxzcWX9hwP2e3djTN9Uh9EcumB/1O+RadbZN+Gq2XiWZdR5h7Mn7J87/Jzv//5/eldVX9o9/vlCAk9tIvIR4CMAL7/8Er/n9/4OBuARwZiUcdcNG0R1+C6TzSYiVNFGRCbXDFfM7pleU9vu/bK768vczp9f/2aX7I3PRjBu7el7zB9Q7z28kLvvcF2z8zpMoxy4dz4fihfFYX8igjjBOcGLIGLv4EQQyXgvIEJScL5ldXyD5eqU0CzANVTwEhRE7bcqaGSzecT5xX1S39M0x5ycvEi7PC6YpcyUKiJK7jfEzTkXTx7w+NFdYr9GYrLpcoJ6j7oGlYDiyAgZQcWhCIogqgWIxT5Vysi04BMFlQHQD4nJqjocVznMRM+u0RFI7UlyEJPUvSY4mOzjQ/3t9V2O7R7f25eq/IRv/PGfPDTmzxcSeAP4gsnvD5Vj00F9FPgowFd8xZfrLpBO2yGA3T12GKiMpgkjcF/V3+55u3cHvHfvqcRIbAPt4gzKwh8C1SlSm/4e30fK43TyfefxsyFNF//qdtU8TftU6nuNB6Zb185nUHDiUFVS6tluLxEnKJmmLXMsGTTPN6cmUr9luz6n6zaslkpenUFeIt4Xomn35dSzvXjE5ZMHbC4ekbZrRFPp25HFkfEoDrQQjvKnZVnqfNb3GziAAeKnv+dAuNtEhKvPXnFP+f8qpkS1IstcENFhJLB7bB/w59fU8T6tfb6QwN8FvlxEvgQD/p8F/DvX3bBP1cfv07+c8+w4HN7Y9diUoZ1et3uPVFw9O1bQQIWIOdRNgH4P+ssgyvM/A7Z95ARkxhUc4h5sWPtI8rpW338+J/bGqoqKFMBRcqZwQFqouiDOnptzHoA99Rs6sXlzIvjgESfGBaiguQKoZ7E45vT0NrHfsFiesFwsrR8tVDMboug3F5w/vMfm/BEpbnBaBxPIEozSq6DZIeJs3FB5GQqumk7XgBAGRMFIoJ9VUX6llPGMrYL9iGErpzAnbNdxJHvn9t7h2Tbe5wUJqGoUkW8D/hLggT+kqv/wunsOblo5fH6Xkk9FgeuueVrbpdkq41KbaLDPCVw1xuEC3elzAnzXj20QHLhuMSug7vEtAyWop+q2O/xsGxdQqFKGgYV2oqgUBCiUzVoRgDORQUA1k/qOziCN0DaEpsH5gOBBAqhD1ROCcLxy5GWPDy3ONShCTglNPbHf0q0vWF8+oVtfkHOyuVRX2PxAxpErsOMANwB4ZbFHeXkUByp3NV0mQwj5ynl+lnYV0B5qc1IzciTvhYIf7PSKx1/X3+dNJ6CqfwH4C8908S5rbwdnHMB46fRlJkC6Q+GvYvkP98MVlJwdWNyF+mv6Y6Q40zfbEzkmLN1VLL9df+gtan9y7f0ihVuAccMxMjd1PJUqVsSVy7253CyCAbtTNINTQT1I1jIWEwtyiqQYCV1DaBt8WBDCEudckXsdEPB+iZcGVIhdImui77d023O6bk23WdNvN5AigkNcS+XMVHyR/W2GZYIQ6jsIkAddwHxOptTSOKAJZX4P7TqW/KprGZ4yl7OqfuIqXdWztMP76nqE8s9NMbjbqhJOddRM78r8e/fIePdnyhYLskusJ+eM6g2SwHvk6/cfvX//HCnsSt6VfR6RzyHFaH3vXWml/t7d3gNeK4hjpJbTJ8lwwEC8agIEso0hF3FLnT1MXKYwE8YV5J6u90jYEnxH8BGR1lh+iSA9aEYjxD7T9x1d3BDjmpQjWv6cyKDwE/GoyogA6n4pCkCdKvxgggB2iEel/sNb22dFmu9NhtO9X3uag52folJ1k2XOJmLBFDEc4C6m6z87N8Xqe+O5uj0XSECG/w5RaBl3MrCPqUf5biauX6MveGZWa9bfdRceRkDDcOVZttSh9yoM/FNuFpli/p1edUAfe08aEAdUvebYZ8EgAwLRihJHXqIq2eqGllx18eAUVBPqesg9UXqEDmgL4EaUjpx6chI0QUoJ1Z6skWpNwJUe1ZNzUf6pI0kF8ymyGoF6pPZzA+BU6TuemO6hUVR4do5c6gBs3HMCb4d3cHy1RlCfN9xzPeGbHt9DDuw+19TST3uN5wIJwA5Wk3Hgs3V6CldUOYjdfg9aAqb/a5mwHUXheMXh8doAK5SN14/4SmfvMjCBOyz+YS1/vaZShn2l5iH9wth0/vVKUWOy9QolUUwn4KquYRjoCGjT4YoWMaGKDIBp6zOK+QNkTahGNG8QdSARtCPnaApDdaXPPHlW5T+ME1A8WiwAmVyJueELKrjL8F5T8C/o1Fj/Yb7mfM+cc3i2Ns7/yI3uXVPXe4ZC65zWNR2p+CGT4DOMZPI54Wxk9/x+e26QAOLKXpvh7TkwCkydHEe2tu7TKcDJpIddlLI/IW42ieX/K4BnYNIne0lEh+vn876L33fxlFyJAKbnR+31nPLXzT7zaahIrfIAcpWhcmyjTXtkSzMF2dVzMsF5mm1mC4lLBSE5J2QBkgwWBpXqHBRN+aYOIY+UvFD3AYhzZemrHd8Av1LMLFrunmPTYQ1gOK+TFdhj2odNVRd66sdxxfxcuYWudjmaoxoOL/PTKNy0VSvKDgGYij5TjkefsvbPCRKYLIDMpuvAlTLZqIxrWRGBskPRp309hTE6CMTz84ODkO6cHhRzMrv+6XLAVYu/r+zbl1engDC7deRurup9R99SEUtFBfMxyBzJap3XXXbTFIbihJRLX1kmxKnwGKoMeniZAOewrBXo621VJBjHpiiZqTa/Iqs5RdZhB4xsl5bnTvu7DgirVWHkMGTn/LyPfTa9zhQD5d/jCXYUesO9M0CvnOtUlzHjPcfrhtd7OnJ5TpDAfFPOW53yyeafAHqdys/IpDJ59mCamT16KiOOk3ntk6YmnhmFn1Icdr5fNa4R8Mf32+nnqm6EItfbj93LdnUlo25gumkmosAA9vWXww2bvj6vMPO5bnmj3jKhohOpndEuLgNwaBEmBnPexIuvvu5EGWHvVdZnBIz6bdw58y+TV4IdOKlcxXSOdP8m9inx4TblMMa+dnfTnLvb7WJEvlPR7Mo9NV1DqXNz9V57bpDAobY7ccPxK02GV597qpXgkN5Axs/3Iivua+pl2NT7x3ap+25fc2yvOrLgV3Km2OW7yr7h1FU6hQHpjIjHEMO+MCFlQw40tjxslG3TQNXrOk595jJMxl+BtY5lingnVK9S9+keZ75PRs7BbsnDTeM1+23OFcGEyFyx8E/zU9kd4f4KvwdiUGegrLtcYc6aCn27vMh17flAAnIAmHexc9nQu96EU+XJ03wDrh3ClffJcP692Wunvw7bakWu6+8w1zBFIlMpd88KMmMUDtnKdQ+77VLEAZEdoIiC2vGJJn3fMXYEzPmZXUq94x8vjPdV9l3LO1Qfhsn949bfd7mdH7vK0rKPTg+56u7+vgpRHHReK+8w/C6TogPy1Cvu3ZnzCggHts5VO1jr865ozwcSmAD1bpuCgR649jpnos/KPHigPeu9+15f1yOYZ3jytPen0o4pZbff+4zjtC+KADnXP8j8pj0EqCbu13edWUImq1a6yYyiySjsz5GW2cqNC5gKDaqgubA26OgaXLpM1AgRLQzDLlBeHzE/avfr9YeQyfBGw6Rcp72vLtDT+ZohXRmPz8SdyZ4VEXPUmiKpAQiuRliz/nUc8VXt+UACT4EFLahs1EZfD5C7PvFXXVsXfzTDMbv+ac5KT2tzkWA+tme7f6Sh+xzAfh9X+ZKPP2Q+KJ1faKdkql8rpux9zbfIPnWZ/p6C3S4nLsPwJxSaiuirE1C9twI2IxJh6uU3ua72Xa7THXlIhuOHgHcErKsQQDlQcNH+/FdLio4HDgLte2pa797nCq/dR3kC/E959POBBDggDszOzY/sUv9npfhXX3PY0Wj32qf7++/es09hDvV19f1P4yTeY5uw1vvPKJcwbrjBCnPgXTWPqqY9JS2Qpnt2+rmLTvZgbAqA88/x+sph7PDFFVlUmXln2E+f8+sprA6K1mvae1UgPcvYDuKQirivJgZXSA177blBAjBuvh2Yv/r6CcX/bNj83T7H7zaQXfb+2cUC2UMEh55ziGPYXb5RDzK94rqcBHNl1JX7tzII9a7qzjp5fD5E9WZy9PQ7ZmGYclYchosRuY/X64xDKGLJ8Dl7+RnLXR2V6rnrnGSu9vevPhlXs/hznqjui/n71XFpFYEmSs4qMn0mnOX8JZ7pkB3X6/1EngskIEyA4ilzswuIg8JKMtXc9NkihM+Eq7imt+HbVBd36Pa5SUpm9xx8nLB/LSOfPttsB4GwXjtyHHrg2nG/TuSEyfOrGLGHuIYxHHrHEeB3ubpdu/gMS03efQZIStGeT26rlob9V78CCA8rUOfi5eQ9dYpo52PZJ8N2YPz/6U0PYH5LkHKo/2kMxbw9bas+F0hgF3CvHHOl+IWCjJtcxvNPmWADwpFCX+96e1Uf+xzBTNS+kpIMVzN9y2HvHmD/DyMLdgjohHLO/5vfN2zCKcu/xzPPCe5eX/WJc2o/127vXH2FZn3XunPgTScfU7OrzqewchS7z9nt7Zo1PjRblXLr0P1kbgY8uBOuXPCE1Jvmgu1MSTtv0+t2dFTT/TD7doijmfdsMCJcBxbPCRKAqkoa4eAA9Z0e36ME+y96FbWe6hiuY/GvUwzucwvzc9dtuM+J6PIs8ulw7ezpc1oxo7o7yGki0B/EK1dwM9cO5SDSnT9XBwDafd7EMjLVQlYAnHSwDwqHxjJh5fcumQDZ9PTOXGoZyoBMVSd3TjisiZb/ChIxG9f4KRyc/2ckWsZlX/lQ4DlCAs9myrsqU49Oz15z//XPfNZrp1Tsc9F3vX7K/Y0bdBdIrU0p7Og8NAXw3edPAfoQvzSeHyjvQWRx7aHxfQ70PN63iwh2r9g16Sm7774fljX2fbUCd1/EOqAWmPQ1fs8zubpwkXCANd91DKpxle8tYcke0dFdfcT+u44nyggHerl/77Q9H0hADgNZ+THB8ExY3cOpwj4zz8Cxn6cOdTK293Lfs4xnd2iVEjxd4VyRYGUPx2N2fOeZQ//XJZyYAN17fb9dIn0FxzCKT3blOJaDpHnvfoa+R4Sy6zw2moF30VJdw70hX/2s4T4ZHm3elCPi3X2Dz3xnTJvsdXbtmuwwxU9bv+cDCewtUjkq42RD3VC7lG7E0O9Ve3/V897LtdcD0rO3a+XVA5A0E40OKLT223QXjUDw3nwWnr3plT/KaHZ0B/aM6/iHvQ4ml+3Lxk/zI9lvIwI1xmpOlK5EBHoY3GXCcVUrzmfka7Kzvw9xOlME+Jn4tjwXSMDklqsX7b2w3e+FE3ivAHwIyXymi/te265D0/XXHgLwyWZ9iqJo/15m1PVz0Q7pBt5TRp8i9x9ai0MiwHtrBzTsV/V1JSvxdIT2LH4LM7HnKdcLMiLF9/DazwUSgM8Ec5c2kRV2N8R7fWalTu91n3+uAOPp7apNMFFFXTUHqgPgjHL/ZzaE6+TLZ22HkOe+JeKpnTwTIE3FhWuvHMSTQ6zLpLuh16cTrkNP3XPQ0qvn4zqF89X+DpNxPsN7Px9IQMC5Z6uIdpV9d1ek+MxFgvdy7eeOC7hqvO+ZDf8ciieH+vlcIICr+38PuoBJe/r7PiOHceVlE6WryEBodYIKpnqbz6XCeO5XoTNx4Hrz6tPHUtvzgQSu0Ak8462Wrmr38Hvo72nmv4OP/Sz1D8/SnsWH4elKw/J+OxziM1HGA1TneWnGNDyrrP10Fd1BxeGAFEbl30wjpVWEuW6Qk3uuUJAewjxPm/urxLWnXXeoPRdIYFcn8F617leB4edDQfi5dlN+Wtv1WDvk6npIMXawL6h1QJ7p+t1xfC7b54SLOqADuJpTfJb+dr4Mv4v4JHMBYNdZbO850/srGnkPAP004D/EFeyLGj9EkAAcFgee5YU+VwjgWRVfVysir5vs6ynRlBZMlc1D3sBKmD4LTX6lXLt7deYFt3PuKQcPciCH5+N6Sje/7nD9hL1nFhbosCw9f/ZU4bjLXtcxD8cPJuw4pPyb+wNI4RgOKjyHZxch4hCVL2uzNy+TBdPJPYeQwS4i+CFlHUBkLPCoEznrgJZzD0hVOZwx4dBiHqYSOrl+vrB10Q7cNZlskavAZBzJtefHnT2wn7VfUcHq8lkfWZmk6Hx6bYbhpQ78sOu1zOHuiA90swNc0+OHTKb18p1QphlfPEe+pcTYFbL5/us9C9XbTw93iHswwJVrlUIy+3ZYLTj1TajPn46l3rsjWNSBTP4Y8kRO9bg1AYtq/X7gjQfuYBd9HG7PBxIARhZMhl+763GQhXxPbOVhZFHhTlUnst6ACmb3HaIiFVnsPWoy/hHF7Fw2AcDazbA9dMIIaM2eO+TgBYWcr6Ass+fuAtBsSzEggukd75FTv44C7W3EK9jc0fPxWZ5/xbN0nnthHMG+uHmwXfNcHe7d9XHYz1g0HcPh9ZkcH0k8dTk4dA6bnbrm8+IrhzkzKodw9Ws9P0hgVxxwtvN5z7vx2vZ0Vv+Qqfo6R6ax5+tdM6975vy7vbOIlflyQExWnitrJoul3FYdN2R9tSG+fgpvs6fp/JtO5neCx65SlM6BfJyoqQgwUP8JR3Ndu07bf728r3vXjtdNrxm5qmk/FXnP+tTDXMrh5+zKUFe96+E9MZP7C9DvsvX1/PR3nnACda11p9+5uDC59or2WSEBEfkE8ARIQFTV/42I3Aa+B/hi4BPAN6vqg2foa+dIwXBPkdHfm0nssGw63F/W8io2b3rP4d73SH+9o3ay9+xp/yIye76oGkuoPX23IaVIdlj+/3K91MSjshtBOaE4B8SVg8RS9wFqNrZx4OWWQ5u/bsxD3NF7R5PvRet9WK9jY9yd60PXjojx8PMOI7urOZJdReL03BwJFMDNT0cCMzQ+iHMjAVJVcs57eoPr2ueCE/hXVfXu5Pe3A/+Dqv4WEfn28vtXP62TQ2y2tcNUqV47ArA+BWHsb4a950727WfsvHT4DvYAYqefCmgG0LbATkFK0Y6UO1TTsPa5UBBXcvTbvew8R8ANdYTsPYueoSod59vUXQ2kMvei0wOUfopMR3fa3ZnQCXqa9MfIbj+zeHfFtdcpBuv5g0rnA+u6qzzcHfm1Y70C6e1R/AknUAF4fh0wAXIAlTycc5UBVEU1Wx+lSGytu3DdOD8f4sA3Ad9Qvv8R4K/xFCQwpTRT4D+kfjnEolE33AGKN3mK9Snzydy9Yh8w9tt74z5q5648f38D1WPOlSo8AoghgZpwzzmoClAr7lU2i/pxvAdeXgtVHgl9UYABIm5QwdpfqhOwL1LUeanSxyGEMxFPdsBw79KDYxV26h5MbpkC4bDu+RmsOXWey266RnN+cG+9h3YVgannrqTwBQnsUvA5Sz+h7IVI1L+s8/50ikhm4sPh9tkiAQX+shhk/X5V/Sjwiqq+Vc6/DbzyLB0dkrGvSqg5v87+N+C5KqV0bfnKyRiQEE995BUb5LqbCtU9YF7cRShVtzAS2qIfcAUHaEawynzZKeQJtblupYv5q24NKdfXEl/jn85FhMkrjByHFCo3AZo66gHA6zk3ZPyZIqvdkRoc6IBwDs3TeLEWpDq/5lCrCGCkF09d3Gfq92mtAuR07PXYFNhn4sABREFRQs7OFV2ZaqaKJuM1eaIs1tm9V7XPFgn871T1DRF5GfgrIvJPdiZC5QqXKhH5CPARgFdfe+0AEjjETB5olQmo919505SV08nn9Il26FnXfSYjXn/lBKh3+xhPiAhZ8zBarf+p4gsAlm2BongpCT3rBpmOYgDawgnIyHKPsj8oVhtwZ6Rjq4BZ/xMZwmeVSThwvXxIFVznOCO4CZcwCgRTXFP/8uTE9QBYSqbuANpU2TGgnkk3V4kb1UQ4Rcq7uoNnElPKfA2AnMd12QX0kXIXDcqeODDOzngulzXT8n18/6leIedM1mzroWZRuKp9VkhAVd8on3dE5E8BPwZ4R0ReVdW3RORV4M4V934U+CjA13z4w1p2qwG0QqVZMhyfasQn7T0g6lHsuwIB7LLCM4rGOJ699rS0ZnmGqMaNNrKpw2ajmp+qMOT2hiLlPaQQxJwVHbwHSi8FOaCgIiQo1FOwqkBuTO1dlIpyqNhrZaeHuZ+w9hO2afiqBSUWSlQhUEolosqJzN6pimgz/m+c9z3gGxRuuwhAJtyQDv1Vinho6aZAXxWd++w4k37d7B1mws+AACbjnsj0FTnknIfzA9CXGw9zAxNKj6I5zbmIMmbNVRTIpJxImmfKxqvaZ4wEROQYcKr6pHz/14HfCPxZ4OcDv6V8/pln6m/4r3wOeQDHk58hZzYZs6duiB1Inzy8buI5lZ73894GomXs+3qPcv4Qcptio8rvUejboF8wU6pUAWGH6ao9FFo80ucqZmil6pP31IFRQIrzjlHy6YDtwSMOGHiMoY8BjIciJvW3jm7LFGSvk9UoyH5KTXebiDmXWXh1MfftTujQX8ZySs4BfuzL3lRr0VNGXDJd/1FxWByapuBflwmYegVWwKzvfIgLyDmP85XnnEB9bpXpraJzMg5gJlbYuYoEck5mTp4goet41c+GE3gF+FNlUgPw3ar6F0Xk7wJ/UkS+Ffgk8M1P68g83/zkiBZ8WwVhxp2JXkv9r8Z4I4YxgJyyXKXfK+7YO74HsPv3TlHLnoltGGvtr2L5/ecPehHRCbAW8NapZ+UEiVXqUaDUjXeUzTARAYbb8gjKMl5tSMczFSGMG5CRguu0owraAy83IBY9sHYzkeDAHOy3+u55xC9VTJrqdeq7KiCOURk6PsG4iOn6OIzSFwK0U+i01l+s4x0HWwFfBk5gRADF23MKrDPAHq8zWb4iAZsrVSWnqcJvRAIG8BNlYrEMjIik6sA+T4pBVf048PUHjt8DvvE9dTahkpND1t9woLKhu2d2qN+1VPoQVa/fRmXKcOmBiavEYcwZs9tPoTjK5L0Ou/ce1FTL+CETKjsjxJMLZXj4/uauADnvrx7Ps16rLcaI/riZx/moiEBACtXU6Vj2ZmRnvNP/xyt2V1G19jRvAwofbqqIYCoCyIx6V8lFCoIbgL50NBMFtFqOMoM1Ywep1IFOZprplFYkNgJ5ZhDJrtQHGPuetcj7M/Oeaf5zGhFA1mTeo1U/kNXuLZM3VzgWEfEpyPW58RicKr2mxRqudsAp17xHEeHZOIURE18z4vJ/HsY/ew6jV9qVDiWHxseUA6Bs8F3AqjtRjKBrmbmKeOql9RUOvnPhCJjoWsQhrgK5Y9jDZUOBH4CwgssM2I0sj2LJZNhXjWB3zkZKv3NyT59SxzWeV81l7DUYiJGBhGnvUPqp36eIdBdJz31WqtgwLaE+XdsCdFVDXyhyHtj/OQXPhXpTEcAEgZhyb7yncgEysPmjQlgzg1K5jmEYy3VsAM8REoC6QDV5g5vi2etvesY2kwmH/TOfpEH5NTLHB/sYTU41qcRhYN/bQDoqsypjefAt1bbbgBRknJ9K1Uwc0LE2nsynQypAXDNJo+xrz7NqQw6RjIixxjPkAhPdw0iFdfir36pl4sCL7fyqwwdmTkaHNPNzk9v4nlOgmJpeZ08rFHFPQVvvn3ARsz5mQFRRtE7gTCuDBEoB+KLBz8WrI49/KeURyPMUCUwQwMTpZxQdUpmfCtx1EgrHUC0RA1dj5+UpiOD5QQI7bNYuM1mPz24YKNGzpXOeL+hBx9Yr74MdJLJzbvr7kDfaQFHZ5Qh2WPnZ5y4iEobCrFS3YZ2xrlPWeLfffc371NOwUtZKHYf/JpYMM8sJgtMSyDRo9hmpkk7Xpp6vnNP1MRYDZd6Zv4MeftOZ0n1kPmXPd81+hxC22d2fLVdERQLVBMcEGZsuMA9/OadrkYDmOQKYIoJhTQbgLwijvm8tvDVg4boGeRABldEicag9P0iAnW27U89uigB2qbXKLjiXrbbHb+reBhv7223TzTEC3nC8aJwrhTzk9ThSpkpxr4g3n/LYRW4dQEsmgLUjGcnsfmZkfYRhmU3slC/Zb1OgVSovLbhy2JDAlCeRyf+1OIhK9UrUgZOYcjFXz/Tk2AGAPjzeXaQ6QQiDeDI+aRB99shMPeaGPmZ6nGHd7VoRKeKSzmT4qdZ/qrzbRQSDOJATmqvdvyKBIutPn1kWNGs2V/KJuDHndqooWcZUkcI1iPf5QQIVgLT+B0wnYbKQu9h69wWvwuMDMt25cF9ppzu/7RluyHkwsn7V9FejIA/L/1O//kPcjGmWZ7iostJTClcXfJBl8yAqTJHM2LVMchXoQI2HR4wC8oQ3mF5Zx5cm464KxRGQZv9PkFB9dBoUleXMrnyx23Zw+lViwQyQJ+85HNfxzUY4Mla5Iu0BWYpiCpbRFfmQnmdEptWTzzTwuQJ0QQpV088EEaSCCKZIwjiBhEz0M/X62bMrwE8/K/qavOeEBDBknhgQw+H2/CCBAbhhKmsCxRQ0xdc6bAJD+FeCvf0/7evQVXtURthFBnZv3QSVyzArgDvAARzq/2qxbGfXFwo2dfOtQFPl7KotmC/6pItBHp9gq8kDpI5LJr+FMXJxgnStrxG5CIKKZ8RU8+fa/CVERo1E5QQmeOdZZmLW5qw7HBIDD66bkwGBVoRVrQGjVCEYAnDXyM+jHmCk3FqQQKX2IydATsN1hgTmJr2B8uc8od4wdQceqHnFqqpofe8dajYf95SLuBoBwHOFBGCXpo/7UAebsIjb2dDjxtmV3UVk7i65V79uQmUmlKlupD2WcEKRqZS9UoZKWQaAv3riR+6idjMRbwo0TgWeihydjKytVkBV5ldOxuBq11UOH6hYnY8d5FnECVc33VT8KOKZTvw29oqFTCB8KlgM7POEQhcsNHA1Mz+naVdlXFfN5i7SODTvOY0McRXd9jsS21vXUMzRrKc7mvwR0KcUnpysP51o+SdUfOQkpsq7EfgHRFPhwrANSB7eHcT0AvORDn+DheIaPPDcIIHdxRtZzAlGmxCegRJWln6yY6fyuZMxA4sWlmvsesohzCdq5C5HKjoF8F2JcvrsOcW6evalOuAMI9DZ6xpeqmG/Aw1jOuoDQ5ht8soqVkpv11cV4fzWqmUf30Fm0Lk3vglnNF5RlZbTw5VrGYFgys5PQqZ2kN/hNiLP3f0wv7EeGxJxDE88wOqrUt2qD63ZAIxVFt+J/d/VBeSUKFpDG4FW//0K/BOAHxDAdL9U4K1kQMf3zXXTj8DOMHvjnOukj+ffOjBhWcZ9OuF9h4tmpMk2zADTc9CQCfUYnV+mwMmwUXVYrKnqb44RpvfP5c9xPNN2tYmpPEWnMnolfVrcZhVXefIyDwNgYT5tKqND0mzeZhthCviTOZJy3YF9MRUjZN7V+Jo6QUaH4sOmA9NKQeeOPTPdxWSww88d/F+/jVtFCzKrg6wOMxOCoFrCrqvSrsTeD+LAlA5U6j5f5xnVro81e9yAFA8jg2LTL0A66Ahgfx+pWRQGyr0z9/uospCMHZgZ5hYYnDxEB87hqvZ8IAHAYsMZdq1NnQzUclzY8pnrFUVfXUmDjBNkc1IDcObYcGq/r5YEKfePipYJRaUsfoESzSUoyI0UdKDWewqsOfWyZ7qB5U6VQ3HlncoYpuKAIYKRKlRuxMbpJqOcUMcJwZDpHFLp0+Ticn0NIhoVmeVTa3BP3aSCR4tIUEeqQ0cqo8ytORsXK25QoOZpNpzhKSMAzMSdAVinIhPsKZAHaqlDbzlnQ6z1nXdfGgbAr4S1Un2UeVRfuViLWW+gsFMEQLm/IonpQ3a/6/BAdDp/eyO0Vld3RuGHOdQZjbQbxj6vq4/wnCCBsiV1pFCZ6iw0yseufBvknCE6D0IhUVpMalEn2G/GUcyJdgnFmU0YogPyGUa4g3XzsKhXqyWnCGDO6UwMjiN5KpBadnhNvFv1AAUoqrZ/Els4Ul6Z76/pso/M9w7xnb3VBFkN3MKMr6fqTqqIonmOeMZ+8rBpq8JMnMPjoQRyVYCdbFVbqrJcWgB9ChqVfRadovf6WYFypM5pIlNP14E69+WYqiJZjbjo2OssSKcC7AQJyKTfcV53xJ6Ku/YmfiL/SxruH9Zphjjms2v35oGQDG3gGnVcyFmv++25QAK2rnlYTBE3m1SjwCbROyf2N6ECWSBWtkcUFciSQVwxt4gl56wsdF2VYQ/MsfAuuBi1My+6uqVGB5o9SWCvVQo6BNGo4IsW2lCVIyNkMmi0b0VcsOjAhiwCrrCTGZxkhA4/eY/6XloGNbKzppRLkxlXUXKJz9q1aozWGJn1O+OMitnPlmoeXAMlKxLVtUghRTQ7UihrWddhxnG4wjFMx17XiBH5l8NZR66oruAea16PTRDI2KeOdvyKBCbPnfYzPJD5+RGQOXBMbd1EJm4vddNNXmww5amtW6UDNeS4vJ3NqSv0atyD4gqxlGnE53jMe4f30wC9eXsukMB0YqU6x1ATLZQtLI6cE7E3jatz9nKgFlThwPnCnrsKUJmMmbMUtQ053fC6sxaTNlOu7ciOTO6pVGImP+92Vq+T2q8YwRmUfUXOVzHf/QxOFS+GPLxWWzLgaoSeK0gujQyEHS3OOrZxRMqzkPK8kXW3eR3HOtcBzFyjDmrUZ/4JzAWoiiR0orwyL7mppWCXfyhikbo6ucynvVBqJusxQeS5nh84xQkS2PmDUU7PqWroJ+s3QSBT9mqk3MPCjo8biIaO10zjptlFpVTyMKSUr6RdZ++vg0ZAqp9GmT7nCmdWlOHOObxzOO/G395dW+vz+UACFctTqIqYfVW8sY0i0PVbHj18xPriHO8dxyfHLBYLUuzZdBuyRoIXfONomobQeLwPiA+INIgKDj+nBEw3yOGNPhvkwWM1NHlOTfdbZdcN07tJhL/Z5hUvCafZ+IIc0a4nbda47YZWLQV5ViEVG72xfc6ej5nsqk3f6ItRBpXiilKotVSlKlVxtTtumQDzde80IoKq9JsqIoeYhgEgsmm2fZ2rydwM+gYdkqhWCj7XZRigy3CeoS+1KJqBmo/puUfzXdIC+ANHoUOKNpk9d9Ix9dIJ5jmAGOYAPqEww2RMzhcJdBAxhkjHOl2FKA4IZxRpzdnJFa7Yl0+j9t57nHNM3cGf5gb9fCABlJzjZLAWEaYD1lcePrjPJz7+cc6fPObFF1/g9OSLWDaeh+dPeHT/HttuTew2bLZrUo40jWe5WnF24wa3b73E8dEpTXuEijM5D+z7wIVc5Zo6BwKdLGhtuz4C0+P1WfXVqh1CC6cimnCieMmgHRK3SNyyfXifB++8zb0775Bjz+nJCadnZ7QnJzTtCgkt4jxJwsAhq1QuoQKlkNQ2TI08mwqRVeyquhV7wUMU/4q5Kc8YA5im2n0bVDXyOExsE9GCfMpsakGM4wTbWgzBMBNiOgFci7mZA+2gkNM58NfjKddovlHZN0QbVqCd5mzca1NPSp3dN6AA2UEE5KJf2tHQVwXlwFno4HQ26DbKSg3RqM7ESAP4QAgB7/2ECB2IBXmG9lwgAQVyrhKryfyg5mtRJ7fIQG3bcOPGGWenJxytjsh9xJXNHbsNTx4/4PGTRzx+/JCH797lXfcG927c5vatF3n5tQ9xcnqGOG971hUHHPMWZVquai6PTijAcN7GOizQTGTYaVUFUTG8AJrwkvEkJEecRoiXdJcP2Ty+x6O3X+fO65/izU9+gvXFOSfHR9y4eZOz2y+wunmLoxu3WBzdguVNmnaJ874gNUcaymlJ8fRXcCMQCZX11SGTT9UbyGwT72+k4beTHXyxw94PSUeKyCF5Zk2cCht5EndfuYJBHLhKPteCKJTymeeUf/CvryG7Os/rn6sn5OS9ss5eAfbFwskLMqKuCXLY2wOG9HY3SP026A3Law+P8A7v/Iydr1TfuD9Xvs9Wa+BqhyPPgAieCySAKilFoFIdwYkbWDDvhJOjY77ggx9CHHzxF30ht2/dogktL9x8kb7vrY9+w5MnD3n06D4PHtzl0aOHXDx5wqN793l49yGbrucLvvCLODk5RXwwJONsQnVYiWFQsw04fEo1Kcp0r1LFgt0220Q5D+y6o6cl4XNP3pwT10+4eHiHx3ffYnv+kHT5iHZzj6P+AeniPv1F4u23Mu+EgDtasjp7geMbH2B164Oc3bzF0ckp7dEJYXmMCwvjFHxgjHvXwaIxOClJpclTp+yRzR3XY9/fYUCH9ZbCsk7Z3VFhVxCB1qgDm6vCI+FkrKNQFX1TZxxgSJ5hyrJqrjS9w9RTT6neeRlNo/w/FfsGKj4wQJWVOgQwMpqAJ9mU2J2x8p+U/wc3YJnP5yA+MqHwIlBYemPlQYoyz5djrnrKDntuOj9T1n98ztNFXGvPBRIwTqDoyV2xDFQlVsn91jYtL730EidHR7xw+wWWywXiPM1iybLMjGrP2Ys3eVU/xHZzwfnjR9y/e4+P/dOPcf/eA7puQ7fdEBcLMylKcSn1jKh4RyzY/16dUso43dWuprvRffZIowxOI7m7oDt/xOW7r/PwzptsHt5DckcjiSU9y1UDZ0uOek/stmw3W2JWuvNHPHx4h3t8AmmOWR4dc3RyxsmtFzm7/QqrG7c5OrvF4uiU0K4IbYMED86sEIhDxZMwFJHKPI//8rDZZu+xs2bji+4cmIh1RdgeDpcMBQPeEAFx5g+SRScy/ZhkY+puWzPuGmtTEYEOefUGhVq2dF1DANWIrWfDHpDd5D109oYTEq11D1RCoOP5UWAfEQC6QxhGoK/yvPemxHMDtTcF3m5AWp2/ai84DNtTBfvwVk/lBp4LJFAXDUqMmhqVcmKFNTQrCUux3W07njx+YqLBajVQGpwg+CJbeZaNZ3F0zMmNW0QVjt5+h9ViyWq1tOfkPGjacwKdpa+Ggpqo3wrfORnyvhfWbsz6cG2lGiKYU5SS+w2P7r7Nk3c+zeadT5LXFzQaWS4CjQ8EcbhGiIuWzmVUe1YNhLYlSuLJOhLzFnIkPXnM+eN3uLj7BveOzgirUxbHN1ienLE6ucnxDfu+PDmjXR0TmgX4BnFmsxdcGXuJoiubeuDQGSnmYBmVifw7kelH+DcEYFn7xDxdtVI/u8QJQxi4UTpz7KkSkwFaGvRDeWLOMyfPirSZyPlltrMiMzFj5ESG8Q9reT2QTEWQuqKjjD+n8MM6T8RE55iw8jJR6hmLX7M5jftnOrxxEab7qKKfKRey26aI6jqG4PlAAmCKQSgT7VBJZtdnDGRNKEkj8XEioZzkTNMucCEMnnsiHs2JjDfnlAW88MoH8O0SyeCd2UuTCuQSTTDY/4vuYSac6SBLq1qUGWI6DFu0oqnfAfyqFBy/YyKOKo7EZnPJ25/6QR6++QPc0A3Hred4uaRZNPYeSXE9ZgZ1SoyRRQicHS1wbeZ42ZNzxuGIGdbbyDY9Zn3+hM1j4YJAFoc0K8LqhPb4Bsc3XuTk7AVWpzdYHp0Sjo5oj05wy1MkLPBNa5WOHIwRdZWREUZIdnMvRBWymlhVOZ1KXzOCR4qHoAGU04IjpLLzVYwolF2K2FWYLKu3VLPvpIHKVx/6mrqr9jKsQh38IAbtAnSl2ToghkNKtQE4hyNlfMMBhyuKOxkUd25Q2IkwyPUzEWB8wHzc5flThmrKbVTFYSVa5qyxO9YyRg6hh3l7LpCAakZjX+zorixGsu8TOdMIqSN1a9KjxLbfcnR0xHK5IoRACB7ELAsx9vTdls16zWbT41xDFiWVPMbD/igUb661kmHmBkCuk1wpZF2AnbYbyahVlsSZCFEVZCkRL5+QNxcsbiw5OT1i2bZkrAqxV1Dn0AAER5aA8y2LlWexjBytGjQ7xDuSKttNpI/KtkusNz0xdsSkdN0TNus7nN/1PJYFEo4IyxMWR6csTk9MdLj1ARY3XuTk1gssjleEhcc3ASctiCNPFI2VsDoV880SwxoOzxgElMnaU02Y1UnKptCVFOjVZ1JMK14oVi734IreBUXVFQSs418NylF2TIqVHI8fg75/h93XnQunxHeUhRjeSgrgS8nFWNn6uaLOTcx0dU/oPuCzw4EMLMo4Jt3ZktW0mzTT9z2qSgjBqlMVHdr0CaJaxi87Z+btuUACAJqijbMmuiyiAOXF68uoehzCtt/QP+nYbi9ZtgsWTYMPjRXgVKXve7bbLd12OyZstCdRd0POU7fOuiXm4cCDCUjVagUqQyKIupmuEgOGdyv/jRl3hOAcyzagq5bjVUMIHhUhaXGZFpMLs1eyV5xv8D7gJdGEHlVBU8C3C3CONoCqkKKy3gh9n0hZiUnZRmXbK33s6dMF/XrN9vIulw/gvl8iy5u0Jy9wevsVjs9ucHx6zNntG6xOTgnLY0JYQQhQ9AgZU9yKGf7KDjWsmgEcZDxgcn2WIR0rY/RgRQMyMNdSEIJxHuahCQ7vR1FlkKuHdcijz8COeW+q/R/XQsaTwKgLKmcncDjI7oU/986A33sZWHuzZMlsD0xFnumxq9sIvrvX7YayiwgpZ1JKVGegwXNwhlOmnMoPFZ3AUHG3yJo1IUVhGytCcGomvaxKEtCU6DcbLp0b2DGT8xMpJwoytI1WNlhVupirsuylGagYN+dMjJEUIzkrPniaEAxJFVGiaqUP5h2YvJ9zIxWt1KtpGnS5oPEO7yYLLg7nFOcF78EHCI19Nza9PjOVP4/3GXGOpnVIUGLE2GV15KzErJADOTdsu8zFdssmRdbxnPWTB2yfvEn/7id5HFa07ZLV6Qnt2QnL05ssTm+yOLnB8vQmzdExbrEkNEvENSjOXG5d5QqsNFoWX4Dbkb0fRIgpBzCWJ8MA3jkbs5SMujhMT1xt/75Mj5iDVYn6k6I8zJJG+blqzislL/+N+SgKAipxF1IA2U0Ud0bVi5gjMpHpq6zvDq77XKaft7mib3Kv7COAsa+qpxqfk3MpUgsDcUImJtRhnoeeDg+I5wUJDK1AiYJKqoJjWT8ZUHuOZt8WJyTNZKDXccKYUHNzmy0UQjwIgxJyCLecsEsVCcSc2W46NtsNMUZUlSY0tG1jfthiSh0fnmUKM9XdsyqGMiDeI94V5kcQ53BZcUEIUdEc0dQj2pPzBmWBiGfMPJVBNwwKPfWIeFrJBK9ksWhFFyCliAca16DquVg7NtGzjcr5JnO52dB1me7yEX0WNu8KuW1xyyP80Sn+6ITF6Q2WZ7c4vnmbs1svcXx6i8XRCd4v7B1cMIQrmKZ/kJ0L51AiRetsVwuQUhdvFLdsLQoH4HxhEgVNgsvJ/OVdxhXvv+oUOxbjLP74eYoIivIYk6PFjWXdXZXlXVmHyt5PAH0GpEMxlpEATL9fJSruepaOiH+46MDPQukn52qcgGWCnyslK+GrLOjYx+H2nCEBGNxYYSKXSeESINUwGDEYTuW8qznzGRVZg41bjbPIaprvPMzHGPgizpQrOSW2KdF3PduuI6c8OmqgpNiTUwQE5wNN2w4U4pDHoBbzoImZGeeKi7ATnDd2LnhXWE41jkDBSbJ3lYRzCdXOIva0hZzNhtw4fFNmS6JFWZZCFaVgMUksX71IKhrpDieOE1EWnZJUWLUNj53yYLshxcxq2eIXnj5Hun5NevyQ7klgfbcBt8AvTlgc3+Toxm1Obr7I0ektTk5OOT67QXN0zHK5JHoBH+g1E3Myd90JNZ3K5YoO4QI4ihGmrDmCSCi+8B4kkWNEvSFzj0K2gLHBvFlEg1rBeWQPMKSEwwdX5GlfqLzfAWCZUPS6riPXsEvqdxHAfD/sa+f3FMl1nx+AiFmfCM4FFgs/IK4xZlyGj3nk8A8BcUBkjKa1Ni7cuAZFji9XuLJJUBBvysCcq3wPVZcwUB6pyqmp7tqucc5Zkohib459b5TTOYIvm0PmzFXV0ApjktFx7NN3Kxi7+o6rIjnh0RIkRLUhjdRBi5cZCYiIU4IXnNQow2ievs4RXENOJoE7caSaQKK+d1aUSC5ZC6KCEw+ScaHDSWDlF/Sd8MRlmtBz88aS47MFKSldTHQp0XUdXQfdBvon97i8/w6X7xzxYHnMYnXC0dEJR6dnHN28xerWbVY3TYTwYQE54MSRHSWgyzi8QVnoZFjnmSWiptrOpn/AmTUEb2njnM+DiKUZnDMOwFjlIn7lwhUMcKyI83jX0LSG3KlEgxrYNFnNGXAfXua5JWHcH6P+w5SKu23YN3IYTGWCAOzTrvc+GD+zIyZMc7kMgfczJHa4PRdIAHaRQIXkKRMzpR0TOW/IimkzMExKcSkd1gFBJTCwn7vcgoxypJlz2uHp1YMtl4UdBIfh/l0MPqE+w7bSUv7PzuWidLT3NiOoujAoukxUiaARJ5EQLGeCEImpsxlSR/CBlCz5vPPG6iZJQ/9Swnb7mEgegoPgknnpkRFJKMnMqS7gfCQsM6sTsShGBSctsVO2l4nYObbryMPtlsvYky4u6C/vcvEo0N1f8uTOCbI8plmdsji7yerWy9x8+UsIR2dGzXP1tnTFPGsI1pYwUayDZPNzNh3QsGZFo6DgveIVQw7JgUSbRc1Fj6BjQpHKHuNmgOxk3DdodVCbt7lSbyQek401517FuM5DCKOy8aMSWgsCKLqK6X5j+gid7bnBkaj8NwhDVZFdRE5HfVYe+j7UnhskMJeExgkaVOvljWWa5GKYz8rujXb5gdFUWzRVJUukYmZg3Bwy6bMsiHdu6H/IIqRFpq8IpyqJShcjVp5P+BgJxqgcZB7lplOMVcKpcy09RQZJgKcGw4Cikom5IxVZO4tYHgVnuelTlYtRqt5t8OMvQJeTkqOQc9mEmhDtcAQaZxSsbUFbR996NAW6raO9zKx7RxfN6qB5i243pP6S7ePAE2lIzZJbr34xxycvEpanRf8hZOdQZ3GUyOjsUydQxWzuxhlU7sjmzzkQdaYG8VIVEGXO0oA8KAjC3M9Hd2Wl2iQYch4Ufq7MfV27CRs+rOekpxmUT9jwYWMWcaKwZFqAfYTcAqxlkw/Gzcklg56kZtnFlJR1zsaWCn4Y+xTGfFN5CiMH2lORgIj8IeCnAndU9cPl2G3ge4AvBj4BfLOqPhCbmd8F/BTgEvgFqvr3nvYM2Ge1qtljD4ENMzTeOFWyDEs4CHQjRyC7GHHUQI24RmQIxKnsV9mlA/oYMXAJIhmCcHaaMnApOt1cw24x99gUwfkxwMbcXyMpx8E+btdGMw2qgibUCYls+k4R8JGsCXWxFKlMZtIqiC2IyZEmOqg5IeVYxmnv60VZOGUpFtIMCdFk4/eAC3gvHHvPMgkpO1JypD7S9ZnLbk3ulV4Di6Xj7NhzerTANQ3qm5HtrqIBBugOMeBWGQLssoIkHQBCCjQpvgQ+OlwRtbJmE5dIhWtIhSEupkq0hHAXRSAmYkjJy0AJuZ6LA5MVl/mRAcCGJS1AryOiYQbYlXTI+D4Dl1F5nbKPx/IWVKIghegwoKTRdG7vqCOnMcyMFG7w6lwC8GycwB8Gfi/wRyfHvh34H1T1t4jIt5ffvxr4ycCXl79/GfjPy+e1bfpq9cAh5mV6XZ4cGzL21GMzOK/Tz6xIw3AzhSGsmEK1+ABktLCPQ513YSxAMnRY0kpPOI/5oKtzUV1qQwL1maqJlCJNUiQUJU/u0LwF7REyQcA7C4jJ6izBUE1HVZVmDkQS0Ns5Ne5BxKivU6VxUgDDxmpUtfAkSkECEMQRgJRrXwnFEE5UAQn4RUMgGGufHRohRWGxhVUP530m+y0Sn7A9f0AIp/jlEaFtBsBVb8CSNJX5MSo+TaEm3lZdVUqtvaLEDQGvpgwuRmELy87eEGcBBKRmTShrZFlnMLOfxVMIpvdJVaaecXSumKjH9RS0uJzVyw2YvQi1DHrVO+Wy6uZXUfF/jcA0jsfeQEcxYargExlyaNaAqRqYVU2tSUdthjEM1qPLOtG3fBZlyFT1r4vIF+8c/ibgG8r3PwL8NQwJfBPwR9VI898WkZsi8qqqvvW05+yWH90l+IX0Dms05tSvZ0e2ag/OJ1rbSvFnSGM4V4A41/TQuZSXH32w85BAU8GFAkBVQVWRQfF3FUYWt4xjyF1YfSNyROMWCRGXMkldAf4NTjq8ZlxWBm2GUtKsZfAlT0A2xFX9JgSl8ZXFV6Qk4XCYwizD4MabtRgwxYF4shplj1FIDlwQokJK5nyk2aEaIXfFfOZxLuBajy/uxq1Ak2EdL9i882k+tfawep32+ITT01Pao1Pa1an5HLSNZYJyDiQYF6ZKytkQjDPOzHItFkAp5mHNdk6kwRUvwkDJ1ExBJlqJRrb1LCZLFWepvwrFMcCckJbKqTHGBNrh4s48ETHqNnQFwWeRgQoPol1lbN3IJQw3ip0fBdIJwZtys0aWDNFMTLAhx+JObaXLU+rZ9lty35O6nu36ksvzc65qn6lO4JUJYL8NvFK+fxD49OS618uxPSQgIh8BPgLwgVde3pGxyjWzbzJgACkTVmVtqRO+kxTzUG8VVcwQRRU9dLytFK0pgJ0H7kKqD7uaqYmCFJBaAWLSye7zZUI/Sk05i2fuBmqq2QMRoUc0luSXHnJ5S7V0YbZxbMxaIu9kgmREzJnXRIlc0q8V7zccmgwRpCwG3Cqomlw85tusbts2GZKpaRzN5p9rlaGyDqo0mBk0OtimxOWTxMWTnry4S7tc8aRZgFviF8esTm9wfOsmy7Mz2uNjfHuMuCXBt5aD0VVgdaTJ8ngvSEFwijMFphNwFI9GJWlGU42T1Hni2DInUw5uLhNOdozkHUJCJedlmxVwrUBcT1WlscxZfSrXqlV5qMM/23e2RhbWVTjUNNYeFCxupS8WrJx6creh327Ybi7YbC/ZbC7YrC9JXUfuO+J2S7/dHtiT1j5rxaCqqlyXz/jq+z4KfBTgh33VV9T5m0C+TEj9+GnYeoINygJWRDB8XltOamwyfd7kd7UWGCtaPAxt4KYxB2qARv1v3CxT1+Od9y4bxhVKJbXAZMpkccW8lRDJJvdnR0qemKqLqreAm2wbW6i7rwanGFcw7rnCeoopEs0z0xm3kyBFpe8SKRobbfH4kax+0NS3IRCco+8TsS+zXFjQpGNef3tepnEZ58Xk+bQhdpFu+5i8bsAtQRZkPE8k4FdHLE5PWZyesTp9keXxLZYnZyxWxzTLFa5ZkCWQxBEL91LdeHHVVg4uB5wKsXX0g4hhbJMoBNHh/QRnCV0kzUXHyU6Y7oNB1Cu5J3BCdiPhsVWZ6JCoBKqKX0LNvmzWDR34RcufU9ZaFbLtB0kZ7SOx64ldx3a7Zbu+pN9u2GwuOT9/zHa7JsaO3Pfk2JNzX9Y3IdnMxt4XEe8aUPhMkcA7lc0XkVeBO+X4G8AXTK77UDn29LajbZ1q1Kc8gerczFNPTwN2rvbammL+A4+dAO/8fp18zFk5GRBApfKjtFYroBlXWpHV9JVntLYMTQt+q3Kwo+uE7VbxCw/q0WxA6IrXWw2hHTYrOxF1JRmGaiKZLICmykUU6VlMWWieeAklEkQI3pyZMqBOUZdLxidT0CUV+sKZmP9Dwgt4B8ELy9aTRIhEGpdpNNP1F8QMzrW4dEG/ecDlPc+jxSnt6oxlcTxanZzRHp3SLE/wi2PaxRESGjR7Q8yFra/Zk9QFtDHWP2lnsnMsCs5SdrzGQjksmeuYmrt6lY4Kt8FFeLLY6hxa9Aoj5SpTjCFB0dEGUbuvSB8M0FPq0ZSIORH7Dbnb0BWK3q3X9Os13eUl3eWafruh77akfotm0xOJmCm0cRZjYXoHQZwhO/OmLAhTd/f5vH2mSODPAj8f+C3l889Mjn+biPwJTCH46Fn0ATZ7o0p01KxON3cBbDe9aaS0soMIrnkQVzMu+5GB1mcBtIHVNju/bRIDTMQNVEMnyKIKIU6lirOF8ywKRVffyxF8dVhx5iCjFnHXdZnNVlk2wXrMlmvBDdFrjOZEnTihUESUwR3PKu5qPZ9ApDH/ACc4B16EtgljFls3mkCN4lVey1NTk3ux97dNalwECC6YOOJjj8vQupaFM05B1eFIbPtzHj3asEnQnpyQliv68xXbhycslkcWBn10A786ZXF8k9XJGb5ZIe4I8cFcrEuwmXiK738g52XRn3RoVERDWT9ffBMCuAacjVVNQqOGikMJzimcW90bdq8vYpkOlkrzTkygsYhKikYlp0jOkRgj/WZD7LfEfsvm8oLNZk3Xbem3a1K3JvZrcurRFNE+obHH5UxAaBwsCvB7UZqmJBUVK3mmaiKfALl41VpGIlM+XscTP4uJ8I8D3wC8KCKvA78eA/4/KSLfCnwS+OZy+V/AzIM/gJkIf+HT+i9PGSlXlZnQAZin7NmBW+2++l13OYARgVR2nmFhyxUTrWz1AtS9aZvIfVN6Pph5dlh/oZiLGFKlVQWj/ZlM6kSqwyDe1U0KThPZB1yJFYhRSdmRk8P5UDzhKjtssxdjGjbmoASV4jZNwUA1xDV7cu8R30C0iXNecd7iIVywsOecEn1fqAwWtORcYW7FtN7ON4BDezELRo5AwHnTS7ii+HLOEZqAk4hFBwZUEzl2OHW0GtHuMTk+ZnN+l42YWZHmmHBk4sLi+AahPaFdnhGahnbR0i6WqA9ocLgQaL1HW4dkR9eXwDGkIIVqNWgQ18wpuhj3ZmtSLQ8y6lsK0nNEe89YZPIc0b4ndVtiv6Hfruk3W+J2Q1cS4PabNZv1mm67MWSZ4iDjhyC4EgwWPDTe4j3Eq1llc0JTj5OSlwDj2HxVcvpCOCYE0pXYlhqTIu6zqDugqt9yxalvPHCtAr/saX0efA5QIGd6gHq4Yuc9Kj8oWuqF+8BLZVepLqvza/a4h0k3BzmLATlNkNeeDmCCaCZJN03+y4Os4EvQihuoTTag1soJ2VBShpQg15yVQwWcyr1YnsaUegh+MGVWylYfWWXVJJ6oQtSGpJmkyT7JJBUyHocj5QgRGi8l3mpEYCKOxruSwVloQhiUVjnnIUYjF/2DWVyE4ENhty32QZyj9YHjZYMPgnOJzXZrCCJHLi82XF485sH9+6hb0i5OuHnzBY6Oj0zmbRYkJ9B42qMTmqMTJJiOwMuosVDEQrKdQ5yZN8VZiLBRD0eMCbLivRDEolE1RVxxTIp9R95uSZtL+vWazeU5lxfnbC/X9OsL+n5Dt1mT49YUp8XrU9Q8UVuxwjmhNW1BSrlEi45RoxYolUyxqdlENEk45wlNjXGogC1Vi1s4txoLUbMW1c/nvvjIbhvl7go71nY9u6F6/V3H7gxC3vBTBj3C3qU7eoWpC6diyjgtWngpMfVzTkB31A4jqzLos8rFoqWIiviiIILqOScazWGoOuqIDO8qomYiJJKzFVbJ1WvFpF1Qy2YkVB96G4bFSQlddmyicHGeUBWS+hJfIER19MkX5xtHA6bzyOY7UfULlFx/zhUZ2Duyd0QnJYmn2eAtGnLUdUiRLcQLJMENSTWF4JTGmRjinEOdJ4jQS8N5n3j33h228S3iy/e5devM+vOeSElpHpb4xQoNCwgLi3D0LT60NM0S35gI4LzHU5SyfUEUWdE+k3KkPzdlW+o7Ut+VJDWRuNmQ1hfk9QVpuyFWeT1FVHtqGvlgOMliPoY9pwMxcsW7LziPeCn+SnkIKsvOAt2yCkEcvphwk3MmBrmGJM7WQ3Ox6EjhTMfCI+Kq/uJqpcBzgwRq7E818w00tprBChtvgSEHgHfybe44NJ7R6rVT5fUJlT9kopznCdDS9+iUWSe7aoVVpx6Jk+dOx1NHqOaEI5gcXv0Uck44TSg9SkQlExpHaP1QYankXUFzoo9xnCfKWLTkW0hF76CWHUgrdyGZLisPHmfeer1jtWo4PlqheHCehKPLRZ4UJThnZdycTFJ0KUpGc4+TnpwdKfXG3vpA19taGvKwuahOL04wF+LgkD6Ds9/mPm9h10GU4EBcxjWe7M1l+t1uzebJEziFxWkixUifzEOyT7BNkCSwTso6QswBH1YslkccHZ9xcnLG6viIs7Mz8vGKrJFuu6brO+K2p1tvuDw/Z7u+JPZbSD0iSoqJ7eaSgCk3Q7ZCMUJGnNA6wXm17MBCQWjgxQ1KXPMFEJvjEgDmm6ZskkQmDqy79x71xRwtgeQ8XVaSgg+tHSumXXEBHxrz8chmupai47EsenbfVe25QQLmeENhbWpq7iodjGCU99huGFiGXeorFZ3UVoBaYTQ/7rcpN7AXHkxZyAHWR51A7VspQKrjNXNepXglTkJdleIunHPJpTB6ePngaRfNoFMwL8DGxqIWIm06FEvEOfjdZy1BS0bpleonYP4BF+vIg4cdKUFoFrggFqEnnnWvdNueNiiLxQJ8BokmV5eMTL4EAWWNxF7puy2NeItSxBSpVvnJ5sA7wYuFUZsu0QKYqlu0wYfJtpqweTBhCJGGJnhWrSctAieLzI1FT/Y9fYxkVbpeWavSqZnV1utI7GDdw8MEKp7l8pjlasnpjVOOj1ek3LPZXJJih/aR1EVy7MyHQzONE1ZHS46agM8XBIFWhCYUEU4AJ4WTKYVASq1MJ2LuCNkUjz60SGjIOFIG17RI0xC7ZHJ/jubg5Rqcb3Hesgh1GWJWNjHSK3i/xPnGxC3nCe2SxfIIce2QXck5SMU0ISL4UWGw154LJCDO0bYrauQXxQWUatopChTVaptl9B4rYDlld3YY/4kPkRsgU/eungPpbHxTfcSEYxlMSDtqBvu9g2RmeMCoKEXBY+6+1QKRJzJOYeNKcovtdsuFCHmhhcI6JEgxm+pQDtsSZ0BOYt9doRrFzdLRINJydCzcvJ1ZLj2+UVLuixnQc3HZceftJ5ydLDg7u0m7ME7HPCUVtC9xCea1qL5yCuY2KzhQj6h5sTtnEYzelZwJzvQfwWkprprxwVsWJQF1GaeWlNSsppkGz7IN9MtAEyKiF3h6mz/naPH4rKxTZKMbViTapqEDtinSdYluc876fub83cDR8QrnzUbvHbTO0QJtMBGEnAjOsZCOIImFN67LIwQX8CGgxdvR+RYnjSF2jylZnSuOXuYJGZYrfLtkE018k3ZBcp5eLDS8umf7psU3S7IEuhjpukhWiAHUO2R5RFgurcyeOELT0DQLKNWoBnd2scA3J0VxeEV7LpAACC40hsG0uv5GakaeCjxKVUzpUPOe4nhRTlY1HdOoNINhGYBLq4Ju8vyxjQhlF1HU7Lf1Oil54nVgkXeuLwhiYMXEW+RfkdchG4svUF3xDDUEVL25gGpDkpawzGy3PRebSNfD+YUSvEKjJlOXZB3eOUuBhqLa0jTBFF5aNPW+RQkIwumxhw8YYlSFi0tjR713hMbZZg4O5wLeBXC5vIsr5rKMd96AQhO9enI0fQJqASySq9Jah6mpZkebw/r+incW39C6gHqP5ExQxbtMUiswE1NPl7YklCwZR2+6FfVITjSYNaDRyFKUJJazoWkcUcyU2keFvGWRlUXbELyjaZSFt3DtReOt7mNv+8hJT3AlxLxyYW6Jesu52EtAdIGnxfnA4jiQZEuXFU9LcC3N8ojlyYk5Pa23VvchLIhiXFnwLcFRTM/erCLicZpoo+lXVs6RnUNCwDftIPoZbtdhHS06VSB1oMa9paHC1357TpDAGBBUdgQ1lbdSZEWqBp0B6CwU1LS2Vd43bblhVasrV503IMVYEjTW50zbRJbXUfyYXjfoFwczoztoWRB2xQgdtf1a/PjVYuVFxezqRXRJ4sg5oOrYRHjSt1zkBc470iKTUyQpuBJdnIpSS8S8D0FxEu39UZpQUodjhVrbheUrFBFy9LSuJSdLXEkUxCtB4IWbRxy1gcYLwUVIpVxazsayE4wzwJvsHsytuFOPeje476omMua4MqBWYRBLqh07k9HU4UJRmrm+UEYQ7REiSkPUrUVXiqVSc6UcmscXfUMmOCEILBpPzA51lh8yFLGjd0JKHQunHC8CwTsWLSwDBCcsmgAJore08RnBh1CyF3n63LDpHBtAlkua5RnKksYvOT46ZXlrxVoviN0W9UtcsyC1SzbtwuIwFgnvF+ADbfFxaMQhmKuzbS8TtYKlTbI8kcnczFPXETcbYizp12NPjh05bo3ASfEIjVvzRE1K7LsrYe+5QQLTAham2aqabh3k7l0rXmXTKXZg0RLdZVoz8DrI3VJEjdz3iAghuCGdOBxWDMKucpA5J1BtxwN2mJ4f760ea8bVRHPpVGPnY/J0tIh4kmtZq6NLHpWGPhwRTyDxkM1mjcoZTiMSIz4nC1dQCxoxW7bpFExZ1qGa8NHGpCnj2OKlowke72Uo+lnrAKCgfaK/vGQRVpytAo6M9BtQb3UTU8KRyc7CiFUtyAg1z8DkPNlB7xJJE1HVzJauaLFTIouathuHlo1t3PfWgoJIKGsU83sQjca9SMK73sxp1UyG6RGceJSMy4JJBw5fApJEMuIt6Uo1p+bcIU5omgYvSts4Vq25FweBmCwGAldKuUlgm7ZsY8+jdeRR35PaI1548SVuvfQaog3BLXCLFXHlEX+DRsyLMTmPEtgks0C4hbdYBsuqguRESlv6uC2WhhJVqZlcdEcxRrquI1bno64j9WVxGX0WnKjpJooJFMxJarrXd9tzggSqVnvgm8uurEEesi9jT+4d47mYKOGKCk9q8oqSXzBnK+hR7z4A/FPz4KHkEfOv5dn1npmCcn6pISnLEddHeHKZCVs4XiwQvyTJEf1iia6WNIsjgnO89OIX8vjhXR49uE+/fkzu1pA6cuxxKSGpG/UnKOSMywkXu+KtZo4mGs2bL+VoGzzLkHDVo4RgNuWUe86fXND3W9oQLJBFlGXb0nib4xAc2QtRzbYtJXw2qRBxxRcyFpHMciOgzih7BHXOFGClUIxoNo5AI0OpdYmlAE0GesA8E70zjzlXzI9mojTPPtOdFK5LzEuTImq4+tXJ4A1pDlBQbagO00cIJSIvZZIDdcZ1xCycbyP3LjOP1LM4OaV98QtYvfRBNCo+Gze30USfhIgU3wyBFIldNMDNinZGDIjG3cW8Zdtt2fYbYopV32jrRxoQghSuT1PGXCM8vmmQZolzS4KzY65ZgV8iYUEIDSEE4C8fhKDnAgmIVPlZZsdKkUAGyx4wQpiJAWVlGXy1S1CPuKJMzKlqloaCEbt/sCvT1zHMEcSV3sizi2pfRWGpWvzzTVmnIiRpuPe45+NvPCLEC774S17j5OxlwvFt2uUN2sUxYbEsnoGJ48f3OX5wn0cP3uH+3beI63NCimjsCTmWsh/VE7EAX7JU6VpClTVtcbnYvmMyzzhNSMk/lAuljrHhos9c9BGRvuRBFIJLpt0v+Q69x8yHjadpjGPLYu/e90rfWTLUIObhVkNdVSnBR0XRWLIkVc7OgwG7hBLKaUAAHi+eQMLh8K7BS4tzpZSJFHJQahFUMU6yhRgbosozG7r3vpSOz+RknBEiRRNlHEtMxoVYYtKl9eNMNGmWJxwd32S5OiF1kfP7D3n08D45K31ScinQ4qIBraZkzkc5W6BQtsAxFSV6pS8IGg+L1cJcg8XiMLx3NI2naQygvXOE4GmbhjZ4nA/4JtAEO+7CEg0rsm8R7wnVFHmgPRdIAPYBzrD7VBE4YvWqAKn6A6nRXTqKDpYdTM1OGmPhDarCbl9TuivbX+U3UD0ahX1EUk6QcybFccONWYUCCSXmxJ1HHZ+484SlRL7k676Y41e/jObkBXJYEkJTGQwccLK8xeLmayxvvUpanHHv7TfotpdI7IuCU4cEJdWJx3wWzIedmEsWYiX3xkXYNZY1yLlMFLXcBrkj0ZPSFtFIzv2Qs4AELil01VZesvm4ZMFHHixlmQUZnZwsTHHotmZ5KI49NXNTdeNV7DcERAJeVnjvUMzbDucRv8CxtLWVhHctISxKpefqG1LCh6tDghiiqmnVUk4Wgiw61AI0bk9LElbFo+RYzK5eBnHLIvIaQoBFEBZZWHrHkW84CQ0xRu4/vss7n/wBYhTa9pSmOWbhA6iFP/u2Qdqm1IcI+GB1CF0IZF/iGJzHBUe7agnBlLwVsMV7QjC3biluwU48wQnlJcckLGIiTBYLZzaz7eH23CCB2ioLbpRhypbrVBFA5QgGsz+UajGjVp6CBAYgHGC1JGnYAfTqb1/j9uvpWeJHnV8/PmscV9d1bNYbQmhYLlcTByeTg2N2bLPQa0MTGtzRbdzqRfLiFtkFcnCW0qsoecQtaZtjzgpmd+0xFw/vodsNbuI+nCulzxHNFm+OKpqKpjsqyXXk0GPpt3SIHHRSQTEjRLz2SO6R1Bt3kTIalT6ZzmHb9XiNpoEm2f5NRuHI1vdCl2Zqcwtz/3CNxSo4V5KYYOZG56w2JAFoQVpLEOo8qh4XvJVblyXiEkKPdw3OtQgRcZBUoVb3TSXAypvWwPmCKHMRTYrymMHRy9YnaaavCrgqCpZ8EcE7VBraRlmExCIpSwcr7zluGrq0ZuU7Fqw5ao945bUPcHzjJXzbWrzEItCulrhgsSFh2eCbBhcs87GTFu8WeN+Ag5wj226DUMubmR8JYkQvU4iZCqnYX7IUZIAzxTOKy7GErD/3JkJruyx5dYQxLfRAhIslAGr9NVNv5cG0NygT6/ch4ea+N+G0aCjj3cy7mnAJM52DDBcO2YU0s1mvefDgEcvliqZpbQOVZKWot6w5CKFZEBaCOk/Cm8jgA7mEGKtzKGZuEwlIC6e3PoC4hvvNkhy3+Pr8HIn9lpyMyqfU08ctqY9oTKQ+kmNP7DtSCXrJqSeVOPucEiSzpDgJBFlZJJzrTZnZCpJNzpYEuetMmbW9JPYbk1uTBcYEMietY6sNMSnJt7ZCzkMwimeVeBUJgPcQLagH15DxlkhETDHnnMe1K1xcIL7DyRYvDc6ZKVQK1+dQM2nGPEPYQ/IZ0RJ4NVp3vA+Wl5FMQpCsxGy6DFeIgndCEzwQaLpEExwtYlYI72i8JwdPc9SwPGq5eeMlvvQrv4r2xovkVcvi9IjlYkm7WFh6Ne/wi9YQQAgEH2jExJvGLwDl/Mlj3n77bS4uLkrBVUoRXLV8BlXklBJ5qjULlmV7Ek1Q9EUWMHU13D03SKACmXm8VRNS2aCYk4qTkrZpcPjJAyXWbIohlSIVVKuBMMiqiR0kUzbHjLpP/q9f9/QFg9FiKgoURSRuKF82BhUZNXE5kukJbGjylkCPl2Ax+DlCTiU6L2Iuc0XxBUXv4Wn8guOjG2yOz9luLsxppWQFTrknVRGh5C6MfY/2EZcVjR197EqqsETOZntPOdvvmIbAFacZTf0Q967R6hbkZGg0hZbcrEjtCVkTQsblDpc7JG1RyawFXOqQsEAkW63I0OK81ZO0KmmW2kx9+S3OCoskY+eTRJzzxW/AnKJc4yzS0Xmjjs4XCcAIRudyma/ihOQtTDMDJFMye+fweLxzpjjFRJNelaEadrKQZ984Fm1D41ZsOsW3ERVHcoHoPX0owVUBWC5wJ8f4k2Oas5ucvPwiL7z2MsfHJzQ+lNBj00cU/2nLJOQFLxSAtt8PHj7kcr02BaJQXEnUTLXmUsmQfRjAedOfFLEwOas3ISqIe+6tAzutQPIBkIUJVqvmuTHkeKTMVWk4SBAy6WOGFUcF3nVKwr02mAdr59XNOJv9VvPAxpm2sBj2JSGuwyoKJYTGTGtigGyoKplm3LIJmobZWaCNYMqhtl0SY2/KriA0LhDwRB8G7sZn8CHBQvGqaIy0qZ9Qlh4oZqisA3egKaIpknPhGvpopr2o5JSJfaIrzy7hgeN37ZEcwSW23RZlTRBzNorek12LBguYcYBuOlsVJyWPoLG04sbQ3yzOahuKB+8Ii4bF0THt6piUIuKbwhonZNvTpUtw55B7LCrTRJ5UlH3OqdUt8FqiDGu9A1tLy9VgJmWpiNg1LFfHXGwzzbrHlToP8yS3BaiDyf5hteT05i1eeOElVsulxRFkHUTWwqPYzi1ih+nBKNWR3ITQ6LjvmXK5JZ5DKHqgStPsex7yVVy9lZ8LJHAI5mpZ6pEdL8453pU01BO5X2vyjJKZrUD6kOFlNOYf5Iqu8hE41EwHIeMzBh+GUdzw3tG2Vmm45vgDy8qjJLKLxGSlu51r6fyCrjH9QACT812mZgZOamnBgzeFZ5DAarVgu720fqrsqmIJQhAQhwaPC0pKFgBDKTriKMxCNqcizdHYaWc2/Zx6+n5LiltCRWBqGu4U01D+LWkmJkvKqknJfTQEoNFs/t2a3F+S8xqJl6QmkRoh+R4fSrot34Gz0uY+BCQ0hNDgsynjVJwBVViBWhm0xWLBrZe+gJdefoGUFFVPcA0OZb0+p314j0ePLtlszlHd4gvHQ45YRiI1XQJ9cdyyLEoeX/wLSvbhpPRRUCxq7+j4mKNNIoQNPmXT0LtatFTwahYM54MpQJ3HNS0htDQuWPIRGdOMmWAyUjSD9TzsK1c9UskDN4nWpKRjTcUqhlKIyOAnX6xmxhT/EFEM7kf0CdXfX4Qhk445WhcxoGLhKgKUvHsGQHVCJ8pBrhWPhudfazLUURMx9DhJINK2DYtFiw8yKjLEIdJayGcOaBacOoIESxFWgmtaNcVOUnNRFQWHsXcO8GRc0xN8RCRWpbBtnpSLr71xJOISNWw3k0CKXR9XFKbeRCdfEpI68Nqw7bbcv/+At954g5wSbWM1F2/eOOPm2Y2yMQ2xpuLwgoplX89mUejTxgJi0gZJG3x/SZs3kDfEeIGjp3FWScjxGBFP2x7TNAtCaG0enOkXmmaJDyeo8yzbS3CBF1/6EC+/+iopQk5Wjs2jnJ8/RHNgsXjb9Bw5l/qRNfuOK+HgUG0TwUEjjmASpYV3O2PTjRiZnL1aHrFYWC1Hq0dZQ8Ft/3nAay1l7qjl1sY9M8iqjHqJCSLYkUun4qYxDvVeV/afDGJv3ZMybPBqNjVOQfLVu/65QQJTalzZoJmXU2HVhmo9wOCzn3V42UEGmIoGu4L/0Of147lKLNjNOTAcL8qmEBpTAhWWThXIxtKaXmqBqMdnISi0Aq0klpJYZlNj9gqkWDL6RlQss0zwIK5nuUqc3ViStTUPhNiRNms0mlttLuRa1UJ5fSoWkZLH1umoExlfw8xViuJcw5PzjsePH5s+xgmvvNJzdPoCp6vTorDFlIfFu9P2YUZyD3kBORdvxmi6gf4S7c7RzWM0bxCXLasODxGFpj0lNAt8aFnIAoqs3i6PCM0xvnEcHa1JSVksT2gXZ0Rnc9t4j1MTVZpwhKdo20OPbjdWFDVTkoOUPVRdzdV4uJrcpYC9UXN1JIwqL5ZLmnZhMfp1d6kOyKbBEcRNAkBlVGiX7Thak8ZrdvehTBHAZDtXWB9FUAaiV02iQ58TLnXQGVzRngskMMrW9ff8+7RUV029DFjWXbuqXj3ttVAoqDL/lbL+iD5nssnTxASzWbvZojjnaNvFkCjDOT9obVVdyb9njjouR9ocaVNkEbcs4po2O7IaldfcI9ohvkN8xPlgSSgaePGFI1586QPgTiFFcndBf/GAzZP7bC8fE7sNKUX6LtL1ikTMDFfGmpIWXYONv10sObtxk5ThIkZeuXnG4mu+govLNV3X0cdI27altkAc6+EVG3umBHVJLoU3zB8ADShHZJdQOUL8ESGsCPEcrz1+kxG3QoAQTgnNEte0NCGS+y1ZYLE6ITQrQus4Pjrn4qLDuRWwBLT4IjiESPCmMKTY0b1vUEo+BRxF8U/SEpZemE0RLQVobc+4op9Izrgd8RCaQGhMZHB+EjdS9owPniaEkodBil6jOLtNFVmMFgqlqq/qMduLg/mZcc2qKXqqh2L4336PNQ1lD66uas8FEqjtKnfduYdf5bAqu1PEgwzTya2xBkrllHRP93AQJRzgzK4Y7KCe2R17CAHvLaAlFy4FV+oE0qOyxUnPqlGOlw6XntCdv41siq87CXzC+WTht96UjM4vLENv8LTHN/GL22R3WuIJFqQ1bI8j/WUmbqDfXrK57NhsEjEKMZn5K2UlSqaLidhnpPGsFrd44aYjdsmKjOZzXjhO3D5qyNpa0VMRvF8jcYs642pyypgJ05fJLvqDmmgFMbEDR/YeJCBuabb7uAZvCT8VUNeaT4G0OL8oXEvGNSskLGi8o2kX6GUckCqD67LpXtQlsqSSr2CSZosSQyCOGmKLM+cap1JEoqJ3Qop5cFzTuubV5TjnXEy9BnjmCGU5FOtzpdSzLMs/wm0VB8r38pRRUhi2YYmX0SkiUGrMxGyjSsFmOMZeivn7KQLwc4EEKlt/SDs/TdgxevwxfAomA1t8+j4CmV4/xbT1uE5+T+7YOVS1tnUFq5trGW+u4okeeH7VHZRNKj1IT+OVkyPH7ZuBRh6xvVwb2+mhDQm3SBbW6luTT31jmz0ExLd4b1mCxQdckQ5dA7KAJhUPOIEj5+iXQkpCHxN9NJfWGGHdKZs+Ii7T+gu0v49PypG7ILtzy2oUzB4fUyKpWv5AVbw/IuPM1RUB5wzJaCYqaAVspXgVehxWT6FmVc4ZkhOyx/z8nSdJi8Ns6camZ0MOEix/ng/gIGmizyaXmzOjotrR5S2JjizmDi3O4wbAsNyLiWxONRUyCwDnbA5DTiwnn+lMLLN0BnCuHBNiNDNryRJm3VTALy3nPFhiqugwhriXZK2qRY9Xc0ra3skzIqTjn4B5e1YgqB9FXB6uq+IzIPswMW3PBRIAmzDnzMZ+lcxthKay9aMSZEwhPhG+KAihHp3AdV2Q6j48B9ndyRqP1Lr3A+qQCvjzO/aRmbn1ItkKgIi527aNcnwMy5CJEmnEsXCJxm9wIbJoPIsQcaGBkHHtEa71SGuU0bzDRsOouIyTSM5btLsgri/IKZaCO1pMfxaw40VZeMtYmzWiXeTiwcZ87VPPcRstaUiA4GupNSXGhA+B1WmLl4bYQwQLKMpKzEIXlW2CmBLbbSTlROoTLkYWXlmK+Rtsc0+01KY2S84QgYQWdYJrXOEsPCIB5xvzIxDY9B3rboMXY+tdTsTccdmtibknaW8Vy61aqyU5LYplHQCmZhq24xmtOmej7M5bDQNKPUPnzeGJUsh0XPFBiVvpTIwR+s7yEvaR2HjAdAfCKCLkoqQVtYIx5gfj2G629H0/KqGHrFFuEFVELN5Bqo0Qg4Vxv7sRH1zD2j43SADmlHQKSFOnm+nvrAy16KvL7xSkh2Mzpetoi0Xnycfq+X2ZoAC+DMLG8H1y4yB+TH8bpsjD/VK0OznHIQqspphuJdFIsgQWJT9/8K5QQME1HrdYQLtEw4LsmmFD1wQDYsY7Uuroukv67dbY/pTpozkx1ZoJo+Y6k1TZbK2kl3MWam0p/0zx6opXoXZbLruOzYPAwjc4dUgTyM7hw4KYIEjDsl0RVdmSSEno+p7cdzjJxNizPn/Ck0cP2F5e0KdMGxoLQVYLiKq+76KKSihyPcW/Qdl2Wy63l6YsdYBGYu7YxC1RIIkni4XsWgo0NW7EBSAyJpap5jhfsjyXMmw547yaIbFER/biUWfmP8tjMDoWuVKbwpyXhJQSvrhYxxiJvbf1KZ6Itn/N/JdFimpiTGhj056HzWQWHymOP35wpqvLP+xaKaJC6ZMBlp5zJCDCRNFkg64RXvPrJpJQQQa5akcnHMBO73Y9oxJm0BdWVqrMj8rkIDvfFYrOeH/w5fxwuzJDJQJGwRBELKuPZguH9RLwUkqAabJAGlkgsbF8CM6bvKoBEZOZ8UtUFihNeXSGUvgCUgHihia0xG0k9Ymup5QR9yZHV/1K0ZKpWt0B8WaIrGmUNEdLjhF7+u2ay/MnvP3Wm9x/6y5NUpbeI40jorSrY867zPL0Jl/4BV+GD0tSFsgQYqTvtkSETdfxzrvvcufOHatulBObrLzx7h1Syrx4+2U+8MoHMO9LNR8rqj99Iqsn4+iS+YDWjL4xQdRApw1dbukztE5AFqjrMLOdrcMQvSiWBsyFErlYkICJNAHzuXP06omuQUNjfgslr2CtCD0orTEPTAS8DzRN+WvDoOOoprusUqI1bBxeDMhVhbZt8DU1uyt3ZqP0VfxXpcSljNzwdH9OFY7XlSd/LpDAlJ2ecgKHzHRVZLCIvsrWwT4S0FFnUEq+DkLEtZhxCr5jk4EBlFGc0P2nDt3OurcYgIwzk1/2xRMtoLmxP40khOQa8yNIgkYTIcQLklpM0+5HNpZSLJMIOUJh9y3dt8e5Jd5BExZD7kbUYgRcYTEt1NoXlVJJa5Y9GSG4TN8rm/NI2q6J2wvSdktc93QPHqNdT7toWB4tLCb+ckvfRUJMhBdewzeGAJyA5AT91rT3IXC8WHC8XJIU1pstMSvnl2suLy8JIfDSSy/gXYOq1UsUoOsSm03G+SWhPcKFlWWpbgJoYvuk5+GDS+7decSTJ+aMlSQRk0UAZjEATxNu0ghQ9eA1ZJtSZtt1SM5E9abfcK15JjpL+wWu+BKYr0VWNQWkekjmuGWqErHaCM4cx4o2pOyj8V/dJXVcVezUmoxGaoxESUmeRx2Vk5nHCpQSbTI97p5zJFDbNJU1+J3jc07gsKKjvnIeFCKD+KDG2jpzxrNLy7yM5cIP6QTqqYnqdiZePMN7lcw0lnfP49WivzKemD2xC1Y8wytbCaDewnazFZJ0GTQ5I3Wpg3yJ+GDoTwNON5C25N4SVjo8vQZUiybemaXBVW6j/lFjFWwzxSSGgJw5MEWNXDzqeXj3MWlzAXHDwilBWs6OWhY+cbJwnJwsWfeJPgdIAZ8DqesJoehCABeEFst4c+QXNC+8zHGz4MGjc+6s77M6OuIDr7xMSh2r1aKENStkqyokOLxr8b4lO/MTWKzOiALiPZJ6cn7C3Tt3uXfnDpcXa7yH1J2j3Xkp4GGl1y2ppzNkWQmEWoi34FhvO+7df4wLS2iPkKZBKQVPkxKzyeABj1cTMDVY8JNkh8++KBfdkMOCYYvt6K+EIb9CFU/NtJhL5eFUHMIcDgshHsQ4cSW5q3kKWg4NV7JyFXdrwEkYyMWh9lwggZndsygxasrNXU4g57wX+bcbUFRZf9AhoKi6+lbMW0uBlo6Y6FYot9b/xuNSta3jWMVJSelm3IlOFls1D0omy/tvWXx8Tkb5nRUh12yUPQtsHebGmxSXzKFIkpD7iO86pF3jWimchELyaFyTN09I20u0jyYZZEfO3pRzvSXXtFJV5tSTErahU/G+LHNi2u9gWYITnG/gweOOvNkSNJIbK5Lq2xZHD8HRa7YoyLDCJ6XrhDfefUi72IL3NMsF4kFjpPFbGunYbCxPnouJRoUWR6PCsl3gEOJ6Y9YPKZV2koXctosFmhI+NPi2LeKTKeZWR8e88tJtFnRsLx4iAouTU7rLnq7fsI1gNR69ZQFOHs2+COCgohasJo7QLMnSkJIrXpYlU5EqlhFNoVc0mj4lO0sJ10hLyGYuTWX/DVmNTC4c9E41J86AhweFtyVAqRGh3pnYl837C9VUxAFzQ0+yJbJFNeLVI9ogNBau7Roa5yD9EOAEpt5Qo4PQ0+6ZehAWRFIVJTIJJy06gCwWqJOdG2KzKfKZDNfpAP9a+6MqEGXQvKqWgJdJ5KJ9DujHFEdqY8mFO3GU4iIaS0EPilhhiCBhZrY+Z1ysGmDwWcF3uEWHiwGCybhEJW0uiOtz4uaStF6jXU+/2bLpEpebyHrTkzOWqQjLDZhUSbkUwZCSYAML5xVpyCVdWJIF2S2J0pNTRnoTZzQcW7qt1HN+kekzHJ2sCCcLztdbLs97mt6QxcIvLGKvJMDsU8f5xTmX6zWahXZpqbrv37+LSqJxgUXbWrRdCLTtimZ5Qrs6M0Vp40k50vU90TWGxKOVPrtxcoTvTnkzmI3+xtkxa7dlvRbSZTQdBR7JAbI3DisYZ4BATBHnW07PbrLthfN1tBJuGbxWWR76LtGtt6zP14TLS7rYsd70BLFALocbnKhmTGtVyAqzPWXnGLhMV5GHWFSt6TCSBV75TNTIevuEJ5eP2cSHbPoL+rTGZUeQJSEcIU3LYnHCzeOXOFqcXQlHz1KQ9A8BPxW4o6ofLsd+A/DvAe+Wy36Nqv6Fcu47gG/FYkz+fVX9S097BuzqBcp8TKwCh++pYsLoJXWIQR/6kRE4qZaDyk1UCj4Rrio4I1K84KqFoLJbFMqhBtCaBwxd7jQ7MQDRNO9ZzQyXLXsvpVjEYPEQocfjCiUWTWiCFpA+4rdbXNPg2YBENGJIYHtBt9nQbzbkPhJ7S5CRxaHO2EEVR0zR2FnxJiNLKXDqAyJmisviS4WxhuboJscvZOLmApc7GpfZXJxzsTGsl9LGMh5r4CIo2sB5H+iDJ0Rn9QDzlsWi5YUbp5wcL+nXG9JaIVimwFVrzjZ9ttBlcYGu63EitDmzxXG6OuLG6ZKjW2dI09IuW/q+p5NMTBntLskXT7i4f4+LB/dogiercrle03VKHwNdhMuLSzbrLSF41uqJlxv8NtOsjaMwT8IecUu6COsus5QFOakhzhTZdBvO1xviu3fp/vH3Ed48QiSx7BM3WFjUomQ0W1KXNFUzFWpfEcGOxotaRMeJEELJuF10YFkt+Qs+sl7f41Nv/zPeeOdTXHQP6NKaPm6MMKinCQuW7YLj5Q2+8NWv4Yte+9qrQO+ZOIE/DPxe4I/uHP8dqvqd0wMi8sOAnwV8DfAa8N+LyFeo5b9+tlYnaXboemeH/S5GxcxsfFrwrlZnn4kddeIVtu9iPJoVa9YjlBLcU73LDOujzDCJJYvMViBUsynwitOIFm7EbN9FdMERNeOyJfgwJ/+SUSZEpOvJ222RY51F8m63pO2WtLUMtKlPFt2HQCnfnRPFwUXIGiwkOEHOJgIgAVc8+jImazrnWZw03GxWOMksG0svfv/uHdZ9Qs7OaDXSrTsgsImZyy6zxrFZZ+LFhsvtY954+x28d/yIr/1hfO1XfSX3Hj3m/t0nBOcIPlh14eXCNnvqkWXD5eNH9NstwSXaBLFZw8UFoY2ElOgePQK/JLqWPkUa7SFmLvvENirt6oRt13GxuURTawpX3xNdJnrBNS2xaemScU4+lrV1HudbhEDEoY1Hw4qLPnP38QWPN1s6VeMAndLnjrQVGm/rrpTIUSn6l5wmXG31F6m7atyXo6rAiIK5n7clQWjdmtXrUeniBY8v7vDgyev07pIurtmmjZU1U4FtZpMcXbrJzcsXiPlLr4SXZ6lK/NdF5Iufdl1p3wT8CVXdAj8oIj8A/Bjgbz3j/deN49rzc5fj4a7ZOUkZrxAqkBcZQKbXFYyr5bdirFj1cBOhmGkEr4oz9TWuIBa7vyIi8xjzCGgujjpWuLLWBSgZQ1CE7/kLf52LzhxECnOOk2ypv6qWOVgxTbwbiUpOpJTIKZa8ANVcJaSsRZNsyKjiqcHCggyVbMcEFfYnNc8jhTJ5K5y6Xq85f3QJar4OZOMiumilwFK2sllJoe+FB92KjLL9xGM+cfkJ4vqCD796m2axtI3etKyOjkEyfdxyfLTkPL3O+eZd+s2G0GUeRuHuJoL3RUvfgl/S03C52bAKsJIevXhIvnxMzpGuz1yslSANznu6sCAdtWjoSd7Rtw0pLfDO3IktcM2SdGaKMlIc2ix4Eh1vPrrgfNPjFituvHCbs+NbvPiBV2nOVgSn8OQSfbTGIoiKB2vOpGR/DgNgKXuvbmmt8iQF4Zf9E0IghDCslaUIK4lT+jVdfEKSC6TpUMxBype6DX1/QSeZRpTII7Ksr4Sdz0Yn8G0i8vOA/xn4j1T1AfBB4G9Prnm9HNtrIvIR4CMAr776aj1mMvSUfXqGtpfsszStwFgUj3mz4fLRA1JT0lLVLMVTUaDYzwdxobQaxjzIZwpynEjNiq6ryT119pc1W9pqtWAnVGnYsHl0n9RvCd6V2H8A4XLT8x3f8avmSMCSbeGdpfoOjeXcszxzOhQOyUMmWy3OLiaKVCVWzlag1MqE65DizIJswlDGWqUqCAXng/2VzLxm6nJcnD/hnTc/zXZ9jpcSVx8aUsp0MdJH06Bncay3kbfeeZeYM1/yxV/El3/pl/Bbf+t38uH/7f/eCnf6AEjJhpuJsaNpHA86R95k1uk+AJsoXG4jSSN9WrPdZi7WibfvP+GdO3c5ah23Vg0r6Vm4ZGm/FseotCyDuVzTBOTkBl7BNx4JgYaE95Y+zIqHWsUlXINvFjSLEv5N5kGnaFhy69UP8soHG24enXHjhdu4VYDc8eSNt3n86MLEAGxeUs5st1saodQntKQiqlqQ7bSydTEJKnRdVwrKTsVeGUTf7XbNdvuElC9IvV0XfGsVknzCayLnLTE/IeYnJN1eCT+fKRL4z4HfhBGJ3wT8NuAXvZcOVPWjwEcBPvzhDw/wVvSme9dfBeT7h0cMMtTOA3KK3HvnbV7/wR8YAEycKeNEq5bfjYkclIFd98ETSq47y+hrNuEbt19ge7nBhQVKBcY8mIRytmMxKwlBcyLomu7xHTbn56WmXfFtLxR4FCfGiAMtykGtWmmxVNUpJ2Pxy3NNdjS2MasVs7TqxBZiW681lYWAWLUgihXGxI/RqYriQWeyaslz6OxTJVhSTjKNiGEdJ5YUlIxPpuU2hxpflHwNvmlZrI549Yu+tHBZ5u0gxlIgZLrNJSyO0HZF9AtzpAkN2izNyanPSEpcdk94+92HvH3vEa2DRwvPSQvHS29BXNvAcrXkxmJFaDyLoxXNogWxFN7GamdbhzYQXCUKHt8sWK6OOT45oes71utLlIg4pWkDq2bBUViWPWFZlXK0RCyqpsCTUma8hvPaRyU6hdss+qXBVX5ClKZZhQoaQIoL9HazJnYbizJNCUfAZ29m1RBpnJWJz5rY9hv6+DlGAqr6Tv0uIn8A+PPl5xvAF0wu/VA59t6fMX/eexgbM8o+9d93YlVwyYmUraSUYBRTsm3E7IzaKUY9jUMOJKw0WNZcMLknxg1dt4YYERH63lxEXfHvzjkTUyKW3IGaElk29N2luQ2rmaeGtFrAVGAsQsygb8hZrOpQtAi2lBJ9SqRY/lIChOBNY97HOCCKvusLW0lRAPpBt6FZSZqsrJsWd1gn5bdZ0MSCBcsmNdGgbVrQnuCNQxHBvPsEeowL8VgOnJwz3XrN5fkFKUa6bmvpuXBoiYFADCnmsnbOVy5FrehmsLqKmhPJawlrzoPcnMTRi+MyQRMa+k3ipEm0FN9KseKdztm7qPd4aQjOcvo7Xymu6Sl8G/CNKWl9G9AEoXE0i5a2ac3DEPOqJHaWkzF25FzSvjlomsCiXdAu2lI0RUcdkio18s90TiZGOIS+7weCJG5MrGOOSZZIViTSNrZ2KZeqyOiQ+iw5c0RLEfr4Oa5FKCKvqupb5edPB76vfP+zwHeLyG/HFINfDvydz+QZtR2KHRjHceVdjNxAlf+FsxfO+NL2SwmCZW6d5HAbApOkJDmVEVe7wibHFMkplsSenuXRGac3boNvLUY95YIEivhRZfVs1BhNBL3kwfY+OUeQyoIbbzLEkVXxkMl7S7E0JPtLKZmsmWv6MC1aejOBiwh9ivS12EiqKapqbceqEC26Aorpqlg9UCFKqZI7zFEu3ojKom1p/CmqHWimaayakOujOfCoWshyr7Quk7Xn0f13+TSJB/fe5d03P8HZzZs07ZLsAmHRkqPdm7oLgkROlw3+dGliQzDqrubXSMiOdHbEF772IqujJTmZ4rIWVLlx8wVcuyxFQ5SkPTH3qDQW9+8dyyaw8IHGOdog4CKWo9+Kq7RB8S6xaCA4Mym64CB4gg/GJWkpy0YErNhLSr0FZWke5tk5P65wySZda0Qy7NbiC6xzHZdlrarZteyYI+F9IrjevDGxrFIW56FIEpDG3Ms1XGtufxYT4R8HvgF4UUReB3498A0i8sMLtH0C+D+VAf9DEfmTwD/Cgst+2bNaBqbsECX66VAikEOuxEP+NfYRg6n9Cjg1geXJiS14SWNes+ZUDe7UY0s147ygJbDl4cMLzi+ekGPm7OiMo5u3OLl5hm+PyiTLEFacS3UdpQBtNlY3bx/x5O7rpD6hrVhxzMK+Q41sM4eQobYihXIljHMoDlMmbhiCycky/GjOxFKBNhUuYXCu0onyFEukaUXDTBzJxVryl7/3e/kVv/rb+a//2P+Tr/var+Ov/62/wW/7nb+Dvu9ZtC3f8St/BT/iwz+M5JRf/B/+Wt5+5w4/+2f+NH7Wv/WT0Zz5Td/5Xfxb/8d/na/4si8hBmgCxCj03Zp3332bRw8f8PjhPW7eOMWXRKCrtqHrs2XcbRtOj5dIPOGogSEuXixdexArFxbahsXxER9Yd6Rk4kzfbRCFW7df4uTGLR6fP+LiyX3Wm0sEU7a1TcOy8RwtFrTO48m0oeSv9JSS34G29axWAasZWdPGG0HwrjgAS7a0YhkkllgX56jlpnNR1NbdOHzodHdWDrasddENjBbvGg1b93LxGVALSEJLcdsSS2J1N8uuL8FX1/HSz2Id+JYDh/+La67/zcBvflq/O/cYViwjtWop+eB1MCKCUelXJm3QJsrQj5ntFLAKtTEqOVvVHSs7VdxyCxKwkFBfgDjhUXoiF+mCd7d3eefhXR6++4DbixssVqe8/CGHtAuLtpMRcbmyshZYYvV1EglkQXYO7ZXcClsv9F7QvrqD+nlUWUVWWSwPf8H2WpSAmi23X9UZpFQ1CZCyQq5yvZbxYPNFMv8GLbYJMc3/xfqSP/bHv4ev+5oPWxRNVm7duMHv/67v4kMf/AD/7GM/wLf8/F/AX/tzf4r/6W/9HX70j/x6PvILvoVv+dZfzs/5Wf8m3/dPPkZOma/68i+1zVmUrHgrPhpTout7LjabQaRJKdHHnr6PrBYLJBnlXSxagizJKVlCUSB3xTU2eMRlTpqW5bIlZeiSst20oMJiueJ4dcR6s+HJec/lekvYGPe1Wi45WbU4PK41YatTKToaVxB2T4zCdqsT+1G2ZK7q0KxsPagoiz7S9snKjWkpyioey51eiFbOw472M0qVi9vvBEFQohNdXatIDQseEYGBiNOAywK0iC6o7vaWSNUqb7kgSLha0/7ceAzClPLvewteFVBU75t+7t5XLQ4xJrZdR09EsMy7Fthh4oEFhbiiAHKDOezexT0erB9w3m95+Pgh7957h0f9Xb74C758MElmmY4fqo4vV0RASVdVsXSB1VrMkwmVrnkQAD76R76b7/lTfw6Ab/kZ38S/+3N/Fv/J7/guXn35BX7ez/wmssLv/AP/JavVkl/4s34Gf/C7v4e/+Ff/R/q+51/7cf8K3/YLfjZvvH2HX/yrfwM/8sM/jH/wD/8xL7/4Ir/rN/9fWSyWdQaLdlT5PR/9/Xzrz/u5/Jf/1R/Dtlzma776q8ALOUW+4l/6UjabLU+ePCKlnvOLS/o+ArBYrvh9f/CP86u+7VvZdj0C9DGO7FmxgmTNrNdrHj16TGg3XG43vPn2HVB46cUXOFktuVivSX2P5ky33dL3FjEY+0wXM5sU6XIGyTgJFirdJ7adIZOYoUuZd+/d41Ovv87F5QUheN6+8y6Ccrpa8torL/DKCze4cXLEsm1wCUIyfQnAdrst0a0l41ARFT1G6aO3ZDZ9jiz7yLZPbFOmLfoNQ/4jwq5EwjsrRW/wXgqJiCGQOlXVauNDGBS/OWdcKIFxzrxNtSBZ5xw4tZwREhHJJXdBpPVC467ONny1Q/E/x1ap1dOvm5vkatvlFCwXoIXX+tAMGlsfAu2ipW1b2nZhCpxmQbOwhJJN0+K958HDh3z84z/IJz/5Sd555y0ePnrAZnvJWC02j7bcQ1YMRs/BigBcLY5aMvcOZuLBRqr8r//wH/En//Sf589/9x/kz333f8F3/7/+NN/3T76fb/rJP4E//1f+aqEIkf/3//DX+Ck/4cfxN/7O3+WTb7zB9/yB38Z/81/+Lv7x93+Mv/d9/ys+CJ96401+9r/9U/lz/9Xv5+zshO/9n/4WTRMIjSn1QnD80499P++88w7f8ON+bNHTWSGLnK0WQU6JP//f/Xd8zVd9JajytV/9lXzq02/wzb/gl/ILfvY381f+6t/ka7/mq3n11dfoYypK0VI9ytVqUeaXoBkuLi65/+ABb7zxJv/kn/4TPv6DH+f111/n3XffpY89Wc3SYgqyMdpOcYR2xcnZLW7cfIFbL7zECy+8SNO0rDcbHj56xN3793j9zTd4+523uffgAY+eXCB+wWbb8/bb7/Dxj/8g3//9H+P1199kvV7jnCN4C98NTbCS5aWUuflomJ+Gq381MVHlEVSJCgkxBiobs++wKkUxZS7XG2LMBRlQEp1IQToV+Vgot/eNmfycuXEjY40D8+1yVivRC+oS6ju0WZObJ+RwjoQNzkW8QOsaPD8ECpI+iwXgENBXzqFcAYVdMg1sYYEtDabZUF2J4KsymfPmzltKl4MrRSUEcmSxWLJaLLm4OOfe+UMenT8hbntu3TpBSfRxi/Sd3bebWmoS8mwAb99TTRZRlZCDKGOmJmMRM3/3f/n7/B/+tR/HatmCeH7ST/gG/r//8z/gF/2cn8nd+w94+907vHvvPjdOT/jAK7f5w3/iv+Vv/t2/z8/4Rf8BCKwvN3zyzTd57bWX+dCrH+CHffWXA44Pf/VX8NadO/jGTH8UJPSf/e7fw3/6G38d3udBCVVqiQPKD/zAP+M//a2/nf/i9/x2k6+d4z/79d/O6Y0zMsLP+8gv56O/57fyW3/nd/HJT32an/SNP54f9fVfM3A2ToyNFsTKf+XM5fqST3/6U3zqk5+ibVvOH5/zwQ+8zBd86CWOV0taB2nRsl53dF1PSh3OwfHZLW69/ArL1REhBKP++nHefOsd7j94UCr8eLquBxFu3rzFV37lV9H3Gz79yR/k4vEDuj7y5Pyc9XaLOGca/OBLglg37C8RGRx3REpIuQhRTBwIKeFdh/NWADRmq/OQu8Tmcs35+TkxPmKz2XDj7Iycj2lLleCqnEUqt2G7MCcL8solY7SIJUPJgukummAl6/BkUSCCrFGfQDrUJUQ9jkAbjvH++Eq4+iGDBK5m+Qt9GexdOqSIMo+/PJWi7Fh1/bUOS0LImrzREIRi5aKcC9y6cYsvfO1DxDcV8YHcRZqwsLx7yUI+K4U/xJnYyBx46LuOvusH+4V5ByQG7VDxJKyGQcubH1Fnd1glIs+/8ZO+kb/01/4Wd+7e5af95G9keXSMbxq+7d/7Ofycn/nTcIWKAXz6jbdYLhec3bwBCEfHR1xcrjm9cWrOJ+J4cn7Oxz7+CX7+R345AO++e5df8it/FX/4//F7+fqv/1reunOHX/If/Ef8nu/8LXzhB1/j8cMHQ6ls5zx/5Lv/JD/9m/4N/pe//32cnp7xG3/t/5lv+5W/hq/96q80xWUefTY0Z7abDdvNlidPnvDJT3ySt956E+8Cb77+Jnfeusmi/RF88Yc+YAlaS4WjrBbuG5PVcbxx80WOTk5AlYvLS07PbtK0Cx4+fETKCcSSkvR95LXXbvF1X/e1pJxYLRe8+/YbeCKrZQHsYo48ZHHaTXRbN8+Q5sucTuhRNqkn9B39tqO/XHP37be5+85bvPnmmzRNw6uvvcbNGze4cXY6VEW27MXGfTTB8it2XcfFxTkx9ravq/hQ/BictAgrNK/IeUMNgx38ONSRo8fLMSHcAjm5EraeKyRwmMqP2Hh67XhcB7MKWjXmuXi4+eLyWxWy5bvZbPCVcteEDaXK0VCzUo3Nu3V2k6/+iq9mm5Ub3ZZls2R9/4JFe0zbLAjtwjC/6rDZR+19KplpIZJI6zWb7cZciDHXYqtTr9RMvbVK0I/5EV/Pr/i1v4mf/W//G/h2yV/63v8Pv/93fycnZzf4d775Z/DLf+X/hbsPHvAX/5s/yu0XXuKn/qSfyH/8W383v/Dn/TucnZzw5jt3CKHhxs3beB+4efsFEFgeHZEUbt6+NXACN27d4tPf//eGpM0/5d/8Fv6TX/dr+BE/4uu5//gxP/9bfwn/t1/37fzYf+VHc++dO6gF8eKc8ODRY/77v/Y3+KN/4KP8le/9Xry35KSbzZZt143h38X6MjjFAGSlCYGXX3yJ4+Mz3r3zDo8fPebdd97l1ZdusQjLUtZtRCCVOoZmQWgWnF+c8+jxuSVgbZdsOiuB5pwvvh4WjXjr9m3ECXfvvM3m8jFOE61XnAvmj+DdxKFnzHM5JpS1YDEpJlQV83EwZaDQHK84vnmDZtGSug1pc8F2fcGde3f42Mc+xnK54v67b3Lzxk1efe01lsvloBR3Pphbtq/VjxLb7bZwThSuNlldwl5oOWXpX+Q8rsn5HMugbBykZrOikFoWxy9ytHwFzUdXwt5zgwSmLpJTFn9KUQ8iieEY5JR48uQJDx884Pj4mJu3bpltOZcMOtXW6j3irFwYoiVME1CHamLINaDmxtH6htOjM1554VX84yc8fvSExw8vcSwIfjnIkrtjq4VJLYutEnOkzwurHUBhK4vmWKuDfxVbgJ/4yTt85Mu+nF/4c34pAL/4R/5Ifvzf/gfwt/8BPxq4+PSbfMHREf/Sn/5ewAI3PvHya/zEH/tTADhpW/7YT//pLJ1D7j9k9V3fDUD7N/8eXdex+n1/7Mr18G+8zeq//fOc/O2/x+/863+dj3/sB/jO7/j1fOd3/HoA/vLP/bm8fGws5q/4i3+R//irvoov/a//W35+jPy0v/iX+ch//d/wbT/qR/HT/9lbe32//vZdftX//fdxfusGf+iXfyu3b9/mhZdf5gOvfJB33nobcodIYrvZIie1tLshcpPTc7GweRDP+YVVgU4qXKw7+qylglPD6Y1jQgg0TWvvfLSyhCkxkroNfmVxBb6p7L5xXFNxYFjP4sxjRKUQkGradZ7VzRt88OiU7FekfsP68T1wQis9H3rlNs45GiKpu+D80V26dVtEgOI6XJyCVDFOBi0lzgqdq1yHj6zCDV658UVIH9j0j0EstZyS6PLWirC0p9y++SWcHr9E3/0QsQ4AByn+oRoEFVGIUGykSoqR8ydPuHv3XVLqOTpe4cMRilXCqTUAalLJqtgxLEsxM/rCBFg0uPkNORq/4AMfeI07Dz7G/+/v/1Mu7l/yo374tjDuY8LK3XGHYNTIxuiQtDCWzy5kyJevaRhHbeFyzU/4jm/jhz94wOrkjC/4ki/j4Y2bg7z+t77tWxHgcmI1+dZf9q38u1IprimhxMHf+XX/IZdlTL/03/+FoMrlaIguzFTxXkT4M7/sF+FUeYzwy3/pt/JtAlZdKHHv7bf5wXfe4FNeOT69xbf99J9CouX7IoDwu37Gz+TJo7vcffdt/nS/4fGTc7o+FmuI8D9+8GW+6xf+TH7pb/hOFs0Sp7BaWJkzFE6OWt5561NmWRh3A2OQUyly4my8223Htos8uVxz5849NtsE4rl5epMv//IvI2Vz4FpvtrTLlYkJCBeXlyzCUREFPL7UjhyeM+wJ0+U4GAL9HQHBCpuIZLIP+NWScORI2QiP9BvUwarJHL14ZlS/KDn79SO6SzXdRRFBq1XCCEgs/gWGBLJmWxvVwQ3hyN3gpVPHpn9s5dwazK9FM5qFxh2xPHqBkByb9eMrYe65QQI2GSPrP8TkT0SBmo58rwmYF5Zw48YZTeM5OjpitVpaIkuB1IOm4hvgCotVlDJDolGFWjByVCcqHkfjFtw8XnDj6D6nq9v0IbDdWIKOpiQKrW1u6jSTYFbTr2XMfh9jKqKKIjkXpw+G8VUdRoyJvo80JSAnS3UxLeEnOiKOwfWkAnTJj9/3W0SExbItJtDBHM3kwwyCymCtqCnydaiBZ+ILhTLHGE2+3/Y8vrgEt8Q5Z3JsVpxv6C8v6PvO8jyKDI4sqbixJjUrQk5WYKVpAovFguADMaYheMk5R0qmvJWS+9/YaE/bLPA+8Nbbd3jz7TtsO+X05Jhbt1/iA69+kNsv3OTevbs8fnKOD4H1ZkPfW1KSXABTpBRzFYrbd4nn0FK/oMyPUK7XgNMGcKgkpK2epeCSw2fLpaCSyK66mmPJblyJEwFEzOsTHUPSVa2AirqqOLZkJxmKZcuRYkaisH0cOX+y5uTGitXpEu8bFu0KLw2aFNkG+s1jsm6uhL3nBglUe/s8W9D+NdPvA6AVhwtBODo64ujoiBAsLXOKJW7f3O2K3FR2eInso/RSvmCpu8tRBdThaQkIp8szbp/dRrYNy8UKwZNrQM4OJZ9Y+4CSqzibmJA0Dy6qaJ48z7z/qrqiugeb4tEy0SIOrammyoOk9DO4qpZ3efTwIW+9/RZNE3jtg69xdFS0xDqOt/BUjLNZkFFVdlJY4VI6re/7UpCzJ8eO2F2wuezxC8tSvNmsCS5aiLJzJQrPQmEzkGLm4tJCW2Pu6VOii9D3Fn+/3Wwm9Scwpa0MqlKLgCyTKwinp6ec3bjg4uKci4tLo+zBE5qGbdexXC1p2sAnPvUJPv26485bb/Hw/kNy11s8hgtk9ZaQtCr9SkoxLUCoIpibt3GGXj0ue+MYnCMFIYeChD24qHi1YivZlSSvFH2T5JI23IOYe3W1LlnIenUzBykuxjkUIcR5BE+flI1CvOy4fLhhGRrak5aGJUs5pvEtSMKpo4+wjp+fUOLPacs5Ul9yGv03bYfs8OaIY9vX4t2tDJQvmtdatlzUzIBaMreOm6hIeQZNRTtcMwnZJsjFtAVwvFpytFqwPepoW49zFpFmvvkjMpmJLI5B2++q9aIkHxXM/puqc1EN8imvn/cQgAXY5GiuxeYuaPNSC2MK5gqdU+b+vTt88hP/jMVywdHRwsZhaghrUgKWlSG7Uq5zrYPTMjlHRC01Wt915LRFZEvsz1GXWS4C27QBCayWCyv+mQI+NEwladRY8fWmA2DTb7ncdoSlcH7Z8/Zb75C2a4SeF2/fYNv39hcTm76nS4nsFCSTco9qz+pkwemNE0LrODpeEFqPSuTJ+UN+8JMdT87NbfjevQd020TqOwKwaI4I7RFIy6ZXMp2FRntXyspXEcn8HPAm1gWBBlfCqAVc0fBLY+tflIceDBHaRi3p3SbWBixzds1F4ZIRg5wrYrAaBeIq4rc1V1UaF8g+2GefOH94ztnZCYtmhWjCS8IHe27Okc3lgyth77lBAsAItCN/O6Os9Rr7zAzllYodW8WRxBJBmO7aNksuiMKyvCRcrvoE8wuojF4Re8miZKkZfwIqvpSiEhZHx9y8eZuHDy6tDNWUr6YOWwZkYAcqxFUuBLKFwRgS8J7o0yAqjMwiJou6ar5yltuu64ixK3KjBaqYHR6Cc+YpnjM5J7xzvPziC/jgSbHj4vxRcct2RZ71pbLPYIMq32WowyAiBNdYUos+l9JbCWELuqH1LT4EFuLNbq2w7TKb9Tmb7doAoCAbY3steSfAervh/sNHvPn2I15//R3u3n2H4CJf/mVfyDYm7j58ZO/VLDhenHDsGvqkNEdn5ATbrWXkRZVXP/AqX/e1X0PXdVip8wXOQfCexeltXnnxQ+Qs9Nstoun/T92/xdy2bfl90K/13scYc87vtm577eu5VLmOq8rl2AQJgmIeQOEF82DxEsFDICTCPCSCSHkg+AkpiggSMfFTpEKRwFKiEMlBRMgSMkiIBMVGsWWcKpfjOlXnui/r+t3mZYzRL42H1vuY81t771PHqjysjK2117e+eR9z9NZb+7d/+//pvHJ1vmK1vgQ6E1+hLKIozWxVxOYKUqqMQacEMp4CEpeOgWusQgQn3oRSiyw6gw5fp1BluX9NdajfGiLm3BSjWcmHzsrkUqq1fLVNL7mgrnB2dY5/23N3ONC9vadbrXAdeC31+3W4Dob1tzMG36sgcLqgbAa7pbvH9L/t/C19Pr1YbW3Xx7uKI9DS3eNz035uO3eFX+0RNsNQ1HZnEdOpt53SIX6FhBXXd3vuDzMFX4NQe6W6mE4zGcV2C9VlQjAr5AJNsDQ7oes8/9t/4y+D2pjsp/+f/5Tf+1u/yt1uz/r8kucff4breuY5LjuCzRbYk3bO0YXOQNKcHigOLf1tbSWO1BrT0/XDkSCl9XwsAZIjQaZE5vHA7u6WcfcGJyPr9YZ+dYb4Na7boHhSytzd3/HyxVdM81ifMtjzFYdo5u3b1/b95EQXPG93d+y2B3JJrC5XPP/oY84urwhO6YKnH9aEsALpmJOCG8gTTERySpQZPrh6jnzXE+cZ7wJDv2K1Guj6DsRxfn5JKbC7vyNOBxyJoYNV7wwOzjVjkaqFEBxBvDkO+Y7Oh6PmBHUAWBp21Gp+qTMCDip2UeoUYDN5eZDNVg6Ek4x31h7OdY5CvNA5hyuVXUip9vSOnGFKBfUBuhXzIXJ9N3L+eCYMAZwnEKozUqbvV3zb8Z4EgYe1PlDJD7aoygn4teAAbZimgWBwHNXUNo1oh+2WBkSdFhOtnm7/aj1yVaEUMSaWFisU6xfqw8CwviQWx1xMmFKqWw8tm3gnM1i0AhQbFilVH0CL0XFTRhX+/H/7n2TeT1AyfQf/vX/3r/Fv/oX/Jr//45/z8a/+Cn/uv/Pn6TZXbHcHtCRKiTY9qLbo10PP+WZNSTP73T05V6KJzjgyKY7M40iaM3E2Su+wWvPRp5+x2pxbWVL71iIenM3vi3N0Aml/y4//89/lH/7u32O6fc2TS8dHH1/y6NmnbB5/iF89IRXHNCd+93f+Pn/z7T/kEHdsLq+Q4NjdJzQ5Nps1834PwJPLC37lO59yvrkgZnuti4sVn3z6GRcXG0LdZQWPlmB+hxmGviPQmbx3KXTacbW6QDeJ1GW88wz9wLDqGYYe5zyr9YZSCkMpTE5J8x7iyLTfcz/vLZhUwHXoO4Z+IHQmf+a7ATes8aFDOuP0W0chVLDV3rt4mx7UCuELNpFo/JNS7cUs0yjFbNzTPKPzlhJHKJbhiTg6H8hadTBxpJRJ84TTGXHBcIE541cX9FGY88R2HxlWSs5CEKHvgg2f5f+C9QT+iz5sjdduQNFlUTWwUGsQeCAjdtpKXLIHFoBwEfLUo9LPkZd/DDZiN9RsokJPRZBstlDeQcDaUlp32o8+fMZ3v/cZl1cXjVu7gFhaG9pHBRlOAEI1bEFb/Z+tXx2N3daAPlXMDwDDLgke6QIZpfeOYdWj2RYFajqCKSfEQVQYY+Z+jJV/n5AScSWSpn0NApGUsqXJqxXeg3N5qVddzaKMYW11qM3Ye6YUeX1zTUiAvyTmge0+MslNlUEXNCtXm57f+vVfwwmsz85R17HbRTR5NuszHj15BP+Xv8Gnzz9k1a3YT5mEIxUb6nry6Annm57gIM3RRqaLp5RMkObfkCAWdJ7QacLFiS5nSBFHoqSZaRKyt1T7FiGlxHTYM+7v2G9vmMdbctyBzniBnBM5zQQxXMCHntANuNDjujW+7/H9gOt7u63vcb5DfEfoV3S9lUaht9v6/oxhtaHr1/jQQ7C24pwLqepAJj+RnDLN1jHqfc96tWZYrVDK0gmapolJAjllgu/MMs4rz7sNT55GpmlrWUIJxOhIajZ9IfRMOX7r+nsvgoAtGrcIezRRjoX/WxesETgMJDseFXKS4139yU7cQKl3rZypzjFUayj7NwiZThy9A0i4MqMm7ktyHu8Gnq7hT/3ad/jog0cEORnVPb6lCuIcf9Hoy+1dOYyNOJfMqioZEQQZOnzu8BVHuHz2lI/Ec/HkEeqtBRV8VbRxVc66qhPlnIi5eheg1Uev6hBOiTwV0pjIc3zQ0swpUqJn2KwQrBWnFSeJc2Q8HGzikkI/2II4jI7bXUACnJXMKkX6TbShJO959vgJ58PGuh+1dWZlbk/XDawr0ejy7BJXqiCq90zZIuTKC4O45bvUUkjzTBpnUipkuSPtXttI72FkOkwc9gfGcaLkUkUWjX8RU0IbE5RMyTNx3nPY3TDubnAcuLoYuFj3lDyRNeIUZFKYm025I9ORfaj26GZO2rwNXeiQMJhbkjdANIQVw+aC1eaCfljT9QO+H4x6js02BN9ZlaQjnSa8h4DQF6VL1VVIbLMaugEuKn5Ts48iwViLBUqKdm35CvYmcL4DLwzpPWcM2pJ/B0xbbmGpo5aWESfMvPafLByulhcst9tCPyIDYDscJ7+V9pyqeE2svZiCLJE4jyQtdKUj6ciZKt9/tuHZRUcnCaX/Iz6fLj81IoqrtjQK+N5SyHU/sFqb3ZVTi9zPP/kYf3aJnD3CdQHx5hxMsLLCaSElI5OM08h+zqQczaI7zZRsaH6eJtI8kcaZeNjjUPLQ8/L1K27ubjg/P+OTzz7h0aPHTOPENM3EVHjz5g0vX70yMU7vmMcDYT0wjWvuJmF6O7OZ9pxNnn5vYqh93+FzICfr+BQy/dp2SHGK1PIKoEQDMb1kOgcBNVX2w8Q07shptDmDeWZ/GM23MEUDyoo5Jac5UlIhp4zqiU04Ss4z0zzRDYMFMCdknRHZkdiR2eL0wMoVrvpECFO9BrS2SE1wFRViPlQlacM2VB1zqn1+F1DXQSsH8CRMF3HuV4TQm12a78AFMkZ77oeV/T54+lVH33ckcUTXVd8BxXlXgWHrFEjw4D3qvA0RiTMgEtNDcGrzIK7vIVhbdtWtv/X6fC+CwLvHKXjyLhX3wb9rqtTIHKjWcsBubbvxAh80fkBbfQ0oa69bf0VJBDK9KE4SvTuQyTjXk0UZUM66wFVf6CSRnRp1ewlSXz+O76tWMg18c+CCQ51n8CugrzqCJgwZVhv8lCnBo8EsvTyCKx40EmMkxpFcZsZpz+u3b9nut+x3e+I8k2Iiptk493EmjRMB2PQ9wZtw6m57xzwdePr4inJ2Rpondvd33N7e8er1a7a7HeJgnicOhwPjPDGcXxDEsz+M7G4n7idP6Ga8dwxDj8ZiGYRzrDYDjz94xKb3UD32Ug1yX33xkt3+GpjovdkslGh1spRMjiM5z6QUmeJE0nzSDXHVyMV8HaQzIlEIbWy2WNCYb9l0F5xtTGbrkPekfE+ne5AJL5G1i2yc0ruIFwtGDivfglcQR6zS4aogLuB9R0qFVArOFwpxyTxLEVQDpQTK6BlWaxvIFKMYJxUbFx57U5ZyHaXvmYPpLnoXTMIM6qZRvQ29g85RnFCcLNJ04m0UuROPb8YyzqO+h2os823HexEEWi39bXMCrc4+vQ2Ou3wFFSyFPf7zWIc/TAKO/fwTjGCpx6lTa8yIFJwrOGYC0XTjg8eJ0qmyDpngMB5BtT0zUos+eD2p/7c25emIMdQ827oZ3oEaT6LRh0w80zog6hwudAze09Gh2frOu3Fit91xc3PL5z//nBcvXnB3d0eKaRFLDZ2pAKfxwLrr0Isrnj665INnT6Hq4a/6gTxHyJlV1+GvLtise9MGKJnDNHJ9c8vN7Q1pTsR5Zh6VUhxk24GcCFGtLSfrMxBH7gL+7JLHHz63sWjtCGo703p9wcsXP+Pm+nPWUliJoeHU2t9RcC7TkfCaoIp4gKPvVtUirKrwqJV3IcgyzDUzInlPYKAjMcXEfNgy77eUeUJywovSi3UCSIb/tHacteQU58F35gacK5mr66R6PlYcRbWO9cpyvylGxlTYOIxCrrp0ZbyPiIxVhyDgSkeehJQLNksQrJzCshHTo1SKUwsCYnJ0SM0KnEeLENR8KWaBbMMyoO95EICThf3uzr+0ACqR90E5cLK6jZD1TkCphUHF+xrAqO3f9r+T56nW1TTyjo35tnpeNOIYcaIEvzaVl/o+GyqwAJkPyg+hTTuqNs3/euuCczrasxQ4Ie40LwDTLyw5Iz7Q9ytUO3IIXD6KKB23d3uCG7g8e0zv1kzzRIyRw3yw3dPZ57u9vWd7e088jIz7kdB5UprZ3m8J3lDv1XrN5dU5jx4/WQRBfNdTVLm7u+Nud8Nh3JOyo/MbvFuRJjM49cFxdt5xfnEOIhzmiTB0nF9dcHV5Qe9X+Gwl1G/+1p8mz9fcv/oRadxRnCc4wQt03tF5MXzEJcSZk/LdYQt0rEJHKhBzgmKtyYLiV2sLyKVAjkjOSM7kaWLcHdjd3HLYb3Fq4pwueLz0qPaMKROcoqEGZoFCwUv1e1BFxEBUmuMwCZU6p1EvNlevC+fBl0IIhaH3VfK9MAyC95misVLKE7hETIUpR+tEObdMtgY1qfSUTDWo64L9O6uVVs4bLpHNONV3gc4LiVw3vW9f6u9NEGgL5CGC/7DL/xDZb7/jaO0kx+obGlJ4+hp2Uhc67EmK3koBAYpzJHHAbH6BIhRCFSBNOC14WVUvPx60Bb+Oa9T3gqulSPsYUv+zCTIbFKngpJWcJ5+v3ksVTYlZPQ5T3+1XA88/2vDsA+WTT7/Pb/zGP8Y8Tex2O7bbLbe3t7x49RWvXr3gsLvHS2Bih1PYR+Xzl2/ZnFmtfEjXdMHSUOfvubjb8/xDuHx0xbBasT67ZHN2zpNniTlPJE3gOtBAnoU0W9ocOs+wMrckdVInKCunQYQxCzrXqVEnDJ2jI1LS3hyG8Fb7Fk/oevpOTEhDTJ/QpYOpDpVcdVhMo/BuuwexkqDvejtvGVwRNGYSU/VqjEi2nrtr0m7ZnN+nVIhSKhAolUYsBBUCldarNjSWsrWEc8MhxNFEQIsaNbyogLdNwOzDC6ET+sH69ylaEKAESsqkaiNnAdvemw/V76JYpyZ4U0dWVUgRVY8TR9CMc6Zr6Il4sfc558Qcv6VO5X0KAvAwPYeTXZq6g+sR6DuJC1qWDtuDp2kAoejxj4nnl2O9ULEHU/a17LwIlSMQ8TqRPWQ6DI/L9EWZ67yALtNmLYAd3wNwXNhQQaX2shUgrGOkbSAGwIlWTXrLYkIVC/VFF6GTOZucs0MRMb/Bs8uBi8tHKLZjpBgZxwO3tzdcX7/h7uaaeRxxxT7vPI/EOLI5W9F3gX7ouDg7J6XEYT8iAv1mw/riEWfn56zWa0I/mP1aMYZjEexiHcSERIvpJ8xZKTFSKOYGXYScC6GSkEodEMyieK90kih+NgDMWUaRE4gv1nLzStFMzhOQcK7HCyZv7hxZM1NMOBfIyQIPmilzQmNkPhysuzBPaJnREqveY6J3NlqumkmpWsQVj6/WbxaCC97X3b5uTCnkCvAKXk2avWE94rzZSGKLVzSaKnEndH2gHwK5KLFEUrTXK1ntdUXIxQKb+ICorwrSUtuPwZyRYyKmhA9UFmJepPMcmaGCtFl7punrwr3teL+CwMnxgI7bFutJb99S9Xcotsd4scSPxfddHwaO06c95g+6PNCykMIiryUYUoxNwknJLMXKO2hgK1lO38vJKxwzATniBcufambZ3mybcHNqoFnnO1brtTkNK1D5arlSoUudWRDvWfc9ZxcXPHn6jO/l71NSXs7DeDjw5u0r7u9vWa0Cw9Ax9B2bzdre20lgs9rYmJRzMjwjFZsByJrJOVkbMtlkXs7Z2HHNZNULXT/YZ3GBzg9kZ58vDIH1emA9dKQUcChFE/vDwUDPtMaHC/Cmg7gsMgHkqEEYusDmbFNRe2WeZ0qajRcxTabOJEpMiXE6kHO0YWBnab/5BdSR7krqMZIGNUvNSGoJpwUYExq178yLEJqLktc60usWH8KSM8H19F139HX0go+dKSirtSK7EOhFmKaRKR4FUcyEpMmceeZ5IuZ8zD9VSTGTq06GFyVG6IJnvTqn+wUr/b0JAu8Cgd/Eya93BI4iE/WXnLYEH5QLbam2511uP0kGTh5ni6jU9EJr5OdBsNFqNuHbtu4sbbPuwMm7WjKbh6CnHbJkEIZuLanDEQcBxJtDcGkKSTWzcJXJZ+63x4GrpmTURE28VJdcBB/6mkk4+vWG9fkZh8OWUmZY9BPaFEUlXOVCzNZZWCYaKy89N5zl9FOJufmE3t63AgTohwFUSHPB+0Bn9kGkHO0UumA9c02MuwP32ztKLgx9V0VgDHQUArkIkJniTCpCUpNd773tmNNhS8oZjZE0j8au1EgsGcQAvdVqIIjQCQSxuZJSlK6r6bQ3vYlmvAIOLe3MVHxGi02FaiGhxIoJuFy/NzUXJhGb+tuNM7nUoSMx05mcFC+BEHpCv7IhozpB6UMAT+12WGpfSiHGqp7lAn1nQ2w5KzFFgjdb8q4LoJlpTjjfhHK++Xgvg8Dpv9+9Hd6pv0/HSuvFuSyiE8/nI8BI3dVb16HNcB9riFKXucHUdp+qNUSjJRsZxVpIKg8Xgr3fk/fdgkB9zVJOPltjGrasRpp3nd3svV9m29sCLbmg0kghxzLCOCT+RM9PqmtRZbOLkGqG45wQuhWDwuFwT0ojuaRqamokrUJZpidTTpYViCz8+XAirOqrcWmMsyEdlUNftICzwaYUM+PhwCwR7+zSe/3mLdc3N8SU8QolJRMS3azx3nN1dUHfd5QSOaSZ/TgxTnMlRjm0km4yNsmZY6zn2IbFRCKhA+erc1HwuCbqmwuSTd6tZRVdZ+PBoaL5ruo3eB8QjC+gUBdjNAWgugDBREJEpVacxjMIwTT/9vuJOM10wTPNeRElRQKaZxCHq90jEej7Dryrk7XG/msCuiGYME7wAaWw3x9Mll2hL+B9R0kwzRlxCef+S6A2/HVFoYfB4KFqT9Opa4GjHMlGD8DEthLtd8vzfm1XPh7WgbBMwBxn7DltHBisRCgVpCkPnmuhNS8lxTdlMqfZykk2Iw/+dXI+jtLkp/MQ7VzYw2RpT1p67Bd8QoGilXenUlVsC5oymidiHDmMIzlPNmpd3YucM20AF8TIKtqbCUgpJpPlOwRvbsil0IWOEIIBWzmTsdZdoTAfZm5vbtjvD7x9c8N+P+HE808Bd/dbUlZEbLdzAkNv48jeObrOcTjsmONIjDMxzhRtwzlqwRCpC9z09S0IWFYWZzMHDX0wZWlv32Ep5tNYxDKbUjI51YDVNcNSFu8e70zDH/E43wMO35licsozOtp3GiotuGTM47EUckz0IeCwFmPJMOXKKXAekUSi2NBQaEuyloeuSrTX6yWE5kfgF7NXLbmqZXlUIaWWLSgpFlSNSfhtx3sSBN6tqY8p9LvZQSll2T1LTaVtMbq6k1KR2PocPHyu0wChqlU8kmWXBj0ufsw6jGLobusFWw1xHHleMIqT2YYH+Obpz+hCj34YJISHgaPyBLIhzV5t9ylaFsTashpZ7mtZSX2mFv9EjDpKG1O2Oli1kKIgJdlQjCu4qrfonKfve1QzMVq6vlqtSCmy3e7I2eSsORFTnavh6W63YxxHxnFkjpFpnhinA1oM8Q6+Z7Nas96Y+u1HH3/Koey4//kfsN++hjxT8sxR6NNVncZW/4e6CK1zcKoTaRoSrjoaVRv2YOy9Ltj9gm827glKRvTIGi3Fan3vHARBK/gpQCqpnpuOICDS4b0Ywy8r4jIqnhAGSnFMo2EMooV5ngChH1YEKh1EbVgr5lJpzYBLaLTCs9mVqwg+dHRdX41XzcNgjunB5phSIie7/qPLHCTaqHlmCXjfdrwnQeDrx8NFpCd/68lmfnIn0br4T1P/Wtsvqb4u910CTL3YLAWu0mItm1gAA3s+4wq0ScWyvLxU0PA0KMgSL/TB+2yB7DQAnA4aNTZh+10ppjQkrlR1n+PTaX0tTnAIOz0tGB0JSva+6qRbvV/JUoNfHVKpu47gKglGGQ+JaZqIs4mm3t/vKlag1RnIbh9H26mbHJj3ntVqxZPHz+j6QNd5VkNvEuU+4IONtl5ePmJ1eMbV42dsX/yYabdDJC2GI652CwRn1FvxjNOMamYYnE3JaSTmaGakApDMfDTbgFbK2RZCimzW3obCjp3BWg5KxRwamcvcj41r46tgiwIZTTO52GcV3+Fcou+kioY4pgSqpjhUSrRJwZKJCULfL7bopUA5jLjOsoqkSkaXahMMC5oPI9MYOTs/x/mj8W1RU9Xuuo4QBkTMrSilQtGpamh68rcnAcAvZ0j6HeCvAh/W8/XbqvpXROQJ8H8Gvo+Zkv7TqnotdvX9FeDPA3vgn1XVv/NHvQ48xAVOqoPltq8/gCX1XnZ2qNnBMRzY300rCBZArr3mslBOAMn6eKfWs285xdJNUHvOd7OYbzsaoNfq1ZNb2rtaUvuvfUhpi/1YSkhdtKfWVQ0wfefE2XPUaUeq/sAisaaJNE/kPKHBnIFyUnLek1Nmu9tyd3trEtjzzDxNhpEI1dUp0Pc9l5eXhBBYr9esViv63vwIuq6n6wImh5YRNSJWw0FTTISu54MPPuLmZ+eknUl79X1H1wVcqK20qHhnikWlHGXMSzEXYtFo9vIClIjmefE7KKpoEeY50oeC73z9/O16O+FraK6B16ZGnXfmIKTF6ntf5T+0IGqBQSTjHXRByBne3m/Z7mY2F+f4YCy/OU6UhGEN0lm5gtAFb5lY8Lic0DonkLNSCsRUmLd7tvstzgfW6zM7p/1g33gFpVWLNZWcZcJWldbs1FW7+m85fplMIAH/sqr+HRG5AP62iPwN4J8F/p+q+q+LyL8C/CvA/xL472KW5D8A/gng36p//8Kj7Y6naXvb+RrF9nhb3cE43s8tO3H7uzx4ruW5UZpYSQsapQWNIx53XDwc5xLQ48Qip+/1j4gD9tQW4bU8zASWbL6+l2WXbqtEqUo8RyHW4wPtDqU8xFSWt38SzMwLzz3MZIqRVXbbOw77rQ3pbPfstge29ztSzoQ6N991Hev1mufPnnN+cW5mocF+33Xdkr43l56H78OyMbNIz0TNxGT32e0PHF694vMvv+JwGFmtVoSQ8cEb8OlkYVgWMNr0sLYWWZzRogydDVLViSpQswlvgdo5Rx86+uBZDyDFtBTs+zQU33ABe8MGA5naj6/y8KamJHS+ysUrqBQ0z6gr5JqxldIT48z+cKBbrejq0FLRvLR0i2amKVUgcsWwXpncZcKCgfM4p+QMPjimOXN3uyWlgvPehFyGAe9NqWie5iXbo17f7dot1bTWuz9Gd0BVvwS+rD/fi8jvAZ9iMvf/rXq3/xPw/8KCwF8A/qra1fo3ReSRiHxcn+dbXqT975jrHi92o222RV4/2rLWjxv3Kfh3Mtt/8hJFsOh9YgMmaG3XVOKNaiUW1UBS+cjSSgZXA1MGly1TyJJtp64c/2N+cOQytEXZPoEsP0O1S6rBxVLB9t6deFxlqrWFf/q49gmPQeXdTKJlGcV24uWkKuP+wB/+wR/w5Zc/I6UJ74yPv16teHz1hPVmzdnmjPV6beCg81V7z9VJQGtbUY507lJbZkUzmjMla7XlmtA02m3iKhBoUlrzHLl+84qSJ/reE7yVdlJB2pwL45iJOXNx+YSLq6ds7264u32DaOTyrGMIAq7URpixAUWUdql4J6YU5PTYbq0krNZdaaAvWEclRbWhQDXAzezq6gZUEqXOi2gFio0CrJyfdXR9MAk1NcTeOU/fOfrg8VLbi/iaspdaAhRzEwuWl6hUELcYH0CrW1QpCS32HQgsorRS27/VFb2eu0zJ0HffPun6j4QJiMj3gX8c+FvAhycL+yusXAALED87edjP6+++PQiAnXg93b05zZSPW2ar0zlJ6WnklrbTVkts6mKsbXiVk50dO2lSIz9SW2+lLHbaFvErJ0FaeVHfW2ldCes2PexJLBIptA5CaelnNRqRluJzFCQ97t6w1PnaAtrx8yzIv5xmPpw81/LPr5Oh2v2ArIWLy0uG1a/S946h7/G+o/N9dRGSavbhlgt9eQ92EiqqnuxPJcbknMklG7BWbMhF1AaAxBlXX6pLrvk/FLRMiESMkXMUOGmvvT8c2O4L3XDG06fPyHni7s6+Z8FKLBFFNCxpPbVVh1jQM15Pw3aWk7nQsqUJ0FLqkJAjzSCd3c+8QXJ1m7LvMGfjjBgOY0ByF4wGnuv3LWqo/mo1sFqtkJKIubYyc7FBrxpcRDHdOQQpS/hfMuGcItOUTBMhBMMhFoVpb99soYrBNJyrzq58y/FLBwEROQf+GvAvqerdOy09lV/0Kt/8fH8R+IsAH3304YPpOq2LEqiLrabtrVar9Q7NokmN5FPdmK3/K+Yl33rypdbRTistt1aBaFkUfdvtUok/3jkTJXUmzmFosUmVFc2QDbVGjdkFcDwLR5CyaLLWGhadixaWvv9JPb8InXDcndqib7VtPd+cEpGOz3Fc5O3/evL0p7HAnH0HPvrkU1SbVbuawOUS+Iwr0DKnQuu/m5xZKUaJtQBQa+ly0tJd6huruX0dDiriKe3zOVASMKNMoFOdBdEaCDucU3yA0AsuCN0qcM4Z93drBl/oXKakcdkVJYvJrmUM+RMgtZKiYj+uXgfFFp5DrTsiNixWcibjiGQEG77qgomfxBSrM5Cz8iZbJuikZqkoUhwUsVGieo349prauCJiYpMpQwNsa7fFyGcB50JdxM4o7SVRsiDB6D+9D1V52rYeKU145xSvckug+KbjlwoCYrnbXwP+HVX9D+qvX7Q0X0Q+Bl7W338OfOfk4Z/V3z04VPW3gd8G+M3f/A3NOfMgCzi50JtARLPqarV9A0Kcq+abRZborg/+2PlwqUCaDUwphZRtasRaSok8z+SYiHFEruCDpx7n1aSmnS5ij6c7/CmGcFxwyxa8yJY1GXCpFttOmuW2r+2g4wDRaRBYAMEHeAnH2+RkZS/vpkqstXfUTgtUFaR2m5FNYrK03fdm8VWaN0ILzDUAlSrikUtBc8XVT8ouEePat58FKGrKzx5Pp4JHSeJs56PF+lLBvdbNaRKnChrpfODqcs3Zecew8szTDtXEahXonMmJIdmyuWJZiL3vFlSP772cALug9XtSSo0Wvk4GLszIOoIraoHBvhsjcWnN3loqb5BCqUVkRylVpamqJZVSmOeZHGczD3E9mrPZiwXMxr1mXC2tp25kVtuDwyYr10O/ZG4JXca9G76VK1kKZ8Bj09j8puOX6Q4I8G8Dv6eqf/nkpv8Q+B8D/3r9+/968vt/UUT+PQwQvP2FeAAtzamMtBoRtX1RWg066v2aGYOh4lrTOLuwDRyRZeFwsmg0Zw43d4y3r0AL0xyJ8ww5kZPVpXmeKSkx55H+u5d879EztGs+RLbrFTFMoahD1ObwtaZqbeHT0ti20zfgor6vxaCTlvLWz7AQjU6/gHYuWjr+9VLpGBhOlWxPn0gf/LSUQzVdzTGR0gwE4+vPaaEIf61EW16vnmdpwyuyKDy3ssYBiE0FejJei+kDyFHHcPHfy8Xiq/jaEjwt6TKr4MlAmne8eWXj3Kix9IpaTzxjIG/KmSJqkmL1K8Hp4qRUv03bMwzhq3P+1bvixAlZxNkwkBNjVFY+gvPeFhotY7JPXLSKtdpcGXPKJkZbfTCaa9OpUlbKVlqk1jXSmtJjgS3nQorZRqVbqVgVS4valKtzrXS1gGfciozzRsnWPyZP4M8B/wzwn4nI362/+0vY4v/3ReSfB34C/NP1tr+OtQd/iLUI/yd/1Au0Bo0Cwfkqk1yOKsO2hdXFwILOsyDztrNlbewqV1PrKueshThP/OTHP+bFT35okbgaPXgx0lHJJgluHLeJj54oKV3YTiKhlgClpq6KloYEYAu0ah23NP/00zlx5ptXUehc+9fLjnVSZXPy0R78u5xkNRzvfnq/r5/XereTtPy0LBDnlvRzmiamcTQwKSW7DmtQhiPg2LoA7oRILS0Q12DXygEDV43a61CkDuS4BrDVt2S7tu102jK6mpaL2LCWr3v6HDO399YDvzhf1cdbNqcK4tTcnQwKJeWM94J4b1mKq3RvavBGqky4ojhcMPAzV5q0DT0ZCFeSLUgRZ7t9Dfzi7DumBGtEZ8NBCs4CBy34VG0Cb0FE1RFz3bWrq7VzdTy5lloNHDRXIqN0l0KVnTfQ+rRz1Mhli2CvKiWlJfP6puOX6Q78x+0S+objn/qG+yvwL/xRz/vu0QQpoaKk5j+9zAa0NLrV2g1kK4Cvpg8LPlD70VIf3+Q6DmnmftyT5xnFUleT7Kz9drW3EPoO35nLcMMHnAjaRCRaIKoRuIgcS9g2nw7U7978CqTtbidp/5JK22dytMzga2d1+WkhFp2mtN90vJNUPHzKBa1YalhEyJW374Kz8qCy1o5uSu09tLHsY2A4BoEGQhnewkmmZsmO1FjUcIsjftHeV9Ea1vVo0140W0YhJnjalpkNKNQ6/NhHqfuDpdK+zlgUrbMCTcZcanmktYWKWH0pDrw35oA3ynUpCuLxwRb9HG0zWD4bR2l8AzNrwKsZwaJ43b5EtZ0/ZaU4B6XZq9mcitbZg1oT0NVZgaKmUjynXGX3BanGrQ2XAbuuvPc1+4jf0DU6Hu8JY/BY/7dLTSqDr8ZsjlN69XaUpivQrMZytvnsMtoOtl6tcDUbKJqJFFIIuGCa7sHb7Lb3oV54wsX5hqvLgQ8+XNOFABVCdOLAC06N/GFAoCyrq10KJx/pBC9orEW7GNrM97JAjmDCg3Py8BQdn7BWOksw+ub24IOQWR9vC7fhBS2RWgBH0WpAYk67yzAT1FHiej+tg07fkglA7Wi41k8/Wm8L9XlP3mlpGZgaWNbE1Xx9/7b71cwuGR7hvBhtWZpkm7XwDNRs05zt/Tn7jNnOoWvqzifnstQgcAx4snDzwcREvXOErgMKc5xt1/aG4itC1kJW0/yz17dSQmrZUEqh1TipZMMbpA1btcy24ka+ngHncS7iO19LkMQ8ZzQf32fLqpq3QBv7btmjaSu875Lj9ZJoUeyIAbSUUOqueZzNTimRUmSOk9ly5cxhToxzJKbEZrPhs08/5XwzULLNuF8+ekwu36PvggErQ2+DL76renyJs7MzLjc9j1cHQtjj/EwRwbkOJ4qrwcm5DjOVaCmItMnjk+T+ZCxY2kWnNbOogJPYoE77fJaVfB3JPQ0JRbUm4yflwdcesETLZXTkQYjRFlBlCVjeu6W8aiagp/MQp0Nctbfy4B2eVBr1M1u6ehKKlnZsg/7aLlzazl1ba2B4D0VJ2YKDyaovCQaaTdMvF6VkbIFVr0bDB6T2+G1wp5mjtt690ko0K1kaq8PUg2WRsM+lpuxe8aGm2GqKPh6/yL8V5EQ4xoEPZE1kbXkXlUqszDHaYpfuONrTanvv8c5jOY/xDUTq+68DSxTDWrruKLC/lGHijnTz2nqcp/c+CGjt47qlBChqY6HzPLHf75mmyQZSxpF5npkmk55OKaGoecuHAd/1NmXlHGmOjALUmfVPPv0Ozz94bggwhvC2C7mkUqexBCFWhNbThY4sznCB2nbUKkC51ADVuPNoctyAtJOOwclsQbvFLsKygFKydEa+/TQBRyKTum8oHU4OefDXg0V7RMjfechJhvJuEICTC+3k+R7yHE5eTFvwa7MY9QbVZfy67cLNTq3N6COtpWatMjNuDbUCaYpMdcS7TU3V4NIQ9lw3/zpaRuMAmGsTaKktZOw9pOqO3HwvkhZICeMhGOrvssM7TPWXI07Tnsc4Ci27s8+ZW5ZTC9NS7djJ0WJhE45xxy6RlSvVCLeUKmZDZX7aaLZhC+54XTwI2PY7O3/eOmvfcrwXQUCLMu73Jop5OLA/7JgOB3KamaeRu7s7YoxLGu296et1XcdmvWJYDXR9z7A5Y705J3RdncMXNCc7ic6xWm2gHxYaPXqcSnQBSq0XQ6la815JZFytNU1Ew5FVUGejoSyp8dFcpC0QrSWG8s5KFVjk0k9KnmOV3PCPk3P07kLT053224/jjNw7bcMaBJb3LJUwgzTA4wSfeOf9v4NOHkuSd4NKCwD5wZnR475YR2vbecjkqqXXOcsFtCUNWuf5URDz2HP4SheWJcaoClqaI7UnowS1nr04Kimn1AqtaQPYPENKhVwXuH0/aZkd8HVBplSQIHjXLd9aCyIt/VetMGbjQmhr8R0Dr2W1CXXgfKiS4q3eO/b9ixowCCwB0jusNPGmM6E51yziKEwpYvdZguX7jglM08g//Ae/xxwjKUVytujbBY93jovzM7ousFrZcErXmUmDr4ozUnXezNyhkiuqfBVNkQozZmikoJZeee+hJrcaLAMJmnFdR5TMpI4eX7cspWRz3kVWNLsTqcCgkY3qH45Lz+EriNP6zHUxyDEjWOAF4cQSjeVZTn/Dyb++Rj/m4c7dFvtCkVM4ko1sZFrq6wnHnf/hYNIRC3j3Pdm/HgYFhAWBt2TJyDRW74thD7R2WK3fK25TyDQqN1g9m2ufr7TavepFWhhowesEkNP2jdo0ZC7mA0DFItq4cVZQNRdlp94EUbX6MKpaGVGzF+88WmJF2k09qWh1gFpSLvNvLJimoqsAqlexoaOS7JRj3JbcaBEtiJZyDCpqwjFJLcOcS6aX6m2C1CDgUddKHzv3pV7b1oGpivZmzfyNaw/ekyCQcyLNB/qu4+Likr7v6EOwCFxbO67+3LKB42Zue4pNTxW0RAsMauBPqbbVWgz5ruqPgF28rgF8GE9fVEyd1gmzOHoJdM686C2xc2TtQHq7yCgGFILtrNrch9vWZFuZIdw1a6gItDh3nO6DZQc+PR4MPunDFL5W6MfffT3hWPaqVqbUeAOU5bYjpUaXHOTrAcCCnJ489/F1TjOM9jInAafOXxRtBKLKt6AtVnv1Ntdhcwm2EErO5GQuPAW3CJlq4/s3ApYab94WmZF+sjbdifoz4FpGVQoNB8hqVPHszOPBvora+cHYop237ytXVyfpbaJQVIjZPrTUDlIpasNFWMByxRNcQHUmpUznTGMwFyUnyxCcr4BtMdpS3cpJBYoT/GBuQlmTaRO62gnxjuKqPoJWG/QawItkfKif41vBo/ckCAx9z/e+95lNoPma1tSLX6ACKKf1Tq2+5Hj5tv6805aKV/pGA7PEod7XFNiOdmJca/1VwC6onRb1gnrT6PNSQIq5vix6gGUJAlqHF0QLbWpuQfBby3BxkjHwqoFhUDMCLe90C9qee6w9vz61eLor23k5/jkClctvpJUpXws3ds6kpSIPL5rT51mIUS10nL7fFmzqoywAlCNir2JO7k1IFbEhHz3BKepOr9pIL6C+1PZYshpbINXsJomSxZSLVYzpoVqnA1HMG8WRPSafpsKMI6ojAocidJhaUVElZlsYXgQwVx/LMK3+LmrPEcSuk6SWvbg69FTUdnBp70EsCFlzoNb3zluy42woTYyvXlN+25CaKnYfOlZnG5IKaZpPTnQbJ7fSwkBmeVBGeOdQb23CbzveiyDgvOfs3BxpjDVITcVOKkmRZVrqmH6Z+KSvgpZNIRepxg00UY1cM+VQd4vWgrIV0TgI6uwRTZK70WB95dXjIKFAxmiqGSMxybJYy8OVZYtcG2jU6kTbLXIxwslSFlTSUQtqx+do//+mmvv09++UAe+UBksQPbn3kk28+2qnGcc31JNLx7FlVfrwPtICdPtiTt7PUgK1d1GgCboILFowlv4XypJJFVI2Ka4ikDAKc1TbrZ3afEDSRC6OnE0N2YntpsmZY28qhbEIY4axKFNxDHSU7AlZCaIEcXQUVsFVUw9PJwIuIBotu8it9WgL13vFiU1rugLF2fWRgMOU8NJkwBQvCk5xwc5PdrlqQdprV+ZBLWFboCx0PuAaa7VkSqz8gFxqaduy47qhoC3CfuvxXgQB6sI6tjg8VBrksqNJQ8KP6dqR8VF/W3chwwRqfdwWuZRK7DFOtdPjxX2k/AZETcVVo6JZEe3IrlQyk6+KL4qXTHCFZjfxcD9umUtFkOUEgFv+b1+zawulgQHvdAiOC8l+XrKB+r6/Ce9ZBnjaa0nbuIVqlEMTTTwVSbW63dL3U2Dy+L3I8rNiBUUrMd7NCKS2TBGhMTjtuVoScCwzzFw0L5WR4fBiqjzFZuid81AcudjQTiGZwKiU6hOBDevgyZpIRY54QhFQb8rE2TGmwKEoYxEm9Wg34FYXxN5RSiZpwVOYNTHlxDgJfRJWPtD7QCcdmpRYZc1yhlKcZQx1ktAyVV/PT2GaE53LrIfaGvZYIMiZpmNpg0jQuR5fSyJViPPM3c2O1dk555sBdLa2acoEb21JxNlgWvve1DYcFbe0Jr/teE+CABXktoUjjTpMI7a02vhkV2oBoB31Im+sO6h16TsnxTcSBiepdQ0UVLQf8eToSaWQNJCkGDBUIyxiE3GuytZWNgONzOScoxQHUqpkl9Qx1kovre/RMAHLDN6dwXxQY9Oyv4fy4r+wPXjyTO3O0gLCUkK1565A4VIv2Ot/XahEjwFziVJfzxxOX/adH7/2y5apldzcF2srDKnDd/X70mMAtO8gmerxUto44wQUj2pHLkrKVlPH5JgnQZIwR0fUnlkds+soboVfbfDnV7iuM4kyNbUiLYmUJ1JJ7Euho9CVgldhlayD4VBKCWhJrMQs7VMxsM6pp2hawqlJrXcEl/GiNSOw8jblAsTl8wq+Cp1YSTSNI6v1OV4MCUwV1HVd205qMDj5erSSpHLlWXzb8V4EAREx2+0lCDgWyzA59keXhVEv1nZR69LPXm7k4b5M1RIUjv5xsLSKasrUJgOTOtCeUWGisyCBgBSSGDqM61BpRBGqzJNH6i7qETRVBNxbe8qp0HWhDqk4lnkIvmGhnCDxDRg8HeRpnfqvLb56Ph9SeXnQAhRx4ME7X1l6umQVx3X/LQHg9L0tgOXxPu21CqeBoRVLenzMyfOmXMiqeAUqbVYacl4Xvy3qcsSJEOMTIFAcFEfJHTk7coaYlSk7DilZfV48vuuIqSOLkF2HHzYM60u69Tn9ZoN4c02mBhmnBUqyjkBOJJ2YSUieOWjGxWxswJLQIgxZ6J1Atj5+oCPqbII11SMghA7vEloq918N5CwnJaOKozhPKW4piR5sgBg7VlyBuQ16yZLttTNetAGP+RfuGO9FEEDMGKPVzhUxsduWthcgJ6owcmwNutOFzUnWgICrQcBpxetOqlF3JNtoGzwXh+oKDVdkErnvmBltV5dEdMkylW7AdWusqKv02lp2KLbAXDDzjtxKglLw4happ2MmUpfISZ19mvKXeqFoPVdLBdGQx5Nd+8F5YEmQls9rjHiTyApVv2+hQLf3cPIM3wYqHwPCu+XJw8CkJ4t/KRtOMAH7rtoQlYFcBeHIaLTXKLlQks0KOPWIBnIOqAopQcIzlZ45wjgr+zkTCZTVGnUriuvA96zWK3wXoOvw/Ypu2OBChwuNmdcmVXtM2cjMTEvKlLKxa61kNBtj1cRLsol85GS8lJwICu6QSdG6S0KHyx43OYbQshoxFqo370t1CRCy9DRyVHGOxiK1IG3roeRMcQWXaxPa2bppWXOT0LPhuMy3fI3A+xIEAGshlZpOH3f5luzZT4Lztf+6BAEqF6DujFAZdXqsawXbzYvVfOXkhB4BrHoCi5g6jXg7kUMHMpPKBGkilhkfAtIPyHCGC8Oi8++cM2GKmra7yjIsOVHUdO1TahNvrc4Gw7AbswDa7m8/vptXn+6up38/DACnDxFdYgeI9ZCNbShLu/WbN4qTtP/0+b52N3knECxVliEmYvMXLQtoC6B9vhYSlo/ntGZObtH2U7VMyiGVSdAZup+UXRRmhbkUxgSpBFLojUEa1vRhTQgr+mFlVPG+w3Vu0XOAgshUM7a6oZy0F4tAdoCuaNM9mksFj62edznZJGCySb+YIyXPID1I5oAwx8whFYbOVZkyR/BmG2/XY4cDwzFyC/ZqVm9Vp0Dr6+WczHsg+AXLyTTNi3ZtG0mmieZ82/HeBIFl4EJqfdcIK64BbMfjwcXeYkT90Kc1tz3vSQrd+sl1ZzqmzbYAbVyz7kiuI2lmosN3G9AJlZFY9kQRegaCG3C+N8OJNnfPMYU9trxsFyyqVahDj6Gt3n7stL/bcjtJvbWZnignWfjJDvHw/Njzs7QdtXUi6sXVas5fYpk/uK2Rm5a76sNHao08p+m/6PFzLQkMsLQCWPJ/W4Bi2Z5ials2p29szTkr+2y73RSVfYIZiCpE38PQI91A169Z9Sv6MJg1V+jpOof3huR7p3hJdcgsoXW4yUg/Nk9grVwjiKl4TD6cOs9gGauWYh2EcAyGuXobCBEp0Uxf5pFUErPalKxqREqmS4XeZTqEIMX8BEvBOavlkypJDAcolXW4CItKC1Z1hFqP14CrY9Al5Tr1+M3HexIEDCc3i6ua6i/pbfu5pYv2iJZGLvepAJx3fgkaTWDhCCVUgO4BIFb51YB4RXwhFzEXlyxIUnzf0/uAkx4tgaSmIe+SMGCecSKYzFaMyxfUTDpzSuR2sQs2eSayjDrbRzsJWu/UzKc75UmusGQ9y4z/NyDA3wTu5aq+c6ocdOw0HDOvb/6maCjLsZlxAsMoR+bDg+iw3O8kQMEyKq5qMm9GtLJTVUSIxWS3sxZSCRyysIvKfp8gBLIEknSo71C/IQwrwmpNt9qwWq1YBU+n0ORavS8EJ+YopAlRQ9idM46HYD4BVPNUlYFMj+Jr/a5EdUxJMchHEO1a7KoeB8X8CEKPiFqJIA43ZDyZkqOJh2qi5EjUmVkP+BxxOeKlELzU2YnCISmxSO14nACn2rQGqtqTYq/jTrM8a0fHhk99w/FeBAFbnP64SBsN2LkHO3q7r0Jj2lgpUKnDjX/dPrydlCpoWbEDV330lMpGy7kOf9S0zjvjA1SRiwzEqngTnEMGhytm+52KTaf5JdOo6Vd1smnKPVYOmBtNq+ubDJTRjDECDdgor/1UP3d5sLgaeLek3wuWcGzfnR52imp5pe3+mVRMeeboi2i3HzsH3wQ6nqTwYhfiMThZduCWnL4sJZ3TEwxEsFJreYORkifaKLloyzaEot52/aTEAglhdD0xdKgES7VdjzqHhJ6+39BtevrNhm5Y0XWBjkwohc4dg5v3xdpzlbHlnCd4j2gETTgX7YO4zijiOoB6K/XIBEwhKYmglRii4ojOzk1agraauEcR8zDoHCI9mmvmSDHV4jKjpWeOI04ijmzZasqQM/PkyNqTNRBLG2f35KU0cktWZ63s9t1UabJMzVq++Xg/goDIIoksJ+mqOOMLNAuqBr5R9IgHNJ6AM12Apo7rnK9tvFCpx6Fq6FsQMDWdA+M0mrFkTjTGXicQgiMlKy+iWFAQBC99jfCJLB0xJkKeKy/OALbmP+elQE5ISUYAEYevqWaqgJJTJRRQV79QccDRO+7YEjzy/FtmdEy/dTlHp8eDbL1y1IsoSCHlSG7y60rl4rOs81P5s286bOdzLLpICqLJ3mPLAGo669XosCpq3PrimaMx396++Sk311+ahVbxKBEQYvZMGe5GZRthLp7sOqTrDafxAz4YqOe9Y+g7ztZrusHRBWcjv64QtBBqUIqqdN7XXb+aqwaHl47gVogmw0pcBjdZqy8ZWOekaktotMAigRLU7MEzddxcSGINPq2LErVhtCK1xPEO13UoVZVZC8KarBtympGc8cV0E/M0kTWivicE4ZA7yjbjVQiuI5ZAzh2+EdZKrJTrKoxSSwXNIN9eDbwfQQDhmMLULCBXqNwyZalW3JVS7I8inc47fOfrAg+0q7gLPavV2txkRZYZhLaAUkqMY0foOsbxQIwzcJR3QodFtirnbGl+ldL23tFV88372xu0FPrV2qJzMr39lic75yHUbEXBBb/MqmetQI4c24DwUNOvdQoKp787SbPhwcL9+viv1rn62rYTQMqSAbVgsjzRSTnyTdnF8b0Zo821f9fSoJxgEIZ91FxBTKp7v7vj7f2Wu7s7AP7wR3/Iq6++sguVgayeHB1lFsZUOCRPlo4SBny/JvQrEEfXD6zWZ6zXZ6z6gaHrGIYOcZmSIpAoqnRiCsdaYPCDDYqpw/KKShrLMx0B70wwxJUJ7wrFOaJ3TDmb6agURDrrsjghlULQYyYUgrOUHUfGeEDqPII9JrfA7SyDsMDpanDv8GFlgikVM3DrQkiZPM+IZvYlczePaMr0QRjUsyrKKhQ6oBMbSiq50Ls6J6FNV+vbS7z3IggIR7KNVG59c92xFN+Gh0JVevHVqsn5ZrbgKkpaRRdSxvuwBAEb0DBH2mY31vc1O+g6vPOM04Emp42WyrSU+u6sJ51VmVMi12kwzYlxt2Peb7l49JhhfYYXz+CcpX9VjSfnZIuk2Ogo9U8bSaqJ4XI+lDaaWls8FfB50Kt/53j396qNV96wBx6Cgou2YXvF+pc8pCl9E8Bqh6F1S/3fOB3iqjquvU5KkcP+nt39Dbc3N2y3OwpCPxhN/PlHn3L/89/n+voluawYU2FKpXIwHPTWygthwPcrhmHNalhxtuno+0BwgSA9fdfR93WUN7g6Tiw4zbhik5z4npQMfHRqsnSugBAZ3J7VoKxXic0qs+48Ip5Mx24OvL7NvN0XigwUySQdKSqoeKR6C/qus42rgngxFaZZSVmqH2CbO7Ul6SoulEtlPBasvHAdEvrj6Hyuwq+1+0BJTCUy5ch2znTTRO9gEKWTQh+ETYE+OCiFlEHlPZ8iRITVZmMDRHXRh66j71d0fY93YanlTWLcVbJN26lYUP4myGglqjesIbQWTKngVx23rKaXgmUKVhrMi+tLqXJNIp7gDdjz3pNiJBbrB+dpT9zdMx8OnF1csjm/ZFifmXOu84sCsqqSSHVuvjQtEgsEmpe2YgMHlqVYF98pqcd+rQ/AxPb3aSbQdPPcMm9fE/UTYJQHz803bhjfFGDQdi5L9QmoyH3MpFw4HGZubm+5vn3L/fYWLZFV33H16DFPnjzj6tFjAFaPnnGg5+2h2NivrEhSVad9IHQ9w3rNer1hc3bOZnPGaujpu0yQjKjJmXvn8M64++KpTMwAEnj8+CnOeV6+fkts7sJSMxkprHu4uNzz/IM7nlxFzteOAfDFM84jY/6A54/O+eErx+ut41AyOTiG/pyzzQXDasWwshZkCAHBqNAxZw5T5jAmxsPINB6Yp4kUE3GeiTFa5lSFZQRqV6KqGVEIPuCr76DVc1iHKEdKMrXsGEdySUxlhhxxKdEloatdBl90GXb6puO9CAI+BJ48fUbX94j3i3Js6Hr6fmVcfm0zADU9PW2J0QKB0YJDCJSsi0prCHWMt9gcd9uVW0ocQiCEDqZxeUzJuui/W4rszNSxq7tortr8cwQtjHlLmmbSOHHxKDGszw2pdh7UkTGikFv2zjZYTk0HbUEaanzsaKDHxXrKHPyjjgXsa8BhzWsq/vfgaGDrkZJdU9yToHL6vMcgU3ELhDQn9tPM9e09t3f3vH5zzTTN+K7j6sljnn/whCeXF6y6YOexGmROKuxVGOvcBmqLufMdq2Fgs1lzeXHB+dkZm82KruvrrHzEU92iNFlQyrpQfq1bBJePr/iNP/PrSOfp/uAP+OKrLxh3CaceUsa5yGqlPPtg5tNPbzk/u7cJwlnpciAkj5vv8avP2D/7kKlALhvWzx7x+MlHPH3yIecX50Y5dsHA4JyX7zHXdmKaZ3bbLfvtPYfdjtubG+7v7xj3VoqmbHiKq6PINvegtYNgIHnnO4K3bFd9QIPRplNcUbKZ4qiqZSFqnQifJrwm/C8Qn3k/goD3nF1e1labEGMixbS0/nw4ilwe6bDt4lSOjWe7j6vST7lJUVeUVtUUhooWYjRDy1b3pxSZp2gOR0rtF2vtVdu8gBPouh5VyCkzzRM5mSOtUyUeDtxW597zy0dsLi7phzVVLW8ZTzVBTEPplVJHom33b9ZV7fM2l59Thl0ptZVWS71Givo6iKfH/7cGQJPienD/FphqsOEkUNTW49dZgSa/vT8ceHt9w/X1Dbv9SEoZ8Z7Li3Mef/cpV48esz5fE7zi0owvGZ9t0QIMarWsU0cnSueUVRc4P1tztlkz9B2dJMJ4h8StqWo4QSWTNNvTqA3JWKcjVwWATDd0PHl+wZOPzvErj998gt+MvHlxg0uedJjQ/YGzM+XZU+F8Y3P/QrDuQEoMbk/STJ4LZwIfPn7O4/OPOf/sT7A+f0ToznBdT8F4CporLu+sG+SAXqBfK5uLR2jO5BTZ7+7Zbe/Zb7dst3fs7m/Y77ZM06F6Exg/ItXyVTXjc16MdrIUUh20Mhyto8gKfLANsrYgKdEYj79g43gvgoCIGNnCCc47ugoQLu2r4wZ1THeXlk/dHcsJKypb/zTGSIzVNKQcCRaGG8zk0vzs7cIehhXDMNgOn8zP3tL0itqXRBfsS5iYLQUuhhN0wYJMnkbSNDEdDuy2W84vrlifneNDhw9C5zx96AjOLbZVWiyFFZWaFh4X8/K+W8vuBBswMtJyEr92Xo+tv/q4osu49Cll+Xh2T871El/1gYptKYXD4cDd3T1v377lzdtr5inS9z0Xl5c8fvyYx48fc355hpNAjIWcImWe8Hli5aDzJvcFMNzfs54SV65j0wVWwbHuOzqv+HhA5j1FE3PJzNl8xbyvVtuVc1/UTE9jtIURNRLTxPp8xae/+pxuFenOEh8MHUmfcXHWkw+F8Trx9oufMawil5tLhvCUED4Et0LzBLyF/DmD7Igl4yZ4dH5O99Ej/KOnRDxJhZy06kw48w9sSkLYWLEZiha8dLgu4EPP5bDi8skztGTmec+0v2V7d8Pu7o7d/T33d3fs9ntiTJUDUPCqOCJeHNkLsyqxKASbs5lVyBVTE2dDSCKDSfL/l2KAyB8hExe8ARpxoqjiQyUB1XbhUheV6n5bMjkfXXOa0urRILMSKdTV1N/T9QNr7wmdW/gDoUowpZQYDwcO+13lh9uCsSliNZxBpLr09sy7iRQjXoCSKcykeWa/3XLYbXn89BnnF48QejTb7uDEFJU054pYS631arrdiD9yLAG0ZjwNtTeDCWl9wofQorS+fwsclrZTjHp65F1Aw0iEI/0Cad56Zik+TRP39/e8fvWK6+trpjnhQ8fm/JxPPn3Mk8ePuTg3fUcRYZ5Hxnmk5GJgVRlZ5QMhHpjHA/vdAYCXv/d3WW+v+bhz9MEo414TZbSWrbE7I6JaKbkJguB8V0lhUnUZTKswSzbgNmdSgPFwA3pL7wIlJJ4+coSy5nAzUmTFRT7jcrhh5WY6Ocf3z9BwTspb8jjjS48vOzr2+Oktwkt0/5Z4uCe7gewgBwzd91YSuCKV9FTIpn6AVkEUzXkheAHgHG694Xw9sLl6TEmROB64v7m2kuH2ht39PXGe0dhIRtYS7IKrugWeWCrfRCzgFM0VA3JVnfo9LwfgCD7lKpqIqtVJKRGCSSipqlkxlVwXd6pKMan2ZRsvvQ4hi6/DRXaxBL+i7we6riOEJltmOENbXIKl/O1LmueJHKOBSUCOs429qtL1HXJ+CSkzHu6rKkyyBRkjWSFOExoj82Hk7OKc+bA3B6QYKbNDY4JciOOeMe7J4hnO1seN/US5tqF6S0mkVK2CYwuofhIW0g/2mIVPISdSYHK0bjt+B7V0Kso0z+wPI7v9npvbW968fs1+t6Prez54/jEfPP+Iq8ePGfrOWoU5EafRhD/ijOaCR/EaKYc7dvevObx9yfbNS7a3twC8/dHfZ5j3nLtUuzs230FOFTJpgaDgigUrX5TOlPVAwWxJKhhHxklGQsGJksZbdP8GXfWUnOhK4TyAlhmIPH66wZe3SHpr11I+Q92aVDsqngBZkRjxaSLNb5lef0HiMX79CLdWvDhC6MzHwgWcepxaxhVLJonW2ZGZnGcDnSlLqQfVCJeAH3qGfkO/ueDqyXP293fcXb9hd3fHYbetqtszmmy60Z+oMncigAHakUJSU2G0TeA9pw0rlf5Yd3G7OI8Iak7J6qCcLTDAsvMJVL81qd0F6xz4+oWY+KS1rBzdQhoKNa1fGHgAldEnAv2wst0+BKZxJE1jBSzrZBnQdR2dWNZSKMzjwYJYqfJiRUlxZBsz03ZHfHRFKUYC0WTWU+N2x/Xrl9zc7LjdTgznl3z0nc8Ifd8+pmUyckKZrsGuql3RAgM1CW1/moZPY1AeD6m3Hu9r2v22eMfxwG67Y3e343a7Y4wJ8Z7zqyd8+p3vcXV5ycXFY0K/IqPMaYY449KE5Einib7MxNE6Jzc3b9i+/pLD25fE7R3lsDMTUSDMW3xJRugpSqplXRALztZqDKba4GLlwKQqXuoq648aLAtBIsOQWZ3B+txzEW6Y3/whLjnGeU+ZPJIvWE2eMk0ImZhnRr23+nkCdQdKLMh0QHLLKsHngpv3TLevuBl/zEFXDJcfsnn6Mf3mgvVZYbM5w3dDTclNgETAFr4PFO0oJVW5/EguYroFJ5/fHAc6+nVP359xfvHIsqftPbvdlrvtHffbe8bDgRwNmHaLlmapakqmkCRSB7He9wGikgvb7c5aJzFVHMDAupwy8zgtbMAQ/EIR9t6mqI5MwFOijDvJAixVTDO0dp2Bf8cd1PZNVxFWGyQJXb9kJRQjoWgddHFtV/WeYbPBB8fu/o77uxvmMeFSwavhS3GeGO9vmba3KJlxd1+BxJEXP/+cl1+9YrebGOfC048+5YPnzxb56VIM20g51nNzxARsFKq1Co0l1mjEbbN3NQC0SbOWJ9g5MVB0u9tzd3vL/e0N9/c3TNOIqLDya87Wl3zw0RWbywvOL84ZgqH4OSvzNJJyRDTZws8jOt6T9rfMdy/Z375lf/OW6f6a/c1b0n6Hy7kKYdZLr6TqoFvbqMWUgoZVVT7KnkqzQCXi3YHNBs7PAqveU3Jgt1d2h4jPkfNL+OTTC55/1HF2CWdXCT/9HuVtQqaReSeQHnHmPqHza8YUGOfAtC2s77Z0HWRGcB4vI1OCNHrmXWbeJgKJPk707Pn5V19yl38OZ4/Bd5xfPObDTz/l+YefsL54RBg2uH5lPhVVw9A5A64N8PaGTWUoRerQkVmT+WL2ZJ6A689YdWv6zQUXaeZqGrnf3nLYba1svb/hsNsRx5GiliF516RkzW+zDdZ90/HLuBJ/B/irwIf10vptVf0rIvK/Bv6nwKt617+kqn+9PuZ/BfzzGPX+f66q//df9Bo5Z3bbbb3AqTuwYz2skZWdnBA6VqsVfd8tJApXjR2PO/qSQy8goaGpVE87WSjCOadaErSBozrW21ZQbdf0XYegBAdOMyWPBsaozRYkFPWOsNpw5o2osru7Zd7uiOOMK2oU0DJT8sQ0j0y7HVQV3bubWwpiaTAOTSMljqT6naU0c9hvOYyJGKc6wkqV2oZjb8B47dJKISf1Z2VxR2q1qAiuwN3bG37y059YjT9N5JwZVgPnj5/y+NETLtYXhK5Hu4DrPYIyTXtcSricCSURNEIaKYd79revmW5ecLh9RdreQhwhjoQ5siqJHIK5CCWtqDcG9hUqLmKIOD5V6W9MR0EUlYl+mHj2vOM739nw/IOezSCUObC/E27vDhzmA1dPOz759JyrZ4Uw7HFhRNMtRBii4ielzBOBCO6M0A+cnT1ldL1loX6DC+e4YWVTwBKJtzfcpLdMh0zWM6ZcKH3i/EIY97fc79+SVcjzFXe3X/CTH33CxdPvs3n0AcP5hvVmMLAziHVJnCLSmP91Q6lsVivObPlGLcSsUG3FnXh8d8Zm2NBtzknTSIoTh/s7bq5fc/fmNYftliSTZci1TSnoH7tFmIB/WVX/johcAH9bRP5Gve1/r6r/u9M7i8ifAv4HwG8BnwD/DxH5k/oLDNJFYLVaLbt7CGEB6gRhHEdKgeA7hmG12GUdx01rLfsA7T4GhWb8YDMF9u+UI2U2klDXdVY6IC1TpnG/tQpI2LRbbr2IOrBhFllW1hXwjuH8At91HEJg+/aaaX+oj8+4Ushptm6AuroLmlKRqrHkcp7JZUaq4nGaD6Q4klNZPA2knPwsy74O2ohHllqWJs+ddVH09d7hQ4eUQokTaRo526x59uwpoetYb84YVuvKpLTyYswTKc8EMl2ZGXKmmyfyeM9he83u5jW7m9dMt69hvEfiHlcKvgpyaIEgHgmdAWU5QrFyoKRs36Fxv6piL1YuVdFBL4l+GPnoU8+v/+YTPv0kcHY24fIOJk8+6xivMlMqhPWe1WZidQ7SjyZjXry1/UQInSPlPXE6MKWO+XBOOPuA8/NPYL0hnF3Sr57iV1fIEMBlwvYaffaG/e3MYTux2wqzE67O1sh+z2o8sNlsONsMXN8Jr292fL6/Jn+phFXHxdWKR5drzjdrVqtAHyB44yh4F02gtILSAtXdyliqhULORhLKtVwwk1OP69as+4EQekLX03WBm7dv2G/v0RQhJ1MVKor8cazJVfVL4Mv6872I/B7w6S94yF8A/j1VnYAficgPgf868J982wO89zx69Ggximw+bN5ZEEAD02Q96JIh+LAs1KVOppIytf4ejmIjS/Fbx0g7jxfzg0sxIRQIZpDRREdSmpnnmZwjOUXyPDPPI3OcydGUYXMutqNV0K2oteDCamDNFarKbclMKaKqdJppSHwjALU5qFz15qdp4nDYMbSpwjLTdTatWOoXK1rMrrtZVlV57qKREkfzZ0wzOVXgNGXIlrk45/Eh4H3HZuj4jR/8CnNOiLfWVVHj1hfFApdTepdwEulLoksHyvUNt1/9nN31Cw53b5j296RpRNNEh6nqhhqsSink7EgaKi22TW8atlNSqXW+qUkHUcCbj14BJOP8nqvLiR/82mN+8IOO9XqHxls0jXgNiOsZvDKmEU2FTm30t3ih82c4HUhxRtxM6BK+zEgpzEmY7w6kgyc8WlNWV2zOHuOvPqLbPINuRdJEd/YBl4/3dIcD5cUr/MstGznj0eOe893MqxdvWXd7ri4mzlbnrNZnfHnT8fo+creN3N0euN1MXF1mzs561oNj1Rd6PxP8SNcroQ84J2hlS3pfZz+ruIq1amsZ6Kt3RQWKcR3rswujUARv8zC7LTpPSMn2PVQXo286/pEwARH5PvCPA38L+HPAvygi/yPgP8WyhWssQPzNk4f9nF8cNBAx7T3nQq25pW3zgNB1HaUUazuNE6pS5ZWP0NYyWadHMKwZVTfJL1Nk1womCpIK8zQxHnYLUp5Sql2HuCgCaTYn3NbqKU38Qqy+0/rYZiiWVQ0ruLjgQmyM9HB/xzTOkPLS+6VoJZlk+4KDEEthnEZcVaX1Ac7P1qAj93fXHHb3nK0vqsW2PUcskTmOzGkkxpGULXiZCEmp718pqZBTqcQRAR8YNitrjQp0LlCKGXiYf09B00TKe+bDLbdvXhJfvGT66jXjzUvydA9phJJMcEeLyX1rNsTeCTkr45yJtUUpJZvhZ730xHUcM9XWDpXFqMT7RDdkHj8LfPrdgfXZPco1pcp3SxF0TjApeVeYA/RPLwhhTR48ZXUJw0DSN+juCwYmK2ectddCiszjW3bRxofXV0/wjzPOJ1QMn4oq7FPhi9efc/3qS5y75PnHz1itCru9stn0dFogbfEEHl9dkcLEPkfytifPgV0uSM7M+8S+U87XMISIdyM+zPgefGfdqtA5us78NC3Tc0unq5RG1LJ2aStzRRzdsOLy0ROc99w5Ie4E4ozmTPgFK/2XDgIicg78NeBfUtU7Efm3gH+1rsJ/Ffg3gH/uH+H5/iLwFwE+++wzzEceKE1/raaEqosXm3Oe1HbVrq8IP8bsq3LLDepbgkJprZhCLrOhsjESo+308zwvDK2iSimp6hiWE1KNLhRZQY144cQAl3oCklhToFQ+QRGbcR/Or7jynn4Y2L6Gw31izIVZtU7ZCa4b6FYd3WbN+aPHiA91oYALgfPzc7p+xTyNvPjyC7qw5vziiglBNZJLJOZIKrGKXibI0T43xj3INRAYkFEzmaLs798Q1gPDekXYXNDR49UbMDXfs7+/5vbNl7x5+XN2r1/i7rf4w4RLI1Yptm5JoxJ7FG/nQ23UOGmiCYekNo9Rgc/QNZ1H84E0dqKnCwNIBjfj+8L5Vcf5FUgYUZ3R4EFXMBckJFwQfBCUTJwKIQ84dw6rT9BuQxpB56/ochWCzT2r5IkJpjixP8xMxTNcXXDx+Bw/OIoOUIR5t+PNq6948eUPCSSePnvC5sxzc3vDeChshqfcvXnN6kIQmZnjz3n23DNqh6YL9juhzBNj9pRJiEFIO2UVMsEncHvEZ7rBETroB6EfAn1XR+Or3Z6TgEgwnLoYTThjm0GodPpuGFiXc3KcOFBIeygxGYflW45fKgiISIcFgH9HVf8DAFV9cXL7/wH4v9V/fg585+Thn9XfPThU9beB3wb4s3/2z+gcJyPGlDZB5xaSjkhli7pASlL11bMRM5ztH3Yd2S6tRSnRjCriHKuLTSamiTiPy78tMDTJJmrm0SSu6vz7kmwc2XSudSCqwYnlGXm5m2LzEIiJZq7OL1mvN3TejC+y70mhpxs8m/WGq0ePOL98RL85w3WBrvO4Ttg9fcQ/97/43/wyX9F/KY/bIRA6R6MQm6iMdX6cDOAL6g74UHAhIiEiPtdzj1l99RnpEy57Ohx+TMTpQLc/0F1e4FmjbkPXrUku1K9W0Bwoc8Di5cTu/sD9/jWbRy85PH1qzx/W7KfMm9evub1+w7PzS549u2BYn3G3e8mPf/RDXPF89OxDXuzecLl2nF12vPzqZ1x9dMZv/uD7nAXHFz8bub0bSVPiMCUm6YhO2cuMYw9sEX+wxb9xrNaO1crT9YG+76xd7JzV/r5bWuM2DZqN5yJt4xK6bmBzdonkwqhC8TMl/jEciMS21H8b+D1V/csnv/+44gUA/33gd+rP/yHw74rIX8aAwR8A/99f9BqlFPb7PaUoXZsk5EgRdovxCITsmecJJZNLXKJiqfz/GGNN6TMppWWnN5AvoprrheZqqpxret8yiJMuel3VWp2CqK0WG06pNtIYCl+avRTmfkSdOTDar6H13cUl62nk8nDAn59xcXbOo6srzi/OCf3adOyAYejohsDf/D/+m+1cm8BFFkJYE/yAq3JspYqDtI7H4nKs1i0oTaASgZzxKRNyRlImpplcIsUZ3fbq2WM++/BDZL/nJ3/vd3jxD3/I4fYtpAOaJ1Qz5GLOWa7q8BXb3W0mwdPsxnJlM5ac7fuq5iJy+scBJKR5OTaSU0UJnRNKMIvwuTgyHsLKLnbNxo6TBBJRZkSU3sM87onbDeF+Rt0OQsJPe4iKmx1Scck4Qy6BnAuH/cTbeaT8+AWyWrO6vWGmY0wB35/zyce/xodPNhRG9oc9r37+E774yU/59Ds/oF9foq5nzMqHTy7ZbL8kx1d8/NFnnIcNZ27i9394y6vdaAKhbsPsBMkHStpR8g6RHaFT+jWszzzxPNCvHKH3DKsNw7Ci+JnonGE6dYpWRCArpVqgNSvyvt+Q14k4J1IspD8OMIjV/v8M8J+JyN+tv/tLwP9QRP4r2FL5MfA/A1DV3xWRfx/4+1i++C/8os5AfQw559r281W1t7a56u1NYDOXTIxGIlqortl4/ikb0Jfrwm41/iLK2HjctU6npqjNEccGdUpNba2tqKfbu4J6W1DagkR9XFusHqtnFTWpsPpEKuCGFaurRzx3QkmRoe9ZDwPDZo0PQ5WyMlUjEV2Uf7w3CyxVA0yNLWlOOUWjgYoLe/LYHllmJsAk12tdat0JW0iimd4JV1cXfPjZc54/vWJ6EwmyJ7Bl7UecRpJG6+EHOFUKLnoEnNr3VCqS3YBeQ7urfXutn5qmoEiVxKqh1yzHHLmYFl+RSOgdvh/QsDKRDhVMoiPZ6aVQSsJlYw6mvZK+2oPecsYKGRz+cI0bFTcVZC6UPJq7lAqHWbjdOl7eJ17Ft7walcuPH3P14XMeP/uMp8++w9MnH7HqM9N0Rxy37G+uOVt1PP/wOetzkzWj95w9uuLp/gPGFOl9ZPUoMX2Qub9T9rsDd/fCPBcIAVdm+4wpI0VJ48R8SKQR4iiszjyrTU+JiRJnY6g6o9W3deJdtWkXWcil0jCCfo3vJ3SMFiy/5fhlugP/MUsi/OD467/gMf8a8K/9Uc99egjQBU/nvS2g6kqTcyZFY1jFlJgrbTLFVOf9S1WybS2746JfOPZLC6EFAcBXPEHbIm73UQq5inA0RaNjH9tSsLK851YxtNdz1HbfCc/fYoGpIF12j7l8dIWWbC27ECzaSDCyUmnjsAXvOtqcVMqZkgrzHEmxLAGsqRI1NmVDgQVAhZzNm08EvGZctddO84E479Ayc/7sil/97jM++/VP8Jp4u4usN5nHF44xwbwzJV4NgviOBFT524WKjJoUl1aPxVzKEmibNHetoGp2ZAFXtRi+4urnVyEX84Aw7b2Js6fw+MMVw4X5BWi+MAacjMAOlS24yUCyUvBz4PY6Erd39HSEixGXdrh9gr2DnaKjdXkO0fH24Hl78Ly8L9zf7lndZ/7k6hG/8lu/wq/9+p/m/OyZYR3lwDyNvH29p+TIn/qNH/CrP/gu97sD/dqzWvVcrC757Pmv8NOf/5Tx9prHj3rONweef1DY7WCad+z3UMqqdp4mpKQFpFYdOWxnxI90g3L5eMPV48dMq4Fu8HRDjwuVFRsCfdcTXFe1MZunRHXw9h3D5oxpmknze25IiirzuGd37xi9CXGkXEk9qYp6pmPK21h8pbabmgpQk/TWBhLWGqJp9Alt8Vi/td1+OoJ7yiJcUEa3bF/LWK/mSjCiips078P6ebRSh52TJWNAxDjmJ/x9FUudrf1TCN7VcVZL4nPKxGRAZo4F1FOSfe6iBbInqzn4RK2didYVqDJVHqXTgsSRMu457O+J+3vG+Zq+B3/xCYM+ocsXaJoJ3LHZFHYrUGcDOShIdnUXFlBvmIlILc0sULfBLuMx1Oa/fVAb1KpBVaSA+GOWVk1ccgHxyS7s0qPYInr8pBBWB1Qucf4TA8jSPepfon4Ev0ectRW70qH3wvVbY949+b7Q9zMyR5jWlANMux37Q+b2MHIzBcaQkEfK2bDiV3/wJ/iz/7V/gu//iT/N2cUTnEQKd0zbO96+eMnb17f060d8+p3vcnnWsb97RcgTfV4zaOCqO8dP8NWPf8zq+5lOHVJm1qsz1qveVI9KZ45KpYq/aM1eY6ZMM6XsmZiY7++Yd3suri5Zn6/pVp3J6XXGntUukLseFwLemwS+E9PfUKe4EOiHgXm//9bl914EAdXCfnfHPFqrrvGf28Vs9fxRAadhBaWYK43oQ1qkNK6A2LJsC8J0S9vwzUmGAMvPLQa0GrWBLyfvtgaC5likSwReXl+OAWixRqdKm5U6Ay6W0GYF7wI+1GEnLVCsrJnjTJytrjPUX9FcR1eBrEYzzXVCLZY6eVd7w65kfIlIipRxT7y/IW1viPs7yCPiR4bLgX4e0NvPya9rX3q6ZRUKrlekE0Jvk4GahVLndoqz1N2MQLViFs3URenqZ9da/Beo+I2dDCeWzhYp1YLLlIlUFHGREApSeoRLNl1k1Quqe+AC3BqRDdabuaddxpoKkgJEQaLn7kXi5mbL99Tz7GOhL4l8WJPue26uJ15tM18dCm8ipG7g6UcrPvn+x/zmb/0pvvu9TzlfD0gcSekNh+3Puf7yFa++2JLmwkd/4rs8evYE8kjZ35G2W5JbkcapKgUXvvzZF3ReOD97TjzMaOo4X18Q3Dk5XZLCxOQTcZ7Is1RDEszhuDhKhjgfeD3u2N3d8PjZU84vz+jXPaVzaOfRzpOHAd/1+M6UlZ3rDZ+pMdh3HaHvvnX9vRdBAJQ4jcx6TMmVk1qz1t/mrZYX6msjyhg4R12TbZqwPpc03RzgZNHbTbKk0st8PWCUYZATQLK11lt6j+qRznCSdQCLCIeqVsGQ9n5MXLDUGl4qWzHUJm7KiXmeSPNkAGe02YkcLSNqI9Jq1QpJDBfQOqLapKV6LfS5wDgTt1sO22vi4Q7mHS5PSIkEX1g5pY8FtrfE65dMFx4fOtL9HskzfXD0Q4eshKnqHsRSmKv8mhFWGlNTKgUbRIVQo2mqJR3iTHG3BnHvrVRBnCnwigVSmxtJQLKWmAYkbSiTkPY7vL/DuWvylGEccbkgRSAFmICDR6Ix7Lb3Ey++2FEuAvSFq5Vj3iq768zLr+DLW/j5Ht76Af/snE+ePuJP/uA7fOeTFZera/w8mTbE/gU3b37MVz/5gusb4ezZx3z2yRnrELl/fcubL19xd31D73u2uzcgnt32wOefX7MfhefPB262nu02o6Uj+BWdW0M3MITENM3MvuBL5aXERJ4NZJUC835iv98xHg48/eAJT54+QYdACY48BEIp+JRxuZBDwYeM8x2oaVZ4B0MdSPum470IAqpGHz3djY/quywLqpTjlCEV4ffiMM55XnbtUpV5Fl1CkSpDVRfjyU69pPhtMq/2q4sepcxasDhpHdRA1Rb+11V5j1JdDdw0RF2lmo65QN+bmGTKBnaOo8mfl3TEQnLOlGhlUCzJ2IqV8JMlg0YkJ0JRgmZcmnHzTLzfEm/vGe/umMc7nEQ6rwweei90wZsm7hyZ93v2N3dsNyu6YeCwH4mHkeAcXdeRfGM5Wp2fs/nbOSrijxK8A9fRuBnN2CTmVM0zu/r5qfqQ1YSzGF7gvcPTYXZsM02dxyPEyXO4DciHBdfNFH1FjAdyivR6hydCBklCiWZHfsiJ2Ceefm/F0+/0rB7NdD1o8cgB2AXmfeZmSrycI5tV5sOccTqi0wvm8hUkpcwjabqGw2s6vWfTDZx3Z+j2p9xvL3n7YuJnP/qcm7fXnF2suN2/YZqUL1685eWryM1+x/Zwy1TOKMVTik3IogfQTIozOVpr3PtAGHqyTqS5Xv+CjSaj7Ld7Ssq44njywVNKLqQU8akQevAJykoJFDwJVzxFLUc96nV8/XgvggCqVdarjfJaWvq1xQ+VKWg025KSpdbLzH3LGo4LciH7WEIO9flbcGitQTuOgB66NKwWoE/r81v5Iabx7o+a/0uw4BgE7HcWP0zwBJwPDDU9m6eZOE1G9Z3nuvCVNMdFey6mSElxkT8vOdU5/ULQGckJ5pk0HZDpwHw4EG/vyNstLkUGZ0QsjxDEEZwNEBUteOeIY+Hu+oALNwzrFXGemfcjZU5oUlLMzCmTatruXAAyFCMJOWfyaZq1gqcN56jswOoDYfqOUkErjxchpViDQW274nA+ELyabap6DjvHm68yH32yob+MFN2hjGQ3EdniOSCaiAizC2yB+xC5+rWBX/nTT3j2HaVfgcszqyuhfxToPziHr1a8+eGeL3488+bulrevEodrR7py5H5nbkAl0zHSDyOrDwKHQyD7La9+9Dtc3wy8+BL+4A+/YDtvWT065+dfveH2NvEPfv8Vf/CTLY8+OEOdIwwbvFuDBmu16khJM2neEec9eT4geULyTEpz9cuUaiJr5y1rYR4zr756i5eOqydXuF6IYyJFxadE0YhiALi4zijly3zNNx/vRxDAxlptl8d2T22ECDvaTHwb8nEiFQTU6nrT2nq1HbXsyi1dbYPnVDCLBbRyWFpvw4F1EdeF29qDWo6i4ApL/1DrkMeCksMDO7CWleQ6aOR9T98HQIlxsm7HOJLSbABozMxzYp7s3yXNpDjXuQEzLBEsdexzIsQ9eRqZdlvi7t4u3JyQaSLkGXHVVUnEeAjimIuQ5omikUF7ZBRkm8DvWa/NaVenSBwT435iTsnOXF2kvmomtgk1KhiY8zELU0CcJ1TdfefCkoG1+QVXnaNyMpAQ3DKHr1Kt27JjOnS8/OLAhx8FhjAQ/D0hX8O8xycb204RpjywJ/BmisTzwqe/8ZgP/qTQn+0RZ8o8bsisNw637uFiQ7xYsQv3/IMf7Yg7Ry8Tq5Dp3TVeIx7MlMQnulVipXCIE7dbz90Xwo//85mvvjoQe6F7MTK7t7x8eeB3/+EbfvTTOz4qTxguOp6unlDy2gBlnRGdDLD1JqA7Y16CuQLix+vIPC6CLW1rD4+ZNy/eIup49uFTkGLdMikUSRQy/VDqxKKR1t4thU+P9yIIqKo5vchx7v2BlHjdbVr97uoCPFnmi+GlLqm+PHh+aHKftpM3gG55hsoHaG2/02c4KhW199PwAiFX5L+8kwGcinOCjT0H3+O9pczTdGAeJ8sC5skCwjwTYyZOpkSU4mziGynhSsblbFLTWoG+/Z4y3huGMI1ojlXHUJAOivckhVjPjfXtnYlkFF+bFj0hB9wMbCfmcSK4OpMwmuCrLU7jtEt21hrMbZLSRFTMd7GVdAZ8+hAqANgh4pfrsEC1RIfge6BQVeLxTnB+sMEsrd0X7Xn95p4f/nCiGx7z7GpDn/b4KSFTJm9huu/Y79bc7R13uwMX31/z7JMVMozkTlDpcfTADqcz3RrO88Bnn2z407NjnpSPn/V8+EHH+fmM14hLikTriKhTm/rzDp896lY8Wa0ZUHb3Ow7eM38+8eX1Kz7/4p4//Okdb7eF3c9ekeQL/szq+6z7Di+OlEZTAgakJBxayzNHLg68sylTNZykGeKkXKwEFCVPM9evXtMFz6MPn+CD5xD3xmGprFntIQQ1Cvs3Nfnr8d4EgVKMFNMWz6k66nFHrrsOLc3H0nZtJQBUix2Wdl17Do7Pcbr8v/5mWFKQRgJqPIJjNnJ83zZWTB0u0gdlwOkHCKHD+56sVPGUaMpJ81yZjjPzNBKnmTRF8nhA54iUhC+ZUDIyT+TpQJlH8mFL3u8I0x6ycce9d3RismkET9Ji46RVY1HFk/DWugzBZti7gEogJ2XcT0TJ9MHT+WAOzZXfINn88VTUdBWqmadWDKapQon4BVCVaoel1YrLSQNMK14Qc+1v+4rJZIqA4CkM9lV4TxFlngI/+2KmXyXKJwOP3RVhKpRx5rAVdrcdd7c9r28KO1G+c3HGujcre/VPyDpQwozoV5AP9tk1MWjhk6s1u8/2PP0o8OQMepdAPOJXqBo/wGi5GS+ZTjNDCTzZ9Dx/Fuh+suPlXeJ1PDASefVm5HpfmHDs9wf0i1c8fvaKX/vec7wUXJrwEpGidVR9xmF8CRMN7SjeukEOwan1+B1iHpnVP6NMkdcvXhGGgcvHFwTpiWmmYPfXDLnLOB+WWY1vOt6LIADH+v+42K3FxxHbB2rbqd5XT7KBRqpZfqcPqyCFygz8+m1H/OD4Xr7Jz91EQNtjqhqMaM0GOOkCsACTwELsQBx5jswx1uGliTjPTIeROY7E6UAcJ3SaYZ5wKeJKwqcIcUIPexj3hHnCpxktkeCMMurEVY07V9uP1WsBv6gELyjH0iY1tqVGpThFSrK4miB5Kx9svLjgxRZ600QkpcVuzSGG8DtvpViVOXMuQJUmz2oZnPOCuABaSCUiWfG+4isazSuRgeJWVUDU2qAiHfF+oPxhZHsbuFqtkHhuqs47uL913L2NvLkduXwGv7W+gD4iqw5WH9G5D2z8mEN1mC14jYQ4ckbm00eZq8tALwnIEFaoXqHdgKZtLVfuadZrLkV6N/H8+TnPnl/wwzdv+Or6wK54DhFm58i+UJxwP0/85POf8Z3Pfo3QOXxIkPaGDSAUEpoSiqlfh76aoGZry0oBst2mYnwL8RYQ8px4++oN4oT11Rm5go2RiA27Cs7lE6Pbrx/vRRA4BdVau66Zgx4B+KPyT9HTceEG5OnxrwdZRG3p1ZKiHQ+YhEsJ0h5blojR9v1joChLplAwZaFid6T91SjQNhnp6QdzI5piYqypf4yROM1M48h4OBCnA/O4o8wTzAmm0cjtJeJTxKeZkEZcmXE5kjURXaE4ELWFr0XJMSHqzV69+Re49jma8VnVnasmrAlL77PTqnIcMEquEaJQW6glK1lTxSaqoWflsFNnBhSzzDZtBjW2Z6maj6HmYE4q50OqurEJZeAUdWackbIz/T1HlUnviNFxeA0vrz2591xvHa/eHLjdRsbJUw4FR+RPnq/5J7uex/2BzheG/gLvnoL05Pgz0NdImZCs6HQgxI5zCoM4tOxQl9BuheoZzl1CWaEEXJ5xbjSSVJ6h3LNaeZ49X+N/2LEdC3sNTArZZYrPZElEnXh1/Yqbu7eEy0fGXkx7k1orDm3WldTr3plmhvi68SSg+lz6AGiq5q5VdGe356svXvCBPGd1MZBJ5FQQElpGxLn3PwioVp58XU1uCQosKbZUIkAuRwDR+8bkq6Ddsohbuw+acam1Cf0SbB4ShWpwyTUlc87AlJqiOhy+8gGKKklZXGYp5hIrte1lYcAT/ApwtQxYMZXIrozM5YDGERn3+HFP2O2Q+zt0v0PGPTKZM61LVgZ4zbg0mUkmCe8KbhAkezTDWMy8VbJxKJwPRuYplv4XBVJZaLslW5dBnTfLLoWUK5DqqeVWRMRKAuc86oRpTuRougGdN0PNVAJF6u7vjB+Qa3uQGgxmbJaiGHkRKc15sSGvxvsPwUDBrFYX5zodZyJSHUogamScErHA6ITb+Zwv9zMvr2/ZjQUIDKFwdki8uT/w/VlZzQU33kLn0LxF4kzKSvSZg1dmMZ/AMRqVeIodXR7QKYA/GB7gC/Sltvg6JIH0CY0zkkbOfM+msyAYXU/2DtU9DqWoQ30mlh3bwyuuNg7mkZAjLmdcBldnTYSCiJVdHrUhIbo6mp6MZRl8pZYrASXU6zGNO66/+oInPGM4XzGmSCabSjf23r7teD+CAOYS3CYGi7iK+NfblwWrtS1oZB4tztyLl1Fg3lncFRB0Qt0OYSH2PCwWVJVGOmzyTqU+tym/VaCviTvUjoFAFTn1yy7ofLDa2Hm6zoJBzgVSROME04iMB2S7o9zeEl+9JO33lHnCqdI5Ry8Or7ZAUp4pmshizjpQKKJYM8hAO0XNz6Ol49rk1BottbZKS66r0SjGzlekPpj4Ss0h7VQV+17MCFNrq7NKtWcDn7I6ilrg9s6jrtQWmCABQhUqQQ2ITCWTc1yENr2zTK1oQZMnt5+14LxUHMHVIG+2cXOMjHkChMdnF6Ce17cH7sfMnCP395Evf37H/CtrrvqE05cQbslpC9M9OhdS9Kh6inoOc+BmWwgh8OxwzuqQcV1E3C2wxaWekgtRA+ozvi+4VUD3xbwJckcvDkquVGoT9zSM1JvuvxRKnsh5JlAl73JZ8Bqc4kTxUtWmTiYrnbMMy1VwVQEpptwktTsmJZMOB7Y3N/juCaETYoqY46p1Gb7teC+CgNWmGef9slaL1h2+1dilWiloWVSFteq2S20RquWhD0C5NkloOnay1MxwLAna8FEjClnGr0guNTupwy4AwYAvp8UCQXDQN9DL1lDoTBHZe48TSHm26H844MeZfBjZvnrN7Zdfsnv7lrjfojkSxBaGOEfW2l6kWpXVC2GufgttXqBoV0et1cpWtUWE1Nl8sawlm7YXXlgUmys8YDJqCbrgCGIW6iVnphyJKde5SruQtCL2ruvw3gJxabMP1rwk28ldAoyoUWBBbdfLdpFbWWBpS8vWKLKQkJwY0SWr8ULSGBkPE1M0PQhHYSWOZ5uedb/h5qDc7265H2/4+78/8Ru/+piLdcc67/DuFq8JjRPloDB2pNGzOzhudgOfv1TKXc/zX3nM2eWePr2hkxnSCik9LheGGpQ1J3wG5kI8JNKYTDEYBU3G3/CVE+Is0Jyt1niUeToAHrJ1fCRnRE2ZWsxAgGaSa2C0XdtOxKh/YhuaFMWVghSlwzwZNM/s7u/xQ+Dy6eWiM+ma2823HO9HEKD6t1W7ptK25AXA00YfwPta24tdeHaiahoux4Ut0misstB0NZuMcyMKta7EaTAQMVksQY38UqocmW35pjekNnCM96h3ZCdLx8KyiAJlJgSjz5Y44g5b5O01u9cv2b15y/2Ll4xvr8mHA5JmG+0NDkogO0eCOoRUQArB2/sq6igSWqQkZ7WIr0qordOSc00lbROQkkxrDl2k2Q1bMfZhKpnsBOksg6Gi1naxCcEFVJx58mU7X0k61PVGec6QXKahKGA7Yq5U4CKg3oJPcKbjKFW6PaeJHMsCCps8dh2sxPQLKJUqHQs6ZzQlPJngaulRImf+kuHRI549e0zK93xxe8t/8jsj/WrDp08iGw8Bj0uQJ0cahe3B83bf8QcvhP/fjwqz23Px3QMXzwaebMCXEckKqbPAlQ+gByQl3OTJY2KcAvdjZjdlw2Ak46WWTC5QpKPrNjx78gTnHPM8WrM6F9NhVAtmLTe17go1mOvS+bJ9zk6MQ3BOccW6NqpKJx71PZojh92e1fkaCQ4tqfJf3vsgYBipLTiHuFYv6nIb1Ok12ix/6w/WJ2g/nvDT22JvA0hZE6W4EyCyZQBWSzSasasijkUyKmVpOyrmPaiNL1BJR4u8uRp91sw0hL4Iabtld33N7u1bdl+9ZP/2DWm3R7db/DThkrnJ5JJsoowCoTPdwtqHVzXFWe8sJTTEiIrOW429iKAUxWGppaNUZWKb2hGhmnrYaDIlLb/zYpp7uSRz+qHNrTsyNgOQUqmIvZoZaDD3HZyrNleCOm+KQGrUayq/wjth6PuqO1i1AnJcTGNo1O1iys4L0CqyMOY6F0wH0WN8BzXlZleAfEBzYH1xzuWzD1mtnvDFm1f87d+9Z/+Z8MHGs3aOoFCyYzfCl9eOH30l/M5PJ/7+V4mJwtk/eMPz717QfaxcUBjKiE+g0VH0QNJMGWHcCttD4O3O8fM3mTe7QnahCra6mtEBsub87BEX51egEOeZXOrCc44g9lltDqXyWmt3jBYsaWzViknX7ACxgausuWa5gSDGTJ3Hif5sOJLZHpS/D4/3Jggsc/C1ltIqFWa/q4M43puIVzmq54ia1p+ItaIQlsXcug3NUFO1jRnX1zzRHbDedp3Ddr6O6QLO0l+VWs8WEG/qLQ4lFFmitUdYCYSiuJyIt2959eIr3nz5gnm7pRwOMM14VXpn/d5Yd00VS+EzmSa02QaQvAtL5yNXUKiUTC5mZNp3ZolNtbfuQqizEjZNiM37LewJUXvPoo34VBdYXYxNIUnFJvtSTExzYorJ1IQwpSNqt0CrEKYPAd/1iHgL22L3RRTnMeabmOt0Tg6Kg5yJUYhpoqRYhU6OgjIizliH4uh9YNWvkJSYcqzoiIGLoRTIE+U28/b+jrNHa9zTS372wjNuJ54MMJAZgpWWb7aRn7wu/P7PI3/wxcTbQyAVx/Q7r+kvt3T/jQt+9cklKe/oy4xTxyHBFAfSzrO98/zstvC7XxX+3ucHXuwh+wHpVuA9rgv0Q8/Qn/Po/BHr4YyczJxVSmHwHa6rLV1nJZzZkeea5GUjEplhBA3s1hrkC/p3/QAAGXhJREFUq5+rBQ05ZsFN+SpNiTCYy3epj/u2470IAmodKot2xVLC5qpqRx03zW0ASE86CKYh0ILjaarf0n3jYFfllbrzW+plz+6c1BpZzQegmjkWbNcvota+EluAThxeDJkNReiwAaicjAR0v71nf3fL/v6OcbcjjxPkCCniXNU0IFM6QILJdRcQKcYIzKkCQc5KjpqZSMU9jFdO/ZwGwjXBU4cQnLBoJ5CX4Jer6GoIHQ4DMi2mKuocQle9GWsJVSpLrdQyBKvtixZStlS2aaaHyoMwSrC1RMV3NVhnQ70r2cqUdAuaqFmF1DaZBVLv3FLatLYwVQpOqv5kkY4snlQcqcyIQi/Z8IcCh5tbdneJr3rh1aMzHp+vuFgJJd5w2B94s5v48l758k55y8C+68i58Pl14j/6WwfC3PNf/fWB7zxbc7F2eA3s94HtAaZ7ePFi5He+2PO3fzLx0xs4SAfdBr86p1v1rDcrNpsNm+GctQ+kbJmnlEJQw3qMEXjco0123kpR0Yf2861VSzF6sWUBLV3yaPWbMFEbyDGhc0Z6X7tv73kQQAQJZnbRdR1d6Ex33Tm74KqyUK5y4A3xd06sM1AyTguhCwsx5nSoZ9Ef0PwgNdKGwLau4IJMy0I8bMHCpt/U9PUwD4GQ1UZ2p5lpfzBL6ZtrDrstZZrM2rwO/LS0PVWxkSKK+vrFe6tlTDPQUu5Fcr2q7FCoO6LU51Lb6aUsttMeoyf7Ch5Zi8WbvkJuQdGi7QKO1s+XM0wx151JSDkvJUAqlkuIhGqTVchqGY+IBdEFcG2Vmri6Rxug6Sviq2qlQedMPDOLo8RCxKTkm9aDiCcEqe/TU6IFsJRTrW+NR5ClRzpTFAoUJMcKNipThu0U2G4zX4UD6x6cV5xfM7uOKRRkI3gR3OQo80yOwos3yv/7bx344vORf+w31nz28ZqhX3N947i7i9y9Hfnp5zv+8M3Mz7eBUQb8akW/uqLbXDBsNpydnbNen7H2HTpNTOOB3mstA7BuT1YjD/smLd6k66nKSRX01iZoV/GBrCCldoXq7Mty3rGOA1BSwXfBVLS/PQa8H0HAO8ejJ08ZVgN931XzkSPY1ii243hgd9gzx5E8JwO61GrazjcEupzwC6r6T8sMgNYOrHSjBXuwmfeyCIgaR2BRwMAXoROHy2qobkqU0Rx7x9s7dts942FvElG1rpWqEaglVlnzpmxU/QuKzeg3YVLb6bPViVRgkLxwx73YuTItxSqa6qxuR20QRXydWnSGYeCsdPGSoU7xKY4UM1OMFGWxWptzMrZaoY43Z+sOFPChrziFgUxOfH1PFYNAlxFh24mM2FKo2Zg3YpdW7MIubqmWakovztSAa+bgmu+kgPMd6grdOOGjuT51BVJRkmA2aWRICclzZY820pODAjEqacrGvQ8Z7RKzKl4D591A5zw5DPjsGAhMZeTHL7bs58hPXkycn3vu9sr27sDtzYHXd4XrODD3G8JqTZCevusZes+wWtGt/v/tnUuMZclRhr+IzHNu9fTM+IGNPRgLbOSNV2BZyAvLS8DeGHZe4QUSG5BgwcLIG29BggUSQgJhySCEN4DwBomHkFhhMMhPLD8AS/gBBiN3T3dV3XNOZrD4I28Vo+kGj6f7ltQ3pFJX3a6qG5UnMzLijz8inqHOT2s/Jmjaugyg9udVE1jrnmPInO6D97ERJszKrIMHo0EOTT+Xd0NyWEZIqewO28DYTAblwRnCm2EE6jTx2te9XnnjUg5hwWDxzVlvX3c7qJWynzQpeF1Ur94b22YU11AJjRUrmdfmwEHgAK+MsCJpyNmmTB5BEUgWmSbM3+F0aI1+ubBcXLDcu89yriKe9fxCJKaIQ8ffEce1vrHmGGk/uHpclSOHgEh3RPYJjVsbvIVSjJKmXo08N/q6h9aoxXATugzZXamr8XSxKZurqIrQq0PUbMGmOXcahBmsBuT47CU57K03HbLWst998iayLt0xak1vTK6GMhnZ5AQ0GKRYxva5IUtxDWrNCg4ZAad4uUYC04QklZMLM6mzmm4ufSUuV3xruhErrMkDcXes9AylZkrAjkV2HBmo7YATrUrn9cIUDYtCRMVNBiXMuLeecfGtha/fW6nTt1XjsTSWNbhohUsmVgrRnZ015r5nahVbF/p+YWVRKbBpcK51DYQhNG5dIV3O2yCfQR7oK2MhNqWlJzUa6lxh4+NnZPg9VH7de8gQ5OX3sk0gelTipbB76ulMveVm91FLoFi4mDN75bYX6nxGnc5Z9pcsl5e0bCu+Xxd678x14tatM+pIk10zAMNLGHTaqy4BXQu76d+KMRl4V4XjdnnB+d077O/cZT0/Z7u8FJc+U2YHhHcAmi5MYUmyjRBFo5acTEvRrDlTfz7tf4GAxbSh56nmCLKVbVlpTeOsLTbmyZlqUb49/6ZDmKN2R4cD71lcxJhoE1CsElS2TezBHsHSO7EKbBych66GgCpciYGlODXj9uIhai9B3xYZrzJlWDKaWZT0YqBk7t/ILkmJfVQvRBG3YJpUc781eTvVc0Dt2ayvLVjaIjalGRowjgZ0TKrPa1Go0anW8ZBRajHhPeg4jUoNYyXYemPrjbXtxUdoK4sVeldqtN1b6eyBwYQ0NoxmG8HCVJy5GLNtlKVgZQd2QW9Oq5WpyIOzsCvP1ZzJYCKJmtqo+ZGYWCZJSlH87/QrIGvgYOkxH0heIYMbOVJ9ULnbd9ly/JHLcJWUbsvXDpd2HGLMUipT3dEHYNWCOuki6nlTrcsF5+cX7Pd7bt+6xW6eDo1Ixu8bSIyOflesjxBz3za8dyaMXQQsC+3+ffZ37nDvW99iuX9fAF9mFA4hRX4tTCJj/R7i9aM0ziiFcnfGfToQX1ALKA+jbxvFZTB6azlLQahyLaIkDxpwAcjYsEVkn79suEpc21gJmI65CYQMkSuP3Ppo3nKtACvU/3DgB2lZyLekIANDuqKqpNxUejGIP0UpwOJjKFw/TE4e6d7Rar66a5ZedbZFU4sss0EWnd1U8DijRnDegLodvI9t4AhTFYsxKcrFHevyldwVsmxdfAxwwgVET0bW7IsBualGSs/HCsGceJKcnpbxNx5M3pjcqSEMx7dFVO8wanNqdWoZHqUxoXLvabjxIUaqyuiVFGxkUxUyUxVaX8vPoR+A1gOfhBFqCjzsjDobbj4moOc8+P/S1q4utquv0YYaWAER6cqr844VDWPcto27z9/l/vN3eeWzz/CKZ59NV4lDi/CIDlvPW1kTfksEhc5swS2MHUGY2mgFjX00elfTDXPFb8rvZjw3BoM2zRsMjFIqVpPhkDdX8XJAvt2MUifcTLfhgRfQ2UfPUt0cTe0lU0aebiVC9fN26Nt2mFo7+PviTZBlwXFonrJ1gUWNRJkLMoJJKoq4qrsYLdu0Sdu4rA6dlwcrVZhAyYeVDQLiWkoyn2/krSVCkgZsFqoakxCwrkqVudZKwGOmcovTa2U5m6jFaG1jtypLU7xSy0T3QumNdTNic3qorNp89KsoImMdBrkmwObDrZ6ZA3qNq3LyqHQyw5G8E6wKZylKkYrND942pvUSj0bpRu2FeZ5JQqCMjpvCudDzUPipNnmyPGqXVzIU9cEFyVoLmU8ZDsbP+EggqHoxqsht+/3K5fZdzB14XHJoPQ35l3RGOU5CeALM3ZPZdiawwwQkbTmbzbM55ra/4N7zd7m8/zwWjWeeflqVWQFEw/sGIRCuZIfe2YyzUjmrzs6M2oJeC2e3dpxtt4mLS/r+kn3vmdLLOBzLfm8b6zZYdeA+ZRGO2HjRVIBTSwKPVrRhXfeADr8GgkBkbYIlg65Qi8tIoI4xsotFLmzvbOFEmQjzAyA3kPIIbQIrRQcpRnclHS4fTUNNpKdOywSFrHFxMo2a8Sg9vbdkKnbUz25yAZ2ZCrUmg7sNjAUxGg9cj6brdtRrbFtnWQWilqrTMXLp9I2IFU0tahhNTMjoTLhYldWxWpjCWdzZrGtm47aJS3HAZK7SPzJQfkhHCgdS/BJ+vXfkiOeVy7c0Ah1XoVBCnx4bvt7HWpWBj6p+iVOleh7q0IyK0fvSox2a3ageQL/NHGEoia0MDznscF/KI80UcHgOc50myryjY9y5c4/7y+UDz96NMAKRgBrpJOrB9KyHT1Q/c/lmeoBenclmrv0A5yQ9GJimylwrz9/5Nl//6sr3Pfd6ds++YjDgmXND1t6YeqNG58yNp0plTvAKM8KdeZqZnjLWZ1YuL/e0ZiyXi8ZnV8C7Bm9kHru6+vCZi8xvgYaq9E7PgapuzlQ0TGO5vMhbT0yzlq6+AfQuhH7b6JE1CddaeDfTbd5CNFUvygtH66x9zXx+P3gexUvOA9Bh1zlI2rZpnYsnezB3WU3A1szYNt2++pVJ5yafi8fhttONlYNaTA0yRr/xPkqRkwuQFvMQujQr2Yo8e+WFuPHWFW6YbdRo1K2xbGqa0hGibu7Ubvr+pothtGTzLuNlXUU3Ra7nQFLkJeWNq+Alsys+shqeQF1WtXYNZHXKgcWn7bipca63wx7qbcNqMjPR/o4WozRFhz1rVnRRjFPeD0AyXC2XyG0FwtR6PhSiqLu1oTmdE2vvnF9ccL7fP/D83RgjsK0rYxHdxiWflttMm450N7O3XXWHaSZuGZgmr1jPW2m/Mk87zuYz7n77DjXglT5x69ZMoTPZcP1hNzm1d3YmHMDXJUEwA3emaWaywrre5t69cy7PN5acrLZtG1tONapemCeV1rZE1nuEjEHm99umrjxzraLzdo2YKtMkBHlQlqOrxVTm2/frwroqHPKiIh0x94SFmIlXsXaFEhrX1mgxjJK8c084qW0aR4ald2CjdFXuKl4oMTbdiKG6OAjmuF2/IRG/Y3emUIX07CJvNZMOnWDbVhkfRl1GApu9iHLsKr2VJ9NobSHWgMmpljoQFA+K6zkGSWNuXGvNpVoU601eTMbaFoXw9D4IeU+jd4SNUFFpuZJEqAH2RsgguEv/Tk9vTbiS5TzA3hvCl5syJCHPcpd7zhJ1dcuyLHd5CJmK8tSFxIssi+TCRmpbz1tGS8Bm752GuCLhYDX3IEGdz5hueu1A9M7lxaXcUheSWk0cOIMDK61Hz1wohxhTDDVjdyb+uqWb1fcrvSw8dXab5d452+WC7S85O6vsKuzyPWaHyTosDVtX+uWinV8LVouGamx6GL1vahIyVfa1ciBvuGFeDod45OnVSFMThYqhhpq103KmgGK5zu5s1vdgGVJoxoCjsl0rFa+zWnL1HPdFEGasoSq/aZooNhh+yQ40w21K7kAXaQnlklu2Aysl7zxzfW6jdFomoyUw2Vo/pKGK+1W5q6lQSyPkxu/Vs6mWPQNNdQ/q2ZNxbahMWTerwMqOGqFsbTl4L33rNOsawZ0HpXhhN0/qmQC4NdXUYxiqSzCcOSf1rK2x5ZAWMcv1d65dlPMBPY2eEJGhyvj7OjkjwUeZrx2yMUJeQpWPCTyr/kUhkXunemO2Sh2IYv6se6VOGr1XcwivHFAb1z2B0becKDXi4yxNb9GuWsflOWkRqvmYJ5rBsmkGwUPGDtwMI9AjuNxfaLMkShxeaD48gmtNO6ypZBYOltIJuW2lEHWGOtGzr1othfrsK3h6N/GqXeXZaszFqah2e8YpXcy4uFwIMTpw16Sf/bKyLA2zwrquQDDPE0/dOqP1hncRiXqCg4cOyKXqBi7ZqDKpvqU6FoVtv+g2KOo/aJ3k6O9ZtgXzghdN+QkzfNpB73nIVTfQCbZMPbopP65iJssusyNozNssYwizLMgaDVcSUSqmoSDj5h95aAZKz3BRs0y5qNaiTiql7q3RVrUQL9MYlKlwpG2aLWkJhLXeWTPFWqvjnsh2ltiWNKCUovLm7JirIZzKFMGo91hZxXEWr0AFHnipyRdJTn5vOMZcE2RsRhmj1MbBLHrP3tqh/LpCTlySYYgEpDXYVQVvg38Z6b6XdFqLB5N1qum9RyAvw8ghdeoDsc7wMUaoMohlIZpxQgIibTW13VdsZ7gJJ7JS8CpsaOuDOn/D+wlEdNq6F0e+Vw248DFxVgenZJcbH5iAX0PcCYiNYOWsNJ6qwe0zZ9kq5ewWt7/3WW5PlWf6ytxXKi5gKoGwtWtU91XxkBpXKIcsyzpunbOzmbN5R3u6c35xzt37dzlfehYscdUeLXOzbeNwi5aMCkrJEVJbz3Sn4tptTS+AzCCUqlsoOo0EoKzTzGim3nvDG9m2NWNUst+fDnYbIQkohjSloYqLjVdGnUDTeHK6o771utFbxvEjfu9pFBpK65VSqSVbv2VOrRhye1Ffgj7AvlAadUsiEjhe1GKcvJ13E7jt8lYVk24AgmadqVYVTFEp3piKs18L+2XDbD0YRUyuO96Zqlz8JWR03ByvyTLNWYARSdfNLMQWZPFViB1ZPHkX7YqWjmUxmVLFLaENz7kKXpQe9th0WcTVsxFNWLhAI/KSU0CsDI7WufeWMX+WFWfGR2lVhb5bGoLeOz5VfJo0DNaFHSldfMPDAbl922GKbfdEak289ImSOWstPMWx3pncObPA+wLbJX27oG3n9HZO90vsVnBWJ26Vgm8rtu5h1ZNSU47sy9qhFrXTioBtXVlaI4pTp5ky7WSZS+XWpuHZbWlA4/zCM4bWgy3pPvYI9vv9wZWepilZcHqQJXL2XtckZXEdQlbc5AmtGY93pUXopvbRFEu6cBB9DKrgCumvSX0em6m1DEs0sWngLjU567EuAFc89cg6gxiHYJRNR4KJmn1bPQFDgJwdWU2HoIcOfW8KUbZ1JVALsSUNnQ5XBa8HQG6X4Ulbt9Sz0GiUMjGVHNvuQFOBzYGEVGCu6tHvtWbKVjGzp8EJFGrK0dHhVkOUJkzJM9MTwWSVXnRwNDhFXay2dWNrniltO8xa1ATrbDhTSg5SyVDBemIYI8sysAfxAwayP0JIApWQc0AedBaUjsrjPPCzIEiWauRwnsyQ+DTRz0UYG6PuXkxuhhFg4E76Qzy6ACKHGKmU6Oq6ikaXk/nTCfXga8t9+sXzcHFO2V9yKzbmKbg1Q42NvuyJaCyrNuBGZ40R+1W8FqIkly1z7WWq+DRrrpvJId7YRM0s6hU/zxNbZJHN4DggV62t2bff9HCmqQKdLdYcIqpYdR1GIPPkPTzZdJs2VoZCnc6aI9vT7gipjnHzpXuf5KHcM4cZgJ0x9FI3vBfH88BfPQhxBMTSHEjzKOzRHycgq6Q3Ydfc4yYDTU6TuhZSHNqzd5G8wizbImTcG2SIZsmg64wqrt56gpuKmoWrKfVpyFt002h784pXPS+FHC1TpE0A5VTz4GffRc/sho9mrVmT5lfNOd2Fl0TkHYLRXXhAJ8Mby6rTniVTISp0dVfHJld1ZymjvkLPwxJf6bQDnyIi+QIjeTKeTWYgrvfIHEDmoBuNQTO1KkU4QkT3q4G5LxT7XxvgSGJm/wncB/7r2Lpck9dw0udhctP0gZun003T5wci4rUvfPFGGAEAM/tERLz92HoMOenzcLlp+sDN0+mm6fMgeUiB4UlOcpInQU5G4CQnecLlJhmB3z62Ai+Qkz4Pl5umD9w8nW6aPi8qNwYTOMlJTnIcuUmewElOcpIjyNGNgJn9hJl9wcy+bGYfOJIOXzGzz5jZJ83sE/naq83sL8zsS/nvqx6xDh82s2+a2WevvfaiOpjkN3LNPm1mb3tM+nzIzL6W6/RJM3vPtf/75dTnC2b2449Anzea2V+b2T+Z2efM7Bfy9aOs0UP0OdoavWS5Pub7cX+gxjj/DLwZmIFPAW89gh5fAV7zgtd+FfhAfv4B4FcesQ7vAt4GfPb/0gF4D/BniD7yDuDjj0mfDwG/9CLf+9Z8djvgTflMy8usz3PA2/LzZ4Av5vseZY0eos/R1uilfhzbE/hR4MsR8S8RsQAfBd57ZJ2GvBf4SH7+EeAnH+WbRcTfAP/9/9ThvcDvheRvgVea2XOPQZ8HyXuBj0bEPiL+FfgyerYvpz7fiIh/zM+fBz4PvIEjrdFD9HmQPPI1eqlybCPwBuDfrn39VR6+kI9KAvhzM/sHM/vZfO11EfGN/PzfgdcdQa8H6XDMdfv5dK8/fC1Eeqz6mNkPAj8CfJwbsEYv0AduwBp9J3JsI3BT5J0R8Tbg3cDPmdm7rv9nyJ87ahrlJugA/BbwQ8APA98Afu1xK2BmTwN/BPxiRNy9/n/HWKMX0efoa/SdyrGNwNeAN177+vvztccqEfG1/PebwJ8gN+0/hvuY/37zcev1EB2Osm4R8R8R0ULlb7/DlTv7WPQxswkduD+IiD/Ol4+2Ri+mz7HX6KXIsY3A3wNvMbM3mdkMvA/42ONUwMxum9kz43Pgx4DPph7vz297P/Cnj1OvlAfp8DHgpxMBfwdw55pL/MjkBTH1T6F1Gvq8z8x2ZvYm4C3A373M723A7wKfj4hfv/ZfR1mjB+lzzDV6yXJsZBKhuF9EaOkHj/D+b0ao7aeAzw0dgO8B/gr4EvCXwKsfsR5/iNzHFcWLP/MgHRDi/Zu5Zp8B3v6Y9Pn9fL9Po0393LXv/2Dq8wXg3Y9An3ciV//TwCfz4z3HWqOH6HO0NXqpHyfG4ElO8oTLscOBk5zkJEeWkxE4yUmecDkZgZOc5AmXkxE4yUmecDkZgZOc5AmXkxE4yUmecDkZgZOc5AmXkxE4yUmecPkfz25I1zq1uRMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d7glyVnY/Xurqvukm++duZNnZ6M2r7TalbTKQghJlgAhkoQJBpNMDgZhnAEb+CzbfCYYbAuQDUhEAyYjFFZardJqtUGbd3ZmJ4ebT+hQVd8fVd2nz50ZScAne/2w9Tz3nnM6VFdX1ZuTeO95tj3bnm1/d5v6Pz2AZ9uz7dn2f7Y9iwSebc+2v+PtWSTwbHu2/R1vzyKBZ9uz7e94exYJPNuebX/H27NI4Nn2bPs73j5vSEBEXisij4jI4yLyts/Xc55tz7Zn29+uyefDT0BENPAo8IXAMeBjwFu895/+//1hz7Zn27Ptb9U+X5zA7cDj3vsnvfc58C7gSz5Pz3q2PduebX+LZj5P/e4Fnm78Pga84FIXS9L2tHqfp6F8Ls3TNpq5qQ5ZXmKdo2UUaatNr9smTVMAsrxgfXWNUTagcDAsBVwJaQsQoMFVfd49MZv9S+NYHEf1tT73OTTnQKtt9zT7/mxNJm/5XNtFu65f4OL9Vfdc8ty2tfCN/up+P9M7Nd7be7AZOIc2CaIUvppjPMYkgGC9Q4mgBARPWTqUt0x1urQ7bdI0ochLTm8MKJwjAXYvzNHrtljd2OT0+hCvJl+9I575qS69Xo80TRCE0pYcPXqcwWh04QTGfZcYTafTptvt0et1KW3JkSefPOe937H9TT9fSOCzNhH5FuBbAGj14JY3bNtvf10g8pe4d/smngRWAZR3tBPDwlwPKQ2djuKKpRa333ozz7vpBvbv34eI4omjR/mj3/1jnjr8KY72LfeeU8hoBb/3IJ4EsIAC58G78FdvlkuPWSSMsRLNRAQkbDRx/sI+ZPyuHh+vF8SC+BJnOiAgYsE5BI/zFqUS8ArvHV58c6/hvUP6I5iZBklBHF4gSHbgva03WJjB8MzxmCSekfqnb67FdoTkGd/vq3es/hp9qnGfk9fXnYz7bh6PayDeQVGAtXhl4nXb+qtahf8k9KmsxyuPLzI4fxg92qS3tIukO4VzFmyB4JlbWMJrw7C0pMBUokkpOL06oJdtcseNN3LjTTdy8OA+njp6nP/45/dxKhvQzUv+0Zd/Ea956fP5L7/3J/yXD34aq8f7AC1cpQve+srnc+utz2fPniUSk7KxvsZ3fs+/4CP3349XdrzXvAdnUR72Lc9z43VXc8vzX8BNN9/I2sZ5/uFXf/URLtI+X0jgOLC/8XtfPFY37/0vAb8EINNLHmlIJhNr4y6kqtUOk+bCq8a9F4O6i1E38DicMqwXlo2zGygMrJZomeLFRuGti4+UCKwCzqPEI+IxrRSnhNJLHIMCcSAqDMO5C8dTb74I/BIRk0iAhWrzewnvT/g6HrVsmyNAFEuJ4uU37mVrq8Sh2ByN2BwWDPKSkbWMCk/uPdYrvBOc81gRXJxDj0e0B0oEVQMD1k+gzjDear4b1DqOfwIRTABnE2lcbD4utkQXAdh63Rvnqvn2Yb5QEraOhLXz0hjvtvmfeGb1ziKg3ASCqd7CjTFnfauPfTvvsR6cqPo53jm894yyDGcrpKgoUGwNR4ho+oXGK42P603cE1prXLzfOxe79GFfVmOtke+YE0zTlLTVotNpI0rCel6ifb6QwMeAq0TkEAH4vxp462e8o5p4mISZJsWYuH775mhMxATS2MYqb+/Ka7AGlMIpQaxDkYIkgMNqHRfXhd6do7QlRgTxnlQbcqVQTvAoPCoCcAR+pccb86Iv3fwqAbZqQJqg1ZH6brs9UlvRntlE8aIr51lbG7K0ayeCR7xHUFhRFIWnPxzRj8hhbXPEer+gPyoYlSWjdUPWnSIrhAxH4R3egcUxco7CCyUNCi8Shy0N4hrXYQLvhfcQabyLB4nv46u5qubgAgRXfW7bHzXANs+rQP0FvApcmY/P9k1EXr2HxHEwZhAaHY7H79zENR4fWP+6L19TcOccXhOBVrDOUpYlZVFSWhv2iIBH0d/aIitzlE7jOAKSCuMNhMbH/kUE52x4lqiA+CoC4psTAUopRASlAgKz1nKp9nlBAt77UkS+E/gzQAPv8N4/+BlvuhgCCCe2bYoLoHjb8UgVtp+e2C2Nhwigy/g1bJQSi6XESQ1jADjn8c7jbYE4jfgUL0KBpmaHJe4sF//w1FTTh0XdPuqwSVVjE1YscQUk296v2UOkth6FRZP5FkkrYWt9hNEGUYLWgogj1YbOzCw752ZRKjwTEaxzWBs2aeGFLLcMbUlZepxX5IUl9yWb/YxB4VlZ2+T4yiZrecHqKMdJii99QH4KUIJPXJhRleC9Dux5fFvfRNxOISQgDu8s4j1aPM67sNGVxntQCvBuDLiVyOQ9NY2uKG9NDOIxFddCdDw3OZXjLVKtYVxvBeLj/QKgcB6sc+i4nzyBo/Li8N7iRaNwOB9XXQlaKRKlSZIE5wMwild4ZcmHGbkrmZvqghPEVPs0LLwQxLAgKQmCx5YlzlWEpUHcKnbRe0pbRrpqEG3Q+n8/J4D3/o+BP/6cb2hS+wlCri6E+8kbP8djlzrvx5umokZeBSLjQTXkdJEAbCBoLGjFyHQAFYC4uRkrFrVi8wkyak3NK7FeZKyfquBExtd4RSURNLif+G8bx6OUkCiNSU2Q8aM8rVQciwqIxiE4VwFW4BTSpE2axGd4H4EyfC3LMlAWJWijUFrRFRiUOcMsx6iErVHBubU+K/2C1c0RqyPHZn9AVlhK5xngGOHJLZTWBWSKYAXyssD6MnAEXrCiAunABjBTSVwdFRSXNdX1cX/oMOyo/wj6FBckM68azKFcnKv0FVcj9RwFKJYGexD3gVKIUmBtEKMkaIIcPnI0CiVhfKIE7TWiAjegqr2sFF4Uzjv6WwO0KK7au4zymnJCxA37QGuFUuG9nXM1ZQpX1azjeN9FPZFSGqUUiUmCauUS7f+YYnCyjdmgMSA2TlXtkgq2z3CdbD94MV5zku2eHNL4eu+DxOYREhXoQCmB/fSiGnJn469GAgRgvmA825mVCLA14fSTY2pyRr7RgxK01hhjQGucLSGywUqFjVghsopVbE6BFx/Z88ipeI2ID8Q9TWo52HuFLWCoPJ6UbqcDDuYTz2yvx7Wpod/fZHp6ijwvKJ2jtBZbQlY6RoVlmJfY0lE42Mota4OM/mDIYJiz1i9YHeZs5ZastOTOg5Q4EZySoGZROuLJMF6vfJxmIWCPoBisp0kE0Rp/UUiQep09ESHHuQnTHQE3inR1nw0dQaUPCLdKQFASnqucx2iDTgKoWRcJQUROg1FBWVgO7VxAiYp6FB82i1KBy4vP10oQFX4HPU4UCZgUNwVIEoPSChOtGdZdSiR9xiABGlRu+w6/kH377H01f/htyKPBnte/x1gngEKUYRlTaakQgnd4HMqkCNBJYERY8LEY4htYmYrkNsh6PFdTfl9TIypZrzk+1eQmGu8XkYZ4j1egtEIbg7eCiMF735ANx59KqVrGrDqqZNu44+JmjkP1oAibWyEURYlqJZFTCjK9irgqzwrSVps88zgnaDGkSYpPYEopTERGSkBrjY+sK0BZWLKiZFha8qKkKBzD0jLKLIPCsZmXbA5zNrOCYfzbyixbJYycMPIlzlo8kdOIAOMrk96ldEs+IoooqweOoFq7CiGM90fNicT51SroSlREAD6KfQ6PiWuptCZNU7QxiIcWCiOK4TBjlI3YuTiLMYYRRQD0OF4PKNEoEbTSuEgkPcTrKsLTkPkFkjQNnIAOHMdnMlk/85AAjAGi2ZovcYGp6CL3j09EIKuuuQgncAHnIHhfYXSPxyLe4HGUeGxh8BLYTmM0XieMsTKM+c+KylQ/I6W6AL9VLIJANMnRHKrfNsbtYyUogrQIqTHghFx5vHhSLzitUaIj6w8iCiHItU4kcDcRxxhRYB2lgKpYTQ21gkQ8Skcx23sK6yLCsOHTeVwRdR8NvKV1eC+lwoYWpSI7PWZnlRbaStNuEbmWi4mCAZFprTBK4aP+oHSercGI/iBjZXWDM+vrHN0c8MFHNxkKoMK7XnzNpZ7mSrlIFKHEl5EzU4jSOPGYCiEINdA762uTYrUugsZ5h0oM1nqwDuc9olNeceUUd1xxLVcd2M/mygp7dy+x1E0ZFkHxp52KBucS8YLDYhGMruYvcgiVyOIr64iN4/VoJRijEA/uf7di8K/dpP43IQlc/JpLAP7EtZfC+BVrvY2lbiAHiZh2vAkDRfQqAFDhPP1RHqwJ0mXkdA24lebZE02EiohExo+t3kUau9tvv2CCG9r2/aIcbTioIoAUBowIOHAiaEBhkcSEveIgUSmFdygFxjoUilx5CvFBieRdUERFWVqJgA6abyUaEYVSvuY2UBLOKdWYizGQTByrgTBwW9s5k2oea7Ns43j1+s56htaG3pTHKM3C9DQznQ67FuY4sLHO9Qgfe/xuRg68lahniEAu1Zxun0e58LNSzDHmCH0cSy1ueXfBvhMRtDFY6wJ8GoMyGpzj8MkNWltDjj/2NNddfRWH9i8zkxrIPA4XdUyRG/Phs8hLtE7xXoHXkxuKxphrxnI8h59Jkn5mIAEiG+zH6o6LXlO3BkBc9PLtByvgucgNFyAMiSK2XKCrFC8UoihFk0pg2ZxO6s3iJWLlWjcwwU+PKbrf9pZNClVRovqpftzPZ2hC0EJrHVhGXTpIDEVZgAQtvxQW8YI2Gp94WhjKsgStcEAqgT0Pw1XRxq4QVNRq+7FYVA9dIlsvvP8v/4I8y8ZzVktFEaFedNrDmoz9fLZxgdsQ5sQKXgQnRnEc5yxbWcniynlmvAumwtrxSLb3tH1Q484rb8E0KClNvokU/bCG0QSYnh/SaXglJgrAM1MEj8GjjzzAxtkTPPTxHmtbm8yc2WDkHY/YjNPaM1g/ztEj99I58xT7B1kDBgR0wd0f3OCxhz5Bp91ldm6GN3zpm0Eqi1LcHxUhEVBeSJIEpRVKB33QZ4oReoYgAbgklYMxe1/J0TWwwEWxwHaZekKxdjFTSb0Dxxs3Ho40LGquwYqhdNARMBI03ShV8ZKNMTSAWSpgjo9y22W06j41+W7V9b7x6tUun7g3AKdRGqMNznuSlub4Pfdx9Hf/mJ5YJE0xM9Oo2SmSqR5qfoFdz72ZdMci4i0giBaGZ1YYnDgHDlqLU/SWl6CtMZKglaKM5invAoXXWkddCZR5wT/+oR8GPM75CUVkmJIxdzB2vqLeoBfbqBOcwIUnJ67zUXlXOdasbY348GNnGLmisdKV2CZcoFCLysFm3+I9vhgim+cQHGaqh1LB5OmdRSlFu9vFugopKFId1nhUOKZcwd7lnSzu2Mnc7BSnV9b4xOHzDDz0ii12qIwD+w9yxZUHuO6ep3i6PyKqDvHAPpNz/YHd7Nq9i26nx0/95E8E8VSiI1MUp4QgEYgo8GXwYYiil6+sCpdozywkQAMCK5n6AsrwGSjiRc5JtCU3XW0v2E4TEF9R9XCPNNgqH7GvuBxUmxAb1UFEj537hEj5K+9BPwb46BQjFxmnr/5P4JIxMhibHxsmocbNVuvoYavRyoNRqMKhjh8nG/bDrd6AWATHKOkwOnKMK7/5a0l1QrmxyVN/9h42PnYf5clzlM6RLPSYPnCAHV/6Wk4MBqydWyFNFUli6EzNsrgwx9LyDkRBWbrILqsaGJuALhXFr5B9DWuViFAt+6TocNFWi3ax53qaokItIlIH0XIQWeSJyW2KX+N7BcZ+DA29zhghj++feLcgG8Q+BBe52woIVYXFox5EnAWb4ykZ9DO6nW5NvJokoRiNGG71GfYHFP0R+SgjH+Zj5jAiSR9sv9E5LezdSiRwNnqAXqI9c5DAdna9ySJ/TvePqUUTRHyzL6noeoM9qp9Lg/VUE8d8tKVLVBblZYHQItGKInqyiAcvLm4mmfT8qxBB/JsYEx7xFZJhGxezbR4uyQd7vGiM1hgdPB1FAdYi3qK9x3dSzO495MMBZmWVJB+x+d47Kd70WmyS8ugv/hr5Pfeh3Ai8p6XBn15ldHaN0Qtu4mOPPsqH33cXRvvg90OHdtuwuGOeN77pjdx0y02Ragdcp3S0RlT6iiiXildx/qMfQ5PiRjm7yRHUyKA615yabVPhI6BV1h3HWBk4nvPmvhr3ViHZCfQa9GsoHXws4ovXYmvoLSKkyusxrlPll6CVjhRZAZq2SZhTQxaUR6yj00qxZYFz0Ou28f1hY48Ea0/aSmm1W0x3e+hEsb65RjYqUGKwUjb2d9ifojUmMeN38YEzu1R7BiGB5q4ee9jVVPqz3tdY7AtahTZdzVyE+xqYvt69gbWXqEmvWccaaQTnFC1j2a/uq2J70bUJKbQG+19RsfqZNKijjJ9Rv0xNI8cc0nYqGRffaI3WwatNxIItUc6igNZVl3HrT/1LNk+e5vH/9x3Y+x/ElgM2H32E4dEzZJ/4FMaOcEaTXn0589deji0twyPnQ4xBkZEXOaOsABG0GlHkmo31Vf7rL/w3XvfG12HiWmmtIlfQYPkJ7PKnH/g0K+dXmJqe4prrrmFqejpyauM5bt5XvV9TKThxvLEHJs5LsF5IbXJtUP5tLP/4WHNuw2+BwPpXVpD6bDjv8Fjvo7OeulCkiXNirUWUIytyRKfk1tKOmn5w5IWl106pvEfrvSeCMgrRCmU02iTMzc+iDNFc2IyJaHKZQVTTOpgJPxMp/XzlE/hbtIsMt/aTrsO8LvLXvL6JGaWezHE/1W0VAqhk8eqTetP5KG+H7oKipXSBuBsBXDC9NKUM3wT46rNB9cYUqTG2OvgoaN5l+5grWVb0BX8iGiGYCCVuIiUCzgWPR6VwrQSv2szs209nz04S0SivcDZncPc9JK4AJcy/6Hauedt3ceAtX81lX/c1XPuj38XO255b00klnptuuoFXvvqVLCzMobSnP1jhT/7X/6Lf30JHPwQBNjY2+I1f+7U4J2GOhsMhZ8+e5eyZM7jS4fHRhblakgDwf/6nf8oXv/51fOPXfR0C/OPv+17e9MY38M5f+WV+9mf+Ix++665aX1Df17i/Yu9Xzp7m537420HgxOHH+JN3/sK2LVPtkbAua2dP8fM/9C31GklkB8Q7Pnn3h9hcXUGJYKJJVksw2xnRfPBP/4if/sHv5sd/8Hv4n7/+TkSEJx97jO/+R9/K1731K/jSN7yeD3zgTlas4amVDX7sX/xzvv/7f4CPfexussLSa7d410//UzZWzte6CfGeMsvZXNtgY22Lrc0+6ytrIYag3sPj/e8jsRAH2GC5cc4FBfEl2jODExCpqSgTFJSLU71LaTo/o+6gWvmGYs1feN7jUd4HNk50vZmiPx2IkHmFwtNSDrElVeSXMElxJC6Sr1gxqXQEDdfBpqIvIosx1y8NObJCIA0uovEaCoXSBqUE5QQtCkqLDu5ltEzK1vmTPPKz/4P8wQdJXIGZn8WWjuHx40FkmJ9l55tez/TMDpwEbzedKlqtTgRYh9aaW265hS/96jdx4umTvP2n3s6xp08w6A85dvRYsItHJLSxusq7f+PX+Zqv/VqcD9S0sjKE0OYwTlvPT2S/gd/97d/mX/3YT3Drbc/n7NmzPHD//fzpX/3VBaxe06wYxI1xX67hXyEIew9dzZ7Lr2GsTZ/kBqVCCBWjX8VzeIsS4d6P3MXBK6+ktbwrjNWFfTLV6fDwfffy8Cc/wb/8mZ8n0YqVc2cRPHv3H+A//KefZ3nXbrJRny99w+v54V/4bT511/t5ySu/gC+441be/u9/hrd+/Tdxz4ffz95DVzOzuBS4UYQiL7DW0Wq3mZqZotfrsnN5GdOaBjkz3ldYquhV8WCMJklNFAUsZfFMRwLABGR+JqUQfPbzn/U5Mv7abJUiKKh14iVq4k5EUxDcOxMDvrQ1chizgpfQa9S/1Xgzb+dI6+tkEkFccIPf9p3g147E0FHBl64Op8VZDv+XXyO/+2OIFEgrZfmNX0C2MsT4MjgTTc+xcPXVgYNA8CqwnDb6+iME1hfIC8fy7t3cdvttHHv691ACw8GQsigZDkYcfeoo//7tP83RI0d4w2tfy0te+jJe8cqX85M/8W9QSrGycp4XveiFfOs3fRNnzpymKAr+/td9PW9685fzi7/4C9xzzyf45//0R3jlq76AD33wg5w5fZo3v/GN/Og/++f8zm//Fi9/xSt5zetey/333ce//fEfZzgYkKQpv/zO/0631yMg9Kjgje3wQ5/irj/6Hb7mh/81/fU1fufnforN1fPsu+o6nnzgHr7lx38eUHjn+IP/8naOPfJppheWeMt3fD+P3vNxThw5wq/9wn/CJCnf9oP/hKTdAqUoXcmf/f7v8tIv+nuMhkOcVszOzpI5RavVAoJ2fjTMagWz1gnD0RZZXuBFsTkc8e7//sv8ve/4V1G/HBCSabVI22200TEWBKyzQdehBNHBnyAQC1eLujqaBrMsw9oOeZFzqfYMQgKx1RrSilVv2JBrjctn0BHU/TQo7aXOUXXVBNpA83Wk2M1NBIBSZATnDSMgyk0qq5SEyDO4UD5sIgOhRjoherE6fxHxZswcgh+H7Y77DICptIxZRE+IOfcO8YIZOVjuABYtCrW4yK5XvpSn//BuRPnAOpoWPkkhH0YlmMe5uBauQkwuuAmLIhtlXHnlleAsog3OWs6dOccjDz3KxsYmr3jFqzl65Ajf/C3fyb59eyjtiCNHnuI7vvN7uPzyQxw7eoIvfPXfY+/+PVx3/TW8+U1votvZwUte/lo+evdH+KG3vY1rr7uB13zh/bztbd/Pr737N5mamuZ3fvu3Iwfg+YHv+R7+/f/7n7jp5lsY9vuYxAQrifchoUodPadrzlk5y/t+99c4dP0tvORLvprHP/UxPvm+P0XEIzjOnzrGm7/rR3jTN/8A7/qZf82nP/4hbn7ONXxs/wFe99Vfw559B1AuuEobbVBKc+bkCZ546EH+9HfeRZqkvO5L38yBa2+kqzyPPPRpvvc7/xGnT5/in/yrH0drww0veRV/+DP/kns+9H6+8hu+nXf/2jv5ki/7ckynwyCaNAM8q1q8qUONI4cjVOJhvLhhuVAx6Cgvcvr9/v8lJsJt1D3Apo8ybtzmlW/rX6evi4kFFxxrKO7ih9aKEBoa/cErsVFpRjZE1hlJqVxxKyXU2PLgL4IEmJRFq3et2P5aDxDfswpFbloFtkeNVZ+VAim6kfoIBCpSRLW4wNXf/LXcf+/jDI8eoVzdYu2Bx2gd2IX1JoTvDjYoz5wjmZuueAuC+2/cdCLbHICEdqcNSrB4rLM8+sjDrK1v0EpTrr3+GtqdNt6XHHnqKdJUcfnlVzA3v4hSgnMFf/XeP+PRRx5Ga8P58+fITYaZnWIwyjl8eg3bPcGxtQ3ywnLXR+5n965lsrzg1JkVfuPX/4B2p8fefZfxyMNPUJYFV151OUUZIvY8RMWox4iNmh/PVJrw9KMP8pbv++doPNfcchud3lRIFINnfucu9lx2CO9L9h68jI0zp+C66wLlNQbTaYcMPoAV0BIQ/ijP+N4f+7ecOPwk7/iZt/Mj//7nwVuuvf4G3vmu32L13Fl+6B//AF/7ozfS6Xb49h94G1fsnOWxMxn/4+d+ml/65Xfybd/9fWxsrnPHG76K/c+5oZYGqcSdWmka1tw390tEGEoHvZLWQZzN85wkSS4JLs8cxWCtxLsQGfjt13GRv+b9QtAxqIZSrVasNa9X4xloKIe80qQaLBqND9FdEDaBEoSE0nk64kjweBUUcz4CiW8igIqlr98tjsUx/l55GVYLXMmrtbwbML6XuOOa7xoVjiKCJOGa4EauEFeET8JvbErvhTdjjKEc5mx+9D6Wb3oOqtUBEdprfU5/8l6woDA4FcxajujzXiFlrSMrqjl79jzOBXfioihYW1tDBDqdFjt27iBJEqampvDA8WNPk6QJlRbjwU8/yBNPPM73fN8P8o5f/VX2H7iMrc0R7VYHL4GzmZ7qsjA3Q5ImPOfma5lfXgzejd0Oew7tI0lT1rICl7ag3ePJk6s8cWyVx46eYXV9kxntMUrYP50wq0tS8Uz7IRrHjIyYZcis7yPAlN1iym6RakU3X6WbrdJyOb7MG4FE4X/gGSrOTJhdWOTG21+ABy678ipEFJsbG3HbBQ39ZYeuoNPpcvrpw0Fuj0v/P9/93/mqr/kH/NEf/h5XXX8Lb/rOf8L7fvtXQooa71Ax7sJVyWmqfawaRKMK6MAjXkUXck2310YrwRWXjh14BiEBLuSCL1AKxn9Na0Gt4b9Up42+m0gCqNGLisCkgikGpUgkZgpy4xDSChmVaLIix4jHVDJZAzClAs7qzvpcY9wTC9jkAGRiaJUEVFmlfWO8zfBgEdDaIAJGNBaNdxYdX1v1Eow27PiClyN795JSsvqJT2DXzzJz+42gFEW+xcrv/DFrDz2ESh0dLTgc5WAYA4QANFolJKJJ0Hz0Ix8NZiglpGlCq9UGD9oopufmGPT7JCZQoWFWRE/CsO36/SHtdpv5+Xn6wy0OP/E4q+dWePC+B8iGGefOrvHpRx7nkScOk40yPnXvQ9x3/yOsrq7z9PHTFE5z9sxp7vrgh1hZ3+Ds+XOsrq2wNdxkkA9RrmQ65h9g1EeKEd6WDDc3uOzyK/j4+99DsbXGAx/5EIP+Ftlgk6y/FbJHbW1RbK1h8yzoQ5Sm1e4wGg3HO8v7GuFf//zbefzBB/AIZ06cxJYlvZlZzp09g/eeVtrizJlTPH3kMAvLu4KFATh27ATnzp3lOc+5kTwb0UoMoCjzDJcXlUTMRKxJtQeaFqQ4Ki/jOAznHGma4Jyj/L9KJ3CB+veCL9uuuQj2qGZu4rIxpb9Qoth2v/cYpbZhyDFQ2yTFuUrTrSb7rnUIQmMFL3xGs99GbICvxgrBitC8dwKBSdNpLmiqdaAAeI+lpHAluVi0hOi9Qhw7rrqalVe+jPX/8Vv4keXJd/we+77mjQyePIk/fZTi6NM88s9/hj2vfTGyvMTquU12vOxWnIQkGQrN8WMnuPej9/ChD32Y++79FNZZULCwtES32yUb5TjnedGdd/KKxUV+7p//CK+78kreevXVnMhG/LNiAKcHZN0WD9uSt//wD3DN4iIv3ruHt6yf4hVn2vxJ1ufNTz3I8/NVnlpb44/KnB84/ggA926t8frTR/jywz1e9MVv5Lv+0//DsCzpGMNfft3XMRWzQ69rw09YTVkUHHnsSVZPn6HIMtbPneGOl76M3/71/8HHPnQn+w9cxtT0DD4vyKL8PBoMEA+2jBmPxPHcF97B7//qO0jSlO/8p/8KZUyguKK441Wv5l3/+ef4dz/8/SRJwtf8o+9Gi+LRRx7hF/7j22m322hj+O4f+lHas/Nkww2Uc/zyr/wKr/rKbwJt+LI3fRlf8VVvYe1dv8yrvvIfgNIhs7F3gRiJ1EjH+UoUaJiYoziKCEVRoCTEEOS5YjAYXGL/PRORwHbK3lTc1ccuSfrH93pP9KPcBqRNmn4RBOIDA52oGG7XCCmusa5JcYVFdzyaKtvvuMvK87v2Amwo8gWCi2f1rhNjrtj/pqVBJodZI4VtkxTNmlVeOWNS9r7kBXR3zrJxZoV09z5SlZBlOUtfeAcn//Kv8OdWKY4dAdFc8b3fyKf/wztonTmDyIBTf/LnaN9hx1e8gcWrLsNbH3VtljvvfD8f+chH2drs470jSQ27d+/i4MGDTM3MsLq6xnCY0xoM+KFf/y0+8cCDJK2Ek0bx1i99M79lEnyMvPza21+MMQlpmlLmOSeLjHdrxXe88KU86eFxV+Kt5Udf+WreBVhrefm1N9DXmv86ylDXXMdPfMM3cfzECTqdNg8f3BcoeWl50R/+IfO7DvIdP/A2Oonmuptv5oqrrkRwzPW6fM/3fR+zs7M8+vCjnDp9ErPnSub3af7Rv7s9SGkK7viqA7B5DrEF193yXG544R1x9wSNv4ru2kobvvY7vxfnLS2lsN5TOOHFL3s5b37zV7C8exeddpuTKxt87NhGEK08/OA/+Wfct2oYFSXLu5d5+y+9i3tOnAcV9p6rOL1aHImco9KIClGhSCVeBvdhQUjTlFYrBQRjzCWt6vBMRALNJtsgCLgQIVzy5vFHEwH4xrlLPFOJRxui/brmx4EQrkvaRRUJBmEuUWwx7rb28a/0mBWlb3IgjXFMSjwXyEMNzqJ6h/pBjauCeJDqoJsoxWGkzfzll7PjumvRrRSPp8wyWl6RLu/mxb/0dkar64zyIULK3J5lnvf//Cgn3nMn+RNPw9YamA67v+Ql+JFj1549HFpbw9qCQdYnG5YY0yJJNdffcDlf8dVv5YFPfpJDhy5j5fwKW5uB8rzvA3fSnp9juLZJsVW5xPpoqg+iloq5BAMRi4k6TIjO1CqkM/NRDq8Ckpx1mDSIHkeOnsBaRzYccdifY/++XSzNtwGwywchTVHFJmmahEQjRcbZkyf5uZ/5jyAEyv0Pvw1pT+HRRPVuzHFoYbCJG41QonBFHtOuBUOebrVwZRnMsZHzc1oHvwhJ4zup2nuvRthaYZQJwIwwyHK8h04rQYngUFFdpC60JnuPd5UY0FASS0h9ZhJDmqYoYxARWmmLtN265JZ/5iKBCzT4XMLcd5H7aueabRTXb0coF3IBwQrgMIkiRoHH231cUMErQ+GFjla0vDDOJiwTZprxI6QeV+0iK2P2vwouCVYemRjPZxwv1DoBD6RaIWiQHDvyPPbwU5Rlh7IoaJsSaxLaqaHdNkjb0Gq1SOZ6tE0bby2zi8vMvOVN5JlFygxTGMrpFG2Fr/iqL2OYvSE4rxQjhtmArY0hrXaH/ZcfYKY3y/33fIIdO3dw6/Ofy72fvBfO9snKHJOXpIlhdtciidYhBTchJ5/1Pnhdukq+Du/l4jXOWVxZ4H2QccPxOD1ufC14lBiGowFZWTBz05Vxfh1etxhmI4qtYQCq2Z1M5yXf+m3fhk67zM7N09fTjCR4CDa3mVcCEnIAIBIzN7k63kMZjWgdTnsfMgcJFGWJq6h3rdEfr6HE2IkicqqZc7jC0m0naKk8VSLqi0RMqi3hPXU0pGqymTHBjFGkSYJOQq7JJEko/68wEW5vTWDZ7oYbLuACoGj+rLzQKqVb1WfUTE9c36TQErzvkoqFkia1jpyJUjijSbRmmIeNIpWMVtszZNx39dyLWD8gSh3RxDPhOVlZB+qAksY46u4DFyAltJPgi574BNPRXHvzVRQ2Z+XMGisn19l1YJFWCr7wlFaT99fI+4ZNRojLyUsoyoJeCZte43VGyyU4EdqJUCaKJO0w3Zliaq7NZZcZtHIRUMK8iFIs797FK+ZfAe/+Ta648nJOnFlB6YROt1OHZnnvgrHTE5JoeF1n6qnmaqI8StNxyo+tL15CFuiyKCkLy8YgY6s/IM9tXH5N2epg0y6lzRHRiBGS1iraaNLeNNLp4tpTCKDciJYv6WrBJylZWTKUEpckoA1iEtDBUlIF+ohSkArifG3BUaKwUZQUUZMx/RLTqymhcGH/9POQlryVBC/KYsKrtLF9q30gjEUBKjP6+PqyLKO5MOyp4XB4wb6r2jMHCdRycvNY/LedOjap68S11ZcIjNsZh4txF9svIaaINklMe109a9y9V5qRc4grKWgRojmqBW5q65qsmlCnrrZucmwCkybMyfHWgFGPYzvyCztCiye3Bd4JkpR4pXGl4b77n+R5t17HAw8c4WWveB7elhw+cpwn7jtKt7XAdbctMzu/hG4Zzp/cZOmyGej3WdixyGZfU/ohtu84d34N7Q2j1S0On1pjtHIq5A/szjDT1qye2WTt1Dpp20AS2HEtSUjcG1NvpzGvYJoEy4vOPSYNCUeDh7PUFE0ayyg1cqyku7C5nQ/cQ54UtMUzsJWIUQGEqlOXCyXJYI2usvR27qDOBOVhwWZYP8J7i81zbFkwv3MRn2hOuoJRNesSXbKdi+JMSDlerYjzHmKkpIsZiysPzjj8uDccWilyp0HBsBCKvKSbaoxSSM3xNIKWZDwG37QOVBSisk4pwSRJnVfSOluX0rtYe4YgAWmY1Bqt5vsuIgZcTDKo4E48dfmqapIuiQAaz45MglIeHcODm+g3mNvC5Fs0ylmmjXC29uIb5wuYpNzVZogJL5WaGH8d1VibexqIzPlJTgJh7NxUXR+udUVG4UoSEayFYOL0JGmb3XuXeOTRR0GViFKcObXF7a9+Dgf2X8YH338P8zsXkXLIEw8d4ejjhuluyo23zjAaDDl29AT5YMTeQ7tY2DlPuW+OqT2bnD1quezyA+hpITVdPvTRv+LHfuzHmZrrkqQpV77/Pbznzo+ytrnBdKdFt90FCV6MO7td2qmmk7SQ0YDjWyPSVsJaVuJwKD25NUOijeC8ZIxBiWKU5RitKW2JR3DWsbqxCWL48HVXcOgv/4JfveJ+fJnTtiN8fx3KgrSV0ul2o9wcgEVJrB+Ax5aW0XBEd2YKhWJ1dYWNrS0kTVFpSDBbJYZRWmPSNCynC0ihpYTcQ+GFOUp2LC6ytLREYgyn19Z55GyGzlZYTh39ZJazhUKXjof/fAmdGu5+aoVBEfbSkgw4sDjL/MICU70eM7PzgQup1x1o6A0UxL3rUCpBxODcpeMG4JmCBKq97ZsHmuxf81qZZA0bzVfnmyx/Q61eYdFwhW8ghybQVpUFgnxfM/gSHTejbb6M2L5lTHDQgToZZ933xOCaYoJMjr+KMKwdi2JiiKqEWROZiLqwb0Kiz06ahE1sDd4b8mEfoWTvvkV+/93v5XnPfw5bWwM0jiuu2MGTD5/hiYdOs//QPLYsEdNi76Fl+ptbnF/rUyQa18mZXe5x9JGMe+89yqtesxDk9xIy7fCdBJxjqme4+jkv5rnP2c3GIOM5N+zmde98B++56QvZKjW7d+xg345FWtqyKJq/f+VepvojZq9Z5uSjx2m3u/Snu7zrwac4kZVIO0GpkCZcaR1NccLc3DRFniNe6A8HGKXoDwYMS4crHGcff5wkmeWNX/kVfPl/+6/8m5d9I4vnDzOXneeJJx5nkOek7Rbd3hRJ2kGnKSZJSbRBGYMxhmyUMxxZUl/gFWxmjvXco9sdOlPzMdtQgSsLWt0p2jPTIaV3WSKSstwWNkvNViksuQ1ueN4LuPm5tzAz1eXDjxzmQ3evMn3ubvYtKR5oX8XT/TZqa4M7XnYzN91yJR/65Q9xZDVD4VmWI7zotuu56bnPZe/u3SStFqvnTgWUqHRImlLvKRXmy8QQYhFS06J0gahdqj0zkABwAWA0NeDbAf6iYgCMC/Y1KwJd+AxfXzuWOStfdCHIcyZ6aQlSB88EJBIofeEDizoiCeWuKha/HpubfC4E0+B2hAaBVa0QSRVFOaEH2abDqEWhinsI1yVx4Z1ylEXISGNtSZq2uOm5l5PlI9afsggZUlrato1KhqweLzlz4hRTSU7pWrSnd7IrWef8iS209pAr5uZb7NqzgEJjjKI9nTA7mCXVBjGOPKQnpmyVUFpyCc4p7SQJ5jANPYHLF+ZZGFiS+RaD0jK7MIUphenlLtm5nOt3L3Hy2DGMT4OBVxSuKDGpwZiAAFtJK7xXy+BtQa/XYbTep7QOUQZtTO0c0x5scYgtNjbXKIoCD2hj4no4bFmC90gSKkuVhWJjYxMRIWm3KAvLKM8nnHNCjpiwd6oMy+P1cQghZ2MlBiHR208JHg3aY5xFUBQ2mHTFwMrmiFY7ZcqkIKOxUpAYX+IstrSB0DTEhZowxNT2WkKSmep+7/3/BaHEUFPoqvkmtZ+gfNvl4caX5ndiLPilyk9fTLYOU40RRStJa8UP0Wg0lug0pQQ3zVxipVuRYObyAt4GLmLMhNDMsBuF3PB4NeZEakTgqorG2xSFNKwQjfF7QvVio6p8fxqVaJYP7saVOaWA9oLgKD21tr3MPY4RttRYa1Glp7SGUnKSVspwMEKLRXlHknZwfsgjnz5CnjtSmzMi5dEHjtIzQq7aHNo3g5GUdsdQrIVN53yo1tQWxZRx/L0rl5idgiIHq6FwBWo6wbV6lKlCDUekCGgdMzU55mdn6PbarK9v4J0jaYUU7z4LGYpKW+Js9TyPKFXXUVDZFqvnzzMa5rhomtPGxECvMKdlGdPIJcEyYMucpNWisDnWE+v4RQISkXMI7Gm64lYB52HfWgIHoyWKLqMRMj8TdB5YjCvRpk3hIyvfMqz2c5JEM9fqIHoTV9qxWAsx3sIG56wwiAkRUolgihHdXgvRBqMDZ5OXBORxifbMQQI02fltB7fD6oQSMQKbrzTKgXJWEVe+SvLZlDeaFgdfCwP145RAYkys8hIisupUWKIQDJ6AaUl0HIOKm6TSEm+n5nHAdW27xmfkIHyVNFKFmodBDRCuC5mKZGwpqByYGHdtqvoCCFpb8jJAWukHWFKEUP/OqBk8ObrngATxaVCwmRJvBW01VhzOC84O6SQ9LAVJ0sYknrTVwqRgdIrzObawFENLuTZkMBxwfsNz8rETAJw8twI6RSWKtMjQp7bIBxnnS3B5Tm/nbhgaymNnyZZmsX2NkS6ZK0Epdi3vZH1ljb6zFHmJs0OybMjC4iLrmwMSk1CUWZxPR2k9Smk6vWkAMjvizLGnmZrq1AFAKgbWWGdDDTEEK4KKsRFFkaNTg8VTxorAIcW6jhKjH2eOkEDJbRn3TrWBRONFkShI05TpmRmqEHKRko5SJK02+SjyDlpzbm2NbDhkpp3WYqWuql17h/VColVDRxxFAgn7QgabLLZg5+x0DQ9KSZ0V+VLtb4UEROQpYJMwlaX3/vkisgC8G7gMeAr4Su/96mfpaSwHb9MLVOzQBR501PgRCMUgtUpx6G21OuIkVohiPPg4mY3033HijATzTVXF1jlHCDONAoN4vArJIhMdOIFmkU2vgGhZEJgIRxZhfG19TxPTVTHhuiG6VFxRrDgT2c7INlDpQUSFCgNB0jFopXDKoWw6Fne8AsnQSlE4Qs5/QnbaYKYLrLFETsYnHUQ82mucK8gz8E4ohgA5zpWxfLZHz3aYW+gwt8+D2glAp6dgWMmns6RTO5i+pc3gXJ98bZ2nz5ym7UvS+d3o85vYtYwrZ9r05tuc6QvDbMji4iJbW2t0ul2GgxFZljPMz9BOTXTfBqMTimKIqJBqO+RaBJXOoEKMIyiFMiaIb0ohJhY7ReMhFmC1uKIE58nyoq6pEJZAYlRmKOxR1/NwHhUinjClwnpCeLUTtA+l2IajUbAq2BKMptzcwLlZcheeL9JlKy/opm1muoCk0Q0gZF5S2uFF433IcIwB0Y19NFhn2WzRTVr084JUa1pJQpmNWD13njL//MYOvNJ7f67x+23Ae7z3Pykib4u/f/iz9lJXUoEahCdi57dT1aZsr8CogAC2XTPRPpOJsMKuImg9LpHVLIpRs+zeUXpFEVTwNfJoPKi2OHikxjd1H74B3NX1zb/tlpKKmZnAfppKp1FTp23Kn2bhD+LYq2AjBJSXoKyXoH1XjfsqwFYxIEU1gpWctSitcZEtDZ5wLiLMys06jDUbWaAEHL20IN2pYZBTnh7SW5qlNz9LtrKOX2rTm/LsbcPzllpMOcX7Tm3x5PqArSKj1UrpDwvSRLNn127Or60z1e0xHG7iPOR5JYOH6kR1xqFeyo6lJbIyjzUJDSZJMUqDjgjeBc7Q+SBOuLhXvPO4uor0uKRb8N13E9JdxQVURKstBboY0Xcjzp49S9pqsbC4QH9rnbnBCXptwRhNIQnGO7zWbFlLkWXsmOlgrIvl00IxG0dCIgGRhTU1KJXixZEM1tnJkKVdixw5co4ss5w/f56nHn8CjWOQjciz/70BRF8CvCJ+/1XgfXwuSCBSuCanXmcHjhVZx5vrInoBr7dR/+a5bdciDeoal7C6ToJsVZXNat5W256VxoqhKEdoby8UV5wbH5Mx8oDI7EjjRQVq5V+091/YmlyQjMfdxCGEKMLx+eh110Bizd7EC4lKsD4PAUYSCld68RRlAFqPi9156mQvIvVGNMZgTNQnqKq+QDC1KRXmzzsVPIIlxShha31Iq+WRbkLqc/LNdQb9Pq3C4RLDlZnw8U8dYe/Bg/Sdp93ucOr0efbuWmSY9+m224yyEbNzs1A6er0epijJ8gHO+VBzwYSoRoDEetIk5IDAaFSShDRsEXkqpWOi0EBMnI2c2DbucZy7MM5Bg2OtkYEn4mahlffpDYfM7Zxna3Odxx8f0Do5w8qZE9w4PM05l5OaWb7k6mWGJeR+xOJmyeag5Lrds3zhgZR2K8E+bUKaOx/EC6UEZVKed/XlHBzM4X0BqyfoyDwPPHGEvTsWec6VB1man0OnQayzztHufP7chj3w5yLigV/03v8SsOy9PxnPnwKWP2svNSBEBVrNJVczXRWUrK6XSco7oTeIsnIzyKiuBHSR0W8fBwqtqamqr1JJN2yxqBBLbl3JLAWhEHaFRdzE+1SAW6kU62KTNUBX16nxfTXlnxhYY64qibRKcx3eV08YReQCBNDMRGut595P3s+efTuwhWNjZYPLrtrP8ePnOXD5LnCa0pXYIsdZ6HZbAWy0J2mbkJ1Iqci06FpuDvPlYoptAvvqHZ4CXyRkW54sKygGQ1rdGVb6GS2l8QXYZI25/R2uVDMMipJzG0M2C0vaThlV2v5Om9FwgB9ZlMDsbA+PkCYBmJ2zGDMu0dXOB4SqvB7RCUonaDWuy6hUeM+KE62nXldIO+hnvEjgEqoCJ3Ex6n1Co2aBB13mTJPjXE7LGHSaUGQjTj/1OD0/opN2mV/ayZtfdQvioaDPwx99hPXVPjceWGJX9zpaUym/9z+PhHyMvgxl5ZzHGMWXv/Y2EjNiOMgZjkasra3w5BP/ja3TxzhlChJ1iNZUB52kzC322Nxc51Ltb4sEXuK9Py4iO4G/EJGHmye99z4iiAuaiHwL8C0AdGajZh2iD+0EgEz40yMNIKh+1w9swEtT7t4GVTVyqdKKT+ocpK4TENC7j/y7I+AT5woETeFKdjOkhWOIqpV2Y2chYZz+KbKVNScCkx6CFSmpuIKGJaDxUX+vxab4TKdJUmIZsmCmohpL9ewGUlVimZluc9+njnDd9XtQHaHwI048tcKRx57C4bjsir2cPH6GcuS57Jo9DDcz8rxg32WHWNrRZTTKY4ispt1K6+dpreu0Xs6XKOuxecmuxS7pZbvJW8DaBqe9kC52eeLBw2yZTXbKPPnqJtnAs3pZi3NHB1AqdEvj8oJu2mFzfYNur8Pm+ohWJ+H82iZT0z2KIsficM6SJKamAWm5EZWAgJiAuIhmORUmU4lgofYBCWKDQlxA/hI5HGlYanz0VKxEhJo5c6HUG+0pMjTaaLI8w9sSZ0uGhWXTK/b2hMH6GX7/D/8I43KGZQaFZ++eBbZWhT/5rT9F2paNjT7mwCEyPLmzdJSitJZP3n0Xo+E6oywjy3IGwxF5nlOI4ujx0ywt7yVRCUkdSXhpUfhvhQS898fj5xkR+T3gduC0iOz23p8Ukd3AmUvc+0vALwHI/J4x9FZsp5KgXKvk5Ap4qiZqUtEHk6JCBLyxNNCUCypbLxH2xjb9+hhVMEvYAGPOPSAEq1JGTqHyPknPkaHABWuEr8qMVWbA7RAs43eVaNut76ke6S9xz0RfYyTivSMxSciC1Cjwub30V3isCmaw1HDHS2/EuxKlDdPTM1x17TJediEOlnYtsLCwg2yUs//QEscOn2Hl3AYnnz7BJ+8+T2+2zeVXH+DyKw/ifYlWekIHAVEkUT4ECVnFuZMnmCkKjp/PWJ5Kefy+wxy4chczRpEORvRUD1kwHHniFF5p2kkCqVDaQAUTk9Jpd9nY6JOVwUtwlK1RFBZvQ9x9mqb1vEg2CtWXPaBVSNjpfS06We9Ah2POU+V6QkThiJWWA19FZa2pxbu4paq94ZXC4EAcK9IlF8Pc1ha790xx9bU3kIqjtbiPDz/8BFIc58hI84GnhxS+xKPYK5bnbWX0Zke886TDdBS3dkLkYQuCT4Z4ysLyqXvv58TTTzAYbmGdJy8tWZ5TupJOu8NgNGJzY4v19S0GgyFPPXmCS7W/MRIQkR6gvPeb8ftrgH8N/AHw9cBPxs/f/xx6o97cTbuoLXDKRE4gUv8ogI3rxvkLkQFAZVnwsSrQmBMOyGFCM199DSx2pVyq+IfKZD+ui+fBO3KnMEmC9zGIRgnR5sQ4tVkDuTUfKeMY8XGJManH5ieVI0wCf7y2WSdBOVKTxBqBEQBk/LldLCisYWPDcvL0k+xY6LCxOsBmlvnFHr6lWZiew+OYnp+JzNmIy685yMErS0wiuDIgucFwAFLW7D9RETou0RW+G6M5uVZw1S7DWleYm56lyLa47qrrWH36BGvOc24w4rnXXM6scRw/dgLjgqVF6YR+f5Mdiwusrq2ztblF2tLYSn/ihcQk0YwKqUnqZK+qyBA8ZQRUYxKkgVR9FGFCtaSACBJj4torRBuQPPgdXJqYMtYvKdBCblN8t0c3FXbsWGbH4g7mZ7qctFPIk2dJ9Tp9abHWnqfUYdydfI2VlTNcfc1lFFN72Wxrhv4xnDKhhHysz6CUsLJ6juNPH2amm4QYDOdY6nTQukWhNDt37eTQlYe47rrnsL6+zvlTT19y6H8bTmAZ+L242Ab4de/9n4rIx4DfFJFvAo4AX/lZe5IYUy7UkVFiXR2AUcldzoaCjxUlj7dSZVup9TVCCPCowieVivIqEaNbXO1OEgpL4IPZDy+Y6KpqfcVCV2JD6E6L4FyJ956RbXIXVQ644O4qsT9vy8AeV2KCqxifhhhSxxP4+pl1qzGY1PJ+JYUKVTCJkBjN9uq/F69GG0xm0zMzXHX9PkZbBaLXOHXyPE8/dYarbjhIMm/CMCvOyBm81midgBK0DrqPnjEx/VYEulh4pEJwrtKqG4PpAVlJd3aGjY1VUCk+zzm9NeLg8iI7Wh3KPOf4yU1WizIgOaVJvdDrdkBZut02WVYwPTPF6toWKhZJzYscV1q8h1aS1GvRLR1WPKWrskjHfSY1PRgr+qK+ptVqBZdlW46dtRrvJErwlXmwBn4BXxCyTkYltzI4pUlNC+UhSVKUsZh8g6RrWLPglQ7r4R0jEu67515uvuFqlnsJTzloeYlWBx10KzboWc6fPUN/0MdZgwLSRLHVL3BO2HngCkQ0qWnTTrps6S3ysrzIPgjtb4wEvPdPAjdf5Ph54Av+2v05V8teeB8S7ba7iPN1/XrVyLPurYsYHZBov43AHBw4dKhJXyEDG0JXOxqUsfTzMuyEGJLtXQmBmSN1YaGdtbXKrxIDBIfGkYvg8gKbF5QP3IXuLeOnF8LGVsFk6bUmlCkRSBJQGmViYgsVYdv5KHtG6uQr1tOPOYQKMURc4GtKW1F6QDm0CaJAEHXGIs6FjiICKqfTc3hbMr+zy8xCm6WlDtOzM1hCRhvnHGVmabWERCeIEpJUoq9BYKVLD1XCD1UDhK+tnE6FtXTAmf46xszStYJud7AkaC0szM5wfn1I5h0H2y3u31hHdIq1JUnLkEXRZX1jQLfdoSgGuFJR5CU2FkSpIhC9V6RGV2ibzignMz4g9DhZSqla5FMiOBtzGUTxyjkXqvqKB9GIA6urDFIBAYu4kBNAqmw+oAjsunaCFRfmiZSiGOFdifeCt4J1nrZJ2CLFiw3zpw1F7uhM9ZieMuyfa3FkZRjF00BwhBJcG8EzOzVHtjAPUpVHi5mfvEKlQU8TCJnFOcfKufOXhL1nhsegCD5Jxhu93uBV4gmpeLmxK4EER49KiK+KeYoLFYSCbKyx2telnhEh9zb4+Xe7+DI4GQVnHkNEs9EtNbQq06CL3mTBkcjhtYqWQE/ryMeZ2nMFG7u/iFyC+clFIHYepCjwoyzao0GIdeNNUIbaVOGTWFYMAe0j8Q/IQVyMHojHQr45NY4lihxOkgTFV/BlnxQFfMOPwDnHxtqID/zVJzGqTdJKeMFLruOBe55ifkGztppz6+3XMxr2eerwcWamF8jznK31EfML05RW0HgOXX2Axd0zaONC+HI1aW7sn6BUSCJCadlq9cinuhSP38/QzJG0ujz26Dqt2R6q1+PgrOZInvP0ZhZSpOkWaZoyzHKGwyz4/keP6uFoGGqEOqlTMXofsiKnaVqXjyl9ibfBd1+UicNrEBDGSFKJMHKOVpqSaEVaCqU2BIuPGnMMnsm5jQccvg4m84TQaWMStNakaSt4LHpQZY4xCaUYypq7A6sT3PQS7c4Uu2bb+POD8XMIOhEkcA1OBG0SlNg6VHmU5QxHOUgQUxOTIBFOmkRhe3tmIIEJOR+IFX589AM3McVUWRZ1EQWpqI9WeGfjteA1wd87iu61/B+1uU4MPm3jyxJFI1+AD0DoXYkWAWdjXYHIUse04y0VvMCceDLrKJVwaHqKPDGs5cEt1cVMNEIUZ0yKTwSv44apHFKI7LYXJAMRG8ShkQulq92Y+vgqF4FIrEQmUeSIeoQsmKKMMdjSTlShrVJyVchARLGwOMMXvf4FDIcZ1qXML0xzy/OvJhuO2LXb0h+MmJ6eYedOz+x8h3Zb8/hDx9nc6COJJnEpa6sb7Ny7gHVZPcdAKHxR6wRiXL0YBsUW9x87z0t27cDYHue2Npk7tBcpMlrDTcpslgdPnUGblNFoi/mZGbIiR2mFLYKMnqQtkqRFu51Q2gJf+npPVIin3W7X6R20KihtVPpVtv6Kk5LxTqoIj8eHaEKlMUlCkbRjzoIAaMFjML5XbdYmJhlxSCxdV8kctrQYnWCtiynEIXUlXqcUDiCaK0VhVcK5UUluYe+ONhwe65GCaRlQwd15ZXWdp46dAm9DbIP3tLsddi7vQps0JDVxwd/D2pInnjh8SfB7ZiABAK0iRh8rbSRu+jKgeURrfBkWzMuYpQvu1YEbkGCmrllmH+W/yDbEDRntviSADRxAdB+pIq9GWUar1WGC5cbTUkLLWZR1lFmJ97CSlQxGJV6r+DwVnWyCV5mt5PT6/aIPufdhrCoEOtX6DCPgdEgsYcdUvXJdrYqhVKFq4iyJJyTsqJBkveHHSsHKeQhK0hacOVlw5TUH2dhYw4hn974FrM0pc0jaYSMt7OgikuC94nm3zyLKMswsYjVJR8eN1nSsilSroYvQOsxt7ixnhiP8zCFMv8/UzCzHjpxgeecic0s7uPPpUzw9KDFiaScttDakaYssLyiKoHwcDkfMzc3SH2xi0oTCWZyN1aYjIWmlKVLVhxSHLe2EtaTmWHy07jeOeR+QWKVzKVXUjRAQW7WVfOQMg9v1WK9QWxGq5Cje0+50gjXCOcQ5VJlR+DaFk1AUllDpyopmYBWjUU4vqexiY32QRPflSDcConMeiTqIMi+jo1b4rbXGY3HWUj7jA4gqEUBVKrjmi1cLEpksk1SrMAYGPb7HB/f58H37cyI30Ez+A8ETqz4nhrX+gNOnLYcOzmDFRoNFtC1TUOQj3GhIQY6I0M9LtmzUNEtwofXK1RzEOC985VJCJBQSx9oYcM3fV6mqxtyANB2XKvnAebwymJYP+e5cwITV5rkQAQAYNlZWeO+fvZezJ/bz6KfPMhpZvuwtr+H4ydN84iOf5kV3XM99nzpKUYzYt383L3/1rTz44GE21jbp9nrs2TtNq+iwcn6N+aUlelMJ3gWbu/NjxIV2QZ+QJqRlSj8v2Bh5tLLMzLbg6IjpuQ4Dr3hyMEKcJ9eO6XYPrRWjYc5glIXAKAkqzaIssNZTxpJozpWAp7SKAqHbSmuupCSlIMfhYiLWQFVxLsjoFTMf51cDyoTAHO0KrA6UWgGuIio+cCU+ukpLPI9KEKliP0JyUWtLTp0+y+5dB2LcgqUnDnSHPKZUq/a914qNbMS58yvMtoVEqlyMgQuw1pHWVaZ8nfewFkd8TI9eEQrC3nLO0+vOXBL8nhlIAGqTTsSlNTfg4zHqYwEBmJbGlmVjw0kTd9SbgKoXVclz0ed7W4avis1GCaf7JcMsAG+llPQRiAbWkUuCzwvsaMgoHzLTmyYzSUgaWWuKq8GoiWFMvnTj3ZDGBWNEQdNcGMfom/4Q0aSaKIeJZkpVeVjGViXorGMLvEXFYhq33X47p06+h+zsKidPnueh+49y+PFT9LqWp544zfT0LMVyj/OnNjh25CmOPrnO1nDIvj1CZ2qOkycHLO/Zw1u/4dXkuat1L2OVJiRpgk4TTKfNujjuPHIY0xJ2pl3WtKGXWfJEkxmDESHxlizPUNGu3+t1GY1GQeZ2NpQCj1GeWVngbBl0RzZg0XZrUidQWjd2Ba9Ew3p0cd6r/eYqw7MP1hBlQmCWBHt9MCdebDljXgFN491d4ERsgejod2JLklZCqRIyBPSY5fdoNnMXMiY5RyvVqKxyp6+wz9h9PlifxhR+ZnaGpNUOzk4x67BznizPeeOXvYm7P/geLtaeIUig2uj1zwsBJLL+1TXOVcAQN3ZTA15r0hvHqqidGjjr2q/4iBG8BFHAqWlMAoW12DKIEBpAFKVKKaSDStowytDWBfOCDhxFDQRNauhcreMIrdqMMjHE8e6qOAiYnBQ3eX2N+IS2STFagVZBm+2rRJuVZUXVugGvNAuLO/jKv/9a2lOzfOEbXk1pRywu7uSa6y7j5tt3ctm+a3j66HmeevI4o9GIhcV5VlY3ac0UtGenaXUdrVaXra1zLBUerRO8GwaFldZj3U0cr0XoFwXWl2xkJSbRaLeOU4aPf/qxmmPxSqGdxxnFMCtCTH7865gkZMixllaa4kXTbnewpWVzawvPCgCtNK3ZX5FgVgt5UBuBRRERqKq4B2DjOlUVk0QrtA+cg6uDtYKgsd30WqHwimCEmGJPmiQM+n3yIg/Zh4oysO5o8kqMqnh88Wx4xdNPH2Px8kO0jOCzYD73MZir0lFNz8ywc9cyWoV8B977APQEy1hIy25ZX1vDaM21113HpdozAwmIgDGRxYEoXBH+NagrElZTQrlsUWMgmAB6kZiaK373jefUVFTG3VaP9B4RT9Lq0UoLtAhajbPQ4ADTRs0tofwm/rQmHxVIYnASbX6Rm5gY96USm1BdMgHZYwXpBCLzVL7tk05IgBem01BkoiCYvZoRhVVEZNWctyAKk84wKnPa09M41yMvHWmnx403vxBbeK69aY5bbn8OoiAbFfzD7/hqnDeMshKjCkwCd7xyk4XFObIsm1BAVm7PCkVR5Gxs9Gm1EhKdUCqFIUTAIUBiKKxHe4dzoMSQWQvekfWHdDudqNF3KOeiDz9R8+0i2+1wNijY2u2k1kmICserreJibH1gFoMyz/uo/YeYISoAsibEHNRJYqq1qahx5EorAoLzaFE479DeQ1nixLK4sEi30609E5X2OEywermAoVTkXkcq5ey5NfLeMby1IWNd3LbDfp/p6RSjDfsO7KPTEfpbG8FVutVifmGRAwcuY6s/YKo3w9ZWH2MSFpcWg+flJdozAwlUwK9COuia5Zng1iZTNo85A6H2wa/EgCD4AREhE80rqIZJpyFuVFQ3KnumlGJxYRHxGnyVkCFsmIQEp9uge4z6GXk+xEjI8z6q2eBJtr4G8eqdVHRBRC5AANXd9fvWJKY6qyaQl0QN0Xw7OFKpyrmptgRc2L+S4DxV9RdKjVeKM48tfRyerlN3g6IoAUqM8QgtnPMsLi0SZxZRYzOkUWHT+YFnqPucP38eT0mrldJpt6Edq+b6EMdvi0iFW8FcmnhNUVosPrj7ioGyRKuYBaipPMbjyhKlC7QYdKIofXCOyfMsrn20CihqpV4FrHW6MOsJoWExdsCn5J0plPPYyrsz6myEaAmo9sZ45ULgr7doLM6HnASJ0WFKHSAFpWhsUYArEC0hHZjAQLf4xCOPc3PHkZXzQXmsAFwwP0qBEo3WUtOPdrvF/I6d7Ni5j/nZBa65+hCjoSMfDVg9WzA7O8WRk1VM34XtmYEEquYqpQpB5tHjSD5fVQPaziI3BbTAj9VYfswEjNnucXVzaYgdoQMvCl+WvPr6g8wkWfBdkCxkcPUGr+HF1y8zO9XiT963wif7G6xsJAzWVtAL+1FGgVeB7WtKJzSeCWOEdalWjXtigzXvpyHbhk083euiiDoMbAN5VY8cUzClwnXWjkWGppltzEVUwCONz2puo7utauqvGyONLr0vvu0m3veB93Fu/Rjrp0/WTl+eFt4LSofox6BGCVmLVDQFomOKLq3Qokh0ML26mPAl0YreVA+lDNloSD7KmO21mJ2aIo8OciME78raghD2hotKXKl1BwpFQRnLeodcCr7VpqoFIT74ZThnox1pnHLOOYvyQhnL3lkE2+2i1RRiNzFJK7DszuHLHIMONQmiC3OVRQqlGCUJ51uzlKSMXBiX8QpblCStFCFwPUmi6HTaTE932bFjB/NLO8hzS2eqg9GGxx++j8HWBptr67zoZS/mA3feecnt9sxCAoAw5gK8d4g2YwtB5Snix4qcMXQ3j1UYQcbyuUxu4gqIgr1djam0T3j6+FGOPHQ/r/mSV+FLHe8NwLJyfhXpn2b/VMa9dsT62T6j0YDU2mCxExXZ/ybwNmLT68MTGGiS09mOIeQixyqEGFnvNAk18XwN/GNxYJwXTyZ0ExUyqDiGZrThRb0Ma0RQcQ1jv/swxPE9Pubf+/Zv+2ouv2wv/+Mdv8ZgdQPnPN1ulxe//AWUTrBlydr6Cp1Oi0cf/TRnzxzGeUtiUnCKxaXdTM8s4JRnPdtEUAxGA5y3rK6cpbQZShTt1iy7l3fxRa99Nbt3LnD47CoAealBF/TQZKsb2HSAJAbRGiMKlYayX95ajA/pxJy1WBGKtBsCi5QOah/vghnbV/sNVMwybGPiWrEKjcag8EYwaIwJMnrhSspiRMu0GPrgiOQaNSuCA6vmfLrIVGcGY1K8NUgSdCHKEy1UIWXZ7NwcU9NTdKemSVotzq+cZtAf8Uh/g82186yvnOeygwc5e/Y0hw4d4v3v5aLtmYME4qTWOQF9nGxrY2hnrNBaFo3Mvnos21UbsMGS+xgaWnEItcbcjxFEDZzxuNfCncc2uaoY4lSBFY3H45RDCnj0VMY77zlP/9RZnDOs5yNSn5K2epNj2aY4qtiSporiku0i8D6eI2lkHqrEBcfc7HRQNFdiz0Qnk08MCTdcQ7blIkC/ffjjHmtlmh+7dDc5iMD5hNDiMlO86I5b2H9gJyKOLCtQorj6mqvwXuGsJ8v6nDp2hrf/1CdYPf108KyThESnfNd3fDNXX3ctpS8Dmy4a8Y57PnYfP/sz7yAvtlCiuP62a/j+7/92pnYsYbAB+IFUTbFw5U5mTcq5M2d4/KFHgrxvEjAJ7ekeSZKytbVF2uqQlwWDlkFMygiNzYpokVCUtqCMvh7aCEaETpLQMQkjgnjqxZJnGcaVeJujxaEl6GV0YvBYlAqA7Z0Oqc1EQlJVJSQlFKrHfKfLTgyveu4LWZjrgla0263AjXjP/PwipQ3Rn9bD5tYWs7NTrK6s85GPfYxDB/dy6Jqruf6Gazl96gwH9+295No+Y5CAVDI+QeFDI1OwiATAj0ojbyolh6+x8tjzL5Zvqm3/gXWrKWRkZStEg4eWV3QTgzYeox22mEbmljCSIPEZ3oVU3pJoOqZDOXsA/bp/SNnuUXjNqiShiKQI4jxiFGJ9qAKEj0BpIz1VIXVUdOWsHEuI9uvgD1ClIbdhkFWJskohpVQoSgnhfXSgRDoJdfKqc8GqFLTaNj7PuTKqUUIcgASSVgdM6cocRuUqrYIycUK7Dg6HdTo8Wgjly0XFirsh+69XlrTV4dDllyMS5WIJgCQKvIHTJzf46X/773j00U/jygKVaPCW3Bb84i/8Ct/87d/K0vIsRqcxm5Hihhuv5Uf+6ffR7c2wvrrOzl0LTC8toURResswZh9e7TvM6pBBF3rT83S7XdbPn6fMCrRWDLM+/eg0VLKBTloMbUiyysJ+0hz8YAPfmcFtDCgHQ6QscVrDVI/NJCXfHCIeTKroTk0xGA3IuqDSFFuGF7Z4OiKUZVgvKylOTExlFjgr7TzTfp1r9RZXzu3n37xsgauv208x6mO14ehDx1k6sMT73/tRrjx4OZcd3MPa2ibrW5uhYItAu9Nix/IuLrv8Sm68/jr27t3LzuVdnD75DI8dMKKYV91AASqFGYHNFdERBoLs1BSTpUoCWWUDBry10X4YulAiaBX+jIAWRUsZOhpmWwk7Z6e4Ys8sO2ZKVDGkGJScW1/j8FMbISjYe6z3Qd4WuG5vj3+670bKrKSf55ztb3Hs2HlObI44laesjRTeeqwG62xAAs7igTKGqor3MRVWfFVcNDsBMXEqCM6HAqMqVhyqlJiekLhCRU7GacedDz7JZTMdZme7dBLopgmpMRit0N4xM90GDdqoYPWwIROuTyC3tpa3A44Jcq8F0GEDQ9BsSxTLSgxaiPJsCP5SPgRDeTRWeUa793DHLZc2TVXtRcBXNQ80ndse/wT8wLf8tffUi4ETvRmuv/FKsq0VZhfnMUZRFEPmN3eFOIK4mVylYLYgRsd18hR5n/7mBoMkxbQUZm4GPdUNCkoESRJaM9Ok3R7OOhLl6HWmyJTHm4ToOE5ZlgxHI6Z6LcqywLuCUZ0FOCpExKPtiD2nHuaGqREf+MBp9l59K9fesI8Tx1c4eW6FsnA88ORjjIYbPPngCW59wTWcHQ64+0MfZP+hA8zNzXPkyDGWdiyze/9BFnftxRLqMBx56slLztUzAglcvnOGX/zu19CsN4eA0lGZ5XwN5FVct3dVtGCQa6t7KzY1iMvB1dLE/AA6IoX4BaMgNSEv/pmz65xf3+DEqVOUWcZCkqBLT16MOHfuHHPzMygRZjotlpZm6LU6pIkmy7YYnl8lz4e0FvdiSVg73yeZnqMoQpRd7qC0JYXzFM5F3wMoCktuLXkJeekYFQVFUTDKLRaw1pMXltIKRenIi4IszynsiBJhVAi5V+QW8sLyG5/cRNgMrqnSCKTyllaqSfB0tCLB0xJHV4REPKUrmeoYkk5K2jK00oTpbotuN2FuKmGmp+m0DZ1OiyRVmFShXUZbC75QOFEYoyl9KOFlixD1d88f/zkBbQTEg3e1vb3K7lOWlo/d/Ql+6id/mmG+HjIbeoe10URX5CQ6DRmKtMbFXJKm1WJqbomlnfuYnV8mSVvoJCHppKGMnFhKl7EoMEgc2daAc/0BhWqh59uI1tH8F0LDa4uSd6Q26J5cPgQ3AJOQqlhkxiQx519FGBSSGHwCzsdkpq0WPkkRUWilsdbjrCfPRihb0FYwdFVW7LFuqDBtHtl5M6c2T3DNQ3dz9GzGc2+6nMeOHubUyTMs7NrF+ZXjPHjP/excTPilX/wVjh0/RYHl4MHLWZhZ5O6TH+WyK66m1enRm55j5ex5lJR86lP3XhL+nhFIQPC0KcZURRTOQjkqgFgWTCSUWI4a7UoOdSEhIFW6J+99qERT6QudI2SYruRVi3UF3bRHt92j0IZMHFnhmGq3uHzfPnriOXf2HIVyHDtxkqceWuHm2y6n00nRypCYdmD1tCLPWqyUlt07Fuh12hTDEadOPc5zLn8Baasb/M21QrSOoekeoxSmpgBjLkYiyIiTWI8vVkeulYqObDQi6/eZnp4maU+FkGSfh4i6zJGXikER/Mi9deR5QV7kZGXOqFQU1pCXwnpWslmU9EvHILfkeUlWOMrCMxrmPD3MyM943NESX5QUJTjJcVIiGpYkodcu6XaFpO3YOaMx7Q5KK6YTx/TSNFp5WgaMKnHOEFB4ZYUQSutIkpQ9e3dz03XP5+z58wyLER6LcznZKMcg7Nm9kyLPKKwnKwoKV2BFcKSMBn3K0ZM4axnmJbl15IXH5RbKnNHqObwu6fW6SKcV0U+laxVK52NCmOiFq1QIv7UWZwusSdFKUCqJocoe6zxGAndaOhvyS3gfXJqLAqcU1ntMSOOMlvBU6xw6MbR6LdZyBWmUoyLX631J3kk43znAJ8ThXY/3feu/4blXLfKN3/wWdszPo9vXM9pa53/97p/y9MljeArmFhcxMZCudCVlkdPShpPHjrG8c5kzZ1YYDkeXhL9nBBI4d26Vd/zK7walnrNY6xHRGBNdPUMuaEwrje6vmsFwSKfTqVl9531kj4MNVykVFCeVjKoU2WiER1MWQpJolAlUbd/BZa64Yi+ddsrGxoD1wYCisLjSMdPpkXnP/Pw0WV4E0V07Wq0QUGKV5/DDh/noseOMhnko2lGO+MgDj9DuzgXzohiSRDHVSWgpQUyCSRJwIYGF1SH2OxQ9CSGoTgSUodudQpRHx0jnxLRBJ3Q664iFLAdlDNNTXYzRJKbaWMGs5r3DEcJrp3oJXiBtt9A+MESJMcG0maqQkcc6sCWSBAru8Vhrg4edF5xTOA+lK3AFIRlpGTa9jclStHhclZS/LhTjUMoHr8bIoemIqXcuznHtTx8iG+UMsoy8LMiLgtGgxPmCXXuWAteUleS5pSgs1pXk2YDchnh8Zz3ZqMBaR38w4MknTnLkqXWK0ZAsG1DmBVt5wdZoELz+84LCeVrz0wwSTS4e2zLoFJxKsVIg555GVs5iveC8jeJQQNVFYUPBT6/IbYF1Yb2sEUwuuF6CVxqtWpTKsr5+lv5GieCZ3r3E+bNddBryTZQ25r8oFOQWl2iGO2/ApLDn7D1cdfk+Zqe6zC/Mgta87BUv5QPv+wDtFaHwBmdD7YfShehRLTAabLBjxwKd7tj6c6n2jEAC8wszfMlXvgzvPanREHPVGa3q6rQiEZMqwWhDnmUkMQfB+AUnbeFl0MLE9NeelZVVlHhmpqdwzmPLkuGwYGN1yPmzK3jvyUY5hRvSbXfIs5LpmSmuvmaZNFWMMs/m1pDB4YxUG/AOay1JZ4b5vSmboxEb2YhRBlmpsIMARrkbkllP5hTWqVAl1tnAtnsQa9EV4ywecWXMXASJSF0IxDoLKngnFjrBJJ7EBjOKbrVItCbRMQuw0mg83paoal7LICol7RZp2sJ4SIBOkgbHHQHTbZFOdUF5jNYkyoQEFSqYutIkZLLRRoeQW6eQ1JMoVacdT5IkBODo4CSjVbDJKx/UnIkxeKOxKmT6EeWYnpthxntsnqF1SAYqiUG3TPAKVAl4VYt4lXNTeGaIrrNlCLgRHXIP2iwojL1zeBv0LpaS0juwUFhhZB3DLKfICh4+cZb/9eEHObe5To8hx4ucrKMYFQVeWpRRea0TDUYx3esyN9XFek9ZhjgBrQxJC563tIurd+9mabSLqVaXfFNz8vwmG/1ZkoWd3MwepGMwCqYSj8q3WO6lzHY1x86v8PjRw5x+4gwHe4qlPYu0u22GLmehN8vSjiXaaYtDB/fz5LHj6FhVKViiK1EL5uZnSVtJQLyfwSb1jEACIoI2LcCTpGmYVGtRJsEoXSfoSHTYEM6BSdv1/ZXnVIgqDADjvI8IJPp7O8f8/ALWBkcRlMe020y3HLOLc7EPAacwxnP48RM88fjjaK1pt1uYJAVG9HotFndMRWAIyOfAVcu4MoS0ltaitWFjY5Nup0O7lVISUphJVGxaKiW/x1vP1mAQkk5EpZu3ISfCsCixsc/SlmR5ySCzZBT8ygdO8MhWFiiTKZAsFv6svAyjWkpcNCpIyE8QXnSIYgvtHNqWiLfBW69CuEpICUpUjQQVSkRSRoWy112foYbnkO5uXAdSSy3uaKXpSopWYJQPiMk7VGkRZ8PcKdBKkyQGoxzGOcSXlOWIdmrotrqI0ehWG2N6aB25B5OijaHdbqG10Gp30UlCkWd0khSJeQBaaSukYDcmJEB1Dq09RgWxRCmCdyRBd9LWcNOBeQ4t3sTm1job6+t8stvnQx9Z59hggE0c+XCIKy3Ke7Qx5B42RRiOMhJjaIvGJ5or9u3ia151Cy+6+Qp0S0hMinfBsuMcKOMovAkiAEFc2Nrc4oEHH0ISw5mZjCtIuOfEGTodzfRsl63NLWbEoKZDMpG8zJmaavOcq6/g+MnzaDUu0S4CnVZKt9Wi0+rEffZMDyUGTMz+qmJRz7IEqkQOIthI8YXgm10ntpRGZt+KK6h8DqIN3FoLImilYwXBOgwkAmMw3vtK2+5dBUKEpJ0aYRyjHIpKGpyXyqMTROOkxBMo0lRvCusseemiH1m4N1gaYsCSFxyKtN0NyU2VjoriMP4eYYN4iGmiLNZ5Ul3yO3efB53hvY62hWharfwQpPIpiMhNwKsqw1KwwIh3YHMosoA401agtmi81hO0I6glqkQpniQf0jv1JJuXXY4tW0ipkOqZgLjKru8DZcKjrA2JXHAoF5N8UGK8DendXEkioNwITYYqt1BlhpJWWNuyRNsC40pSCbkbjVIhIW2WkyqFFkuahBTbWmlM2kFpgy8sKkkxS7vp9nowXCdJDNY6jDEh54E2ZEWGszmbm+sM+hucXt8gL0a0evN4ZRgNBmRZTkqIQ8jyktEox0qOJAlTaYsjj5zgQ/MfZP3UUWZmZknSDl6g027TMgZBoVNFq9tFmZAYZzjMyQuYne4yOzPH0uIOFpZmsYUl1YpHHjtMW88w+4oFUhx33LCXUyePssE8eTHpWiICtiy564N38oIX3YEtS6z9POQY/P+ziQgmSWoHFy3QbaV1MIqzNgYBjiPTat+gKmzWU/vDR2dXiPKsc2GhKx0MVQEJzzYf+wrRBH2EeB02caRwlfLRqIpihsFIxLRS6yWqvqpkIg6JFY2UD2NWOspq3jdSdUe/9aoAKVDE+HAhJKAY5lkwx+kqWaojFKajkTylqXAKY6xcfav5wduIKyUoVnXQAVB7Z/pYkYht5sn4Sh4KLyAGbzoBwUhAbFF9P7G+Icy2gVYk/qvciMsyrGO0Ioh1iMvwdojuzuJVWpf6rpR6RAcy8Ii1SMyw45zFZ0PMicP4xUPY4QDjc+wgww9T5rVi88EnccM+fpSTFBZjHSbRtHqadKqFmASruwwTRWlbtJxF9zrM9BaCctA6dKfL9Nws8+nOgLiHA9IkxZqMO++9lwc+9TGmVJeF5R3MzMxih33OnT1NT6Wc8ZpC95ie7jI/1WL3jnn27dsFHRhaRZII0wuz9FfWQRKWphIK36bVNYy2CvI8xFUcfvwxrr3huXTaHZwNGad1otEmZXk5VHO2aJBnPCcgUatfBpZUGtFoyDZAJS6CpZk152L59QGMMWN33IuIRU132corTmI+ucm+fe06LMgF5yvPuao5N5n2qjneibGGDsbP3/Y+FQchACqk1m4lmsQ0HaoisFdANEEXGHsx1u86ptg+Bl9JVQMhZmUeA3wD41bvV92rTZ2QJZyWMYauqucymSS1bnVF5uCo4+vySQR/heoaY7AYQrbSYGqr3Mqkisip3t1G13IESTswvYBMLeJa0xRax0hEzYrzyHUvC66++OgHAaqw4IvgsGQ9XnkWt9bQo1MMsyGS+4C0IrPJgiHXfUZ2K5R+F8G3CtpoTndnGWUb3LLY5dqbn8MVV11BMRryV3/xXh54+CgP7byRrfkdwXw7cPSeduxeW2HnRx9Bki4bPcWm3cO1yqKcY/HgAXbv2g8Co7zgoceOsLJ2il17ryQTR9rrMOqvcvnuaTpao02La2+8CW0MRmuuv+ZaHn7woQsBgGcIEqiAq05XzRhIqkKYASn4+vj2tr3YRui3GfbJBYikas2w2xohUFUjrnP0jBFGY0PXwBqDcJrPrJDA9kKh2+/d/n37Nc0xGWNopyYU2GC4/er4MQ41llo8kDq7ce11WFHjKPqMIxurPupBVLMznjMIIoM2kUtrIIAqm1LtvSlUIeB1NypGflYZj5Suf4MKwZLeIGLGtnRpjKXyEq25u2rfxLrBLnAElDH6zsWgJxVSyysLIaVbQHZKBJsaIIV2iBfwKazdt066tUlneZlR6clHQ7y1oeKSDsrqza0tfOmYSYNZ9PTps2xd+Xy6tCjIGeUlWZHTnurRPXQ1j/QXWB8ovPTwCgoNWyKcHoI51ofd09juAmq2zXL/DDjLdHuaqdQE34Mk5fxWyahsc/NzX8D6YJUzx44y0zXMTbVotULxFes9LaPAWfbu2X3R/QXPECTgPTExoh3vywh0VVaccQvx30qNw2HrDPwNShd8BsImbPq3WxcqCQeLQaQ40YMv1LCLA5CYdFJVAUQXIo+qz+0AXB1rBuhsL3Da5D4+J/99HxymFIKICzUGYoqrAAQyRp71HFbASU11EannN5BTG77XiEomAGvi+kYTBCcqCDABisYIIB7zbEectQzXwCdRcFOAtXUwTYWIam7EuwYyquakOX8ScvhHMQcveDFBtnSRS9BJmCcfFKVKqqShUdejZOzCLYLOi1A3oDeNShPSbot0uhuTwFqcCO3pHtJqRTdqRUd72juW2JIEp7uodI1u2qGbpLRNBzrz5F2PH60gtgxjVrGEncQU7Uqjcx+CnbKMvAiiUimaVARRBqt7rGQD/uzOj3BozzSPP/AACNx22+3c8cLbGeYWm5ec29zir95zF1cceIYjgbIoOHfqNPNLc3z4rk9xYP9u9l+2H8Tz6fsfZ/feJaZneyTKsHJuC+8Kpudm8DiKzJK0haSVhCKZOLwqUbTx5CS6S15uBWcPF6Ruo8CVmsKNSJOULM8QrUINOxsAP2QDt1gfcr4H81RUJDqHwuClBEmggYQqnYBjkku4mCgA4018Ka6g0kOE49FjUitaOlI8CcUrap1AuHJMdeM2n2yVychVnVIlZa30GRPAX0sYFVsR3GqD7cARMjVXAB/OV7UJApD7kECkIYYEij/mOoTxe9bDrgKlmifquZJxjUpP47r4TPGkeHLlwIaMS742N1dJOqkRV4ijcFS5KZwAKgVC4RRtDCgdE9WO56Aoq3vAW4sVhUFRqBaJ+Jj4NmQ8FvEoJ4gr8Gi8UXg/JlwCML2I6mf0+qfo5mdJ/JCk1SZRIYZDvEaJItl5kNbsHFmZsbq2ESIUc0ueh/iXJx59jMcfe4K11RXOnjpBOdzgUu0ZgQTyvOD40+fY2NzgA3/xAAcuf4xv+tZv5OFHnuIPfvtDXHfzfr74za+m0/b86f/8BOfOn+T1X/Yyzpw8x7vf+Xu86GXP56u+/o3gNR+5+wGyYcaH7ryH1ZURo2HJl7/1eTz+yAo7l+cYjEI224WFDtffch333XOYm2+9nNOn1vHes2dXl/7GgM2tPolqY4jVeON+M9pgyz4kJmS0abg0Gx1dZ6P8b8x4ercjgWa7lLhQ3afr7Lcx+7BInTJxzAtHoNuesix0Ej8bgVMVUCsVk5OqcR+15WUst4/7GN+HTsL9qnKBrYYTTLpVtr4aSpvvPoFsBG/duG+qW2IchZ9EZL4CRF/hJD85zoqTBBAXEKUO+hORmAi1EpkqpAwgul5LiNWTvEPpkDe6jIjLxwxCSkekoKK+QQKRQQsubSG2oCzgU/c9QI7mBbfdgqRJUG8rMx5DrW0t8O15khy8Pc3M2Udpz7XwtsApIfeOtghWgW+1yUdrGGBtWHLwsqtoYzl14jj33nM/s4u7uOb65/DEY0d46P5Pc3D/3CX32DMCCZRFzvljK2ytO17+yuew5+AORvmQ/tYWWXaWra1ecOG0cOTIw5w5dYZ2+2WUec611+zjec+7ik5HKHLHsL/JO//bb7K4wzAaJOw/sJ/FxSn+y1/+Jr2phBe86LmcP73BHz/8KHv2XcG+PUvc9cG7mJ5u8+gjT/GFX/QiPnr3fdx863OYXdhB4YtIjUuKouTB+57g4Qee5Opr9/Mlb345eeGoMiErpUDrYJH4HFj8Sykzm22cq9CPgUHqLR4lgWozB5k4nKiArwLeJo9fnY+52aksA5oquaqrWG3GXTQVmMFKmoCqKgBX4kV4RsikLI1HbqPq0vheAa/SjeCviGgiZ9GYtMnfzT6a8ybB12L7/RP6pBphjN+tHmr1Hs6hEqJrukRdhMTszXHocW28JxpAA5JytsB0FTfceB3X33Q9iQmA7xBE6RhA1pgjnyLkFPkqxWMf4sjWBlfM7keSNkLwMtbOoh1MF30WRpucP7fChk5Y2dikWDlN1yQU1vPWb/gGejOz3Py8G3ny0XuZ6aRcql2aBP1vbM45PvaJu9mxs8fdH76HJ584SWlL8pFF0+L40fNYWyLi2bXnEAcu28/HP3QfD376cVZWLfff/xR33flYSFjR6TIz3UGpkm43YXlPj/m5HVx34wG01lx91ZXkheOOl99OpzvH8vJu8rxESQYObrr5ep5z/ZW86KW3kmU5zhcEqHO1PuutX/MKrrv2EN4X0V25snlLXXTjYsrL7dr/7ZaAi7WLcg8TxDzqArwi8vXbEEJF2evdHln3ivJH4FcKJHprxrDlMXKpnhs3e13j0eCVHgNOo0BKLUJUwFz9NXMxRuo9mTZOje+pP6vv0ng/GvdsO1bNkcQScBW0et9QjPLZ+yC4oOt4TsX3k5p4x2QsseKSgjr1WXCAM2iT0Ol1ayuVSGMekG3Pdriyj3/iAfypYxSjUdBXxIImRps6uciCGzBn+5hiSJblrOdCkc4hJmX/ZQfodNvkI0u31+HAgQO0Ws/wHINzC/P8wL/8dtKky1U33IhgUNrx3OdfyfXXHwBlUSiGmefvf+OrsM5T2hG2LOlv2pAHIO0hquSam67gbT/2HZw7u8rGxpDRYMTs3Bxv+dov48nHz3Lo6qtpTc1yw41X8eADT/DeP7+br/77X0x/uMnM/Am2+pb5hUWi9I1C4XyJdyaUqRpl/MLP/gmves1NXHHt/gigBd7HkF+xKKNwpcJTUGUWVlLJfYHqOQ+iylBkpKLqMrZIwBiReG/j90ClUyWheo0IiMVPFP8Yy8UTMvgFeCYiCQV4M/YJALy/EKAqDqQiqt4JNlpuQnWkKgI0ApmqtpaKz3ZMcgEVJG0DSCVN5UZoOloamgrGGmE0X7kyV4aDTtx4Lprix1jJMQH41bCqXxKVpjomjq3Ww7lQ1zK8s6stI+ItggYf9Q9lgdEa5U2IDSDkplAumESbfhjiHIz6cPIxZOUwfrhBMrsMqiSUuxesy0M+DQWz0ykbWZvprRabmQZJKVyBmmqRTrURhHa7jUlazM4tkvfXtm+Aun1WJCAi7wDeAJzx3t8Qjy0A7wYuA54CvtJ7vyph9/4M8HpgAHyD9/6ez/aMsij5xIefYOXcWabmDN6nHLp8mlPHh5w8sUU2ypibm6YoB9xw0zUcuHIPn7rrMFOdFvMLSzzx2GHm5qbpr82we88yx8/mlLnm4P597Ny1gFZdur0Rt71wGedL9h1cxiQpN950Bc97/pVYb8kL4dbbno/RBTc/70rOnFlFKxP8/Al1B7VRXHvDZVx1zU5uuPFalHi6HUVRGpSGYiQo3SWVHK08WVbU0+xjrftARBOQElumgMPoWLFIZIKDuNByIDUclFUR00ofUN80sXpVRxdBAtX5MbUNvcnkvRPy+NiRySOISsJp1ZDJq+fBGMi36yYrQJzou8mm+wtww0S/NeA3gLvqQ1QsgCKN15dt79VAApNvO/Ec78o6aCgUKFUTlXx8vHYyi1OFnIK7e/DWi8lcosjg67UjcCZlAfkQWT0NK6fxS7vg0FXYA1dSlGdIrcYpX1sTPJ5Op0UraY1zSBnotBw7Z7ukOkQ8zi/N4b3FJEnIsXiJ9rlwAr8C/CzwzsaxtwHv8d7/pIi8Lf7+YeB1wFXx7wXAL8TPz9jyrORX//NvcuiKJaZmZsnzgk/cpem2W7z0Vc/jwQePcv3Ny/znf/9nvP6LX4iShA/+5f3s2dtiZr7L4SdO8UWvvYP3/vldPO8Fl/Fbv/4B9u3dzfL+Frv3Xs0VV+/l5//D72F0waHLl/nTP34vX/v1b2SwtcbpM+v0pha48/0f5/obruLAoZ1sbm5y5PCQm2/fEUpx+8qkGDJEf/zux2gl06ycP0+eFdxy8yGefOIMN9xykKceX2FpaYHNrQ3mF6cpSk+3V+KsoEyB1q1gv/YWoxSFC3K3dxeaCrf7NdS6L6UorcPXCUhiawJ7TR0bLHrdmko7woWqquS7DUCalLIpyiiJ4dE6aNJrittABBVXUI8nXFNdHtJ0VyebnzCWVH1ECgG4xibHsVKxqXus3q56nghj0WIs8IdxbMdDjSaVstI5lOhx7UjGhVXGYlqlD6AuKeZRIfCrsgzF+zwS1h9VF2qVfATDDcg3AAv7rkYvH6RYWKI8uQ4meJKORhm9tI0SIU0MvZZi52Kb1XXFpplmsWO4es8CvbQV/VbKet9kWXbhS8b2WZGA9/4DInLZtsNfArwifv9V4H0EJPAlwDt92M13i8iciOz23l863zFhIZb3LNHt7eXG5+7hxLHT/Nkf3ccVV86CL5ifn2Vmbgmlp1mc38HaxiZYxczUHBurZ3nysWP41ypW17e48/2fRqkUpSyL83sZ9Yesn93ii99wBx/+4AOsr55ldmaWPN/ive+9i2ykeMEdN7M4N82bvuwF/NufeCe9qQ5v/qo3cvrMavQ1CMvnrOfBB56knbb5nXf/CUpK7r7rPr7+G1/PH//hh7nt9ut59NOneckrruG3f+fP+Ppv+gqeOnwCjeKxR06wc3kZj+X4ydO8+ctfwG//xnt5zetfx6tefzN56diuR2iaD5umQkSFvApNGToqo2qzgTA+VsnT22XhBqLwNS9csfYNu3wllmyj5koZrGhC/EZ9Ymzai9dtf6ivrqvO18DZVPJto/qqcbc07q/6qK6r56miui4WC20iOBWHVWGPi7JJiC2piowGLmycp7ICLgHGleXVmDuI99T4V8B7h/iQ50Ccxpc5FAU+HyI+uIEn7R5uaTfSnUfrlFQUBYDXJN00PtuhcMx3WnTNDMdzy6Zt4d0IW+Qx+aqQ6iSYDkt7gZ9Ks/1NdQLLDcA+BSzH73uBpxvXHYvHLkACIvItwLcA7Ni5i7d+4xczGmqWd/WYnVtgaWkPvV6L3swMBzqLKN3m5tuuIitL8NBuw9ZmxsKOfSzt3KA/2OLAgX1Yt0WazpANhpw6fZ6njxxn7dwhzp07T+lyuuk8r//ia3nu8w7yl3/xYa64eg+lhdX1nJNntuj1pkmSEfsP7ODUqXVwwT9AiOnCvGfP3h0cO3qSsgw54NudFp3uLEmrxxVXXY5qhTwG2JJssMWpoxt84Re9iLWNTe764KfYv3c/Tzz2FPd+8uO85JW3IzGcFhfLYF+UF25wkOJwhYuAIZEfuBg5ayoEYYL0STzvJNrwq2sq5BN/1LqFcHr+sfcyIzmqyBFX4DYejdWjmpzF36RdSgTwDaSw/RmT3M1kXw7Jhvj+44wVpDJ5+QWiU3NuBClGkGR0yxLfL+k6GesmvEevjdBbZny/92gFHQfT/btg97Uh7iXqejQe60ukLPBawBZgi6APEEHSNkpa+LSLT1t4JViVYLxGVAg+C5m2oChC8pT1rZLcaxCP1UJmiSKbi3k5HaNsRPn5DCDy3nsR+Wuvvvf+l4BfArj2+uv9wUO7USokrljaOU/7hZZsAGlHsDbU1/uKt9xKWXjStMd3/fBX4klBGV7zuhciJuG5t2vEGXK7TjFyGANZVtLuGAaDEVobPJp2NySF/qF/9o9JUo8rheffvsLy7mm+9we/kbIckqQ9tPE4F3L9ISFN2cEDu3jfn3+aF95xI2urOb3eDnq9Gb7r+7+KdrfNf/p3f8j1t17P1c+5kbWNIe32NMN8wOYgY3ahzb4DO3ni0ae47Y6Xc/V1N2ASE5SDcYHrlGo1V91gwSWwkt57hkWkSjHV1QTLXyu/qu9NQKoWgMY1RDmjonLuwj5i3zNS8A3f/Y/R2RDxBa4zExHQJNdwsfYZ0UR0mLkQxhsiy8S7NMbffKlaD2GRwRa+N4VIJepsv6cSX7b1U1kDRpvw9KeZ6bVwSYKNLLx3IVjMtEKIefVIwZMooXCe//jL72KLmHg16ltUdIoy1gc9SuQ0vFKg2iijcaMt3NEjpN0z6HYLbTfwSRl0uIVGklhdSmlOrW3w5MmTrJplfLfHxiDj+DrskhbKJMGj01pG2ZCizC+5Ln9TJHC6YvNFZDdwJh4/DuxvXLcvHvuMTWvNXe89zH2fuh/R59i35yoOXraDez7xKF/zD76Id/zCezlwqMuxpzaYnnXcfMt1fOKjj3Hwit1kw4zNlQHX3HKA2158I5/6+GM89ODj3HTjNTx95CjawPNuv4YnHl5lZj6EKBd5QZ4PufraK5iZmwdfUlrF1tYqO3YsoXWPRx8+gUmok3t4HyIR9x9Y4l/+1Fdy/swW0zM9er2Xcu7cJq1OD0Tx9p//NopixIvuuJ3SZRidMBj0Ee0xus0L73geW/0NlnZOceCKg3Q7neABZjSjfIRzqmZnq9YMUBIRNMJm6REaBTQuQALNVlHq+B0QCW6qoqviF/5CmGq2i9jh8XKhTN0UISS6BFfixGfbCH/bFhFbg6bXcvilb9gmdjTPRgcgpSRUJPZjYabCoX6ir20YLP4MCVsCFyHOQ2ljRKWPTlcaTII3CXZuGZSQlx4phrhcgQVnS8QE067DM8xLNgYj8tLjlEKVFjsc4ObbGITg2uBRxtButWmlLS7V/qZI4A+Arwd+Mn7+fuP4d4rIuwgKwfXPpg+o5uuaGxf4jV//CNausDif8vu/cx9XXrOHxx96jJtuXOZ1b7ydH/mBX+Xw4Uf50i9+Cf/t5x9ldfUEWT/h/OoxbDLktjtu4OyJFbKtIX/we7/LcMPjGLGw0OKxh05y6vQZZmZ65JnlNW+4kTTtIJIwGvZ5/19+nI9/5CH271/k1luv48//4n284jU3UycMEKIyLuHpIyf51//kXdx620G6rSXu+dQn+c7vewsHLl/m6OFzvP8vPsHC0gKvfv3N9Puen/137+FLv/w2/vzP3suXvvkO7r/vCWZmW3ibMjVtmZpe4/CTT/PSV74gRgVH01NtIpzM74/zbFlCIk4fKidNTObEp78AKUhFAX1M2e4cvuHdSM19hKsv5vNQgcMYJKT5xMZVn3XpL1AJXLJ9Bi5j3FsA+loD4OUCi+P26yfGsk2BWr+hH3Mpl9IiVAjPoyJnUGU9cmN/Eh2rPYnUzlkoHRCBMmA6eFWiTRs6XZw9jkdRuhKRYJ4snWVzOKAoHa50kHgoC9pimW230VqCeVSi16MIq+dXLjlrn4uJ8DcISsAlETkG/AsC8P+miHwT/H/U/XecZMd13o1/q+qGTtOTZzbnCGCRA0lkEAQzwSRSlKickyVZsiVZlkzRluxX0UpU9kuRFkWKosScSTGBRAaIvAA2p9nJMx1vqKrfH1W3u2d3Qep97def/d0PsDPTffv2DVWnznnOc57DMeAtfvdP4tKDz+NShD/w7Y5f3NYt27Zw6eVXMFK3jIyNou0yp0+scOkBwyOPPksnyehmXcYnN/H4kycZGovYf+kOHrjvFPWxOoFyveFXW03azQWUjEnSBdJUE8cxey/bzNfueZBbbrmWM8sNPvXRr3H7K0rs2r+dxkoHZWt8z/feySMPPcsH3/8Jkrzpr9+Lf1qLlCGtRodPfuabvOglO4mDhHvvvZ83vPllnDkzw5bt0+RJwtmZozgdAsuh559D5yf5xldzWsuar335a5w6NYuixs6dG/nkh59jbDKgUqty60tv8OWuoleVOJibBhferGRtUmNcPr9Ip/VG5Qu5vf1ZVuQGkLj+e8aX5lrhEPsLjnAxeDSK4qAee9CfQ8+JGZxMg+nD8558/981X3DBPwbX+LUHWQtLWO77+Ae57yN/x+LZ0/y7v/sCleExt6u1fPovf5vnHryHMC7x+p9/J+t37QcLj3z+o3z1A38NwM3f+SNc9ZKbydOMP/u9P2ZpaYkXv/QuXnT7nQjgn/72f3Djy17Btj17z8kW9K/ImAztW8JbaxHKdYQWVrsGvCrwRC1nDKzrHgNSYEyKDSS5dMVKgXVhn7aGPMudbJzvdmVsjjA5qNjpHgZO3xChsCZB5zml0gszBv812YG3vcBbL73Avhb4qW93zHM3YyCM4N/8wtuxOkFrye0vu5WAMqqkGJ1cz/hYjZ179jA8Bt1Oxhu+4y60SbjrNVtYtz6i27JYEzK9cZTGyhAve83tnD1zlk47IQgiNm4e4/aXvZjrbjjA17/8LKvLgk9/9GFeE9XZvn2S1CzziY8eZ+feKq+++3a+es+XESJ0aLMzAxiTMz+3zMRUxAMPPUdoElQkeO6Z42zaMcLxY7PkucNjnn/uBAvzK6hA0mkLVpdbRGFAoARWC44cOcKVV24lDCXGpLRbgigM6WRdhDAY08cG+oVIUKvVqIROO9F48p0wfvIWFXA+PFhTiHRuGq6g6mK9/r3orV5r04fn7l8g40XzlMHvGNjOySy8kCEwOuvpSLr9Bn654Ao+iGusdcZ7b1vB5v1XsOfA1bz7P//bNZ95/sGvsXj6OD/zVx/l1MHH+cSf/iY//Af/k05jhS///V/wo3/494DkL3/2rew7cAXHn36SHXv2cNvdb+JP3vmfeNEdL+X0saMYa9i0fUf/jM4NwYTDCIIg6GtjWCeLI6xxZCLZp2qjCpYmgMJKCwQu5PI9KgwGhZN9CwR0uh1QPvkoJTookQtHSS6Fvr2asWRpRrlUvtDNBC4SxuDyYov5mQaPPPQcL77xMpQSzM+12LWvypnTK+y/fCuYEus2u6aOCMHu/RIpA4zVWKNdnh3Li2+6nBffeCVSWrbu2sKgAMjr33oXQVBieuMUSWeFI8832bBxmFKlzJu/6w7yTBCXIqQV7Lt8C08/fQIoRERcWml0os7V125j/1XbGa5V0RhWF5q0WjA/02Lbzjqvet1tnDnVRMoSu/ds5o5X3MCu3Rt54rHnOXDldjZsOYu+ycFpL7l9P9VqiZmZOdIsQ8nIYxAOzXUtw4pr0GR5h1y5Vt4u/41nnnkSi4Cizc+aKTII9hXOgyk+ICjERMSa0AL/3b2jDGzO6V48e5r/+Ws/zoZdl3Dm0NNMbtnJG37hNwnLFU4/9ySf/cvfIe22qdRHufvn38nQ2CTv/uUfYt2OvRx/8hEuu/UVDE+u48t//xdIqYgrVX7gt/9v8jThE3/6m5x+7imkUrz8h3+R7VdcxyOf+wgH7/syWdJlaeYE+158By/7gZ/rnau3ZKzfuQ9xgcq5Z+77Mpff8VqEEGzadzndVoPG4hxHH3uQHVe9iPLQMALBjqtezHOP3EclUGRpivEiptbC5z78IV7/PT903sS31tUN9DAIjyFYPM9E+GcgpPcCggFadEGt9u9b48FEXFGTcPoAkXSVslGo0BhUFCFsACrEqhCNRShFGISuI7eFbpKSZRe5slCatfjgez/PwvIJypFlaWGJz33mEX7xV9/O7/5ff82v/eefYXQyQJgA1xK76xYW49uMyQhshtE54FRujTUEUYDWIFWGyRVh5KSpK+US1XKV9bdAkjq9gmp5ElvtOJVcKRgZH8eaUyA0xuqeTFmlFhKGE+zdW3Ydgqxi85achfklhmojhJFkeHiISy+P0cZ99vZXXIPOJTv3baPbzdi6cxu5zRAiAm0JQ4MSEa1u6vUTnMs7qEtgvNhGGEZ004xUg/XgUm+V76H4F1hCewPWGw4cSKUQ5D1DIHr7nXuEQn+x8DDUwEcWTh7l7p97J5svvZKP/P6v88AnPsCLXv92PvVn/5Xv/PU/ojo8yhNf/jRffM8fc/fPvRMAnWV+1bX82U++mbe/813UJ6bpNtzEvf/jHwAh+Ml3/SNzJ47w3l/7CX7mrz4CAmaOHOTH/uj9BFHEn/zI67n+tW9jeGKaF0QjeqQiS2NhluHJdb3rq09M01iYda9PrOt9ZHhimsbiHAeuuZKnH32QP/qN/8gtr3oNzzz6MBu2bGN4bKz3LYP3yljjVvfeV4v+IylCO6Cgk/eMgCx+954Bxf6FtJtAqsChHSYnjkKsNoRhCDaAIECZiDCMESrwna8chpSk+Tm40drtojAC1khmzh7l6mt28sD9j/PMM8+zPL/Kx/7p88ycWqXZaDE+NYQhR+IaN2IFtpADta5fX6CUS+kZz+f24iOuuMZ341ECaQWZTsnaTuMfIRAyRckYr5CBkgHarCXwiKIgRTYJVAkrM4SRGEImpyadkrE1CBGSG7eSWysxuTuXdjtDSUmWWXKjsDZ1YI8OcMVI2qd/+jUETqHIlRG7SgZJmmpXgVawCHt8e9ubqGu3Pk7QDxFcPb5WArrFJO+ThoqB51YlBo7rwgUJnhkH9cl1bLn0SiyCy+94Nfd99H3suvYmZo8+z3t/9Uf9M9bURid6p3LprS/v/b75kiv5yB/8OpfcdBf7b3wpWMuJpx7h+te+DQtMbN7OyNR6Fk4eByvYfsUNlKp1ACa37GBl9szABB4IX/6fIJTn7GoBjEGpgO//qZ+hYwQ61/z17/wW3/vTP8/H//69rC4tcf1td3Dg2uvd5wQIK/v04CLlCi4roDxr0BqXlSmYjELgpVj7xlp4JS2remclrALpCpMqcYkgkARhGWEco9HmmqzbJZKOyalCJzybZV3fqPbC20VhBKRS3PayF/PYI89x421Xse+SPTz60CFue+lVzJxdolQqI1BIGWJN7j1br+qDy78a4fvoFU0xcTp/1mjvGhusVS50EE6JVlsnDCFwZBvZc+T6qsVGO2+j2EQhyCFAoLCi6M9XWH3lz6soOPEKvcLzz6UrHpIFtdTH5UK4KV4kuM6tIwC8YKozAk5JCNd4VEGPEPOC20Dsbgs033o1HfqT3RsXBgbomo8XuMDA76K31BW7OkR8autOfugP/m7gHPpoe1Qq9+L31/zMr3Hy6cd47oGv8Jc/+zbvIZx32r0tCPsVcUK6XHhvPw8MuuLoPtm3OPeh8SlW5mZ6n1+dP8vQ+BRDE1Mce/whCixidf4s24qY31/nN774Oa668WaOHXmeUrnM3d/z/fz5b72zZwTWZBIGYijjyUVFdscycH99jUMPUB24YOP1C0SxoAnVI3EVrfkCFSFM0SXakOuc3LjCJ+uPkaZdAvvCtQMXRSnx1NQYL33FjfzcL38PL7rpSl752pv55Xd8F1dcezm/9ps/w/pNEy5WtTmItZqBxdaT8/K5aSlchxvXAsqX+voJ7x7E2m1Qi3BN+a7ggt/3r92cKIgaEE7tH39NK2/WiosMaia6fRVKBYClneje51yn30FXXgwc8dyTgUKKrb+y63Mm2sCx+k7Deccx1joSFZaV2TMcf/pRAB7/0ifZfOlVTGzaQWtliRP+dZ1nzB57vn8w6yeAhcXTJ9i07wC3v/0nqQ6Psjo3w5ZLr+axL30SECycPMbK7Azjm7Z9qzvdM+DFKSsxwBDwv+y94VYe++LHsdZy4pnHiKs1hsYn2XXNSzj08NfpNFfpNFY5/PDX2XXg6t4i0263eOrRh7nqJTeTpqlfvQVZmq45h97mnTJjPMNQij5aYOmXbysHDopCY3Fwkz7YKwRr8Z2dvEcqhET5Zj1YyPMMPRCyFUfLsuz/E9rw/9bN9aVLELYEQiN8wJlrQVTy41U4LXUhVW+ySK/NVmw9xd/BwpXivYEJ5b6zbwh6smADf/f+WgOOD6zO5+xfHLP4e3ASD5YHM/Be//otBZA3eE79moHiWBLIaXQzL1xhURYCm5MJr8pbnPN5TDix1jZYDxYaV/bSrxu4QDxh+4dwP3z5sHHPYXzTNh742Pv56B/8OpNbdnLdq9+KCkPe8qu/z6f+/L+StJoYrbnh9W9nauuu/kH9/frc3/w+i6ePY61l+5XXM71jLxObd/CJP/0v/NlPvAmpFHf//Dt9A5hvtzkjeN/H3s/X/um9NJaX+LOf/g52X3sTd//sf2LPdTfz/INf449++LWEcYm7f/43ACgPjXDL236Mv/pZlwy75bt/nHK1hlheRUrJ5z/8Ie547euRUrLnsgPc+8XP8Tu//G+56WWvWHOL3O9+dbcQeL0FM8CIFEK6NN6ApsAa7YYiUyOV90Zz13PCalfMZF0VqaWQWJAURjCSasBpE94TSLHhxY4JWMvqUpdy2ZKmGcZI4rImUIokySiXnIsdxzGdbkYYCay2CGm9SK2L7a3xve4QWOsqtVzTHdeU1GjXKstiMNr1bDP++6VQvdZWQG/ltoV7TDERYXC1LTyLF5IOK44FhadtfSy/1ogMsgTPnfzue9wAyo1A6oSaSghlzo4wYX2oOZhUOaFrGOvqzb/95oyKFba3Cq1RMRo0BBe6LG8Uf/DJL/H5pMVjt1wLt1zr3nv0E/393vTatZ+790O8442vhqWDcP9BAN5x181r93ngwwD8lxuvghuvcq8lJ+H+kzAMXLMP7v8n99lX3QHdE3B/v2RlOa7wx6/9Tl780leia+Ne28D0VshX/9R/6F2Du7Nuhb76rjdw9cvf4C5YWJg95rE7yeu++/sAR9uOwpgf+YVfISqVkEWTlgFvsRgjQuDSn9aBymEgemKx1msU9HCX88IuQAqfPRS9hUkifN/BwqezFJhCKQyIlCJAOcAQgc5z8jzHqItcVETnKb/7zveyY9cGGqs57e4iO7bvYnRiiMcefoYDV2ynXq+zY+8Yzz+3yC23XsnHP/ovTEyUOXmyzcteeT1f+dIz3Hzrbh74xiHi2HDgiu2cncnYsKVOEOYcObTA3t3rOT0zS1iOKYUVgsBSrtfQWiOFaxkeBDEI0wfm6FtoV5FWrJQ+XpOWC1HSztcC8PXk7oVzPIFi4vWxgEEPQji/EiklqRGM2Ta31E5yHMn3TczS7NSZEk0+2CmTGvdI11Jl156f9SuNW318W7YihVi4Xfb8zw1+XvisRD3tMlcZ5h0vfnPvfQnsibtMhQnPdWPKVqKFYTYP2V5us5gGVERGPbA8147pEDIZpHS0oKoMS7lT7W3mATm+gu/baQwUKy2Wd9z/YTxvz00TUeA6g8a7Hz64iaSx1vWXFCLwvSIzhBAEPnbqPU9r1z7yNXwFO2BcIDMgrPat3Jx1Dor9xLm4y7n3v18aJv33CGvIcpcFAwUmdcYCSSlSRLHqLTZOBwHyNIOLXVmo0+1w062XMFyfZnbxJAuz8ORjhwnCFjffciVPPfkUUlk+9cmz7Nm/j9tuO8AXPvNVVNjm9DHYs3uKj/7Tp9m8NeLP/+TvCaMGv/QrP83/fM/H+a63v4InHzvOwWef5bbbL+MLn/06173oKh5/9CQLi2d4y3ffzRVX7aU+VveNODyAIvoPvmDuuQl6br3e+WEBMLC/vcD7fZdbDGAcxSAd9EaM19xzw1sTx4pZEbO/1CLIJHUR8O5WlctDQagTEuUKkvpfIfo/B09ZiJ7arpCFDNdAOHCh+T/o6fhag20jI/zUn3+kr+JjLdLC9jgjsDlXlLpYFaANBM2YXXHCWWnAaLaVcg53Y0JruLa2wum2YrgEy10LMuSQrdLqsRnPtUsDk3+NBzZoFNZGMoNIkDuW6zqwWWVsrSTMJgFDgWEms9SDgHaYcBLQynlGBU+gOGLP7Hi8CfAVfMIt8tKFmcKHqUY7+rARcK7Q6bl4gPDXYK2L6bXWSOUWBNdNS3ocIO/px6rAKRjJQv3YA99pmgIvTBa6KIBBpQIe++ZBjp84zvjEFFPTm0DElKtlmq02QVSiNjzE6ZkZVCDRBsqVKs1WCzAcOzLD6AgcP3yMxfmTzJw5zOyZOcIwY+b0aZ765jFG6nVOn5xl7uwKQ9Uqp04ssji3xOljM9z/9acIAun027zlDXzRh2vtXYw12W/4M4ADfKtQYBDcu/B2/vuDhkNK1xnIyVMVK7ZmpiW4rNSlY2NSKxgOEwQB0irPfx+M7UVfn0/2B54w1qeOBleiFzjPCw3SNboBg++6/g4tLIkJmOmEnEpKWDLOdAUHGzHH2wFPLQuS1BKalAjNZJjTSQ0dQhIdMiJyitimL4cu1n7ZANg6+HrPBNjeAxs40f7/EokSGafaMB61QVrKQjMmWuRp6u69Vg59pxAOOd8pKbwr9622d3xjC2DP/a6NJbcD97x33wevb+AtWXReLmTo/OLk5EvAWpQXQC1Sk0JKp1DtU5Tn9+5Yu10UnkC5XOKmW17Evks3oY0hSwWT60YYnwx5+rHT3HLnLuIw5sAVl+Ml3LjzFS8mKl3PiUMtqvUSN7z4KqJY8obvuJNWa4Uka7N79z7m55rccOM+Pvv5LyKCzYSliLmFBqVqwPDoerQ21EeHem6cLWSpBBSFHx6jdV7AQNOTwlW/UNLgQupAxb+D+5+beSgwTSEGQgprETLoiWROSsmKKjERr5CLCi+KmigRokXsGm7YFLwbfa4t6J0fAosGazxIfwED8IIXV5yvv8YBV703Ga0kJeJYGlIXOQbDkokJVhapNefpJBln8oSSDAnjgGe7AdMjNayQtKxgVHgvqafNKM+beINb0eBE9Px023utuK9rPBzhnqrw+Oi6CixkIYm1VEXAiSwko+hjIQYjCc41RD2jPQD+4W2Cks4TMNYQ9MDewmNg4KDn338h1UAXrL4nIgQOA7PWaU164N9Y6xcM6Rv2uvGi89xjZBfeLgojkGWavZdsZnJ6vdPsV13CqMrUujLTk5up1gOE1XTb4wQl1yT09rtegpQ53Fq0KzfEpZg804SBi4u67YwgBBVovuP7bgMBeaZRKuJN39UkzxIgBBliNQhCJ/ogCga99VqW/Ye3FmBfC+RdaDU/FwCEwnDYNfv2jm/tmvfAAZvW5iihiOOAMwQ8m4+wPg95ZqHOzqE5vpxMkgqL1d0+Y20wJOifhDMq+I473jvoEaH6FmjN/v5Ee68VEwhwrq9PMFgfQqXWcjqLWTUhU6FBCsPC6lkWlubRxglwGmuxSRehY1ZsmVZ3keroGCMRBAI0ZQQCI4vQpXdD1m4Dk32NU+OsAmtncGEVnMenbYCQAUeaAW1hGQ8zyirnRKpIresgHAgXKrkOy+d//bkRipBFSOXEYvrUdXo4hbuv/cYlawyLKBAXZ3y6SRetNWmaIALXYqwwau0kw0Y+TJGOGSGV1zDwx8my/z8wAiePz/Abv/onvPN3fpaxsXGiOOZ3f/PD/PpvvYy/+Ytv8KM/fT2PPHiaI4ePU62WeMNbbiMMFda6i5QqQCon7GmxaIfGICOBxmLy2OkCoJEywuSGqFQlKtVQXotNa4uUKUJpXLch0esdUKzGBT7gNvFtvOe+J1Ds/+22wdChKB92x/CvW8i7Kc8nZZ7vjvH04ijWSr68tIEAjZGeibb2qAOuJn3X0zi03ArXPKTv2r/ARfnrWLUh7/7D30Z0m6AizLPf4N0PHumtfgWJ6TNhRsMImiZgXCSUdIfZM2cIbA5GYKRr4FFcZxiEru9kpUq1VgdpOJOWSazqMe/W3sdBd2rtL/bpr/Kee55CdZtkleEB5eOBzw84SZMypW1CUmBT0KEawmxXkS0cp9U1DI/VWe46PoA1pqcnFkahx1MKz9u5FVqENOpbXM9o0ye1FbeokDCnyBBcCBsosgHCUcWLsVC8nec5YLEDhM4sy7AIr1/gjttutTEmp935X9AY/D+xWasplxQKXH8BAtJ0FYmg210mFCEnj8/zutfdytzsrHeFNNa6ooxioilVtPi2vsuVS/shjScRBc5wWIGUoK1BW4sUIeD6GggT9VaRQUAQHC+8MAJFGmgQyPvWZKJ/nTFwXAeAPrfAGMd+FNb1NJyOMm6vz/KYmeR0XkKQYmzQ66MXWMjlwCjHD7bCGAh6EoKFZl/f033h8xNCsLz/LpYllOaOkFRHecfn3s9vvOXV7tyVwOSO3nrKShAdtKxw3FjCww8yunoUG1iGghIiqFEtVxkernL89HGMUqiwSj4yzcENt6IDSSJc6zirrKfj9s6kf08dFN5/2Vre8en/yX996c8RzR2ntfESbFx1q26vz6C7TiEMgRYsB4auDcisYVVoYgGLJkfc91FiZhnfuJ2l2SWsteg0A+3CwtrwECqK0Nb2jIDVGd2gxvLOlzIx/zxCCL8yF+68M369E+6tJBcOxyx4pqlz8/FZo+J3wLFijaTdapNrXHfpoojML175C0MCFwcwWK3VuOKKK3n0oac59PwpsswShg3+6l3/yMLCKf7ot9+Hydv8yR98hKOHzyD8xDcYr4qDTwhJ3wBCooRACKdH6FjZEmEdo1ApF2MqESJFMeki5zKJvPdgCj23njE4bwKfE8MNAHxrQgNje7H+hdz9C322LyLi4kqpLCoSiBA2lcv81PhzvLx6gtAacqFIrcIIV02oC+ahEOf8L3sDzuI8AIlLO/WD+vMuq38/em8LMANZEu+NW/+axaBliqGM1IaKbBJ350hps3fLTrZu2c5dd93OTTddx8T4KJVyBZNaQp0RrS4R56tgjUMBrEQQ0qNu9ya97X/5OffR33SMwNfVezr24LV570LLgFUjSI0hsAHtwLAqFFpDF0kgrWtAanWBgLimtjDQRbsf6lGMEh9iSf8TUTBEbQ/sFXLQMBeGoH8tRU5CFt6GkF6iDHJjEML6IjUv8KINQkiCsAC1i8+eA0Ses10UnsD6DeO8/fvvZHYuI6pIwgD+w3/6ERAJ1uQ0V7pMTo1z7MQMO3ZtRyBQMiIs5SSdnDAokaMxue8lZyMsiRs8uNXOufYGJQKs9fGodfRPYwVKBEgiFy8L91CNMb52wPasuJSFVJRDX6UHeC7EC4AilPATzyPM52YKzqcrn+PyWkcwKX5mpsHfzW7jATGBkSGGHKGMy2vY0A+sc1B/OfC7tYDGCIXKDQL/2QGE+5wTdP/3vBSB1BrEQIMRa337b2/IiLDCIGzKxvknyRonWEos3aSFDGK63ZSzZ07TbrUoKhpbScpoOea67Cjt8jpmo3EOZXUyY/pqyGLgnIqTLZSUhei9Zj0LUkjjwkABek0NiCPuGOMzEEIyLDU3lbpsKM3z4GzMkujQoci2KHd4aV16Httz2VUx4azACIW01rVDtxZrMvKijsRKV5EqFFYKbM7auVl4bQXw4C/H5NqFvQXoZ8AoiZvegYvslHJVoYGnmft7IZSnN/+vSI7/n9hWVzr8ws+8m+FJya/+xvdx4tgsH/7gA1xx9WYeefAwb/+BW1hcmufwcytcciDH2pBGY5mvfOQJXnzLXk4dOkq5ati8cwegEbKDsIo0sagwJwgissQSxQqE6woUSoHWCqVCLBmWBCkqaKPRue9fiaHb6fTiOrAYDUk3IahJsq4giDVKOnbWubyA/qpfTLzzN2MMWl9YEnpNxR99L6GdaO4cP0vesZxYqZGFYAtugNud/h8XKiwSPeUZg0KIF/AVXyAz4AyKR83Pe9N/p1c9KjdPEBw7SGP2DLnRPPHss5QrdZ4/fpRASpQSCCVQEtCGioqpiw7bpyLSrkTlhgxesB/JWqyjb8SKehG88ez1/fP79suvpQMdpSBWGXWVUTGCzaU2ad6moyAX2nubfiHwIYXw3ymEINd5D/AtMIDe47P+XIxxQqWB6o+LF9iczevLnBeLjwXwbFapFFZrChUDhEV5ULiXbdIaZSEx2Qt+10VhBIQQbNpW4aUvv55yucYD9z7CsUMnydKznDmzwhc+HfPk48d4+umTBHGLO++6ga/+y5O87z3/xNj4a7n/y8doJR1++t9tpFIpYXTI/V9/jA9+4GOsmx7nsst38MEP/As/9lPfy4tu3ke5onjPX3+KI4cOMz01weLCEtXaFD/8k68gy+HTH7uHjRuHvCtWjC+JkILjR0/x4L1Pcs11u/niZx/jTd95M9Mbxr8lQFhQky3nZwVeiGewBmcQRbjrXjubS+5dHmV3PfOiIxH9ZhyDR7lAtOcnQy9FJSTnDYM1E8rPPmFdEYz1K2juezS6D/hB2C9BNiJHdNpsap2lrBu0hEYISXWo4vgYwlG+g7CvpjNShZGqIFlaJOlanmtUyHTq0p7nXkux6Pc8AP93YSx7/QYsAlVQ7vrXN3A/CzuZaklqMy4fTnliNiMPJDJTBNagReZCE5+mtQMTXhcenn9WRYm11oY8zbDaYHLHGsSCDp0ugF1jKQauSxSBp8el/HeKHp7h2afC9X6QSjkxESl6BKUiDEiTBG0s3e4LewIXBSaQdHMq5Sk2bJlE24wdOzZTicuUIkWn0QYTEMcxUVCh1ezS7Sas21Bn/foJnnn8NJdfeQnXvuhalArIM4s2YK3h+WefY2bmOJdcsofJqXGuuWET1jqQ8OzpVb74hc+TdJqYLKTZnHUVWVbw3MEZTp6Yo7G66hrl2qJTLkxOD3PvVw+yNL9Mt91iaW5xzcS+ECmocFx7jn4vJdgXDVmbf+wbBlfDgItrhVMaWh/BncOznMpjMgyCc9M/Yu3/g+ck/PGtBetXuHPpq8WOhcrNYMxa/KvznnfiTrm/6rpFyXkb7azDmROn6CYJUblMqVSiFIbUyhHDQxXqwzWq1QqVcpVtY8NsKCna3ZxDTcuqzkCofi38AMfepTYHOPe90Mf9kNb3C2QwxBq4HryYR+8zDkNYzGIeWonYUukg89xPPIUsVKCF6P0s2H+2eKbFoXwrdKV85afta0NYYzAeoxBrntPaZ1cYUymlO0Zh5+wgpqD8LZc9508phfRVq9bQYw+a7CL3BMYna7z6DdcwNlZHErJu4xivuftmbJizafsCl12xmXaeMj65gf37txJFZUqVYbQJ2bX3UoyxxMR8+INfY9O2Ibbv2E1UinjdG15OmmmGx+rc9tIbOXpolcOHjvCW774SnUv27LmE2lCd6160j7PzsySJZHyixL592ylVNGfnT7tsQtEizFqiSFIuh5w+uUy1HrrY0G/nhgODW/9xu4qxwdXfKQk5IxCEjqsAUBSjCAHGCs9mFHyzUebv5q7itKqihcBqeb45H4yfB4GhYnVHuvgWnLiF+8L+T6sZBBIHB6qwnv/uXU/nphaBbHHMEFkWLFfWUR7fiG0lRN1lRNomMJZAp8Q6Is4r5NpyyZYNbJuwdGyVpN3k8TxCC4W20hvi3sn3T7VYSXuuvuldQqgzp+otQ6zQWCvPuQyPc/RCJ0kqJDo0XDlheN/cCEJGKGvJcusEYKVy6hBCuLi/OA9v9IQAozVGOX6B62WJ0zUIAqzOERa0VNAjP4m+BzdgaC0C4ZuOgCuIKzQqijEmRYhAY6wiwCJV2OOIGOvAcK0NQRhgLvYUYZ5ZSuWAbz54igNXbmV5eYnLrp1ChTGnT9fYtmM9+w7sBGPQmSs7vvSKTbzr//4ljOmSpwEuVbiDo4eWGR4aYt21w1x5zV606VCKq9xyx37SbkiWRSSp4C3fdRet1vWUyxHlasTkxhGCKCLN4cDVWyiVFItLqxitXToSjTGaUycXufG2S9h/yVa++uU269avW+O6n28EBAr3UA1u5ZCCHhPMGMvCcoeRkYhQiX6nGDVoVDxO7L2FVGQcyetk0mJliCOjv0Bcf6EwRfQnUc8lHdxvjdvifdhiH399mTYItXb49GJWwBqNlorGyG7aV9aRzRXqj3yaenMGqTRRqjBtw+ZtW2g125STButL67h3tsFz47tYCTZjbYowKRYvudUDOyW9fOGa8xQ9x0AKl/5FFq3BBvd1L7gmxrZnRBILT7SG+cMTJY7lBp2XmIhTByx7b63I8AD9ZqCiIID1OxRTKAxL6cHqPqYglBqY+HLNOa19RoOaEvTanoPDC4oKRiGE0xmw1oVaymcevOdRG6pyZnXhwuODi8QIzM8tc/9XD2Flk/bqAp/42KOU4pxrbjjAN77xKG/7nldy9Q2XonOBIMFYDVrRydoI4XjEAtc5eNPWKYTMCFQJrS2hVGBChkdH0BpGJ0rkGWzZMYGxVYSIyHXOhBhFCEGmc3bu2Uq71UAqSZYZrzHo0i9T64bZddM2atUaW7ZvolwW3kX0K+AAr6Ao/9RFEQzFPOobCmMMgQoIgwibZ/6z/WPBgBqNdVkOk3h3XgtA0xP8+1dttv+vxVORca51b8Iz8JNzwoTCgCmkGGAm4g1KAWBIBw6aeAgbVZH1lPzkE5RaM0yXaig0i6tNNo3WGd24iU6rS9LuEAnLSzaP8sX5Jl0Vk4ZlkBkyN1hUD1853/Nx51kAfgLdi9tdjC37Bq/AOIqT9xNNC1gRZZazMlqfwgrJhBBkebHirzXwBZ23CAWKSkXrRUMt9IA6bbRLqyo3SZ2BCM6vRhzwyopxpLXrOqW1a2JrrAMCVRj0IZvinGQ/jJRCIrRGGk2WXOThABhOnT7I2ZkG6zeM8aJbdvKJj3yDfd0Wb33b7Zw8vsiLbza00szfJFdiCSHGSIo+8kIqL9sVOi12ibuZKsNohRDu88YarHVZgh7aa10uWAYCa6UfK5a4FGK00ye0RhAEISKAVCeUKg5DGAT4esaA/mqv6a8czmn2NE9hUUqQtrssZRlj465LzBqG3MCvhVFpZppcSUyhefBCXsALbbY33ZHGeIWgwaVywE3uudrFOYBQEq37Q6/A5uyg8bMWKwxWOhJWPV9kghbLeUqUwlxjhcnaGJVKnUVhefjYUTbk4wSVOjfEbd70igmaWnFi2XKyZTnRzDix2uVYy9ARCjtQXCQ8Mm59my/AcRakn6RSYc3A9RS3wVoGq/mEFBhPvSWQCJsjhUD7+9OPjPqGg95dcFRzJdz5CCxG2B7lGN99Git8o5EBZudghqN/p/1/omcECqNTqAsFQdC/HuG0C5SUKJ9JMMLlvXKtGTzyudtFYQTiOGDbtm1IcYo9e7fz4H3Pc/U1u6nXq9xzz0Fe+vKrSTMNyoCNgNw/t74b7Oae+72XGgL6QI6ll+vtTQEQ3sW0eNfKOOQa4eI2gbPmUgqsMV7qU3jPw4l/Ygcpvn1jYKyHfwbC8R4FGTeI0lQzv9QCq0hzw/T02hQPgl51s/GuaJYrCj1pIwzCqn7K68KQRH/znoZDzC3KGIzwq5mUFNoG7qVBUK3QxgOrJLnur8YChULjolbXGk1iscoQm4Tp7gwbF54jp8NprTnRWAVrWWo3+Pyj32Rk3TiV6RGWuhlToxFhHDMcaEYj2DsWM1SrEQYxR5dbPHS8wT8/1+Xxlcx/Y4DEr5QyxJquu1e5cHMtjDwe0Ndy6A2YXuxgsdJRcI10VErpoXypQkB7/Vn37CT9IjCL9dlQixUaZcCIwHmoQhEH0rUPM9Z9jwEbxQgR9HGN856RP7ZvORZI2esNYZBoDJ1Uu74CmUVUZC9sUAKUDBweYA3dJOXhhx+lUn7hqX5RGIHR8WFe+ooX0026DA0Ncc2LLiUuBWBjmo0FxsbXozPhCzOMZ/mtVd45t4Dn3K0/+fsT7EJpuSKudfXaRY7W14P7qsJ+ZyDRMycFuag4TvHQBsOE3vcW6D+SVsPSaFpUkFEeGvXGB/ohgTsXa4Rj9gmJLsp/xcDkPHc0iQv8sQZJd8c3PTGRApEuzpC+IzDgZONzAkIFA96xwEiF1KnDKJBEKmdHPsOB5BR13WU5WaA1FLM6NkSSdEHD1NgI9WoFrOLs3AqTk5PUx8apDNUQwiARdDodlpdXWT81zUQl5nWXD3HdNstbPvAITSXAKJfK0xros28C65h0vUtHrLWPRdg1eJ+kt7gC3IKSI1Xg6k7WcCnswFgZCN+EQApJXaeMLh0kXTnJQWvg8FGGRiaZrMdIkxIGAR3rG7gUZ9UfSP3nbx1LNcszXw6sXYmwheefPcSJ4yfQ5SHkeIzppggpUCrw404jhWt2s3/fPk6eOMILbReFEZBSUapUKFdLWKuoj4wRBBaTQ6m0DqksCI02EUImTnoZ1hiCb2UAzt3Or+zr/y6KVdG7fd5sOCs7oCevpHRhb6H6a/vFRYWRKCrqzj+3ggSSMjIesD8cJ+taKrHzR4y0PdyrwAIsAms0hpBMu27Jg977ea4kF/izN2uLCjWJ0SCk6rny58b/A2O8cHp8PjwcWFQtUjsegECwnhVeWV5gd5gwt5Rx6ugx0m6XzBoIIkooxsdG2Lx+mmocs9rqsnF0DIRFxhFxKSZLuqhShVKpQruTstxqUK6UKZfLbJuS/NSVk/ze401Pkc57+EbxxEKbkvbi/8L1P+fenOMV9iyfXwAwPrcPDlPwuSBrLcX0tYVRFAJlJVppRqOUl03kfOq5s3zx+Bz/8uCTfOYrT/LT3/s6H8363oPndHA6LxorXu6lAIvQALLc0u3miKHQLRzWC5tI6cVHLKCpVcrs2L6NmTMneKHtouAJ2N4DBAo9QJMiEQQyBpybKoMErBNnAvpu90B/gHM5+C9kIPo5+AvvI3w9tju2HxN2oKinQIg9lVOIvqqwP4ITh/TxXLFv7xpFiBSRa3RSLzMxMYQKArQohlXfY3FEHCcp3emktNtJf+Xm3HMfiD3Ov+j+/z17YM6/P739/LcX/QmL0MAC0uWji/2NFGAVNd3k9RNddkcpMhJUwog4LhEIqMUx9UqZodEhpjZMIcOIrhGoapnx6TG2bNvCxORE0SuVuFQiiiJGR0ZYaTSxhIRokjTliuky68oRQmRu4qvQ5c0LT8CTk9Yy88TaazzXQ7IF3uTGm7AuFHTUcVzzV7xMfTFu6Id5woYoLQhVhA5AS4uMSohqmaX2Ep+952sglWN1CFhD8BLnn2ZBDlJFjYF1AjzOEDt1Ji0MRjr+iMT1JFBKovOMQEqiMODQoedptVoXGBBu+9c0JP0fwGuAWWvtZf61dwA/Asz53f6DtfaT/r1fAX4I0MC/sdZ+5tt9R2O1xfzZJRYXlxkaqpKnGq27jEyNMTw+THO5SbvVYWrdMN1uShRBnhmiUuxX47UGwFrbo+GeC9gNbucCemLNymF6PQKEsLh+Aq58E4tXiwmwxvK+v/0rmo3GwHH7RmLAuVt7X3v/DgBsfefQf8Cu/ZwxSCWZPdlg82q776IPgg7nOR3nrnxrT0IkGfZsyJoReK5N8SexSszSJXchTO68El+jXoQ3sdC8fLjJlWMBywuGUIbEccBQtUy33WJxaZH6UNmp5aYZrVwzPDpCtVShFEVUSjHVUoWR4VGstYRhiDaauFyi0inTXm0xOjxC0m4wFEouHSlxZraLENb1XxBgQ3fyyhHqfZcmh/n00qi9Sy0Mdl9fsRgDQgikLrgB7m018Fx79STeF3ALhCZHohCEMsAagbKu74UWhuXVNpIcGQyB0dhetyHbv8nF8Ysx6cVyC1kRYx1TU2tXLCay0Hl01hJEIcpjUAJnxLLc8OzhY6wfm+DkzDwX2v414cC7gT8B3nPO639grf3dwReEEJcA3wlcCmwAPi+E2GO/laIB0Gl3+dD7P8MDD97H9PrNZFkKtssrXvNKbrnjKj714Ud56smnuPuNN3LP155kcqrC9Lop7nzVdWTZhSm357L4LsTrP3dzLqMXE/EupFNlcftGUdRnZCnVCxlazQa/+mu/jtGuxLOXxhrIFPgvGAgxzt8K99Ih2T6DUMSbCJSwKBXw9WfmeHyp6fcXayd6/6oHBnvPpz1/l04XWyqtffOCx7O8+w9/m2XhtBpQwgGKAMIgbciE6nBD3RCVS1SrQ+6QNRgbH6fTbtNpN5mdm2dpqcHU1CRjI8OECAJhKccR01OTjE+OU6pWaDYbaK0J4xJZphkfH+fs2QWyLCfPMsqB5tr1MV87K+kIBlJt7n7lxoByzToE1tc7XOC6erzwvvfnPFNDkaYrOlG5IxQ6EsLvW9B5Bdop09Dqdml2OqS5y91L/34cBijBgLx44ZWtNQC9xyCl45UEag1eNfiMCj0DgDiKnLlTIVIpojgmjmMmx0ZYXf1faE1urf2KEGLbt9vPb3cD77fWJsARIcTzwPXAN77Vh0ZG66wud5k/O0/SabNjx25GJ3cwvXGSOFZcceUO5mdPI6UiS3KyrnbyzYTOHbzAoB1c5dfo/rM2ZCji+J4b3xtNfY+i6EPo9N6cFmGg3MrSp36u3QT+YZ/rafxrNr/69hmDvmCk13XJo/heemsA0Vt7Ki+EPkOxrgxaqP6XDwBqF/qkMQYVSPJCZg0LImdMQlUJYhUSjo5irKDVaqB1xsrSIkGwniCM6HSOcejgYRZqQ8yfXkDFIbv372b/pZdRHRoiimNGgpAgiJAyIowk4xPjLC61CaIytJp0OgmvuGQ9731yhRN57qTTLT15scyAiEP6KUDopzOKayyu03uNON0CCT4T5EI8Y7THAYpb1Svn8pWIBRbhCEoqDOhmGZl2XkDB4w9VgBSi37S00HwYvOcDdqDwSqw/5yLsWLOADWY7inMUgiCMsAZCqbBpTvj/Ud+BnxZCfC/wIPAL1tolYCNw78A+J/1r521CiB8FfhSgUqmz/7I9jE/VMLZJ1o2IQ0WYOLGEe+97GBRs2jzN1ORG1m0oU66WyXsOhk954R8sA4AdXkeOYhIKV5BxrssrwJV6Gh/++nVWOJFHF88XHV/wJcSeDYb/atFPsa2x6YOYlD3nSQ/8ZXtP3O0sRBF79h1GKUSvddqFwv7zjzo4wAYMhfVCGObcY9kX9izwpBtNr669eE9rwd7qEmHg0llKhcRRCWMEURSQJil5ljI8Ps7U+vUcO3KcxbkFtIRde3dzyx0vZXxinEAFBDIiiBXlchUVlEEEaCMYHp2g282RMqDVTthbC7hla533HV5wIJsRvXmeGV9KTH+l77v/F9qKUFAWUIiLwaXE5NqXKxeHccZBSTeWimDO01J8VqPbY24L4ajGceSbpyjvAZzrofkPFMRIIxwDRBtHfCpqWKzPLCBcOtYC0lqSbpc8z7ynIUmzjOPHTjIzM8f4WOUFr/z/rRH4M+A/+1v1n4HfA37w/8kBrLV/CfwlwP5LLrevesM1pNnV5BryLKfTNIyMKwyWN775drppythkjVe/4VrCsnFValbgCENdT7QyCCsdaIX1GI/sxfC9OLxXr+3dfnKEiDFGYmwHKQKs1Sih0Jkiy3J3bFyjxyJVKXxOHAouQOHWuedpTRHL+a/rYQ4WayUWDd54DZKM8EbLFYsUYh4+Q4Al9ynC3thZc2PpryiDP8+9/351lGJtmnCtZ9D3ivr/Wlc8JATYoh2aWwkvrVl0EFCtVZmbX6GsJUO1YdJUMTIyRqkU0mp3CKOY3Xv2oHPDxk2bmZpeR60+TLvZBFwabHZmmQ2bS1hpiGNFlmuCMCDPs14abH6+w407h/ngs0sYZQiFJffz3GiPvAvvLq+ppSgu5hyj4A26sdaPAWcJtB3095wuhBTOEEp/7wweP8g01uS0uwmO4yjxdaSuk7CVmFCirEAPPqDCO7H+2bjpj0ARSCeXI4R0BqEITazTFRDGFUvJOOqpHmdZRiQV1mrqk+NM1CscPH76/IFw/l34123W2rPWWm2tNcBf4Vx+gFPA5oFdN/nXvuW2stLgyOGTfOOeQ1TKAUefO82h558lUIpDz5zi+KFTjI5UeeAbz9HuJAwNjTIyNM3C7CppJ2NxbgWTaZorCRhBayXB2i5ZmpBnGWk3QwhLnjumoMkMWO1AFCORRAibEwaWKCgjCZAyQgURSrk43Hil4UDhNPIIsdIQ4rj+BT6A0M64ILwbT8+0/5uf/HE+9tF/xtgCqKJn2d19df8UaUEpJa975csH3H2LtaYnsjEAJ/W2v/+Nn+FdP/GG3t9PfvXTvOvH7uY3XnmA088+QeFfHn/yIf7sx17PX/zi21k4eQSspdtY5b2/8iNYrSnosANP3X9WOz6/CijWQGktk6LF1HCVQJWo1UcZGR13egNSkmtDo9libHyC0bEppqY2sX3HJezccwmbtmxhdGzKod5o8iyj0+3w9MGn+do99/PII0+xuNQgjmOyLCUMQ5IkQ0lBN0vYP1llWzlAkCOldpMSCDKNVIO8/AKjGfCQzttc6ODs9IB/NshH8ZiB8xBF37Bji3ZWCAHtJCHLMwLhhEqVhXIcu3k+EMefB9ye4yEIn5c1fhETFGQ4/51+fFkEcblMqVxGCOHCVSEol0rc9JIXI4P/zeGAEGK9tfaM//MNwBP+948C7xNC/D4OGNwN3P/tjpdnOU89/hT33jvDzbfs5gufe5QkXeLpJw7z7MEZxoeGefSRZ3j62SPs2b2ft//wrQRByPvf+3lGRyvcc889/OzPfR9//qcf5PVvuIMPffALXPeS/Zw5vcgl+/fy1S88xRvefCNf/eq97Lt0J1+/5yBXXr2ZmZNNtu0YpjpUZXJqjOZqTpK1KZdHueK6DQhpUEGJMI6Ioogk6ZCmxmnMiZSZ00ssnHYu2OzZFer1Ks1Gi1q9QhiENFYb5LkhLjl32OSGZqNDt92h0WgzPjnilG/MWodcFN4Klo9+6jO9sAYL2kJalIUWQKNfTJ665/NE5aLJhNt/autu3vIf/4CP//E7e3EjAr7xoXfz3f/5XawcP8JDn/wgd/3Iv+cr7/tzbv7OH6FobNGPk3pHxOQ5gc6xshCzdGHQ3qoruw2jiLBUpTYSEiVdjIb66DiLC0sEYUitLimXYwySKIxBKNK0w+rKCjOnzqDTnJnZswwNj3Ls5DzzCwlJArfeeq3DFlYT2s0GuTZ0rWVjKeINV2zmd77xDCaW7gYBZZ3TEcV9tcWNPeeaitcHJ55bWV2ptLu/hV5An2pQ7O8wAaFtD14wxqILopiXlXNhF4TSeRE9e7Qm/KN/Lr1fC+zH/bReI9GujRo97gClUtwjqUmvM1gplWkuLrKw+MLA4Lf1BIQQf48D9vYKIU4KIX4I+G0hxONCiMeA24GfB7DWPgn8A/AU8Gngp75dZgAcONdpd0k6LebPnmVsPOamWw5w+tRpRsfH2LJ9jJF6zEvv3Eul2kFYgRQRQWD5+Ef/kZHhEoeeO0mtOsSXv/AQ3c4qn/vcZ1Gqyac++QWW20d58OGnIGgzNlFlZExxzXXbOXNyCSUUn/34Axx+7hBf+NT9/PEf/Blf/cpXwbhCD03HgYsYlFIsLDZZXFhmdTbhYx+8n3/+yNdYXmjw8P1Pc/rkWR687yCNlVXe++53c+dtN/Oqu27lx3/4h3jmycOsrDT4zCc/x2tefhcvu+1G/vH9/wAoWq0Gb33j63jFHbdw5y038tlPfRJrnIrR7i0b6XRS7vnaV3nDa17J973tO/mV73tlv/7FexJJu8U3PvwebvnOH4OBVW9y83YmNm7r32xvCJQKyLpd0jRFBiGLZ06wOjfDtsuvLw47MCALd1gghXKCHbKvJmAQbKqGJJnFSokKIurDYySZM6JCRYxPjmOxNBtdFubanDl1lpPHZ3n8kedZXlzh2LGzHDqywFMHZ2i1Q+bmWxgd0OlAmilarS5xFDK/ME+7kxCECpukIAw37Rphc3WIzAQYj3tEedrzyPoegNdS/BYOgffhENY4d9u6Se0wpcJjL0K3gZDJWt+YxBIohfKAtLG2J0VWr9ec1zdAOjtnsvUN1YDnIYXssVbXgMvC8xosKCzVKPRGwu2XJBlHjhzjsYceJs3yF5x//5rswNsu8PLffIv9fxP4zW933MHNWMP0hnWMjq3woQ9+kU67y5kTs3zHW1/LJz7xAI8+cZIDV0zz1JMpI6Pwd3/zdd76/S9m2851PPfsTl5y41Uceu4srfYqCsXll+9Di1XKlTKveuU+PvPpR5ldOMHsTIN9+5rs3r6dbTu2MDq+BSmHWFhe5eTJJdKsg84tUQhSKNfN1biyVY8ZMz5e5cTBkyycMgQlw+OPPsGOHU1arRZnz87SaLS5994H+YPf/11++7f/ijy3bN8xRpa5fgmzs2f4oz/+HzzyyDf5g9/7L7z5bd9NqVzib97zd1SqNWbPnuGNr3klt956u3NnARW4TrOPP/ZNPvele3hutcLxbtfVFAiBlYZ/ee+f8JLXfw9hFPW8xDUov18+hO9Wc9N3/DD//Lv/gTCKeMO/+2989q9/jzu+72c9PtqfKC4t5UEOgDCC3CCCMkVRQ6Q0I5UIm68ANawUlCPF1NR6Tp48gzRtTp1c4IHjDZIkZWxqHJMrSrFrQpJndU6fWGW12yYXlvnjHRaWVymXhwiCLkbHbN1cZt26McqBZGFhlfHxMmmauqrP8RrXbok58zykwkmDG91lIsppakOqhMvL29Aj8ucspcXks+CqD13Yg03BWrTFF+VoCiik6NOg0Q6gFoLAHY1IBURh5L0Bh/sIIFSSREiEUP2KS/dw6ANVeHxAus96RezcuBoFiXKGSjgGI8LhE8pKIhm4IjXpQEMpAhaXz3L17s1gLM+fLJz3tdtFQRvetHmKV7z6Nu542Utc3tMI8kQwNBpyyRU7i6IrFuYWKVeHQGrikuKW267kyisOUBnKuPYGGJu4m1MnzxJGknJ5iEazSb1SZePWzZQqikBGGK2Jy0NAhTtftY/aEPzIT76eMBR02jm3v/IqypUaQmokkk6rhdEFa9DS6GRcfusBykrwuc89yi03XkWr+zgbNq5j6/ZJjFHc/8DnedNb3sTOPVtpNVpkeUCad4jjMq989c2oIOTA5VcwPzeLwGCM5b/95ju55ytfxRrLzJkZvn7Pw0yMr8NaS5bkWODKq65my9atPP+YI304GSvLzKGnWZo5zmt/+N8yN+setLQuupUmIbQZAYbAZp7yK1i/Yy8/+rt/i7WWY08/ztDYJBbNB3/r3yKDgLt+9N9TG50cSEf1JbPJcwKlyK0bPiUpGA0sQktkUCYMFEIoRseGmD27xOrSHLMzi5w51WBq/TBhYAhLZVqrKcdPt1hoHGJxfpn5hQyhIkrlnDCuIiSkSZfV1QUOPZ1y5BnN9t17aDaXGRmNMRrSJCEuxdy6fpKPHzpEUXthSdECTCx8a7aQHkMPL+3l70Wx+vZy/x57ERReAGCsl6gv9PyEN6ru7hTExKI0XHjwTvl2dkoowiAkKayNpG+MBrkC/l4Dff5BwVnw7/V/urJlbVxNSaE2FIUheZ5TL0dcuvsKrm4vMpU2+IdvPHjB+XdRGIEzpxf5vf/6Qe58+bU0mylYw/5LN/LJ932Tm2+6gk9+/IusXz/FrS+9hpXVjK/f8wj7928hlBGjY2Ueuv8Iu/ZsJIpG2LlrM0eenWGxucyOPVMcfOosl1y5hcWFDkpErN8wjBAwP7fC/gNTDA1VSNI2pVIJawOszRGEtNrLhBGUy7HXjXfPq16LEbnAqoBbbr2am2++gr/5y6Ncff1ewjBkbHyUx5+4h0Zzlc3bJsFOOp6asJQrEVu2r2fPJVtdjId70B/+xw+yML/Ahz7+GbrtjNe98lYqlZjhEZfWUYEDhyqVKuAmv1vpwUrBqae/yZnnnuT3f/iVaK1prCzzt7/8vfz73/gtbJYRRRGRMEzLNpvlCl0jaBGhESRG85X3/wVv+pXf4VPv+q/c9YO/yOLcKe778P/kpd//c/2HVHwhFptnjMc5p4RzMStCUJUunatUiFKB174T1OtDLMx0qNUi7n7jLezcs5EwMiwtrrAwv8K9f76KWrakbcP2HcPMzbYJZJnJ9TET4yUEw5SCEvv3beIfP/hxjp6cYXrdFEl3GK01eaeDHK5TKQUok/iqP5AmZzEPkJ6Z5/QCCgDWT+JC1k2IfqpXAF5YtqCKW4rULD41VxQT+YkuZX+iCt+E1BsI19/STfZAudVdSAG5ORdyGbzR7jdvoFzpu8Vo3dMPFP46pHK9NCQaSe7qQKwlUJLR0RFMI6PcaRNWXrgh6UVhBLrtnCxtcezEY+StYYJA8Xg35e/f/Wk2TY9w+miLhdkZrr62yXMHZ1k4u8CHH3uORiPjhhdv5Quf/Sbr12/kB3/8LlaWc/7pAw8yMpnwxBPT3PMvT7B3/ySnT3dpNud5x2/9CCpU/M47P8jJEzO8+rW38NWvPsRr3nAjW7eO8vnPPcAdd9zEn7/rPWzbO8Kmrde7B2D69dwWi5YWFUmMp6IGYYDBEEQhL7nlFn7oe76bH/2Jn2ZsbJyVxQXGxsbx2K5z1by0l7GaldUVJiYmqMZlvvnAA8ycOcWmLeNs3rwe0dt3YKWwBffBEOkOL7/zNt700puolCPOzszwf73jP/Kr/+mdCJGjKgFGu7r4koLh0FLVOVNkCCyf+dJnueK665mslsgT15BTCUPe7UCx4tFf8VyHI1fkJDI3fCYUlKWT0Q6lwmqBiBRGa2pDMWnapVYLqNZKDA9X6XQalMIqu3aPcOllyxw6PoORCbfefB0LC6vkqkNzpUJjUXP4UIstO0YZmtrAG9/+fbz7Pe+jXF1leWWRoVLE/NHn+ccPfZJ/YC+dqALagaZSayqBoIMktwHGOtnunmiHu5G9+1kQs4pV3rqGE66Qy7P+igYwvbnrvcNeaYU3JFEQUC2XHC4g3fMT2hIGgkBbyJ3BXMMTEDBAewTRf+K9twt3Y80mEBhiqanHQb8piXWGa361zYnZRa7ZUH/B+XdRGIEsT3n4oUfZf8krue8bB9m6Y4RPffJhMt3i1InjzM/OMTw2igpCpqZrfO6TC9x40yV02gHT6xRT01WuvnYHzeVVTh1bYGgspdlsk2RHmJyWNFaX2Lt/msceW+T4iTPE8RA/9BO3880Hj3Pk8CyvfPWLOPjEET7/yXtYt6FMrSbZvGkbeb6ICKTTbpcuL2ysA7+Mkb7QxVleY6232IKb772H/3TgMt76kutRUnLVunW8+/Wvp/z0k4zpjA3HDgEg0pSNf/zf+al2m9d++pPc/dEPc+2GDeybmGDqb9/N+pERRJay9S/+lCNHj1I6epjN7/pDvv9b3Mujy8v8RbfDDzz5MAD//PTT/MynPsVcu83v/9K/5cp16/jM298OQDvL+OMPvZ/Pvv3thPd/jBv2buUnf/HtRErxvje+kb3f+OCaY5snvsQ7PvG3533nN3/jjb3f21PTPPelb6AUZIlFKUNztcNQWfG5z3yMQ8d2snVqmlK1xpklTb3eYN2kRE6PceToLDpXJIlB5ytMTw2zfddmnnt2DisUo2PD1LdeQm5Os7ra4PgzR6l32tQr0+SkYEuYIhww1pGUhGtXh1R+nvm0odHeHe8vx8IWRdOe8GTByZX7qlBRTESAc6jp/n8pJXEcEUch2lhUYXxEhAwCl34Wai0lY/AgA1kDVzmKrx41oJw6Uq+BrPRNZNKEPOmSGeuERrwRazQ7LK0ucmR2jmH7v1BA9H9i27Bxgje99fW86KarmJntcsllu6gNbWTrjttYmlllcrrEvsu2EEVlZmePsbTcYHm1yZatWzj8/Amee36GTVuWeMnNV1MqjXLffQfJM8GunVv58Dfu4brr9xHHNepDI2zfsYVaTfGFT59hy/ZJ2knO84efJSzFGKuZnW3ypX95gNHxMovNFKOjXmdi8O4gLv1jvGW2voNPoRsUrK7y0r96N3fKAm0SnLHw6z/605yab/LJRBMEEZ9+649zfxiQGc3v/NAvgDGUAskvlRSZMBwLAp75iZ/jlDLsAf4cOJbDFx+fZb61xLhdIg6cjFcYRcggxBrLb979Nt7faZJ1U+yl1/Brr34ToxNjlOISFstHC8o0lp++9WV8KMudIs0Nll9941sIgohPJIJ/Kk2Se7TZyoB3P3iM//K2u4mPPc3OKXg63E32u9/BK/7bP/K2DYJOlvDjP/RdpFmHoGPJlEIby/JKg0q9xsPPHuNDX3uCseEYqarYqMrWkU1sW19ienyMMKqwuLrESL1GmqRIA1ceWMf1162nXHY40fieHRx5dJbw2CmOHXyS3dMjbBmusyPtskSVwM+syOSkxvqsf39Sua1A34slvED4i7cdoCc9VlBgBL1OPz5bUFQT9nQKpcvnKxVQKZdQQvW+W/hnlHWN7xtQVIuek6YYXOh9hiFL0l4tQ0Eb9oEZZCm226bTbrO82iYMAk+mgpnZs5yaOUQNOHTy7AvOv4vCCERxxF2vugEQ/OhPvp4sy7nxVosQIUEgeDN3om1OllluveNqXvqya32uXPOSm3fzprfdgRGOWVYdKfNTv/gdbiWIJde/5HKmN1Q5eWKJW192FXEpIss0l1+5GxUp9l62g6OHj7Nj51biuMTZuVOU4zoPPfAEQyshltRNeGP8iuBAQlePIF1jEhR5apmfX2Bo2MXxwjeCsMZgDay0ujzz1DEmRktsGq2jwgCjFJ3MsjjT4MzJ44QhhOUKMioTxhEbJ4epV0J0niNtRqkckSU5ZdFkUi9jTYoMK0jlziPtJpTLZVQYUCKmudqkWg7pdqHb7hBHkdOp87JU1hqyNPW9RAwijFAmJEszJrHk3ZO0EkPbStL6OidmlLsl7JBc31Mb3lbWVCoRc6dWAfjge97H1NgIl+7fz9jmLbRXG5x48gxSalazNo1mSlRVbBuGSzcrmm1XBShNTr2mmJyGKByjPlIljhQ6S+gaQbkcMT06xt93Sqzedz9R0KQ9XCZWCTvECg8x3kvfhdLQVAGmVyci1oqTDsbe+KnoJdYFFnTeTw/6NN95RWeCnmEowD2JwGrdu7/WCCf6aUAJRW5NQWXoZ15eYCswgSiKnJZFLzrrlzELDDbtkCddV8ki+sc1QlM1CRPVEqdXL1xBCBeJEVheXObv/uZjZLrBS269loNPnmFubomdu7YwO7fEhk0TrC53WZhd5YYXX8LXvvwYN926h9Mnu3S7LV726msZGilx5vQyzzxxmImJYXRuyXUXoyVnz5SZWldhcX6J+dkVuknOZZft4OiRM6gg4JLLL0GqjNlTywwPTVIZirjj5Vfy8Y/e71Vcfc7WGwEhjO8IgydmWBqrTb725QcpVSJ2Al/7ykOMjY5Qr1cplUssrSZ00yVCNU69BEO1CCEFqYZKNIKSKYeeeJZ28wRCCnbs2cbOKzYjheDhx55jaWmeIHApoDiwZFKQpDnN1VVqw6MAlOKSV6C1BEGJofoQq8tLjIyOsLrS8Li3K4Qy2vRYaO53SymCRCcESpG2OuRpgmx1GI6qVOsTbCpL9m0Z5thcmWeC2Hs+oJtNDj6zwDMHDwPwkff9DVfs2MGph+9hx2VXkjbmWFyYYf9QzO49E3SrVR48s0zNSFRnlV07djI6UWe4Pky5ElKqQBAERHEVY1I6rQ7VWpm4HDAUlegMb2K+PMamrE0pLAGSSZooEZD7HgzKGJqijJExSruUnxCq7w0UhgHR9waEc7GFNT5FaHrAYEHVLVZ/8MyDguEpPJPPOkFQR1M3vd4AgYQ4CkGk/nh9PQh6Rxv8G9+J1mKMdkZooONTwVzEuPEodEagpC9LcB6EtpopGRIr0+ufeKHtojAC3W7K8uIKSytnuP9LVQJZZjge4rknniJQXeRUmb/8k/cRxV0mJr6ba6/dTNo2PP3kE5w8vcibv+sOjO2Ahb/4kw+yfdsQE5NjLC10OTUzy3/4pe/nr//i/bQ6OZEJeeKpo7zxzXdw7Og8nUTwH9/5VloN+M1f/RCvuvsKXnH3tXQ6IQsLDcbWRX7yu4fWWO3w6ANP8sVPf42F+Qbbdm3h9InTHDl0klZ7iUbHAVPPPfs4URwjZABGI0SACkOW5uaYGhvmhuuuoVSKiAPF+nrAyJ71bN44wemFBvMLS0hpmZtbZd30CK1GA2s17U5CFJeIVExUjslNTmt1lSGdE5dKID2A5Xnz5WqFVqtFu5sQV2JajRZxKcZY49tmCYJAIWVIY2WFtOsYgblNybotFIJMWq67/gbGxof5/NgQL5qucfyqjcze9yTL63YA8KFZweSRIwyvOvWajVOTjA5XMEmDZ+77EpmSzJyaY2m5SV0qRkcn2Dc6ykpiOX52hgMvuZKx8RGCUJBnCa1GTqU2hJI5nXYXIQKiWokYB/DllJjbtI9tp5bdPRQhW4KWSwXKvsZBLkLAOKFXr7SDUJ6JBw6kxWUHhJMKE4BVEUJrl6LMNYFvba69GZXWN/UYABOFcT+VBGVykK5i0IoMY0Imh+uMD48i5ucJTU5S9HE8Lz0IPm+IVcp1PPZNVaXti+i4Dku+QjFPIE97JCElXMMSk2tqoaaZJE7w9AW2i8IIhGFIpVKlVNlGZajG4UMnePybj7B7zwZarYTKyBS1eplcJ+jccPj5OV5y8+Xs3ruTl77iBmbOnKVerzE8XCaOKjz51EGuveZarAmIY4GIBKdOnGJhcZarLn0x+y/ZyvFDLXZfWmdhPkMJxfLSCjY8w+z8JHmuOXlyliOHD7Nz7whaZ+jcYo2l1Vrmcx//Ekl7kW7bcOyQpt1a4JlnHiMznV58qUJFmnYduh8oTJ5j0y6tlqXVaKKt4Ybrr2aoVkMJQTU0RDXJeHUEs2UcnWsaq12MMeRZhtUZSlgC6bTlVbmCFAqdabRxkzpPE+LY9a1zRCNDpVxicX6Ber1GEDil2jTBq9JKhPccSpUyK0vLBIFCpxl5khGFilp1CGsM1UqZ0eEKN92wi1ZzI3Rz3vXgYwCsBiGrl9/OeHsevvQJ5hdWKYmUkaFhdOZ7LdqM0ck6Q5UyY+UhNm3cQGd4gr27NyMxGJ2Sauta0wtFa7WBGpbkWrN+4waCOKLdSVjqdOlaSTg0TqZKpHlGp9ulLgOitEkWlwCXgZOFIk9vBS14AMWvfkUvQoZCTwC84fbxvvDH8otp8fkiQyBwdQQ2d2rXnSRndmmJJLWUZcSBnXt42Y3XMlSLXO8Jn9dfkx0A1tQ2eM9E+GxGT6GqyG6qfp2DRWBl0Ksu7W2+0rCV5GT2IjcC4xPDfNcPvJwgCshNwuL8JZj85eRJSqNlGBqtcsW1V7M0f5adu7Zz39efYXL9EHvyLUxPj/DsEw227rZs2jzGm95yF488MsGBA9cye3aFsc4o937jMG9845v56le+hiHh6NGT/Ltffjmf+MjXWW3MISXMzTaRQYWZmSa5zqkOVagNxRgtemXfUkCnnRKoKnE9olxSvO17Xs6v/vtf5s/+/L+TG1BKkHeavLdU8662ywsrGWCFoBzF5DpH54b169axa9dmypUKYRi6nnVYpIA0F7Q7GdVqzJNPPkOuE6QU5NoQlWto6wZGt9OhPlRFSEGeZRTlzmHoHm2WZSwtLFEpl6nWymSugT1S4DURLI3VBt12CyUFURyzutqgVi5RLpcwNmTTli8yPjHKUH2EcimkXAq4445ruOcRJxMRfPTP0de8nMVd+9132hKzZxu0GzlRICnHEcoolBXsWjdOpazopl26nVVm5mbZMVIjS1OsLaTYcoyF5UXD2NQ615Alccy9xWaTrrVE1TpZVCHNcow1DIeSdc15DkVbAZ/+9zyAXrVnMXsLbkAvJveCodYiinSsdeW72mhQLrMgHDa3Jo6XBXvPWlRgMAbWb9lNJOGGKxVBbrjz5ivZvWur5x/glYq8OnVxoHPIQsLPdgfX9BWRhM9Q9MFoMDKA0PV47EnZeam7RrPNUrNJ82JvQxaEAUMTdd8Hfoh6fRSpQoKg6K/uii6U2Ic2Kbv3b0DncMnoGFjL3itgeLhGbhSv/Y5red2bbsGwijERINA6JZBlbrvrAFkuEVYTlmI2bllPGEqMgsuv2czPDL+VcrmEkILR8TK7du0Amzsn0boOFJNTY7z1e19HN+2gZER9fJjTC5J2tkKepqAt7+jM8zvTO8nTnEBAmnYIpCKsVahEhumJSWZnF5h5+hhLy01edeeNbNi4jmuvv47hkWFUqUaSB8ycXWZ2ZpbltqGbtEAKwlKFoFLFyghtLIsLC2xcP02306HdbqGUy1aUylXicgWlJGdPnmZ1eYVtl+0hzTStVheTJaSdNqsL87QSCzYkDCX18VG2bdvB5OQY3TRnYuIA3/E9r2N5sUscB3TbOXEYsGliku2bXcFoPvsU4cefIX/RmwCYufpVTB38CuhVymkb7VtlrSyvIKVkemiU2W6byV1l9g3XaTc75O0OSZpQLpeQUoEMCEfKCCnReU6eJSgbk2uH2hsRkYUlLImLv5VgN8s8J7YDoHBovptLwlOBCzS/GHl+Vg2AbT4h7+m+oI1BhoXMfB+YK5SKBPRqDJCKchTw3LEjvPIVt7F1906STptKvU4gQ3KTg/B9DWzfJq3ZBjMVxoV3haJQX8hW44MQhLBOtDQsIaV0wiU978FZLRmFBPoixwQQzmqnaYqSHaR0LmqWBQSBA+YEihyFFZJcC6QRIHOMCRibGMarcWOMQpChdQTWN2yUgswYlIoIhKvvzrVgaGQIyDEorLBs2zWFNdKvqimB52dbWygPaarVGus2TBCVI/Lc8JmP30OrM4MRBkveU0JOO21UEJBrTRCXyNOEvNUk63ZYmp8jjAJUGHDo5Cne84GPcNn+3cwtLHLd9dezact2grjCxPgoy8vLWAxpnqHCCGUMWdJBKo21glBaBMbJceUpshSCtSSdNlhLqVxm/YZpVldW6DQ7rnYlT7F5RtpqoLOEWr1Kp9Hk7JlTxEpx5b7LseRYQrbv2sroSIWRoSoLs010ltPMupRrMRMTE+75jY1gzi4gHv00AI2rX0a28yqqJx5l8rFPUdU59eE62zduZO+WLWTCYPOcTRvq6LRLK2uzmmkynTM6No7RhlK1Rhgokm4Hqy1IgbSG4UhSUoJcBSRSkWaGzOYgYRTTYzU5yQXlwcBBPsAguNZbc/vjEAvSIvLMeQLWoHw6sT/tvaiKED3gEAtGpxgEB48cJf3YF1BRSKBiXrJ3PVPDV7rGNcp1brJiLcDIOTG7Lf5VEhV4fKG4Au/Jef8UIRRCudeLEufCW5ASSlFMUKnCkYu4dkAKQb0Us9jKCeISYMjzzJF0Mq/6azMMCcJalA0QKNJMk0sDuSPzBBrnckmDFS69I/HFHwEYG7mdrEYROuIIyvU0ATdoVIiwllgYnHiA9guG8t4AJKbL8edOkHUFH/rARxGkmMz1rHMME9BZgtEZQRhisoxSqYQQlk6zAWhMHpBnzt2cayu+cf8KTz71NPc+8E1qtTrbd+zjuhfdhFCCchzTavv+cljypAsyQ+eQdLpkSUrSbmF1RiBiwjAkkAaTdkhMRi4VGzes48ihQ2zZugHylPaSk3KbmJ6kNjzG8uwckRLs3XcpI+OTJFlGXSlajS7NxZxSWVEfiWg02wgZ0clzdntPQNSrqPkGqrPinufcCZKJLYjKKCKO6eQGsoTQVjjZblKr1RgZrpNnGd00IUtTl40XEq01WaYZLZXQeU6adJEyIGnnDA3VGStHxFKxXKoyE43S6jZwwiwhlSAnMG0AFBLri3wKbYAivsYj6G4bjME9si5BZs4DLJiEjp/f+3iPwedWdev6ZNocaTKMbXDq2FMoAWE4xOxwQCdPGI5Cp20iHF7jmqL0RWd6mx08L8h9tiHLc4JA9jQoeziGpzILFSKCvgq08bJ4tdERRBi+4Py7KIzA8Zkm/+Zd9xOVIiBDiYRQaJQNCVVApCTlUFAJFZEUtKRiJumwd2LSPbtAEASCWAhCcCmZKGZxaZU4DqmVFaHVBFKACmklGaEKqEpJLRBESiOVctV6SoHI0VaQ5BnjqoKUhdtoSbttRHeUieEaX7j/yxw+8gi5Tn3hk/EqxH6QGIPOckIBWTtHBIqoVMGYHK1zlFIEQQRYDAHLrYyv3HMvOk2R4lNM/P3fMTE5wcjkCHFcJq6PEkQhYSDpdNpkmWXm5Bnq1SqVUsDi3BJRADbLSLGexirJckNuBGOjY9gspbu6iDIJIyN1RsfGaLbajIwMceVlL2N8pE6n3WWoUiLHoEPLyflFRoeq5KmhXC0jZUZrKePAgb0AXCFSrt28jmh6HfzL51GLSyRj04RRSBTGlCoRgXKxcDdJnItvNEEY0Wq1iaIAKUNKlSrV+ghpkmIRNFsthkdKpGlKpVonDCNqFQhoYmXAmU1XsfTMUchyjE6wVjMlfHZAmr5u5MAiO9h/oLcC9wqL+oIhJs+QwikNO6/CNRbp84n6alLuEALT1XRFiF1p0G23EVIyUc+oBxEBCqxFBcq1M7f0DM8a0lCx3Ps/TZGBsEUvjGK3fniDcM1JlW9Q2vvfuM8F1RI2v8jDARXAlxtNGqsSIUKsznEdVHK3WltHigiAwApEEIKV2CMnMHjtfwFS2J7qisWprrobrAnQvoWYxFpDiCDKUsq5JjDuASvpCkmkCBBhxs58lol1WzBWoAEpLcutnH/+p/tYPX2KJ+7/Au20ibEZqnAPfSwphDMCRlsyawmVQhlXvRaoABmXyLIcYyBUgjRLe3FoGAfoNOHsmSOcnTnCFdddQ6cRs64+RprlKJ3RbbcxBtAZZ8+cZt3UCOgMm6UsNVoEYUi5WiLPDO1OTrvr4upNE1XKgSAaroMKyZqrrB8aYuvmjQggVgJVCgiFZbWTkquMlaUWcejuz3PPnmJqaoI4DIj86PkP64fotixfzHyd/OSkW51kSKk8RCAThutlojDAAqvNBrV6jagUYYVEBTFSSsrVGkIq6sMjlMsVwriMCmOCsEQQl1FRSBT30DFaI+s4W5lES/dsQiNJfKfkNcQeDwT2CoegT9PvcQSKeSed651rJIKi5aJA9OTG17juBVnIGqQS5MIQbD2AFSWmVIcXbRzl2qsuY3FpiXI8TaZdolEq2eMu9QeMG7nuT/cdxpiBXoTu3JzSdd+L6BkDT1aSuA5YGEOuLZVKjNHpC86/i8IIbBgKeMeNo/z1Ew2+tqrphCWs8LQPIRFGY0RArqxTfRECYei1i5b+CRovsFCAO8LoHldcFDFhYYWNa2gqgtARaHBrg8UiTU7YyZiUKcK3fJa4dE1XCJ6bO86xuTkWVQTGOFQ2T+m3HMWxxnAPLAgcWGOsQeucUEqSdgLWECjXTVlKi8b2Gl1kXsFWWkN7pUG9HtFprVKRNZKkS9rpEMclhodrzM3OMDVWxeQZnU5CkuZUa3WSbsrRw8fQuWV0fIxNE6Po7iodAaValXIUYhLN9s3bII4ZHR8lzyxJswnlmNX2ArabsrcWcObMCmP1CrGVLBxfICpFdLpdrgE+NZNwsJnx4PIKfw3o4SmUFUitqY4MI0kRyhGA8ixlfGKS+sgoMggplUoEYQRSuexDXEYoSRCXqdVH6CY5lVodYSVxtUJnZpHE5CgZYoRkbnwnxhxGyhLCZqyaopRY+Yak+MnilHb6nZagh9D5pdeB0O45K93FWIPUBmmtVwmyxZH9wuQxAj9BjY3I85TWNXeQj66jevQBomoXbXPWrd+ECgWBDAiQpP08Zc8zcdWJ1o0jazEmQxgnQW+BUDhRl0BKhHDzIMf3wxQCIYx7z1+3Nk4mLg4iOrr7gvPvojACRmuu22C5et0I73mixUfOGJ5cBWszjKo4MQWlMZlHesmxUiKMxOK02d02wLoqLKu33rZQmh2sxLJFgqjvPTiYzWKFwQgvJeJry0ESAFGekGkDY5PY01VM18WhrkzUfY8UTvBUKC8+YS15niMDiVWKUIXkWU6SdZEWwjBACYnOuk6/3jowSyiFCgLKQxWMSchTweriIpVq1ZXS5oakk7Awt+CUcb0IaZokZFnCzh3bEMYQh5J2Y4FarUqeG0g0uTBcce2LiMoVciTN1NJupWzctJ25+RM8+dAjXH7Fizl4/1NkqWZhqEylqonjGjOzOUnu7u0njq2gKmXiK2+Azx3CGmfQSuUSpUqNSilA6IRICcbHIyqVilPfUYpa3VW3haUy9ZFR5mfnGJ+cZGrdOlZXm5TLFYQQhDIiikOaGSSAthphJd2whEkyrDEEaOL+eo4uxoC0UAB4vorTDRPbzw4UDWW9ey502nPbi8pB6TMLQhSueb8FnQXXDARBHkhyJN3MNf8wnlyUW00xkvpg5CAgKCk0BopuV8ZYT023KA8Oau2yA64jtj8PKVBBvxuW65fgSo+DMPApxQtvF4UR0GnKsaePUq4HfPfece7cWeJfDnX5wPGQk+2clAxrQrSyGCUQaQlLjlYWbMHcGuBh+3n+LfgRbhNwIQlwt7lVPVChw308yCIlyDzHmBwIMdEwIj+JkSHS5oUAr6OTWoO0Lo3jJnpInmckrSbCWFQUo8IYiSDTOdYaqkN1lNCsLC05CrA1aKkoV4dop12sztHdDiaO0RKSNKHTbjE7O8P+/XvJrSTNlkk6HcqlgDxpYPOcvKWJwsD1UBCK42dnuemW2ykPT7C0skKlUkaFEcOjNRqtVe79l4c49fwRquUAG4xSLo9z+23X0VzMycnYsG2aMHQupqyPMDd7muq8V7PNDYQhxgh27r4EJTJiZciTNnnaxlhNq9Wi200YHRunUq2yYdMmhIUNmzcxNjFJkmZEUYkoCmm120yODxFJxXLihVYD97SNUGAloQrZOSoZ9hoHORajlCcCFTG86kl0+0fcn4SikKJ3YUOea5S1SKOLftV9kFAPEIn8Z4W1PmsosEJhe+3MCtfei8QKix4MRc4dkFaAcBLnQgUI1W+7V1yLm+hFtaRBKlfOLD2hxeFTjpSUZSlCll0l5QtsF4URWO4k3PfEN6kqyfj4KJs3TfN9u9fzg3tD2knOXFbn+ZWE+1civnwq4VlyMgOBdTe05+INOALup5/ggzmgAdT1XCthi5jM2p7HoLWnafqegwin+WbTDjbVCDQiCJFRHZIVhM57hy9WDrAuXZikCG0weYLOM0zaQagQwsgdXyja7Tbjo1VK5ZhOJ0WVYkbGRul22l4XMCUuhVSqJURUJo5LJI1lV7MuBXEY0e22qUQRGE1rZQUlBIFnmGkMca3OzXfezI4du2m1M6dQKxVKhXS7KVLlbNm6EZUt0mwG3PnGu3j00WOcnFti1/aNHHp2hk5yiOl14wCk3YxQQPvgQwCsrylOdXN0rjlzZoZ9e7ZRjiSLcwlDw+NUyiWCQJGmCSoIGBmpk3balMsVxsYneoM4jsskScLk5AQqDtG55eRCE43xMmmGNNcsN5qMN5sMV0cZXm0CoDEoVQRn0msP9l3n/ngpFo4BvMAaJ+BhCyERUaBsLmPg4/Ji6z1no92kVcoh/1ZQLMDaNze1EtdOTqgBD3Zg0Ep/HkZhhMtg9ekL3ocovs+rCVmjCaMYaUyvH4SxhjzLESokjEu+1fqFt4vCCMzbMn81P82WhaeZzp5molbhJVdfx7YtGyBNGRkf5faJKlfHHV63Lua9h9t8YM5iTcAasccLbRdKBfUsuO2/U8RoxXvGYpWP92Shs+cUY5XJINdYnWFxnXapj2ObEtteBd3G5rknsYROdrvrMABjc5TRrtW1celKg0bKwA0wDSuLi4goRJRj1u/ew4ZtO4jznDTPaLfbyDjGGE0oDKEyDNfKtJptHnv4m2zaupVKrIiVYHlhyVGJoxAhA0xm2bFtM1dcfa2PtzO0NcSlElIIksySaY0yEaNT6zj57EFOHT3IN770WW6+4+WsrrRJc8nVN+zji5+5l+W2C4O6nQ5hEIFQ0G6wPkyZ7UJJGAKleObJg7zkpuu5cvNmSnFIGAVgDcuLc5RCSRxEIAT1ep08z8i6XcrlIaSUlMrl3gRsdzqcWW34fnuSXCp0u8vps2cZG4khKxF5bq/DiZzRtsgeit5bMKAfGsrC78fjRwahcx8Wir6dEJbcGi/8eW6rO9clwLn7rkcAUmFN1muYK/zEtb1+FYObHTBOzlBJKbFSEAQBYRD0UsS9/4Ufw14vwYVYos9byHJUGDvvR17kKUItA56fvoLjo7tYf/Ypth2+l9MnP8bkyBih1nRNxq6pzWw/cAWt+Xl+4MVX8y9zJc6o3GUJ1qz8g1sP2l3r8Q96CL33Bt0I04v5AuVjLCmQvlGIyTLHxvJNL4W1GBEgKsOgNWRLjn4aC1d+aw3kGUK4BhlGKZRVaJMjgarJCaQk3rodnafkoUFVq9SDMjfc+QrylRXylQXwvRMq5RraOGktk2tPtzUsLyxi8pwrrzzg3O1OkygMXKdtBFu27+CSyy9ndGIcYySdTuoKj3DdbGcXlhkdrWIyiEoRGSkHn32U2eU2V197NSeONJkYKzNUmuT6G/bz7r9+PwCVUUWnWSOOJCzPEqiIQCcM58skJmF6eoxHH/4m1UrMgcv2sWnLRlaWl1ASsjQhkILxqWmElCRJQrU2hLWGbjejXK262glrnHqxKEA4gVCSydYJ6qWYvJmiggVUeYcfUxKLciuvUP34f3AcFKnfYkx4rr4wuctQ4T5bgItOQ8C53VJ4KfKCgmxxYqCFsg/e+BRAX2E4ALwk2PkDsxh/fvR6I2O8loDBY03eCFjwFY+SVPu/ZT+zYI3BKu+1BNELTb+LwwiAxQhDFsSc2nI9qyMb2XPoK6T5KhWbUEsszx5+ngcefIBNu3YztHcjodpAmJfoqgsAHhcK8desANB/AIMwje1lFordDLhY0X/EqQs5ENAa3SvvdPtIbOS03IyRkBlUYAkkdMlRxiDDgEAKpM5JpGBTpcTV0yOMjq7DvObN3Hv/V5mZPYWwksmpjUxPreehg09Ry9pMjE+jTYPcOHc172aYLCXrJuTadQouhQFJp8P83CzW5EgRkGUZGzZs4bIrr8LKkGari5ABYehXGCVptxPC0KH1mezSWk1YaayQZJq9l+6gNlQhDFMWF1oYqRkZG2bnddfAP8KGzdeQ5Sk2D+H0QQ63DRk5o0PDRM0FrDFs3rIZ8oS022Xu7AzlUkCj1aBWrTC5bhpjod1uEQQRJtdkWcbo+IQjvxgQMsMQcdl0nU+fXUAHASPzR7m8eZiJkZDhepX6cInNxoVjgQrRvk1XMYnPHQrnlNt4G2GxNsca14G67zi6SkFJMU3tBYv/bO8LDFhDIIMefnDe/ueOyzUn0h+XthA79YOw1xa9lw43DnfCt8zzRkjbHBFIgjAgLv/vb0P2v3kTCFtCywxrBUvDm3jo8u9guLFIPe8Q52fZOfMU06WA7ZumMF1DMw0wMkcUnkCRCTj3pl7otXPeL+y2oJjMvkBD+PJS/3lZ9H8b6DSDFD5us46QoX2DU2MIMawbrhHkliUNWaqRRhJFZcyQQnYNE+USGMWJpUU4fJg8EyRpisgEQ2MjHHnuIIe/+Rj7tq6nFS1TH675mndLc3mZlZVlVldXWF5ukKYJo+PDLC8vsbS4TBwpBIJWq8PYxASpMa5ENkkplyOCQCIV5DqnsdqiWolIu220tqRpRqOxiskMTz/2OKdvvJH9l20BYXj2qVNMjteZOXgEgEtedhudbsLJUwvwACx2DRrBwRNzHNg2zr7dOzly9HnybovR4TImD1maXybpdrjs0kvJDVibU6vVEEhmTp9iw8YtTvzEqzMZA2Q52yopQ5GglXW4ZOZp6rZLOa4TBhnDMuBA14GTxuIERn0PwTXhP2vIwgNDwU9Ua0HnfWPhQd4e83DgWP0hXAh9FNkHr1asM7AaJR24PDDk+x7pwDH6vw4WOA0sRL0TwIOZ2n2nrzOQvlS6ECMNPaegXL/INQbdY2kjPENLWEsuJXOjkyxKC/lWjo4f4La5J7hxc5l/7IzTkJAF9Jpj4hV/wHpqZqHmS/+mDXoAov+31Bbr9eWktb10rSxSR9J/WLhOL1Y6lBltESrCysC1uDcZInP5WC0SShnsaTbJlEVkKaUoIrWwmKxyzdB6nsznUDm0U8ljC/NsmD9LXKkgtSWQIaKTcM8XP0ZrfoaTQhOHMcMTVYbGR2muNFhdXqHb6TI2Nob0aHEYBpw6dcYBgUrSajRZWl7m8QcfIKrWGJ1Y52rN2y2kLKPz1NktnWG0QdgyRluMzXvqTWdPHea//7ff57u+7wcRSpJlLYIg4IknvgDAp/70j8iVJN93m7t2KRG5Yqwe89BD32Rl4STj48MMDVUII0UQKKY2b2Z1cZFWq40MIqq1sqPhmpyp6SlqQzWv3uQES60IsDZh85BkfTngxPwK5dY8RxeXuXrbOqpRSBgqrq05T8Aq2U8LX3ATPSZeEQr4VxHaOmNeYH++EKn3sze2+j0KhTVIYV04QXEsSxSFnFnp0tSzXLJzne9OVIxD1mJU9L/PCZUESIMnBxUZBuuHog9f8swVEAnHkJRFAZFw6sRI6dLZ8oUXwovCCAgEyvhmDXZgzmpQUmBEjpE1vjF5Nc/OLXOmUkNqiJFgVT/H65uEOj5R/6EWkZmDB9wqagGZG2Kl2FqP2T8eUS3D8tIi0qa0kpyNmcJYg5Igcak6NZiuUQE6LCGCMhIwaROROoktIQJyFJMqxQqDjRWz1hIIwaXlKk8vneW2ySpHmwk5ETdPjvPA8dOM7tuHtYqwFJOnKTaCeHKE+UaLTd2ELElYmF8klq7mfnxinOpQtZcSWlpYJvSVd1YLAqsZ6XbJDj7N7NQ46oBzF8MwQgmnQtzpdEmyHBUOUSqVqZRDlqVAyBIyCHpstZvvuJmjJ07x9//wITqrJzkzNwPA6LZpWrVpli57MXzxz7DaEJmMuk3YvWM9jaU5jMkpbYi9l5HTaDWpVCsYoylFIUoq8iyl2+0yPDZGs92kXK67ug8VILHkoWSkUmF3tcPzK1VOdxSV+SVa2jAdVVnJ4b4nDvIaABU5XKCP9w246gyECfSMQK/br69DMoVGoe9kZHyTkcKr6BkAXLl5rwmucB2rQdAxmizJSFXi5rqUvcXqPA+1OKGBxUxZxxPAGBorK26U566VKVIiTYaWoVvxlaM1G+81GG0wYURQGWL+5MkXnH8XhRHYMFTmx2/ZC1jHePKvW+tcHGU1hhQrAgIR+NVYgshRwvf99aWiQC/fKwAlA9fRVfVdLykEkTRUAsH4UJnxisBkLXKd0FxQdJI2M6dPc+qkM7JZp02nERJVqo6jXQAzQjrGYVDFZl1sZwWjE/cdquKAJGUZUgqdGKajmJbJaBnDpWM1nm9rtk+OM7fU4ohpM2ZiJE66LIoiZKwojQ6RpyHdhRW6OidJU0KlSLKMWm2o56qGYUCr2XRCl1KSGkOoFdVKzGRcIpRgH3mck8srNHZfSm1snFatRrlaI80zwjDC5Dmthmv+WYpDJqemkWEM1lApj7Nt21aqw8PEH/4CSWUGYmd8ValCtO0SjIp7zzRAU0pbtEWLcjlGCeH7EQgqlQpYTZ6naFtCKEdu6nZagCVPEiq1EZcT7wF2AtNpI6XiwIjhYzNVFjbuo37yQQ6dWiQ0goXEcqTp7n+IQEtwoWY/EQD0Zm/PuS9eL/Adq8Hka1dPS7/FPX4BLwh+ojiScOGiB++MkFRCw56NowTlGGN8MZtccwKDIIU/N7dsWZ+40Don1xmY3AHHabIGu+rhBD28wIGJudYYKWi1uywtXOQag+NVxQ9cP0YQhPTAEFu4PhYtDDYBKzNk4FSBlRZYJdE4NRrnMnkwz7pySqwDVYxxCLqUrr2YNoIsy9GpRsmczFjaqaXbyUjJ6HSa6LyJljkm0xw/fIKzwSyXXH2JqzEQOP19IxAigFIVuzoDeRcrS6BTpAqRpNSDiA2lkKOmg84Mm2olTnY0I1FI1yqUjhjeVGV1ZolxCa1Gi4naCEEco7VBBSFpnhDVKiRZigQqcczC7CxJ0kHIkHbTsLqyjBCCUqlEu92hWqswXCszhmTT5RsIShHJicMsPf80x1YWqW7aztTGzVRHRokrFWrlMnEYkOY5rZUOtVJEVCoRRiU6rSZJx2C1ZGJsgqE4ptv1texAO21TaswTjhb97gxSaGqBhcxSqdSQ0pJlGUmSMj8/T7UUIE1OqRS7FKOQKGEoxTFSQJ6lIALwkuEiDqnVhwiU5EUbVyk9uczSpddhTJMdRz/PV55fYe+uSzk9OupOIZT0ewjgK4kHswH0XHtP6ugvxEY7bQsRUqTqHIMPsJbA8w8MrgZAConJXAoYqXyzE9fYtGszjIgZG99AkrZd6bHPKvVnPfQJb37m+3Zx1lqs1mjfRKZrDcishxUUnJai/ZgTRnVGoNvtgBQcOnqcavS/0HxECLEZeA8w7c/6L621fyiEGAM+AGwDjgJvsdYuCeeH/yHwKqANfL+19uFv9R1zc4v81V/8g6M3ovx1OX/LpBojE/JMgHHkGYlACUsnz9FJRpZllEplEEULKRebWWvJ0hSTa99QVKIKkofVxEpSrZTYe8kudu3ZSqWi6QoojdcxusvJ2QahtZydW2BifIJer3sc7OPafGmnJWANQoQIFYNukFtLICy7N40Tri6zNy+zPKRoZYpXbK3wD4dmuXPDFOPbpxCjm7l5ZJlnNk3yzIlFaqOTdBsN6vURhIEgjMhTN2EipTh17BgzM2eQFqJoiEajQ5allEsV0iQhzRKsjDHdLmOlUUbWbSYWmuXDj6OCNqzMMVutsFyp0Ox2mJqYYMGnGmVUJghDjp88ymOPPUS5XCFLc9J8kdWVJTZtWk+9XOXU2Y5jBgIyUERkZKag5rgBnSdt6vU61VqF0ZEalXKVoaE6kGN0TlyKqNSGqNeGSJMOcVQFa+i0GlSCElIGBMpx7ZVQ5DonjEN2bxvntukOn5pP6QxvQtsKtViztKI5vv4y/3w8/Gf6Ez2yllT4ll34VmTFRHTJHaSwWJNRAENKCKcnIAob4tx8Yx1pTBuLJUcJSS5cqtXZGzd+Q+p0ui101qEUBY5HKHDckx5aab0H4cuejfXfFxIGwtPBU4zIqdUn0GLWg5QG67ELrTVpt+sS3EZjbUA3TUllwMFnj7JubOT/vREAcuAXrLUPCyGGgIeEEJ8Dvh/4grX2vwkhfhn4ZeCXgFfiWpLvBm4A/sz/fMHtbAq/N6McqCo8Lxq8hQuwVMCCto5Z10NVhVOhsdYgc+nzuIJCTNK1di/SfRa0QBj3wKXVrsZ9IWP66CGueWyJqlmis3iWZqPLaqfL1NQkGzZqduzbybrpdagg7LO3hBMvodvEZAmhAhuVMFEV0nlXhGJCtA2YDuHhVpv9Q+uoxxnPGPiJK/ZwZGQc2WoyGUji22/gwMOPcaSxhBqKabfaGGMJhCIXiiAOWV5ZpYTi9MlTtFoNojAEHIodqIA8z0mzhFIQYtotxpKIHXsvpVJTVI4epdpeYq4UILIOq2dOsxrEDI1NshgKRoQAM0kgFQsLZ3nys59j8dgR6lNTjJQE7W5KrjNKoWKkPkWgDaln52EhVn2RDIOkstJgS72GiAOisATEBEENnYfUhmqIrI0Qlm5XE0h37MZqh/rQEErFBEIS4AhZ7SQl1zmtlYyzCws88cQ3OWwmEOEESWWIrwfrENM70VOjzFfX+YFdCIoWDwwcxdz0sYBzth7xLM974aQAhLEu3u9hS87tdpiBm9SBUKQIJ9nmtQ2dyKyXLPMDxxqXOuxVrQjft8L3l1dCIJUkzTPnCZiMRqONsCFnzrTYumUMSei8ZiudYhLOqBSqQkVWQVjD0twcw3FE1Gtjff72r+lKfAY4439vCCGeBjYCdwO3+d3+FvgSzgjcDbzHutl3rxBiRAix3h/ngptRIa3hdf4PD+j1XDfTQ2atcYnaws0TPbJH0Rys+E30AZzeYfqBocVJjFHSCGtZ1paDTYM1EbK0ARNZYptwS7iEUYb6yCj14WEo8sS+8aOVGabTQoSS4UpEU1dIlBO6lERkdDDLy8gyvGh6grPaMjFcYUJFHFURW2zGoWZCevYoW9MuDzeamKUFZNWtiBKFimJkJ8H+/7j771jb0jS9D/t9aa2148k331upK3RXp+o005M8ieSItC3RME1aEElQAmkasmUZDoAIGDYgiLBpm4Zh2DRo0JYlUDLT0KSFYRpOnmn2dPd0qK6u6oq36uZ7T95phS/4j/db+5xbXdUcmqJQ8AJu1Tn7nL3P3mut7/3e93mf53mN4eDohLErBGTLrMHgJUOICeq2xlnDqmupDvZxMfLwaw2XygLlF7SFoessM9/QLRcc37nNeHOL8WgD33hee/V7zOdz9janhFu32S4d16/vcHg38OCgoChLCpN4+tln+cf/8IQ4lyDQrpb4+RzVO3EqWISa1976Ps99/HmuXL3EZDplPJ4wGg0ZlI733vguhYXxsGA4LljODcs28sabd7j38AF37zzizq197j46pU6BtlmyaiKpinQnKx796B+Cj22jqw3u/PSfotCaSE2IwozrLLLjK5UB48SmVhwSQRX4dYfoXFoNxKSh61BJn2spku8stU6/z3qO8nhKic1hxczk+QB5ipE2RnZmxNz1seCjsu3Z+ibN5SwJZaTtHGOiqMSF6pf/ye/y3/pjG1jbg5g5uGiFthpXmLMBqNpASOzfvs+odPjuvyQVoVLqSeAl4KvAxXML+z5SLoAEiFvnnnY7P/ahQQDUmcAhm0Ksz3EvD84rWuX2iDyk1qldzOXDGROLc5Bw/qZ/OOVgkfLMd0AlTdRCE9UafHKonOZpJQM2o/fnBldaoimkFvMNp8eHeDdFWQHHBDTU7FzcYTw7Qm1c4OmB49ajR2g/59LTE969/R7DasL375/y9vfvclpaVvNTmoMRuhqR0GxdukJ9cw5K0WbqrFbCjRcZcmC5WND6yHA4QoeEXi1R0XI4hN2yZbG3wUFTcnJcEyZD3rn7kIdxzunBMcWdOwRVUAwGTDY2uXH5AvXxIYeLUxgUTCdDZrs3uLC5AUli9NPPXGGxQFppwOL0FLe1olfnpQSzecNXf/MrfPfb3+J3rlxgOJxQFgPG4xGT0YjTg0NS8qAdXfAsFjVHh4ccHh0wXy0pxxN8G9i8cJnWGMbOsqxhWhS0pULfeof0xEsEmZxCSi1QYHoquNLCFkRla+5ElcQlKmh1TkZ87ugxgtCQiOjYKwuV7Ojn7suUotTtSiYRpRBZdA218YILEPPa7o1I47rXfzYRub81e6AwZXKatPTEVjyCtliX+DN/9t+gLMr1DAqxOpfOgVE9AVKtvQht4XCjEQ9v3aQqDR92/L6DgFJqDPwd4N9PKZ2e2TNBSikp9UPyjQ9+vT8H/DkApntnJyTZ910badP0iGpKvTt8H7zPO8T0kG1cn3wZRAnr8e99sFDyuikEksmKs2QgQFQJ07eLvNAtY5CoHlIkRY/SDkxCFQPS8T7BVsRytAbLUulg2fHa0YpLV2/w5Z/5o3QxUf3q3+fl0xlbJwv2ByXHx6dsac8/PTrgjz99g38y2+T0ZIU3BcvFiqtPP8PD22/joycqWNWrNW3BWNltuhAYT8akkAjzBTfGY+L0Ag8fvceXRlOefOkznL55l07P2fzcFxl89VvceeVlbOo4+v6bPDw84hOf/TybA8tIt7z37k1SG2kHkcFgQhiOeOkLP8qd927zxBOXeOHj1/CNWLyBnPI03cbnm1wy3w6vAyfzOfPXa5RCzEK1UHNlIYjnAhpCTKLYRBOiRpUjkl+QdKJwJbayqCDttpFSFItHPOhaumKC1g2jMOMaBQ/yHLKQvNwbqpf7Gm4jVGJiFJvzc/w/MoaAAh0aEgGweYOJmH7OAKwzgpBHjpES2hg6r4n9BqWSuEN7j7WGxWyO2xDCzrrQ6ANBAulL6n5tIPluRJtIjAWJksL148siMXQSIHwA1WBVknOrRK1qjKHuWnav7bH/3hsYe9a5ef/xw9gU60Mp5ZAA8NdTSr+YH36glLqcf34ZeJgfvwNcP/f0a/mxx46U0l9NKX0hpfQFhhv5xLJexGf/smS0j5LrR871WXP7hpSQOW96PUUXbTISa/LHtfJ11KSoZUePwgJUMWGs6kM1PkHQcjHFvyRiUAwNWC21n7pwBbX3NHHzOqqoUK7Ib6kEZ3hho8DOa+rXXqG+fZern/scP3/xIq9sX2UrWJxv0avEv/XEJX61Sfzhz3+Wn79yiYKWk0f7bG1sUrgBKiRi29HVDePRRADk0OV4aWjblip0fHJ3l+c//3me2p7w1MYuv3H7gLtf+RpH/pToEubtWzQ7Gzx/aZetyYBTZbDHc771ja+jv/ZVprffJd67hzWKyji6tsUXBSMjWdfd2wdsblqqzRtrivTW9Wc5njxJVC5f25ZYDVBJzEKi1uhiSEIGurahI6Xs/KQ0Wpc4I+5B1hVgFNaIFZdvA8K8UwwrS0xgywpTDVB+mUlBhqAn3DeWVZByzLkS3YNnSjKYiBKdBRDVGbbUMwGFLejRbQPJ5LCgxBosB5SeMEaKaBWzG5QEChXkfjMxQjKQYh5fFpkdHtLV9doGXRaW/EcYf4hoLdfzKZvnELKAzShSB/2S1arD+Bl6dYqd30Utj1GAMYKNJRK+9cyXDcdW88yXfvRD1/c/NwhktP+vAa+mlP7yuR/9feBP56//NPD3zj3+p5QcPwqc/DA8oD/WCxvOnST1+L/Hfj+n931QXb9hZOZTphP/AGN4HR3O/SDrsJPKQgzVWzyzLhfWqR3gjBZfA+uIriQMN0mDCRQVqe8+GI3WA8ZXrlEOS9SNp9isBujjFeapC/w3nrtKc/FpyskQXOTl/Zo/8aOf48onnuG5jz/FhZBo2wWh7RhvbUubrGmYrxaE2HHt6mWUMhilKZxB1R63qtn3nvbuA6pqg40rV7lWbPC3Xr/Hq28d4JeJhw4m9ZK7szkax7XhBDXd4LJ2fPbkbZq2FYGUgu2yoPGatLHF6lTESKZUmBD50s99nmc++ykA4sUXWU2vQjYZIST0aEAajcAYWYyFwQyHYF22eMsguNKZQJOwzmGLUoI4goo3TQ0pUi/nVE523c53pNihQ4vO4qmZHrBvJnRGgnCrzLmSsv/iDKBb/598jc99H7yYcRit0Eb+vT/RVUoJ/0T0ivkWSrnOV4CMMUtBhsFcvHIFW5bCiD03qBZ4vH3Z/9MiXnMoUU2mvLkpUErMRFXsKOIK7VeY2GWxW25ZBjGx2T8+4t0HD0nj8QctO+D3Vw78OPAngZeVUt/Kj/0F4H8N/E2l1L8DvAv8d/LPfglpD76JtAj/zO/jb3zAaoUP4/2nxy6kOgsafVRNgVJFmn7HV/3whj5anL+gCpWMEEQUWf6Z1q/d4w+QjSWVolaaxloIRlqCZiZCIluQ8ngp5RTRG+5+7x3cyLLjOt71jqkbsXfxOl/96rf4qc98kTc2trjzxqs8sRU4efSIgdUsTk7RoSW2NfvHx0w2t7n1/e+y4TRh0XB6dMTh4TF102Gt5vL2lNS0TG3F2BnsqOSZi9c4aBaws8Nof5+jg306XVAsljRdw9PTCXfnM7zr2CgGTL3n6e2Sb1ZDygQ4aFZzlsGwO95ld2vKq999jSeeuUrTtNx44VO87Cv4Z7/OwfYTpASGJp9TC2YEG9tw0AAeVKKaTKgX4n+Xy2xUFth0IdK0HbYoJMNCyrmua0nJ07Y1XddQVQU+RGLbkLyHGPL9kEB56owpueQktU/98j+38Pru0rmNIOUsEpVI3sutoJEWoZauUu/sY5SoCGPuPCiVq801Mg8kT0whBzSNj1Dk5wFSEvUbWUo/qGjMu1sMWbpsFMbodVm8ubnF9Seuc3J8SowBYwuSMmtnqRgT4+mU09WKtgs8uv+QDzt+P92B33rsbD1+/NwH/H4C/t1/3uv+wKHW/+lf6Oz/P0CvPBcEzp9IhSDB3vN0kXjLJxrs2fU+/zrr2fScobkZzOnJGucpp/nS5RpRk2xJIhCsg2Ikr9XVqLwQFCWoyLVBwyh63vnqVzHTC7wz2cD8g68w/fJnePjuu+yaDj71Is0r3ybtDji4f4fb796nm59SYTl+7x6TrTHFouWCGzCaGh6FyDIpBmWFNR2bVuGM52g1Z8+01PUmMXS4RQtP3OBze3u8fPMtZsenTE6POXKanZFla2ODNw5mbBaKLaNJoyl1KAhdS2k0oRxwoB1PTqZcurTDo7v7HD06YlIWbFy9zqP3VgB4NEpZORfI4omU6K1LpEd3SbmfbQYlbpDouhZrND4I7uI7meLrOwHVBPsB4xyha0hRXJ2WqyWjakAKkW5VE31H3wFQUWi9NpcknRMUv7f+ou8GvG/xn7+fsnoEFQRT6m8HAZLFOSjF3sz2TIOoFaiUcEblFnbK8nLxLezbdn3ZmoKk7X3i9Pji79+juCN5BF9IKQjOkO/56XSDp558kndu3mT/0QFl4URApPWa1BRjxFnLzu4ed++dx+ofPz4SjEHgbHNWH/DYejUqzsY3nTthirXGU7T/A7ALUijIMDCP1QznA0IiT6eRmnd9r/Q3S4pnphBKnYlEtAx8wFWkohMfgRjWluOprFAxcsiAUiv+yVv7dOohP3ZxwjdD4jPfeJnBM9c4VoHlK1/j9sjxufuPqK9c4NntKeU3b/IVE5gfPcBVJbrtmAxqPv6lL7D/6l1OCs3D5YKL3jE/PGEwnfKTu7vsb2gmR8ecPG9pBhtcuvker29XDHRkrwq8PZrySR/43XvvsrO5yZObJS8/nPEjFxOHg4uE0FBaS1omlHacMqZyFZcu72GoaJqWEMRmLeSWoM+eCz0nI4CYqUzEecgocbohKpyriEVJ9B5dWFRIOdVNECKh6+izLm3FplvFiEbh64YWwQCaJFmANkZ0ElpB1Pg89yFmQDnGkANL+oFF9rhwR6G6iDEemmWWo8j4OHk/kpZL98gQ0eJclLtGWhu88STMelqRVgJCJhJFJVOoldIoa8X/8Pyxph73byuRgoxjs8aK4WgWyomXoOPw4JQuBnxUhBjFxdqadbDTyvALv/ALDCcT/GrGr//Wb3/AwvsoBYEfOPqU7fz3krbp3BYinoE1j11XlXijdnjSWbD4wFymTxHP/0J+IS2tJekanRlMijW5yTmgQdmCZAsoJDPoXybaEnRH03Qs1ZJnJ447c813D0749PXr/Mp+4GceHbCojzgqNT925TKnTjMthqRlw/eGNVsHiX11Qjl+xMeGQ4rRgPb+I9QQFoslT0bPxtNPsFnXHJ4uORqMuFor7riG8cE+1cmSN0zN1hunvDGbUy9X/MilxOhTn+DHC3hr/y6nquSFacEz9ogHe5dIt2eYZk6KEIuSWg058iuGoyFVBePJBOWc2GX33llr7fvZ9dIpkrqASpGQEoRAu1owmE7QwzHzowNM4QR40aCtWgtlVLbIskpDSISmpXQlTSO+CaawGOMAMYU1BlBRev/5PfUefEo8N87V2+cuc+yJQ7nrZDQYRWxjJgJJKSIZhQIljkhWO0pX4r38zGqDJjFQJSfKElUk+oQOkELEewEjQy8l7uchrO/N9W53rrLN3gA5+1S5NMAZUkr4mHDFiAuXBuzuRPRwuCYOSfajaNqOO+/dwRaOQfnhS/0jHAQ4q/fP1+b5OpbO0gbRra+PfDNqPJ1ISFiPof6BLCDx+A/O/c2z+mHt+trjAVqp9YVBGdllXAnJI2CQvIw2FuUGXBgndurIg0aztz1lHipu3Tvhx25c5Ou3HnIhtSRX8Gvf+D4vffwav3XzDdr5giZpmraD4gIHt97EL2eMk+NWd8wgKcysprq0y1SXlOMBz+3t8XBxSL1MbOohi9Mlo1RzQUVOo+fJ7ZI7rkBt7bJFxxudIpRThu2cYqi4OCp5c7xFePRODnwaPRxTa8eD+QJdDJhuwXLVoLVmtaqzjXt/7s+dwozC0zYC+Eax7vZhhd7YEGRfkW3ZxSNPa+HaS69cdk9jREjjg9iOr+o6zxeMGGvzBqAhdpQ6Sl6y5puYc7Tgc/dSfwOdyyWVUiQNg5NbbNSPGFYL4vVrdKGjmk6xRSn8/SLRNR3DcoDFUBQWp8V5yFqNrzv2hoZBOmUfGSqjMrktRojBiyRgnYU+dtLet+epHHAgxI4YOrp2hSuGaGA2X3F//whsF3CbCwAAc+VJREFUQifFtJRZhGdZq2a5WPDe2zfpQktRfuSdhcjX5ryDK4+dlHTuv0opvO9kWoA61+vN0T4l8W1PqvcgfH8U6H83PfZwn1D0D8WURI6ZT6xGrKWUVmfy5WjBOkilFHv95lgWhBB5ZVHxvF7y1FM3uNfB9uF9bm9NqN5+l93LWxwGzd6q5qiwfOPl25x2LXeXc56d7qGrks0SFrdrjFVcnmxwtFix6ALXL+6iNqbotmbv0hVaE3mhq+HGlKHZwkz3ePOdtzh97/tsXN0Ab/jRCxXt3iXeev1Nip1tjt46pmw0Vi2wDhoM8eEhiwjdqGTj4hUSiYOjBbfvPuSlFz/Gct4It0JZWej0pzGub2qhrAYRWeU0XMVIUgajFcZWYojadRjrhKbrLHLyFGDW3QJtjOygSuVevMfk9FgMRANaJaySrn7MQcDogrNwfn6O8BopzHmiJirJPtJ3voGav8cytShtcEZTr1aMreXS3i5KO5RSWOuI5IEySuOco/ENM7Vi4k/YfO13qExF3QSoJKAaa+m6Zn2vpXVA6vGt/G1/S+Z2tMLnINBi1xOGhEkYYsLkUWtaW5SyOOvEjCULlXow0/6QRuBHJggo0jr9PgNKWC8qdS6Cilbt3Ic6H1FTHiXSIzopGyqkc697DmM498Q1k0uliMy1lYlFkjT0NVvCK02yTup/C0QD0aFMgXL59+wQU8AzI83FhWV1PGd/fsxXDhf81CXLV2LLF7cHvLS5zZub23z5O9/m1155F10W/PTHnufBzg4vHtUcLE/pLm1xxV3Gffo5nnvzHo2yPBoGLj464v5Qw527XCjg4dhy9Z177P6BL6A3Biy//z1+cbbg83cTF558gf1pgf7Wd1ld3GJ58yb10Zw7Xce/fUNhhxWzowWpaZlpUOWAbrRL3QRSW/Pqa6+zPSgobEGpFe/cfpizH2TIi9Fn5YFCZijohIrZWkvJAJmUQJsCN5pSHzxAOyUTdqxGp37kV0KnSOGcjPeK0ha0rqDrOqy0FdBapNcJQ+trNoLmKN/SSoNJcX0vqBRJnGE+8mcCRhkkn7SU9ZzxyKDiQAC4lPAx0jYdR4uWGDuZlRiCsASVEMhUSuxuTnFWk4xGhYDpGobeQxdpIxACXYjoKB4ZZ2A0PfK4jk/0oKRKdM0K4gSdBGuxIZ/nrI7VIfsaxoBxBpKMr1cEkpfxeNroH8oF+OgEgZQyE8+s63BgHcPPdQHPPekDC/2z5z6Wbn3w7z6OC8jvJSVtrF7OnOhHWmfbMQBtWQ+st2JxlJIVXACI1pJKzXKwxe6Gp9QzNsOSa1PNnQcP+OntKTfffIu30jt87ukn+Ifv3OPqyPDUU88wv3iZJ+484t1BwXaxgy0TR8WIZ+8ecPviiFFr2Vvskz7+DC/efchrj+5xenHKF1cr7gxWTF/+Pd5dLvEXxvwb5Qu8uliQVie4hye8ZRSfbj1/584jLmxOeGqjIKZ9HpRXOXl4yKhQHK9aNgcDTiIEH0nG8zuvvsNGqejmHU8++zSzpkZnP791sF13dCAYQ7LVuesLkG9crSjHUxYP70IoRTdPRGmXb/aWkKzYoGdXX9+2GOvokvTxQ4goW6CTIiixn4+mxmTIfWgSTovFuihTz/CAtH4/Gq+88BbaFdPYMBkO8CGJ90ESVmEbNePpBmdaBDl8iiyXS4ZlwXRcUVhH07RoGynrlqZZop3MS4gx4LQS8DhINpPWGcG5/HNdtmickX9KSSehn46EUliTu14xEaLPFY50I8j3qe86fFOjVKT9qDsLAcScnqtcFgBrpF2Ovk7Pxw/hFWgtGILPaeT5nz2OCPcv1V/Yx4NGRCbp9Lla7/tmrRG3kdRHZQsmQHLr3dAaRW1G/MXDLW7Eil214LLdZse1PHWpQocVP15U2K5j9vZr/Okrm3RHR6Tjmyzm90izBcMbT6GPG5q6Znfbs3y4zxPdBTAFJ6uIvnmT7zYtz9+4ysP9Y76mAi9tFXzj1ttc/cQTTL1lPoIfeeoFfBs57ubEmw95+egBz13ZY153zOqGqwU8tFOa+w9RRlOjabThcN5kNHvFYYBf+p3f44vXrvD6wTY3T47OAK30/joqSmbgKnpFW8oszBhERlw4ixsO6FSL1g596Wm6hzchRExCet4pYY2lDeL+a1yBsQZnC+ZtIlVVbsmWrKJlgWNqZSCK19BESFpLMml6QVA6VwpqMBEdA+XNVxgPkMGoTuNJmGgwWDan2zzz/PN0fakXZIPofKBtO4xOEDqMbnFag07Y0nI0WxDz8Bq0oPw9CHnetYiMmzwWpVCsWs8qJlBGiFRZMXt+TSil8uARjbVW7tecSXgfiEEMU4/rhg87PjJBQEUE7T+/K58/PigTePwVzpD588HjfSqxDzp674K1L2F/s/Q/jzHzxw3GaIrCobSRtqDue5MyFSZpOaXeOnTwPBiN2G8rEpvoboXpPOZwxqCDofdMaRirxOjRMVdMZGc5w+lDdrRj8Nb3GRooB5bi4IhQDZkd3mW4O8Aqz8PDGc/u7dCcPsSmjpNyyOHdI4qtHd559yE7iznVcy9w783vsHPpGa4+/xz3vvEyipJ2dUqTNA8PTyl2NA/NmIPZTU68IrgB1lQc+4hykSK2LOImbZFYOcU3vn+bRy0CiAIi8jp3YaSvhSmH6wZtyplACAHftRRFiR1u0c7voS88if6FP4X62/8XmB+RqGXNJjDO4ucr2rpFu4KYxEQmlBUUJReU5jAoWq2xwTIJomxs9JAY86JZX8pzKLxOeWqQIXWnbN1/m2JcEpNGxUQw4gKUOri8c4HPvPA8IYgIKMWIzpuMspa2a7n13rvUfpZnJCZK38F0ROw7SSqhrUwU6kemrzGAnj6pJVro/PNoCoKtQBt8FzBJEcM5BqvW2X8xtzD1Was2Bk/bdjStYGdHjefDjo9GEEhIz1eZXox69jj84A7+WBbw/qig+BcpHc7agwnSuhmz/qHK5YA4FElLySjhCUAUtqHRgGQGKuXqyxoiEVRJwkOK+BQgaJQtWHj5vClqUojoNuKSx9LAakGZOioVKbWiNJrSGYZFQeE7dt4xXB6OeXYUKe7NWaaClGA71AwqwyCuWJ0uOalr7KuvMlYtzcNjZm+9QaBjq/O8lRzN6pSnS4saDnioBixU4um9CzxXTHmzLGS8eYKlcjIT2lh+9b19FsWUbjhd4+uietNrjEAiqYYnP4H6+hh12hIQTb6PYpGWtMFWDn1SoEZbpO0niduXUKeP0LoiRemRl1XF8dEhqoK6q1HBsvQN6cIucTBg33uZSAR0KnI/T0ZuopC/BOYR89h07p7QWQGoQmR8us/mwONDxKeISbKTtgS0Lrl66TqXtqZ4n9YlZorxHBEocXB4wMn+gqAEoQ/JUE4nxCAyX5U0WLOmqEsLVGYqkluiimy0SzY80bn9qDQUhfAOpB/KeCRGLc4kPAbnHElLW1HE04mlD8yalhrLLJ2VZu8/PhpBgCQKD/f+dl//sz76vW+CTH98aL0PP9h7+YAfKSCp9yUbEkxijOu30j8eEZtxtAGTBBhM4dzgCTLnVAJF0vkOtE4syq2MqookoSiHQFSaJimaZKCERX2E9m1uoydSbImqEYDHwM5px3//M5d45uIO33rnDn/zzUMOYuBzN27gTu+jVMfF0YRde8z1yQDGA9RxzXODLe6cPuJFp7lDomTAbGMTrTQ/cf15ZirwG2+9TXjySUY6MTeRVg1JxqIVHHcBbE3izMc+xS4D+z38lEihg53r8Nmfhd/8ReH4Iw64MQSRZZcOhSMMxjJX8vLHUO98DZ0mdDoSYsSVpQB0IaKixylNDAXpky+hkqLr/SeApDw9kjwsst+/Yq1N6AO+0nlRxhYTay4dvkWhOpZ5xqDPRrUqJYbFlKefukpVFHh1tpvGGDFWRGnOGjZGU969d48QZZhsFyK4kjAQDkEymtgFSd3zpjYtKlZ1ZEUi6Z7epAm5LW2UwimN0lnKbgSYjlm1aK2jcAmjLM45nHUZ71YYY9DGUk2m1E3EfNSDgOq52EpQ+ff3T1U6s1ruRzQ9frwPL4Dz/KHzj/7gc9S579P7flWdzRwQJqKkW6JmzNyFNQklv691Z8OACojLkZf3b0S1iHEyhSb2Ulor+ob+s5lSRq8v91G02UNf3m9MGh0LTruWv/twyNbP/1n+03/6v2ARCpJKLDemPFwsONyfkw5qBrog7V2juH6DMgSKZUs13MTEFj1p2Cg7/nG7gykVv9Mk7quC5z/5DK+fBIzVolWPipRaiCWTsMRT0sS4zgSkNSq1q3yfUMmS6jnp+Z+CV76KenRLAmCMEjC9RzmDHQzpioIUE+q5z8Fv/32ZLhRCjpsWrMb7ljINUaWFraukp56FzudGj2RrOnToKLlkafVZV0jL5+jde/JSQhm4fv8dNpbHnISG3l9CKhfFsDJUbsj1a9sUWmPV2XKJMa2vv1WJ3Y0xMShCDz0pmVi18IFV3fLw9h0u7l3IE4MErDxdNYSkSNoIw/I8+SrBIAVKIiobhTSxo8pmrk3XsVit8D7hk6YaT2WDUL10OlE3Nad1Q5MKitG/nIDoX/0h3sqPtW/kcQFNZPDDuV8/v+b7C3tOeSg1lQytTOsn/mDZcIbIfsD76VuCSghDvempAIYy1qqfT9j/U5zzus80Vhlbo6RUgDWRI2UMAZ1IIQNE9kwGrd0esSiI84forl6r5eSjtgSlmMeS7WefZhF2aMProGB5uiRR0iGtodneVcxTn2SuS2nXaVmwOoFeBK5ME89vb/GdRw1fs0O0h+rEU5QVs6QIOBKS0RgirdcoIlZ5unzT6hQkG8jz7lRMYoZpCtTIkj7zX0P9yt+g98RLKRFTRDcJNxmy8nmIzOVnSJ/7WcK3f11ktSTZzQYDlFIEHymrAjY2McEQYpe9JIUroPt5AUDIQFvqOxfvw5qSjmzN73Pt+E3upwUOS6fi2jcQrbHWsLu5ze60pFlFgrb5XgC0pO1yCQM3Lm0TYxQ/gRTEe1AFkra8tX/Ijz77JK6063tA20xDDuIPgJeht6l3IgamTjHCQ/CYPFG55xOI+al4GvSjz2NMa1wAJFD5pIjK4IoPJwv9vvwE/qs4ZPBjcQbk5H86T3cVq+BMjEAwFE16vGzIx0CJnZQioVQ8+/n5bkz64AAgZA0jvvMpu7eeu4Gs1rS2QHU1uvOocxfm3BfyWplpuB5TrU1+G/mzaC1AojW5VHCCihuNdwWMttDTi1BMiNpltxyb1WKRw5M7/OZX/iHGHuTdRaGSZzQsUVWJvvos6YkXCXogKLk1RAxJaYKKdGXi/ixx0iROVxqVDNEVvLvwbBDY6l2VctcGEoPY4FRkklZY1YulPEWocflca4LsyFEym7Rzg1SO1i0x6bHLAE+0pYwBm0BZS/rsT2Mm23KuggwfKTIlu6qGRO+xxYgUW1KQu0FraS8nPcgsRDhRQ1LOrFRaI3DQ19sh4N75PkeHD4irjqSSjIcj4VSi0ImmSexeGLFYrEQz0TXE4GWitJcuB9nae1AYruxuAQmjLaWzeWEG3js8ZhZy1hiDOBUnUV7LgLF8j/WZS75fO+/zuPtA27XomFvWMRCCF68H39F5uQ+dc6QU5fwS6bqO0AV814kb8occH41MIK/MtNZ9rrdWyQIUYqzQI/gxorTCOkvbetZtH0ClyFXb8HZTEsw5kLD/O++vHNbfn88MzkZAxZgHTmQUN6VE1ApaISyn6qw8WWcGyGdYlzD96+UYoUxe9EmcjR57k1FuCpQmKosebIIrUctT0uIIW2hCG0i+o20WPLh/k8JBrQwaTesD1XCMefLj+OkTsrBSS0LSSDFv0ZAMigAqsbF1hZ+6NuH2V15hTqLdvsD9xTE/+eIGv3WoediJwYaOHUNV440WpDtJ+m+0x3pH3RN18udOyROVhUvXSFefRN38Noko7s+qRZuCoCKqi4TOw8CiLz9JevIl4rtfpesaJpMJ1XBIc1TTxcjQVrRb28TOg7YoAiZFApqRVaQ892Hpiuzo25drck3kSgkd+fDBA7qDRygnwT0qJYCvkro9BsWb77zNf/q3ZyRdYJRlMKgwmXxjtaGwTsoW62jrhtPDA9mlfSeSZ8n++Y32m/zxP/zj2D6DiIqg1dnUY5W9MTPzUgGEjrZd0cUWrcU2LPjMQ4lB+BImO18rMShd30YhUdc1bdtwtJixXU0/dPV9JIJAAonWOvu2nWvrpNgJgaivv2PMgUBME4BzGEHCkBiHJTq5zBbrTy6cLfQPAArP1yHp7EGJvGIpHvNgyNZY4sYGBI/2HWHtUqPPgWNn72kdG/rFrrWAg2uabH485rKgb7dpJ6WHcZhiBLYiKA/qBBVbutChnGU8GTFfzkjlmKUaMhxso4YXEHwFkh72VPR8bvPOEyGaiqN6zJ/9I7/Ab3zvIa+dHhCJ3CnGPLo/42efvsb/++aKVWowxmBoiClwOzohTAExFTRuiIny/YgVK2UISkxA1GCTdO051K2XOSvdZKhqSB2sltDMUXqLpCuK3Sexb/w6vivpMrU4KMsg++q74VCs3rUhBpnsrBKsjGfSZSqzdmcZXJLrcaYjiajQQmrFJjx6uoz2xxByKSFdoHfvvMv+0QEdQAy90wxGa3yI6z0rhERloRwP1h0lrRQxSvA/OR3RdnWu9xXGqDUAKF4GKm94KuMGiaECFRq8byismI2SkFZlSoQQCEGy6N78xiixOiEiUpbOM3AD5ifzD11/H5FyQLZjlbno/bVT+c4Vssn530Vq88fIRAAKqzQ+GtFeh/cv9g/ABz6wsXDWCoKsbkt9eq+pE6hgpCugTQYFz8ah9e9PajO5Cx9PPvrOgpGsoN+pemOJtQVVvytoonKk6QXS+BLsPCPI+3iPRe258vTHCdc/TXz6CzQb13CFJbTZ8NLkAdk5DVE5kJJkcEqnWv7pd7/Lr/322/zMJ78MzUB2w3LAt1aJSWj48pUxVhcoHKPQsmsbYhrhexxQWYKCK4i/wE+pt9lKTR4WmyAF9HSbqC2pE4wnKoW1FmciLE/Rh4+kFLSabnafThmiD7Rty3AwwpYVTiXsyLKpFcSV0JUBnzQ6wkbs+JQ5BKB1vY/EmSkMmY2PSjjlGdOifUBH6f/74EkpYrXCKPDRk3QgJI9WLcpECmfY3tykqipc4XCFxZWGotTYyqGM2I8plbLPoM4q954+rcFqIh6tQh61LlZlPfCVopSzVYzormV+esJyPhO8K/sF6H6uRtetN0OtNQeHBzx6tA8oupCIroBqQPND5jJ+RIIApCS2VWsgDQVRtOUa09sNykXtAfgMthGTtBEzXfKRHoiEVZszQK8/ep52Rv/lsX7nVedkpwavZGfuRRoxQYgebCkX0iiCMpKW6ryw9dlrJuTjQG+sGc/+ttQFwjGwOrva5GDQlzcZiJTcRQkeYAqoxqSdJ+DKs+y3lieuX4WNC1ANSEZ8/9Rqnv0NHKmf5aASUSEOOCnm8ktzwpL/7Nd/mU8/c41PX/4UCkdUMLNDfvX793luEHhxMkQlxSoVqG4lXvo5BkddolLEZaJOETraIOo6FUH7FWnvhjA5U8TjxRSVIHU8LfobvwFdR+oiqT2WAKZgsVigtKJIhqgSDY5HbkxhHCPlKGl5Uc/4r5cP+TdHd9lSS7mUuS7WMeYhoUYk6EYCa/Xmq1wt4fLlbXZ2dtjZ3mR7c5PpaExVVZRlRVWOqeyA6XDEdDBla7DBqBwSfKAqSoaDAYOiZOBKKldQ2hKLAHNWWYpk0KmBNuIMOGvXGaPJhqdrDCyCSQqnApUx2OApugVBw+r0IfPjA+ESxYQxJTEojDJoCrR2OCtYz2g45sLFPZp6gW9W+KBp28TezoUPXXsfiXIAgBSEOsx5cAS0s2d13Xq6as4ctGY9uT2n3A2ah52WXSePiF7/wvr1eyDgDEv4gbeTzl607xDEdY1v8t0t4pHUo7rGZgMLzngCLmYESJB/Mq00pWx0kcUguXI5qxHh8ffW4yHITpGMw6fEo6MTvvjck2h1QEyRJgTuvvceyW2jxpsyK/F8qXP2YuvTQlLcbh7yN/7er/FHf+wnuf8b7/LQH5E0vKt3ee/d+/yxz73E//N7d3mUJni7jaKDdDbNCes5bSSTayK0uiAheI4GwsYlUjFFdwekAMlK3Z1QaKsIj16HR+/C5WcxszlGK5x1hBhompZiMKGuZ5hJRVOOiHZEG5ZcVx0fL2bspBWnoeKtpfAXNApCYj2ngoTO1VdUmubRfe4/OmA0rYjRY7Nfoy0KBlays6IouX7jBltbW5IFhoBGrdWDtrDEmO2/lOK0bnnw6AE+dLlpZUgGrLIsQ8erb9xhsnmJzUKz30YiedqwOst0fdRUqUapGm0UGNgdj1DzU0hCkU5EbOlQxmCsQjsZOqKVwhTSGUsxMixLBqVl6RV3b7/3oUvvIxEE1vd65jzT92pz31382vv9MFuJ5/r8sXI/v1BQFrF46oC8sNY9bUnNrRJSRkwfHAiUEvaVMSaPyJb30ZcEa06AyjiAFgUX2egSKx534horunk4l5r272kthf4AnOJ9J+j9Y7RRmnndQYIdHRgNEgeLJXuXL3FaOzpXAFrYcueUao/FQfJHwPC1g9f4xNFT/NT1H+EX3/lNUlzRDTyvhorNV17mCzuX+MU3E3NVEaMCJ0FAp8Ru17Gy8v1MVURjBUBViZASqahQNz5J/O6voKI+E2NpjVYJE1Z0r/4u6urH8WHBIIljkDYG3zaMpxu0yxNMUYFzaBIXUscNVXO3U1zXHf+4vsjKnwBQGPmQKZLpuDIgNCaFNglXH1M4h0kSzyV9j/gowpsAnM4bTuqboN+TsjSptbWoM1KjG2OxWstgEd2n9qC0IVJTFiWKhrYO3Ns/YrpzTTonGePqNRUiVU8oZWgjWFtR2wbfRI6O5+jxED9bUE0dIEQlVxb9m1+Xzyq7D0USyy4w9zDaucjYVtx994OdhT4a5UCOmjJEtO/pxrMA8L412hN31nX02qTxXM2fcpOw5/bDWVmQpEZ736uevZ1ePZgBnrO3mb9XmoSWkdnGSl1vsq9AthzHFNI31wXKWDD67L30AUudKwHSeRziQ87RurRR+Txo2gjTUcF/80svsfIV8+0d4mRCWQpqrfIkHvnEfeBR586b1PRKwaKM/H++/lX+8E9c4cXJFZRVEEveay33ouLh299gSEDpEkdA5XZclVY4lpA2ADjVYwqbZHhHkNmShBr1qZ9AmWEGWoPkaCFiUyIZi/v+76LufB/dtXiEFxGDp2s7XKEYjQak4SZqMMX4hotqhQrSrrvdGe6oASFK4Pd9yw3W5WKfPeqTY4bLA6CTwaMpe0dk0K93lY6xwaeOZBTaKYxTJBPxJtCqhqZbUNcnnM4OOD55xGx+SkqyQJNKIjQLia5u6XziZHFEDdRocQZOucxT/b0sQ/e8csSQGIcWlWC6t8t0Z4d33n6bk/19kvdUZUE1KBlPRozH4zwDUWG1JYZEFxJt0gw2dml87np8yPHRCAIASoaGqh7A4qx0fnyB9lTe83X++YXFWXCQ/PoH/lQCuiSa8PWLqvf/hkL1ttVwZjqp+gGVEslD/3e1UIGxOQhoEYsoK5x7KRVyoHis/lfr3fksqzlboGf4gV7/TOUbBgxBaV5+4y6/+c57PEgOnRyr0yMubk1RUaE8ggn0mAR9SXVe7yBMtxQ895pj/q9/+5/wr3/xC7j6IoWy6NGQby8MAzfADhQ2aIYmCVYDeGV54Cc0Wj77aVC0SfzvVcxkL9+RdnbRQwkUMfsxJsR2K8SGcHKM+c4/xXULgor43P/WGvxqha1K2vEmnbLE2PKGHjHUAevhdppA9FgvQUDHnieS8oYhpWGyCvfoLjaI2WmuhghJREECxaRsyGEy+Ua+D62HENFJNBXaCNc/Kgk6QtYRajQx4ruA950Qh1Lg8HRBlzrqboXSUOjI2CpKYKQ1OnmEfi4xK9VLEvKaq9WC5z7+LFt7O1liDVVRUDqDK0RPoBK4okAZmaLsCqEb1/Mlxwf/Em7D/1UdGsRDjb5WzunvY2GqT53e99gP20F5X7Don3L++w86cqoW887gvZddRIkF9dlf77MNC6E7wwRMbgHGCMn1m728nxizf0LfIpRFLlZUQe6qx0qEvvRQZwEk7+zJGB4dnxIqJ6wynZhWGxx2QotNKuGCR4eYzT4DqpevpjyFiYxaR1FJvju7x+LgHj/31FN89/6bbBaG+4evELYtwWtq1eFDKVRXwKcSnCZq4affVBc4G5aZ1t0elEJXQ+IyZelsfy0SBA1pifreVwgqUZiCfqRW17V0qxVxNKHd2CbphA8VicQ3/QRvLBpNSAai8AR8ngcA+T7K6TxBwYYjRCjOuVL1bb0eW5Jzkkh4VBIMwDh5z/1bT1lVeJZZJnwU3EBpObM+IRZ1WvHw4ITp3Qc8Wb7AoVacmI4YV1zUA2ahoVCK1fqWMIQu4HRB7ALtcsV8dkqlLClFJoOKnekU6xJdZO14pbL/At5TaEUqSrYvb3P4UQ8CCWnBYvQ5ei5nqe+HlcyPAWfqg3/nX+Q4HyQytbVH60MImBAwWme/Avl9cXWxwnGI54KWK866GPSGpxnX6FlDMcnzdG9K0usHWHcG1kdvada3JHuJqjE03jNM0tqb1jOGVeCt+YppXDHyM6YsUYMB2lgMidJonHa4Mttz+xaNxriSydaIF59/gpvf/zrPXrrC5689Sb084u9/9xbdeJcYRtiksSoSzGr93qK2qCywiTpmYlQPpGrJODB0/WeKARV7r0Bpo/mQaE/njIdjOtWByl2XEGjaxGiiKYcbdGiesqeEaJlpS6ssq2iFgZjLAZRBETMelDBaTr9OiaY+ESaoUoQk48fTefNPBQoZ4FEkJ8pPLUKhGNNaEJYyaNx7+ymlz4bmppRxhj7RS0yLIVsbU4xWhKVnHC1zFTmKLcsYmCiXs7RIoTTae5TVRGMZjMa4Kqsr2xXTUcnmdITGU3dRZM8Im5AEyXuG1YCTW/fZ3Btx7fINXv/WB9/2H4kgAFLfRt2Rp0jm9a8+eHF/EJiXzn1xrr32oceH/bzPlFGkLB0VJxsxw6S/ufs25vm60xjWIhDj1jV8Cl4Wu3F5p+kDWzz7F/Nr/EASkF+/T2mVjFXrrdejygMpVsdsHc/Y8CcczzwX4oCx8lBtMbMT2uSIXhaUXnaC3Osgn9U6MFoysfsnfOWt3+YTV7cIi8Rf/dr36coWNdzjUrS4sKKInjJ6XO4OyK5ZoHop8dr/vT/PWT+fFMpZer17imG9kwaCDDhVPrv9DGQHzYu165aEpuApDrnPZcqw5FIZ+F67wSIqvIqgHMrn+4cgbExjEW2e/LxLnsH+gSRqnJV4ggP0wVoeN0phtQYH1cDSnHrKshDPvzzO7DH8KOtCziAo4fX39+UqrfBtx7FQj4gEtrSlTrDSimWUmYeRRBMjVkFVOsrBkITFuBJf16jQMhwUTDcmGB3Qi1oIa/1tk9voSSWapuberfeoqsmHLoWPTBBIRFRQkKOnCn0PVayl16G332oz82rtyNIvxpTHQYeccmPet9jPfb22nMqvrfV68SUlDDKrS5RKxNCSUkVI4FRu/8VMy8olgAiW+lxROhQiGhcnYh0dySiUTqRUo60l+QhWEX0OdlpSV9W/l4R0KJQmGvE8NMoTqdDAZHXIp597jru3bxOouXblSa5fe4Ynn3uWQVURfKRuOrRxtI2n7Tp8jESt6NrA0dExb999m5v37+CP5xS64ud+9kc4unsXhpZ2a0J0Dm1HRH+TUZwDiaFvuKjkZlbRgG7WOE1S4g2Y8vXsz63qLLoa4umI3hJCwvTdCpVk4SYIRlM42Yn7uQ9tFzg5OeDpW+8w3buOszNuRMdNA1VoeJA0K9XRZkxgK3Y8opPAAMI/KJcUQVE+eohVMg8BevjlrOsUcgm4s7nBZ7/wafTHCnYvjdh//QFf+eW3SR2kZFGmhTxzoJdJBx8xrleHirY/pYgPCa8S8+WCY2XobMfAJi6awOuqYrDUtHpOahsqE4mpYNiuSCrRLhf4UGf8CZY+oI2jKkpibAW7SlISyGSkBltoGt+xubVNZ0vKouTkQ9beRyYIkNe0+sAd+jxwl859n3KqKTeLgD+aGGQ7VzmbSO9/LTh7fv/N+YwjCWNLG7VmZhmTZ7+nhE0+mziKnryfJddr1wG5w5Kk/DpaEkaQ+qBRsZSSIJygjJYbSsV1iYFBXHTJZQkRlfnqOiRi07I5TFwbFTx54yJPXtvi+evXWDXwsG25OWv43jdeluckSUX755ssklEqCHCIwqua6QjsdEzlhiwXByJWidKdiRlca+sOE0UYc62YMclAoFZzSCVR99trhFBjXElIChUdJiagwRuH8gXaBFJX02khYalOMgNVWDHRbDoivdNzFMOZkzkvf+8rbG1s8bHnPsEsdFxRhyxSRWDEHTtA510WY3GqzKxMRbJGhqTOZqj6GFyfTZ3r/qSEtTJMZG9vlwt7e5wezBkz5PXvPsKfHPLpL+7yxm/folGRNpBnYJzdW8aIFL6/l0tnxU2JRBuh6Dp2J4G6E9/DVxaR6SDQuobrxvFABawtSG2k6GaktqNbKUwM1KczhmXBxsYmRTWgGgwoixE+aU6WLc4Wso9FQ0TRegcqEObHHO8ffejS+8gEgd4W+gfK+vMaYgVn1MH8QP+knIapBMRIoWUoRR0hnd/x33+sHzqXgysyci1UUsi7cZC6XccAwaO0fdzkpE/lH3v9RFIGHZXIbYNnlFr2NhTvPYSgDOJoJyVRUhoVnUR3JZNuXdKMMQxSS2XgxpN7PHV1h6qUoaj3j1re2T/i3dMV+52icUN8DihqHeASpABdC9GjlIBaGiNgJDtoHKlTvHar48d3C1qf22aIrVVMbc6TPYXXLAo5XyoI/blvQmkUSTkSCmUSSrWYkNDBY6qCNByIH17X0pwcSqbV+dxf14S2I4aGGIXGK67OCR0NTbOi+eX/gtPjIz5/ZReSZtwEChdYhBHdvXcBWL75Tezdt7CADYHUdfjYkFYdajWD8vx9JCXB+a83pxsobaljZLiMHOzPmR0e85Mfv8i9K4kHX7vL5rUnCDHITIEYMaZXjcqOZkwebpcizhhUhJPZkuvbCV8mQgtTo1hh0U3k+sXAwwPHovNMkufqxOJGI0zlUM6hlMYVJU3dUpYV48kYoqcoCtSqEy5LilRFxapOzFJBM9tH1UsmV6+y+JBJZP/cIKCUug78J8DFfNb+akrp/6iU+l8BfxZ4lH/1L6SUfik/5z8A/h3EJfnfSyn9o3/e33mspk/nHjjfvutxgnXRBb3iTp539rXRUrfH+EELv0em+5ZQnj2HnEToDU8hBDEEscZkkYbGuhJt+8En6ey9J9Z6dnxABw++hdV9dlYnqJMjCuDS1pAdHWnmD3nqyg1efPJ5lnXD8cmRgHQxIuTaSGwV25u7bGwOMWrBdGCJRvPWvUPeeRi520RmEbpYganE61RWk3QP8meSwR6glHghxOwUnHpqtTJ4NBjNCoM1jqbrIZIAdKA7TFPTvPEtvpMiVQYC9Tf/EVYpyAq+4lf/c1RoCSqBFhKM0QLOhffu4m1Bs5wRu1qCvzHynr2nso7Jzi6L+UqCLjKCTHUtPkYSEa8S6c5t3mlPcc2MaTFAe8/TBRwloS4ffPO3pd+utHgraE1pDao0lKMxSpX0o+ViTBlnVevHtLUiQIuRjsByvmCxbHnrjQdc/ZGPcfu1fSzQZf6B3E5yXp0xhCgtw8Z7wWxSApUw8wVPNkteKUpWXce4a/lEOeOf6RE3D5ZMgsdow8XmhGu64QGaaAq0KxgMNogaoGM6HhG7BmcNRyezNc6ikqbzNa+/cZd7Jw3uwmXBNOKH8wR+P5mAB/4nKaXfU0pNgG8opf5J/tn/IaX0vzv/y0qpTwB/AngRuAL8slLqudRPqviQQ9ZzPGuxKS07F2cgc4/5CS6QWzpR5YoggYqCNCdFGxIhpLMAIdt7/muyu6l+7JXpZ9Uhv5d5CDIWK/TvThBgDU4FdAh4S55Wy1knIQeEwiQ2mmOa++9hD+7zpRef4ManbvC9t95m/+ABi3LCC0/toLXi7/3WN0BruuAxBCqluboz5fmnr3D50h7LZQ3KcO+o5ndvH3L3uOY4GNqyAl2JiYqNef6eAbLqEli3T5UWLUGSQSD9W5V+fcA4fe4cKYba0iTpo+vZMRfnd7j+xJPsbkfq23c52LjEMpbAb8PeDbRxMp7tO7/K5NnPE+yAYAzBij9CWTlsPWN+8/9OtzzCJEUxmRI68dgLsSOhqFcr1NEBEU05mjIcTzHGMDs+pj46YDgYYp97ieoP/rcxWxdRIbDSsJyfMg+B5nQGv/dVmj/454Vt6BzJObAWVVjM/rukV36DDSv2YzEzSFPKwz6V1NVFWeKjOEHENqI9mNjyxqvf47nnP8/eH3yB4g1PezAnBJ+zrRx4e2wkCluy0JbgPZZIaPf5ePsqX9q+xi2f2NAn7A01zxcD7GpOHRNegSs8FwZjTssSi6W0md5sSlAK5yxl4SicorClTMaylsODE17+zpv8yq9/gzZpimqAUkb8LT/k+P1MJb4H3Mtfz5RSrwJXf8hT/nXg/5VSaoB3lFJvAl8CvvJD/gqiio6kvjuQd3ATBDTSxoj9mMoLV+coHrLNVewXQCZbkNMyMq1S9drtJD/UKru4kFPl/FZU3wCQnTOGcyyyTFwxJmWAT1Jfl0q804R2gTZyskfzOzzDLa48M+D65z/Hk9ef5N57NXtuwGjjOXan28TUYqopdyevUZeezio2VOKnPnWJp29s8/qbb/LVV77Lu4ctR9Ew9xGvS6IuSVWvU0gElTOgHjsNCZ2sOOOmKDsxQfQPKqJ0x6BriVoUkTpB6gIUERUNKmhUrFktAyoGdNcw9B0Dq4lFx+XhgOQ89YWPAdA+9RKt0tjMlpw/8Uk629t0JSgKRvURs1//x6g0w1VDoMKNx3B6RGmh7WIWHUWaxQJlLF0XqJcr9i5ewhjN9tXrFDFx/OgRw9MDtgYtR4uGo1VN6qBdeXy21q6O75NWNdQeXXtMSijboNWKQYigPUrJqLCz+H+2gMmptcoafe00lbNU5SY7dovDzWNWgxZrHDEmhgMrQGi+n1TeqBR5dmaWQVeuYDIqUIePuOw7jDO0DTxtGkIFvoiU1mBsiXMVtwcVs9MFTdNgnUw7Ulp4K7GJ1N2SDo8ykgH8x3/3H/HKt96mYU5QhvHqBhtXrqGKwYeuvn8hTEAp9STwEvBV4MeB/4FS6k8BX0eyhSMkQPyzc0+7zQ8PGvmQKbO9qUPKQFnsXW1UwCUxf2hIWFnJBCOLM+RaTKmY13ne7XOqlvrvk1hWKSV6bgHwzqYOp5jWeu4UIyr7yvXgoMp036SsKART5BPbHQ8WigdtTQo1AAsfeXjYYRrQ3Qnd8jW2dy/xyc9ts5otqRdzNjaGONdyZecSbbsglJb9oyO+d/Mmf/cr32C/jmKkWVpZUGYIqtecS7swIQFTWcladBLnHmUiSQkxqB9gqRLorqGiYaM5hapgHi0mKaxVGL0UhiCWrhuyOp3BwyOSDngWxBRYrWZsTS0nb7/FZHEql+53/hYqeXxeQKt/+H9mYIAYMbogRM3yZB81P8GUIwa5s1IvT9m8cImDRw9oVzWGgHNOWJc9yOg7ZoeHTDc2aEKg9YGdsmH1D/4646cuMjEWWxl00litKaw8709sHeMulzhbUtmJGHEayyu37/E7r82xFHKNkwB4UaiosiiKAu/Fv7CnHFlrmamSxcERdhl5ceciX/cPCZ0s+K5tMdqhsDkrlexTaY0PQWgexmBtIXoDo3FJMoS289TZEjylSAv47gStAvP5Alc4rDXUywVFUWLQWKOwNlAah/Wejsg//NpbPGSD4cefw8ykRDBEFovTdYD+oOP3HQSUUmPg7wD/fkrpVCn1V4D/ENlD/0Pgfw/82/8Cr/fngD8HwHQ3L94o9WfKLkMkNNJbNxpMCBSuogstO6MRq1XD0mjharctMbYYrYlJZ7PpKLuc0rmezzV/TvsVSUx2EtnTjlwvy0UT2a2k1d57nCvzbqtJWowho1G8dtTSBYg+4DKQ6MsJ721c5+7pEeqdm3xyW/EHf3aTzctbLP2Sb3/n+zz3/A0+9twTvPzGy5w83OferOP1/SW+HJKsAQ0ajaoFMEymhs6L74JRclJQOc0XyqlKEdV52d1ilF556NCxJcVESeBTT1xga9SgVCAqacEqpXBa03WaWE755PM/zhOzBavb/4Cbr3+XxaDkwWZFBMaDIct2xvRUsp4rR29ijaGohDH4uWGDdQVlWfLue3c4nrXS9akSKjpQnsX8lK5NuNEG5XhM9A20K6w1hATVaERZOpy2GFPIbqs13koGRmhpOsUXP/sJBoORuOtaR9vI8JGnP/bCurpLCrTVJF3Q3L0PNqDwxJRLxV6Ag/jyaZV9KlNcd4dC6J18Kt745i0GuwM4lEF1kUhI4lYQU8IoMu9ArbtGEQk2ddNyMpsxcoVsQiFR1002DJFULiYZw2a0zCDQRmZqdm0LpLwhKQ4OD7l0YRdtHQenS1579z6tSgydY29jj6Ouw3cN3XKWy9oPPn5fQUAp5ZAA8NdTSr8IkFJ6cO7n/zfgv8jf3gGun3v6tfzYY0dK6a8CfxWgnGyn61/7W9Rtw3A4AQ3LzqONxRVDgaWCZ1A5ZqtGrJZHY5pFzZXJGJ9g1bTY2DEdDQhoXDUgdh2721sMhwNmywXHpzPsZJt7S080lk4pos6GnylLW30gxo7CKUpXU3R7GVSLWYpgKRePqG69gQ8NaZ7wNBQkWB5jMuBW/t4vEXxDbDp0t+LtB453ntqjGo4gJnzzkFe+dUrXtMznK2btkq3xgM1b9/An85yWalDSoehLlJh56zFmf7rsWZ9QoC3Rd6QgQ9l73Uxf6RhjUXg2npgwLWR4RhcT81VHCBFnS5oIpR1g1YKB6fj5n/5xvr45ohpYvv+9b3P54iWSNugIzVJurC9++csUxmKdg9df4zOfeYmyLHFW88QTT/C7X/sG9+7v0y4bYhew1lCUQ3Qh+orSRlqkfm67FlsM2N7aYLWYk5JnMBjRdAFCQBHxvkNryxs3b/Pip55HaYczBuqaM9DYo6xd60MM0HQNq8UKpxQJCwhbULOuptYlplaKQB5sm4lHQnlSHD48IT6aYbQhJp8zUMk++9cQApVMHYoZbzBEfPSMC4MrLMtVjbWO0bjXqAg+0bUtKSVcoUGDj7LxDAYjjC0wqubo8IT79w94cHTKcR14+5W3WZ3OKAdjfua5bT7z/An/8a/c5M0jj60GlMMzi/j3H7+f7oAC/hrwakrpL597/HLGCwD+KPDd/PXfB/4zpdRfRoDBZ4Hf/aF/YzVDffsfUKlITOIZWAR9bkBpotQaTGIzKVyeV2i6KAl/FDcYlcS8MijokNr/nhLFa0KLKUhKbIWIMTabhIirizjASGmgrCZQEV74OPWLf0yMNkmE0GE0DB6+weSX/hNUmtMZgzWBqqq4vLvJZGsPAP3Ot9BK3p8ZjNjYvczL3/kuzz7zMerFIcOyZDrd5Nu/9020atjd2+Bof4aJNVZ1rN2UkkLHSFFVxCQec0rJZyGP2NJKFI0bmzv4tqWpF1gnU5K0sVlhBhhDaGsOlp6TlfDZfYxEnIz8ChpXFKyajqP9O7RdoCgtA9WyOdzgiSee5d2bNxnPVtSrFZsXR3LrpoLWx7XjeIiwajqaTjMabfBzP/tzvP3qt3n35k1mbWSwsSedSuswwwG+awlNw+n+ktF4xOXLV3jttdeJIVANBjhXiDRXyfWLPtDGjr2dbbY3NymswWcXqd4abLFcEEKQ9NlY6lUgAKtVjTU2A8wiBjPZoyLEhO88040NaQlnlyGd6exC6IyE4NEmm+IqtfapIT0+7hwgeC9lJOBj4uHREY8eDZlMN5hOJ5k1KU5PnY80XUdhLXXdonyQv41G9ypbAgnF9159m9fefJe93W0ODo+J9ZwnNzWf3PH8W3/4JbYv7fH11085Xdzh6OSQZv7hS/33kwn8OPAngZeVUt/Kj/0F4L+rlPosEkBvAv89OQ/pFaXU3wS+h3QW/t1/XmfAatjdKkTYkoagFE3bYZ0TskoUxV9ICZ8CtjCiQfdCV+1bUE2b8B5GhdzUWoscq/cBSAHaEESrko0bVW6CqWzZrLF02WrKJsewGdN1HV3XYsuSpBXFqGL30pTpZINCa/YmG2xsTZkMHctOLv6wtNRdQ4yR4WjKjSevQLJ843e/xXDouHPrPk/8+BWsjmxsTBgPJrx2/21Wq5qkgixe7bC2oKjE/rooCuGwu4JqMMQYw2Aw4uT0FOcs1WCEImG0yoNdhca6Wq1QSnaU1XKJqSq0sWgthEalDQotRCKtufnOXe4/fMD23g5NM+fK3iaz5YyNzU22dnZ4761XuXh5j8FgAwDva4rCyexHYLlaSW2P5dvfeZXOt1ycWj714gvsnyw5mK04WnVcfeopjpZziDDe3KFezGibjmef/hjvvPk2Tdb23793j6oqZeEhPoDj4ZDPfOoT6NTR1DUh9WKjLi++jkE+R6Aoi4pF3TBfLM6CIj3V12QlZUAphBrsPUSwmOwfILTqFCPWljIMJRPVpLWYF78sgsxAlGCgM0fFWUOlDSYE4mrJ9OI2SVlW8wXLVY2PUo4sFguM0bRNJ1mJE2GQlC0yyDSoSFfPuXHjY3A6589/2VGtEiflBpNxybRY8Of/6Et86jt7fPeNe3zvzbt85//XIJBS+i3WOdZjxy/9kOf8R8B/9M977f5w1rKzu5OpvkIcCt7nFC1Ld4GQNNoWOGsxRjObL+iC2C/HGBkVcoIwaS037imgfZdwpIzYMllLF7ywuUJWCnZdzj4SdRfxqaZRctM4V2C0o4stFzc2+dFPvcDmRsmwsIzGU7STBfXm7X0AppvbDGLAaIsdjBgPNxmOLd/6xquklPjEi0+hjQUKtBnx+hu32Nja5PKVC9hCUmtxi5G0tWemrXnuPa8hitOtMZqiLGSxZzOOnnw5GAwARYwBtbUpCyOTsGLw64WiSNStZ2t7l4d376OCTABaNJEUO0pXcHF3l63pj1A3HXUrpc9oUGWJQNYzhMDKt7zz7l0ePjrkxlNPwuYOt05POTqdM5u11MsZt95+A1M4jh7cxbcNWsGXvvBFLlzc5YWPP8crr3wf7wNts6Ktl7hqxIUr19jb22E4HHI8PyXGyxTOonUeFV8JCr41nQCKupFpxjHfI23nSYUwP0VbFElRiD0qCCg8Pz1lurEBIfL6918lKRhsTAUo7vGjIJtMUqxbiyip4a1R6/mAkESynGQzIgaWizldveS739yHBKumYby1TTLuTPEYIzG0rBZLxlsjQgpSHvXuSNFzOquxNjGYwu3ZiO1S8/SLz6EWDyG1PLu7wSf+yLNEPsHx4REf/5OvfOD6+0gwBusQefMYUnREQfLExDMmtD0T5aQsltE6ybAJPRJLcA1JKZo2UBZFnvWRq6wclUkQojD+QvQor6iqDVxVYHIbqIhpLft0PnHxwhUKbVFKo3TCWi0uOdYx3NyRcWG+o607tBfwbqkEHPv4pz8jgSgmVm3Nrdt3+MKXPsUf+oWfomlbNrY2eOXlN9mYDFCp49rVCxSFRVubUeue0aZEvJTJSsBaPGStBRRjhhndTOvPorUhRCkddG5PWWuz01Em/hkJplJjCy16uWqYnXp2NgpuvfUOEU1Ijr29Ia6yOBsZVBWTCJtbA/jW77C1sYE2Gp/tsIvCcXK6ZLVcQoocHuxzenpKbGtS12JCR2xr8CXTyZilFjLSsBrTdp7vv/Uu1XiLre099vcfkYjYomQwGjPZnDLZ2qSua05OThkOKiaDoYz6BvqpvTtbm2it6XwgpIizlvrBIXXbUQzK7B3Qk8myhD3X7qfHR7T1im65QnlPHQKXRyPKwuE7cfs1VrpYEkvVOuCq3AWAvkV9Biwqpehiog4hc1CizDAgcefOHXYuXGQwGFAUlVzb5Nk/XKBSpF4uGF3ew5hI7QPRA8qyPdlk98Uh3f27fOnjIy5tDyi6Y2xVoJQlhpbQzTG0H7r+PhJBoBpO+OxP/DyF0mtSg9zTwg/oEdrzll8a1jc0ClJStI1Ha4X3DS6TQRIJ33UYY3BGozWsZguK0rGxtYXRluVyQUqJ0hWEFBgMSkSRqTHa0jQrvvfyMc+98CxJe6rRCLu5y6pbie130HSrBm0UTSbP2rIg+EC9WlHXnrYN/Nqv/B5XLuyCSpwuFoxGFRd3hlSlpP3aiHTW+7CuI/sWU8h+AFppqkHJGUuN7E4rU3S1Ec8DUI+dNzGnkBJBK71Gr0MIxOTWk5PG4yFvv/Uug83LmIcPOb5zxJUr21y5ssd7DxpeeOEpxgOHjmc7/9Z0lCfcyHt66to12maPoXHcf/gApTRlWXH10pOUTuYpxBCom4aiKHGfeooYIvWqEcJQ5zk6PuXqhT22xgP2Dx7ReEXqAscP9qlnC6qy4BPPPkVhFMFLFlEWBSq3FgeldBSqqqRuGpSC+WKRd+7cviMThHqyKf15UqxmpzRHJ9SrFXZrkzoECmdz21ivd3qZBJRFpBk47EeIh5TW4C0q+zloRdN1pCAt7sV8hg+Brd0dVqenHD96yGg0YjKZsLu3w3A4EPFYDIToibElRMXTT15B1TVViHz6qW0uvKAZxppiWNDWG2hjiWjw0ina2Nn70PX3kQgCRhuWraHWLVoVoHIKr4CkSF564a4QdVpsJcUKIRGzR5vRKuvSFaYc0YS4jvZUFV0UZHZSlIzGhsIZko90dAwGIxTQNqLIqlcdhRMiiUqJ6D23br3LMx97EuWUCGtQVNWAQTkgxEAoC7TWTKdTAJ65cUPGUnlP29ZEFbOnXYHWBkxA6YBVhq4L+UZKeB+xI4u1lrZt6dqWQVFhnaPMwzl7lYVzDu891hictWgtYBYgu2DbShaDpOhFUcg4baUIyO7kfRK/QDQhj/P6whc+xfdefYfnPvV5DvbeI/qOt987YXN3zO7mKNfQoLTiZHOTv/i//UuPXc+/+Jf+4r+6m+Xw3Nff+mfwt/7zH/iV2dYWdd2QkmJ5MiOmSDWoeHRwhLUlCqnTrVGEIDMDuhCyaEvORVIKO6owUeYapNYz3JjgvXRobPYW8N4zHI1ZNU1uLSoZFOIFsE1ZIq4RDn3beSbTbVzbsLW1zWgk3aL5aom1BmcNTdOglGI1O8G3HXZYMRwOSMFTVpbm9JjPXa/44z/yOS5ubjG/fxu/irhqj9ofkcyQaCxt6FA+ofWQ0JQ/cJ764yMRBMaDgma2ohsoVLda1799irn2FKxbGc+MqOH6SbM98KeNzm3fPtUT4pAPCaWhMorQLCidZrq5Qdc2sjsmMbew1lKWJTGGPFxCyoeyLPiZn/lRppsDZvMGq6WnjvIUpZNJPErjrBXvAGAyrGTRxkTXRorCZIKf9Ox88BhjCTIegBA9nQ/4EIgx4pzFlwXWGNq2k5Q+CJlGdoWASTAYDEkpUTiHteI6W9dCWNLWrc+DtpbVaiWoN5Kqhs6LmaeSIR4xdLQBOr9iXFjee+8+ZTEiJcPGxPD09T2U99iqkJQ3wf/jP/ifCwCLoigK/vz/6H/MX/sr/yd829G2LcSYQULZcauqR9UFaKsXC7rgsVbeP0omTFkjyzF4T89jCCHQtK3Qk3Pv3RgHSv62spau7VBG47TGacP2cEsAUq05nS/WVGqjjKjAAYx0FVQ/5ktuPlqladoOw5Inrl3hyhNP8NVv/B6dFx8ErQ0xQvAB5wqZARB781pRGPbSFa2FUmxRTDc3GWXvhcVihrOWtq1RumRxMs8ZrqLrGnzTUgzBKE89OybWA4xObBeecdjHzxTRlujxLrVvaZaRpDzoRPQdioAp3dlMjw84PhJBYDQouLI55Z3FDJPr+56911/wlBe31mfmCZIyJ8EEyOlctm8+A8+klo/Z9AEFZeFoWyEWpRiw1pGCLHaloqiBM0MwxkQMmWWIxihNVZWMR0OMjVKaZJ5+9DIa62Rjg//l/+YvffgH/v/j43Rzk9nRMbGTVNz7xLJZMhwOaZqWej6XIFqVeTEmXFUIdmEk8CojHIY++A2qkrpuaHNAKMuS8XhEr9AMMaCtkbboeAj0bE8ZIGKtRRnNqq6FK6FkoYd0Nl1KOAO5fpewgdWWa9eusXvpIsu24TvffjkPckkURSGBQ0HnPRiNzXJzwQ6jzNFEcIoQIkYrfEgcHc8oxqVwPULCx4grKryPoEy+V4Vz4GNLvZozOzrm7v4DNnYv8PSzHxNp9+kJrRYh1mrVUK9qFqsVKLDVgOFgwnT7CsPR8IOsNtfHRyIIGGt46ZmLPHqtxYdmbaMXEQfVxzXbuVWSAwMKMYMkVw9koY9CRlyj1kh5ZRQlkY2JpP9agSkKFNKCE3cYv6aTNrmeSgL8Yq3s5imnjSkm0fqFHpqQXe+v/Hv/wzUgqdWZwKkPYj1QBKypyP0UmTPwTz5z3+VQSib2eJ+JQ0oRgxcued/9yDhA304iSRB1TgDA/m9Lp6AfrZ098JJaDwxV+TViCESfB2iuJ+6mrJCL6/cXcqnR6/F91xF9YD7v1tlJT8CxVUnb1lRGZ68ChdEGkznxJv++1kYyCcA5hzaWIpcySik6LxJa74U3n5TCewEAU8ZOIK3fX/CeZd1grEZrqc9D6lmpYgu29kTMBZdxhlWz4q033mSwsc3G1ja2LDB5VFmM2bQ141d5z6F3K5a7L5+nlCAqmU+IZTAc0XaddLd8whUFqW0pCoMqZbZAigF7NMcYRVGN+MyXvoyrHK2HxaIlzGYs6yXJGY4Ojzh4eEzdShblo4MIg4132d3d5uLFix+6/j4aQUAb/sCXP8k337rLvh4DrZB2tACA/TDGnrcPZ4tEjpSHQORFkJF0Q27fJCF4KKUYDSuclVTWGIPNQFrvG6jQmRmY6E7nKASUEwmutOQKVxGSAHexaWm6BquNmA0F2VX6gRQh14RlWeZWnLjrnl/s5xdU/39jzHrRu9wu9F7aXE7L8FFr3VribAuXx6UlbCkL0miNNZaicGezE3JA6ecpCLItCyUpJfwIZyQIaIUuHL7rcErIVT5EnJI0V/gHZ6+ltT73mCKEiA+edtUyURNc4dDWMCgcxjlCiJS2b4HKe/XeY4wAl1VVorWIZppWOhj9dbfO0fmO4XhEk7sbgq0IIu/XsyIgGZgtl3QhUlihoYeUsugsZ4xKiQozL2BDtunWGqNBRRkbVhaGLgoE2PthrgN+n6XGPtAKYBuyjDumgNKaxWqFcztoqzHek6KUetZZurZBI0Gwi2EN8rY+4gYDQoiEFLlzpChWA4qiwFEwuHiFrc2G+WzGskn4pmNawrQaEIH56sNTgY9EEEAprj5xhX/z577I3/jtb3EwU7RYTErrgUM9ktsbCfUxQHb+s11WKcEL+jZavtbsbG2wOx7ghAxKDIFBVVAUFquT7EJac/vWPd577wGbu5tcvnKVqpzgjGZQOqxOVKXClYrh5oThaMhs/xHVsMpz81aEGLBG3GRCrtVjSlJ+GCH8yPs6UyYqJSmu1pqqquhnzMUYGQwG6+AwHo/XN6lw28N6Ycc8l6/PLLTWgnfkxdmbYYLwCPw5JluMkbZt14thPputPwMpUbiC1nuME2PSEMXQssh+gSEEjHVMJuJjF2NkPpsxGNj82bZJQFmWtE2Td+nM/QjSCWmaFlVptDHZ1NNijJLx2iEK8q80XSfZhWAZmuCDjP4i6wOUyuPkLSlEirKkbmrqxuMTeN/hjMVpcRK2OYDFTAvvXYMxecBNxicKLfLwsrAsmoaUcocl80pilCxIWoRaxtX1lKScWRqjSEnThcj2zg6LxYIUhLDmk5g3+G5A07Qsl0uOT2Y82j/g0rUhMudiQKE1Uc35+qtv8a2vfoWre9vsVBXRDXhz/4guGWKnqdKSn/zsU8StISkE7ty//6HL7yMRBBLQKvjcj77E1Y9d57uvvsM/+Op32F94dGXRvhMXHy1UYs4BL0pl7/goASP2aVk+rBFBymqxpDOR8XSc60Jkp1GJqtDMZnMOTubs7x9QVY7xcES9qDm4f8DRg1PefuU9fNfSNA1vvfk2w/GI6eaAi7tjobQaT1lYrBF6Z78IY4xSs557U9VggFYyT15qSHnPfesuBolyffruvReRVMrprfeS9uYWqUiEez5EQsVIs1qhcvcgBaEQhyjs9hgjVmm6phFjyyiqyX4aU1WUFLbIu5MwAW1RkDL4lwAfOknnU8RayTSExCKZ0CgHrxQTvu1kN1/VQNYHlIUEIO9J3lMWDpXiugxIJOiEC2GMoW4aUEp0+S4PVsm7sGA7ibZrMldBGHaSskt5s1zVkilp6elrbShcLygTHCgE8XaUml7OhdIGE8U1rmk9cbFE5eCzJnFJ35HgA8nm0jTzM7quwxpDl41JFYnTZsVytUQRBeQNEW1VDsp63Xna2d6j8REx4hYegykKilTy0qc/y7W9LTGwxeJcxXNGo1IgqoTVlkIpjNW0dcPe5saHrr+PRBCIMZC8x+rIlb0xV3Y/w+c+/iy/+523efmt27xzvE9KYFUiatAYjLMZvZebgDwBFnJFt150Cd8GCgN7WxMGpcOHiC0LrNasFjOeefJ5Hj16RNcFNjY3ePTogFvv3cLZEmsKVosF1aBEK5jPTrh0aY/dvRE7u9ssZseMJiOi6mtACU7OuVxfK2IX13wHnXe5foFrrfFRzCp1vnGsk1TaOUvXdRRGUmdjjCDtZbnGRGKUboIPkjkQEwPnGFgjJKN8o6pcuxbOobSmdCXeezrvqcpyXeMaa0ErnCtp25ailGCQ8k6H6rkFJVrpxybiiuV1T1oSbKBH42OMFIUjBJk0HKLoIHTmOXStBBMfPHXTZWgu19Y526iqikFZkoCqLLOqTnbapmmIPg/98D4HD5EWSwBaiaTXFSQSnffSVdKSSfZgcj9zsr822mhC27JqGoKpGdgSXZaCDZ3DaxRqHfRTLufOaOmc4QUpsmg72i4yKGXT8LlD09Qr4cFk2/FqULIxHXJ4NBd7N5V53p1m+8I2G+MSV8gwG61ECGWMBJqUs76m9SyXy9yh+eDjIxEEFIrVomaVFMOqotMd1dTwMz/5Ij/75Y/xW199ja+8eov9ZikuwFlY1ANkKgM8Mdf9dg2WiYtAjC3VoKByBmeEiaVCJIbI/Tv3ODk65u13b+LKktPTOdYVuMIxXx5jnaWNLfVixsbGBlsXtrh4/QraROr2lK2tDTCGrmlw1hFDyD3+5oy6HHoClDjS9jsvZFyicHgf0U5sqfpBGN6HNWkq+E6swLSmbYWYFLzsLs4YUt9aNEbaqnkZaeNwhQSksigw+ecxg2yj8Vg4BEZwgKIsZSRXSkKaihJIiqrIC15hrcZqKQVUCufKM4WyGXfQoIuzYBeDF5zHgKnEL6BpWmLopOSwfdYSsUaxms3RKLxzgokoRVjVdLmd22UCVNe1mQhm8UTKwhGtIQSfwUpIXaCeL0iICjGpM58Jawxd9geMMWWW5RnmpK1BO9uzsgi+oxgOqZuWNRCrpJVtrcUVZ6WXVppkJBPRmY2ok6KuW15++VU+99In6JqWFD1bGxsMy1ICqVKcLBaU1YBu0XL/nfdYfvwThLZDO5kAvVg2TIdTiqERg9YIJEX0bQ5gJuscHNPJlPRD1t9HIgicns557+ZDLl/epFUR7QoZkOFblCn5+R99kWcvbvK3fuOb3PfiBBxiFJ11Xkw2f2iV0+yephljJDrNpQvblFVF10oNmpSSej0mbr79Lou2ZVoMsbbEGg30Y5wU2p759bnS0bZLrHWENjIqFcZIvVuVZWbheapKyBkhBLrMWDwzLonrAOG92ICnlJh1nhQjVQaA+qyhLAsK63AucxmsWWMJ1lpRmilF23UyvykDUV2231ZK44Nn1XaUSvfVlASXtoMU0U527iZ4WbhRWqShaXDO0S2X8jdN7tFH+TyFkcm83nsGg4EIeJQo62JIhLaRHTVB3bTrbK2L8nu+7VCIE2/PjyhdSaENzhg67zFGUVorBB2ElhtyR8PAGkQ1RsaGGWvXwTYm8rk8w1/69rPO71OlJE52qmcB5nkDgApiAltYm8sOAfvElu5s+VTZSwEECLTGZGentA74YkMm4Ofzzz2DMxpbFmhTUbcd4/GElDpu397nN3/76/zYT36erUvb/MilH6EYaw5nD+hSI6zGYcnD0xPM0nB5bxPnrDgyexmQGoLP95lkgr2w6oOOj0QQWK6W/LPf+mU+dukqdjnj0pWrzNuWzQu7FAbaleLtRwui0aiuA6XXae3atUX1VAzZIVyu+1OKTDbGDAsj9GFXUBaacjAgxcjehV0Ojh6wPJljC0e9kl7yYrFAZ0LScDjGdx7CEp0MfqUZjSbs7U0ZjAphm2WiD/mit22Hc3YNuK27GUl2n5gXms2DJGXmnbQUq0GV+fx63XaTEqOQ6TVVKdbYmZgSonDZR2UpASBKTWtzWipgpAQgyR4SbdNgrTD/fNuiUlyz4JRSYDVd16K1ZA79uVAZ8UcZaWul7MWoFItlrpdjYDgY5HvfsFitxK1HUEh88NJ6VPK5jdZrtydrTQbiClRKOFdgnRNdfhDwzhaOyhjqVYPRWvj3IaDQeCIpiArUOEPT1IQIy+VSOk35WsRsXJlSxBidwUSRjJOQDhIqex/Car7AjvI069yxab08V/gsmrbtiCjcoFx3anTGrJSS9meKch9UpWVYWGEskvinv/ab/IE/+IfY3Joyf/09Xn31LZI27F29SIiW+s0DBqM7NCnRtpFuMWN2uM/AaP7Iv/YTvPjCUywXM8CyWtW0dU1ZFrl7qdZS6w86PhJBAOu41ZXcv7OPjpHw6A20cfDmA3EK0oYmJIKyWGMlvc2eodqQgTWVFxRnQFUMDErDpd0p1soCE/cii04JHwL37h1IpHdDrLWMJ2NhdlkrgqHYQbIMB0M2N6ZsbU0wSlx0ypG0rkLK4pwM7hETVSU12HhckrLRiFKKwtjMRoziHGSzRiD1RqYy5sxY0Qc4Z/O09oQyhrptKKyVoEQWrCB2YyH0Bqlx3VrrWY/Rd3gvWUk1GFBWJcGLirKoKvG6a9v185aLJaWxAmpqQxf8uqYvqHCmWAc4Z6W91nUdRSkaAmMMbiBBbLSxmWneEoB6tDzmzoCoHiV4qERGzFO2+Ip4FKtVTVUN8q6qWa2a3A7WFK5AawsJ6b1nq3I6aflao7hx9Sr6lbepZ3PK0UDOsZNWU+MDXkWMz7LflPBtC0b8+8+WTyJ2Hb5pcMMRPjSoHABKbcFEqiLLlNcS+LCWtceITKEicXK6YKg12oqz0Ovfe51f+42v8sILz/O5lz7B//R/9mdYnnRY49bCLIgUA4t1Flda2qZmYzpm98IOpoCxGnB6Ml9TxJXSuFIy0vNZyw8sv/8SlvC/9KGUwQw3iXmaT+gCvh/bbfS6P0+IawNQEDCKlLK4RuyXrBU1maSdicOjfZ575jrRN7knDSoj+GVh2N3eou1mPNpf0dSe6XQigFlbMxwMGY42WcwbqqqkLEuaxmNtoJk3dN2K0eVLTEajtYdd6QqhHZuzUWEhtLKrZu6AQuURYFospmJajzlLIQBnIGJXC48crWl9pGmFXjwcVrn3nFFsJMXvOQXL5ZLGS2q/WCwBMnNOetwhJFJS6xt9MVuyXC4YDofYLuLKCmedCJL6jCtzFfoOQZF5C9oYCQBKyjLpscsO35c9CUQrkRHzmBKmrDg5PhbZLmntAuS7Dm00JknrMoSArSxd3uFXnc/ZVX5tn/B+SQheWptdl0lVKitHE9Nhwb/25U/z4GDGb3/168zqJdYZjCul/ByUdEEEaz4JbqCTKFhVlPaAzkhCjBGjoCpM5lcE6rASx2Wrsj+mgi6XAkkmGjutSV3AhEQ5KDDOYFLHpDCUJpFiwztvvUFlDZ94/mPYzURVVdJuzgFT7NGz0KzNhLUucrpaEr0Q18qB8AdC8BRlSdO06PRRzwSUQlmZ0oMxuEJlmSwisPEBlXeb0EnbyTmHdT0mIH34GCPWWJF5pkC7bNnd2mRYFaSoSSFRFSVN2xK9x1UlXVMzHIhAQxuT6Z2GyWSCKwrquhG/giSBw1pHSuBcgW87RoMx4+EAZ925up81g877DqU1k+mUtmkFODQWnBMSSQh0XbPu95ucUbRdJ12PGIX4ktWFMSVKVzE/OqHrOiaTifARyooYI6u2xeQ+etu2uUshXYTlYsloNKRrO9lNigJyBlUNh2xvb69Ll3guo1BKYZTMZPRtJ3V0xiV0BmCtMetJTCRB2YUvlzDWZJKL0GGjUms/h8FkTOM7GUcGuYticqYAhS3FHyIj9kWSbkXdyHXps5+u66SEUj2pSnwmOh959GifonJEWhQN0dck3+FDR7NqIcEsNLS1tBhDHpYalVDYR4MRW3u7qLLEFlY4IYtT3nvtNWLTCHioDYUrs8RY2pOFLrh0+SrTrU3mJ3Pu3r3DT//El3juqSuMK8ej/SO2Htxip17xRFHwljcEpSB1NMsl+/sHbGxu0NQNq3rFaDhCaZjNT3Glo1m1bEx2OJ2L+Ch2gcIZLlzcRRvNaLrFYr5gMBqu19MHHR+JICCIfpmNNM7EP0ZrrLMUyEn13mOS9FYLaygKm1tbAV30PXdomxqrNTp6phtjZifHmTWXWM6XaKXofEtdrxiNB1RjS1FNOJkvadqWyXhMNRiwXAoPu17NGY9HbGxssFgs2djaJHSena1tXGGwTqKu9x7febwPTDckzRcTCEVTd2vxU922uHP+dzYTiBaLBUW/aypxVtbGUFpLTJEiA2chJOx4IuCoFl/EkMFFaUNJRlCVMr47hIC1FSFEqrJEG9FSKC31bdedMRQ734n1Wr+DJwm4KKFf9+l+6Py69QcCgM5XS4ajEUYJYt7hsytTR1VJG3KxXFJWJdY6urZbt+LaKLhDPZ8zHIkfnuA9Z3wJ8u+uVqsMdok1VwjCnVBKs39wuDajWS0bFqsVDx4cULeeW3fvYoxlvmjYunSB0cYWphxQFiWayOH+AQcH+yxmJ/jFDB08nW/puhVdDKi6JWpLYQtUVKS2Znl0iM73Z1mOsFXB7oULbGzvsbmzy6UnrqGsZbvbY+vaZWY+EEOiKiw7T1ymu3GRw67j5z//JZ566ybHx6cMhkPaDqwpaVYtRVGi0AyqIWVVUlUjUoSuCOI+5GHV1AyqkvF4wmg0XvNMeoJZ/Jc1Gv1XfWhtmE6nYubhJAWtl0I/FZQfBmWJGQ6zj4DcMNblXrg2eVeQWqhtB9x97xbDyrC5NWEwHKAUIi9ViQcPHnL33j2ZJWcUzhqeefYpzN1D7j0UZyDvOx7t71M3kc3xmK7QnJys8KFDn54yn8/QSkxJFQcYpdja3CSFiHMF8/mS09MTRqOhgEcpURTSmx9URX7fkgH1FNOyrHBWuAGD4VCYj0m4+lpZkkkcn5xKNpIvsm+F9RY6nxerLABbFBmYbASfSFCaPjCldQdlOBwKQSa7LVsr4Nya9poD8vmZjApIzgmmkINAWVWgNc4KFmIyL8IaQ5E5Ez54puMxPgR8062fX5VlJvUYBmVF7ESMcXR4yHQ6paoqYkoSwM6VGKPh6Nw9JMDcZDRBW83R8QmDymNnRzSrmsOTOZPJCIViOp0yHmzQRUPXRmZ1jUZh3ZDp5g7j4QgTWiqnMDhmi5plbFDJU2rNk1e2icmy9fkfY+IUqV0JmStqdva28QoWK0/rLcvjlrqZ4wrH9mRClVq61YLr1z6eA2657iBtb22xWq2YbI6IKKyyYp2Wr1M/l7EfcOJD5Pe+8Xs8/8JT+SwIIL3/6EAkypBL2/Z9NPvHj49EEDBGM92YrsUtq9WKjY0pCknNdWa1iUa+oSxFKda2LSkFdEz4TrIDHROL02MuXdihLBU7O1s46zg5ORFabeEwVUE0Jb/zO7/L3s42P/vTL3H98i57O5uUr5ccHB6zapcMq4rxUAQps9kxZSnpc9d2xJDY35+xmDVcuLjDxu4Ws+WS7a1N4SIAuxd2MwNV8AnnHG0raLPOZJoQPePRSLoJRYG2htI5yYqU6BnqxZKyGmI0bBTbpAy8hSxptUaUdEVhc2tSr1uMRSFB1VjRAAQfUEawBG1sRv6lw7DeldtuHYD7cqDPCJbLJSlGkUmTdRBk9FuL+YVcx4j3ZyO7u7bLbTmNNQKgVlUhnQ+l12Wdy23bGCNbW1trAlVPinJO6Mk2S6P791yvVlRVJW5JzrAx3aBtOqrBM6QUWdUNy7pmMZuzqj0P9g9xhaHzidYHTmcztreEVde1LVYrmtWCe3cfsFgF7j46YTxxXL+0wzNXrnL5yWvMZws2hwNGhcI5hU6W0Wggfos+MhxVrOplBppdtgyTcvDocJ5JRpINVVWF1onBxobgGFGRtOhU2tRSr9ocuMVarO/YvPTSZ6lXS4y2kqnlrM3nlmDfGuwztg86PiJBwGCNoSwLfCZuVKW0w1LuuXZdR1EUNEZabKBommbNlR9NxhkoizjrCL7j6hM3qGwBSTEdyo1zenrC7vY23ge+9MXPEEOkcCXvvH2HauDY2dxgMBgym52wqmt2drak1ZI081nNrVu3mWwNufHEVcqioK5XWKsZDgd0bSNlS7dkOpmuySo9gGmMzpTbIDZgWrE5HkvrK3sZrFV8CHpeFgXVcCD1dgYBQxSQr2s7uqZBJbL2IEtwm5pHjw546qkn6cVBvfIvhkhVlfSmnFob2q4VOSzpTLDTtGs2W09vXiwWaz1BXddrwM97T5GVisJ0FATcWktd18QcTELocFYWXi/XFssuTz8cxnfdOvtYLdt1mdIHkz4otdmWu/dOaOoV48mU4XCAMooYffYe1LRdzXQ8YGNUobY3KMqKxbKhbmqODo/Y2tll/+iQnZ2piJhCyHZlilu373H/wSF7d+7zuU+/QDOvuXL1IjuX99BXd0k+oJNCqZQt3VMuV3W2Dhdqe+FKZoulKB2DUMx7jEdrLefbCp9CwM1W5MhaiwEOcr6c1cQo2auYwngGg2Fu7ZKvgc/8CCFy9cHyw46PRBAAGA7FINJkdxX6/rdSzJcLnHU0bSs66qwaq4aDvIOKP0BVVbRtx+lsgUsd+/cf0iyXVGWFUorhcEBZFGyOx4yGjr3dCa6oWMxmPLx/woWL22hbsKo7trcGbGxOWCzmbG/uEZMYlHz8+RtZ+qmYTEekBMcnM1II7Oxso0g4O6BrWoIP650f0pq5p7RmWddSmy8WawZfd3Ao9NrsUhQ6cVyW9Z8IPrJc1jS+YboxEQ9/I+fK5cUkIhbxPJjNZqxWK3wM1HXDcDCgXq3WO0ZvuqKNXr+32HVCXgoR37PhQlij4r13QhfygBNEYi0U5C7jLVEmJEWheCcFIcjiXi7F2GNQVVKnpkgIXaZFy3vv+fSixpTA0GMBpycnAIzG0sqVVlgvN4+SxeRSsWlXbG3uCL8ig74petCawUgzmY7Y3txgNJ5w5eolQIxWClfS+payKhgUji985lMsFwsmkyHGGent+5au9dhyLHPc8BCyOiCThMpKHKG6pqNrWzYnIzrv0dqSIvRDgeq6lmBblMSkCG3CB1HBvnfrljBVt7awTghRXdtmTYJd6zfEHt3QNg0+syVNpkyXVbmmd3/Q8ZEIAiLY6Hk2mczStnjfURQWV8nQzRgiXecBg9LSBahsSUyRwagABc1iiTWaK3sX2N7ZJMZNBoNqXdMG72mbFh8UxgyIQWFtxdaeYlkHhpVkGlVZMTuuWdWeQdkQU2Q0GTNbLNja2GS+WHB8vMhCIUfXtYROevI2I+cpddl0RG7AVS07bpHZbV3d4Ru/lkcbYymLM2trUCyXGQRrO8qyZGNzTFXtEbwnDc6UiN6LdiDGwHBQAFZGYynNyekJKYGpKqaTCQmZFOyDLOgQUxbEyMXog0PfJUgpiJzYWXwUpN4Hj1Fnjj8xL+LgJctRWq2zBqXFc9Ep6VL0su2U0trtqG5qqqLKnYF47nN5lILOB4w1sttl7YXJdmohhjXYWQ0qCUzOYrWVtqGzokrUiuUiZX8FhbMFuhC1pMogpDKWpGHoJCu7cvGCLOiBxSaDtY6WlmQsznmcK1gua5yr8Aq6tpEx5EpctJumxhUF1XDCvfsPiDGwu7NFiJIhxBDY3dvGe09IEQ00qxbjLMOq5LmPPU1KSgxVlAQfkwKYhHHymWarmoODQ0bDIcvZgsWyZro5pusSPnou7O1+9IFBIM95j2vSjG9FVKP+v+2dS4wk2XWevxs33pFZj36wNZiXOENSFGFLwzFhCDAhQ4JhWRRg2jutrIUBbyTAXnhBQxttbUBeGDAM2LAA2TAswA/B2hh+CAa8EEb0WKaGQ4pDkfPsnumurqp8RsR9RMTV4tyqadHTbWvA6Syg8wcKlZ1V6PzrZsaNc8/5z3+mAmdGmCxVWRASkcA6P5KTEabYFx8mNpsNZyd3efHZW1w/njOpETWpy/bTC4FBnufkSpEYI3fOg5notZdLbty6edlqO5vXYloSdDTl0Ex1jSZw/fBQPvzTyBAmtMqkJDaNktSLPvXWWupSxncN8Y28TNHEuxgAUXDknJNmJCWCoblumEZZD5XIXcb2vUz7maQUoLTGGSvndp1iui7OHlCidc8UU0jk4iQOMElEZOO8p8zF11H07+Jxl+X5ResLIUzkaSKDOnJxzxkvOg+jTiAkKjYcZZfRCEpC0izNGKKEmZBcSofzB/7+o+Nj0QT4geNr19i2G0LMAaRpivOevBClZNAJm7YlVykgn5kkSeiN5AWkWSm/1EsEwA+OSSmOjg9FFKVgGj2jHen7jsENNPUMCDTHh6yXS9Q0YsYRZ+TY6WLEJo1UkOYar1M2621sLRgZ/CADXLr+MtdRVTU61ZyfndP1HUWeE4KiqRvO7p8yeOHjnJfpW21HUAnbzZYsFfv5zXZLojW3bn0KbywhRj2rZce903Nxbeo7+t7w+R/7McYwYN2IdxNvf/89lsvFQ6+9K7EJOGu5/dY7IoUdB6pSZLPH1444qBVlUaGYODiYi0XThXtw7Iyapom23aKfmaO/8Cyb5VredEYSpUWWG624J0ZGL1WEWdOIuqooIFEcHxxIiB1LbMRWT3Xp4Dsxq6pYA5/QCaQ6Q00DdVnI2R7Rjmc6xY6WsshJMy0f4vyB5Y6KxVQnoqab5MKsshod68wEGKPCb8wlATeOI5OSSTp5msbM+sTh/FDC+Hiu14n8zd57JmtZbluOc+mcTNIJreQUnqmURIuAqSgyjDE0s4op9g4AUXo7Xl6wIYBomhI2XUsVS5HDMDKOgTwXnq3po3IzNv0MniyVPIlz4gC8XC45OjpicIMkxIDy/Q9w1kVJr0RV+UU1YhzJy4LeucuZgX3fRxekQdyLYg4h1dIR6QYpUzJMNE2FUgk2bpppJtHLNAyMQNM0hEzjjZXNNk2pq4rBedqu4+DggCzNMKZnDBNaZ/S9YTZrcKaLEVSCsY7BO5pZjY1KzESndG3LaDzbrmW5WjOfzdA6od1uaZqGbd+y7UWolmfSkOb8IApTYLHeUJcliVIsV0s225ZxUjRNTcAxTpqz8xOu33qB1loW6xXeWqarbjmudcKtTx0BMEQp5Nnpkheev8HBfEZd14zey7k0gEpq0W/nmXTuTRMHBzWBwGq5YkAulFTnorlPM3HLUdGkYrIkWvoP0qjsy7IMZy1BieLqosdfDDPiGCkvH7Kut5dqwCxVlDFTfhFxpImO7jxygYY4TzCMRP1+TLalckc1vZXR62GUBploDT4OA84Y2G5J1IVxakClKdY5BufktXR6mSDTMZqw1pLnOcY42r5jCCPLxTmJkuy/jmf9vCyx8YK7MCu9SCapBy6oCcnwT2G6TEZJI5HM8yNMeOcudR5ZLkle6xypUgzTiB/G2NCi8fHCTJRC37kLoyQSQ2ze0UlC1/eANOckOrn0UCirEmMNeZYzjhPODThvSeORzxjD4cGBJBDHgaDk3J2hOOaIaZzYbFoSLSYu1hq0SvCDpzMGlSbRdSjBDANkGX3XMdiBcbUhS7UkO7VinBxt29GZjjKWt1GKIYwMTAxA7weMNZcTmjyw2W7ptht6a2TWZJKwMQbrPaQpm8WSphKzGlFbarROca3h5P4ZRS4Dcc0wkGY5fhqR9Gqg3ba8++4dJq1J85zOdOj8iouFsizj8OCAPEupyoztes3yvuXwoOH6jesMw8imN5jeMp8fs203HBzWjKOi7y1ZnmKsxw8Dq00nCjStUWmCdY51u6Uqa6YJBu+YRhkHPXhP3dQfdtRZT28MxolsNS8K+r6XD1Ai7cJpmjJMHyZllFLMDw6xzrFptySpyFZ/5OYNuq5j25tLZyEJJXP6TUuSyv9vTI/pesq6pqxrXCz7Xdwp8zxj27YMY2DWNKJEKzK0SunbjkRr6qZhvZaEmXMu6vxzqbYMXvinKZO3ZKn48XtrSYuSfuwwTuY0rNouzjxI8d5KZ2SeEf136Xsrb1iYWKyWgKIoS0xvSBJNXZUQN6+yLOn7njzP6byntT1pVkjprKrE5nsIJHG68nq7JtWyeUJg1swo6pphGLHjhDNWRE9aE1Zr/DAwRivfpplJG/lFBUZrOi9uxyL4kpJqyHPunS5kQ49jytresFicy41mguWmpalr0jQhDIEkS+idx7Q9hOhMlGVkSSK5jrzg/tk51awiSzTWGepZw3ZrKIscdMa67TlbLEkSaOqaxfqEPC8YlaKzls1W3sdhEgfqIkqFTW9p6hrvHdZ76qah7Vo0SdR/FDjvGEboOifdpDolpBmb3rPtVrG5a4oVtY/GldgECIGiyFBMnJ6eEUbHZz73FLdu3WS5aKWrK5M5fO+89zZvvfUB61XLi595hvlhg7GWdtuyXCzo2g7rPH3XywiwNEVF15g8z2O3WbjUr8+ahq7fiqlHIo4xCrG4Ioj5RFXlDNZhjCHREmZnmTSK6DTl3vlSzt+xOcYZy9n5QpJiaQrIXWyaRobR4MLI0FvsckFVlPFu4fF9j48JuiSGwL3z6DQHNRFQrNcb6plcRAppxV23MozjwpgzxEaaKaorpxDYbrc05XXOzpcMg1iDKT8QEhlftt12MXoQw4y26zDGoI4OYqUmxM3M03UbNIq8yMmynCSVDr8JaWMeppHNdiPS3zDFduAPM/8+hvU29gUEAnlREJTCR2eie6dnktkuili+jK5CaYq3Nm4yW1mrJIrGdEKupDxp25bRj5RVzWqzZjKWzbqlKktW6xXzeYMfZbjnGBSbTspozrlLs5qAlOsSneKGEaUGRjvg1xvmR4e4vhMfxWmiXTnKoqA3PYuuI0lS1tueO3dPyMtcytlKelynIBqTIprDlGVFCCOZSkUiP0V/hUnavENsa+/7FqWmy4EpwzjEz4ujqhtCGKnqEussk+tRWqLUtm9J/5RZ75/GldgEpklCyVQrnPO88+a7PPfsLe7cPuH92/e5ffs9yqrkx7/weUIIzOY5aRpYb87woxGPPGs5Pphju55u04lUd3A479BpEt135CLRidyFz87O8IMMfUSBsTYq/AbKtMQYQ1EW9NZiuk6SYEHLXSAour6PnXVy5h3GAec8eZoxjo6ikDtfAFCB7WYrJhipDAsxdmAMFnRCrjVZolktFyIKmUbSNKFtW+azOUmSMoy9uNXGkq91Fu9HmqbGWLHPyrIM1/cEQjTqVNL7HgI61wQdCOOEm2QwSlGXWCchrVIKY3qsNVwMf+n7nuvXrrFcbzDGc3p6ysFBQ7vZYJ0jqESiquhZOJvVGGspcolCUOmlth8vobtSKlqLJwzRFOTi6GGtpe9NzKw7emOk3KUTnLes1ksyneJj8raqKvq+p6ykHLdtW8qyIM8KskxmMGidM42OJA1MjBwczRjHkd46vJeZAeM4gRpRWtNZR1GU0q8RAtk44doNaS4Gs2joTSeDDy4kw3lJ1xmc8VKSG42IhPKKYQrMD+YMtkMxcnQ4p65LbO/JMk2eZ5RFRdv1uBjBjF4iGxVGqjyLknRpWaeCvJKIrspzhkmG+no/MA6BqizpjUGpBGeNTMK66iVCHc/nIEMYz04XbFYnPPvc01jf8tTTN1FKcf/+3XjuhryQMlOqJqw3HM0b0lRzfDRnudjKRTkNTGFApwm280whgaCwo2XbdhSFyFGDkvN+HpuDjPM4PxLGCe9HUAE/fdg957zHOodxjvPlEh1bj7NMPpwWG7sdFX4YxbBjcBgr9V09TJjJ0hvL0PUcHc0Z+57NZkuWioPPNI5kuqAuaxaLJU3TRKehwGq5REfn3TTJcNax2W5k0yoKslQMLYyRc3adltw/WaD0kiRVqKzgws25KApWy1X0KxBnYucdfe/IVMZmvWaxWDIGmDUHXLt+XcpeMSEp+QTIioLBOzbbLWUhyr0pBBkAGiSX0RuL9yJSCipEg1GLShK8EzFY3xtCgCLLyfKUtmvxw0BvLHme0TQ1znoWiyU6zQgoikI8+53rGceJdtNjUhHqeOfRWUaSZPGoNMqAmSCCojHA8nRBmqZUdY5ONN4NDENPCIre9lxrKj41a8jLHNd6VquecsjJUo1SgdnRDd68e5fVKJZlEwlVmZPpGc899xPMjw55++3vcHb/DVI9cvfeOfODY7yXfNNETzODD+6eROVnEdu0pcdAjjqKz73wWX7k5g3eff82b757B51JJ+J226J1R1mWLM/OuHbzBsvVKo7iE1NXY/qHXn9XYhMYhoE7d95nuTzDtT3eGo7qIwbXsVos0JkWQVBvmQjkRYr1nirPKFKFyqRZKAniBxdCxfMvfJaTe2ecnr6HHzrGKeOLf+FLfOu172L6++QlWCdyy7yUD5xz0nkn4gsFcnOgbCSBt1xtqaqMhBRjOnrj0OFi3t1E36+lFTfLabsW+l6MMZQiaJgfygCOIWZ760YaQ3KdYKynM5ajgwKNmI1u2zbq7kcCnmEcWa23HM4bbHDMZwfcOL7Bet0yDksRHDkptW5WLXlRcuvajC+/9BLfv/Ycr7z+dbJCkRcVo/cY4zg9XaF1QpFn9Naz3dxnGAaapsTYNd57VBA1Z9+fU1SVfHiVCHo6Z1mvN+R5weEsYxrh3r0NVZGidExgesOsKVkuNxwe38A4sRRzvkclCueNVGyyjLKqMM6yaQ1N3dD1Dj9uSYLkX7KyYLVcc3h4zLLdstx6kqTniy/9Oeo65dWv/wHeiTFrEcuFzfwaTBNniy0vvvijpFrzzjvvkmqRoRNkIMnpyQaVJNR1KuW+kOBHWNmWw9mM0iX8pfyQm88fE6qKJstoT1fc60ZUfcTXVyuSTKGLik3vmSbL0yHn6PBQeFtFnqe4qWTcWMq6YrHcMpvPOb19j8PDOdu2Zb2R2Rs3b14jSeJcCKX5/p17fHB/w6pdUh0cMgyBNE85ui5+j4qE+WGgqirKqhZdh3donZFc9eNA3/e88sqrKAIvf/En+dmf+xlef+U7vPbqd0DJmbbtW7puy81PXafvOlad2DIf12JF1tQlL3/pJc5PT3j2mR/nF/76X+F3/8srfPvbrzEFw3PP/Xl+8ide5vlnPs2//3e/zRvfeZ35vGIYBo6OD+QMt9rStm0c6JHxsz/zl3nru+/z3PM3+b3fe4VEZ7SdIUwKazoO5jOuzys+/7ln+eYbt3n7zjmny46yqhlHcZlNAOOWBEYODuacny+j+UmgLCSRNvgRdEpvDJutj8M+RBKaJJqyyBknMadsu4lxMHR9j9Zb9GdmnJ2tWLWGMteQZNxfrkmTnARNaxz/5/Vv8sHC0fYDoR1IUilNhklJhnv0KCXHGOPAewjJxDhlzOaHmFbKYagEPyp6PxK8CGWmAG5QJBrSrCJohXaBrKgg0VivQGnGkFM2BUGVIvZRis5smDUz6rnG9kbGrOcFOijyIsEPgaIoadKaMA0yVwDFjZs3xd4tBIpcxqKf3F+QJIqqOQLVkmaapi44Pj6kswEmuJYcMwwDm/WGpmnI8xTTpzApmlkeZb6Bo+MZzo20ZiIvC0bTc94P3DaWe8VAMWXo5chMBfJKc5KO+FBwfO26uDkPA2WRMU2KN9/+FnfuvkbdVLzw/DMUpebk5Ez+rqbg5o0b5IWc4xOteCZ9CtBcv3bEcrkgy1NUoqibOcvFmlkzY3F+xjAMHB8fSyQyqwkBvBvkcxWdnvNCXJlFVPVw2bB6lKb4cUEpdR9ogdNdc3kAN9jzeRSuGh+4epyuGp/nQwj/13jiK7EJACilXg0hfGnXPC6w5/NoXDU+cPU4XTU+D0OyawJ77LHHbrHfBPbY4wnHVdoE/vmuCfwA9nwejavGB64ep6vG5yNxZXICe+yxx25wlSKBPfbYYwfY+SaglPprSqk3lFLfU0p9bUcc3lZKfVMp9Q2l1KvxuWtKqf+mlPrj+P34E+bwG0qpE6XU6w8895EclOCfxDV7TSn18mPi82tKqTtxnb6hlPrKAz/7B5HPG0qpn/sE+DyrlPofSqlvK6W+pZT6u/H5nazRI/jsbI0+Ni6823bxBWjg+8ALQA78IfCFHfB4G7jxA8/9I+Br8fHXgH/4CXP4aeBl4PX/FwfgK8B/RvxJfgr4/cfE59eAv/8Rv/uF+N4VwKfje6p/yHyeAl6Oj+fAd+Pr7mSNHsFnZ2v0cb92HQn8ReB7IYQ3QwgO+C3gqzvmdIGvAr8ZH/8m8Dc+yRcLIfxP4Pz/k8NXgX8VBK8AR0qppx4Dn4fhq8BvhRBsCOEt4HvIe/vD5PNBCOEP4uMN8EfA0+xojR7B52H4xNfo42LXm8DTwHsP/Ps2j17ITwoB+K9Kqf+tlPo78blbIYQP4uO7wK0d8HoYh12u26/E8Po3HjgiPVY+SqkfBb4I/D5XYI1+gA9cgTX6s2DXm8BVwZdDCC8DPw/8slLqpx/8YZB4bqdllKvAAfhnwIvAS8AHwK8/bgJKqRnwH4C/F0JYP/izXazRR/DZ+Rr9WbHrTeAO8OwD/34mPvdYEUK4E7+fAL+NhGn3LsLH+P3kcfN6BIedrFsI4V4IYQwhTMC/4MNw9rHwUUplyAX3b0II/zE+vbM1+ig+u16jj4NdbwL/C/isUurTSqkc+EXgdx4nAaVUo5SaXzwG/irweuTxS/HXfgn4T4+TV8TDOPwO8LdiBvyngNUDIfEnhh84U/9NZJ0u+PyiUqpQSn0a+Czw9R/yayvgXwJ/FEL4xw/8aCdr9DA+u1yjj41dZyaRLO53kWzpr+7g9V9AsrZ/CHzrggNwHfhd4I+B/w5c+4R5/FskfPTIefFvP4wDkvH+p3HNvgl86THx+dfx9V5DPtRPPfD7vxr5vAH8/CfA58tIqP8a8I349ZVdrdEj+OxsjT7u114xuMceTzh2fRzYY489doz9JrDHHk849pvAHns84dhvAnvs8YRjvwnssccTjv0msMceTzj2m8Aeezzh2G8Ce+zxhONPABkW3/2hFuMQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize results without TRTorch/TensorRT\n", + "plot_results(best_results_per_input)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Benchmark utility" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "\n", + "import torch.backends.cudnn as cudnn\n", + "cudnn.benchmark = True\n", + "\n", + "# Helper function to benchmark the model\n", + "def benchmark(model, input_shape=(1024, 1, 32, 32), dtype='fp32', nwarmup=50, nruns=1000):\n", + " input_data = torch.randn(input_shape)\n", + " input_data = input_data.to(\"cuda\")\n", + " if dtype=='fp16':\n", + " input_data = input_data.half()\n", + " \n", + " print(\"Warm up ...\")\n", + " with torch.no_grad():\n", + " for _ in range(nwarmup):\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " print(\"Start timing ...\")\n", + " timings = []\n", + " with torch.no_grad():\n", + " for i in range(1, nruns+1):\n", + " start_time = time.time()\n", + " pred_loc, pred_label = model(input_data)\n", + " torch.cuda.synchronize()\n", + " end_time = time.time()\n", + " timings.append(end_time - start_time)\n", + " if i%100==0:\n", + " print('Iteration %d/%d, avg batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))\n", + "\n", + " print(\"Input shape:\", input_data.size())\n", + " print(\"Output location prediction size:\", pred_loc.size())\n", + " print(\"Output label prediction size:\", pred_label.size())\n", + " print('Average batch time: %.2f ms'%(np.mean(timings)*1000))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We check how well the model performs **before** we use TRTorch/TensorRT" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, avg batch time 362.25 ms\n", + "Iteration 200/1000, avg batch time 362.47 ms\n", + "Iteration 300/1000, avg batch time 362.57 ms\n", + "Iteration 400/1000, avg batch time 362.75 ms\n", + "Iteration 500/1000, avg batch time 362.80 ms\n", + "Iteration 600/1000, avg batch time 362.86 ms\n", + "Iteration 700/1000, avg batch time 362.93 ms\n", + "Iteration 800/1000, avg batch time 362.96 ms\n", + "Iteration 900/1000, avg batch time 362.96 ms\n", + "Iteration 1000/1000, avg batch time 362.99 ms\n", + "Input shape: torch.Size([128, 3, 300, 300])\n", + "Output location prediction size: torch.Size([128, 4, 8732])\n", + "Output label prediction size: torch.Size([128, 81, 8732])\n", + "Average batch time: 362.99 ms\n" + ] + } + ], + "source": [ + "# Model benchmark without TRTorch/TensorRT\n", + "model = ssd300.eval().to(\"cuda\")\n", + "benchmark(model, input_shape=(128, 3, 300, 300), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 3. Creating TorchScript modules " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To compile with TRTorch, the model must first be in **TorchScript**. TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: **Tracing** and **Scripting**.
\n", + "- Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it sees.
\n", + "- Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do. \n", + "\n", + "Tracing however due to its simplicity is more likely to compile successfully with TRTorch (though both systems are supported)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model = ssd300.eval().to(\"cuda\")\n", + "traced_model = torch.jit.trace(model, [torch.randn((1,3,300,300)).to(\"cuda\")])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If required, we can also save this model and use it independently of Python." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# This is just an example, and not required for the purposes of this demo\n", + "torch.jit.save(traced_model, \"ssd_300_traced.jit.pt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, avg batch time 363.09 ms\n", + "Iteration 200/1000, avg batch time 363.00 ms\n", + "Iteration 300/1000, avg batch time 363.09 ms\n", + "Iteration 400/1000, avg batch time 363.05 ms\n", + "Iteration 500/1000, avg batch time 363.08 ms\n", + "Iteration 600/1000, avg batch time 363.07 ms\n", + "Iteration 700/1000, avg batch time 363.09 ms\n", + "Iteration 800/1000, avg batch time 363.06 ms\n", + "Iteration 900/1000, avg batch time 363.08 ms\n", + "Iteration 1000/1000, avg batch time 363.08 ms\n", + "Input shape: torch.Size([128, 3, 300, 300])\n", + "Output location prediction size: torch.Size([128, 4, 8732])\n", + "Output label prediction size: torch.Size([128, 81, 8732])\n", + "Average batch time: 363.08 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input with Torchscript compiled modules\n", + "benchmark(traced_model, input_shape=(128, 3, 300, 300), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 4. Compiling with TRTorch\n", + "TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# The compiled module will have precision as specified by \"op_precision\".\n", + "# Here, it will have FP16 precision.\n", + "trt_model = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(3, 3, 300, 300)],\n", + " \"op_precision\": torch.half, # Run with FP16\n", + " \"workspace_size\": 1 << 20\n", + "})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 5. Running Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we run object detection" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# using a TRTorch module is exactly the same as how we usually do inference in PyTorch i.e. model(inputs)\n", + "detections_batch = trt_model(tensor.to(torch.half)) # convert the input to half precision\n", + "\n", + "# By default, raw output from SSD network per input image contains 8732 boxes with \n", + "# localization and class probability distribution. \n", + "# Let’s filter this output to only get reasonable detections (confidence>40%) in a more comprehensive format.\n", + "results_per_input = utils.decode_results(detections_batch)\n", + "best_results_per_input_trt = [utils.pick_best(results, 0.40) for results in results_per_input]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's visualize our predictions!\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebilWXbWB/728E1nvPONuDFHzpVZWZVVJalKUhnNAkugASwxCRmQBd0W2A02ot3dhkYYqWmwxGhJRmBhLDMJATJIIIRKY81VWTlUZmVGZMxx53PP/A176j/2dyNL6kqreUSZ7Ee5nyci7nDiu+ee8+2113rX+75LhBB4a7213lq/eZf8D/0E3lpvrbfWf9j1VhB4a721fpOvt4LAW+ut9Zt8vRUE3lpvrd/k660g8NZ6a/0mX28FgbfWW+s3+fq8BQEhxG8VQnxGCHFNCPGnP18/56311npr/caW+HzwBIQQCngF+GrgLvBR4PeEED797/2HvbXeWm+t39D6fGUCXwhcCyG8FkJogL8PfMPn6We9td5ab63fwNKfp+ueA+581ud3gS96owcrpUK30wHvSZIElMI5R7VcUmSaJEvxQWCMQcgEHzy2qcizjNoYtEowTU3wFgAhJEIIdJohVUJdLfHO4HwABHmWk2Q5dbXEmebB84jf/dVLnP7VflMgEEpT9PqYqsI0FSF4CKB0SpLnlMs5Smp0ntOUi3jtEJCATjKClNi6hBCAQACsC4QQ4vNWEq2gvezneFbgfcAHH5+PBCEEwgcE8Y9SKj7fAEWuaFygqS2pFMhfE/rDr/ndT3/dEF7/Wvjs10BIgpB4JDrL45cF4D0+BIIP8RoCpBAQAsF7jDE473/1awsIKdBJQpZlKBXfO3l6zfb/qyTBOxevhUf48KsuEoInfNaXhNR47/HeYXz83bNMo6VESIl3DoEg4EGARCCkQop4rfi+i/i7SPHgPQwh/hu/LUDE96KpDY0xWOcRUlEUKd1Mk6h4PRB47wmIB8+vrhryXCFFQEqN8/FFVgoIHqlTnDUQAlLG1+X0TZA6xdYVSxNf1/GsRrY3qxACQXydEwWdTgbec3dUH4UQNn/tvfT5CgK/7hJCfCfwnQBSCi4Nezz12GOMhSBXkhdf/jQz1/AFX/AEurdK7QuysETLFF2sMx7vkivH3uERw9Udbt+6yexkl0SCFBKZJjz1nvfjkTz7S/+Wxgjw0Ol3ufjQk1y48givvfhR5of7qKzApx2apkbaCrOcIoLFI/ECHALtASniDeVh5+pDPPr4U+zd/AyHr30G7xs2HnobR7OS6f4dLlx+gpBn3Hj2ozz2+OMsqoby+A5rZx8iX93i7isfQwmHEgJnGhaNY7EwuCDRScpKJ7CSK3INCEUIgtrConHULt4IgYASCi0daZIgvcDZhjQ4VlLBSk/w1Be+j5euvcr9127TVynDjkLJAFIhgkcqhfEB5wN5qsBZQgAX4m0Ub3yBcx7vBeCRChKtCYlC6IKQ5ORrW6S9LSbLivlygWtqhllC0e+Tr6ziqzlmNsOUJVU1w1RLvI8bUAuB8wErU1Teobu2yrmL51jpdchFRa4gK/pYU5J3V/F1jW1mSMBJhzABZ2uQGt84hBSkWYeyKnn+1dd44b4h05r1QcbD211WtSRkGZsPPYmbj5nef5Vet8vOxct0+z2qxQlSKESSYr1HStlGZI8xnsY6rPcIIQgerHWYquHg4JBPfeLT3DmcIbXi3OUzfPl7LnCm70mlxBpwYoAPc3Q65OjWTXbO95G2ZOPMJYqVdWx5giYglcYIhSQBFRBtFHYhIKRFB8Ht24f81PN7vPjxVxkNEgadlAvn1nnbk09x7SMf4NKw5JHzAuE01yYFf+rH9259rr34+QoC94ALn/X5+fZrD1YI4YeBHwZIlQqIgK6nbBcaJTXn11doVlbR3YKgE+zCMkgFo3JE4izd9TXs8V0kDqU1aIVZ1lR4pFDo1OOswyeSSWXQSDpJAs4jpaJ2jso5vPQgLAJH1unQG+4w2b8LixO8c9jgUG0kD0EyXdRoqZjdeoXbWnDpkSeQQnP/9iuMpyfUi4qVostgY5M7d2/yxJNvp7OyhhufMN/36DzHNSXVcokQoPM+OIf3juGgIE8U/c1L1LVjfPQa3juUlCglUIliWtbMa0gTRTdLKDSUBtY2N1lfHVCO99HSUSSaibP8m+dvMbq5y5meZlgolHBIDyY4IJ5mxscTz9iAROCsxxLiCaQUSkqklJRlg1bxtHTeoaxHuBmumlIuR9TyNdKiR8cnrF5+mPXNDeqqYTw6pshz8vVNnKlY8esEb3CmoZqfMJ0umUyWLMoFxh5hb97lM5++xsbmOk88+RBrhWZLJEgZMGaOJKCzLgQL1iCkQwiFo82glMCaCtuU3DsoOZ541lcSqnlNtZLR21ilX6So6pAkkaxf3UFnGVmmcbZCaU0AnKvxLoCUMUPwHiUg1RLpJcZagnP4EPCJYuvsNl/8W/rcv3OfF1+6wc1rd/ln0zlf8UWP8tSlgowSU49BxwxpfbuDViCdwIcpWbqKdAqHh6BRqoMUEifieyGCRwSDIgHhWEyWDE1JP5WsdzWdYYe3f8ETPPPMk4jDj7OtKx655FkuKiqfvOFm/XwFgY8CjwghrhA3/+8Gfu8bPThLEx555DxrO+t4KZmXlvWswHlJVRnMoiQpOqwO+6ieYDlXLE5OsLUjKzKe//iHyYXjbEdRm4AJHutqRvfvc+6xJ3j6Hc+gpSfVCfNpxebWOY5Ojrj+2m2GmYKlAT+JNzuKrDOkrhdkuSKXAesszjiccyQ6ppRKWQ6uv0AgcPbKE4is4NqLzzKdz9l88u04ISlHR6j+eSyB6WREMVxFdIbcfuVFBIJEajbPXma8fwtfL3G1ozKSnlIUwx6u6oIzNMbF06cyOA/OGSZVzaxU5Fs9VnKYHtyjNgs63R7TpmExmjOZzPDugF6uqdKCAxyJD6TeoTV4axEhtAmmx9gQPxcxlVdIRAhoBcYJAhKlFUHE01GKeBqmQRCcBeOo6xLvBAfjPe6rjP7aOkmekXYvkKeKRipWVlZZ76QIVxHkBYxxnOwd8/IrNzk4WbIwFaYq2b1xm70b9xhsrfHwY1e4eG6DtZ6gIz1Ii5KWJO8TbI2QGb5eEKTAO49SseYZzxu8lzgHVSIwzoFt6Kxus7G1wXw8JjhFIgXWVm1pE0sGPEgCBEcIIm52ABm/ngjwWhK8b7OwQKff5eoTj3P54kVeePFVXrl+h3/7Ky9TlZd45pEhOg8IawlhgZJtaaQVCIU3JTIEBBKvU4JUBB/AB5yIlZEMkqAMygu2B44L+ZJPeYcXgsYEFlXD7vEJ8yahIEWlgY70bC3eGP77vASBEIIVQnwX8K8ABfztEMKLb/R4oSR3pw13xns01uKtxbp442dpyuogJ/eWQ5mw3suQvR71ZEon0wQCuWs4c2kdMxqRLHxMX4Nnvn+b6dYZikEfmiXWw84jD2GF4tarL0FjSDc3kEpzeP8uikAyHrN+bod7d0uCN6RCorREKo2UktWVPtvnLjGdHNKcHHNw+xW896ys7XDx0SepZnM2zl7i7p3XEI1lURlsc8jxwSFPvuOdHI+PWUwO6EqByhLqpmE2n5JIjQqBXm+Fze0L3Hj1RXb3x/gAUkqKTKGTDKk9AyVRLqA6Q1zS4f54Fy0Fcv+AkTxEC4WSAuk9SimETBkvPFPpkUKihEbVggRJJh2JCGghSXFIAVLFGtgjyGRMQRelJUnStoSQbYosYzmDIz5RwAeECAghkbZhvn8fnWgGa1tsra3SSwQ6A2SNCxKPB61Zu7DDe89s0JQNs9mCxXzJwd4R127sMtnf5xPjES8P+2ytr3H1ylmefupxxPIYaZqYqUsQSoFMoJrhTKAxARNi3b5sGgbdAoTCOQvNElfN2rIv0ISARIOAIGIUDKe4eThFbmI9H7xHhFi7iwC5FPGekwHrPM45bDflqfe8jTNnV/nUJ17mZ37+BaaLy7zv6UusZgZnKnxwSJmhbIkk4hJWODwaHzx4h0dwiiSIFqMRXhGAtZ0dHq4bwkdOOKmgqxXTpWP3zoK9CdBJqIxg0Cs4+/Bl4OBz7r/PGyYQQviXwL/8/+WxzgfKqsY0FucDwTs0IEOgWpbsVUu0XnLc6TBe7eJlyVAJtjcGmDwj85L7r76KN44g4lsnlGS2nPDSJz7ExatXyXRC3hmwNJbR3ddYzSSsDEksFGtrzI8OCNUCs5zTNDVN7bDGUYuAoCFIhZSSbiehs3aGZe05md3H+4rZ8tOsbY145Mn3oDbPYoSl2r/LpafejkwK7ty9zvqZHUrrWRzcpp9rXGOZLSZMjCWYBpKUs1s7XH7bO3h1d497d26SCIm1hgZNpzNk59IlXnrpRVIJWksGqwM6nTWWx/coG4tA4BB4amQQBB+RwaWzZEmC1hIl2xMFSRAKbwVSQBICaZAUypMLR6YVeIcoFNY6glRU3hKkIAmiBVkDBJAClBKYEFpQTZAAInis0ljjSeopO5uXcUFSm3i6BRwCSRCBIBwqSSmynHylz5ZQXH3yUd41nbN/+z7Xb9/naDZn//Zdbr12h2c/fZtLl7Z57PwaG50UhEcITd2UFHkXU1umy2N08BRJQZrlKEC1QKNrgcTgA945ghB4GcsfKeQDRDh4FcuiiJDgg2+BwQgOStGCqCIgJWgdSytrBY31nLm4w/r2NrdeuclzL9xgNC35mi95nDMpeCdI0hRTzgnetUCxjNf3JgZIkSKEbAHRWJoEGbEZ1emh8wKLpfQpwUkO54KlXbK7cEjdodRLtocFqrgCfOBz7r//YMDgZ68QAqZ2NMYihIcQ8AiUECgd8W7hLc1yzjxRZB1Bsqo5Kucc7e5zcfMMWXdIM9rHCXABNBLvHfPpCYd3bnPmwkUmJ3ss71wnI9DtFVy8kHN4MqdcLtnaOU+5ewPnSnZv3iDHEyR4b/EIrLHUAQgLvHMUK2t4D87DYlFj7t3noccdaZHwyqdfIusN6RV9dg8OWRwcsvH44xzt7bNYzLh8+REmkwnlvVv4ZtbWh2c59+Q7efn6Ne7fuIYQCkQsYRIlGayuUgcYrKwhg6BIE5LukP2DXWTwJFKx9PHmTuIuJ0k03jus81jbIBBIJRBSIBHIJCGVkkSCRVB7xTxIEqFJnCNBM/WQoNEqoEXAOVAEPA4pBR5JEKJFzaE9SrEEhPCsDvsYBLO6giTFNwKkxXuDEArvQQhPEPGkVUIhVTwXA4Fipc+V4WNceuJh6vmck9GY/b1DXr52j0/e2eWFfs6FnU0uXtziys4mCsdyMcfVjk5nhUFxxObWZabzGaE5QfocKRIEsg1kcb/7EAjBITwxSgqFCAFEzAE8ot38khj8fNsy4fS7MU+QEZ1PJWSJjF0uJXn07VfZPLfJzdfu8s//9ct89fvPc7Wv0UpQhxADMgpP7AZ472J3Qri4J4iZViAGVykkSZJwc8/RuIjvlNazaASmWWC9pXTw0U8nJGmP9Y56w/33pggChICWIFMNHowzseVDe7PKCKQEH5jNZqSppGlyslxST2vmqwvOPnSZ6XyKMiXgQcTWjgDmZclofIIjdg4Cgcm8REjBzs4WewcjZGeF7s5DLHZvwWJKmkpCIhBeohBoJag8OOdppmP6a2fopjlNU2FCIM+7qCRhuZgzPzlhZTig6PUo791hdXUNWzru7++iUfTXtpiUJTJNwTacu/AI5x5/O9dvXmf32ktkWcHwzA7jwz10ktE0NfNlxeHJmPVhD6kyBuubHB/tMzk5oJCaxjiWtcUhSPAUSiISRyY8HQmOmLEHAs4KGiRVvSCTCiUVQUAqBXmWIJTCe4VBsHCQa4F0DSmCTEOeCrSQqADOxbRYCRlblkJhAeM8ioBOFUpnlMsSZy3eB4R37VskCThAIHzcPEophJZ4H09t79uWnBIkgz5bgwFbF85x5bGHOLh/yO7+Mbt39vnQjV2eW1vj0uUtzg4y1roKJzLWVnrsTadUxpCIADLg2+Q+bu6AI7b+cB6PAOFiSdOe9qHFTcLrf8XO5elV2lZsvLNEDLYy4iuJhjSRuCDoZEPWVnsc3jni48/ewz024NLZAhcTKpz3+CAfBNTT18YhERCzOyQKybTyLEdLrJmSotBKstq1rOsFzgayvmS7L3n0nEOYE+4dzd9w+705goAQ5FrjQ4vEOknTNGhEGwVjR5cQsI3l8HiCSnMuFn0ee+QqRT8hKzrc3N/n6O4eiXakWtBRjoWXKJ1S1Q1pkmKFx0tBY+JLe/9ghBJwcPsGFx59krQoEDdfwrsG52OM98LhpUSFgA+Cw/t3ePTMBR5+29Oc3LuFl4L1Cw/hlGS5GNPr5sxOjiibiqpacGn7HONqiW8qNnZ2yDsdlouSxlg6nRW629u89OInON69R9UYusMN+oMhidJYF0hFgx5sc3B/l7wzIEkTDvf2mO3doicEQkdOBGEJQoFSnO3kXMnnDPIEpaA0BhE0IQTmusfNaWBsPKJZsrCWsgmU3rJYSNIsoZMlpDohz1KKlT46SRA+MJ9OGC1LtHBkAjIZyBOBEj5yAkQ8E62HICWjkykqzUiLDk1ZEdoNFzeYQ+EJKOKW8jhnkSGeWkGodjMA7WHgXATTil6Xi492uPDIRSTQ1BW7N/b5zKt3uW4tF67uMJ4uaYLlzm5NYy0X17tIEbBoHLHcCcQ+f/wJ8R7zwSMJ+DazkeKUO/H642K1cPq5aLkG8WvilAsQwwFBBxIEnUQyzCUbvW12dgZcv3aDshpzaS0BL/DBt/dbbP9KZMsx8CAELkhU8IwXluPZgo7Z585r97m6IRkODF/+hODu4YvcXUqKNc3jVwTPvL1Lf6PPq6985g2335siCEgpSdMskoCcI09TtFKYssJ7gfcO5w1KSEDQNCW2ril6l5gvDsHnTO5c55GdIfpkF2898yaefFtrG3Q2Njk4HoHSCDwueLRO6BUdAh4zn5IJw/1bn2Fr5yLJcB1zvI8THtGCaTiPVpF0c3x8xKdf+ARPvP1pzlw6T13W1ELy2kvPsZZKLqym2K0rVMsSX1WERJH7hHNbG2xvruG9ox9q8hxkL2M+nlGODvBNw1a/y+qgQEjJYrEg73RIexvU1rF2ZpNupmByxOj+Tc52JGfXNpiiccDVvKEJUPU26GcZPVshsNReYEkYFpKioymKAnt2jQshwc/3GC8T3HJJ4SY0jaUxhrpusI1kXirGkylohU4TEq0QUiO8pPSx25CEQCoUItgWr1C4EFNYWVc01ZKiUxC8IwQXkfAAUvg2uY6PFUEig6ftyMasO7iWJBOBsdOgIGOZjG/RsrTIufL0FS4+fI6jwyN290+YlwuOjhdk6RClNEFYCCLiIFJhXWgJPO0KHh9AeBn78YCQp2Sq+INFkJHEREzBEafkHOLvIHQMEsG9/r3g28fEEilVgc5WzsbqI4wOR8xsw3oywKdr+PI4kqNOwQZEW3VELGMyWbCYTclszcc/cp2BNjz9ji7r51OeeLLPpRsjKpnTXS/obSQU6z0oOjx29o3lAW+KIACg0wS8RwqojGE4GDD2geV8QfDxJnG4iEoDi8UClaZs5WdIkgThFpSzEy5f3iJM9thc63MSNrm5SChrR5LlGG9RQKo0aaeDUjqCPoMVatdgplOWoxHF+jZhso9EEazCB49rWWWJAmMdR3dv89z8mMHmNrnULJdzpvv76PUB2aBPcnYLuzgml5K6rJAsubgxQGQFxycT5tMTrnQlVlkWUqC85Ewv5/yZLlmhORKBbqHorm0wncxQOqUoOtSzA0b373Img4fP9JitXkYvZqxWhwwLh9Nd9tIBmTkmDRYQVHWgNJ5cS3KAfp80CNKepJmu8VA+YP7pF+lnKdKBcQGkJ2JVgrpx+OBZ1BXjUlAGgVWxrg5KYwI0WuN9ggigEaRKY51FJZ5Exs1+SrjxQcRTvt3sIoiWHQg+uDYogGxrbdWeq1KAVjGDOE3VPbSswkixDB3Nuctn2dhe4VJpePXuiHtjDc0M5RfoNCFgEd4SfIJzntAGAikUhNPNGlP70DY9XqcjxlIzMkAlMrTnvhAtftC2/UQsBwTx/wtoAb3IkBRB0M0k+fl1AoEkSbDlnIBo25s6BjzhHzwH4Sw0J2yt5th71/j6L4PNdz5EbSXpznk6W1sU76kg6yClJrgKXAW2xJv/g1uE/64rhEBjDQkSKRVJIqjLmjNnz3Lvzm2CtQ/QUSEVGliWFYf7I9a3V5G+oVhZZ69yLGxgagVNepaZUVTVEcY7jDUxWktJlucMhwOaJrYi58s5QeU8flZhO326qaccJoyWjpKAcwke8MKjckFhPaYyhKbBTI6prUPLWK+JJEMGQ2d+SGVrts+cofKGdD4m7Q2onGdoFuwBOlU0vgRvuXLxAn1Z44THFivMRxWenK6tMNYymxyzuvIY40ZQrF3kqbWabGULowb0Dz9N7pfMsxXGyVk6Yc5WMiMEifcCIzxBSqZNwNSC5cGC/qUNlo3BipT7+yNmc08yq+MNGCITLoSAkBLbtimFUmRZIAGMi7yJU4pyGimVKOHZHCR0s4TxwlFZy8IsUXVNbRqSJIlpLg4nHvCi403uQ8sVbjePCEgRry8ID07/U/xRBGKAECLSbENE1r0IoBS/8vFXee1wxtnzDxHKkrxISdKUwXCIE5qqsafwEeK0Dy9km+VHYBpoAbr2BwYZA5AQWFqcxcdgZH3AtWxC6zzO2vga4ihSRb+TMMw1whuE1BAUUgWUkIRg8D6WqA4Pwr9OA0YShMdrx3BjleGGYPP9V6Hfxyc9OKlJN98L/fcihgMgIXATql9CLA8JxqEegJj/3+tNEgTiTSVUfBO0lFgXWzFZp4srZ3jncUHEWq2FYA72Drh4+TKz+QGzxRhvS9JOh4fPXaZaLJH1kl63w8l0inAOoTVKStI0pTEGbwzBWFKlQGvmScagP+Sbn5hwNsu5f1CyLMELxcxIDueOeS24Pw48d8e3bR1PZ9ijn+fsTe9TzSbkvT7C1JRVhVhLObxxnUtdAbaiS4kpDb1BH5053KLi5P4drj7zdtY7OWW15MZJyf7+Hc5sbRFcQ54mZLWnXi5YXV+lKx3HbokvFZP6kOq4YmV1hWlYoz44xoRjZi1g5ZE0RuB9wEmPmZQUvZy3X5Z4F2+02XjJUvUpT2qUcOTak8qAEpBITypodQk82KSFCqAg0CCCQPpIeFFKE1BYndIZ5mTlguXMIlshxCkxKW5w8foBKyJbUbTaBCFC5CxI0X4sWl5/7ElG8KxNJdr6QPhIdPLB4b2nKWuCkDRVRVU2dDsRL1k5c57R5JB6ZrHe0zQGYx3GghexQHE+xHvOBawPNLbBeo93gWChcY7aeoy1scXoA9YFbBODo3UutkuVJHhLmigGnYyd9T7vettZHt3KIFikJ76OIomEoADBO4R07Wul4u8O2DynXGpytWS87CKqgAwLrM3Q3ZzQexQp8oi7mAY/SWmmFpYVwdVvuP/eFEEAQpuSCVBtOiQEhUpYXd1gfzHjdS1JiIQKKxhPTii04sV7x0hnEElGr7tC3Thm0xkagW1pwkIKtIzXnc6mBEBLidYapCLNJZWH8uCQf1lXvGvHsTXMeOrhhPOXeqRJhq2m5CsZz79W80f+/G5MVp3jytktjo732RwImtriUThvqJvA8a1bCAyNztC2IVWKg7pC5ClHBMbGgplTzk+wgwvIPKUe30SFgNYKaT1JkpL1Oty9f4dOlrFflfT7Q9K1LhzdYVikzPU66ew+ia2wUpCunMdP7hO8QfuAcR7tJN4GilQyF0u8d+RFF60FWadPb75PL7NocXrqtr3wz4LFXIhgqRAtot6KaKSxkYhjauZ1STnRJP1Be5pJVnodikSitUA+qHfbdz/Ejd9C7pwewIiAEoJEgxLxpG0rgzZVl/GeEZHN50LcsDYIShOofaA2htlshnCOyhiOxzU/+s9+gf2jUYsxSJAyCrKcf9A5kEIQpEBL/SAjCN6jEo3WCbU14GNwctZGCrEUqNCS1Xy81ulKEo0hp65LPvjCh/gdX/0Uj55fj3wYFWBhCcE/aFsaY/E+/mt81KxcyY4JYcbapcsU/R70txGii67PI3tfjJcZp5mDUDuo4VeQFB9GLO5GrOEN1psiCAgpEVLgCHhnCUKiVYI1lieefpobN2+QSoGQAXnK+AqCyhjq5QKjcty8pKcLlnWNbWpOlWfCyEjzVAofYwxCyqgrwONoQRipEAg0it1a8kufPKDjF+S5YGtrTtGVbG4r1s5JPnPX4HBoJUlSwWv379PXgfVBDzef00kDC+OYWkdTzTh3bpWj0ZJzqSbpCA5PlmydGfCugUEOoRCCsZywOEnxAbaHKZ21qyybiBYHG/DFELUMzBdTwGNCQB3c5+nOAjnIuFM1vGd1gakt15p1lr0+XWNYOqiMp7SexgUyIcmHmnppSBNB3dT0Ntcwd0ac7cfTBx/aVploW2On2re2py5bRp2MjxEBSOL20YAKDkUgzEc4KRikkpVBQp6pSMclPFDkRdCvDTMtuw94sLlPhXO+Bdd4AJLFztGpbvI0pYj0XvBB0hhLogVpGpDOU9WOX3r2OtZLdK7xPhBE3OjWWkBGEpHzJEqCFwTp8UrGMkFqvFTULhCCxDlLY2sErXJSaKRMsN4zqyrqpsFZhwwxo9ndP0ao2Er9oR/7MHmRIWTsAAQXs5fQYhJ4/3p54jw2BL72ay4y3T/hzBdfZWdtHXrnCWEDUa0h8w1UCAjh8ChQKeRDEjkg+AGcUpQ/x3pTBAGIp7JzkW3mrAMUk9mcje11UDr2TIPHi8gG8sHjraOqKqSWBKVQicI7z3w+p5ulIAI61chSkKcpXki0iGxCicC5+AZpoVtasEaqgPclTdql1yxwPnC0P0dJwd4dQfrcgpWO5KvPK6yTjLKMhZRMJwvO7vRJZKCrK8rQo5eA0wqpE4KAlX6GEJ6yMQyGQ45WU3b8CWtuj+kywZc1IQRU2me1SNmg5GAUqEiYLxqU1HgtSUNg4I4JpCQdT+UEQSqSJKCVxnV2OGv32V63GO8xVlMayaTyjOeeTjOjGiv86hBcQzUPDJUlVS2BRgl8e9J7B0EqaEEyITyamBects1lEAgRs60ouAukiWRQaESbBZzdWiNJIuoeQjzOYyIREXROe/FtShwzv/AAMJQtCceHU+DtFBSMT0KePk5E7I72VFUiY9Df4Hh6gtACYyy1abCliPX9aSADlGwpugGCjRhIIAYfKQRaaXRIcC6Kupq6pjYG9eBQaQBBWVbULSfC+yhZVlIi8AgXXyOPYDkv20Tq9WAnW7BDikCSRKDSK0mK5/kXDrm6kfPitTlPf0kXyR74+zj7NmSY4UIn4i3SRKCCEpEkhP4AuuaN997nZUf/u64Q60GtE0LbBw7OYwhMp7PIerMWrSXWG7x1kXAqFKPRiLq2FFkaU0mdkKY549mETp4zOj4mE4IL5y6yf3yCVD6eKkGQaI1SCqlOteyaopNzcuQ4oUtHDRgwB+FwDi7urPKFT0ne9a4OQgiyfsIP/2+O7V6H+b2GfmfGS3s5R7NApjXDQiCKHrWHzdU+nY5kPF6SZCnlck7XGbaHE3JRAxaZyVhbBhis5MxKwc7qCefHu2wPFZ86lIzTIU1V0ShPkqYsQ4dzak4VBvzK5CJKCQY9zeV8jg5p3FRO44TgnFDUNsqjj4rAOEvopBnJ7ICdTUmRXSDVCUiBVFEXILWOn8vI5BOnugQZEEqhdIJSGi0VSim8dywWC7IsYbgywCuFlBk6ES0LTj2o+zn1BGg1/dBufnnqJxBQUpIoiZAeLWLG5rwneBHFVCFmDUK0JJ4WSffeYp3FesXJdIyQCu8tzjpK41AhUoO9azc5IvoMEJBSYWIkiJTotjSoXU1jTauXCPEQAYILWO+pjcEa22YgCaHFJpSUSBHZkO2zxPgo3hJSoqQkuPAgGGkh0KmmsQ7jGiRRRTqZ1PTPdvjJH3+Fr3x/ynZzB2EWTA/+BZ3zP4Wsc2Rvi2y4iV3coV4eomRFtp7js+wNt9+bIwgQlXFeaaSWeB9FKsY4bt26TVXXaAJOSqyxEaSSkRZcVkvqpSFLFdYqbDCEECjSjOOjI8rFHJlmDFfXKJ2gXI4Bj9CQ6zQSkrQmywuyPGM4XKXfX+HGp495+PwGvTT29TMFl3Y0z7y3z8qFPuQ5cn2ddx4vuXJ5h8zd5+XdPX7hn5S8cmDZzKGbQZA507ohlZ7UWRY2UHRSZF0zyKErG+oQGWWhTQcX1RI/1djSsBN22ehZVlY0t+c90BkLJdkbjbBzw2DoeeJ8wpf2xhy6NZKVTS4PGlx1jjTvoNMUUASd0tjI6DPAp154lVFZgsjYLAIZcPmRK3R6/QjgiV+DxBPrbk7bebQgn+ABSYi2rC/WBvGm15rgAt7FjRtdRsKD0z+8DvS0/fR43dPS45Qn630AT8vbECBkBABb4lFMo8FFeR/Bx/TZEQVU3TyjnFskOtKTQ2SfBhkPBCkiQce4top3kZsgpcSLSOtVEtRpl0SAdRHhd0TVYgSuIzgYAGMNAVAyAt2n/L94s4eoDPQ+8hDaAMbpy0HbGiRgHSg8wgvqUnBYGYr5kh/+yx/i2x5ZkAnH/qGgWN1ndmjwaeDCBcmd1xpu7cKwDw+9fcBRmb7h3nvTBIH2boqRU8Q3OlOC+7dji9C1qG8UyYD2gUTHIn9xMmWwvQoBbGNobESjB92UzKekSlGVcx5/+5O89KmPg4+dhzTLSHRKXuTkRYesKFhf2+Ds2W1Gt19lfdPS76b44Njc6JKaA7rrK/gsQ67uEFa+gGe+5gl0cobjw0/xj/7m/4vpQrO+tYKfHbXuRp7ESjooKkAkgp3VlP9oR3Jl09MbPsbh8YywTPHe4b1EWUHW6XLmzBrFyNBxt1BZxmC7z3yZM50tWNQNVe14oZZc3OrwxUXgoYvriG6Psqq5f3yfzbVVVKdHCDpeV0WV23Q85vB4gjszJCiYeodcLJEudjwCsW6Nuf1pxX7aC48352kKK0V05AEZHY6IZG+pFFIGEhEorSF4ECHgXdxIvnUh8pHL3HL32z8+tFgB0QCFGJCs99RljfOOoldE3CfEroRQ8WQPzkcatDFR2KECjTPknZQ0S1DTRawgBEROcltitun4Zy8JETdyAS0lvW6KxGMDLBsTvyujpkD4gHAtF1GAtYCQ8VB7cP4LvIttQB98zNKieAKt9esdEO+xTUuSanEZGzy+dHz4uRGbG11uf6Dk+ouar3p3j9JIxkeSy489xM72E/zS/ie4Xx7TaMeFTLK4rtno/P9BJuBbACQRqo3+HgVMTkaxvURb5hCBHyUFiZQsqprpyYTNlW48LaylXC4JviHXkBYphRCUkxPyvGB9fZt6MUEpjUpTkjRnbXUVnaXkecHG6jpXrl7k/COP4czLMXVDIIsM2zhGlSFfJnS1Jx2u01t7GkSX+rXbrKUpptuju3WeGy8sWC0Ezgs6uWQQAsI5lGt453DBWbUEOyCEgqyjEWmKtBCMJ5GB2WTGogyc1YJhCNw79Dx7WDI6GeOdRYSYXi+rwE8+V9MEzTc/nKEFTOfjloijMU0LgLpW+ScVzXKByBP6nT6LpsE4yJOUkGaYFgjwITzoxvjYBkAgCN6gdBI7LgIssm3JRYGSaGv3U+WbUvF5hJaOK4TiVDAnW63Ag3uA14FI2abQklapJ0L0Kmg8K/0uKollnJQJbfTBiwiyCe/p1DlaKObe0DQGaT15L6FINZWNDkFBxJJSqij08e3hIFrarg3xphNCMhx0eej8JrP5jGVVs7nSZTorOTiZE2Q8sLY21xBCUFaWEASz+ZzGOqImKWYWoQ14IsR8x3n3ANuQUSQDeELwsQyI0QokeBnoZgnLkxI6Oa/uOZ79pzUrHY0WKTujLl/4vkf4pZ98ltv3G6rGcuHcgD/1nz3GF7ztHHzvq59z771pgoBtte9Btqzy4KnqhuV83qL3r58WWkQ3nDRJOBrPyZUn7+TUZcV0MmaxKEkTTeNt/FcJcI6Dvbuc2djgWEHR6ZB1Ogx6fVbWVqkbS5amJGmCcXDh0hVmv/jz2CPHtLfFTCx521CwdiYl2dhADh4mdJ5BiB4CwaXH3s0XfcmX8dM/+4sc3b1FkiV0+hn9os+rN++htMMJRWk8HV0RLCxKz9GhoXIJlbEImaIFZEmK8ZbxyR5OB25M+xzNPSfzGQqHVBKtIwPMiBg4fuYly/mtQ568WDC6dY+17S1kkuBD7HloKVAiindXt7Z42CluBA1eoTp9tvtr5K0/Q6vFjmCdkLGNhqOV/GFVrINRccMkSiFQ+EieRyKJ0t6W63dKABK6PYIFQnoCsm0hRvouIWYVriXNnAKDzkfijXcOoROsd5hlQ5ILklQjhYu8wtOA5QMyhCjvDY7GlAwzyfrqEG1qkAZjasrSxFackmRSYk6znhBQSaQ0eaHItOLMSp/X7h2T55IkzQlS8djbzpJcu8ei8vRyieokeOtZKbp08g7z5YL9kwneBspqGcsdpR8EtkhM8vEVkw7vNYhoiCJDQAeBb1XNTggSaSnygpUi4Wg8xgVPNxEInaGLhNW1Hv2uo+gkdPMI1D75jgu871u+Dcrbb7j33jRBINE6RsUQ2VnWWMqyxDr7ADmNqHHbuxaeTq/gcDxhc23IclkBAesctEIULSP7zVqojaU2NTYvWN/aZHtjk26/z9bWNiYETsZTyuWCrNPheDRGFz3GFNw8mnA0WXL7o7f4o1++SlnP0AsDwy2EuE0IGzifY/2CC49e4txzH6czmlOFhsVohuo6uqGt/XxgVlmEbtudroZ6xmF9FucCojGEAIvgsFbjy5q9WjBbtqiy91HhFwJ5oim1imw+ISmN5B/80h7/p/fnvP2JDcTgPMZLjJMY63FSABrhBGSakHeYjGvwGXme0R10YsIqo7WWCKe1KW0LK7AoS7pFhqtqgozmJEKnD9h0WsRAI1Q8ZaMUt5UFn0rjVJvyCyC4WG5IgVAC6QU+OJSMwG3kAwS8N5SzKXfvjZkv5twYg9A53W4XmajPahvyoMtQ14aQDihQ0U4uWK7vl+ysn2VdLpiXNUU/PCAcBdoTGtpuw+u4hVIan6es6m78fdr25uGJY3XjDHld4lxgWTWxOyMSprVBpzkPnctRLXFLidN2awyM3geWtaOTSua1YaVIeSCQaFmQnGZh8RyMoKyCM+t9ytqxfzxlNYtEqE1zj+nLFVviHms7hkKlcHiPn/7+/5H7h29yngBtCyYIiQ8Ba0wMAMa2IM0plhJPHhU8g26Bk5K6Nmyc3WZZezp5ymw8iYzCWHzS+GimGWjlr1KRqZyV9U0CsDSWpo4nQgiBe3t70ZnYOu6LLT5y7TaL+hhrHP/gA4ZLvRMurJWcffc+w3fc5Na9p5gcbnJ0+1kOXr1HYiFBMguBJYJ6NqdX5Fg7QyYFvV6G1AYhA7WX3F4UnNkqOJovIAgSkRDqhtmi4vhkjpYS6aIsWiUqyl6JG6zIUpaVaQlzgpmR/NJoyFc9eRWxVBzOLa6K6axwsdY+fa0Hwz7peMZCNKwkHXpph6Akygs8vgWoIljnvWE5X3Lr1j4ra33qZU3ezTmzs0kIBudO2XwSK0E6YqcAcD6SYHzLACWcsgRPzTla0NFHvMATATu8eN0tuLZMjsfsH4zRItC4Lv/Fd347nV4HlSQtkBkA2YKrgaq2vHp/Ajoly3KUmyPQXN7qxA6UDxhjHiCfpy3J09Ii8gLiHpzUASM1PkRXZKk0ZVNSaM2g32F8cMy0iR2sNE1RUmGcI88yVmTNIBOt2Y1o634Rg4+UnMwNG4OUk1nFej8DQuvQ7JjWUYS0kseOzGnXRKrYsbi9t+Qv/uDfRsx3CVLw+DPvpOg8xM9+6NPcvLvk6bOOqVmipiUv3hi/4fZ7cwQB4ovtfKCuSry1VFWNMxYtYnr4AEj2Aa1Tzmyscv14QjdLGa6s42cLOlqRd3vYuo6lA+2b6QNluaTf61IbQ2c4YP9wj6qsQCUYU9M0DcFayrqJTjhaUIoIqAkvSJXAlp5f/oTgoYHnC6oDPvoJz69cv4NfGnppgs5WoL+KMSkiKIRbUrXPq5OmdNe3GQ6GHC2OWAhH6SW1k+wuIk22aE1Wt3s9Zjfv0dUJxgekgiAkQkYASoZ4omSJpnExXZZCIbXmYy9P+YlfOeEbv2Cbqm6YlYa6BmPBOoG3EUk/HM2xtaHo9ZlXJddHjjNj+0Cn4VsZtQCsa2iqElNWjPehDg1ZZTDL1q5dRCkwwlG5SHVNCQQfgzritI8fcEJzMl8yGHTITwEz8VmGHTIi48JF8NB6x3hZIXTC1uaQTMDuIeR5hneO+bJhf1rR66SsFjoangSwjY8BTMgog0bFQGhMJOSI6G0JEXBuUFSNx1oPUtBLodAx69ImEJKU4EDqBOsthU5Jk4RE6UhBDwqPwFgffQeFRKXRCl/q18si2bYBAxKExAbDSeXpdjKUOiVBBaZl4JWDilRrHj+r6Or4fyF6qQXAestgtUNWJyhj2ZspLq4XqExRWsfh3JGksXS8vJ7Dzepz7r03RRCwzrJYLqnrGoInGIcUkrzXQwSomxrbNCgURa65tLnGrckEUy65+NgTLBclSZrE3n+/ixkdPjCaDABK0hjDvVu3WRuu4Xpd7h1OCN5RNgZrI/fAGxO54gG8iB2GR3aGhHLJZkfy3idWCdrz7B78+L91pLakt57hnWRtNSfPJOvpKrKXIBpDqh1B1EwWNcPtdXRvwOKwouys44sC4QPOjZnPmkhCsY60oxl0Ozy+nmGc5qBsOFlYJmWDShKyENBSUZomtp90QnAGpQRaK1QCP/JPbnLj+X0u5z6aibSOQwBSKoKSLJM+SdHDaosznnJaMm9mgEMIiXGW6bJm2I38Ca01q8Me1sPd21Mu7GSt4EURhEFIwbLxvHTjgK21Fbb7up2bICOJS0bFhxCOjrSoxiBzHakCbW9QteKCyAL0SAmFTLCyIskUmdZRkSiiJbcncDQrmZcW03iGWQ+l42avGsOirtEefF4wPqno5hJP/sDg8xSEnJYx0OYCXPQXZTarsJ2cIhExQ0oSggJvavIsYzgY4r0lTxKi0tEjlEYqFbtCeJRrWlJVi4kQry3b9qt3numyYXJS8rZzfZyX0T8jCOZLR1fpVowUBV2unS9BS01WPnC8P2ITQ97p0Oxd49r+PsN6wldcSRHOMjaK4xLGRvBG600RBJx1TKcz8iyh18lR1rBsLMuqIlGSoiioVMIwV1w4s8at4xkH+ydsb2ygex2mswn94QoGQaoU3nhEEttUIQRoGV67e7tsrK1h8SzKGiU889kcU1VYa2jvQLwTWGlR3nNprcOmTkkzG2m8S0vu4e5tA6rkfL5CkSXM60AoA1W1IM0LQtLBKANCUXuDsw2q6GB1BOmsUPjgMGmCWdaYZhmZdypHr2bMVUpwNZ1E0h0qeknKcR2ZfFoqMJGDP+xpJotIcIlqPo0edrg5hQsDRSGic44L0RxTCIEXihNlsFjwEqUTlgjKQpFUM1LvkF5SV4Yw6CFFEgEzBT40rPYcKUTkWrhIvyVBOMdKpumlkuBUO7TD47whUQlaSErXUONJlH+gAgynTcgAtA7Hnig4cjKKu1SaRkmvUpG8xWn97ukVCUWikCr27CWwKCusdSAM08kJAsey9jQ2kCfylJ4QT+Rg6WWgpIKgCEKQJ4LRsiHXGdY6vLSkSULa6dLpFiSpxgZFYxuEVHQ6HZwBGxxJqvDW8dKrN/g7/9OPgvc8evUif/o//wOkiWY2L/mzP/Aj7B2OWNaGL/8t7+fKN30F+3f2+DP//d/GOscf+j2/k7OXruCs5Y//2e/nr/7f/8908qzFKgBnyHB0vGWznvHplydcf/WId5wpeDRtIvfBC7YLycuHFUfT5nNvPt4kQSBRCmMaEgFliF3VYVGw0hNUTrHSVWysDZnWDZ++dchsPuepy+eZNDWuqajqEjeKRBJLQCbxlMDHmQSnZJJFVbF7cEBndRXnHeVyTlWVBBuppADBOYKPNZsTHh0cWtYEA8Y7lIgGKC6UqBCo5jVZ2sWTUJaWRdXQyTrINMczJwhF5RrKtGB8fIhwBq1zpBBYJXFSYYSOfxqDqSrOyhTaXr2zsZdd5Al+WZMVOU1j2hZqyrBfRKWcE6RpTpamKKUZm4pX54In+yaiz0HGrIB4+ulaxklPBnzj8EiW3YTNSoDQKBnYXikQWJyMdl9SSASCZVWxuq5bsDGAl4jWgXdRNfS9j3W9iLLeQBSIOSXAK/YO5zxyYYD18bmF4NrfV7QnZ2QQ+hBb/fPG45RBJBJhA64d+EGIct/SQD+TMfgT8SPrI/Mwgpqm1eR7nLdYJ2PgaUG6xhisjy5O0d0qdkasDzSuBfOcJbQM0+AjbtUYh29KpJJ0e13K+QJhHJ2sw9wu+St//Qf5nu/+Yzz98AV++Md+gp/+wIf5uq9+P//wp36ei+d3+PN/+o/zoRdv8T3f95f43b/9K/gn//qX+S//s9/L2a0N/ru//nf5vd92gQ998MN8zZd9CWl3EB2HRFTSCgX97R4r29s8tL7J3U/dRCQZD73nMbZ6CiUilfvoYMInPvBJjHBvsPveLEEgS7lw7iyjg+PI9ityjhclWVqwtZpRGcdzt/fY3R+xniY8fHablfU1ysMjfLUkL3LmszK+od6hEk1dV6SJbn3cI/4bgNHRMQ8/HOmozjRxzJMP0VHX+3Y8VfvGBwdppM8KKdvJOzAvA94FOnlguyPwqWZRN2RaMa9qsk4gUVmsldsbau/uASsbfQZFhyTNIo3Vlg8IMgYFUrC2ukq1GCFpqEXA0hJlWplr7aLopduJDrpaJGyudRnPK5I0J00SlNSUwGujhu1MsyIdXhLl2S0It0gSyrkjyRNULmAyhmVO5SWqaXDeYqxBySLaiPuAxBKII7Nox6YhQckITGoHQThSJSl0ipQe431scwmF9bH/LaRCidPpSRIpA7K17Y7kwNhTF1IigmR0YigGPUSWYqslWms6eUYQgU6dcu3afb7ne3+ERx+6zCvXb3Fme5Pf+Y3fhEgS7t69x7/4Fz9F3dR0ux3+5B/7Tp56+Czf9d1/gUeuXuZTL7zMF3/RuzmzvcX//A/+KUIIOp2C//f3/N8QUvDX/87/youfuYaQij/8h76NL/qCd/NTP/OzfOjDH6WqKu7d2+WL3vNO/tAf/E/b0jOlajtbWmve9vYnWF/p8DVf9aX80I/+I779938LvUGf8XzByvoa3r1Gt9tla3ud/qBPWnTQnT46SfHG8MKLn+a//S+/j1SrB6+zaHEUAfTXB5y92kd88h5JXvDEFzzGRupbeXzKK8/dYZC9QBreaPe9SYIA3rO2sUJ/OOTkZEJTlmwNOxwtahrfJ00T7MmM8xsbbA57lMbig4ttF91a/npLY330oAtgjcWIOJNNqTh7TipNVZccHx+Tr60w3t1rN3u8yb11yBCNKE+prJUDLwSJj176zsd6DwKN9+wuSnw9QqcJK/2CzBga25CkOVmSkkjQicSYWHv7nAc3u0PSuEBpHWXjSZOErJNTzqdorQjVqcWVwDhB1ZJe0iRhuLKCl1EItbm5SapnLGwcChL97AVV5bk2ha99ag3vWrmskMwWS3xIqMcNOI8yDi9TclWwffYsipLSGE6OTji7tY5UGuctiXDUVUNZV1y4vEO3l1Bkik4uyRXUZcn+aM7bHr3IxlYfRaC2Au+jMlQIWCwqKu947ImHyVKJ0lGHIMVpqBYPOkG0GczuyZzzF3aovSUJBfdMzep6H4RkNDcEAXfv7/H7f++38o3f9M38zz/29/mlD32YL37fe/ln//x/4zv+4LfTKXI++alP8aM/9uP8pe/5rxGtMerf+mvfx/7RhO/+M3+BH/iLf4b1jXUO949ZLGt+4qf+FUEK/uYPfB837+7zZ/7cX+Bv//BfhRB49dXr/E8/8oNgKn7/d/znfN1//LUMh6skKnZK1laHeO959doNznzBk/z0v/1ldvePsLbmW77xt/Jdf+p7+Kpv/kPMF0v+yHf+QZRS/N7f+R/z3X/uB2gaw7d88zfzU//m3/C7vunrUUryQLD1WcYrSIlA4puGJggypchldG4yQaCs4969PZZB4ZV9w+33pggCp0MsO1lGtrHOfDEnbUpW+xJHYLC6ysU0w1hDN9WE5QIpJJ1OzsrGCs9/+jb9bg9rTNSV+9hIq+om+heSIKXEGYNMNHdv3uDqytupTYMJlmCjECS6zrYKRe9REpwwWHS015aRC+6l4FIHUDWmKrHdPt4aXK1pqoZyOSNdyeh0C2YzTVlF/rlzHqU1QkUufVM11I2hdp66sfR7XULTIJ0j1RoFWFyrbdfRg09qkrxD3u9TVTVSaVbXt3jokbfxwY9+LPIhmqY1tjB85v6S973jHBc2i0iXBtbCKvdvH9DLFVViaGrFOoEkEZCnFMOzPPf8DQ5HAdlzXNoeEqyJDDg0e2Xgom1Yzbt0ix6DAQx6kqNDSDpdhqtd1te7VK7GLz2EbiyxhMNOK7q9LjJXZEWKphXbiJglhCAw7SwT7wNaBqxtaMyC/fsjdrZXmEwWHI8mrK+sMJ4uMY1hZThkdWWDsqx459NP88sf/BCPPPIIe/v7/A//499qOx6Bfr/HKzf38CHwZe9/H3f2pzz1zNv54i/+Qv7i9/8gX/7lX8pXf8VvQUvF9Wuv8XVf9zUY47hw4QLb21vs7R+ipeSd73w64gCl5/zODnfuHjAYrKETRSIV82XJf/Un/gv+2g/9KH/lb1q+5IueQUrJbDLlAx/8JI9cucRf+m//JB/4+Mv8jR/6EX7X1/0Wds5s8Xf/5vdijOef/6sPcXQ04vz5s/zXf/a/x1rLn/gjv5+rl3detysLMSgY47HWtJQCSSBmXQiYTJZ0ez1mlQZmn3P/vSmCgJTx5m7KJXhPpiRBJOTKMq0quv0BDkiamiRN8E0VAS7nOJ5M2VjrYspoclk2Bt+OC3NNTF8ba0iVIksTnDUspxP2b9yIdFdn8SaenME7JAHpXRxX5QWDfsrFiwPyLInzAGUkz1w6m1Ekghf3G37lbuynV2WJXEi6ucJ1++hEURQF5bLCSIupa/I8JygV9RDeUNaGprEE19ArUpxtEIS2TGnl0614p9/vx5ZXlmMbT5bk9FZXqYIk6IRet2B2dIixjsYYnLM4J/jl5+/xu973EFmqY1AJklxkNNUSKRJC5ZgvluxpmDeWjWKTKxevUo33GB/dZaOXcby0vPP9X8/R7hHJnZJP3pgzWsBjD+UMVlK6GnY9pN2UrJujUkVhMqxssBaUhspp7k0r5k6Ajd5+IhFI4dE6lgXORcDT+qjZb2pH03jSoOjlKUkiyFLJsJthrWG2rMG6VtpwSiRr5cl4tre3+L/8se/Cn5qc+sDJaEpjI8twuLHO2TNn+N6/8P/kZ3/mZ/nZn/slfv8f+i7++Y//GFmaMp+XWKnIH2iV4xgSrRQe+WBClPOR+CSEJ+90qRrL2556kh/8gf+OQUfzKx/+JDdu3UVrxb/82V/k2/6TryfNUs6dOcPm5ga3bt9lc/h4tCmzjn/yk/+Cr/vtX89P/+uf41u+4Ws4d3aT7/8f/h7f/+f/q9hZiPQmfAjUjUHLCBp73wKtUuKFZrm0SOlJuxvA3ufef/+H7PJfZwkEmHgiJ1ojhSbr9R+MZpZCkKYpUitcACk0zgWCBKklaT/FuQap2qFNrTFEmiQPetBR6hndb4KUHO/uYZs6mkVqhVQKRCSoCCGiEQQCFWLpEfSD4hcpNStb63TX1+mt9MikQ2OonaEpS+qyxJRxrlyWJKRKkihFU1XYxrSCmTgUxAfAeFIhGPQ7CBlwobWmolWbObDEP1JHwpNOUjr9IVXTcP36q3zkIx9isZhh65q6KqnKJVXVYL3j7sGM0dLQstRZ2HhyOB+o5oHRrMQUEuEq7hzO+NjHPsmlx59keOYi148CH33uNi/emXL7aMb5R97GxnqfxWTMyWTGvPa8cKfiX74w5+9/4CajUrA/jm035wQuKF7Zm/Azz+3yUx/f5eeevcu1/YrdZcKN/YrFMrrmaC1IEk2iFakSpDKgpUc4w/pAkQ/7bO1so7KCLEvJ8pzRtMTYKEQYjyfcvnMbJeDZTz3Hw1eucH5nh+VyycHhcdQ6BDg8OMA7R9PEtuvqyjrjyYIXXniJrc1N/vAf+D2sr61x49Zt3vnOp/nQhz9G01j2d+9zcHDIxfOXIsgoBUUiWyuweH8GAUroOEjHWo6PjxFCYJqGv/X3fpxv/abfRtHvs3Nmi489+yJ5kTOZTNnb2+fiubPxJA+Bj3zyBXqDPhsbG9HspNVilFVNW6m2xikxi65NaEFVQfQqky2XQFLVDV5KeivDN9x/b4pMAGKbUGiN8YIkzyF4VJZj7IjJbEZvZciyKqnKklTArFrifc1iEfC1wyuBbESUcvpW6SYFykct/ClXwDuQ3YTgA0mAfr/PfD5vBXIagaAyLt403iHMElPlZJ2iTbVaay3rqIMnqRasyYZFY1mEBF1J5ouSXr6kM+iTpymJVq0gLzCfz1jrFK3KzSK9JyWQ6gQlRdQCIADZik4UjQ3UzoPMybKCNEshVRyOjmmWC7ypcdZGMA0w5YLauJaVBkejhpdvnbC1do7Gep67s8f9qkT3FapRTCYWKzrMVMJkNmI0GvET//QfsJyVNLWlylcRKuXZj3ycq+cvQ2eVjr7D4njKBz/8KqNZyTNPP83JWLBz+Qz7Zc7uCydcONvn+Vfu8pHnb/DuZ76Y//Q7fh9/52/+FUIzgnSFW7evI6RgtdTULrDWi6rFxjimNSwbzcu3TvjMTLNtBD2dEmzZAq6S6axEEZ2BNzc2+OCHPsI/+vF/xpntTd7/pe8jSTO+4zv+MP/oH/8TlosF3ju+8v3v4/zZbZxzHJ/MqV3DbHLC937fX+b2nbsopfji930Rq/0+3/zbfxvPvfBpvvv/+v8g0Zo/+Sf+OEWRolUbiNMs0tqBRMZ3LSlybNnQzRR/93/5x3z8k89C8HzrN/023vuedxCAP/oHv5X/5nu+n2/9jj9JVRv+wO/+T1hdGUR5tAv8yN/7R3z9N3wzAN/427+av/CX/gbWef7cn/qjpyxiTmcaEKCxETOKtm+KQPSlUFJQGo8NKdvbm2+4935DQUAIcZNYaDjAhhDeI4RYA/4BcBm4CXxLCOHk17kOSZo9oFK64KOi0AsUitHxCcXKKkpqhPBIGbC1YdBJaNKCNIP17S1uv7ZPZh3e+sgCs4ZURlDFWYcmgjaplqRCUjc1RVHQNIYsy2hMzWI2Q6cBVznSUCFs03rTxzl/Me2MNGSpAycmZatTcuwdzmiMs5i6oapKdLeDSAvSIidbzqmtpZ6XuHWPbH9HZx3eOfqDHlIoQhPBTS8giNarLjgUOVlRkBYZeMfR7v2ofHMOZ0z8uOWcx/kNMeOQQWJcwy988jrPPLFNkWp6ugBXY23UBOQpNJVB9DPefqbHS8cTTDlBziq2CLhgOD4pmS8t909G9FfO8NLBB7n62Ns4Pj7mwsULfOt3/hf84x/928wnNzi/c5EP/OzzqPwymxsXWOkdEHQg63fIV1YJsyULZynyDstZTT9XnEwsaVJw/2jMJz+zh+7ucOnCZZ599RVsLbi2V7PZVahgMSFgPfTyjAzBtzaenxCCj33DN71+U1UWqhlkBd/7+37fr77hlpbv+gPfHj/+t78EwM99+Vf96sd89DkAvvKrv/ZXX/PnP8T78z68893wL34GgK/57d8Yd8Bnrv+qS/yOd747Pu50/auPA/A24INf/02/6rH8zCcefPiR3/HNkck0nsAYvv33fBsA5sRxK3KkP3v34F2cxO1Dy5YkBoCIGXiyVDJYW/8cOy+ufx+ZwJeHEI4+6/M/DfxsCOH7hBB/uv38u//3LhCIIg3bVFy+eoUbN24jlcIay6DXZTwes11V4GFjdZPFfIRdVmydO8N4WmMSw96de+SZZkxDXijCMpo2NMGSpDm5UjjTkCgRR3T5aMP9mU9/hnMXd0iSqKATSYqtl0hr2BQzpC2xpomgWtsvD3iECmjhSbOUSbZGWk7YcnNuhhUa5ylNTddZev0OMwRmafBBcvbiDkgorY16GhxKSXq9XlS+2ZiyJy0nPjrfKJIsAymYL2aRVl3XmKaJhJlW+mtt63JLZKVF7n0MDPfHJXf3Jjx8cYUs1MxPDHUe1W9rawPqyuKWDWWhOb+ZEsyCtfMDHn34MQ4Pj/iFD73C2GV84Ed/iNcOpiSm4qFn3kV27RWm5Yxbu7dptOb+vT1m9oMc709RnQlPPXMJmaaMTk545ZUb9Ht9XrvbcOcXf5m06PLU2R76TA8XBD//iT0+/Nx10s4K3/CNX8jX/tav4Obt+1SH1+nQkPfPc/3Va9RNoCyjrr92nh4wVoIf7ERWoREKJxTGOzrdIUIqppMJUjh0iIeECQGfpLz/fV9Ip5syO9gjLTpsbu5Q11NMXbN/NObO7gG91VXWV1bi4BUhCM7gTBxiOjo6wDqH8TFLXOkWdDsdZssSpRO2h4pCi9aLIWZ4BDCmQmvNK6/tM1zrcXa1FztGIXB8NOUT13dJEs2XvvMqnSTKth/76Y+1Q1vadIBYDjQtEC5dnBXhZGizBE+RC7xKGA47b7j/Ph/lwDcAX9Z+/KPEUaj/u0FACrCmQYiEG9dv0tjWeolAliWYyZzJaITWCfO65mA2IW8q1rIM0w3s7U1JZEqQjo1zQw53ZxSdjEwrvBcsTIVzDdPJFJ0mbGxutmQRD9MFu/fu88TbHmdrc43q+oLFPLAmlmwyI1hBXcUNJ6UkyPhGyQDeCIZ5wn2VYsScZlmjkxpqQTWBO9OSynmMbVgdrHDx4nnyPGe6nGGtxxrTsu4kuZb40ND4KAjSOkFrTaIU3gXquqIpDbWpY01rYi0sVcuxN1Fq609dbkMcHx6n7EAi4TM3j3ns3JDBWpf8YIaZW0yQ+NqRe8+j53rMJlUcPba6TiUSRJpy9uw2l7fv8ezz++yOx1gC58+scfvaqxxO5hwfHvL8R57lnU+8h/LmR3jphWc5uj9namo2tjaZzRZ4Rty98Spn1ze4rQXJbM6dl2/C/T6XL59lVAmuPvIEn3zxJjrXVCIg01XW1jfZnd5jtphzZXWFajbGUUTpcUzLuLyywp/4Y9+FQ6JkiHMmWpu2slySZAV5CrmUaJ0xmsyxPs5PPFUgru1cQqcZQecM+wOqxZSj8RK8QAuBNw2ogqZumE4m1E2N1Jr5dI4XUZeRpAmzSuJkVE2qeOnPmiBE+/NOuStQFBlJlrVU6QhsNs4hpCLRGq3kA6HV6Tr99DQfcD60ZiRErYmIeFYwcdIiQjLIijfcf7/RIBCAfy0iLPtDIYQfBrZDCLvt9/eA7V/vIkprut2C2azEeBu924QgUfKBemp8csLa5iaz5YLFyYK8kAz6HQ4qy872Olm/z529+2x2+/QHK7zy0k2qssYaz9qg4PzVC9x49gU6G+tUtiErBoz29ygXJ/hmyYvVkp1HHmNZ1vSrKRfCCCEdtdCYtsSgbVuFVqQiRWD3pCL1cBAyyloyL+fsTmpWOiWbK0O0Tlk7sxVtu5LocGudp3E2eiQQeQNJnkfv48aikhThwoMhn9Z76qqh8WCsjZLS0NJ1Q+tzb1swUQjwHucceZLjgsP5QKYF++M5jbPcuXvAZFRTNTDUmt5GgS0rjpYVj27lNKXGakllDSejMRe2VnnPu56glxWUdcOwV3Dxyhav3b/B/ZtTytrwqU9+DC0kH/jIHarZiJ5KsOM5zz/7AtPpAusVo8mIR64+zPhwxv6NPagbDkeKw9GM2zPHV739nWR5SqI1e3v3uHn/FtYF5kbhZiPu7R9gpcLZuAt0opE6AeLcyNJ6Gi+jkafwIBRFEqhNSSdRDHJNbeKsheg74DHO0u+tk2Z9kiRluYyTrTLXIUlztJboJBKA9g/vUpUVVVmhlKCqGpyz7d6O96nSCp0kDLs9BoM+PqjWKamVZUPs+LTiqDhcq93VradbtMmXZEnSDtB93Sk4VnziwebzRKqyD4EmBJoASQCExtk6eiSoJOJsb7B+o0HgS0MI94QQW8DPCCFe/uxvhhCCOO3b/JolhPhO4DsB+r0u62c3cOwznRi8D2RpQqo1aEWeLZjP5mxsbbOsG1LXsH3+EqPRmKub61QYGKywmM8ASSdLePyRK1R1xXw8ZmW1x3Q2I99coWxqDu/sMhisYZwjqBQvDeXsCDNeZWdtA9uckM4bHODweBtNT1yIFlkQWW3OWjLl2S01TeOZlIZF4zhqBFfWd9jcWMWKBKUVSisSnSCCQ7rIk3c2Glk6CSJpH6c0tmniIIrWusq7gLUG294kvu2AuHZ8tWpbV42x8XA89dCvDd08Q2EjSl1ZfONYz1PSdMHJaMH6YMD+vsN7hW8mPLXRZ+PKFvdOKrrlErwhYOl0cs5sr1B0E+pyQVZknBlkuL37bIWEm7/8K1z/2EcoyxIhNIP1Pg+fX+XFF15lVtdM5TG/fHDIL+sEMz5iUcfnut7rYU3Jnbsjbty6R6fX5WQx4+61z3B44wY7a6sc3tFsbCS88IlPMZlV6KygKpdYD3UTXXQj1ySa0RQ6jWKdEBj2cpalBa1QOkqqbQAho/dgnmVkSqJ1LPOyTpfpyQlra+vR0NZZptMpZlkxmYxxPqC1ZlnWbRCOP/d0SIppDELWNGXFfDEn0VtsrxQoLXHGspjNyJJoJedCPABECA/IQAiJbaL8OknV614aD879llQVQAhJcDCZLDDOcXg04dbtY566sglKxIPDerQSqOSNN/FvKAiEEO61/x4IIX4C+EJgXwhxNoSwK4Q4Cxy8wf/9YeCHAXbObof+cICSGpUesZgtSZBkSYqUgWFvzmK+oDEV3d6AclGSD/scjmeUSjEjRc320P2Mk6M560mK7Wpy1SHPIuI/2d9lcjKhKWuaZcmsNpAX0Q03KXBOIlEkWU6TZ5gRuFTgBZH66sODwRBRAeawxhKMY1EHamNpgqC00Ror0QmLxQKdpuTZgIEWsR71AYQleBs3qg8kmSbtZCgRSLo59WTGsqmpbIMJHoRs/QcFUsgHIKD30dxSehHHdQmBdRYCaKno9ooIOFrLvLYkqebj14/59M197u+PIXju+YYkCAZakqiKcVnTEYq9/SlpkZGuDnAohKiRaaDTyXC2JpiajY0+K8MOvZlhr6opXU1HJ2xurvDe9zzC5tYKB/f2Ge9VLJuGcj6lyBLyJGFUeVbXB7zvi59gtd+n7/a4fvMWk0XFYlmxuibIN9Z51/lzfPjDH2DBkru3DzgaLbj08FW0kpiyeZBCn+6RIGjnU9Fulpb3YQMhiZOvrY/j7JIkwROovY2BEkGeaHyRtRqDOJy1Gk9YLhbRy0JKmqZ+4IN4akX2q+zQW23B0lnu3vF4u8rKoE8qw+sWYiG+l6E9I08HniJ4UOplafJ6lvBgtbY6Iv4faww3746wPgLEz37mBo9cPoOyjqqMPBClc4r081AOCCG6gAwhzNqPvwb4c8A/B74d+L7233/2613Lu6hK666vRcmrCwjfDoCwjkxrtFbMRmOyczsMV1ewlaE36DEZjbl7NOXchW2yXDPo5qys9JnuHTAdnRCkZ311g8tXLnDXw43xHQQOZz1u3uBTTZ52IOlwa++Ik+WSweKEvg/IBnxCdMylnWPvAeuwtqRuPCdzQ9EY5jIjKwas6IaLZ7foD7pga6qjEns0pur2WTl3DqUCwhikj2SZuqoY9Dcoii6+KVGJRiYJpu3jnw7FDCFgrUWp6D0Q2kGap5NzogVbW2kKQa9fcPHieaS1nNnZwQnNwa1rTI5m6CYgRXRsSoXDGodLMp54+mEORiO6awO2+gn3x0vc9pC7JzNWCk2n32VeW0g7GDJ00uWrvvzdfPpTL3Pm3ph8kHPl0Qtsnd8myTO8TLn08BXunbzAzMfNZ2rLmY0Bulvw3ve+jeHaGpW3dIXhhV/+KKPKIlLN4eiEl15+iUtf9pUsfcIHP3anNUXwlMs5f/mv/xCj8YKDkznTsuHH5CnwBt08aSnfnvVeDiHQeBgUKfOyYjyrUUnCYNDh4V95HC1CZDHqFK3icFmlNNdeeon7+/sPRpdrpeKkoXYS0mlf/0E2zylZiQe+AWmiKPKUTpGTFRkrvV6rT4mO2rujkmE/pZcnD1SNN+8ccLKoOLs15Nz6oPU5EVz8yMvceelDD7w1pFSc7B+yf3hMr1tQ1w0vvXCL+Vd+Af3ugKXxWAIpkHc/P0aj28BPtPWJBn4shPDTQoiPAv9QCPGHgVvAt/x6Fzo1ddxc38AQ/dn379xFSsHS1Mymc5QWzGZzevM5WiecjBecvXqGbmfA3ugVlIzqsG4nxxBQWeDsmfWo/HIe0pS1zSE6S9i9dZflsoxvZl1jrSFJEhoBh5MDMuloOhCcYGkhTC0cLSiWtGQNR3A++sJ7R6k6IKAqK85c3CTbHPDa8Zy+M5zZ7LKeSELdcHzjBZbGImWGQ+CURClFpxunyDaNRSpFkiXY4FBCkUqNFZZ+P2d5PMOY8ABj8iGyFwMxGAQvcC7SY/1kyUuvXufymXU6/TXuHxxzf7zkvq3oZorNlUGrvZCcmDl7swXPvrrH+dUO928c0NjA7iwguI+tHDrAeidq+RESj0VIjZSSnYtnOHtunWjK6Zjd28OLSI3uasf7n7nKbF7z2sGU+wsLax2e2VrBVnMOr78CQpC6iuZwl9nCkSjJfDLhf/1rf5X/5Qf+KuOTEyCgEoESnoudwKWsYjI7ppyX/Nm7h/xQP6cyUUbcPzMgTQLCeIp8SDeT7M4dV7ZXeWU8xS3mvO3KNnQ8v+1r38ulnS2Gq2cZrG4DgnJ+wuhgn7/xl1/hleMDKmNIEOgsp26a6AZsLa6lIp9ueFr7cqkgT1MInlIEFlKSp5oiT1HrfR4+t0ZXS5wLHNmGDRacSzNwASsE18a7VLVkuCG5qBxKSxIp+G9u3eIv/kdnH/w8hWD35B5KyWi+I2A+GfPsL36Q/Z7m3v0Rs9pQH+1x7ed+8t9/EAghvAa843N8/Rj4yn+Xa0mpyIoexljyPGMw6DHNc46Pj5gfHXN4dEjRXyEETzWbo7IULwK2CYQcNs6t4J2lqubcunaHtWGfZJhThcDGcIXlckq5WBKcp7/aZzzpM68MuAYRFM45gqsfjD23EmwImAALI0kXlunxArNo2lYPCC9onGGxCFQ+xQZPTUAPO4xGU/b3JrxweES/yHn8wgZXzm6wurPCOpEbMF/MmFUemResbqzQ6XbBW4SME3q8i9oCIRUheLpZyvpKn4PRPG5878FHgMm1UulTFFkrRZZIOkpzdHDAJz74AdIiR0vPvIoMtGEvoaxqzGKJUmDLgF3WFFu96KIUoOMNTdB0uwpRldw5Kel0FJlSdIuUbqpbowyJ0EmrbpOEVvLqnMdZQZIpVtZ73JrXDGTC6rCgW+joVhw8ZeMIWYr30SjDC4dqKtyypEYQgomAoAlcWu2ws71CkiSYVmsA8NSlDT59+xihNefWUlYGBfV0xsIYEt2hsQ0ET5JI3v22c5wZ9Bj7hEFvnaK7QXe4TlZ0CTZAV7JY3GO2qGI5Qfx96rqiru2Dbl9o3auEiAC2s6GdwhSZp3HagMCjqCyYeUWRajLpyNMUZyBPFVliyPKEEG2i4vsJFIkg04pEBWQLDiZE2/1T092lMQihEaoVX3kXCWSJpimnOBJkMCT1G1N13hSMQaU0veGAXr+HGQcccwbra9y5fZ3Z8T7GWnRlULlmuqhIfcAmipu3brGxPqCTdxkdj1iWSw52T+hawVOPPMaomnGwu085X9IddBFFwt7eKNJ1XTtdpvXTi3s7vnEIwdxEyWYuoUgTOnlCmiiEEnFMuQ+kRhFkYDmb0ARBt9tBJhmj0YgrV87gbM10suTF6/d55c4+QaRsrQ24vLOKrRxNY0iE5NatXQ4PJyR5ihIBrTPStYw0yVn6EdXS4KqGtUGCtQWj8awFlkK0tH4gtpH0E01d1UhSHnr7Fe7evgPKkeiacxs9Vh+6yGJe42TFtmgYzY6ZLh1X+h182RKVEs3J8T6mhPGiR9KRiKphZyMjVQnOOw5Gc9ywy2ovj/yG1kw0EDM7QTTFRESRi2ssN3fHCJ3S1dHvQQaPN44be0uEBNXrkdQTjA/U3uM8JMHidUT1O/2Cp5+8yKDbwRioy5qqiuq4px/ZppMIPnrziFnlSCixy4ZjF1hb7dKYOI+glyk2enmcr+BTlkGyun6OvOggPBhvmNcLTiZjdo9GGAcoRV7kCO9RKlKxI7HLEJwDKdBpEr0TRCBVOrJNtaZ2llRKXAAXRFT4GSCNgVYmGVqadpiKhOAwNtqcpaqdS3g6m43XsYN2ZALGBKQWDxiEQsrYzfIpjYvj49Ik+VXW7r92vSmCgBBQZB2Kok85r9hcWyNViu3z55nv7dPznsnkhPVsk9JXKAuL2nBzXNFJUna21vB+hWq5oKsE/U6PwcYKo72Shy9fjMqvVKNsw8a85OB4woqIcl6tBJnwpFLEEdxE8crUQaIFnUzG8dKnjEEfYSdPfFNFcFS2xhjBzHn0/pj5ZEb3oXN8yfuf4e7tY+68/CqFlhzWNYvlksksj/z4IkcgmE9OWE4ncRhmaMnhSpEVBUJnVDZwcDLlol5hc6VL8HBwMqYxUTYKkLStVF9WWGupRGB0coDOE8bTKUcnhpUVz8VHH+dd73qET3zs5+mmJXmqGM09aSqZjhYsZhUqyVhfHeA6hiybE0JCkyiCTGmEIk0VvY7DVAaKDBEaAup1DENEMQtE/odEMCkdi8qytdGL9mWNY76sOVk4FvOaXjfn0oUzZEqhgqEqa3QaSEUCacITqz06uabXy7DCUZmGJo4CAWKguXBmFRECo5MZZBnTOjBXWTvmy5GvrqIns+hj5EElilynZEUex66hCWWNWdY898nnOT4+aQG/gAmBXqdApykewbys0ELiqgoE1NaipEL6aFOu0zQKpIiBNUkSnPGczGvunCzp9Tp4AvPpCflmFx0kS+8wQWCMA9NORmrl31LErRqEamEfgXeWxsXfA6FwMkrTay9xRO8JJAQpQb/Jg4BSijxJKfKCM2fO4IJFyoSzF65y9/mX8a4iJIEwndHbWAERGPRylnsnCFtTHs05e3GbypTU8zHZIGcxniBC4Pb9fR5/9Cr3Dg9RpePpZ97BR+YLZF2xnC8RwaOEJBGQarAuUAaobKCQEi2idLh2HuNF64YbUwePItGOjUwydTWTBo73jlnt99vZhgl5olEC+lurcZKsFyRmESfNNjVSyTZtlNgQQEbSiZJgqobaeEDS7XW4uTvi4mYPnQm2tzY4OBi1oJXHlDXOeWb4dtoPHByMKfKCk9GMREuOzTHXX3qFb/ym30cdMv71v/qHXFpRNKbmMzfGKOuR45LVc9skaZejvRMOZjWj6ZjKKoo8o8gVm6sD0gA7mwM6nYQ06SEIVMZhQ3T2cc6iBDQSpFAczBY4JMNBTtrt8pkb9zg8WDI3FcIG7oYAWlD0ujx87hxX1juxNJAedBxsen13xKJy7B1NWenlNC6WZQCDbo7qCNa6OR994Rrr3QGj6TFCJnjnoiLTBZIk2pwF6dGpotfvRkfrIMi6BRQpz33yOr/8Cz9HkWiMMaRKs5wumE3mcdKR87G/f0rNDZGdKZSm3+9i6oqyqgiBaEHuHEmiUVoxWVa8fHfEoMjo5yn4QLU0HJQ1QmkOThZUxiOEx0pLZWIWeOqZWdU2ZjESnIluQSJ4qmoZZyE6S+Mc87KmthCnGycsmze5sxDAcLVP1kkxZaCsPVon9AcD8jPblNdGJBqqcsnA9zFZl/7KkHJ0wnQ8Z3DmDPZkjsZx6eqjyFSxd7DL+YeuUjaWj3zsBbbOrFDOSkbphOHWBqM7B4Q4ZwonBCaAsYGlBWclTnq8F2ytD7jyyAXSLGt96MMpCI0UgqYxbI6mTCYLqnsTDmcNTgRee+EaF9/+EKP9XVLhEJMx+WDApDHc3j1iY1DQ7Wi0TVFJ9KTXQiMTFY1G6grvJcYYKme4cH6Hg+OU+yczrDMkacbG+hBT1yxKizUOb2tCiPZTwVmm0zlZnqGSBO8sznkmR4fcevVVvuK3fjUvvPoJbj3/CebjJVUZ5y2OTio6w3UqY9gb7zKZzMgE5AQS47E24eb8KA4zGWyycekC22sdtBAsyurBvD0pouo9YLFBcqf8DDrRXLp8nv2J4dXrh6xoxdVuwn1Tk3jP8cwxXViq0vDo41/KlXPriOAQ1nD72m36WrKWC9KtAfPaxHFknQxO4MIjjyCQjEYnmOducmd/QmU8XjR4EhCBeW0ZDvtcfuIRtFLcHi+5ffcGD12+ymClwEeJKrPRCGdqdJ6QNjXb/QLbTbm+O0IlGusi0UcEQZHnKE4dnwXWOSrj4mj3EEikQimBtRZjHUollLVDD4Z0Oxn5omTl0nk+8+pdPv7payyXdWt0I/nF5/a4euks737yYTbWusAn2Hr8GTIdcCZA0uGRA8EnXr0F2lLVnsHGNmcfeYoMMPvP44Nn5+3vZWVjFfj459x7b4og4KwlNAvSoqDoZqytD8lShfMlZ8+eYf/ay5EYQ6BeLEB1KfqrbF99jHLvNutnNqmamlW1Tu0ltio5XExYvHyd4eqQpnEsRjPOXzyHrwz9wYA0T2lMhQuCPJWkqY4trKWlCZ5cJ+hEsNLLWR/mnPrRx5o3nrbOewwWZyrmkzm2arBNoHQGV1fcev4axpSIEMePhXJG2hkQgJu3DkBFTUC3k9DNUrSMAicrgOCYLhyT+ZKiyNl2DTpXXLp8gRvXbrI+7JDojKOy4erDF5gtK26+8hrOONJER7dbqaiXNWmSRCoqgXld8XM/+5M89Z730CsG5POKbRe4H+JhqaRkMpnx0ss3mU0WTBZL+p2cbqpZ1AGlPKmPnYu9l6+TC+g+/RBr/YIkTXBNE8sSH/kNIgi88YzGC5JMMzkes3fzPjo4Gh9AFrzr4TUWszk3j+bsLQzNouSll26ys71GpgVKS7Z21kl05ClkswWLxlN7WF/pw71DmhCNWZ5//lU60rO1uUW2fx8lDUqnpEIyn09Z7eYIqZBakouUal4ynpzQ7xcIGync21vnePLJJ/jExz9BUHBue8h6r481lqNZRa2jh58LYIzBK4lvdRuLpkYKQZ6kJKmiqqqWmewfEH+KXoduImhMw3I24xc++Cnu3znA+UCqFCpJoq9F8Nx67R5HxzPe865HAej0c7IiIdcdRNHnS7/6S0Bp9k7GqKzLM+96ioceukI9m+EQ1I1j56HHeOjS1Tfcf2+KICCEoNAJ62t9AoppVdKYhixNWd1Yo5EprmwIbe93mAbGe3s88e538bHJmLvXb9BdW2E8K/HSkac5ZdmwWBwzmyzwInDt9i7Fap9O0UFIDUmCUxnjuqZqFJtFQX+Yk+uSxcmSTqYY9BKcSAhKPkChEeKz5JygkbFG7uekU4tY1Oys5HQzzeTkOGIOhaSTSpbjCaVVuMahCCQyRLuz2ZJjGdCS6D2fxEnCvX6X9c1VtrfW8S4QmkB3M+fylW36wxV6gzWsu0Gap5wfDllMZsyPD+lKxf+Huj8P1i07z/uw3xr29E1nPucOfYeeB3Q30ACIgRQBiCJF0VJJplSmE1qKk3JFkqVYTlX+sJRUYjupVNmJU1FSSsQotiLJqbLDQaQkS7I5gRRIkCCBxtBAz9333r7Tmc8372kN+WOt/Z3TIJpULDtub6C77z3nu+d+395rvet9n/d5nycfbbC3N+L2vWMEYSKxdZ5Zafj6N1/hr/3Vf4eTBw/IZwt+eG9I/WDOvaZhgOM733yLxbIMG2KtYK0IKXTtDLVx5DpjlCg2NxOYnvDtNwSf+uizJEojRWfoERSOZfRMXFSBIHV4MGa5LBlpze56xotPXuKJxy+zf+sezraUCGZVy+TolOPjCdcub+FxpL0e6zubLKuS7Su7fPn1V0ErHrmyAd8JDE5nDb4x9IuE4aigPlNUSZ9iNCQvTigXcwrhOTubsbu3EZB/oZidjbllGtbWN9Eq4cYLT/Ojkx/BHdxjPs3Y3tsm8YqPPH6Ve3dPuDud0ShJaWxgLIpkNcEpCZ2dVgayUZKlCA9tU5EkGpxnWlXcOjghQ9BOTjiezBgpidLB7cRiSbQnIXBlRDPn7a+Fqcaj8YQ9uUGhHL6esrZe8CM/9jnKqgKV0Styelpw++57HM8qqrrl9p1bPHn1g9n7H4ogYK1Ba8FyWeNwlGWJaxuqZUmvKMj6a0ynCxbWYhLProaHB/skr75BWVa88voJL318jUJLGtdwMp5QTxp0njCpJvS2NpmMp0zmExZnY0CytTGgyCT+ZMp4WnMwnlNZF3XhPUMFWaIwNtCF6RhikR3mo1BmmicM+n1wjsFZzbC0PHV1k6wHt80C1xrWhn2WRvLG3TnV/hIVSaK9rMfl3U0evHOXynu8heH6OtcefYQHJ2OefuwaXipab9DWM57NqKsFSZribEu9mJFoz2JaMrg85Pq1HexazqWtEQ/HS5598hKtcbz8yu1owy2QomUqBfPF62znKRPj+fakZL2nONU5Ps2Y1i2JlCQSEgQ9rckUDERGkihSIUh7I4oiIetJJqdnHByccv3aHrJpg7SVd3HGwtO0hkVV4a2gbQyNs0idsrM+4uBgyhu3DzHGkirNZu5ZNg7vExaLKgJqntP5kqPTkrv7x9w5mnOwP6UFllUAIKfTZSBfeYMQlrpe4jEUScFwuMZGL2OUpyRKcef2e+zsbWCsYevSHkjJfF7SNEeAopWK0ZVrjEX0XIjg/NZgQNWbc/tsSustKhhkRs5AmNvQWiG8pIlj3lJrijQhzYbM50uEgHre8s3XHrLez7C1pZf36Pd6DIsEbyyXR0Okr5lMZ5SNQUmx+pzvfeMVxPPPIa9oijwn0Skis6R5SustUHN88JCvfeNbZBn0tOK9177O0Y3tD9x/H4ogIBDUTqCRVG3NdLFcKaIIpcgHfU4iG6tuGuql4ealLRK3RNqSZWsZz+c8eX2PhXe0+/tce+4xZnVFNW85WSzBwcF7+6QyBRy6rhn1cvJUc9xbcDJZcHA6QyNYTyUbvYQiD95wHoXzLnD0fWebHbCBRCUorfHeoaRkc33A7u4aVT0jSyU6TXnyyet89a0znJihvF8h+otlydA4FlgyGTCGrMjwXjIez7j7YJ/N0Rpoz8beLty9x+H9Q7xU3LjxCEVWIKXk8PCYRDr2dte48sQVejJj/uYdtE559JFtvvXtOxgf2ksBe5RUtsXIgqxIeWtec63QXNsZQd5nNlsifRtUlpXAWmi9J880rXPM65rEgZ1LLm0N6eWS27fu8sjVXaTUuLYKUl8RMGuMoWoNSZqS5ylnY0mDZVkbikShRZh/XxpLZQLLbVa1SCFpneOVt+/zW19/nfGkpGza2A7zKC94/c1gtPmbv/FVCp0yOZux01fgBa0RpMN1hNAMC41UkixPOTyZ0DaGqq2o6pokTWmrCiuCEWg7nVLN59RtmK5sqgaLRDaO9UGPp3bWuTNbMK3qjsof3pHz+DaUBZ0zc902wUHLx2zMtiRC0Fg4qyHXGXmmsUnOndMZrl2yubZBWS0p+luQ1Vy6tMnJ3SANVuQ5B+/cJun1uLSTkuYpzte01qNIUELwla99k0RrNnc28G3LYtkyrcoP3H8fiiBgved0OsM4zayac/DgYfAQsI66rkm0IMs1hdS01nH7/j3G8xHDPABe3jkS4M54yeW9NVyjOR3PmU1nDIcFTV0xn5VUi5J+EUgto0yjlWCQaYY7I65uDmjblgQYZAlFGvnd3gbbr/hevegsUYNZpUDipAs8+zz0ewfDgrX1HGccy+mU2sPJeMowS1i2LY0JU4jOtDx87x46ME4wCGpjMZE37qxHpAJnPL419EdrHN5/SJGB84Z5U3Lj8UeYzmYkvmVnkJMA07ZifXeHjeGInVHGC49v8/rtE5ZRTh3nkcYxXy7Y6OVB0amXMcgSrG/RKpiJWNuiI4nCCkHVGowznJU1rgalErIkY63f5+DgiMl0wWBQkBhN6xokwTuxsY66sozWcrY3ejzcB+sV86YhV4pcOWrnWCOkwgcIUmXZ2+kxPpvxq7/+dcoq+EIUBJU3VHARJhK8bp+U2MUR232F7A/DYK4SzKuGWVmSKklb11QqoawbrLe0TctafxQCuZ1RTptwz1WYMSiKDNEq6rYN+hZ1S2Ia1jLFo/kOd46PsIQWXHBNdggpsS60BKWUJIkOFnfer0hdOknxUlHXLW3TkomMarlEuyCkc3hwyCDLmDZL1jfWmExKVDEKn/NozJOP7HF85x69vGBrMwnj5q7FuIa2qjkez1FZD6c01jiMaVadhO91fSiCQBj0ENRNTVs3pEqxtrHO6WyKNZY806z1c7RKqK1lOl0wH49xwwKlEvZPZuwfT3hkq8/xwyMef/oKJ0enJFJQmobtUYF8+irvvXmXpqzo5wlZ9IdDCqQX5EoyyBS9pLPk9sHBwhhCAy9c3Ui4iLr4zgbhzkSmIAJXnKg5d+3aVSanPU4WDoyn0DrQhiOeYCPrC4JqupVBw1BpxXDQJ80ztNZYW7N/dEAvVxR5j6oumZxNyfScItll2MuZTWbYdsEg7VPPFgz6PSrXslHk/NEfeomNr77JW7ePmJcGLxz9VLM16HH95i6Xrmxz7/U7YcrNwEJoMtdGe3DC6KvxVARBz1RomtbROMPpfMZ2XbC7ucV0umBzvc8SgXMapRLwNcZYmrri+Rs3+fjNbe7efkhlLLPK8OR6wlqScXfScFSWzFqD8YLHnriGc5Iv/fbXSJ0hlS25TvEIDFBbg2gcTYzO5bKhNbDhwzNFSTQSJROc1EipmCwqqnZJ2bQooTGtozYNxSBnONjDNI5lucAhmDQL2qbFNgZdBZwBKUnX1vGzBdWyYlD0OV3Wceo1p22aOF8S+B7WGvIs8BSstUFmLo4CG2MDo9IaEmfoJYpeKllXmkx4hHBhGrRuAMMkTks+PJqzvrHGXtbj7GzK9vYOSRLaXBLHeLGgEZoMhzdhPkGoAL5/0PWhCAJSiuBiKzyT6Yy6qliT0C96KyuxItH0ih6lbZlXFaayeBNUah2Ot966zY2ndnlwdEy1WHL50atsXcl5953bXN3b4tKVSxw9OOPsbIzWKjDWpAxS2IR0NLhcd0MgCqegbQhSX3yXKqvvEHBB3svJkowsn5H4lCyqAimt2Nje5qQ8Rcvwc3tpEk5952mdo21NEIYEhPC4pgFnuLy7xttv3aWXJ0xmC1KV0M89w1GP6d0JG4MRLYJ6XrKzPmKRCKbjJdcvC0ZFxsmyZJitkwroj9b4oR98no89N6MuDdYTwMxBTtLv8c67D1iUNYkUOAeF8Gz1JM4rqtbQ4si0RDgZJimlRHmL8I66khiX85k/8kO89ca3A3nHReHL6ObUGlhWhscf2eLxp6/yfXcf5Usvv01lGtb1Ost2yemi5f7Sclhadvb22Fjv8Yu/+FUm47PQmEkLXMxKvHX0Uk3akwgsHE+RdR3EO5xASY+Mng62MYynM1zdcvdoQaYNVx/ZJtVBjGX/4IjHblzHGkde9FGFRNqWPAepHUZrvNJ4pRjtjtBScXXQp32wz3g2J080rQyCnsaErFSpYKrivGNZLqMXhidNNEIIGmvIhYzMwzgS7DzSWDItsU1FY2ryfBDWXJLjlnVYdi7j1duHrO9cYl0m1K1jlGV40+I8VIsFQmq0lCjnKasGIRStdXzQ9aEIAkpJjHdMJ1OW8ylahhrz9PQU07bU8wotJaP1nKTNWJQtZ7VhUhuOl1NSrZkuS9566z2M9UwPjxkOCtSwz97ODkcHh+xe2uaxp/Z48zXLYrlgXjb082AOIlMdTELiIhPeIyP7LfR7AyfbyxANggCoj2KOkkRpVCqDeUgUenQupF+BB+5QStPYlkxLvAsELi0lykuU0nE6UKK1pzVLjo4XmGrBqN+nXVZkPc2dO/fZ3NrCJylFfwBtw/G9e2xd3SMfjHhw+JD+qMfNK3tsMeCZj36SW9/5KqmSaFmwtZcSVSyQBAs06wz7+6csnSfFMUgUg0yDs5gYElvThpPNB2ZcojRpFuzdVKZwSpNJgfaaTBdYV2OidRfeBTAQz97eFrNFywsff47D4wn3Hp7wlcM55XzGpJGUUnPj0R0++sxjfOXL3yFLFa0F09qwIcPEFEqGe4xQ9PIwKP/CjV3unC3RsgkaED7oSpJqjAsn5VOPXePo4IjHn34ULcIg2HJ8gq0dja2xzkdH7DnzyRTbtLTOoBIBSoVs1TSM1vo83XuC648sefv2A+6cTjmqGwyeJAmmpHgwTRDIEVE2XorgIpWkCcNE0pOSeduiJAhncD4wG5UA4Rza1iznAtkrSLMwBVgUmlnbcv/4jBtXLjOfLRgOerhW4KVgviwBh04z8jwN96GusfbDngkIsNWck4NjmrYhz1PKeok1DXW1ZLZcYMqW+nROL83YGPUYL0qW0yVKaRLhSSU8uHeCSjTT4yk3r1coWopsnXt3TxifTTk5XdAsS6S1VLWhbi2DPEE6h9SSYKEtgpYgUafNRX86JaNsVxR4cAAisPxi/1fJnGlruHc848pmhhQSKSTDXhoEQkzIKrox1CBdHWig3jryTHL58g4H4xntokYCZVXSH/WxDppFw7g5wjYtJ/sPWL+8Bx7GDw7ZvXoF08spp3PGvQJDQVvXgMH5JHY2QnqvdRBK9c5jrMXULVpIEgVZqkkTFaZ2GxPmJKSi9UGvINOh1tVaY1uDa+G9w0Nuv/UKSjosthM4xLjwZ6bzkixRZFkWNlUq+YE/9BJf/uor3N2f0Btu8OTlLfYub1NVDb/5269gGkdrA8hmcQgDmZCxDRkIUdYZmiaccCmOl67tcjabIqVDaYVMwDYtdSrJZcJ4tuR0uuQb33qbR3Y/GTIwAbWxaJ2Elm+iKXzOtPVomWLqIF9fNRUKyaBfcHwyY1kbpssZc2vpD1OWpsBOPSJiFM7alVy4VIoEWOv3yQSkEjIctQSvFZlzZEojiP6NkWOBVMzq4LGhRPi5/UxTpCn37hxz8uiS7TTDW4uzDu8t5bJcqUxLpXDWxFmZD3km4L1nuZhi25qmbnDGMDubYNuW2bxkMp2HNMtlnB3PuH5pncoF222NIxMKlUhmp9Ng2mg8v/nya9y8vst8eovp8Slbu1ukWYLWAiuTcKrVDfQTdKqQ3aBGJADYuOit83gbN3rsCjgfSwMR9N3KpeH1u0e8eusYEs3+4Zhnr65x8+omg17G2lqf4SCnOm0DguyjEg4hC3I++g8UOVYlTM+meCcjki/I0wF3D48omwZlDbkALTVJklG2lmY2ZWtnl8tXL9GThpPpGd4a2mWF8NFCTAWCSzDxDCVYIqGuPctlhRKgALXyXlDBAhxH6+JwVQySqVYkuaZVnqp1aFNTLsckxYiyNdE4JBBvvPeM50t2N0dI5QkJkmKw3ucP/8CLzJYVic5YW+sxnjT87D/9LeZ1iSbBmQC+dgIeVvgwYJVIEinRcW4fIBMeXc/AGtJ8QN7rgxJIrSmXJWsJLI/P6GnPyYN93ntwhMdSLhbcvv0mGxvrCCdJBwWFlizmE8blnFfvH1A6wfYgJ1vXSL3J2qUtxHKJnRdMzUPMUnBzb4977oBl21I1bWwte5SSrK+N6KcJuVIkeFRbk3gXTnwfaL9SJbQe5lagHGgtaB00zrOcl+hYi0opSZVitljy1q0HrK+NMM4EslLTMp0v8Vas9DBbPLY7pT7g+lAEAWMsp6fT4AVoHTpN6fUKzk6WHJ2cMV+W5EkakOd2wdFkDs6TKYUQHpVIdrc24eSMsm7w2rOYTjh8oKhMDQ7K+YxLa7sUvYLFfE4v1awPc3r9FBmptjLyAWUkBAnvaZzBGhdGNS+MkBoB89ry9p1D7t/dp162LCtDrgU6kzy41aCyXTZ3e1xZUzz+6JKT6RzRBPcYj1gZTDpPZM9pZuMZ1OdTZVkxoqqWCOFIs4LWNCA9J5MFg8vBsNRYQ9Ms2VjbZq3QzCcT3rl9yOnZwUoIxfs2aBNKgVSaVAdEO1ESZwxZptAq+BUaEcozJ0I51FiPFmHCQakwnOIrgxUB5ZdI6rphbbPANTXCBXPXgLB4JvMlj1zawlsTR6PBCkXaG7HbGwWdRDy/8pvfZDKeI0USAiPEdmAU44EwPmw9qc6DQpAIgzFJIljrayZtg0oSTFvjDeRbm5SHR5S1QStIZIKdlxzcPSHbGDIaDblz+xY6fZy14TbV7IQHd9/m7bfeo22CPuPR5Axj+zzxkZd48qVP0h+t473h9MEB3jU4K/A4vvXy13nn1i3ee/iQyWKBTVLSLGPYKxglwYAmsRacIcPRN55DaymFoq1bikTSOE8mFa0LfpqVC6PWuQ5lz9miJssSPHBv/4iP+6ewbRuUpp1jfXONg2lJawXzpcGjKPoZUn3Ig4AnTOQ1dUWWF6Aki+WMxjQcPDwMbQ7RMjs6pJ8nzGcVmZIM1/rUTYWQEmMdaa4pG4P0DoXj5GxMUeQIHA7JI488wvqoz+nRIeu9gu2dbbI0ZXx8jDUWLz0iWjgL4o5fjcjKVWcAD2Xr+dLX3uW9e0d4BD0BNwaK/bmlkY6ymXHwzVe5dvMy2x97hCuXt7l2NObd2wfR8izMjAvvUQh6eUJfenxd42QwQBGEVqGSGadvHQfFY0AqTVlVnB2f4KxDJhovHb1UkacZerjG0fErvPadb3Djxk28cAgdpK6FD1ZtxkKRZuSpi7P9QTor0aG/3daBHRg6S91kYLgnjXPooJeOlIJBL2c6LXnk0ZyqtsEf1gZ6Nd5zOl7wkadvYJxDSR24Ft2Tj7f58HDKw/3T2MJ0KxVlFy3PETErwEXAsgnBOoDmVK1nXFpqwDQ1S2eweERrmC5m4MrYvUno92oW8zMY9Nh/+B7Hh1OkSri02yLcgrdff52yFTgpeOzxG7z0+CUOTio29y6HdqltSdKEy088htCKtm1ZzOY8LSRXn3qSt779Ci9/5zUm5ZK2qcm0Ik8SCg2p8eAE3kpaq0i1p/YSJ4KYjozZgZUEYxof7nuXCRxOJqwNhhjjUG2L0uCMiT6OcP3xm+xcvsp8WdEai9aKJM9YHw4+cP99KIJAl4J7PFJLlk1AQk9PxhyfnEaSiw+afqlCimBvPdraZHJySqo0jz/+KEenx9jmPthguNX44E7TKxJ6uYTFjK3NXbSUDIqC/vomQmcMdJ9FXTM5m5BVZ/Sz87KgaS1ta9CJiqpCQar67QenvHP/OHgkqgSpBI/vaE5sy6QylI1j6OccHJ8wm66zPhrw6U88jW0d9x6O8cLhnIm1n2Bnd4NPfuwZvv7NN3BHYZZeCc/B4X0Gww2W8youpkBcKhdVmCzTikUNR/tnzG5OGPY0p7MlD09KbkxqfASlhAksR+uJAKfHmYosTejnmroONWyqBFmimZceawL4KWXQUPAWXKxbtdZIoMBjm4bJXKJ7BfNqEQA572mc4ORswcHxhJc+ltJ6jzQVDkHlPFqqUCNnmgcPDkJdG4Ojj4o9LgK0rfVo1WEpXaYG3gXA67RsuH3SkPcShsaiRFDuaVvLYlGynE/ZHg4YqNCjN40lFQpbGx6/cYnFeMKRsBzef49WDrmymbA7GjLFMNi5wnA3QyeexeKUspqis4w0y8mynEQnZJlmuL1O1u8hheO9wxPG790hVZphv2A902Fewgu0bqnaCqdAZ1mY3iToWRohg817dLNOLSRSYmMrObEWX7cY77BNyAqMaYLcvHXBWStLWM/SgGtJgfASX9YfuPs+FEHAuiCbjUqZT0uWywWT6Yy7D4+oqhrlA8qupAwgIuBax9nhCb5tETk888yLJA9uUZdzZtM5Td3ikeS9PhJH5ST74wUfeeoTFFtXEC6AfI211AJqC3VtAxPOhURWekFrHFXTMOgFrToPGCH41jsHLGxoMzprOHKCl8c9nn30EV6/dYfS1iipyJRlPG8YjhwyTfn0p5/lqaMJp/OWWw8O2dnaYG93k3lZYzxceWSX+/tn6Kh0K0moqjp4EHhLqiVN65g1DYeHJ1SV4+qlNTSe+3ePmY4bTg/26WeSk+mS4+MJm9vr2CRsMCXUqkL0UtIaz8b6Ovv7p7RGUCuL1p5ch6A3qwzLJphbJEKgnUDpUIKkSpKphMZ5nnjyMU7GY/bv7tOn5ht3znjvbMnJ6ZTZsuG/+K9+h81BxvdfH5ImkvdmoPsDhv2Uq5e2OTlaROAy5AhSEqjaRF19rSB6PpjWIFBIrYkTtqRSMV7WbCWBht46cMYzHZ+RKOj1NJOyYmmgrD2XCs+jo5y1rUv0BymcTJg+eIgtK3Z2RqG9mKQcHc35la98m729y3zuxjWyNMUai6lLpDPMJ8dkvR5SKqSxQUxEpVxa63PbWdaHQ/q5ZmPUQ7SGhZ+RCE3PByWlqhXRnEQF8VkRwJkcyJSmcU1ge8ZsPs1SFs5ijGOYaKSAtmkxpl3hTD7o4QMgvEApwd0373/g/vtQBAEg8K+tp6kbTNtwcnzE4cP9QMaRgUxER66xnkG/x7XrV5nNxihnefe9t0h7OTrVUb49gFObO5e4f3REezpBCs32/n02trdQWoMJyLN1jrpuEM2CoogU4VD8k0WvAOeIYFeo4ed1RciHwXmJw3JvVjNYb2iFJEsUV3bWIQVkVI63DqkVO5c32VMpm5s9FlWFNSWmLnFtSi49l/fWub9/gvcSLyw6yUg0YD3We1pjEd5gWoP2ljRNeBjT6TwRXF6DYeooDx/wjemC9au7PHF9j/W1Pj6RyEhb9l7hsGztrnN8HOS0rYWqafHW4WyLtY7adoh/ABY9QclIecXMWrJig+lkzOTNN3iwf8juVoE4qxk2Dq1hd2vArG5pF3OmxzWH04ZbpzXWS6wQXNpcQyiPcSGt7dB/KcOId7BSCGUPQOMsxngqb3BdnozHiWD06gkCK8GuzAbCjgmDSa4saa3lkV6fQS9nfviAnF2U9Gxsjdjc3QxEHZnxiY++wPx3v8G0rDk6OeTrr7zOFz71ErlWCJmQpymqDq1Sb0L5pkVLkcBzzz2JlJbjo1OWtaE2ntRaUqFJNRSFpW0tGkkhVCx5BZmSKGdBOCSa9X6fw+kyqEgDoKK5iiUvsuCmJDtJsrDOfCSjyRXBGsaz5QfuvQ9HEPBgmrDgmqbm4PCIu2/dQlRN/CDhAznnwq+jUkrRLxDKYuuKs6MDrlzZYVAMaIqayoOpDHfeu8eyrpHW0dSWerFEb+2QpzmtsiH9ShqksCgVVpxAxtFPiZBQtoZeDArCe5RS7K71GM+raFXt8cZT1zWv3LqL8p5hojB1ycb6iNGwR2scSkZgDIGjYXNzyIYbEqkIVJVhNh7zyY8+ydpoyGtv3ePu7XusbW3TNoHSbIRhbb3gSr5O2Rh6Gznv3TumbVpSH1iJi3Ho8a8PE24++zxv3r/Lb/3G13jp0W22H71B2hshdXjfUsDG9pC8n9K2ZWDgmRbtQ76QSE/qBcZH5SKCpbcwPvD/G2hmh6SzMe1ijreWiRRc6QnSpkX2oPEVdxctx0vHN2vDvGxJlKAvPEshoF5SexlETOOeFr4DIsOKdsbSNoIkDXp6QbjEdTwrTuc1eZ4EDX8LTkLdGLauPMLJvbs4r+gPU1or2MoSHr1+DaFHrPf6CGtIiwylFSsjWJWwtrvH5z/9Er/xla8zs7B/Z5/XN+7w4rOPUeQJOknpaxW1GmI2S9SxnM9o0x4VY1zTcjxZsJFp0iRh2dS0PqX2niQLY8iJFkjjKJTCeE+FCAzJtKAYCurpfLVZjAnq3Gu9ImQP7px5GkBUGeXIfMxeFWv9///akP3/fHnvqJrgB3D4cJ97b9+imi9DD57wwZRSUQswtNSwIXNQKsGrmtY0WOcY9Ho4Y2iKguZsyrIMp7y3hrJuWJYVi0WJTNIQNU3gkNd1EKvyPszA+3jwWS+wdRiPjRgZ0rY8fm2L2/vTYOqJi3Wqw1uweMaVpbYZVy9fxjhP07YoIUnT6JIcdefRcbBHhLbQcFSgtOfFF26ysV7wypt3aRvLqF8wLFJGG2s8dvMyxw+PODo+4/T4DFOFzz5HMl1YhICekmGxvPUaxaLkxqZm3c4RD+7Qbl9GbO8gcShg0C/YubTJfHpArhzGWMrWhIxIQuHACh9zdB109YBl7amqih0tKceGw7qmSDx2Lnlw2gZgUUich4ESLLRnUjasacULO30eTEpyKchxTFrwqjPViOPaBAwjkKjAC4lxwXlaihCQTfRuXFqDSDIkNbiw8KVXzE5OmZULktbywkef4JknrjMvPWsbO/R6Gb1eH5WmaB29H+M0YH8wIM1ydi/voZKCf/bbX2fZNrz2xttcv3GFQT8Y2XrXnb+hXXlwdMI779zhrXfeoWraFQO1sVAbsN6QZwW+bcJ6Nh6hQvapE43SoeR1KBZOMKtqkiQh7zax90jpqa0IZV7sXnfkEyXCZ7CxRSsAZT3XH939wP33oQgCzjrGxyfcv/seh/ceYsp6NZ/to/mGVB2e7EilIxc1bvIeTljOlpCJNDgOZwmDQY+6VaRlSWI9aZZhak9VN2RZgRcC4xzOWUxb01QV1XLOUPgAyOFBBEqwTjUmmn2EaCsxXnB1a8C17QHvHs5wXqwedpCol2jn6A/79NKURKehxy5F2EhChkAgIwAWwg9ZnrC7uxX04/A8/sRl8kzx8OEZe88+zvb2NnXb0JQVa+s9Xru1z+HZgkQrvAhmmdKHrGnpDC2e8b1T+rlgeZZjnKB/doa/O2HvpZThziYuBtZnn75GdTbjaLKgrxSLNgwyCSVROIxXaK3RtqV1Fi8SFmWJxDBtoQWmrcaUUKTB8ahsFY0wpErjpCJPg+VcjudoXiGEY28w4M3TGT4JcxKplLRNg/PBissbF9SccGjlEEiE8yRpACZlPCi898yqhtFAohQ42yITz3Q2p61MIPxYQb+/BT1Bvzei18/Iix5KKZRU0dob0iwjLwp0fF5PP/c0+/ce8PXb96iXJd/69ltc+twnkGiWdYVUAmssX//6t3j9rdssqxJjQQlFL0t44WMfYWOtoBqfMN3fZ7k0bG6s45qWcjyPOoItbd0gVIpKM1obguFkusDaWXDjIhI+nac/7HPtyjasLMq6aCAR0iMjriWEB6GQ/y3akP03clVVxXde/iblbIY1NkxmhcwKLwJSL4RCENpYixrmpuHSpiORDWfjmkFSBA9DGdDm1pRkStEsZ2FqLpYVnlB7tnWDsYZlVTI+O8UsT5GFwrSBYKE0pAS2oG1tLEmIog+OXl7w6RcewX7jHu8eTnA+pq4OhHFc3hny2BNXEL0EqRSpDO9d6BAElIjONar7fAJkoCzjQfqgK1+kOfPFnCtygzwTZL0BYq3Hd77yBgcnZ/ju4YvQSJcyfEqNwBmwyjGvFA9sy7Q0ZNay1ZM0r7zOzU++SDHqU7eCVGs+9QMf5zd+61vsPzgmyZLQUbCORGqETLBSUBtH7SWNdZw1LUIGcY1eVrBsFiRC8GihGWKZaGidJFPQU5bGBePV48pzYC3Wa9amNdKASiV5liK8xzVB8s05j9YikqsCHyFL1GoOw3mw4WxACYXylsZKai9JlKQBdKppBVTWMxwMSZKcPtBf67O5vok1LR6PTrIQ8JRGJylJkqyGp3q9gh/5Yz/E8X/+C9ybzHj39h1eu3mVl55+AiFgPJ7yW7/7Mu/evR+egVJcu7TLtUvbXN3bopdnVFVFr9djuLZOeXpGPS85XRqsTqC1OG/IewVSJ4HgFG3Oil6Kqz0uYgJL02Cc4BPP3GB3vY/sXI+61R3xgNgRDr9xQfvxg64PRRCo65rlOAhT+sjSq/FhbLeb6PMuCDZE+quRHpKMeWUZyYpB5pFS0YrgyiuEBBTro3Vmdc18HCyrhA/efsvFjKZaMJ1MqMbHUDeMm/B9aw1FqlkfDUHIiM5G1dfIu3ce1kcDvvCJx9l46z7v7Z9RW08mJVe313jh6UcYjgY0JgwKTY1BS4UVAkTKcjmnaVtszEg6IpIQoUwQcZZhNlkwrSxni5ZiUdPrwWxa8dbb94MlmbfR1DTM14fQch4YLGEirXSegR5x+ZFdJgfvYZZLytMj0kGBUhIvIM8Uf+jTz/PKt9/h3dsPaCIqp3WCsEHkUqiMncsjXn3jkGntQuByHnyNRGC95+HSkvUkW1lgVyTaY4zAe0sqPB/bUBzVnnulJxmOEKdTjIXR2pDpeBKXs4hKPQFMtT7U+K0xKBVwGyklIqLgwXlXM1tU3PETEik5LiW92AopiiE3rj6C0ylKajY2NtFaYV1LmuboJA1qwUKidEezBmQYNtP9Ad///Z/iH/3SP6Mxlm9/81WuX92jmcz4tS/9FkcnY7xQJInk6cef4mPPP0OiYTYZUzdNKG2Vwqc569duMBlPUMt3WU5bvA1gs5CKEtA+Ct7WNcqFWYI2uiAtWstgOODJJx+JcucBwyDundjcjrS3yIIV5/4M3+v6UAQB70M66WLosgQU3EUiTQJkWtKYIOLYTwLNVg93OJqcQDUh73sECuuawEjzQRWoWS4YKMn2Wk6Raab33mR5oPAuMLfwnsKGG2YdseyQod49HKOVwGcNdx+ehEUig7kGElSqybXmxWeu8MyjlzBWYrxiPG+4dVaTLOH4dAIWnAxUzizvkecDHjzcZzYd0zQ1pm2jv6C7YD0Xyw8PznrePJiTJYoiyxAellUgy6g4ZSlEINcQATwILVVPkN7yTjC3ltHlR4If3+IB6fgEd2kX8gFKhNM+Hyg+8tEn2bq8w8vfvkuvn5JphVaeW/tTnnniKl/86mvMy2UIxm2LFLC0DrzEeU9tHMZrFsbQOomrPLkOMmMz47gs4dGeYCQtry8mqDS4RM3KBpmktLLCxt45iijFJpFJEgImbgWmriY7BeSpxhhJIj2F9jResbe2yexsyic/+iy7e3sYD0WRk2cFzlmSrLea/deqAwXFakOFDCsoJV25cZXrl7d5870DZrOSL3/pd3n44IhlNQNgkGb8wOc+w1OPXaetS7RSK4u444MDWiHRaU61bMhHG1x76ilO569w9+QMiUAuDFJppHJYE3r+dezCmBgEkkzzQ5/7OJv9orM0xMZ2NoAXjtWJgg/lNGLlefi9rg9HEABqc27qaJ3H+nMPvizVCGeYzw3OBInw2klef/0t5rWjqhyLiWX27n3K2Zy6rCnLEm8t/TRhPQsGIloppG1Cm8t3oFOgHqNVEA+1BkcY9TVNS5JoZtbTnkUpr6Xn7lnF3vY6WxtDRoOUXr8g7znKpuXotOHOg4PA8tIpJ6dnXL68R2M9i9mcdS/xhFn2tgkdC2MtNtqJdxsfv8rwQ6+8rilrz3i2QAI9qQLTUoZuiZZy5Y0XeE5BL1/ElqYAllXJl3/3q4xyzcd3CjZzTbUsWXqFlilVGUDaxhiKXsqLL1zh6HiKswktLaOe5P79B5weTXHWRD88HxSAQoMaJTy9RHNaN5zVgomxFBIGiWM3E1zvK3KtcN6znjkex/CNiWVJyuG9Q7Y3RuBCWRTstsNHSpSPaa4MrcCIwnQkGuMDz0MiSXWwR1OJpapLnn7yOh/9yJMkeYYpa0br68E1SMvQjhTRVVgGfwkfVYE6vr2MnOW81+OjLz7D3YMTnF1S77+H8hqlUh5/9Aaf+8FPMRqNcNagRAEOev0BzhuGozWqpsablrvHZwyzBIqCJ55+gvFXv8n9swnCS7Q2JInE2ZZcSjTQuJY2grGf//6P8di1rXDae4fzMiZ90SnJdVhaRxSKn8J/yIMAPgAeQdI9nMg2lgNCiCDbLCSNt1TOhPpzEXq+NoRCxpMl88ltpAjW3VpKlPQYK6nrOCFoW3p5QhbloYXSNHHCalY1lLXDNYZhnrE5zFCDHnenFftHC8TYMMpSvBQ8OJvQ2gDOiLKi8UEcQkgRHHmu7TE9OaO1jkMXOPvTszO89/R3tukP+hwc7COUQCcqeBs6F9qNcfRYqPBAnQ2tym64SUTVWifDBGPR62NNGwhFUoTZAFxE2c/7xeG+eGb1klTkpMUmlVDsv/subm2Dtpdw4qBqbFA+ci0GGQKR9TgDPeDuyQTTNGHcmrBBbBgGIEkESWzlGinBOwZKsFMI1rXiUuFJvWfSBKdXIQSJkIwkJMJyYiyn0xnreYZWYGw4xVrjwkqOuhMBAA33o3MCbp0Hb5DCUtUOI8O60c7y4jOPMRquo9MMZSxCSxprSDptB2vJkyze506CLaD9Pt6/oJfoeOzpZ3jq22/Qr84Q7Zw6yXggB/yhz3+W9eEQ7x0CQZpmtE1DlueYpmF9a5Oz42PIC0ZbAUxsSsfWtas8VxuOf/N3mDVtCHgIWmOxPhjXtt6jkxSA55+4TEJk18rwzkTcQ92BcT4stOobrIDr73V9KIKAJ2jYeRem2KQCYYminyK4umBpvUWS4oSkMkHzT0kR5rB9SHwNocdsrMDYIMOVKgFVECAphacSgZIrZFB7yXoZWZ5i64phtkaeK4SSnJWGhycLSuPwrWG6qCO3WzJblgiZsLO1hVQqoN5FDs5yQyfoRHP3dMZb/9WXeOvdu+hU0SsKPIrFsgIkWZaHiO58ONlW8l+BjCOQAWwklEpSCIQIWnlVN6e+mKMITkpKiPC12GbrFoHr+sUOrHdMm5pX7hxgJop81COVkGtFbQxOGlBh7l2LEIiWxrEwbRgMIkwX+jhr4L0LQ0XSs5kpKmMxQrGeJiwwaO8ZSs9AWnCKRnjqRgVJOAUSxVbmuF9bUhV8HOpMM0w0CqjjMFJjHcJJGhOCoCLgGN3lvKf0np50DEcjEizzieG5p27wyOUr5EWPvD8Mqs0+kNOSJMG0bbDoEsHWXeug7SAjcBv+32VVCiUl17Z61GczmqUmSRx/6GMfY9QvQkaJQCoJIpjIeB9S9drU9Pt9plXDzs4e8/mMVOWkecL1xx9j79W3OLt3PwxuWYtpGrRUbKz1ee7Rq7z43A34P/1nCKXCIYHAO9kp4cdAFd6rd3Gk2QV8SEDAbT7g+gODgBDibwN/Ajj03j8fv7YJ/H+Am8Bt4Ce892cirLz/C/AvAUvgf+y9f/kPDgOR5y8lYSYsetkJEZSDpAqAoQ8GElW7CB+sG8qP9l2WQJQQSpJqSa4VRZrSLxLyXFEUSRjpzDVJkoJSoWPnoCoXLKeeeWvxVjDIMzaTnOdvKvZPZ0znDXPjo9uupTaW49MxV/Y2cE7g2pY8S8K4r1Z40/LmrTuYto3mnJbWGPb3D2itCaelsTRN0LUjDsoIxPkDjC1JERl0EEaPEcGsJNUqjqOKC0NJ3eKNlFsfOPhZx6/1Pgi41B4vFQoXhFVEuIcuTv/pOJ0nlCJVjrKBqrXhfSgN1tC5sDgTyphcKtJEU5vgTuyMJVUKR5ABaxCcLh1rWUhXSxtIVaNUMTaQa0EhFU/e2OHwZB5wBiGjslMAbSGO38rIt49ru5sxOGsFZlyhFVx98kk+8uxTpHmGTNPQh1cKa8Jm985iTEvRK5BSYFrXVWIX/okwWyyzHY6kKJg9WIapS2NZ395AWI9XHV8kvL6zMpdaIaxEZxm6qnBCk2Q5iQ6nnZKCj73wNNP5GKcgS1M21wZcu7LDo9f36PXSjgUcDkkRpM0v7NHQ+xJEGfWLGlhh7Zh/QUzg7wB/A/h7F772V4Ff8d7/B0KIvxp//+8APwY8Gf/5NPA343//wEsKgQI6meqw2EM6WpqWRGgUAust1kpSESbetIZeXtDLM4o8oZ9nJDpBJSEiq8gxCHifDPz3aCMWNCUCgJakGkRgA/bygr3L22idc+mqwzSGWd3y2nuHvPLOQ6R02BZOJ3OM9ZzN5pSLJc88/ij3Hp5w9dIuRX/IO+88DOpDKqaxhIGcVCdh+pGokhMlqUTgx4aUsjOgjOkpxD0X21YKj6azuQqbd8UaEyEVD38+nJJtx77zHuE8VqowKmw9iZIY52haG4Z/RNDH9xKEsBRFQl4kNLZAiTlJorFxzDZMWIYpy8bBZuKppMPbBHzoXgjRqTRZnPSctY4q6l4WicFZgRaCLJFcv7LOo4+sc2NvyDt3jnnn4RTbsTijHNcKMPXnCXBtDUWv4COP7NCUDQ8W8OyLL9HLC0QadBudCEGtqmryIsdYS5ZlaK0i+BfPFOK4dwyg3nnwFu8UKEElUl47q+glko2tLfrDAbQukMy6+0841KSQeBEGwqyHLM9wTtFYS69XUFdLwHHt6Sf5fDtjUU3QiSbPMhKtmZwdM5sl6MgTmE7mpFqHsk+LgAVJFZS5IxaEiEPYMvogtI6Xv/XeB+69PzAIeO//mRDi5nd9+U8BX4i//rvArxGCwJ8C/p4Pq/G3hRDrQojL3vuHv9/fIQQkACJwr4RUJFqHSAskKvR900STZ5p+kTIc9ukVGUWuY080gHmhRuyepD+vhwR44QN6iiDUHJFd7X2csdcUqQr6dVpBIkhQpEkoGZ7PU95575iybVA6kIaa2rBY1OwfTUiS+yyNJTk+YmBaqmqJg9hVCEHJehvYh6EnRIC4AglKRAzkIg20W5JhdSlMYxA4Cp1EAZ/gNOQcIQ0lIObWtrFPHE/ruCC86MpryaNXd3BZSpUPkAp025C4YCkutcIrVhvcI0iEYm9rjWubC241JkpWCbyDVPigyuwdWwlo0bBIBD2tSIQJmgkWtlLJUIcOy7vTFktCjcNKT5KlbG+tkTiJ1oKPPnmJrVHB77xzzLQsQ1uwe5ZRt8/FU8+rjI88scd2P0PrhGd2HuXxG9fRWRbwGqUiCBxPUR/KsCzPu2QSH01dV+m1D2o9q8o7UnEXRnDqhxzPWgZPPEGiMxoagoGxXD01G8lWEEhsk3KJ1CmuCs8mSVOMiTRsZVjb28O8c4xvG+rlktLbSGxjlfHcee31FRdEdso2MrBQVVw/OkkQSsVsRHK2MLQ+/cD9918XE9i7sLH3gc7e5Cpw98Lr7sWv/Z4gIIT488Cfjx8DI0QcnxUUWrOzMWB9fYRWgjzRJKlCa0miQ0onFasb4eJD1YoAoPmQJvpILV0VTgEmxca6SYpgLmqJB6cP4hA2csGVdgiC4Kh3sJamPHdti1du38dYWC5LZrMZOkuRWjGdTNm7cokHDw/Z9inWBzSbeGJ18l4dAAUh43FOIrw6J3/FZM/5TiZaBPTXdwYokiB1DjrsCPI0RUpJ0xpMp1UgwkIXCHzr8Un4tSOQSZJMkWzvsrN9laKfUFY1y7LCmGi9Tfj72njffFPT1DVZL+Xdf/oNkkThrcPQCX1IckVQbMbRU45R6hlpTW2hdQ5vg6BrpiRaK8qY/40bweVrW2ys9bDeYL3kwdGSWycNjcoo7TJgJlJGm+1wbNvIgjmalXzl9UM2+imf+cQLPP/M0yRZEhif0zoEMmsCBoDAtZa0X8SzInRmpJIreTDvoxAtce/TofCSuqoRhHUz7AdSkYxBRWoZtCniUhS40MqUEu8cTmmWy2VQQ1YqTJJrhTKW3voOy8EI21QI5XEuYBNO+FVmuDksAiIgBdJFjggdKBizQdviTQN4WgTtvMKEY/Z7Xv/CwKD33gvx+xQcH/zn/hbwtwCkFN5FooxOEtIsZzDIyXN53gyOrS5PbOk4HwQaCROGASMgsPHi0EnTGlwEGMOJH04PH9tBxFZT2Pqe2lhSmYQhGRf+biddeBgejLDsXN4i3T+jLWu8hNPJgvXdjDxLmTcluzZYU81m06ArSKALx0S9+/QorXHOns98R8vzi4/UX6Ajd6Ia+HDa7O1tcnB8glAKlQT+gjUG6wzGhlZZADFdlEf3WBtOM2dhbz3HpwWuP2TQz2hsQ1WXIBU60fgOhxCQColpG45OTkgTHQaM0pxRkTBflhRakgClc7ROUpPQ05J+X+B9wwSFkx7hW1o80waGIqVVkoMqaBGOLl/ic3/44+SpYjav+e1vvsPXvvOA0gYtQSFSlI7xXIbNIYAkAcoKlWhOpyWD4Yirjz1NlhcorUNmrCTCOawN4KiL6ynLMtq2QcX5hk4jAbr8S674CD5mZ0oImqaJyIugP+gFG3YZBFGVD6o/XX/exBH40K1R2NbSNC2oQHZSQqDTBGccyWBIMtzAjx+GZ9Z1d7qaH0BrpA/gqJcq4EHxhAtBm7BupFiVhJKWNP1ga3L5gd/5/a8DIcTlsDbFZeAwfv0+cO3C6x6JX/t9r064spMXb72lto6ybimrhtmiYrasmC8r6qYJiLTsaMDh34kUZFpHimsg1fTSLLLKFAK9Oh2JPejAFXDYDniSAdS5P645OTvGxrFUj6dpLa++tc+3vvkubW1ojWc8nTNZLEBAP8/IewMaL2iMIdVJfCCs6nXngwEFIrSQiP1ouWJ9eehcj8VFhD82fryPiLjgYx+5zsZ6P/ALjKVpW1oT9IF1p8W1WtgO46A1DmtDFvDCzR305g7DjU1q27IsG6xQeCXiJoGoh430IePoFXlA5rVmY73PH/vCCzz/zHWUVFhH6MxkOQupGZNgBkMqmVEiqJRGFAXIhBrNkZdUQnImJes3bvKHPv8SOlU8PJ7zc198hW/fPmXZutg6VigViFwyBgCpFDpJkDrcm0RrRmsDPveDn+Hq1cukaUJ3HOeDPmma4JUnzXTIKIsMI4IisVs5BokV16Jrta1wlq5MECLSyMPDHRY9FEE6THiHsSZkFCIQp5wPbV6tw4i7taHsm0ym1E2LSlJ0liGkRCcZw71rCJ1iTFBVMt7ROrviQwQ6vQ+jLf5iyIqgsofgSm1X+IZSga79Qdd/3UzgHwL/OvAfxP/+gwtf/58JIf5zAiA4+YPwgO7qADAXISRnPU3jaKPbK4vQBgNBqiReC5IkagxKGT5omlBVLa0PPeZUazyeujXhlJUqSFYRHgwi2Gw57xA+DDIlvZzj0yWPpbsxhfPUVcvXX73P4uSEx3fXMcdTFrVBICjrisl0Qb1sGIwGPDw4YTpZcGV7Gy0kNsqVEZF3rZNArjHBTqtL+Tti1HlnNyZ6ogP7LvTDhKAoNB997iZf/t03IHrhxW8FdFh2/ePYJHLdz/U8fWWdnet7DHZ2UUJR1S0GFTdByI2kD3lJJ+4npGC0PqI1DUlhyfOEre01vnBph2ce3ePhwZhb9/Y5Hs+xpcNYy9GionCeAsPcevqpJssEbZZR5AMubQ146coWV69u0csy7h9P+S++9AoHx3NMG9uxWLwP0lvnnzEeAD4oB0HAVB65ssfNG9dQaQqElqvMU/JeETawUhhr0Soh0Rm2dqsgrTXx8/sYnMP97oRMJcRDwtE0wQ0JKUgHebAZCwU41tlQk7tgHiJ8UHTWWpPqhKps6A/6jGfTMBbtoGxbVBJ0CbK1TfKNy/jqDGva0M2xnWZjAEOtj6WiN2H82p0jmqtnJs7XTJpILi6f777+eVqE/xkBBNwWQtwD/l3C5v9pIcS/AdwBfiK+/J8Q2oNvE1qE/5M/6OeHJxgXbETnlZLUTVBtrZvArxdSkipJL83oaw1pqNcSwsIvbQDP8izFlBV1EzgDvSJna22d6XyOQDKva5q2iSezC6aSArxQtEiOxyXbRUYvVeAUDnj11hnMFtzYHDEvS+omUlfx1LXj+GhMVTX0hz2Oj06ZTucBFEIgHXjZodgBwJFKhBFSQQSfXETZ4fzkj0e5iDV9rFGBmA14nn30KljJ7379VTDEFp+PxU24Md3P1QiccmxvrvHZTzxDdulyxDWWeOuw8RQRHU1RdnBlGHy0CFovqJsW0wq0CP4JAsv1R3Z45Ooen/n0MwhjqauWsmqZL+agEoT0FElCmmQkWUGWKJTyVM6Gdp1PGM8q/sEvf42TWYNtmzjkbFAEhL1rD3ZXZ/zSZUl5lvLZT32cjc1NVJJRV0ukF+g0JVEJDodKM1Rdk2iFwGFti3MWqcLMgIhgYMjMosR8vB+d3qF1LVU0OlFa0S8KvAl4QmgJtgFoFjII1hhPax11U6OThKoqKfKU9bURSqsgEKNlUFduDC7NGOxdp+dHKNFhCzE48SVuPv9MhEN8VKl2OBvVhp0H67BNi4v6BtY4vG1pOjHG73H983QH/ocf8K0/8j1e64G//Af9zN97xdl6H06xxjiWTXBzMTY8lDC3L5jXNWmlGOpAy8Q4nHDhAViPa5uVDoDBkxpPkib0BwMSoUiylNPpDFu3WAxYh5MC4QWtaZFS05M+3FRvKF3Ow7uHfPqJS1TlnMZUsbAIG6YD4ara0JTlqjuhtMb6YIIh4sARBDadtR1wJ1fRuqv/fNzwvtuQEfR8P+NLgFOA5fqVAmmv88adCXf3j0gVaDyt8EEV2AX3ZCs92+sjfvizH2Hz0g7LeROZcSpiKV0Q8gjpMbEbsKxL3rt3yoPjMdNpSVnVSJnwcDLnV19+mwzY2xlx88omW+sDkIokkyR5xnCjDwRvhYt72HmLbUP7TSYaYxy/9Y23qazCtiYcBnRMyfDZfWx/dWl7OLXFqn/+1OOPcmlvJ5h/yJiy64S6bjg+PibvFWipWC4XbG1vhQwzlk8+lqJxThcvFOceE+cZqhcS0xoaa3C2JUmyQIHGB+xFcH76u3PeRdsGJmCWapwz7B9O2dnZCOvBOtYGQ6azGSiNcqCSjOUcelnAvug6XsRsUYT3pYVESA06xaes5gO6UqWL594Tp3G/9D1334eCMUhEoYk1k41ceilDvdydcMZ5ytYyrRqc8vRsSp5o8lShVBTDjEw7SSDFODyz+ZLRaIQQgr5OAo+/PMF5R4tAWoFzhtZ7ykXDYWup1DHrs5ZZrfj0U5d57vGbvHHrFuVyuVJ+FQQSUJIkVHVN3Rh0ooMkV93EpkAosH2HQViLcxJrXSTmdN/vSoLugYtVek7sV3eCKiE4tsEVqXVc3VvnyrVLvHFrk1t39lnOl4Fl6cEnUPRSblze46UXbrK5MQhZivGBVy49IrRacL5FeYmXmkU159XXD3jltVuMZ2UYKRYeoTVLJLVxvHX7kMS3PHj9Xb5TJOztbHLj5iNcubpNP9eIWBvHXKa7aeGzBVM+nPO8+s5d3njvlMViiQihKwbJVYM3pLcRFQ/Nii5TCu/9kUcuMRgOSZIMiUSrJIwGa0WeppTLJdWiRCjFpg/PzbcGJzxpUYAILlPiQinQYTpxLhMngq1XE4VM0iyNeEgQvhVxuKxugqOybU0I5hGb8C48w2UZLNfLZUmSB+3KNE2pXYv0Fp1ltGWB9YvQFRB06R+dI3aHJ8VIdQ4cdu+dC7cbv/r997o+FEHAA8bZWJ+FyOcApcI8gejSXOdolaCSEiUlmBaRS7TUpEkAYvCeTGl6SUrjLQKJF55+Jmm84OGDfU7nC84mM2SiqVvHdNkyW9ScTZcs6hpvJW/sz3jiiuBSP+EzP/QZrE4Z9A6ZJhlKVMFrD09rDIlWwV8u76GqFosniX6ECMF578RHHKPjAnRfP194F8uB7vsubqOONSiEYDGds+9qxuM5eaKQes4z1zZ46toG8/kM05oAihUZa+tD8iJDywS6tpII5hdhLzmEjR0JHNPFjH/6q9+krmqWpzMK6RnkGb1ej4P5FNfYgJXMa1Tika5l0NS4g4rv3L/Hq/0hL378eR65tkuWq9WJ1C3JMAoRcI+6annt3ROUTsHPkUR0u5t8kecpvwz91fO7JM6X96VLe/SKIkzuOY9Mg9quE5Lh2jp6uWQ6npFrHZyXfIO1Bp2Gjex9CMqJTlZ8ivAMRMxQw2YulyXeepTUFEUvtKFFcCJWWqOThGVZkud5AJ2djS1IgUqIFmoepQXL5YLNQZAC986iEhWMXHWCzvq4tgbRxPVxERvqolMXYQJj1Lkul+uOEVZrUIoPDgMfjiDgobXuQjSTq8XpVq5WYXoQH1puXc+9NhXLWUu2rNgZ9UkzhZRh9JRoHzWdOyaziqO54Z1bd5guShrjsQS1obq1ceHFU8aF0+jhyTE7epPxdIpRoeOwNhoijmYIEe2grUNKaNqGsm2ZTGcRxDkf45RKRsQYkiQN+EYS+OvGGYj93fNA4FdATsSDsN6dy3B7z1e+cwelJd5LBOF7g+KAJFXBJShRwYqLGVqdorRCSEGiNFmiSJQgVZHEJGUYrMoCX//1dw64de8IIQWp96zlKR+5votPMx5865StRLEQHuNKyqXBIjBOsK4UmbD4xYRvfuVlvHuRJ5+5gZeghVoNHSGDqYnE8eBgyYOTOVXdBLYkgSq8Ort82GR+dT9cfM9RfzzeqM31DYp+6AJYG8hfEGzczuZzlos5w7URWZZH41AbcZawobw916/swEHvQbhI1FKrjhtPPvEY09kUleUY05LobFUKJFojCa7DCIG1QdWoqU3EAFp0oqmrmjTNwkRsVSGUQnuBl45WSXySYdqEhDaAf767HTEYdGzJ2Nly3ULx54Ggyxg6bOeDrg9FEIBAp+3eulIqes6FSOdscA3Os5QsTcmUpNCCREDZeL725n2UN/zgxx4jyxTzZcXxdMnptGJRBpHRJE1DnSYEZdXQmgCqSOHp+PndewmEEUEmBDPv+H//2m8zyDOeuLqDyjQyCf3ZLo2XMpx2jbXMZosQ1Ezb6TnQJf3WWqqqZmNrC2fnUZiyi/BcCAQh8ofn6VdfD7VpOK8Pp9X7I74QMCnjz4o0W0T8fOdsRBkXDSoJ1tc+lgXegXD0dQJxnDgo9whmbcs37h7QGkeRZyzrmrKxaKUCFx+YOMlkFmzclVJICw+/9ibvjB0iSVksSyazCU21DD1sKRnkBSdnYzbXN2mrCWcTgzEaYS1O2lgYhEUspcDaWA+L756vAC8FbdmgVXg+TgRdfuFc4Db0+/QHa7i2DViAjwIyLpB5XGT3rZIzF9uxq3QtjPdub20w3zniicf3WFY1iVIYb0mlCg5aiSSVimVVo5IEgaRtKpq6BiVprQ1W5a2lWO9h6gaZJMEnAYHVIYvUSlH7FEeJwK1mBfx5eAzP3p9POHZTj6uAIcL2F45z8ZXvcX1IggCrqN5txm4II1ESoQNwmKeaTCsSJanqmrn1lG0gkzgBX/nO7eBiG3ngneW5VipsQuepmiacqkAA6sLfI1c67WGTGTwvPfcUzzz5GP/wl36NRblgvAhCHqeLhthoxDrBbL5ACsnBwdGqXTRfxk3qLTiBtSIqI0FdLVlbW+Po6GiV/XSYgb+w6FZYCd1alHEzn2cIETc8DwSsMkC6albKCKD5ALYpqVAyBBQbJxhdRFISPM632FiINwjGRoK1YfTWOpJigEwdk+US34apxV6voKpKnA+pp9Ke9SLnuPS0k5L9/QdMxhOapmY1/irCx7y0B5//zIsMEsliWTFb1tx/eMjxeM7pbBlO4HgiuxiwmqYMJ2nsmEipcepcCtwrg0sUddIgK0l5WgUXJQ+JDmVR17bt2sVKhEC9ohaLOIEpRSijrOXw1htM3/4OdW9IsjZCPHIT61uc1KhEB3KQ1tjlMnoy+tiadDSzOeWyZDafMxoOmE4mrG9sYhtH5Tx5XgSjVxMcrmtdUDdTioh3deszQgznXTUuZLGr9SPOD4/fDxDgQxQEVoSZeDnvEE4E2yoRot2yrpmXFa0L/IHWitXUm/eOZRt690pKVBLYXyoq7jSujae/X/XkgVhtX0izhMAjUd7xzv0HLJuaSVXSSxKStFO2iYhtVCUW3qOVZjadESH3FbvPC963kb13SCDPs/Ovxc8csIJu8KcLCkCc6+/+WXEKVsW2P48E3T30gRattVzxHQKHQOCsDfMMSpAmmsZYfGd7piVtq/FRk8FGVuNa0SPPM/ZnC7YvX+OZnW3efPttHjx8GNq6WsYp0G7gBgb9nBeff4o777zH0WFIi6SWq1M4KOVLDg5OefWN9/jcJ59FCM98sSDPMqRYREwstNuCGpQjK3osjT03hgXu3H3I9tYu0+mE1mQMRyOwCp0p3KJmNpmzvrWL0DoSdiCNIrKhSxM6QoJwcDiiSIf3IetznrZacvjGK+w88SL9tSG3v/GV1TO01oLUceQ4rOfGhRLXuiAx56wF67j17q3AXXBBSUjrlPWNjQAyIgK2oDUqzWkqTaY6CZUVe2QVSL3vekpcBAGianL4/vszmt97fWiCQLhWZ1o4oQRM53UAWLrNG195kSwpZJgvlzIAi9aBbxt6WTgpzhZlPJWjkCc+3tTzdlN36gbJ9sDXfng6ZjydkaWaLFUs53MUHtmRQxAIqVgfrbF/PKH0gSCC84zPglZex0XvNrAxlsVyycaWDwM/Ld+FSHddgfNPeo6HnX8NOK8Du/dPJLPGbEFrFabNhKCN5YWI3zeRzaZ8KBcSLbGtp5cEPfw0ZlHOe+racGAX+FmF85Y7791FqwCGrQ2HSKVYljVpFgKbFIFVOJ1Nee/OA1766OMcHZ8xXyxInYvz+pBnGonk4PSUt+/cwwk4OR4zmc4DniEj4CZENNcITlT2gmZCl0n98q/+M65cu8azTz2GwuPaUOaVVcl4OgUVwOTJfEaiFWsba6F7YQJRTGmNaZtQKsiAvLfR+AYfBF+m+3eRMmd4+QZFAq5cMj4+ZGP3MjbKrIW5sLCRfVkF4ZomGIa2VR1ERI+OuXPrNsPnn0UnCRsbG4TwGfQxhNSoJEGnLaXIcDQrUFjG9H8FskLMolnNnnRrIFxdAfnB14ckCARwqmOnyXgiGhOcVeDiadq1E+PEYIegy84liMjVD8aZzpioS6Bx3lGkCVmaMCgy8jwjSTLSVEfTCouxLcbB8dkY0zQk3pNLQVnWCGMoJGQRvRYxC5guFoEAFN+XB+49OKIoitX7XaXnPmjlHx0eryy3u8/Q4QIXH+I5ThCCl7sQHM6Lw3OAjLgeZGS3WSdpbUtUp0LnGiEkZdPEkikEqV6eUWQJz17eJkkUv/adt2i8hah76F0cFPKeqlzwyrdfZdDv8cd/6PuREurW8vo7tzkZzwPxRoRpxKKXY1rJ93/yY3z2+z9OrjVKOt69dYvtzTVu37rHw+Mx81mQ8tY6QSlJ0R+wWC5YLqqgzZhFFiDBAk3E061TFjo8OODnfvbn+RN//Ee5evkKaZZiGkNZLVksK/K8h/CeslwiizzgTlojbUDwU52SiZTGGtomMPisF6TRH6Ipl8zuvsv20y+QD/rYpiIbjjh6/VW2r14DB3W9DBs4zaJegcPTBt2CtqFuavq9jI9+5DFmToNIaIxjsSwpioJUJ8FWPEZ9oQROJjQGenGnRhOo1ZrpmJ1dB6rLCDppOYHoJos/8PpwBAHvg5SUjbW5EBE0Oz8dAUQUmOzqHTgHSjpyTbeRjA3KtAC9NGV90CfPJJe2NlhbG9EfDsjynKLoUeQFVTWnqiuW85L79x8w7GWYTFMtSoj+70m0evI+zJWHGjVM9yVaraidQogIFoo4NxCGkALYFzZzXdeRM9DZS4lVxtad6MQJwG6hdwHj/Nxf/VEu/jIAQhYhFKZp0VqR5Xp1T72PZUIUwGito64r+psbZOtbqPkJN/Y2uHs8Cf281kbpM78iPQkhaNqWxho+++JHOJ5M+fUvv8y8rJHKk6gE62A2n/G1bx1zbWeXT33fx+j1B5wc7vNP3rjNcH2d/QcP4ikfOxpKU1UVZVnR7/WD76CQdCWRlBIlNZaWzmoOIMtS9u/f5+svf5P5EwuKLCXP88DJ14r1jXXquiFJE4QOHQClFCrPqNqGzOcURYG2jqaqaBuDi14E3rfMb98iy4cML18hSTSlU2Rr25y98yaL2ZTBcIRxQUTEG0mqE5RQNFEw1DQNWZ6xtblBu7iCK0sW00ANLm7cRCu9KvNCaayQUiPTlLbMQNRxDcS1sioBxLn8WTiDzjUXiJmJ+O8BT6AD5gKgFTaDkhrrTDzRwst8XIDf/YlWH9idSyt3yHrXkzemJR0O8FhMU9KWAt82mKpkLgXWB7WfumkZra9BlnByNmd2uiRJINWCpnEkqKgRIMOEofWBEqrCCSulCvPrF1J851x8eJ0MmqBt2wu93/OD/OLn4cLD7D7ThcQh3opzMBC6FDk8fOdDa8jGLKdbDFKK0I6K7TecRWrNdDLly995jSu5IisychX0DhTBW8C5+Cziz7HG8sa7d/mjf+RzfOedByzLGqW6ABjco2dnMxbLOb6uuHJlC2sdk/mchydTrEo5nc2Dum/M4uo6LHalFHmes1jMVwKsQQ9ArTbKd+NIXgSs5dGb15DWsyxLnBAYY7h/9x5aadY3RsHUtmnwaUaSpeRaYdqGedOEHn2iQQqsaajqhubshOO775Bs7JJlOThI04zh7hXufeN32H/3TR7/2PeRpQXWLmjrGpUX6FRzdjJhOptjjeXy1SsURcb23hWyyZii38N4z8P7d7H+MsP+AC3Vqt8vBGgZ1pVfIcERB4klo4tcgdXeQETyUlgw3XoRv08Y+HAEAViBc+ENy3OHVd/lMitMeYV/vb+3HlJ0d+FmhY8e/lc3BucFKsmQaR447GkaCWeeRCTh7xQ1hhZfShpjqIxlYj2buaJ0UPkgYokP/XiLozEtKkli/zq2suiGT85ZgefXd3UCVqCfuHAzVh/y/L+cZzx09+vCH1m1CuLlnEcnycqyWmsZZcNCy7AVQfJMa4WTYUT2YduibUq6rALpJuYlIr4HH1PMbmEdHp2wXFbcvf8Q6w2JDDiMEI7dnU0OT46RWCbCsn88Zb2fUjaGtm3Yf/gQ09qgvqO6zxWe32w2oyxLzjsk3YCTp2nac1u6VbYYUP/r1x9hY32AqQ15kTJdLACHaSxVY3DDPtZ5ysUCZ23QHNAapTRJmqC0pI78f6FTFscPufWVL0Ndcv3pl7DIQOLRKYPtXaRQHN9+h92bz9DvD0iTlKZa0Mg2CIz4wOxc31hHaUFrDGmakhc9dJ6T4WkTRVWHsidP8zDPgg8GtkLiaN8nJ3aeA8dDLqaHglCe+pgRdIfBhQXyPa8PTRBYTdBFkMN3Agnhu6vFHzaPe98JcHHlv6/FGCGUxoVFUNcNbdPQJBLjUrSLTkDe47EhY7CG1rS0jaGqg0DH2HuapaOXqIAz2ACmwXn3VomLHPluS4bgJeVFanBgP3bILYB3gvfFrlXmE0+E933C8+v9LMMLReGFboQQsLk+IlGSsqyomxZPUCPSKoxwG+ep2zbW2IqDsmUnT8K0pmlgNe58PqkYPovFGMs779xiPJuthr+EEPSLgpuP3uRg/4Czs1OEkBydnLI+uoJKiuAabAOhRsTiRmuNiSWcixLsspurFx224uPXxfvWQYfQf+3r3+Lxx2+wvb6GNTaYlzqH3Frj7q27TOZTNvpDjLcIazh4cEbdtEynM8aTKZPpjNPTMbPplMYaFtM5i/Ex169e4U98tOS0vEW/12NrcxNUil/f5c3X3+LA/jIf/8ynGRQ9PIL5fB48BPMeo2GQK9cqpWlapE4YjdapmoqqbclSTb1cUC1LsiSlKHohM1mWLCZnZG6B6Kfx8a7aQOeAdszqfMSjOret9wHGH/ruQNivaCniDPZFJEO8b8N3jLmLC9/Huuf8h53/Xgiw0YbpbLZkNOqhs4TKtCAk2oSOgPeepjVUraGqGxZVxXyxCOCOgMoJXGPJtQph9sK02aDfx7i48WWXtVxEacOmd87GDWRDX/vCzr84GPO+awX+/d7b1j3crk787j/Xy3MuX7nE+tqIy3uhfXbv3n0eHJ5grcUYgbVtmCXosAbhKR08LFs2UsVAp4i2RUtwecqiMcFzQAZFXU9g+3dOOCJ+FqkUbdNy9coV5tMpzsNiuUAnOUJWUXsvWLpdzIwukraSRF/IfMI9TZKUokhW/fzzMiiwJ1/7zmv8/STlz/1r/wrDokCnCW0bJugWywVf+uVf52yxoFfkTM4mjKdTmqYJakqyew7nfAwpFc5bDl9/m5f/N/97ZCIZ9odcunSJpqk5fHjIfLnE/85b/Ow//EW2tzd55OpVhqMhl69c4crlPdZGfRKtaOslKmIFRhp6umB+uOBsMiHLU3SSYU3NdDxhMp7hlWby4F2ee3wz8E1WT12cE5xW9yfqIa4OU1g5E//3ojsQH7xUEuHBmvOpKThvca4WiBfvP3EvptLhBXBhg3R1+GxRcjKeo3Wos9rUBRKN9EihsNazqCpmiyWT8RxrHFqFyS+EoI6pqBDBsw4l8cJQLiuQyYWN7PHernq1KqrIdJ9BAEqGKThrzwPB+7gKqyzgAuljVRKc//73BI14JUpzaW+Xm9euB6TeQ5b3ePqppxjPvsnR8WmkyAamoBQK6QXKe5yXWA+nteNMWhLpyIkTfnGEd+VsEwlY4n0Kt1DGIJqmmsFoxOnxEcVoQF70SKoWrTR4t+rohDS/ed99SBINSJqmiZJiARh0cbjs4mtDxiXQScZrr73OV37nq/zxH/0jHB0eBf6C0GA8j9+8xn/5q1+ialoQbhW0tO7ku7u15QhCqQ5pg4qVBLCC+WzBm5O3YgpukdqDkJSLBXcWC967ExT2ev0+w+GIra11Hr1xlb3tHV546UWGWcLDgyP6gwH9Xo+jkxNOTsbMpjNs61BFwsZonduvfZsXHt0hS9RqP6xUirpNL96fEYnYYfOxAg0lwgXluu9xfTiCAOHUdC70f1lFtC5RjBXQxfrmfTlyV7kC2NXpEfT7zoOJlIrxdEmmNZlSJEKh8yw8/Ph3dqq/RZIwvLQXJxMtrj2f2Z6WyyAQGVuUYVECvptr4ELZEt5nl5pfBAu7icGLbMH3C4y+n9gEF8omOE/7uZAwxNdqremNhjQ+iJJubG6hgPnkhCefuMHR0UnMTARE34ZWiiDBJixeqJghSJzVNEpgsXE0OjyEDnRt21BDr05zwsJrmoaqrqnqCqFSyrKlburIhe9m8753qXMeyN0qWHV/XwjsgYjT0WEFoRB2XiCc5x/8/D/mN3/jt8M6kIr5fMYf/sHP8rGXPsZotMav/eZvcX//IKwrF5Jo7wLmwYUDxtlANZcizirIaOwSle+8l6vC28sgY9atpUWcWTjYf8i9+w/4Q5/+JLMv/w7f/wOfZG1tyHy2ZDFfkOmEbJTT7/VBShbjCfffeZ0nr424ursWTSfOtSRWx4OPCyveQEeXyQR1IefOe0gfdFjAhyYIRJRaSJw7bw1eEHm68KvV2o8bP970WKiGlDa8Fh/qzCTVZIlmkOfINEEnkqzIGQ765HkWzDO8ZxlnCpRQpHmGUDqARzJBSI0RLRpYNi112yK8iPp0wfije3NCSqQLfG/rPF517z9y4UUM0XTg5+/dBl1343shOr57gSfOkIc79L6ySUn6ec50MsPmGTcfG9GWc3pFweZoyGDQZzZf0A3RrA6/VeiNHgYd4yz200Uc8Onwjo52m2UKEfl73bxj07Y0TctyWYWvWUcTU/NOT3HFivwuHGT1s10XTANxKFi8r2a5V4s8zkWvgDLjLJPpnH6/z+HpYVTiETTG8uJLH+XJJ5/gt7/yu/z2V7/O2XS6OlS6sCRiuSK6IOz8SmNg9Ry6zd9lbU5cCOThtU4ItjY3+P4f+Cy6rfj1X/xlstGIL3z2JbJsSNabs+Y8wnrOpmOOj455cPttnnlyl0d217hAGA7/juxGb+MdvHBggo8twe5+nqPGnt+7xrrrQxIExIod1i2wVZ3vO3AtBoWwa/AiDBVlaQ4IjLOBRKICz10IyfpwQH/QWwlNJkKitEZqxem8ZFG3ZIlepdy1sUGHP83xBH16jEXmGaK10YwUdKoQjcL7MPluvSfIS4YWZZKktE1DR/aUQnFuIkJkHAucE+e1Due4wMWNcPF6X7AQFyP875WPquuGo4Mj1tY3cAjefPMtFrMx/Vyzf3gUT9C42FdZShdb5PtO6i6zif3BVQodTmqLc5a8yOJ78Kv/VmWJHfRjyQHGGZyXKNWBXF0o6f6u8w9xTpnuygVWQfb95eF3gSa++wMglMTEQ8Uat5LpquuGjd0d/tSf/pf51Gc/xS/90q/w8rdepW6ac04GfsXT79yIzoHp36/CDu9dRobio48/zg98//eTJJK7b7+JsBVf+sVfZmdni2dvPoIULjAVrUVJj6+nfN/HrrExLKKT0PsfbJKk0bw2ELlspCYH0ZPwd3fZmiDoQwpxbtLyva4PSRDwF57deTr8vhRGCKQPi73Iw1zAuk4Y9FQ4nSVUreNkvmTZBN3BIlMUWmAIo8qtacAopE3RukdTtjRlS9tGRyAb+PJCyuBU6wVFkuIRlFWFtQ7jg2jJeq/H5nqCUoqi30drxbRckiUFvV5KU1esjdZJE8Xm2hqHRwdoregVPVoS3rv7ACncigv+PQ58vtdau4gFaK2+Z8AIIGfLm7du8fhNz8gMuXP7FidHp2gl8VKyrJswjouPwhjdaO2FDdc9m+50uQDWnpcDjqZu6PX7gR9AAG6VlCyXS+7ffxDfc/j51nS0YYHxFzax4Hw4xrtzcOvCZ7rYUu3WxMX74rxDx2gWqL9hXFtKRZqkZP1eOAR80AXIN3KeeOwJXvi3X+Dlr7/ML/7yF3n3vfc4G08Cz/9iprF6Tufl6Yq81QXu+L3RcMjlK5d57rnn+NgLz3N2esrZbEazXCATxWeeucyv/f2/z92PfZQnHruBamucsRwcHaHlklF/c3UI+gvZJQSdRC8VSEsbdRg9fuVehSB0nS48RN9trg+4PhxBwAtCwBZxIcbV0OU2wiGFRgBrWcrWsMAZw02huJwo+mnOw0TxYFmjpOZ0WWJaQ4IgF57RWsFiXlGXhr2tEYNhD4/DesGsbHi4KEMXwbrYMgz89MaEdqH3PkpEhRCVSMFnv+9RRn1Nr99H6ARvPXu7l1gfrAfUX0lGm9sslyXK1dy8doW2cQzXBuxcu8E/+if/Je+8cysKR4ZF35FiLgKEAdOI6G83604g/IxGA7oCNeghhA3UMfuU8KwPCmazMYUwPP/YHsPBgKNpya0HxwjhgkpylnN//4i6bfBeIGW41x1WEgb4LqalIXuQF+rxIi8QUTBDChl1+847Ht37tt6yYkRGj4gAubkLpVHIUASsVKHP6eIBvfd0Y8VxCcWf7/ChG2TDsFGnEqzThFQnq/FnZx3T8QQ3dKR5zic/9X089sSj3H+wzzde/ha/+eXf4uD4mM4E9by1KwlkKd8lqeEeGUeWZnzyEy/x6U99H8PhgFGv4PjBAXVVoVwIKtev7fLss5e4tjPk7dtv8Y9/9yu0ViG058Wnb/D801eDv0Rc/kqe40thTUAiEywKZw0WHwIW8gKn49xBqYsHv1/u8uEIAviouhvjbhT4CDZKoRWlkHjleWZrjV6iMHXFdmmYVY7DhaGUgq3dEXuPbGCkZDqvcI2hyBJGoz5yewOtFWkiqRqDTHogQc9L7h5NwqKJYJZOU9plhXVh3j9MnTrCWwn4gfQSKRS9PEFqjXeS69d2EFajcOT9PlaCqwStGzKvGrSyLMqGq0rz5NU1ttJHqI3FOolpwgN9570DlmUZugaClXXYeZbkV5BC2xq8izPxPrrfxA3T6+W89PRN8izj5YMDRqMBsj9kUrZMFiVJqsjSgkSBTgXraz2ybIv5fI51nq2tLU7OTqiqJgKsXXXqVie1taHLUVYtWT9B4GKL16K8Wp3G4b13aLuNi1UgVCAjWePjJnPvB38lYC90QmQcr8ajpT7HRgCcwAtH29a0jcE4T5Ma8jzIho36o4CsR5cqIUKpcDYd0xpDnufoJOXG9evcuH6dH/3RH+bNt97iO995nffu3uNsPA4MRB9ozFJKtNLkac7W9haP3rzGxz/yLEmeYBDMJnOmp2ecHB9RtwaVSJIs4enL18lUSu9Sxs7lLT5ZW06PJ8zHMx5/8SZiNZx23l5WF8lmQoSSWYKSCdEEiuDjHX7dyY2HnRVLo++VasbrwxEEBKQqjPB2kVUGECDgK96vBD0XeDaubJMYx53pgqOTCWkCl/a2ydZG4Cze1IwySHojZCZJ0xRjLU6lHC1q7h+csH/wNtYZvBU0bdeaCkh0Ly7GLjVtbejvK5mExSM8t++d8eJzexjnMHODlDlWeJQK2gZQUy0MZSNZLmsGPcXO5iZWCm6/e5t2sWBnVNAf9Sl6I5aLhnndcDJesizLc9onF2bFCVsgSF2FQZ6gDyDIkoQiT7sXIZXgjTt3aeuW5bKhqhqOjsa01mCNw+Fo6xp8JzQCVdWskPiT4xOkhH6eolQYkZ3O5zTtOSFFxlmIpi3p9Xp4wpSfdKDj4BFeRKnwcPKXsyXJ2mi1ebVOaBoT02pYUZk7tMCfr4eOJhxwujgqGxd3yNjsKmsz1q1MS6yz9AcFaRJcgq1zJFIEARIVsquyLDGzIDSjtKSX51y/cZ3HHn8CJQSz6YSz0zHOe5I0RaUJWivWBgMGozWKLMWUJZP5jNqF+RLrPVmWMZ2MWSwXXN7b4unLyTl47RxJpukNM9I8RVt7nl34jg0q4v/PQUghfSgVVjwAolpyVKDqsBkvIlXAvZ+M9l3Xf+tB4Iknnvjfrq+vX//9XnPjxk2S6DvI+3CBC6BUfNiLRHN/XJMmGpv1KLYTvHWcNILxyYKsSFA6A6ExtWV6uqA1sw62Cy0fD6P1zQiqsKrlRDxiVwKOnKfkKyJPzD+NTri136CODVLlWN/QNKc415ImaRA6ReFM0LQ/GysOjo8w3jGfTnBtjVKSXqlJshnGhk2ms4LdvUvAeR183lr0q1Ooyw6c9yvF3e4uzWcz5tMp0gsSGToo3obTV+UZw6JgtpgDLnYGPIrQZxfCk+nQDrM2IOq2rlFa0YuiIvZ9tTrUTRsWZleb+nDPgk1EmFtweKw1lIslWxubdPMHWgW0O/wsETth52XPOXNQBG5GfCaiixpxXdRNHbkX4S5478PkozFIATtbm6RZGjaJ96QqIc2y4BFAGCVGRE6C1iiCVJjHI3VCf7ROb7gehFUIgSZRivlyyXg6YSYkpmk5Oz3FxDZh07aYNmSWIyU5OzjDu4y2WSKlRqcJHosWwdLs5MEJvdGAfFjg6CZkO6g/fE5nLFIGHorkXGdASomLwGfXPoXzToX9F7Em/xe91tfXr3/1q1+9/fu95t//9/+9CyKSF9OWi+cfgEBLxWNXL7G2UYT0DqjKhrptQw2qZUieIufg4emEs/E8tnp4Xx0XJtLUqmf/frJOVCbSGtO2aKVivzicUrsbfTaGPZJMI5MejYXFbI5WkKYpXZtMqsAUNNZT5H1q01Iv52BbsjRlMBpirOB4POPO3Xu46DAsLrxHEXEK5xxpml5Inb8XUu3523/7/8ViMcPjaR1xyCSk7rK1WAxla1ZpvY+B5DyFDG9cyaC2I0QQ4kmUYr2XIYVBKoVDYa3l/q13aZuWREuk8AgfbNCsDUIlzgbfCOcMjWn59ivfBt+Zc0CqwgntZDiJw+ElSKRitLlBa9pg8R6zokAcCq9rm0AzzrOcjrcBBmMNzoUTvt/vcWlnB28sLYZeP8zrqyT680kR/ACVJisysizHNy2q1MwWCw4Pj6ibCq0TEq2DK7O1CB9YiMa22LalNo7BcIStLa5tkVJgnOFsPEHHZ3W8f0hepNRVyfbuHtbbQN8uNNlazoM7D9iwWxSjXpjc9Ba8XGEytmkxVSA6mbalbS1Jloan5mzURPSrjkxHTS+K/gfuvw9HORAD3apVBauAcD4y3MVEz/F0yqxaxowxAFdSSlpjaE1Qb3E4rAmpfAiC4TSXIqD/MiLUCBEHXlj5zXWIeKcZH+rfSFaR5205nRUkeY6QKYaW5WLJxtoA72RYVCLUxx3QM56MCUVPIKBkWYpUmraqmYyDCImMU3hdS+6i0hB4qqo+B+S+BwGkCwnBhCSkzVKGz4gMSkJFv8DWJbabPupaYau/JyweZ6Fu23iytUFSuxPaIIhvpFIzXOuztbPL7fsPqeoGJcOY8orIo+TKdWn/4IBmWZIoGSXfDGmqUERKOEG+Gw+PPX6dFz/yXBj9dQ6cRBLmOR4eHKMSTb1o4Zd/hU+89AJ3bt/h+HS6mtUw1pCg2d7aZrS2jkpSsizU/iKe/N0dM210i7aCb7/ybW7fusPB0SGz+ZyqajBtuzIgaZqG1hiMsTR1HbAZ78l6BT/5r/0kT924zmI6xQlI8owsyTk7PuRkPme+f0Cv16eXJszKh6SJAtuisozEe5wxLMZjdBpISFleAA3eh2BXzmfcunvGwaRE0CC1pFek+LYm1ZpeEWT4lXCkSYJWodyz1eIDt9+HIwh0BBtxrhTTLebuJJSwkh6fTpfh5I7gshA61IMiUjs9KARJllLkGSlQlctuNiug/9ZzzsbmQrsnfG2FSnfAijgHWfCCeVlyNbuKSlKcFyCCCw1Skvd7eOGolgtSpaPVmSVNNEHGqgUkwR3TkibqvNvlL3RzukyQ8+xkFawulkxdqXLhOu8KCYTQId31gYdB1BVEBKntCDeG7MLFQCAcWZpQ9IcoqamqmrppgjpyBJqEcyA8iVJsb22SKk3pBd3IrxQy6ABqjZSKIk24cf0RFtMp+6djqjYMbFkb6MghYQklz+bmJp/5zGd54ua1sNHqBmdqGmt4eO8Bl/b2ODw8Ie0Fye6nn7zOczc3+Me/8lVOJvN4EwID8OruNmu9PoPhYKUvaJoGrA2iqFIG2jCCs7MJP/PTP8+Dg/0V9rBydXLnithKa6SQGNOGuy0kzWzOr/7ar/H4v/4/orc+CrZiJkwCVlWfIsvIfI5QDmMrzAIq54OhqS8DOA2o8ZyHxxOMacAJ0l5Kx8p+5dV3uXUw4+EyqBiL6LtgTAAstdakSiKlI0kUeIsSwdn7g67/zoPAT/zET3xhPB7zhc9/jl/+5V/h0Udv8uSTT67q9IsbwXnBq2+8ztHhAX/485/H49FJymBtHdM2LKZTcmvJPPR3tultb1M3NdPZHOc8TV3GExbA8/LLL/PEE0+wNhqdlwLhW7EcC8DK//M//o/5sR/7Y1y5ciXUvEJiHfzir/4ab7z1Nv/2X/m38M6xtrFNnqWoRHNydEiCRw4SrBckmSIFnDUcTMb8hb/8v+DP/as/zp/9yZ8INl/xhPmbf/OnGI1G/Nk/+2cBz8/+7M9xcHDAs888ww//yA+D93zx13+dvb1dnn32udXN+W5qcTdkdXHKTsqgppMlOpzq3q9ai0oIhArpsRChFMoSjZKS1oQApqSg9KEFhz9nZzoZe/RSIZ1HE4QuukEcrYJXZJYmCAeJVAgX+ZPOnXvpxWctBXzf932cjz3/Ak2zxLUNBpgvKr7y9Vdo2zb68UmECvoDGMPDwwXeejKtqZRGakmWJezsbIbSL+m8owLOIuP7Wr1PCd/++u/ycP8BxoAj6EkG0C20PbvuCx4usDxCgPXw5quv8+6dOzz9xGNYRzRZIZLhFF/+5j1UlrC1PqCXSdaKlEKBlC29NIkHUnhPiUw5un3EcG8NE3GTt+7sM5m3+NbTCheFVgVCRim4BmqpgAimquAw3U2Afq/rv/MgsLq850d+5IeRSq3S/g787DYkwvHss0/z3LNPB3txoUAI6rqiaVqGCNYGQ3r9HllWcDQeU87n1Hjapg4P0J2f9i+//DK7u7uMRiMgIrD+/Ej2rmvNsbJFx4cFP+gPVtr2HbutbWEwSJmMz7BNjU7T4EajwsCREICDv/Wf/D0++sJHzn9mTJu//OXfYmdnh7qu8d6xv7+P1pq/9Jf+En/37/5dFsslpmm5e/cun/vc51Yiq+dJwHfLkoWvOmfilJykrDg/vfCkiUYH4AKhoiSWD3LitjUYH0QyvQg1epalsZ3q8CaeRCKYxyitUUKihSRLEpRWaCnJpSDVilQp0jRhuYhj2D4aoChJR/lFwKDf49Of+lT0D0ywc09tHF6lXNm7zGQyRkjFvKw5jaf+9cee5PRsxng2R0hJrxccqdcHBaO1dXSWooQKXQUZO+rO42QIeEJKFuNTvvKVrwa+RJc3eo+PvXpBAGUD/+FcxKbjZ0AQWtk/OOCZpx5nhW+5kObrJCNd22C8qDg9XGJNi/aGtVyy29MM0ywoH0uJTjVSQNUYmCwhC6lA07Y44ckSj0LhsGidBvApbhProtOVaTFthb0gWf69rn8eQ9K/DfwJ4NB7/3z82r8H/E+Bo/iy/6X3/p/E7/014N8ALPBXPvGJT/yen/mTP/mTP/hLv/RLHxsOh4vt7e3J+vo6AD/zsz/LM888w4svvsB/+B/+H/nExz/Oa6+/jrOWP/dnf5LtnR1+96svc+/ePf7lP/Un+emf/mmyPOPevfvM5jN+/Mf+JT75yU9QS8V/8rd+ijffeIO19TWkVHziE5/g+ec/AoT07jvfeZX79x/wMz/zM2id8Bf/4l/gS1/6Eq+//gZt23L9+jX+5J/8k6sH+Y1vfINf+IVfwDnHj//4j/Ox557j7XhyWWOYjMf8jf/b/52TkxOMafmJP/OnePapJ+n3+git4tCM48u//bvs7mwHoDEi2F5qxuMxb775Jp///Of58pe/HFO7hNaY0Ht3Ia381S9+kR/6oR/qns53P61AFHJ+pdF/ASVACEnbhjaotQEYTJIgquG9x9XNOXMwgpKhJArKyq3sDMJ8AKukBG94uH/MF7/4Zaq6ojYNlW3RbY2IRp+JDmPTRZFjpODg4IDa1KhEIRON6gw+hEAoxQ9+4fNc2d0Jm6wxNLXlwd0HnE7nPPPkY7hqh1p73nz3PjIN4qZrm2vMJmdxiAYyJdnoJVxaHzEYrAXTkdaQFzl1U69AVU/wahRCcOu993jz1p0I6rrVgbByBMbinQ133Z3f+4vlm/Dw3oOHoBK8b7CNpUt2dJaye+kK/bJhPJ+EAavFgvGyiZ6MLRKPRqFrS9U0JFoglQt6j0BjFcNeSp5r0qzH2/ePaQ1I5dFpSn9QsLu5y+bWNm3bYGwDKJbzBW+8e/977vF/nkzg7wB/A/h73/X1/7P3/j963xIU4jngfwB8BLgC/LL3/jcuvuZnfuZnLn/xi198/rXXXvupuq7lRz/60b/wiY9/PGYAYRCnG8zIi5y/9G/+Rb7yld/hi7/2z/jTf+ZPx94zK/LMbDrj3/yLf57jwyP+zn/6n/LMi8/zm1/8FY6ODvkr//N/i8V8wV//6/9XXnrppcisCqvkhec/wle+8hX+2I/9Ma5euYIHPv2pT/OFL3wB7z0/93M/x+uvv8EzzzwNQNu2/OW//Je5ffs2v/DzP8+/+mf+NB2Zz1nPT/3U3+Jf+TM/zgsfeYZXXn2V/8N/9Nf5d/9XfxWVNCgvUFgW8wU//XP/gP/d//qv8bO/8I8udCPg5/7+z/Ojf/SPBieeeO3s7NDv9fh//NRP8dGPfpTT01O891y+fHn158J1vgpX48xSxk77RcIOK3CrY+AZE4RBzmcBwk+ysaToNBAg1Mfen9fuXe20LEuWy2XksUgMgtqYCObKCPp6knLJ/vFxfKseYWE1PSCCRddjN2/wQ5/9fpZnYwYba0wWS9Y2N9haLhlXFfkgZ1rNWR9s8PgjnvFyCcCt117n1TfeRSWKYaLZXkvJIw6Rpyk6SVilyEKusjsZMzEJvPPubYw7dyU65yqcB9SAExB79x1D7xxgVVpx9733+P9y9+fBlmXZeR/228OZ7vjmnGuee240GiAbICBTpEhQJmkJJA05JBKUODiocMiUI6xQKCyGHHQoFGE5RMKSTYkSRFMmDYOkRIJCAAQHgCDQ6Lm7uruGrqrMqsr5TXc+w578xz7n3vuyqrpBQ5KLPh3Z+erlnc65Z6+91re+9X11XSOFoGxqohCKJdUZg8EQmRqaEBWGkkTTVBXTuiJRsKMVSkGRaURwWASrAMLFnT7rJQzyrA3kgdpCr5+yuztm//ASSsKDew+5eecupjVHUUohOwPN9zl+M67EvyKEeOJ7Pa49/gDw10MINXBTCPFG0zQHwM3uAb/wC7/w+Oc+97lXDw4ODMBnP/vZ15xzP9jJiUWSR4y8H3npJQSCq1ev8q1vf3v9ZQRoWXKBF154gRBg//CA+XyBtY6bb93kIx/5CATo9/o8+eST8c3Fe6P3ZkeAN996i1/91V/FGENZlhwdHfHiiy8C8PGPfwwh4Mknn6RumnaWoOXDO8vXX/4Gd+7dQQDG2lYay5MlsRQw1vDXfva/5cd+14+StOlnpxz8G7/xJQaDAVevXePmzVsXLuiP/diPrX/+q3/1r/L7f//v51d+5Ve4f/8+Tz/9NJ/5zGe4AJxA2wKlDaqRXRa2WGeb4Zz36hFcHGBi3aloaQptvbq1+7XPWdfHa8glrpQg/DqoO+vW39tGSmzTFpaZ5CMvvhC5DXlGUBKhIjPv2rWrmGXJ2YMzKmNRVcNo3CMQg+Zb79xiVtccjod8+skx9WLFojQkSRrHcKUgT/P1RiDbGRE6QBTBrXduR/JQS0zr6vNO7b8btoqafnFoR0keuRiwnE2Zzebsj0fRbEVtWpvVasFkuYx24XVFojW6SMhszShPKLSkahoqa7EO8lGCVJKyjmtiUBSkWpEVBfeOp6A0OslQSUpeFGgp2dnbR80X+IHf6DMqPvD4rWAC/6YQ4l8DvgT82yGEc+Aa8Pmtx9z23j/1fk/++Z//+e975ZVXvm82m416vV5Mudr0rLumsgU7pIpCEhHJjUMvHcVUSoGzbr0EbHfStLvMmt++WSrdol/vjEQK7s/93M/xp//0n2I83uEf/sN/0FpXx2Mt2kALiLXgmJQS0ab2/+lf/Atkacrx6QmLySk6iRwD4T1aSd66+TZf+PLX+G9+5r9jtSoRQjAajjg5n/Dyy9/k5Ze/ibWWuq752Z/9WX78x398fb1eeeUVrl69StM0nJ+f80f+yB/hr/yVv8LHP/Fx0jTKccdFut7/Y6tMbD5/J/yxrVkgtnrJ8ZrLdWDsjqjzELZjKBfZfa0VW9j8o2gjxaNBRinFemIwbMoLgSDRCVevXUNmKUmRI6yjl/epVxUqUbhyxem9E5LhgFmmKUTK0aV9AKaTGQTIU8X1gwHFQZ9qYTgXRUuxbTOS9ffnkVKh2nvFOsf5ZN5ilBHtj9eg03zo9hDRft72Xo0pQWsHFl+/qWqOj4+5tL8PImpOSp0QpGFVLVksFvH+FZLBoM/p3XOOckkuHdZ5amNoLKRZgkxUnHFpR7CLNIJ+VW14cDYnqBQRAqax1GVF7WMb2VoLArIiIwTBoDU+fb/jg3OE7378Z8DTwCeBe8D/+Tf7xN/ze37P27/2a7/2wg/8wA98/Sd+4id++tVXX62Btlcv0EqR6Bi2uovqW/Wdum5ommYL4QeEaNuEm/9+/InH+da3X8GHwHw+59atW3QDIJ0bcAiR1NM0LQ/Axovc6/Vp6oZvfevb7evFv15++WUAbt56m6IoKPJ83abTWvOJj3+Cn/mZnyUEyHt93nz7Nj4I8l6fNM/Isoz/y3/0H/BXf/r/xl/+v/8Ffv+/+Hv5l/7gv8jv/T2/i5/8Y/8r/vyf/w/4s3/2z/KH/vAf5sknn+TH/9AfWl8z5xyf//zn+aEf+qG1Bl83wedbI9eOXtx95G2AsFt0Yv1v8b/kmpwV1q/ZHR136wKB6kJA2RCZIv9iqxRpgbNHx2C715ciovJxlkO3fxKSLOXo6BCRxt0PrSl2RqSjPumgz3wyoV7MaBZztEz4pV/4Zf7L//r/DcDXv/UmZVXx9r0T/v5X36VqAra2hCxHqOj0axoTmYxqI42mtCI4C1JQVSWbUM/6PLqbYN0qDNGCrjN2EaLbGkSLETkeHp8QiK1E1zL5rLckSkd/C2PROuH87JRgDYJA4xzWR+FVpCDJo1tTU3u06EDoOBQ1mS8p6wbRek1656mtb5mBnsbUmKahWpU0VcVsNn3f9Qj/X2YCIYQHW1/sfw78XPufd4AbWw+9LqVcbT/3x3/8x+/9zb/5N7/5/PPP/6+Hw+Hy6aefvisEe51mHbSIOXEgRikVWzOPfCmifbgU8oLtsgReeulF3nzzTf7CX/iLjEYjrly5TJpl2wkzAJ/61Kf4O3/n75AkCX/iT/wbfN/3fR8/9VM/xWAw4Nq1a22w6BZ6wk/91P8V7z0/+Uf/tU0gatlZf/wn/zj/1U//l/zrf+pP4ZzjxZde4oUXn0fJiIhLEVlpvpMma7UIy6pmkGYbBaT2r+0E/wtf+AKf/OQnybKMy5cvY4zhL/7Fv8hzzz1HURQXUvj3pveRlivlRhR167tb4wOwkUbfZAxd96Hb/cTF91iXBWErC+n+afOYi5+nY2p2AWRjqLK7M+bw8JCmacjTFKEVWmmSJEUrwV5vAIOG6apESsnxwxNOZzMgouhKaWrjuHu2pOj18Foxk5EHkChFcHFX96FL7dt2b3DkScqqqtosps2GBBdT/fU12Qqyaw2M7l6JWMlkNsMLQZIkLOZzFBCMoR9KDmVJLR2hit4TMo3Uaku0s0gSgRdxtiFIWDpH0s6F2OCRQXE+jZOvoRt51opev0c5X1BWDY2xbVYH4Kjqig86xPcSSGhP+Ang57a6A1dCCPfan/+3wA+EEP6XQoiPAP9P4LNEYPDvf/rTn/7HX/7yl29+wEsD8Jf+3J/79//k9/wU/3THomkYpCmnqxWf/S/+C/7JH//jXP4uKdH/Px1/7qd/mj/39tv/v/4YH3i8LQQf6w9i8G7NUkMI/K5/4XfxL//BP0BZlmRZGgdghKRuShItee2Xfx0tJcen5xSPX+Ov/8zfYLZccjaZsLez02aNjlGe8G/8ro/ig+NYXOHGSx9nb2c34k02DknlWQaIOAouJZPjU/69/+Ofp24a1rJvQBf8uhISaDGXltjWYgSETRAQQvKpH/gB/tV/5SdYnJ0zm05oyhWnx/dIVncZZkBwOIiiHyGS05zrrNZc+ydQ1YZXby9JEsWvfOMt/vnPPEOSZkxnFWVjEWlClmWkecHR4RVmsxmrcsViuYQ20/HBs1pVvPbaG18OIXzm0e/jN9Mi/GvAjwIHQojbwL8P/KgQ4pPES3AL+FMAIYRvCSF+Bvg2YIE/I4T4I9/rPe4Jwf8pudhz7yLuphaLm4pSbQXTfiO+I8asv6T44P/qr/01qha8+9yP/Ah/qeUC0KXGW+nyB5z3B/585XCfxx67gTWOJFE0HuaLFeN+jpIOjybLe5xPzrHlkp3dcYzKdOCYRSAp6yYabGYp79x7wMnJGax5jZvj0c/43fTiAP4fSvEfFUWbKrZMw7Z27a5BRLUj+aVTd+6KBik7Refuj6BTL7pQHnTP6Er89/mc72Eyhmg4GmilsELsxEkp+NjHPo61hiSJ05qyBTVNY1AypZzNyUYjhocHnM7n61IuvlcseyREYRjvQSiciD8716pDSxUnKE1NmqQY6xiNCt595512ErHNjLpr116v9sNvn9z6Wm4CgFgHAm9t5EHIODtSmwYbPP1EkAqPR6CARMvIX+huax9LjCQJGB+YTivm9QpcfMA7xyWIBbrl0+TGgfB4HKf33wEgFzDcKaJeplQEIfG7Y1577Y33vV9+M92Bn3ifX//l7/L4Pw/8+e6/P/OZz3zPINA+b123A+sWjFYxFe3Szo4yu5WNty9wMf38yZ/8yQ94pw60AkQHjL3/wlp3fsJmkk+I6D5DCw1JIDi71hdQWmNMs64pY4/Yd06VBAKmMfFmdFH1pjENaaLjnhMiscOLTR2PEFufc3Me7afbuobrnwihsxxrU/qWINNNSHZBFiEQIUrpSjqeQYuOd+fftsK6a7fuqGx1a8SF9bFVNlxIqcXFf4P4OYNkON7h2tXL+Mag0gysI6golYH3BOsQUjI9iz4B931NY5utN+0CiohMwSJlvqjwuUYnCm8bin6fqqlJ8zTW3onGOYNE8q1vf3vdlergw/UVbm80QSvzvamD2oDRPk5snidaDwpnHajIkxDOk2pNqv0aWJTIdhAuQPB4GYOzCBIdHF95/ZiFsWvab+UF1kDAobWiDilaJCgnSI1HSM2TTz7Ocj5lUa5YLecRB/kw04a7o5ORliKsv4JOT3KNAwY2U2bvt3C/+wb5vR/brjKxFeU3gSD+LUVUrw0Q5x0SjTcmagYCUmnq5ZI8j4veeoO1sV6VcpvR57HOIrc8FiSCTMI1rbhpbKvJHzOIzlq8Q/IvBoNugbIVrDba+fHx4uLNuz4/uaa2xnq26wyIzeuHrdT4QkDaLOiwjlCPZFbrx21Ay83ngU589eDgABV8nCNwEmscWiqEVsxmE6r5nAf3H5AkGcvGcDw/i+Be93YuDiw5Wus6AV5IdJqSpBlBRHGRxhq0T+IMAbGmX66W3Hlwf8vTgjjPz8VwEO+7jayY31ZbajOhDqBN0rSVKIuTqILI3AySrZgoQIKXLRYTBAkyTpIS0Eqwso5luWK+jANAs9k8Ao1sMBvZDmgpGTU0p7MpuztjEALjJXXTULSU8Pc7PjRBQHcXCtbpfac0Cxuw8OIOuNlh/mkCwIUvduuGFy1qHWBNye2+sM3i6laaRCctQNnNsQuFC+CMJXiPVoo0i4BOjPbtziwlq1XJbDJlNBrggortKQJDBJ8c9bl9MsGyyULiZ+3Oe+tmZPO77jGRMXjR2KT7W3DR4DQ6+1zY9+K92UXgR6739vWI7+Xf8zm2g/PaH6ADD9eZdTfVGb0bjw73CKaiWlVkmYHgcRJWc8ftd25z5zu3WJ1PSXRKozTj4ZhhljOtIuAVQbz2PGWcXaisRCqBTlIQUJXV2tE4aQeqvPMslnMm8/kG2GvPO1qNhws+gGErAwjd5QnbwT22tAf9Pp0EWaJkOwDU9hBa4RYpWJuJbgJNQKr2MdZjrEMq3bGC16PkXdcnQDvevilLZrMZk8kkvkb3no/4QmwfH5ogENpedDcCu/592Owa27//XnXxd3+zNhCs21ztaxLNQLpZ7O0dbPtI0iR2LLxt+f8dOuwJQZJIgbdLJLFzEXxos4H4ZXnagSHjKJuG07NF254SWAGrpsayloVod//NAlvvol0d3p7Poxep08bbXMtw4XQu+jZuyh0BuFZGK4qYdAFo25knPke2akved+WcX7/PGjgD1sy69mKrVu24m2HcH43AOUxVQVPhrSXIQFkb+sM+pRS4LCWvapw1JL0Rw6JgVpbtG4T1eykZ1ZaCzlBCkmYZ3lpW1RxCwFhLlufR6ENqTqdnlFU3T8HWdx8uuHZsj3VvZwRdRIy3i2g9BRNs08QsyUfCVCIVuQaCXU/NyiCidbhqGQkiYgVeRNamc7Ht1wUJt8ZkYubA1r0bA20bGDqzGzpXL8cHHf+jB4HJZPLOZz7zmSe+22NOTk5aWecPPtYn+T/AIRCtAGVbmYWLuxy0QyXrdHOTbkspuXH9Gr1en8gCk9GvoLZkWfQ0qJdTtAYvErxz6GhztAYHG2Moq4bzs3OEEKy6G1BAT8AvKcnLTZdsbs76Qos0/hUfsQam4jGfzy+cr28VlNbwyfsAeJs6n42dldiS8Gqvg29ptc7Fa9aN4naJmW6zCisiXuJFZC12foa+lSVSKkrMCwFaZ+zv7UWZdgFoiZQZyIBycDDc4fDyIZPlirRpuH75EquqZn/vgHvnE9aXog08m/IkWQ+haRWHpLTWcaG0qkO9fo/J+YSmqjfpDe2PfrPg33MPra/RJodaX6P2GjpjSJOMMqzW10YS1hlL2AZSWl3NjbmIxDuD9e9H5tlkLGIrh3v0s3Wbw+Y13//4Hz0IvPHGG/+H7/UYIcQfVbJ1G2ojcNw0Yr+263c+unPFY6sk6H5zIVXeHEptJq06AZGY0sUJse553vvo4Ks13vmN6DGCXi/nhz/3gxzu7ZEVBXlvwLt3HjA7XXB4tENSCCb3b1KoBSLdxVlFXkiUSFDt682XC27eOePll78Vhzy8JAiHCII9KfmfjzJ++WzFokW7urRThDjymyaRNrpcrkAIvHfrQLB9v3bXS2zd3N/thl4/LwS6gaNuQ4xBMZqSdkpM3eyBlPGmlEHy4zs9XkoSfnYy40GasApxWMmJi5ZrUe1IIgUMRyMOr1zCq2hgopMCoTQiKKyZM5su+dQnP8Vb85J7D+9zuD9kvtRce/I6t+7dhvNuWUQSj5QSH8CFTqgkoGXknOg0QUpJVVXRqTlNojuyjXby6/Q6vP+12j62rdA2RK0um+pGrj3IFi+SUdJdEXUc2gx+jbfE57emJ8Tv1QbY+G+wkVAL663pwve4+WxifT/EjOxDPkosRJztXpsmiE18iwBI9zixrkG7C/9ozbyVccbNVUZKa+dhF7/s7vVawZIWFIuNs25D2EbA5SaVDiBVinGOQRIZS1IprI0CFQTwMkUlPZp6hTWCPBuSpAqRKFBw1DvgzXfutxLf7c3mBQhHFRwPyVgHt87KjJbEQojBpB0EkvLCHs+jwfC9F7u9Lls1bHdttx8vROTsx13fEcdoQcroHOxdR6UV645OEHCI4bCu+D3Xr/MFYTkTYGpLEyQPpzOWVZz/d7a9ngJ2dvYYDMaETmvAQnAOVSSUyxVSeQaDnJ3DPc7ShPndO1it2L92wP5oAHfaxdfOieuWiOWEJNEq1vSJxgGDLAdiSSAFqFRz/OBhHDFuL5CQMjIxxftfy0d/v8E9NkvZBxvt61q6e5KkWG8RohVglRdJbojQ4gYdA9Rj3WYR+/aVlej8oTY4z/Z3uGnLxpmWjuPw3nxhc3woggBtBrAxFo4rObT4QFyU/v0RaaCb6V6/mgAl1Hp36MQqt98rlgGtZBis3V034NBGtFKwWV5KEB16fYNvVgRvWzAokjKC80jZY3x4nXu3XqUpl5yt5tjGxshex3qwfHDOlX6+HpgyQmBMxAz+SWmogsBJifAtLZfofSiUYlU3CESr7Q/BdbfIppff3Qzb9Wt3Du9t07035d0EJyjyjCzPmM8XQEArMI/kmEGC9NCogmqY4bxnMMzwUmO1wQGLVcl8GWv4Dih0wZHnA+pGoAqBkRakJBEJtTF4JdGAF4ogAzKVDA9GJAd9grIcjVstiADCh7afArYxBNmLi8lYUp2sTWU6l2KVJGRJyvHxSastIBBS0bU24xVzF67heuNpgZLtDYn1YuuMa6EpSwKQZTkrANllnPHLkJ3N2zo402Z9AWs9DslmiGmjv/I9kpS1X8WGNP7Bx4ckCMSF3IEaMbpuADAfi7P2cY8+c5urvplB8C6sWymPHp3m4DrPJqZPg+EQHzyL+XKTWotNhgGgdNJy0TNE2ottIO+RWsZ59mbByd13OH5tSXCWflFQSE+/0AgtCDISO0aP7fH41TGND8xmC+7cOSYsKg69ojnscZQIjLU0zrOqLcZ7rItah8b51jk43pxaK6xvZwkIBC/bOrANaEJcuJE2N4Wg23kQYr0wYwYlW9S5wxNEC1DFB8RSqvsXkD4+v5aOnace49a8plkt0AIQGi0hk9vVbbyTlUrJs4LppGY2nVHknplpuHzlBsFZ6noV5zS8w8mUk7KhJwNP7e2iguTK7k77ahJk3PV1otrvThFav0jTNBRFDqL1lkgSdJJijeHk5LS912Iw9a5dZWJzm8RkbBM0t0eIHy1TnfecT6bxO/MOpEbnKSL41gJ+wzb065Z4+x6hDdxC0pjWXIRNJtIB6B35a7tbsV4R7Xe5bndulYPvd3xoggBsbSzdDdyir2uqSpvmbEflzZ9OnnrbwKKNy9toruh2/O4dY73kAyzmi3gTeL8pAbaWSwigpSJRAoLAe40UgWp2xuTuuzyYPyTVgTxJ2RsV5ElC0cvRCkpr+cYr7zKdLkkTyd7uiPGwIM0LJsczysrSDyCC44n9XQYH/aisIyHRRJUYW2NdwBqPbSyldVgvsC6wagxV4zE24IVmaRy19RhjaZyFIDE+Is0+yLXZS6fnsSm5wnrb6MqNsqpZ1XVshbav0V2/DhGP19HxjWnJ8BvfQicFFCle6iimKfVagnx9PVsk/eqVA6x11PWKcX/I5b0jcIHaRy6FtQERBIfXjnj26ScYjHqI4AlpwsGl4fru8SIi4VIKmtJCnpDkPZy1OAn94QBf1ThjyIscrRTn52ecnJ+3PgChzTjjfbbRmbyYD4o2S11vr+t6lLV26XK5xDjXSnwlKG2jliSx1JLQ1v7dtr7pzAQEQSiMjV0l5110IO4+wRbwB5sygPZed85tspb4y3VAeL/jQxIEtvPKTYoFXRTbSl3ZINIblqG/EAnfDxi8ANy8512jYWOsA7uGX6R7RuQ7phkdcq58INiG49s3Obt9i5OH90lSyd7OkDQtCL6iGPRQSmIECKU5m6549d1T6rpBBoG+N6XIMkaDlMW8JCSxfKlEQOc5KitQeDLFxuWoqfDexpad9xgb8R6lJE6AkgFvDN7G1LayJgYMD7VxLBtDZTx1YzGNw1hHYzyNdTTGYrzAeKidj+0pH62+O3jZ2Q01u/MK2P5eBJITASftvxsRsy7vPZga4TdtqtAGECUVl47GDPqOaump64A1FiUVUmuaecUgJDhn0CLh6tNPUimNGO5QFEMO6qz9zl30qoQ4vZin6Dyj6BVY7+j3BwghMCYCgEIqtFKcnh9TNk3UHaDDOBxda8+3u/T7zdt2OFFcmC0TE9rR3gZrLEXRpxMApRvt7qKuiBOBXddo3YlpRWgb51t78XjNt49tS7r1Z9m699clXhcIvks98KEIAuv6E+hq8Y0yjke0O28UX9S4FuB7v8X+fukRvBfMCW1hFbzfSGN3Ab3LEtp0S7WpsJISief0/h3u3n4Tv1iQ9zLGowF5b4gseggMvmyYni9YrVYEJKauKZ1nNMhZquhbt3INPdewmhmSNCWIgFWSB00DD4858h4RPHvDHCkUwyyQDTPmS5iVlsWq4nRSodM+i/kMU1X0+ymf+tiTJECSKkDFWQUcLkRUOhqDOBAOHzx1Gwycc6xWNU3V0JiG0nia2lPVDhsUVgjmdc2yjsHC2ph1+da30XqP8OCD4i4KYT218VTColrPAhPVQeM1Ju7uSuuoCK0Dq1XFt998l8euX+fS3h694R4Ayzu34fyM0YtPk+3uUc0rUpXjnWF8+VL87nyI9HoBuhVtUe0MgtI6jo1XFcYasqJoy0bFO++8237v7YLZ5gIg2NnbY3Z2vi6VfIsjrclUobtnNqWWCpBITSI1KkkxTfSYUCFKsQcZ6e8SyYWpxHaTiUHC01jfroFNe9xv3vARHOu993lXFrxfG3H7+FAEAejS/+1UPf6sVJTjjswtFx2E16Vut2pbTQHvQG51FtYXZ9M6W2cYRH3/dSeA7gYILYdAIVEgYnqY6sA4EeRuxc2Xv8xOvyC/eimmtEqAFrhyiTM1y9UCb+Psem2iSGbdWDSCfpYgEujZhMI6linIVKC8oKwt86A4u33CWydTUqlJRBSS6BcpR3sj0lRTVtH23FjD8vQuTWmoAuzpnLNJzajQ2ODJE0mWaqSI47jeO0xwuCCoK2hW0SFHSsiKhPEwp0GwqitSJbFlzbJ2hJCi0hRjBUFmuGCxLmDqhiA8jYOqttTLJfWq5F5Z0jQO16xYBUHtIlZjXNTZY1W21GuJzhKGozFaBJxomC6WvHbrO1TNdZ5A4YWld3kXf7ri5OuvQpqiD3aZ371P/2gXrQsggnzBRTQeBxaJcSG6DGmNUIqqlSKLEujRsefbr73Ghk3X1s6hTf6E5NPf/1l+7Zf+HqU1Ldj83rS6Kzk3WREkWYpQkiwvqKsKgUaqhNZgkfWbtFkAdPo38X6TCBrbipeErRJ3jVNt7uOw9f7rLDeEDcazdf+/3/HhCQJtjSWkWIN7EKKH4NoUJB5dbR9CYGc8ZDDs8eDhGcb4NYvqYiawQcOF2Ly+66TMWjQ2PkYjg0CpdrZbCka5ZpwrdgcZu6Mxea7p9Xvo/ggTJNVqgStXlHWNsdERd7E0GBsVazwuOuV4gRYSJzxFmtBYg1JR1tv7gMhzarMgz3s465j7JtZys9gm/M7tMxKtyNKEcS8j0ZKsV5CqnCt7u+R5yoPjBQ+FI9UarTQkEnxDL0vIUolSkGYCgokiF71+K8HlQCou7R0iEk+wNa5yiLTPfD7F+CW+9lhvkEFRNaCzI1yQ5MUQGaBaLWmqJcv5gtVyyfn5GbP5koUNnFeGlfVI3aXdsQ23v7+DUorZ9JQkCwz6YwbDHUbDQ8qqZLWcspP3Gd84oDqrWS7m4MEiYtlQ3gegl6dMFos1iNt4gQuB8WiMkgpb11R1zc54jEDgW3bi7bv3Wj9C2tp5A7wNRyNeeO553vjqV7l9/AAHiEcW0zY+1f5ijXUgokeiUhLrHK7tRHUf0ou2A9EBjOtkOGBdoG7FTuJcxNad3G2AYZPVbmDai//eAb6PJMwXjg9NEOhccoSMfecu3Yd4w1xoCbaRTQv4HZ/+JMWNS/zK3/15jichorGP1Efb4CFs9Am7X4ggWm32CIwpCaNMsZMljHsp/UHOfj9n0IvCJFmv1/qLGexiSV0uqWrHrLSUjcda3/JqHTI4+mlOPhpSrQzWNizLBl9bnI5DHwSBsdGN9sqoT94vsC7eiINhnwcn0Tm3bhqqxrAylsliiZIqWmD3c46KHo1zTCZL9g/2CHiqusaXDaOBQBea8U4fZ0oGO7v0B30Ws5JsMEQITb04wTWGRbkgrBT9QUY2EEynNdZJRnvXcas5i+mcfj+hPj3BLM/oD0aooFDZEOs06B6kmmw4wCkJaYI/m5ApTZZJ7s8i19/amHWlqaKsS+48eID1kVotCLz2xqsc7e5TmxqVpIjCMXzuBu7hGU4KVC/HNXMgvl6vl3O2WIAQJKmm8RIpNVJpsjRlsZyT5j2SNMfahuA807MJ0+l0zVb1rXVdt5qe/9hHuXrpMk89+xx3Hz6MLcTtDsH74E7dHSqlQHhHaPGNsiyRWuMatxkka++5IDbTiUK005yEWD4JFaGER1vjW5ltBzZGjDu+dzdt25UX341t+6EIArHGUlHu2nWBciu6sr2ooWNP+QDfef11PuWn3MgF8ySwqDYnG0uJTfDoxmQvfJFAwEeOuRIM84R+ItgfZOwOe2RFxqjooVQg1RKZpBjvmB1POF+tMFZRe4/OMkKSonxJLxMc7g0YFilSCtIkRaewmDfU1vLG7RkP7p6gco10kVkmgYOh4Lmnr5LkOctVSVkLHpxWZGmC8548z+kXPQjR8qosSzywqCxfe/k1tJBIAovaMMhzdkcp1y6NGA7g6Mp1nBckYszp+QIjA4NBn6aaUdWeQMF4tMtqGS24p/OS8SBFiYAWgeVkBq5h92AHu6oYjvoIpdCqoK7m3H/nAS5oRJquOyvD0Zj5dI5DoJQg3VK7lEogguDBvYdMpjPGu3sQ4Hx6ys5ogKkd0/kiYkJpHymgXk0QRUKWZuhEoVrCD0A/ifqTrvVUMEiSNIsEHVXQGMtgOFgDy95YprMppt1s4sbSApchoNOcG08+QZZlPPbEExRf/jKLurq4GW13ndZHbBEkaUKaaJqyQmdxolDJJGYKgYj9tbBj1wkT27ZwPkSbuBa3Wt/VIjIaQ5u1BNiSOIsdhy4TEOvyJrxH6m37+FAEgQ7h921KJkTHRoOudQJd+yp+CVJEhuHrd4/R1ZL9QcJu7qiaEhckSkVsYUMS2sIYaLEXupQfxpnmcFAwzDSjUY+dvT5aSvCSICxpmtDUNeVkzszCu6dLsIEbV464tDsmp2bQg7JUEdSUAa0cIFGyBi8ZjxLunDYcn05xUq1ZaWmiGWeKJ25c5uj6VaTzXL+REoRnNrf86hdfo1CeuvFY4+kPBqRFwt64jxOK45NTnI/y1r0i43hyzn1ree7JI14YjUmk4u47t9nb2yfd2eXaVcvpwxVv3G/IFOzsDTg9PuWV12bsH+5y7cY+yfKc+WTGYHfA5cevMD1bsDw3TOc1q0XDIE/QaUBQcnoy4eRhhTUBpTSupTqv5iuWyxX9NMW4gHdiaweLX8BituTb336Fp569gRaSp558hnI5x9oKY2rG/R55doDNJPfffpveaIfh+AZicUYIBq+j5uLRlV3evH8Sd0QlQGWkaZzdsI3BWUevKGiqKAVeNw3LstwaTd+a0QBG4zHXL10heM/BwQHD3TGrB9V6g+oOucV9WA9OCYnSiiTVzMsamaXRsj1JcQvfyupHGnGIgwYXsLDuMxjrWpn3zWfzIWyVrm1PkS2uTNgYq0BoR9wDF178keNDEQRge1eGOGwTx263h2ZaFG8DxBBT+zcnJYWGl3ZTdGh4ZxFlpnwQa1IFUkZjUBFpl1IEeqlinAr2ipSdfsHebo4SCVkvQ6kELQVVuWS2rLmzrKgaR+0k1kOmFSITVE3FLorRsEDpBJ2nZFqj0xThI9ag+znOelSS8Y+/8iWa0oCSBAfGe3aHPS4f5nzsUy+S9/uE0CCtx3nH/khy6eCTfPv1u7z6nQckKkUqQVM3NHWUn8pFYP9gF6RiNl/gVIK1De8+WHL9XsXTT47JgmI+PebBvTsc7eXsHh7RBNdKUsO161f4+Cee4+TkjMV8xdHBNfb2HavpQ26+fgstUx57/DJSxNr6/HyCUpK3313y7p0FmRAkwsf2mDHM5xXGxHZm5TyN7cQ44yHa4tU4w9e++jLON/THQ3TWY388JkkFZSXI0h7HpxN00WO0ew3rVyxOH9BTgmYyIc9jkL92aR9vX0dKwWJh8CJHSolt3Xi0ViAkMknAWmyIdul0i69LmQMIrdg72GfcL5jPpvTygsPdPY6PH0aRmK1s8lEKe+xuRU9HrTRClti6IdEJ1keQtJfELCB6MsR6ILafIVqcCMKaNtwGlvbayTbT8H4zeyDlhg8jEevndOtedmvnA44PTRDYProL3A385HkaW1J1fSH9imWEoPSedyYlO8WAFw76zMycaaUIIqzTxShVJZAy0FeSvZ5ilGcM+wXDXk4mHXsDwdznJEUPU5acnk6ZLhomZYNzoGXAuwaBpHGBZ558jKtX+/SKhLw3QItAEIHeYIiWCa42COkQSYbwiu/cP+f43jTyB2wEJK9cO2Knp3jhxafRWrNaLLHWYKol3jeRYCPh6ccusVoJ3r11FwtYHyfjrh0dMNzd4/b9+ywXC1KpEFITdEqq4e79BbWHvb5iPCq4/MRjBNewWNYUaYL3in5Wx12zrhloQcgS7t67x7BXgFBcuXoZH8BYKJuGk4cT3nrrlEUV8M7QzxISAnjJcrViOi9jqy5LWZmWyquIZiPrtI51VrBaVXzja6/y2c99H1LAO7ffJs0ypGxo6oYz0zA2Ddloj6I34sHJQ+Soh1saiiTqRl6+8jhS/DouBGonESpBEAVgkJKkBSQJcRHrNM5/eL/lJxgRYhSSg4MD8jRnZRboJOGZJ57i26+/SgscveeevThEFD0nhXOkUlHWFUoqvAPnZNt9DnjfblCiTdlbUxQJNAFsuNj+a+/ki52IVqq/wzLWU7HtfwsROQf/THQHOnIGbJD9rivQK3pRj72JvuxSyi2yUHSLfVAH3jwt+chRjxf3e3z9QUkVfcQRRM22QQKHec6gl7IzGtHfGaJUwNcOuzzj3omjv9vj3vEpJ6crGuNoTIMmgpYxfdc4AXkvZ38nZ284IFGQ93Sr8JoQGotQEYxLigG+jq3NL37lNZyKET92QRTBBWQ65OZdx+37Z8yOj5kup7BYsQqWXAqePBwjBj0ePJwQBPT7Q3b2dnDece/eMa+/fRulBTvjAakuSLRkf1yg6jI69gTBN2+eYktDUTxkOOxzuD9gf39IkSrykDOrFamXDAdXONjRDMo50/M552dw850TpvOKyXJBNS+x3tMb5BQYcgLaeYLwzBcrmsqQaYkJksbaSLEWsYEf3MbNKLoAdW5GUJcNr778Gs89+RTj/pDpfIb3NafnSy4d7rMsl4z7u9RlgwmOs9mCUb+HqeMtfGXvBoM853y1IkgZZbpUvMbeu9iyEzLObzgLxnL68CRaksdl292IOC946pln4+BPmpLnOZ/67Pfz+S9/kQfHx3EycWuQrTu6UiEI0FoRiHPAwlmWkynaemwrey/EhjvUFae2nSzUQmAJNM6wmQx9pDvWPq+bsA0t/Xs9LLQG0f0aMPyg40MTBDYU3XAhvRJCcHJySrTR2QzCdFN0a5sr4H5pubKsubyT8uYgwy0tqRKMUsFukdLvF/TzHr1+j2I0oMgSZLCc1HMaa3n7wRJ7f0Wa5jHlajX9Qyt7JmXsR2slwBnOJ0uKLOHylV3SJCPvj0izAXVZIUTA1BWT2TGZEtx9OOX04XnrNReJUForjHFMpiu8mEFVM51MsFqgETQuwLyimVVMhUZeGjPYOSDNNSenZzx8cILUktEgdi52BhlFlpHnCaKuSHopzjSo1Yq9YDAZlGbJ8UnF8ekZUmckeR59FIqCXpaidUox6LGqa2bnp9RVQ71a4ZxHp5pi2KefJWhfE5qokWjqmsViFUd3tcDaDtkW7a7nYxrtNv5+a3WjrlzDc3p6zndef4tLB/ucz89w1rK3s8vj156gXi1BCUrTkGqJSFNq48g75uJiyvVLB5y/+W4E5rIcqTXL1YKD3V1c6Pgf8Vi2fhSdHXjEzxwiQNrv89STTyFl9MEAyHo5n/vsD/Jzv/jzW3Lej7au404svETpjLwYMlmcEESgWsxJFyu8ETSJj96BIXIP1qpDArpRbWcDTePWg0CPrhWxiabrsfhNnLiIb2wQsPc/PjRBoGM3bdqmYZ3KiHY0dI3GspXAidAOu8DKwusTwyhPePGozztnNQOtuTwq2Lm0i/eCrMjQSYpSAucabt07ZTVZcjCULI1j1O8T2AwfBWKPV6WaflG0gx0GhODd+2e8c/ch4iuaXqI4OBjzuR/+Aa4+e5WmrpnPShrV4/xswi9/5W2cA+kEYNCJRgVwQpH1hwxGO4QdiTrYx5xN2T0/w+UpD3ygrgxHH32a06bhlVvvInVgf9znhacPuXqYMR4W5L0MLz3j0S6pSPF5gXGeuqyYnZ2yXJTYykBVU7vAYt7QeJCJR/kSsahYzSPeobOEvJfQV4HxIEX2I+ruvMU7h/QW4S0Ww3JVUa5iB8NbS208QSh8cIiW3amkwoXA2XQOorvlNq2tSMwRBO/4/G98gU989KNoBVkv5dLukH4GQWRUiyVVU5P0c4bDEZPjByzMBICzO69y0M+BKNWdZhlJZ/yBRMkYjIwxSCFYVCvuP3wIa0HWllsXBI89+TT7O2OcqekIbAL4yMc+yte//U3evHlzw8V/lCcQoX2MMQipETYC3vlogJSKajbHmjnKBkwwBBlHn5OWxoyM6kHGGsrGrbsHXfhy3rcjyG0WTKf5sDU1CutuQCBWG34LIH/0+NAEgYtRtYt07RycB/B0KltdJFStwGKnB5BnCl1ovjNt+ERvSHM0RglH1ktJ04IkTVg1lsnpnNPJjMW8wgbHMPPcnlo8ktrEtlOaJmt+gm9biKuyif5xSTRPNRaEFiRZYOoN9dmMn//FX+HSy/ukaUGvl7C3N+LmvXPOFxP5bgAAkelJREFUz0tEvULrhLHQBBHYzXMu7x8yQtFfLGHQ43w6Y3J8gj0/Ybh/wN7uAfPZlLtvvcP50vDks4/zsRfHvPj8Fa5ePWL/YJesGCKVRguHbmfSlZR4ZLQ1q0qW5ZKqrDk/OeXk+JQ7b99lNlmiVA5WRmMOrVslIAHetbx/S1NXLfffooJAS4WpK6arFcYFEq1pbIjuuK0Ia6IVjQ9orVnWhjunS+aVIy82t1wnXhJFVKOuQ10bvvX66/zLv/tf4OHD+4g0IUkTEtNwXs+ZlxbqJc3sIY2pEHlE5/Uwo59FxeaiyNFJSllWHF26EucEtMJWJmo9Bk9d1TTNRq1YSIn0AZTkk5/6BLaqMaZud2eBRDLc2eF3fO6HePDwAYvVar3gLs65RMygLFdUdRkdh6o6lkRSoZOcXK3QWsScsJVHF0K0Hgwx0zWrksbYdm2wViHadMoiWBRaH8X3joJvlSls0Y3f5/jQBIHu2J7Z3k5hOq55aKOyEK2OHAItIU81O72ULJHMV47vLCxPfOol3vnmVwmLM8xqTj444rxyTGYTamNRWrGqasZKMp0YUp0idYzKeZ5CCDjrkC4QiNM6WmlSKVlaw8oGpFfkqWRVVeg2G7k7v03wikwFvClxQVBVC3Ih2MUzso6R0BzWAVOtWJ7PWNQVdVEw94FFXSIHfQYvPs/rb91jbof0Lj3Bx3/nizx1VfDRJ2oODgrSPMfZFX5VUjc1zWpFXS5pmholFJWNHZIQQCU5xbBgf39MnmU4J3HuFlIJJme2ZUoGnDEY57BVE63HFShvEbYheEee9zHWMV3VCKHJdIjTbu2N7F2c9ZBCoAVMVg03H84pGxft5dZc+Yu99m4AKS6gmvPlgp39HfLeOLbF1IxUZeSpwoYpOtMEka6181SacjJfAYEiy8F7hIqtOqUliHbGX0qaqsYYs1Y6EltIeq/fZ2fUZ7lakiSaNM3QOkEKiXWG64/d4Nq1a7z+xhvv4Qh0bW2BoK4qmqoiyTJ0XWFCAs6TNTmilS1TInaPCFGKjRD/WyqBFhuxm+1iYC2f1q6OjZPSRf2IR4+NnPp7jw9VEOh6rt4/mmJFVp+QgjRNokyU0mAa+ins9BKkzskSyXI5xwbPg+mS+Ve/jF3OaPKUpSs4HF1mFZac+5LhaMyTTz3JK1//Gs6WDPojLu8PqU2sZ70xNKZBCInUGylqvMChCFIw3CliH9c6BjqJAysInPEELMYrfBMwzmIJlFJyLAULpbmvJLdCRTg7oehf5uCZ50n6Y3ppzijNGO/uc3j1iE/9vjFXDwcMhxJnVtx65StUq2Me3n1IXZY0taBsHNaY+L6tmYlzcY5CaYGUniRJWC36iGDIspi9CKVxoaFxNZkaIgAlITiPSgLSW0JtaaxBCuhlGVVTs6wbhA4E66hM7EWLdrIxMt6gagx3J4a7syaO1CqFUJL1OF43N7/Vd1+z5gLcPznm6cefAOcRymOXU7K0oBIJwewwW8xIlWM1XwDwn/+tf8jDaUmQkBe9CCj3ogGHTnQU/dQSb2wMdE2DaU07Q9sxCCGwMxpxMBzR7xd4YNAfEFtDCm0Ept9nf3enjRqxHbg5Wt8MEQ1TqsWKwe4umg7L0Pg8w1dq3SEQeFxwSATay3ZcO0TV6gBrnMxf3Nm70eZHyUvrxzzSRftux4ciCFzkXtMip5uhDi0ESksO93Z4/IkbaK1RIbA6P8dUE65evYLKUm7fvc9iEqhsIMtzzhcrEh/wq5KQ9qhMQ7EzRp2f4qyll+boYDk3gesHYz763BMkxZClaSgnM+bzCdYJyrKkdlCWFdY0GA/CCpq6QuoEQZQqH/aGuERBU1PO53EUuMjIdcLs2BKsx0tYCZBBYpQgUwnXnv0If/rf/ffYv7xLL9H0M0EiHd5WzBdLFvOSxfSMSWViR+D2KUrWUffeS4xzsQYNsf5GxDFopEY6RXANnppER/8DbypK4yh6Pcqqjq4/IiB8g4Q1uk/whDwh8RrbGCbLCh8C1sXav67dukdtgidB4YTDGs/Mau5Ml9jg48COkm2d2nZ+2u827sKb8q+7D2zdYOs4Fi2kIO3t4VaesKiYzRa8fvNtzh+e8OBkwn8K3JuskCHqPYxGQ4ILDIY7cadsBQeFBGctQkf+R2PMOhhFJp+gn3jmN7+CON1F9Eao0T6hbOg9dgW7rJg/vENi5psW3COgXewyxntmPpky3NlFuEAzW5Ls7SPSgmbpSYnBTQai2nAIBAnOR78BayNjcBsgXx9rPKLNkB9d5KHjP2yNFf+zkAmsI5qMSjARaY2XONGa61f2uXawR7/XIxkMKKsVgzTF1UNKF2C6QqiMvDegCjWN95i6Jhv2qKuSRMB+r8+1j3yCs9MT5icP+eIXvxhbVSphZzjg6o3HSXSPZTlnkRUcHR3ilhW1t4QgWC7OqUzNorQsV5ZV3VA7j9Aa4xyzqsJXERjKlaKXpeRZyqKq6aichLBx85WSICFLPY8fJBzsaFarCozgdHKOcY66KWPvVwmyIqcohpyXAaVLlFCkWqOCIckSrPMIBWmvh11GrrrSCdZKvICmNNR1xd7VI66NRnzr1Xd5+KAi0wOU0oTgcC6aWSqlEVmCMNHMclJGs06cZ1k1OB+QQq3bnbnQBOcRXrF76RKFb3j17mydtUWlm81uFVy4cANv1KQiSm6txQdBbSQqO6SX7BHykld+4xf4+rffZFLN12pG0FnMC9JUUxQ9eqMR/WEE44xp6bXt7isDzGfzSFPfqqeVgP2hpieXyMUMv4LZJCNYyfT46/FxdcXlvOUXdEM9W5r+AoFQgso2WBF/k7TW8VYJnFAszmu8rUh0INGC3VE/ZgNeIFoZNWc8wsfWdHd9uvN8j97G1voJRLnK9f3WPeafBZ5AJ1vdfd5AaHclwWBQcHR4xJUb13ny2Rd47vmPMSvnvPPWd3jjzZu89a1vkKuAtiuE9fSKDBsEvTQjyVNUUkCS8pHnn6dOFDujEdrUGFdTLVcUWjPo5SyXFf1+Brog6WkIYMUC2dpF7+zuIdKEeVOzWqw4fXCf05NjGqUJNkHk0e4q2AalMmwIzFZR1TbTCY0xa6dbKYmtrDyLwyLWY6VCJAng2Ts6oKoqVktNWS5BqEh4EdDonJ1eIBGKxjXRz0BKiiRFqgRTG1RRxL4zmqI/IghFlRrcouT4oeHb33gLh2Q46GOrEm9WyOCjkIoPYGucTliUDZPFgkRLnHXUjSUESRA+1t0yaiuKEJC64IXnrjMe9vnWO/dRWq27W+sd85Gbtvv50cM6H0FGmTBdGvqDHONXnC8XTJezuKJb6474+hKCY2e0w9HhEUWvhyCO5AYJQaiouKM05WLG/dOzaAi61WpKk4Qb+yMyPJKo/+caA0HGOj5u2ewPc6SMDkd0HavuvFpVZltbGhMB5XXP3lpks2Q4yihUQgiWm3fOKUZDEgINAYXFe8FsVWLxH0hM2j62h+Rih23DKHyUy/B+x2/GkPQG8FeAS+3l+kshhP9ECLEH/L+AJ4impH84hHAu4tX4T4AfA1bAHwshfOV7vs/WTwLIlGCcawZKs3P9CipAmuY8c+M6P/CZT/GNt26RScfcOd65+Rrj8ZjVbEpORVhV9Ho5eRFrQrzn+uWrVN4xPz3haGdI5kqs0SxCoKxL5k3Nm7fuMOqdI7QkKfqotCDRKYmK1uSJ0nih6OmcXjbEliXBWVZBk2dD7r1zJ7acGkfaSynLFYWEIsvRqmwNNOP/QluD1k2D9RbrHFpGVSHvLc5YhIu7o9YpSpUs6wadZrxzt+Jdf87Vg13yIqHIJWlWsHt0nd7wOqu6xq0WrMoF56dT3r13RrVcMVtFuuxuL6NfZDSmwZsGpUEhCVUTCT2JpnGCVdlQNoY8TwjWsmwMIUh88JEz0U78Be8pjeCHf9tzvPTUJb7z9im6JUNdML0IrHkCbKeqoVPsFS3QBVXdkKQp52cV+3sS7yXGeFRQ6/vkooRmTHeH4xH94ZA0zeM0qmtIEo0PAhlUK+EtWa4qaP0ZYz4Oea4ZD3KcC/hW9ScO9UQEXjmPFZJeriikZOnjIuvwBCFkayQiWZU1p/MZKktItEZoSV1WKATSWVAghWLQSxHOErAInxKEwwXNqjStuuN7d/7tn9dZZReEwvbV2AQM+Vt0ILLAvx1C+IoQYgh8WQjx94A/Bvz9EMJ/KIT4d4B/B/jfA78XeLb98wPAf9b+/d0PARJPkWgGmWInl+z3Mn77j/xu3qpq7t+6yWx2zlu33uYjHzsnTTWr5YrUOo6OjvjMJz9Fkgz49q2b/Po//CWkNyD61Ca2hVSq8cKTasXu7g62nGArh80SzhcLlpVlsFtwr6woFwsSISl6ffb29uglmr2DEVleUDYNpm5IswLV20EtGy5fuszJbEXeS+klUbVGpwnLc5idn6JTDTq2oYQP0X+u1ZeTQuKcw5gGbx2ByOdvGoP1fs1r1yKhV0T2mk5zZlPNG2+fEWwgLxIGeU7/VkOe32dZG45PzskHOU1w7IyGZH3J5dxhTQnGYlZVrNFDlEq3zkf3mzSjrA2zVYVzBiWhKg3Gxh2GEKKMd7v728bhVM4LL1zn6Wv7pG1tL8W2lFab2W2lpZ4NuaUrkwLd4wOrqsIJx2iguXv7lMOrI4ypMe0OJ9mg8bQ/B2K6bKwlz1O0VvgA1gEtPTgIyPIoMKq7nby9Bcf9jINBdCuKa9+Bh9DhBiKqIysCO0XCYlHD1ph7CLEkkcHhWjGZ0Jqu5FnGvG6QSqGUwrkGqTTRFNdDUNjgUAGCdyxLg42ysWzn8tvlU/frDX620RJUQq4JWd36+qDjN+NKfA+41/48F0K8AlwD/gDwo+3D/mvgHxGDwB8A/kqIIejzQogdIcSV9nXe9xBAXwsORz12s4Rhqjg6GDMaDnnmB34b//gv/zRXjvYZjofkvSL6yQVBbQNl3VA2npdfeZVQG44uXeazP/Q5vvj5f4I3BodDyoTlckmwjuFwGJH7IGisj2aOUrKsG2y9QBhLoQST+YzaO0zw5HnBu8dn9PKEwXBI3Ri8O8XZQL53CCqlaSakaQrB0VQlzjY0dQk+sLu7w8o6Vqsqros1shxrX1MbmsZRNSa2ckKgaWrSNCVJEwQrnHNYU5GlGZf2d7gyAKU0/dEIjyPYqLyUJpqxLLh8NEArwez4hOX8jMoYgrfI4MA7lEpQUqFRNE2DVAKfZsynK2armlRC8ILVssK1LS1PINU6auOEQGMdIRvw4nOPxw4NrOv5CzVodwN+AErdeSd09FgfoKrrqOA8P6ZIc+7efEiaSuq6xou2vn8PINaNj8cx4thCi5OjztuIuhO7Gadnk/V5dK+zP8hJZaCRDkW7uLQEoYjRAKwPCC94+soOt1+/1/pFXFycvpWsC0pgyuizkPf7zJua2tRIF+c+fDs6D7GF180TeAGLOipTsaYNr9djGyw34F9n5htC13LtLnf771uB7v2OfypMQAjxBPAp4DeAS1sL+z6xXIAYIN7detrt9ncfGARSJXjpsMe4XzAc9dnb6TMaj9BpjiSQZCkPj8/QvT5pnjMYDChThwlRuaXfH9LvD1ilFVevX+fJoyt85de/gHWWIKL7jDGWs7MzLhc5y8UC4wOVsUBgUERDivl0xnyxJMkyjo72SbOMVCUIpWiEp6lrHlQrFssS4QN5r4fOM8xqziCVhOGAyekJy1XJ+WSCJnC4u4NWEhUi4aRTgt/WfRPBI3wg0ylSK7z3JFrHcqGqouCKVoCIgJ1QuBC/9NWyJM803lls07CY1a2RCzG4lCuEDiSJIjSWQEDrzgo70FgDWhEczE6mVKahnwhWZU1dN1GWuzIgAqmSCO8QQrEoLcODQ5557CqJcrEjQRygCsETnIsc+5jRbgFXm3ZWBEe7qyDbYAAIyJKUItH0dwZ4C7XRrGbTrdHaiAl0R5f2Jjoh0Yo01bhuCm+dEkf+wvl0wWyxXLcnu+fuDwu8s8QUXK1t0ja03khMk1Jx49IO6Vv3sZ51cAshslcBgm95CalG9lJEGR2Wq1VF6h2oaEm2VhpqFY06X4HK0PpJXAx07kJL0iP9VmYAFwJG/NSxXFPyt1YOxO9FiAHwN4B/K4Qwu0iSCEF07I/f/Ov9SeBPAhSJ4uqVA/r9PKauaVt/V5bbv/GPuXT9cW6/+WZs8dSWarli5eNNMOgPmOQzJtMp1jccv/0Ozz/2BI0A5V20hfaxJlpWJVJIkqxACUm/12M+OaOXKHTwZFnG/bNztLE8fmUPjcF7h2scVeWoXWQV7vRydvb2KQYDrGlY1RXBWYZFyuGoYFmumM12UNZSSEGwSxLlIpjkifWpD4hIqMdZQ+MaZBJ3xGimGWm4Sii8dCSqtZ5WUZfP1gJhLdY6lnWgKpfR/lwXcYQ6OHBRWrvX61NXC2pb42qHylKE1rgQosuvMZydTqnKBamS1KWjqhqEkhjToJXEB4mWEus8cyO4euNxHru6h7AOLdN1m0vgSURb9qy/7Atf/Oa+YZPWxoW2aWuNhiOKNGPUK1Ao7t455vR0wunp+UZEw1/shYcQePedd3hw7x5PPH6DPC9Is5y6rNpaW5AIyWvfehXjQxwvp1OrtuwOC5wPIBRebDkEBdaydTJEKHI47DHIU85WZi34uRH2iFyH2WRKbS1KavLRiHQ1Z1ZXiChUhkTE8saF1k+glRjzUQDWuU7rYOv6dT935UBHD37EnGdNGtr6bB90/KaCgBAiIQaA/yaE8DfbXz/o0nwhxBXgYfv7O8CNradfb3934Qgh/CXgLwE8dnU//HO/74cxVrCazfB1Q1lXVG7FbH6X+ZnAC0fwgto63n5wihwPSdKM3Z09zs5OmK9KRgdX+Oq3vsm0rkikik7AiaZ20Sq8KSustYx3Ruzu7TE5eYAQijSVCOsY7Yx4rtfD2xqZpK01laIxNVkiMVXN/u4Ow/GQXpHgMdRNiTANzkTQL8FxkEouHQypqgWZ0iTFLiZdcHK6wLWW1F2qKmiFT0IHicp1m8yHADK0lNF2pQiJCCBDpAMnirWFlvcBKTxJkpKkGVpDoiXBGry36CQh6UxdsqjWu5jNmJ6f4YNFCUFZNthAKwQKWko8bY1pA2VQPPbUNS7tjWKQap2Xkrat60O0y+gw+7X5Zpv9XBi4if8QH+bDGqATQjAY9Nkb70QAMs1J+wWvv/kGs8UyZjq2G/zZvJ5EMJ3N+Bt/67/llW9/m49/7GN836c/zWA0pMhTjPNUi4Y3vvMmPoR2utEjpEYGz04vZe1xwUXoMUp+0Sr3BNIEBpnmdGU2IGeXyARASo4fHlNWJXmaorOUnfEOZ7ffJARHQMfF3S10H+cAgw9452nYzDRsn6e48PPFLOCR9RXPTcT7ohvLf7/jN9MdEMBfBl4JIfzHW//0t4E/CvyH7d//3dbv/00hxF8nAoLT74YHAPR6BS+9+AyltZTlClOWeCmpyhXWWq4+mHM2X6KCZ5AsaUxJWhd4qSnrqBkvmob/xe/73fziYMB3vvhPuHo04mxet97wkixVMdVuaq5cvsFbt25iGotUCmNKMi2RoWFvVJDqPkqlBCHJ8hxbLWm8Y2eYU/R6uCAw1ZKsyEkxaOlJdvssFzPMdI4rS7wU7Oztk/T69HfGzOQp6rWbsT8e76pYr7Y22t7b+JW2aPO2bRoi7sQSwWpZ8+D+GWNZA4H5Mirojvf20CpDCEGayLjopQRjcNUS7Qwq0dgkTrjVTcP58YTZbELwkULb1DW0N6JUqm2vSUJo8A4acp566hoHu0OCtQgRW4Cxs6EICHyQGB/HeMUjN/AHgVMXOwQR3Ds7P0MkGq0UZrnga1/6DW7fu7Om5cYs/JGsQsSAOF8s+MJXvso3vvUKP/9Lf5/Lhwc89cQTfPSlj9Dv5xyfnbI2em27cFon9BKBDG2wDVxwDd4su/ieSgSKRK2zhW6wDQFCxYBYm4oEFedI8pRQzqhmU6Q2aOsQaRwYihGn8xGIpVrn+vzo0fEELrBp32eXj1hr9zj3XduEv5lM4HPAvwq8LIT4Wvu7f5e4+H9GCPGvA28Df7j9t/+e2B58g9gi/Mnv9Qbz+Yx/8At/Fy0E37oz5e79FT/2Qx9l/9IOQSt293sMRwWDnYKzd9/APBBU0wN8VYM3LBZT7s/Oefk3voS7d4uBVmQadq4fMF8alNYMhj2QgsYYTo9PWMyXGOPwCLwTpD1FrgWDvEBm0bkmSxJyJWGg8Wia1RKpEoKKnQkfJKPxHnVZIW3J2WLOYJjTO9wlL/pIEQU+HAJXN3ERWocUm0XhgaquqMu6RdGjKo2SGm/r+CXawOxkwltvvsN//7f/AQM5pX85o1ytyBPFYNgnyTShKQkovMzj1JwIWFvjnEUlKUkry22amrvv3sP4mkQHqtpR1dE7r+sWEFx0wfENhAwrcj75kafI0jhP4ZFIGVVxUx1fNxa0fr1/du46se0XTU3VOn2Pl6Bb/I/2s9+5fYff+MIX2M9T/tGvfYE7kyUEGwdstnUiN/lxDF5hQyCqTMP9e/d5eHzMV195lb/1d/4OVy5f4vjslOAdQcQWoXOevd2CIpFbaHwn99UqIrUdCSGiZbyWkQwmWG5j9+vuBgTKsqTxhvL+23zxW6/yi7/yawzGKb/3B5/h7P4DxsPe2hIv/uVjC9YLbGeF/T6koEcX/fbsQMe89C1jyLddC/lbwQRCCL/KBzcYfuf7PD4Af+Z7ve72MZ0u+et/+ysc7fXYubZLviP5u7/6JWoBu+MBvd6QXCd8+vnrHOwdcfOt19jfP6Oe1xi/A86R5Sm3vvVVhoOUK5d3efmtd3jm4AAvM65fu8bk5CFFmnK2WDJd1mAdWZ5hlpbaOs5njseu5hSjMcE07O4MGI2HDPI+uweXODk/4f69B9TzKakSOKMQUmGaBuUavDEc7O6SpDlJ3pJJ6gaJRBrL0Shnb2fAw0WF0pEtKFTMAmxjCNYjRUDImEyXq4az4znf+c4dvvyll7n59new1TGP7cO1o2tIPHmvT7DRqkxohddJ/FJVgrUO3xi8c2idYZ2JrkSV4eH9B0hRk7qa+crSuLAeVqEFz4SMDsrVUtDf3eGFG0cUmcBYHwOACDjnSROF95YiSShXNbNphTEBZ028sbf72mwW7Roc/YAdzTnLL/3yP0YE0Q6/xOdtLD66G659buTw4kTHM5XrjCG05RZK8uDBSRz0Iw7oBAHBeg73+tGLgM24ese0i4ahnTpPBF2FlGTtNGm3OmKJ3vFAAvPzCb/wd3+eW2++wel8gSNgg+Pu2/cYZ7rNuNpJQB9Lqa6L2kEq20ESNmpb68GrLbLS5k8XP9py53sQhj4UjEEf4JMffZwf+dGPcnD0OJPa8M1v3ebByQk379/lnbt36QvJ+e27PPf8dcajXaypENJiViUoSX/Qx/qa8dFl8J6nRXShvX51j+AtWiekgxxTOqpWzts1BqwFBEmeUAz6XLt+yN7BAbapaGYTbCUoF0uEFRzuHyAODphMzyFZInxD0d8DqVlMZlTzSXQlNoZytcStStIiJ+kV7GaCH/3ks9y8conjh2eUVRWFJIXEC8sXfv3r3L09pbGe0+mUu+++y+ThXayZcPVSzscfH3LQvwQq1qzWejJfEHxc6MYYkn4PV9f41TL6BXpHliaELEN5wcnpGScP7qNFg2sqZsuK2kbQVLUoutBiDTaVNfQOLvHC09fQIsqiuxCdmIILZElKwJEmCiUlD07OqDx43ync+HU3hI7bFzpSi2xba52e5Gb6rfvb2otafpv7ZTNff6FvDlu/79LzzW4aPOsyIgYkWjNZeOJwp03/N5lKzGVcpAUHoplsiFRj3SpTd6267jW75wcCTdPwla9/YyOgEgSLsuGdueV3XN3HlHUEA20UpA0hul3ZYLFCtSGsJQWpdmRai1Y1ewMYbl+37UwhhBj8uozmg44PRRBAKhbGMyszwvmSZjXj+eePONiVkGq+uXqD2bJhsfTM3jjlpcuB3WGBNx7jQaLpF318HdgZDSlGIyYh8Oa336RQKaO9Pj7X9NKUwaBPZT3LaoFstf6vHx7y0rOPcXk3Zzzaoa5jWjbcu0bW7zEYjbg22CFJE4aDHh7J+WTGg3t3eHjnHqGp2HnsBovFHqdnExbHD8kGfdRoSJqkzObnzE5PaBrDYSp5/PkjwCFUTuMBlWNOvsrd1TfJ84JBrvjYYym9Zw7I0ktgPdZFAQrvYq2qNNSrJeV8QgiBJE3xjaNerTBVjQwWdApCMj+fsawbVpMJWaip6obFooIg0aK74QMEiQhxEm5pJDceu8Zjl3YQQmCca/GL2G5NtAIiuCaB6WyBsQKpJUpsDbV0i1AAW2anHZs2tCnwhRFYsf6/tcEoW2WA6CC7LTRcykiV7eYRwmaFxB66aJWNiItRSolo6+9BkbI/SIF4TnHxqXbHj07HoksJuoAQYCdPiU2x+PqxFInhZTMZ6beuRXze+bwm1ZLG2fZcNucmWzl06+NAkQwxC+gYf9vu0hH0uyjJB6x5BN012jzv/Y8PRxAQglvnS/j8V/AIbly9xs7ljKNLL5BN77CavQrecjDIOBoo9sYpOwcjZnenjIYDqroBa5l7y8OTCU/v7kLjuPHE4wgXwCmigEPGjeuP4VEMhgOa1ZxMCZ66cci1y/usVjWDoiDNYp2dF2OMc7hyRb1YsMJhFpIiLxgqATsFh3sfjSlys6Suay7faHjrtW/SLzRJmvDw9j1Ob79NNT9Fy0DpBKbZp9fvc7AXNfSLokdvMKIYFNFog1gXoqLVmFeSIDTBWIKUGNvQrErmZ8e4akle9HBA08QR2eA9LknI+kPu3b3NdDKB4EldxaqsqeooCwYQTKyzERKrAtYLnEh47pnHONwbghJ4E2cnpJQ0dY2Sat3B0FKyWKwwTqATzZXLQ47vz1k32IMHLtar0KW1olU73tS9m7bW5vZYp+fdf9N1V973ZmpLEL9eANuv3zHq4uIRqCRh0EspUjbPa1d5XEytPmLoCDmxly+B8SBFC2h8aEG4Lii1hc/2wtz6DEmSRks9HzUrY2vQdxgw0bdVRMC4s47vzsWzfv0L1+zC+2wTjN77WR49PhxBIHj2m4rrc81ykPLqa7f4katPs390g995/TE+8olnufXVz7N8cIfnbhyyvzfg+MEp80nKYy9eoiwbZtMzrl+5RqED1gmuX9uDKnrS2zShvnUXGSpOb73K/pWrPLmnkbt79PYugfCcTWfsjQuyXkaCINcprpkTrGU+WyCLHt5YZpMlWTrALGeQx9bS9M5tGu/xSY41NcNhn9V8yWtf+zqTt99gb5Qw3k8JFs6mhrPTE8aXrnNSg1vVjK0mLU/RZ5o0SSiKATKJIhaJVnihCAZcMAgbxSeraokpV+h+gUjyWDuqaDPmnMUZx+03v8N8tcB5Q6oCx5MF3vuoe2AbQLYDLyLqA3pNUAWf+ujT9BKFEB5jIrCnBFGaSyt0OzMgpWQxX+BsoGpqPvn0Y+Racs+eEFrjDN8aZ4gQd7nNEd9XKdHqR8hYF4q4F4u2bRgtwgJ41qo7dDuc3ISGjjl3YQHI7YxgE0y2+fSJFhwMc4okpt9xFkDQtddEqxQUpw3FOtPwPtAfZvS1om582xaMZUjH3Fvf3mGzWEMALT0gaWwAHbC4qAORpmSJxtmyDboBL1TLLYk7vt8KJutYsMUfWmdI7TVuT/27Hh+KIKCkoH95F5VnTMqGmbRMrGe0mzOflkxeeZkrqef6D3yMRTnntbcmqOwxXvrtP8J8cU4vL0jFDqM84WCUEuoFIxOwKsE2jlwmfOz5ZwnOk6YJQSqcTzBSUi2W7IxTZNGnXnoOL41BKRoX00KZJuzujUj6e4Sg8b5mcnrKEklYliyXc3R/RL+IrcNytkCYmoenDzGnb7M/UugsQXrP0tTMK8/OlSepqtiWGw77NE3DfGWRQtPLU2arFTrLovaciAIlvrE01mHazmGiJNlgROMMLgikTkBqCIHFbM752Yy6WjDuaRa1ZTFtEALS1nzFBNGCTwLnYdU4di5d5qNPXiHPEvAe43x7U0bRkk4XQEtwpmG5qLDOY2zgo88+xk4/i6PQqgXYRIezb5CzjkGwpte2QJaUHQc+liPx6scauVsAG9w+LoDtW3yDHXTzvfHfZLdTrtOGTT7h8ThruDTukUSSQwsYbpStAm6NY7SDBOtdf9jPeWx/xNm981hadEh/2HQWulImHrFDolXXDYkFiPOQp3ksrUTsVgjJRpm4qyPaTySEiOaoIZ6DF5uSoLs22wzC70YUgg9JEAhCMGkavnzvjDkpn/ltn+OHf/sPYu6+SWpmfOLpMZUpeOvNB3zja2/ROM2f+DM/gc9S5scL9nuabDxGekO5mOFMFN+IsyYRhdchwzQ1i/MzpstV9KoLCpWlDLTiyaeeZPfSDov5nJ3dQ1wicQ00sxmChqIYk/R6vPLN1zg7vs9od0yapxz2L0X6sE4IWlPvlJyenDB7eJsijYSlal6xqjynC4PNd5FWUM9WJFqR6Cjj5YVEqgAiIJMkfqEhUJcrjLVUVU2aZxhnkAFcSFgaT1NVDIewu7NHaeacPzjhZD7Fr+bkyjMvSxar1glJRCPOrokWWpBraSWH167x0aeutfJtMgpathp2EFBpEmm3KgqClqsVjYXlyvHSC1c53O2Bj6PIXTqvhNi6KSPFu2tVWWPaejku/IiAdws8psI6aXEHpTY1LjLKgoWL5KPtDgTtT+sduK3nhZTr+l7KaDybioQnj3po4rBPaD/8GpRjK/lu6d1KbvCKxy+Nefn+pGUwbwZ5uj+hxRXaD0kQnl6exmzNeVQaA1eiExCOIAS1cyA24Od2+r+GV2Q7GXghy9js+ZvJxi7gfsiFRlWAZAmDwwNeurLP9z05IDn/JjJpeDiZ8OrLb/LOrWOmywatU559+knefu3raB1QIZAYh208takxdYUIUSnYGoFOc4JOOL//kPl8TtXEHVcWBY1zuPMFq0QR3lVk9x8wHA4YjM5Ih2PSNKNINE0549atr1BVJXmu2dkfo3VCplOyPCdLMrRWSK0Z7ucMRkPevP44t756n/N5oAkalQ1Q+zmZSnCmWYt6GqCXpCilsS5OPO7u7nPzzVvgLdY2dJvJsoq8gTxNyLQG5djb6VOMhiyqJfffuctyeob3DZkylMbQeInWsp2L79JIgdQa2zhKJ3nppWe5fDAi4JFCE4yJTjdtaql1tFaTEkxVU9Ul1sGyDHzso49z/WAYx5K7ets4cqnZ3x1TGhfl1YzDtTLxwGY+rr151xNvayAr2pn70AUB3yLkF+cPto9tkDCEDWi2Pmch44iwiFqGNgQ+8swllJBMlwGpXOw8iLiDKxEXiNJhvehakB4bIjFqZ5ihAC9F3HQukHkCQiiUTNpdO+Yfo36Cc47KOAYFLa/fr8uOysdgGD9HqwrUnmqcztw0Wrvz7YKiJ6zPe/v40GMCw1GPP/RH/mdcPhyTpCnl7Jy3X3+D27cfcuvdh1Qrg3cerTJ6vQG7OwOaakoTAl7EC2rqJVolOBOjudKaYpCQZRmmXHF6dspiMkenGSJNcZMGZx1JliGk5N23b5MXGYNB1JTr9wp29/YpejnWlqQpXLq0i07zaFGmdUxjhWgNLQKDokDKyBDbvfwEX6m+gih6EWzUCo/G49G6IMlyQoA0yZEofJAkacHZ2YyT0zm23TWlVDGjaBqcDTg8PkujXr1Q9MZ7ONNw/9bbzM/PSKQlEYbKGByQJB5Xh0jSEdGuGyGoG4tRA1585jGuHY3W0uDG2igQQrzFtNYtpwFc1VBXNR7NvCx59pkbXN4bRnajd9HmDdYAVyIFIWk7Ki46TTvvYb7gYHcHQVyoMTgEnLNtU7ENDs5HJ5+2K2KMwwe7bsddbIddbDGK1s23s7LrzE6E6FqgnlRpnrs8ZJjpmK0I8C7umsY6ai+oQ0C0Emed4lV8jwjZVSYWKFpnrVpyve7tI9Z0wFa5KaCBfhopw0FIEiWiXmbLz1CyZVx250fsBnWU6hYxabOrDehK+1gZBGGrO9NNrH7oM4EiS9jLEl798iscPzhlWVVUq9hHN65FZZ1CyoSnn34GkSZUNtAf7IAI+CYSYiSBup4zGuax/+8b6sazWlUsViWLZYWYr6i9o26iRNZjl6/iC0cqQTnDcjaNqai2CNmj6Bf0+ntIJKmWKJ2SZHHqEB8JPkoKrI3S3Gmag3M8+dwLhHyHcjpFCoOTFp0Ist6QqjEgHHmek/YGZL0+Okmoq5LMw3xyhggBV0eRTreKakneWzANIk/Qqebw0mVuv/4G9x/eA2fop46mWlG5uApTCcHG3SdI4gLykqbxVGrIb/vEsxSJxgePIrb+BAKlNdZaUpngRWw/LpcTyjJaer/14CGf+fRLPH44BELLvNMgXGwzrstgixIaXzfg41CTa2/GTCu01rG0cXH02AcPOsqf63ZYytmAUCrucCKSlZqmpmkMzjkSJWBJlArz2+3B+D5rtF6AlhoX2m6EDwyHOXnCFgIfZeyVFKS6DSDEqUEfopZjkBGHk8GhCZRVlBFLnQelUCq54FXog1t3SJx3ZFrR0zEoeCFIEkUiPVpGRSkIUQ9RKGRbroG4AAgK0YnSsA4GogNUJWvthE7ZGdaQwvseH4ogMJsu+OW/96tYYxEiULf1UggSJRQ2BKROePqFFxjt70f5LCVwtgKVk/UHhKrBeYN3NdOT6IWnlKCqHY13ZL0es0VJvazjc1dLvNB85603eOGZZwmJpOgX7B7s08skR5eOGI3HpFmKEAIt4whJdD1yba23xfxrd9kgwBnH5b0dPvnDP8SXf+EXkN6he/tkxZhs0CdJC4pUY8t5/AKdQUuYTM+olkvK+ax1zq3JW2Wa6WKBd55MJ4x39xgORrzxrVc4eXgXKQyptNRlQ2kiPUC1AJuQGkHAG48ImqWBwaVLfPa5J5CteQWOKCDS1vDOu1ayTJApyXJ2SlU2NNZzf1LywnNP8MThqN2z/ZYDbsC3foyJFBwMBpSVjyOx0tOgyVtloASB8h5FQAUfwTQp8R6k1HEx4RHBokJABg9CkmtF0t/BI6IuvwhwNo3eB41ZA44d9iDa3VjKeD7YuNtLpRj3eiTtZKdU7bm4rlyI4CQSgnAEGuI0t8SHTVdid6dHTylqb/DtyDGtvdo2SUcAUkmuHQ0Y5RIFKByJSlHr+j4gfcDb+Pm8AG9si22o9ny2M592p293/g7J6FyLugASgnvfEqE7PhRBgBAQwUDLm5dhM7UVR1QFl65eYWd3J9J0E01eFKQ6ozEGNznBNw0nZ1MqV9Mf9KJIZWUhOBIB5+czlmfneBPdf1yacT5ZMCgKBrsD+sOCS/u77O3t0hv2yfKCLC8ixReNd1FrLtVRONM6F2fHRWTmRcvzQFWuYh2dKP75H/0s5cqymkzp7ezQG+1GGq+KcwhzZ6iXc2xVM7NRYspaE28Ib3HOsFzW1GXc14KT7FzbB6l44zuvsppPyLRHC0dZ1tSNRWlNywAgmqcEgnME4ZlUmitPPckLj18CE1qarKTxVQvGRbclqRSJlCjtqaZTSgPGB7702h0+9tLjPHftAOc9WsRvKe6YLUddtCMw3rMsV1gXQS+NJJObm3i/lxGsRQlP0BrXsvlcu+P7ligjtWqhCdki5Z5goviK81EzECBrvQa7dNw5t941lZJx5w3uwgLJtcB5E9NtuxHoBNcObMrYIvQeb31sYbSyiUJEXGO3pxgWKVXlsbZGtw5Lvt2pOxKTkBKJZNzLyLQmiKg+JVXUQBRyg1UY3y5wH+KsSeu9Sfu+2wGgoznLrnSgK4dEy8T87ngAfFiCAKCVQAiNcZ5ESZAB23iCDVy9do29wwN8XZElKcaUNL7GSU1TV9y//xDvA4PxgIHMwRmytI8qeizLGbfffJfp5BwhBE3jOZsvqVVGkRV86vte5PkXHme8M6ZXdAs/JcuyNXEk1QKRZutZbwSRoec93proTaejyq11NopS4hnlOX/4D/5z/MrnX+b8eIauKqwpWVUlOItbzqjnC7SW6ERTLVd40yBCdFvSSuOsxTpP0e/z9LM3mJ7OuXPzLUQwjPsFZjllsahxPi4EZx3CQ1YUNFWNtY7GKiaV5qMfe4Ebh7uRoKMCjfV418SUXQQaY0iShFRLtPTMFisqH1iVJZ//5h3eOl7yg5/KYN1fAIJE4rE+mrPIICDImJoqgXEmjk8jwHpqYwA4WSxpnEH6QK4TEiFi21PrOJMBoCRObqTKo1lInFvoJRLvZKvNHwVU7NpMZIs7QFTvkTaKhQBR4ksKbj044XRyyihJGPcSRoVm0CvoF5p+kZBnOoKDnRNVS8UWSq6FRu6eLLGqYNiH2dzinNvi+kdB2dAu1ERrJguLcdGzUUqFaj+vaAOkc57KxetZN82aTKW1bs/Jt5ThDQAYiAFMynXfh647sj1f8IFr77e+fP+HOAJKReMLqVV0A64coLh89TKXr1zHuoBOU7KiRxo8tqlYLWfMqzh5vXcwoshSkLqtkQLlcsndm7eZTs5RUlDVDbMaykZx44kjfvv3f4TnX3icojeIRI0sa+W8JEnLaBNKkehW/RbwrhV78AFnLcG61tWmQhKDQ1VXGFtTruYgFIfjjPmpYTE9YTE7xTSG8/sPaCpDMdqNAKGW2OAJwaEzjbGWRGRIFEoLnrhxmeVkymx2hgoGJQyrWUW1WhFEVMoNrh3hlRLjLCF4agON6vOZzzzFpd0B1tiYFpt2LFVF6azIodBkiUJ6y2K+orGO1azm17/1Lt+8e06RZZjgENKvCbbx22OdenofGXUO4mcgtqnwHpREtbecCx6tExpnqWTAiNgSpVX3bWynIARaSxKloxxakhLa70CHTVNuDTqy1S5sOQgBj3ENSqjWJi2+7qoyTBaGEGILVRCB3p5WDIuEQZ5SZIrxIKeXSHpZQpYoBrkmyxSpVrx6bwFJjilnaKlonN8KBF37Ll4lIQSr2sa5DudQtDZ6QIiSyHgLxoU4p9G5OrWZDbB26g6twlIHCMbzBsTGwGSz7rvA8P7HhyIIRPKDpnEe76BeeYbDIw6u3GBcFIBAZop+kSKaGktgOp1SrpZYa8mkRjaGbNjH+UBjPO/eecD5gzvgYvupXHn6B0e44zl/9E/+Kzz79DXGPYUXglRGP/tMeVQWbzLZ1qdCSpCaRIEzFULG2fNokx4168rFLCoQ1RV5r8AJSdl4jk/OCE2FxPP4lYLlWFKWOc55JpePmFSWx5/7KLPzBQ/fuU9PNczvvwvOMuoNQSqcb9C2ZHpyl9l8QS8XFMpxejbDhkCepTgbU/KgBFomNKZGC8XSBZpkyGc++Rz9LMc2liAE3sZloLVeA0xposnThGAsi6WhCTBfLvjFr93i9vGShOjsrD04F4VEZfAtci1a+quNba72dyFIRPB449oOf1ibYBhnCL5l4hG1drSUECTWe0yIPXMIa9kt6T2isSgpmdVNTLnVuvh5D4W2oymtQbpuR1YaEXOEWG74Tuk4pv6l9VTzioeLikDkLCjReV9CKmOJk2lYkSIUWGPbRRvtzyODU0E7IOW8wzeOPGnl5QIEHQjKY11b+giLcYaVMZgmCuHE1uyGMOWcX3coupmIbU2vNQIhWLMXv9fxoQgCIYD1CWkxICnGXBrsUPT6eGtxiUL7QKoDk9NjqsWC+WKO6ubeXZwKnE5OUffukvd6LCvLycNjBlnCykU2XgOMUPxb/7v/DYNUUs2nqBXsXX2MNNekCoLwsZUmFTLRcdH42KZSWiNk9CLwzsU+uhAEIUizjKapqJqGqlqhlSRJc4oiofSGZmXRMjDqp/SyBCEVe+MagSQvPNml6ywfP+De7Qc8UBIlA3mesZycszx/gHcVgcAw09jVOSeNAVSrnRjHlWlpps4aQDArFYODx/jsc9dQbc9c6QTXSmnBZmglTROyNMWWc+bLFS5ITo5n/PLLb3P7dIlWklE/o5enrXqRbIdwaG/6GEh8CFEDL0SfvUyBRsX+vojjOt0gzOF4SMDTGIvxISLv3qNk0jIIW5+AttD1LXnK42lMtBCzztNLR+095B/JAETbJmxfQETarwgBJTy7ox5FNsL7QNNYjHVUJr6mD/FPN4npXcCEQGNi+3QlBIIGD6SpQ+s4Nq2UIircx/HqdWeibbn6EJjMV7x9UvLEKAMnIw8hiawMb6GqGqyLA2Ox4pD4rWnKruW3aQ3SnnM8zQvKTVssyd+SstD/FIdKcp76+G9D9wYkSuOMo2kanK0J5QKD4PT+OZMH9xkXOXuDnCTTsffsfNx5XYNxtOqtnuF4xGK+5GxSkeZ9nrlxiU99//dT33+D1eyYXubQO4fMM41ygWBXXH3+JdLeAFfXMVrLuE9FGqdGiQwvJME2EQuoqy0ENuAEUXOwNMAcpSRFmiOR1KZGWE+a5+ANWiUIqQk0TE/exRg4fXiXfpZy/ZlnWC2nHL/7JkUKu5ePmB/fZXo2w3hFmqW4poo1eKKjPn2I5+6C4OHE8sxzT/LM4wdooaiNW8+tO9venMGjVXTrzRKNKZfMFjUIzclkxi9+5S0ezpaR0j3ISNMUh8euZ97D2kilo9tuWH0tauB9y+6TKBVprq5t3Uk83ltyGVAE0m7BCkjRZMrj0bFO9m2b0Hoa77AIfGv9pltgMEixbqVvhni6RRHWC0QQ6OU5g0yTSNBJgkt1XPCBmJITDVZdiAxLay2lbaiMJdiAdRFtl8HT1CsEvYjm+1Y7UEiCUJEWLOOQlPe+nZ1QfOmV29waJGRJxslZxqifMOznDLKUsvF4GyjSLJ6LErHrsUWQijyEDTW5Qyq7rOf92IO/JVGR/ymONM0Y9ncJtGmfAmVXuLpmVTWcnB5TLZfsjzJ6/SQq9giJ0IHaNDgX6GU5jfB4EZB59C9YVRXDnTHXrl3j0qjHpWuXufOlX2JvoJFe48tjynsr1PgqzfHb7B3tUwxGkGXgGvAyzo8nSRQrTRTOmDZFVEglIhrtBUWWMehpZiJQ1/HmdM7SmIY0yykGfXQINHbFau5BCrwLCAVJmiGl47Fnn+H0zgNcOeXmN79KuZqQ9xVmtuLsfBY17bXA2hqVaHSITaHax3QbmbEKCZ/89JPcuLwTzTeMRet4XY2LSvYy0EquabQUVNWS+XxJQPDug3N++as3uT8tSbVkNCjIs3Tdpw5BRIUd2Y2qtuq6OIQIa1syIaKsm2wxChdiGdFR+2OKH2tXgkS1mQm4mHKLmO5KiP5gImbtDoUP0VqsMY60FVKJhkiR1LNe+G2HJMqQK3wIpKlGSw0hDk3Z1oo+lisCF1yc2VDgiA7LKs9wZBjv4+cMnsYHGuOorKcxBlPbOP8U3BoIjGDiOjLF4BAck1XDWVmhWfDqfYUk4mFFqhnmOUYpnI+26DJEibVuV8+yFFpWoPftmHT7fmumFt1bdlOR21nBe48PRRAIgDM1ddMQhGM1n9A0jun0nHJZ4oKlyBOSPMW5QGWqyDuXitWqJJGKJE1QISr4eiGwzpFJQX+QMx4ViEyzWMyol1NOS8v1a0do1UPKhmZyn1VVcef1LzM+uEqxc4CpNiKTOkmpFkswDdY7jLGUi0VLPJE4V7NcWawxJElKnuU0zSoy4KzEB8u46DE7O8M0Dei4i8kgSHWGTCWLEvKmpJ+s+OY/+RJNMBzsFfjVGQ+Ol6S5pioNwUGSZRCi14BzoFSKtYGpSfjox5/n8n4eBTRctOe2JoKECBDtTZHrrG1Vzpkto5b/nQdn/P0vvsnZsiFRkvGwT5FF4YyOaBesbxdbZCFKBA4fCT8izh0oGXfB2BTr0nS5lcqCt7Gd6HzceWkFPWQLhAmxaXd5vwU9+vg85T2pFNR1GV+vzUK23Xu3NQuFjCO8UkUKtBCdQKtoPQojYxAVJd9TGbsQgQgWOmNJRacHGZF4ncSSjCxhJUsmyybeMyKiEVJ0zL542tZavHeoJLZgRQtGOueovccYj088mWwXtdKRJen9OhMoyzpugsRg64m7fAx0G1JQRyDqyrVudPz9jg9FEPDesZyfU7uGyXTOyYMJeEeaK6qmYdhLcd5QlQ6dxLSwqiu8D6RpjlCS5WIeRTyDxAKnywX3jycc7O4gfQVe8MqXvog8fsCVwx7N7JThKMP7PkIXHD7zPDYY3nnzdS4dnrH7xHPY6RRb1/RUSugPqMsK1zRxcQkRraadp17UJDoj7/UIBExZYa3HecFwvENvOGY2m6DSDJmmcUKvrhGJQOQZy2Xg5suvUi1ucz6ZYF3FMLPU5zOaxuAJiKbVqheSFImTHq8it/x0bpDDQz778SfYGffwLUItZMCYOAUnUNG1WIk4DpxqysWcZW3wMvDWu6f8o6+9w3RRoRMdZd203hqgC0jfBhEBQqo27W0DhIpkFdXW4PH/W119sREv7XZGE+djaZXG14Kdvq2fJRLhQgTUiJN5tGi/aMk/1lhoWRE+bFFtt3a9iCtE0pl3NrIjM72WRwuA67IOIUjWwifRDShSrVm3/bZdfSSBVILAI7KUxSoa1EL3eIlUEufrVkIsegvsDIeM8xwXQpuFtN2AEP0WpIDFKqo+x3PayItJFenPa90FF9mqGx6BIM9zjIlOVlpr0jT9ZyAT8J7SNMyrFVVt6e2MKJdLlmUDLmCsIdMCGzxmZeLElQeBxDYOLyOGYG0kj8xrw/G0pj8as7c3ZDE9palL+u6M/b0+40KRCEc9PWNwNMRkBen4gJO3b3Ln7Db/8B99jX/px1MOHrvBqikpTYXwAdPE1l9T1TRNGXX7rEclKf2iiO2uqkbqjJ3+mOFggFJwenxMaGqkCJiqJggo+j2SbMhk3nD77Xc5O3mTplrgqennjmZZ0TQN3gd0noD1ZCFBakEQHtsoRALTpWVweJ1PvfQYWkRdQxNa8wzjolS4jIE2kxKVCJJEs5zOWDUG1zhefechv/ry2yxWDXmWMhr3KNI0zvf7DiTzsVsRiLRWDS0U0S5O0ZJWohIvOJAC4UN0MKaTHFt/69GFOGJ2a20+2S0y0Q4VKYEKERfwrSmIdVERKmZTcetTnadDW/+ua2OIc/nO4IRGBU+eiOiVKOLodUzd25ZeCBvKP2JNAY5CSpFF2PERohWbiHiEFhRFSr0oN9TetpffKRjRUs938pxUuBgwVQQFdR75FziPUorhlT28kNTGs1qV0Q/hHHqZbq/FpvbvsqUukJmWTBVCpFnL7bLkfY4PRxAgpjHaebA19bJhvqoISpHmBdPVnHGr55ZkCVYqjJBY4xAt8GKtQIgMlGZeGoa9nP3EossTeqpikAmOxn2SVGOcZboI9EUfP5tSnc05fXjMydmSnStP8f2/73ewUDm7TcWo1+d8ssTWK1wwUbSylXBWUiNUZAkuJtPoWJQP6ff7CDznp8fUVYmxFd5FbnuSZuzuH6GHO9x68x2+8au/ijVTVLD0ipSmLJmfrzCuIUnaNK+Jab1QYBoXywkZuHPqefzpp3jh8cNIGXVd609RrppWc0MQsJEPryBJBNP5gtpGltk3b97lV15+l2VjyPOUg50+Wsd0vqs1A1HjTmvVinRG482uBy8IiCDXmE4IUe9AC0Hju+GluIN3aa0SAoUA1ernhdg28z7esLHca9Nv15YAqlP5id0GLSQudNp7EmMdIijWU3aiFU1t03EfAsM8JU9aHMN7tIyP75h4ou21x3Px6+xDEcuHTgleSgFSx769iEIrvR5M5qv4/sGBUGsF5vgcGPYSEulaJqNCEnCBKOHeXp3GWox3aKkZCEmR6TUpam+QdVhsVMpuVYmt8+3CB+sduIjfiDaQeT7kmQDBs5pPuP/wlNl8iQ+CpnFxlzCKy4/fYDJZUi2mjLwm6aUYCQ7HYDDGBUMqFZPTc1xtuNTz7OuGXNdkuaSf5UilMd6zOC85XUrSRPH8URwEOjudIvKEax/9LKOdXZRbcHrvPkm9w6Wrlxnt9nG2jzE1TdMQ8FjnovS2s4x1GjsIrsGUJbPJBONqnO34BhKVZmS9HsOdQwY7hzy4c49v/savsTi/TaIcaeopZyvqMu6QqdSRICIhzRO8jV6EQmfUteG4znjxpWd57rF9ghM0NlqqCSFiRiRaWnDw0ZZLxV12PltQG0/TOL7yytv8+mv3qIyllyccjIf0krjr2q62bHdppWQrgOEJ+Mifd5HcFOXGZHQ9krLtekT2W9QgDNHDL2wWhPDQ9hiJKUXbkmsXv25/L0IctQ2iFQgRbSngAy4EdAs05mmKsdW6bRbanUW0jwdIJOwMMggBS+yjO29omxJtadI+uW1JCinZFkeVLVNQylaBSIY1Xz/TCtUKwXYuSc7ZddcgzxN2BwWKaGoThVgj2Lgh/URGoAwxgHhi1tNxAdIuYCK6caOonRgRVEC0nYm0VYX+/7T3ZsGWZeld3+9bw977DPfevDlU1tDV1XO31K1Wa2i5QUISCAESDgT4BT8YIkwYP0DYOOwHhhdeeLDD4LAjHDhEQBgQMiEMsghZgEYkNHXT81Rd1TVXZVXldKdzzzl77zX54Vv7ZKrpKkRDd2a4c1Vk1M2bd9h337PX+r7/9x8Uc0kFTo6Ovurjd19sAuMYeO75l0EMwxiUjRcSbduwGSOrV17j27/rW0nuHQTrKUkrBCsRtj2f+uQXuXH7Gks3crGFRy93XJpbGjqCMQzZcXI6cuNoy+1yyMOPPMLlxchqnTlenbIOB3z4D/2n7B1c5uj2i8QhYg1sQuSll6/zyJVLNJ0KeeazlsY35JwYxp4cEqE/53xYc3p6gvEzLhxeIOVYTybDvOvoZktoF8RcuPb0U/zrn/3HnJ/eZL5oaFxks1KTDt9ZxmGkaztK8sScWW+3WCx73ZKTbeRW7/mh7/su9mYd5MyYlIVmnRCDknCsc5DrBtAaPJmT43P6rC3Jb3/xZZ4+hdnhZWR1zKWDBZ3TTSMWbR9E9ISdcghE/bPIRDXgLCDTaUOpfPv6RJWKSIvyLCqvlYnp4p2rmIGCeVq15PrwTC1C5ZDUvn5qO8SIirJTRkrimrPcPDr93b3YTldft9fxv3Ntt3B89jV/+qvOQs61osqVwq6tFqL+Byr8op7+FaScLJ7eYN0Xm4CyKgtDPxKHhLXQNZ69xYxiM4jl2c8/w2OPv42P/NifZJszKRW8eJ767Bd5+J2ZvDnioHW85ZE99r3g84rGwjiMHB2vefnEYBaP8cTliyw6zyYIIVpCdOxfegxjPRC5dPlhWteQksp9cxGOtz02RCQHYhzJKVDCQI6B0GuisIJXKIA5FnzrWC72mc33wDVk47n2wnM8/Ynf4pVnnmLsz1nMDCZv2awzpVis1xNy5jtNXc4jYUx0TcN83nHj9pbYHvC9H3kHi86SS1IX4lxwRoihYgjOVz6AxmWRIkcrNQIZxsivfO5lbqU573r3wxhjOb1xk83pbShBTS7rA+zslLCjrL7JaBOkgqMWa+8O7KgnfVGJtUEZbrb26NYY8o6/orhBSrl+H0PB1hSh+rloanBBR4g75l9KypLMWq7/0ccuUozj1aNzzoegJ+rE36+TBu8sj1+9hEkaG+aN4gKlqOpRXYp048k5U6pox6Clv1SMQPGATIqZhFFpdP3RQ0zcPN9y1t/xPJhGhaVkHrlykWVjMWS8VabqVL1RuRulQAQQjVrT25m0qxCUpVmotuO1yBchG6mS7skRSu/xxCHhfscEBDQDLwmzWcvMqkZ9GLZ4Cm42x5B5y7vew4WDKzy6v6QfAs8+8xxhfczCnfPwI5d5/HKHkUQe14zRstpsee3WhudvJZbLC+y7RDw/4vQ848SyyHPm+xc5fORhjFVll3EaP9Z4j5/NMabgjCeXQL89x5cl67MVQ8jEWDDdgsWVJZDxxrFc7IFvSWFks1pz6/YJ29UpRy+/wMvPP83p2RHGJJbLhKTAMFYkXQpt02iROCbWfU8xjuWyQ4CXXt/Q7j/C933Xu/DWKMaQIqWo8CaGkZJUdFRy0v7fGlLoOVsNFGNYbQd+9bPXOGHO1UeuYFDQ7eDyZUpJbM+OiKLovytS4zsmP0/7O4goXnwd57ED0nJVfKpXnioYXe17pfbzuYp4EgWyZh5SpFK09UHPKAlM2xCnHnrTdACdHEwOP4mqvSdzcTljSJmYsiY9qx0Q3gqH+wtsDnVubna9szLtdGPbuf+UXEeRTjeCog/iZOKpeJBmL0wTSTFC4yyHyxmxbIlFK5y6T9H4htmsxZZIU09tqjxajFRSUU1pKJUBWd9GpFKHSzUdrW2T6HizlII3VhmVKZFK3nk5KiiaKOk+3wRSysy7Ge18BjkRtmc0znJweJkQA2UMGCc8+6mPkoeeZr6HsZajs1ucvP4sOZ7yxNU5s8WSzcltNpuB9cmWV26u2ETP3uE+XWMIY09OyilYXLxIN1vSdAvEOV557hkkB2azlmG9wRmL8ZZ+s6q9osVYfeEfPvQw+xcvYpzGjJ2drzg5ukXrO85na8Zx5Px0xemt19lsVhxff4WzWzcVu/CFxg+EPjGGoqSfCnKNIbIeNA24rVr3mODZm4F3vO2dfOC9j+iDWHvnXLSsznFE3ZQarC3kGGmcYejXbAaN2zpdrfilz7zGtlny8OWHQaq5hoGmadg/vMh2dYItk+jH7jjqlOoBaKrgRe5y7bXTaaYPtDF1sxDBW0s2BamW3IWCr/25qYSinQSo6EZRStHpA9qSuGoDkGs+gY7pdHY+VRhSUMKWSzx80LGNeUcz9t4z857WCqU6NUOh1NbEmNqLT++vEw6pY0KAwpSLkOvsX516hKw/z7RxFU3YfuziHkmEUjkQpWRmTYOUXN2XUgUf0Yqpjh4npyArSqzKqdTxpOyqmuk/lUdbpP6sTvT+xpzJUYHXjGYa5pzu5hD9W+u+2AREhBh67HrAO6HrHM56TB7Viql1Ogpq4aWnP4VtvKKhKXBy4xYX95fcuHGMy8e8cvMWq1VAcsHN97h02NC0Da33Wnq2M3CeXGB7fgah5+yacHLriBQHOmcoOWCs0x7WGaw4xHi8b4DIyY2X6RZ7iFjGYVC5bE6EMTFuB5wFP/OkMRDKwOnRdVKItB5aCSoRJeO81xdQKQxjqNfn8d6SxpHTVeTW0PCBD7yXd73lIS3vUqwz8aIMxtoaGddoT54M3meG/pzNEEgYbp+s+OXPvow9uMpbrj6EJC2xS55GY8JssUCsx4SgGICYHduMio1N6r1UwAlVNlx/iUU0VUhJBCA6TUhVtKRlPjuTTlcb/pSzegLUknqXtpNzPcXyXSe1Mi1F9CTGGrwxpBARq14P3kXmOWklUQM5pQQkld3XNsZWR+EJv1A0X3b70USDnmi6dxl/1odJH8RaueSqS1BiAR5oUCFVLtq7uxSmYgYRdhwB2bVRZeeNSEEfZpQOPe3G6iVYtRlOjWyMd8TKBJ3aMmutdlv5TsUg/yG0YRF5HPj7wFW9PH68lPK/ishfA/4r4Gb90L9SSvm5+jl/Gfiz6Fb635RS/uWbfQ9rYH/RYqozzYX9fVzrGDdbJEa6wwV7vqOdd8RxIBdBojCOPcUKn3vuVVrfsH9xSbt/SNNsmXUq1DHeMGtm+K6lbWcqU46BNGyIFVgJr79KaQzOBM5OzhjHkfl8gfcNY4wace4cGfCNo2lavHHQemIYsMUy9gMUi59b5osD5hcf4qUnv8Dp8U2cwN5+S2EgbDQdKGZDKElP7DFRYmaxaMklsz7r6UPmZprzg7/nA1ze39PxVBjqeMzgGwVRY4wYKThvkBTwvrBZr1ltE6U4To/P+BeffJkLj76FK5cuq8FpyWz7Xplm3tI2Df12y8OPvpXTW68RhzWU6rNfdM6dkuIOOhTQUt4YIUmt1HXOVftafRhCiL+DQeecvRPJJZUEA1QtLVTqL6UyhaUay0ymGmIpRnkArrFM5hrW+9qOFKwoQk5RliD1YctkJFf341J0jFYEseqhWKToNL+OREsBX6SagFYFZEE3tDJ5CHKnhZgYgtTdrp7apr7AiwFXXZNzbSvqfkiK9Z4YtIUomvgkxtI0HlLSESWqNlRQtlBSVuGV/rjqBu0s4hwlVLfGyjv4DwUGI/Dfl1I+KSJ7wCdE5Bfqv/0vpZT/+e4PFpFvBf4U8H7gUeAXReQ9RUXbX3Xl6g2XrdGwz5QpvaLcyVq2qy0ymxzYVJByvl0Tx5HlYs573rHQcV0cNZvPOUiGprE07RyyYRxgdX5K41WA0y4W5FJY7i3pFktKGjk9us1pLtjFAr88II9R1YIlkyrQgjhVvpFpspZwfYxY41geLjG+5ejmEbdu3OLk+Ba2MRzO54hNnB9va3/d4HImkzUe3Vj8zBFTYRMGrp8MXLj6KD/8be9hb97pS7BEjFi1JjdoNREiTpT8Y6qrz9nZmr4fsdbw0o2b/Osv3GTx6FvYv3CITKnIgLUOt8sCg9XZiocfeYxSEjevPYe3ovHYde5vrexYcCIWjNENoPb2pZ5QIhnDFK4qpJgrN346iaZTzdYhmTLbBMBaPb2N7KzLnXO7h80YIZbJy1/3jlTJPepjoAN0Y4yanDKd6lBi3p3su6Re67B1IjLRhykTzsCu9RKrD7eadlQXYBSYCyEpF6Ogpb4x5Lr52Nr7p1I79IlEIXo/jFQdh0z1gP5QKeY7G1+l/yKqgBRRqXWpfIaJEq0OV3lHGMIZ8piwzuHcZB3/NW4CpZTXgNfq2ysReRJ47E0+5ceAf1RKGYDnReQZ4HuA33qjTzDGYBpH6nsFbIoCQTFnQs5curDEO3VzMRnCMOBTYe+Ckn9uHZ/rjRELKCuu8S2ubckinJ2vCSXTLeZcuLBP5xu6WcPy4ABrLCmM9Odbrj50mb29A5IYYo7025Hh3NB0Xhlq3mBso1z8Ko8lCW3TsFyqwvD0+JST268hAotG2JsL43hShTKJYRjp+4hrDM54uq4lDAMxDGyT4eZx4uoT7+a7vv3t2Gn/LwNQT62ciEPQPtAYvLM4J0DgfLWuJa7l2Zdv8K+evM7lt76bC3tLnLeqYsuZFBOzpt2JbfrNlhAi1hkWe3scW0/J4y6cxDk99aQ+RHXuBJPVdT3pJ2RfT1O1CDdJKcWUyVm4koWsqPcgpfoG1PJ7At/QB0qoppopkbPKl6nGJSXVTxNhGpwV6oMr+vmx2pzrs6d8BVPVg9baSueNVXJsEFP766LTA6zBNU6NX3fsv6yg4DSDK7WryGVX7kvdAEpO+v/pYyjVJwCEGsYKlRNimPImfGUSMo1RyyTDvlPN5JIxzuymC67RpKhcdOMxbtJJlDcbDvz7YQIi8jbgO4CPAt8L/AUR+dPAx9Fq4RjdIH77rk97hTffNOqLAlyjRpJZBFOEznls27JcdJSc6bc93XyOLAx7tmHcjmzXPYt5ByYQjNe6CEOsQEq/GvBdw+X9Bc5Y9mYz5ntLfNMw6culZGwzB2PZ3ztkfb4inQx0bYMFljPPkAum6djbv0SxjhsvP8+w6bny2Ds4uPo4Ry8/xa2Xn2WzXmFN4dJS/fq264ApiZATIegvo2sd4i02ZYbtSM6JfoTX1/DBD32Idz9xERPVTy+SiUmDQlMKOjJLucpoDW1jKSlydrZhW8v0J198jV976ohHnng3B/v7ahdeMmUMxBBAYH/e4o3l7PSUo9MTTOvZbLc8/+wzMIadGlAPmWqciZJfUlEwyk6EGgSMRXKs0wSDWFFvAalRZPXhn8Z8KSfIZUdv1RFk2T0UYlQdWEqqGQC+VoJFLdTkjtX21LJA3smb5a4HEFupvbsqRLBOxxkl52rfrgi9EaO8BiNYV3UJMe0e9Fhqi4PUTWgakVYhj9GN6O7Rn+xyAnTfpMhE69H2qo7/BAXxJst3Pel1k5Oa66jO0NRrQHkCdYSZq2W7lAo4Ws1tSDGS4htbjr8xWvAVS0SWwD8B/mIp5Qz4W8A7gQ+hlcLf+N1+rfr1/pyIfFxEPr4dA06ExXyOs475fMFsf8lyb8HBfksms+0jOWtPPu9aUjScnmzZbkbSmPFGZ9Z9gJANqSTW5yusFRazDsnUGC2QnJAYIWf6vme7HfDNjMX+gSK21jNbLFjuL+kWLTkXOtfQmgZnDHkMjGPBL5YY33D26isc37hGvzqmsZn9DiQOxKGnlKyOSSK0s5bZvKWbN0jOyj6MgfNx5Hbf8t0f/nY++M6HcUUtsDKlkmSSGqxEta82ztC0nqZVyuvZes2QQYrw5LPX+KUnb/HIE2/j8HCfUmIdHWX6zQYphdbrGPHk7JRbxycgjr2DA1595Rq3b97Uk8xo+WtAx0u5UJ9p/bvW2hW0q69IoT5IdyHu5Y62/W7DzByrHqEy+sRIlSrkHRJupeAmFNyKPswC1tt62ipOoW691casouzO6ik7cZesERrvaBv9Yysg6rzTCtMYtTkvOuWw3lGqiWwMkZiTYkhINVXR7w/6EKpVeW2v6oNcJvVf0U3D1FGgZdI1aGsy+RXmyknWTEmtfJ2hxpap1NlUcLIYbVOcqQChdgB6TaL32daEopzznd/TV1m/q0pARDy6AfzDUso/1d9vuX7Xv/9t4GfrX68Bj9/16W+p7/sdq5Ty48CPA1y9uCyLwws7k03fNHgrzOctY8wsWsdsXpjN5phccPMOaTxmtSKNgZgSm83A6XnPKEIImdYI85nHehjjQNfOmHUqGIkxUHIkG6c4xHJP57BjT16f44DYNsQxa9CI8aQ6D1+f3eb09i3anDg/ilw/O2J9fIMUC/NZoWszYYisRk37zSnQzTq8scRqGxVTpGQYC5ysRrbNIT/0B7+Dw/mcsXLNrelIRJW4xTsvNpyoGWhrKaHn5PhMN72c+PiTL/Gbz5/zjvd/KzOjWoumbZk1HmMd/TAAEIeeW7dPsSL4pqFrW9I48uIzz3L1cEHj9cWV6lZkjCemhJtsr6eSXyY661RRTWCevrhNqaU8GWe9/gwT0l2sRk8JkIUsKC23nunOTN4EllRyjZJTtDzFhPNOPQOtUX/BqHYl1lq8N5V5qOdlzqmellq1eOd05p6iGqJIbSVqze6sw1pLStUxqE6JYo2yN/nOKDGXKtMthhxi3Ty1V6f2+urGJOrGJEZNdLNiPEYEk2uVNVUP6B5rnENK1kkC1ckpVYDQ3hnXancg5FiRRqOVT0mKkViqa/MbrN/NdECAvwM8WUr5m3e9/5GKFwD8CeDz9e1/BvykiPxNFBh8N/CxN/se1loO5suaNBOUTdV0WN8w95Yx9OQwkvuB/UsPc/Gd7+X5z3+a/QtLttvA0e0tQ7Iwm9NmYTE3UCIpFTb9FucXbPuItSPSj8wWLYvFAmss3lkgVYvygbPTLQXD4aUL2CYw9ELMke2mZ7u5xXK5R+Nbbh3dhtLT94mYIgcLhzdb4ggxwLxrtWQ0kENmU3XvxSiS3sfI62eFS1ef4A9/5IPMrFSjUS0PnUmYDDFHJKszrbF6crnGkcYt56dbcraEYeBjT77IJ14beP+3fZBZ1xBCxBnFK3LJhO2aHBJDUksvI44oojZu48gLz7/IrDE0rcOYWr4WdqMlPZwzcZL25gxZKq0+7cZqufbzXlQzH6XiAEXTkHfRYIYd+YjKBVCPwfo6tnZnmOmNq5uOBpV4a3FGNfUTN18qsUjbkYpBVFBNU5TZzefSXW0Au82mbk6oQ1FKScHgrMzJHLPuWRUMrUNWrP5oOvUwMImo9GtpnT99DpJ390dHAXr/SvUoQGTnwIQIkhMp68mvfoEFY6kTIj0YYlKMQxWXTiuFrPZumCrBdvZNS/7fTSXwvcB/AXxORD5d3/dXgP9cRD6kLxVeAP5rgFLKF0Tkp4AvopOFP/9mkwGo2msLUGhai7UO27R0sxlxHBjHgVzbhX7bc+2pL3F+vsHYhmbeslcaDpzQekvsAzkXjk/XOFuYdR1N62hmDcUa9vb2sQ6GMJCTev+J6N8pilr7bsbZ+Rmrk1OkGEJfo6Kt0A9rTm8fq532VnMPLx00OFPYbvSUXnRCLMp5j8VAShhXU2SCos/XTuBdH/wAH3rXEzTekFOFprPmAOai5h2FgnF6MmNV+BRDz/nZOTlrr//rn3mOz90MfMsHP8iVy1cY+y3Chpwy222v/bcIIWdc0zBzDa6b4Y3h6OYNVusVe3stjx0+pNLjmBhDqInD+qtzxmm5bixDTMyaacw19dpF03ZEsNZTJGCbBpsLMSg5Jsa487orQEllB2xNzDy1LZpizOuscAIkK1NvciFSk00F8rDKeygTCGdEK5dcOQW1ith155W7YI2W2PpgSj2CK1JfagBrnU7IRJuumEMSdaOmFHWeqm2MYpfax0/4iY5Ws9KZ6+vMuknNWHZ5jzmj5CpylUU3ulGZqpUugik60kylYE1ERFObxCgOECfuSC0M9Nrf+FH/3UwHfp1prvM718+9yef8deCv/7u+9rSMCHudI2eNXLaNJ5XIeH5OSInZbA9nlRgzpgTjOctlo/12CMjcYrPg247YtKQUsd7SNVZHReKwzmJyot8GVmcnzPda9vf3yTkxDomEJaWRtrHcuvl6deEVjs9OsRiuPnxI01pOj88Yc8CGgUXrWHawXm/ZhoBFr6eIIVSUvp03iLM03rPd9Lx07YiTsuT7f+BDvP2RS0pHLUX7/moGmkMk1Aw+U1+bvrU4K2w252w3I2OG1XrDr3zyWZ5bGd77gfezt5iz2azo11sdLVXDVMFp5Ne2V8NUASuR27ePCVm/z6MXl7z3rXOGITL2kc0YGGNhHDPDmOiHQERw7YwhZmIq2otPjja1XxahgomFYRwYY9CHBxCxO5Ra+US2ntL6c2aq0Ug9uQp3XIamNmJ60FW5V8NOpt63FM3800GeouITE28KMZnIR4XKUFRQLueiUwwmduIEuOmDLBU0TBMdWQSnr3V1d5IJ+09K0y1V5luX4pOCrePHiamoB6Cp8unKRZgmCLUFUBKRCqZyrSK04qntTkpKfsqJQqrXgt5BAVsm67avvu4LxmDKhddunNFaFWe0vmF26RFs43DDOY1zGG+wxVZwLBEThCJISXhjaOct1jpaEaQ0lK6pTryiAIovGNux2kaycwx95iyf6dcJieVehxPh/HQNztB2M0yBbubpFh3Lbsn1165xfnwLyYn5zNC5nvUqsN4GvHMkq72oM0Z97MQwmzlmTcsYIl967Yyxvcgf+4Hv4tLhQnneUjBRTxAnon4FRef4uSLovnN4J+pbsN6SMJydrfiljz/LsxvLhz/8nRwe7NHMZqxOV5WFplZfIUa6bs4YejAW6zxh6DkfRj2pndPUoxI5ZMA1Bbdw0M4ptmEzFLXgHhIhFtrG01hLkUypMtfp9Jw4+bmoYUYpGeN8BQmn37a+4axTizKrZX1OdzaRnblPvZelZFKpCL3Rcj6VUiW4U8siGOxdyH2l8Ii2m2IMY6wbbgX1SjX/zGhFFfNUDdQe3kityFTbT/VGmCYQxgox1hzDyiEg5btGpewwBd14689jQMTs/B5SjsSYKnZXCVJSFYNT5aEfqtwNU81ZcrU4r6ItEEoSJRPVqUnO1d78TZ6/+2ITKMBxH+D8mP78jP3FHleipdlbUuhp2oY4BEpSIkpxjn7sMcaSpZBKIoWIQfs3KZnNMIC3ZGOYtzOamUGc5/jkOt5Ewjiw3Ray6zg4uMBsuWB1chuMcPnCIQeHF0moS0vYnHHz2sucHd2CHLkwN5Rxy/kmU4zFdYIzFt862sZi0KAToWEYM+vVhmdeOuLg0Sf4fd/zHubtjJS0jCNmqri+qsYyxmmAiimC7xraRtier9n0kYKl32z4f379KY7Lgu/50LfwyKVLRArb1YZxGzCuq9zxRIc64q6GzOFDV1k2LZvzM4Zbt0hhrPNqYRhGzlYJIWFjYD7rWCwWHMznXJh7rHgwnjEEXG5wRtQzg6xlvDgoqQJyWvI33hNjxlU0XCZlH3qiGyOUmJQXAnfRW3W8aGuQTM55F/4iOdcRYq0uqgw5lVz5ArV3rq8F/V7KjZjCUEvRCDVTK5CYUiU7VS8AZ5kIQJILVhR4lVTw3lUyU0aKkplUSFQqaKmtU3FS27WCd7bO/+sGIjr5sdbq6Z7VGajc5QWo9GZld4o+3xhnacRUTYDeMyU61Wqh0rV3XI5Ji7lTen71dV9sAjEkbr3wEuebDc28ZZVHjuLrPPHYVQ4uLjjvM9a24B1jf4ofA6YIY7/V3mmMnJ0N7O0tkEbAwmJvQdPMyKWwv9exOVuxOT2mc4X1mMA0GBk56Cw2bNgeb1l0De3FQ5q2xVbhyepk4OWXrtEPx7RNxkpBxg2bzUg2Hd6I4hilkGOgn6xnxGKc4/xsxctHIw+97Z38vg+/B2u1jVGZbVI1Wk6kpMGT1IfLJqHpGozJ9KsN6z6SxXLz5Iif/Y2nOG8v8V3f/gEO2pYh6uxOnGexpyfsdtOTi2Wxd5H5cskjizn7Dm5ff13LxqqKC/2gD0wzZ+/SZbyFPG6I45az7UAbVYHmGg3ZSHhk2ZDGwBCExlpab7CSKhpvlPxjDM56fA67rIFJXgvgvI7TUq60V8AZuyPw2Dr60pNWhVK26Ggsiz6409grF1XsqdlJ2fX7iUmcU4hKscMKGON2BKYxqu9g2Y3gIMdIqQ+T343ghGJ0Q/LG6/SklJqaLTjRQNpsdTwXU8J7R0MVB9XWIMeEdTVQpPIdpp/XOK9tDZNFmm5UE4CqzMKkbkh17KtzjWrWWrRFo26QZCE5/dgS7/N2YBwG+mGg6xo2g/r2v/Vgxnw8ZV4WyEOPELOywm5ev82hQ+ftjXrVj76QmsRpLnTrkYceOmC+vwcI222vfv0lk6XDSGbWoS8uY3b922JvyWwxw7atmoSuN1y/fYuz2zfJ4zn7jaXJkdPzDZsxU8ThpJ5So1FVmrU1ntqScuFkteazz6/4A7/ve3jX2x7Bi8FktUXXnt+RSlHADANu6m8z7azFlMxm1bMZC8Y5Vmen/N+/+gVuDp4f+I73sHQN4hf0KXLh0hUW+wtObt9m7Admew0G4cLBBS5dusjx6Slf+vxTDJsNbqYe+SklBf5KYTNErp8NNNbR2I5Mx2zZ0KcB3wrFgnOV5ZcDt26e0YdMa4WHL+9zcGFR5+HcxQ2oJXkpUO/1rlutdmtTrz9VCRbIxkCukeVUTnylyOIUxrNSIKrIJoGejlll0KZQ7b0n9qlWIY2tFua57DL+pmXF1Lw//ToZwXqHF73WVPIdYRXTLF69Byd+A8hudOe4a9Mravah7Yep2IASebLVqYZyKETHjEX5CYjGxBljdtc74QOKJd2RWCt3WjfDqqDeYUq5OkC90bovNoGutbz7nZdZ94Gbr53w0IUGl9Ycn46E4jhsFsyahm2IHLYQSiZsB+bdjM4bGguuc1Ay887Q1Lm49Q7ftMQM7d5lhj5w66UnNR03j4joGEraBoxhGAJljAzDSNhsOLp1A28jpmyxSdiEEesb9hrDmDIm64u7bRswtireNHzz9umW6yvHH/vR7+fxRy4iqOd8KkKOESca2jnGiDFO/e2NKvOsa6AoDXgMSjh55dWb/NSvfJ6V3eNDH3ov+xcvY63lyuUrpASHl66QcuT6+iWaxrE629B0c8IQePXV1xhjwDjDetzikmW9We/GeiUlxKvDUywjvTGkZDg5Hwn9oNMVryecc0LqV5yc9vjW0ux3pKIc9RQjpkzy3FJJOgZvfXUH0gcUlB+vZTdMfnu5qBS2VKKSFCXhaEx9JdckffAthmjqA1vJS2XKHWBC9/Xf77ZHK7XHz/Vnd95Sij6AOyou09Sjfk0RBAtGQUfVN2sGBUaZjrlIzUIsu4f1jvmqgobW2uqWVNQEpGIatkqoc05kKeRUuRgVFS7wO4BKJVQprlDyxLWYWJ2KqWi7uZvbqCr2DdZ9sQmICI1tWPdnPHqxIYyRPjU8dHHO4RXPrNzGBIPNiXlXOBphvc3EElkPgm9bDAFBiOJ1fm0MNhQsyhOPp7fYrE5117QN7dzXzEFbTxegFLYnp9x49RoxrvGtxYtgiGxHQy6mOunCYjbDlIIzSSXBriHWQIzbJxtuD0v+4A99GxeXM3aOcJVFhlHkOIwDzjUYYyklYIGmbUkhsDo/34VyPv/Sa/zjX/0S527Oh779vSzaBWEciMaw6beEPnBwcMAQIsZabt54nfPznitXr7Jew3rouXR4WFHwjGmcpg6Nmnw7hsDSeEJQCbaCVo4+xLppGfosWCmE8QwJQQ95sRXBh+kUzBOJRgTnPDkHcgz6IqVUfQcqehLl4VMfAi1368OYE41zVQNwh15sxdQ4MrUwTxXME0TJRxMhp2RK1UCb3RRAlKhBqelS0BirTD0xpBwr6UnL+0jB+Cpz3qn6FH6MIallWtH/UVsGTC3hS7lj8aWvcmLOWG+xxmtFUJ/ahKYapaRgohHFPpIYTK6jV6gTj2liopoA7y2xpDtTDoHJ6WWiIKuU+z7HBARh3K5xMREyNLM5b3/noywbq0BQjDoJQLCzBWbo2XMFx5ZhOwIdpp1hfMtYLavyYJDQY5zHpUIOPcYIi9kMgDCOBFHwxmbBSubo1VdZnZ1SiHSdoXVgciH6Dt8a1cYnjdaO40AB+hhwbqCdz0lD4rPPrDh87HF++Pe/kwuLBSmO2FxNIaOWgzFpgInxFmdEP8YYfNeRxpHN+ZoUBOeEL7/wOj/xi59ni+XDH3oXM98Qsr5g0jhw88YN9hYKahajfvoWg3cN1rWEOBD7fod4e+fYbrfVs197a+88MUdidDhR1d4YNUjDOYuzOq/f9CqFFiLzrq0GonA2FpqTDQfLlgnGlmKJYWQ7qI7e29qH10fCuKraY5L+ahXA5CiMMOaEw+BqUtFkriFl2igy3lqtHiozTl16Kn23nrJGpI6Ya05dzlinG0opIFUmLtarWWpO5JIwqdKYncF7xSrCmBhTpESNpqMyBPV6FBxk0j9YqQEt7AJAnPVIVo+BIkbdobKajVCo+YdVERmTVjulOlurz75es0zcDKU5KzV4qhjYgachjGr08h/CE/hGrJIV/BLjuHxxn0cfuYDBMEZtdagiCuc7utmCwwTr1Qmb9QpnPGXs8a2na2eEUjPixkQOCe+XhCEgMSAGNeIUqRJQg/Etm/Wak+uvMKzOECcgmc4YylhIraPN+mKyi4YhFFLWcjQMgVQMY4CTGyfcPLO84wPv43ve/w6os2frrPpAhKAU2JSJY6icdatWYM7StJ4wbjg/3xKLEErii597iX/wrz7PJhUe2p/xwrMv8uhbH+Xg4hVA9elhHIjdnKOTNfO9OcOo5XTTdRiEs9Nz5vtzTk5uU0qklMh2s6lehA7nPDFFkghJBFLQubKIcguMRaQwDhs252skJeYzR+MMxjlyM2PInqNVTx8HLl3Yx2TYbAa2Q1BZb/UQlMkTjDttrCJySn6xE4Ou6LWp6k8dm9md2HptsSL9pvLklRNQtQZ1JBeT9tQ6nUiaTlW5BZoyTBVEKZJe6kRhF2xSx3xSCsSIFVunBw1i7gSXaB6CVDIRO9KZTk91lGnFIE7bzzxWRaKBFOMOs9CHoRBqu+LQ/l8qDhErAIzcwUuwpm68lXQkUwqyYl5N02iW44478G+v+2MTKAWM5/G3XuXC5X1MSYh43Skl4UxHt1gwxsT56YZhc8o4jIjpsDPPbLkkDInURzIJ64TOFLW/yStiP1JCwHgPYSTnqOYMvuP41m1Or19n3jr83GNDr5z4tiUTMBlcazGNI4QRUsaLkre6rmVrB45urXnt3PF7f8938cRjlysIpKdCjEmBKu90hpwS3nudT1eTzcYLw7Bhvd6SsyA58tFPP81P/+aX2WTh0uE+ISfO+y03XnudxXyP0aqjjPWeYexpW8jRQYp477EhIWnDcj4nlUgMkfPVivPVOf12oGk7akNeNQ468ipiSGK1V86FECLjOLBer0i5KGnJGTCGZr6kcw0mbln3pwzbhsNly7rv+eTTr9ItWvZnVg01RfRBrqQVo1Coqt+MVF8ACzlVP3499a1U+zAq285oVeWt002j1CDYmGoRItipvZt+vlQDRrNOUFLWjzVFj0xX+QCiBgWUOvqLIeiGgiWjDqwi7KLXETBkJkuiklVobOtxXSrW4Spzo1TcoVT8wqAHQMqVTpyzEn9UHKAPRyoUoxHwOrKs5CcBMU4rHSPELPX6kyZxZdVSiBi89/f/iNBYy3ve/y6cRJzvdP4fBqxrMG2DEce2T5UxGPR0cJaum6kVV47kHBEcbecxzivQU0dh1jsCkNMWyZpmBMKt29c5PzrCYTAl0SKUxtN2M5xXcwhrLHkcMKGnM57oPNY7VuueMg7cOho5Thf4wR/8Nh5/+EBnzdqS3WF9WUNMqlpUUYj67jmrJqHDtmfbD+TiGMYNv/mp5/jpX/8SwXoeOtzDW8e2FJz3bDY9J7ducsF5LX1zxoieXNt+xDcN6/UJxMBWMuOQWI9b2mbGZr1RIMmoClGBPD2VQsl4MRRnVXhidN6fwsjZ6RnkQNs4Fq1iGO1swbzpkLhm259z/eY5v/HkdWbuSc7HwEmfecfeTNHsWjKnSm4B8KKgnFDIpn7PoqW3FbtjBtqKYyTYVSVux+lREC5FfSisWHUkmmzFRBH0bCrOMU0gqn1ZrIEpjqJ2aSIkyRWwE2zr9bWYwRtT+YBaiRRybTuk4nJlF6aipSuYrFmMAa0IJBtMyeQSYQKlq6EJecpc1P7dTr19BTChTjrQisoYvXdUrESomMpE0trpJewdV+I3WPfFJuC9pzHQx4TEgkmBXCLLrlUW3/kZpSgvX7whjZ7WQTdryRjK9hxM5nSzYn9s6S4syLZlHAbStid7jRO3BqzzWAwvvfIap2dbnCTmXabtPGMQlTHPFLgJ40geI7ZVBZkalYIETVL+7JdvYvYe4T/7sQ+rUqu6vsAdW2jvHGEcNRfOVyFMyXjn8U7Yrjesz7eIN4zbNb/yb57iZz76HMU6Lh/Md6w4bx3WGEIIHJ2ccuHqo4AQa2BlTiPG6oTj1tEx3gpLbPX9qLryetLPuhZjhRSL0nTFMvkJlhyxXr9XjoXzk2NKDnhnmc1bGmNo2475cqGW68PA9Vun/PJnX+XaSQ/GMG8tnTE6Eq2lbMilltv6O5dqUJrI5KRinJiisv5qU2tLUTtwY5lMkFzthWNJFHOHCyBGsCgmUmpvnKOGpGaUG9A2HmLUtsA6Yow0Xt2FYoqkUX0EpPHYIphSGMdYzVNqEpKRKm3WuFU1LknKKrTqeZBSrLwADTkxzoJR/gFFiUBU/oEkNU7dpQobbR1Afwax2qbo5KGaiky6CuoYsuiIs0jZgZRkbZUyZqeGfKN1X2wCGvWcmHUzVifHxCHQNB6HxXd5FwE+hu0uX09yIQ5b8B3iHLOm8q9T5OzsNqU09H2PxBE395imBedZH52wPjljs9kiRJaLDmst20FYHMyZzTqcdfRDX3tT1MTDFZKxFG8434x86qnbvPcD38p3f9s7lEqahSxJFV3VJN5alQ/nAt43unOXQtvNgMR2s6YfAsYbZBz5ud/4HP/yky+Ca7lycR/vHDEkQhyUU5CrOakRxnEAY+iHCLYhjoFl0hfJ4cVLlJiJMQEKZM5mM2LcJ4wBKQljGnIeyRSaxpOHDM7jxJALDJvI+WZDsoYGz3ze0BhL07Us9/ZwGUJYs92s+cLzR1xfh9qLQg6R1LaElBTUsoroKxmo/s6NJWQNFQkxaYRaLhSjL35bqckqv61gIDpdsc5gcnU0ric4dTyYqnNQieqYjFVnJJm4/t5SsORxrJLoykAUA85RUoRRw0HVP1ETrqXoySoFLKWORDPVR5RS0JRqo1wRqSapaggilVUtkJQUpeInHbJMSp+CkpOU35BIVTcwkaLMhPiVybCkMKZI47xqTKYIhDpWjCmRS8RULsIbrftiExADjRdW5ytiGNXOywr92BNG9fvPWV12fTcjiyEacAVsCfjWU/qBuN2Siu7K2Yxs+wEvAqlhLobVrVNOjo8wUthbNhi7wEsm247lrMN5LS/HEGp5V0h5xOZEchZjHddvnPP0qz3f+/3fy3ufeLjytquYo57+k5gmJpWsNt7vqKztYo7JifW6ZxiVMbY6Oeef/Mpn+LUvvYr3DQ9fPWTWaNndu8B2m0gx4jF0s5ah7xmGLd1iTgjqNLsZevb29tlue8UKTFFX5mgoYcvpyQlt0+C8Y1gP7O97wmgpGBrncV2H8Q3ECAjbzcA4BMiRbqYOyNY3zBcXcMYSxi39esvnnnmdL93YqJ2VlR2CbUUQ5/DO0drqipMzkidwMGmIaNT8BFCGnJU7nn8pRiyyK+MVca8BJqXoSVwzB4zUyC9EW8OiPH3ftdXxt9Rqp+wmCwndoCjKXygiTJSaYmTHPpwcmY1yrMlZcxHGqMEv5GqRLjoBEGtrBJ3sTD6tGBVIOVUuZpImPYnyH5w1SFPHpjGTau7C5JFo6/h1Yht6a8kU/GQiKjUiPlf9RbWFb7yrDs/3OTCoNlMafe3FYHeOqpC9ozRevdStw7ZNJZE4xjCShy2b9Tkqp1b6ZNvMmHczmoUypWK/5cYr1wnDqA40JdPahrFkBoRZYwh5IPfq46YaeQWhiELxmtD77MtHHA0zfv8Pfy/veMsVwpir4SRMds9Twm1KSTXyjd9JR9vWEuLAehMYY0QQTs9O+Ymf/wQf+/INuvmMxx66RNepg5FKbJXMM4aI85a+H9hsN0pxNkJ3uMe23+Ksln1G7RF29l9OhP3Di8SU2fQ9KWbGmOiHgRgDbdeSUmaxWDKGLa0R+vWa7bCBlOi80DUW6xx7BxdoG08OA8P2nKdeusFnXz5TDCZERNSfoUhBvGG+mNF5Sw5afaSUcDLZhmme4ZQDoDReU92UlGvgm2YX5KqbhPbM+oDowyvmzkitJHXbmSoA7xy2jtxSKqSSNf4sJYxRNqAzhhgH9XPMicargYxp1MF4OO+1SjdKQuuHoW70UcE5ZzF5GiXqBiA5q4AqKyVY6mtOUFzHoDblYgquBq8QNezEOkeWO2SmYmQ3ISmAdXYnvZaswPIYgmonpk2rOkIZY3XjEcW23mjdF5tAzonzk7NKLtG+JvUbrPXg9bTSc9mQssU41ehrnd3gnCHGTDubk8iQAyEmfNdR8JzdPiVLlZ/GxHLZEqvU1jlLQdsIHR/pie+dBjqJ1RTjL794zNY/xB/+oW/j0sVljevSOa1kFTHdGdXUX7jVVBhrLV3TUNLAdr0hJKGUyPHpip/6pc/wW0/doJ23PHr1EvPGcXfUtAhYb9hr55QQOTs/p1hLHzJjDnTzhtY2OK9knwuHB5ydFaRErPHEFLCt5+Tm0c6qWowKYmIstAXa2QzrHSkm1kPP6WZLTomZF+YLxUeWewfMZi2MA6TA6zeP+dQLR5ynTOctYizW2WnMz+HhBRaztjo4FXIdue1MRarUthTwtkGMENIURqpjxZJTRfIV+ZZSR30UJOvkIFUGoZbeengooi+1PSn1xIWqVKbU75GTbkyWeuBg1FqstiQ5o5tTPURTUEv1WkxoxVM5BCIF551uUNVsJYgG6zijFmmtt7tJjKukp1i1E8Y5lUEX/btUU1hjpToIVfkwMnUHNW2qotA11s1UEHNXLWUFWifTlK+27otNYNrdVRlocNstIpbZwQFjHOnaOTQJ4wzz/YuMKbI9O2V5cEAU9ZxLWW9AJ5ZtEFLInF6/zaWrj+Kcx0rGl0BCLcOt8/pglkxJkZxCBbGgZBVzGOs4PT3luVcDB295Jz/6n7wPazwUS0xjHfxkdQRC1Walqsu890gFBhtvSGnD6mxNqDaRr127zU/8wqf47IsntLOGtz56lc5bTe81oidSUm340rUcn5xyfHaKsY7ON+zt7+/UZBf2ZnjfMIwDp8fHZArnq3Na32IM7O07tv3A5cuXmc/nDENPP4x4b/G25fDCBeJ2Q8ay6kdSLLQGDvZajMByuc/BfEkZA+N2zen6nE88c4NTxbkwVnMXY/UmePhwj8evHFBiJAlKg85ZW7oqsJKsXPyxTCV5oe2anWgnjiMUQ2M1oCUWHcU5p0E0pUgVDiVCULKQbwzWOSwKCqYCMRayUyTdNrYybQqJiLiMB3Ks1qBZH/Sm1QTrUgTbKB09jtrieee1587KajQixBS0QqpAJF6VrC4VGuugaKtiGkdO5Y5NOIIpVn0vTdX8TyNAZ3STrkEptk6AitRNNKueI6GvF4lJ22MxVeugUyCxai3m7uJofOW6PzYBMZh2zrLRF4vYhDMNxrfMmjm+OuvYdo7xDabfktstMfXa242VQSXCersmVL98m3tWN55h7otC+hmGPuPaTpF6Sfi2pR96fZFSkVtrcIs5Z6fnfOalgQ98+/v50Pue2GnbNfBDRzGTPl3ZW9pzGoGSIk3j8d4wjj3r9Zax6IvxxVde4yf++af4/CvHtF3D5UsXMSL0YySlrKM4bzElcr7acHq65ny70ROpaFlrRJgvloxDoB9GinU6iqtz4b4JNLMZjTXcvH6D9WaDOzkihhHnLLNZh/cNlw4P6VrHraPr3NwcI3HASeFgfw9vwLUz5nsHijDHDavNmk88+TqvnUWlUNuGKxcPsAYuXZjjgVYMlhpnVsDKNFozu/wB6/T0dTXWnB0IlrBSsK0nRGWTmgqCTT26ot5ABmsbVT7mhKk02WnuHpNOaSx6UJrp5K2btDWWHKICzVaBXTUJUaVetjrWNPlOeQ3K5Iwxqu2ZgGta6o+AFD2A9HBJFFs3dWsJ/Yg49ZnYGck6SylqopuL+gJKrgajlWJtRKXLFRutzMLq5ZAnExOdohSnIqdZdRtS1+Q3Mxe7TzYBMTqaK5Sq5FIyh62+bWOIJARTnWrUXDIQ+w2h3+Ccx9jCMCbGzYZ5Y7EOGhtpOkcMhSEJfTQ4K8ohKiMlFG05qrpNjMVIoWs7Xnv9iC88d8QP/OD38Parl5V/ngs53nG4TzqLwjqrZg+p9oKl4NsG6wzD0LPeDCQx5JR58fmX+T9//tM8e/Ocbtbw2NXL2kcnxQj2lguQws0bt1mtzlXqmhTB7ppWOeY5sem3XDi8SN+PbPs1IQ5YY3He0bQOv9U48RQzZ6tzFrOOMGjqsDWGxXzBI1evMHeW1eqcuDnFDD3GJC4dLGm9fq29g0OkRHLcsN2seerF2zz1+hqkINby+ENXeOKhA1JJu/6/JA3+lJIhQzSAKDfBVQWRUHbkn4ICiY13iFisEeIQ8K3Ow9OYsEXbtlgJM8ZZnGj6z1hitfTSTQdjCSmRRTUKto7VUhjVrLNxu1atWE+WVHUDOiWISScAU+ZiFlF2ZK4W69nRdG119lE034qQaip0iVkrU6OszgiEqL154xS4U2cRGMdIqmPNMARyzDivmIZJlR9RINafZRJ81ZuolGzvVURl9eRvGs/Yj2oUe1eewRut+2ITiGNkc3JEN+sQu49tF9XJ1tAt9glxZNyuCMOAkEnDQNyeQw6kcST3QsiBcRg52JuxXDolS2TDOCbG0WK8YEyoFM2MKQlS1sBRM0lEAef54vPXGNw+f+KPfj+XDpeUWKWqE6ssp51yzRqzk2kaa5WO6oTGCtvNOdsaCCop8NkvPMs//MXPcTok3vLIFTrvVYwyjhp5nTPrsxUhakWQa5Fhnc6kc+2pXYYUE7dv3dzFiQ0ps1juYa0jxszQ99h5RyiZvf0FJRfGQUeNh3uHPHL1Co1vGLYbjm68QGMLicClw33mXYNvPHt7+7Rk4njOOGx44eUTPvXCEaFaYF85vMAjhwtaU0MvKhiaa0+tVJmKtdS/5WqGIcYSop6SpEJxqhew1QfQOg9I9SWEGCKtbyo339REqEwOAS+qwBTXErNON9o6EjOV5GNEENvc8RxUzjKlpKokFFWRUsA5ktQqACUUJ1AsqlZ/YVB9gXVO/72yQameBomMcY1uWpXFGFJg00claeG18pG8m0QYIxinpKZcIFYqcu1RmSLbJy6Bc5ZxUEKUGAVCxRpyiXSNr8KvWDek+xwYpGT689vErcednuAbJWGI9YT1jJAGJEXIKspIcVAn1jFiSqabN1zo9tUrwGsox3nfAw7rO0xI5ByQEil5sn4WogBGAUf15DO8cO2EtVzgR37gO9hfzLWHNFMFoDd4itxSzXquM3C95sZbjEts1luGPpElk0Lk8089z9//+c9yexO5eLiAGNn0gybPCDjrKUnxBVWvWWXGFajTZM2nq260YRjY5IRtmkpMUtRrdb6i811loGnZaFAj1dlyzmK55GC5hxHDdn3O8asvIWFAKOzvL1l43ciWyz3mXihhQ4ojt482/PbzN+mLEpf29he8+7GHcKCU2srRmMQ6FFHEm0lUXBl21fdWgU+roJ+DhD5EgmC94iYqGatKwEa598ZWjcOYlLNvhc51ALhUiFIIVYiUs24CBtj1BdrtVeoveCuQMqkYUtaH1VpDTNp2tF5NWkJMSgFXoT6lqFW4VPm4VBlfridzK6LqSEFdnsdR7cuMxRhXOROGRDVmRUNVSkg7HcDEi0iVPWnEKPWcQjRa9fhG4+uouQtWDEIiSdL4dxS/iFP18FXWfbEJWAcHex5TDCkPaqhAjaHu17g6MnKtxziD6+bYbo92foF505DXt1gdnwFB7ceK7szeqZOMKsYc4xjIKhZX+m5Vu+Wkcs0vPnfExUffxZ/8vverqw+K0IdRvQpTTjW2SsvGqcSyRstW3xgcifVqw6avAFQ/8huffoqf/NWnWW9HDi8c4ERPtlwpqNaIJgwXpZ46cbvZeBgGQlY+uJ6ld8VSuYbZfI9xGNX4s53hEKTpcF1i/+ACvmvZrtfsiWYxXLxwge0wcP31a6xuvESXEzkN7M0cB8sZzgjz5QHzWYuLI0NM3DzZ8rGnb3I+JLyzmMbwLW99iJl3iM2EKVHZaEmfUlJbsaqZ33l71j4dVN6dBMaYaK3FYZAUKcYSx6RTmiq5NpWmK9U+i5Ao46g9N0oGMghDGSmibD4xGiTS+KaaxmYVUFUqeEr6gBirY2XBVrq5jhKsUfpuiL1iDUbNWp01StwKkSyaRei9tgpK+nfkuxyMU4jar3vPTJxWS9XhWoxyRyhZmaEUSuP0EMhqGCIFijO7qjMraaCqF5Xh2bhm13qlEMHpfcuVfxBSBSzfYN0Xm0DJhTAm2tYwaz1N09K0vlqPNzTtjHY2Z2+5z2K5T3GwPTujPz7m+NVrbLYbpFjamdJfd5LNygjrx4FZ62k7S4xoz1XHTDmpwcMXXtjyxHs/yA/+3vdWcUelte586couycVYy5Q7p+4yaqVlGFmdr+kHPYm2my0f+9xz/OQvf4FtFC7sz5k5/dpFSe4YsVXDHmkdtdpQ45TJTGMaSZWcwan5hrENrp3TNDMuXnoE0zbqZmNge37KlYM5lw4vac+8v+D1119ndXzCa69c0xOjbPE5kMvA3sxzsOwwztAt9pgv9pA8EsKGs/MVn376Bi8d9xSnD9XbHrvKzBtSGTGhUKLOzI1VYopkSFXSbYzQdg0pRMYxqkgIrQSct3hniEOvDsN2CgyxjCGSC7Reaw2MMhFz1RikrPr+tmnIgjIoraWp/ozD0IOz9GGgcV6jyY2vcV8CRZmcRuxOodh41RRQWX46Si2ElLDoBoAIJUVtJ6FKwbVCMEawvlF3oepeJEWVhykFjBPsDhMR/d46iK4ehfVhx5BrroCg40KDhrlE0apJMJSQKdWLwRQhpUQWqQKiOg+1Qtc48v2+CeQsHJ0mnCvMOsO8NezNMr6JSIiaxpEDw3BKPDWMJPr1SOwLY8ykogQQN1QDBm92TC8DtI3DO4sku0sfMtJCicRc+PTzK77jwx/kO973Nj0RTJmcsfQXpBepf+q8VR2AdHfWmKiRzdmaEAzGWob+hH/98af56V97mm0oXFx2dG4yKSk7C2tKYSyFnE11tVWQKKWstM9cXXUq916BKbh06SKXrj6ELcLhwQWMqy4yYjhPCZk7uv19br7yGierE85OTjg5OqIfejoPPpxixoHFXsty2WKtoZst2du7gElBQ1r7ni9fO+P5ow3Ga1n50KV9rixbFQOlUkM6tK821S/RkPWFVSuDEFRjgGnUOgy02qvBHuK94i2FSh9Ou9M/VlUkO7PQQbkEjScbUZu2DCEXKKlamBVKyjSt1/YpqQJQnZylug3pYRErsq5aCZXnqjgpY6LaiRvj8V1bnZGLAomxPrRIVTwqYczkpBmGJSNJ+3hNY5psyfXgKEXvj68uxpPAKQ6BEhPGatp0lXQo/yLpRpvqhptIZKN5GKRSpxsZUtUciAbw5FKw7X1OGwZNqXUuq/kESnBwAsZEigRSFqLYKuh0iE34BZhkKJuROkZGUHvpRjT4WoDYaT/lrIc+EBOIDFy/teaF24U/8MO/l3e97WG9juo4m+vsX3uyVM0ga1yWgHVlR47JRIbznm0pFBPZ9ht+5uc/y7/85PMEhMNZp71zjISsm4ZFasyXbtixkmDMhAbW+lnQt8VNDj56kozbNSWOIJbV6lhBQeeJ4xaxhfPrN7n+/IustxsdK1Z789Zm2jww9wbjZlzcmzFzDuc7Di5cxJZEKQN9v+Lpl4/52JdvMaIn40MPXeGJRy5jYqgbpJ5W1qrnvYhOBEq1vyq50Pe9Jj35RuneVRyjNOuk4z5baJynUM039RnSMV1Rm+1U9QU7imzSB8ukovydon1ziApOto2ruEgkjAFSUQl0FjV0MYJvFL0vKPsuWaV6Z6qisFSvQedJ46i/eFN9FhrPGKO2R/W3kqqiUx2QjYaTmELXtGoaYqiAr4aEiK3cgGnMbKSyDqf8BtFk4axR70FvHAaVTmfRn5+c1fCmAoQpJVKsobKVdThtcF9t3R+bgNF+30muriiJbBoCYK1HTJXNOotr2oqklh1oZBtDDCMpZFKpTKtGzUSpI7Fiis6GN+rL/sJra15bd/yRH/0wb3vL5XrIm9+xAaQYdxpv9Ytjt+t7KzhniXFksxnIKWMTnJ6t+YVf/xz/78efJ5bC/t4cYxJjykoeskr7TGhZa6sdlavgn+rNq4tOYoc73JmVa793fHJCu+hwWJZ7CzbDitObpxSntNkYFcfox5HWW7wXOpMpaYvNA3jDhYMlnW/UpfjCoWITw5Y4bLlxvOEzz95mFVS2fbDY432PX6UhUhoHMVOIOBGceFVGit7rlDNYV52YIrEGkDhbs/NgR7jpx1H/HnrartOHSJRSDNTTMGsfLIEx1t8BmhdhqrRWcoGkM3+k4BpfwTXBd5YwappwSKoKLNZo3JtIHQ/r/XbOEaJONKzoxGfyN5wi1FOpgR/G0HYtOUfFbMRURuOUUCzk6l9YCjs6L0knKSVpcCp1rJyDAr/eOLTIqPLgokpF9VjU/UKnU1oZpqJj5FS/RxbdOLVdre5J9/uI0CB4o32NqsVkInZpf5O0xBejlOHGWHLjyTky5on26RXMsbbKOg1j1KRXRYkLYlvC0YYvPH2LvHyIP/nHP8KV/YaKEQG55t2p3ZPkpH1jTa+RpKEazro68tmy3ozErKfG0A/85M99gt/40qtEMnvzGQ0VNS41LQfdubUyLLsXzMQ/n5YFsugoLpe4c7MVlPSy7Fpaa9gMAVZrRCDIyLLpaBtLSg2bbU9JPUMUcg60+VyBogyX9xZ0jcM4w8GFy7Te40JPjoGz84Ff/9zLvLYaiBT22hlPPP4QpFiZe1BCAFMoqUqPa0KUazxdbQFSiNjqXjRhKhN71YrDeqnlK6Rq/+Uq8h6jHgiSkm4iFgL6kGBE8w/E7SLGbFRDGR1AWPVnrPJgMUZFZln5BjknnfuXwrgD9jTdR0pSi7Gi9OJYTTpySbjGY3x1FxKNzhvjqMYezpFjhvpwltoe+MpDSTlhrK8mocp8zFEr2EzGVaajbkg6ktZA10QMmruAUW8KTUFSkVAKhSHWSDYjUM1VrFQgyTiaWVtjWb76ui82gQKEWKOoc+2ZajHvZzP95fgG28wUGPMO51pldo0DhQHrda5urDoAmWJpXSTF6j8ZMy+/dotPP3nMpUffzo/88HfixJCKR8lJFbAp2uOlaizpaq9Ycq6/bGWM5XFk2AZSgpJGrt844qf+xcf4raduYSzMO6/ipZBpG48RPVmmMt+IjqIUGCpkMRSjkeQy4QCiO6E1poI9ZWcYOQxaki9mel9OT4+JY2AVCqMb1XchJmaLBWUcyedn2DSQS+HwoKObNRjrmM32mM0aSlQG5nqz5uNfeoVXTkYwhcZ1vO/xt7DnfU3OQRmTd9FcJWZo1LW/JE0qijHuZLo7KzDndi9FV3+uHMru39SMVDdtWx+2EOMOn2msr52SOgSJKJBXkhqDFKOz852DUVaSkFRashRDNmimROf14a5OT8oQqPz8bMhRv25GSM7gjatR31l9FztXwT0YxkAkVe2/VWA0C7nYyikJCnrWTc7Ua8QJaRzxXqcNUgrGOK0UdBuo7eFdOYgpa7ZlfcX2JVbPBa0yrJkCTR0xJ6RWmul+rwR2QpwqnPCNw3eebuZo5p3SRZsG082UG24NzusYjcoGKylqfLbRqYCQyUUVbXGz5Tf/zSs8f2z4oR/8CO9+x1WsKMruTE12rdTMXHLdACqVNE5EIB1FOWsZhp5hWxjR7ePGjRN+4mc/wadevAUWutZpOEXOhJzxpRJX0Nl4Kho84sXWk1HbA61pKkAmNU4KKqNxos+qz34RYf/yw5QcmC+WpFSITa8PTw60aYMRLdFPVkcMsScBy65lf9birKPd26NrlxB6JG3ZbLZ85pkbfO7aGRiDM4a3Pf4wB43q750VQFOS1R8/k+rpbEU/vqSo5KdKz1U/fbNzFEoV6TJOyAmSVeksIe1aHoqi7mIKIYNtvHIhxKgfQSn0QfEIRDUByjjI5NrLq1kK5Pr6QEoFXi2N05ThqRIb+001g9FWzzlPH8f6e3eVTKYzfldL9DEmJBda59U9uD5kSS2dKUSQrFVMSUotrmNAg26SWXRDKWLwXjM0VQ+h3IDJTTlVz0DfeJXG9wmqzcBy1hGGEaxGzsXJXjyjeEUNH7k7F/Er132xCYgRZnNH6y2dF7w3agRhlEZqRGmiYgXj1E48IRjX4DF1ZJdgHLHGYUqmpJFbr6945oVjbm0cV975Pv7L972jKtsqK80YYpVaTsGVesqpQ22qjrzKxNKZ69CPbAd9ARiTePXa6/wfP/1Rnr52SpGiJbbR+a4RQ0LDPazUfPlSZ8Q7nsFUg6jnXMnlTg+aFVxLWZ159Dev+EDZrGj7Y8J2oJzfpt2s6EzBDeAlE3PE+5bbR0eM/RZKoXOWw/2Zagfmc/b39xTzGHrSOPDiyyd84rnbRMB7y6MPX+EtV/ZJYcSLxqSpcYeOBKlmmd5UUQ+JYejJIaomwJnqCqSv2JIVMQc1vDCiJ1tKGfX1LztiTwqj6kFqb0ypNPKsOJBOF9KOZVfQtF4ldOaJk6See9Nolwo8l1IBQHUPCmEEFKvBauiIy4WxWtI7VzcBdOPKSVuMkhKhWHUJUsFIjUPLygoUYTZrSTHtRqPabiZCSNjGUYxugrEaqojohCfk+hoTDXxtvLJgc1aHKjUjMeQYmHWeMRdKUW9GNXbVvMaEbn6S33hEKG/GKf5Gre8WKR+/1xfxYH3D1s3G8d995N3a+liV36oK0Kuku1TFnm0mM2JKAnEKkuWUiXWjMFVb70zNMKjz/ZzUlyBUnwOlDyd80xLiiMma3ac996AaEjEgOuILQyREdStumqZWElkZeVJIWVOjRBwx52qblup0wiulGKkYhY6UclLadJqAR6ejazCkGKpgqUAuGp4q2mI1VmicU9af0TCWVBK+bTCiP3OMhRRypSirsChUVyvrHKYIP/PbX/pEKeW7v/L3cV9UAq9fmvE3/tj7cKITAG8L+7OW+bKlmXe4ztP4jrab1dLOYKs5wzhu6NcbXn3+Fk+/ssVf2Ofhhy8z847Fcsly3pKTMgitc5qGK2VHwpn4+DHGOyYeuWBRkMs6j82RzbBlO2heYMqJ55+/xo//04/y3I0TUik0jaPznikC2leXmlJPYJFSkXSzG/MIoqPROj8O9eNtxQ1izow1sDIqZw5Bv+6jlw74ge9+D7ZrkX7QAJU08Q+EzXrN8emJ+uKRuXCwx6z1eO/Yv/gQ80YoYST3G24erfjlT7/IM8drxBhm3YLv/JYnmIvO80P12Q8pqGNQVtss13htm2Kg9RWzN0IcBpyorNd47U0NhjAOpHHcsSFTLqRRgTkrahsmRfQBrQ+1jnYd4i2xZj5oXJmenLmemEUghIBtnAbOVPMNLVn0iDVNSw5p93s3oqNTbTGVOaoPmhbu3nmygTQOZKcj5pgSjbfYXCqrsBYJRSnOzkAp+tBOQ/5QNC+z5Iyv1mK5ZJydQlMMFjUUSWMkxxGTC+JQzQBCCKPqaeo0pHNKWSdDzOPOwEQryMqRcQpEWmt2be1XW/dFJSAiN4E1cOteX8td6zIPrufN1v12PXD/XdP9dj1PlFKufOU774tNAEBEPv7VSpV7tR5cz5uv++164P67pvvtet5ovbnbwIP1YD1Y/79fDzaBB+vB+iZf99Mm8OP3+gK+Yj24njdf99v1wP13Tffb9XzVdd9gAg/Wg/Vg3Zt1P1UCD9aD9WDdg3XPNwER+SMi8pSIPCMif+keXcMLIvI5Efm0iHy8vu+iiPyCiHy5/v/w63wNf1dEbojI5+9631e9BtH1v9V79lkR+c5v0PX8NRG5Vu/Tp0XkR+/6t79cr+cpEfnDX4freVxEfkVEvigiXxCR/7a+/57coze5nnt2j77mNSW73os/qFjuWeAdQAN8BvjWe3AdLwCXv+J9/xPwl+rbfwn4H7/O1/D9wHcCn/93XQPwo8A/R5kwHwE++g26nr8G/A9f5WO/tf7uWuDt9Xdq/yNfzyPAd9a394Cn6/e9J/foTa7nnt2jr/XPva4Evgd4ppTyXCllBP4R8GP3+Jqm9WPA36tv/z3gj389v1kp5deAo9/lNfwY8PeLrt8GLojII9+A63mj9WPAPyqlDKWU54Fn0N/tf8zrea2U8sn69gp4EniMe3SP3uR63mh93e/R17ru9SbwGPDyXX9/hTe/kV+vVYCfF5FPiMifq++7Wkp5rb79OnD1HlzXG13Dvbxvf6GW13/3rhbpG3o9IvI24DuAj3If3KOvuB64D+7Rv8+615vA/bK+r5TyncCPAH9eRL7/7n8sWs/d0zHK/XANwN8C3gl8CHgN+Bvf6AsQkSXwT4C/WEo5u/vf7sU9+irXc8/v0b/vutebwDXg8bv+/pb6vm/oKqVcq/+/Afw0WqZdn8rH+v8b3+jrepNruCf3rZRyvZSSimZ8/23ulLPfkOsREY8+cP+wlPJP67vv2T36atdzr+/R17Lu9Sbwb4B3i8jbRaQB/hTwz76RFyAiCxHZm94G/hDw+Xodf6Z+2J8BfuYbeV11vdE1/DPgT1cE/CPA6V0l8ddtfUVP/SfQ+zRdz58SkVZE3g68G/jYf+TvLcDfAZ4spfzNu/7pntyjN7qee3mPvuZ1r5FJFMV9GkVL/+o9+P7vQFHbzwBfmK4BuAT8EvBl4BeBi1/n6/i/0PIxoP3in32ja0AR7/+93rPPAd/9Dbqef1C/32fRF/Ujd338X63X8xTwI1+H6/k+tNT/LPDp+udH79U9epPruWf36Gv984Ax+GA9WN/k6163Aw/Wg/Vg3eP1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1/wF8jIp4URfMKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxty37QhX5/VTXGnHN1uzvNPefem9wk3tCkofEZu4dEEnyQB0RE+BBAIESjhqD4lEfQx6MTRcEGRYQgrXmBgNJGPoLSiE9B8dF8aIQk3NzmtPvsfq+15pxjVNXv/fGrGs2cc629z20+7Hw4tT9rzzlHU6NGVf36TlSVD9oH7YP2D25zf78H8EH7oH3Q/v62D5DAB+2D9g94+wAJfNA+aP+Atw+QwAftg/YPePsACXzQPmj/gLcPkMAH7YP2D3j7giEBEflJIvJ3ReQHROQ7vlDP+aB90D5on1uTL4SfgIh44PuAnwi8Afxl4JtU9W9/3h/2QfugfdA+p/aF4gS+BvgBVf2EqnbAHwC+8Qv0rA/aB+2D9jm08AXq98PAZya/3wD+0asuvnHjhr766is7R+X6J8j+T907fUUfz9X1NRftnZoe0Ofp4fPS5HN4gNTRHZhHUPuUnfeQ+eUiZc5VEBGcDzjnZwNTDs2DoppRzcMVIh4RmdyzM6eayTmRYiTnCKrzzsWV9R8O2O/djTF9Ux1Gc+iC/VG/T6ZZZ9+Eq2bjeZZR5x3OnrB/7vBzvu/7/u49VX159/gXCgk8s4nItwLfCvDKKy/zn/+W/4QBeEQwJmXcdcMGUR2+y2SziQhVtBGRyTXDFbN7ptfUtnu/7O76Mrfz59e/2SV747MRjFt7+h7zB9R7Dy/k7jtc1+y8DtMoB+6dz4fiRXHYn4ggTnBO8CKI2Ds4EUQy3guIkBScb1kd32C5OiU0C3ANFbwEBVH7rQoa2Wwec37xgNT3NM0xJycv0S6PC2YpM6WKiJL7DXFzzsXThzx5fI/Yr5GYbLqcoN6jrkEloDgyQkZQcSiCIohqAWKxT5UyMi34REFlAPRDYrKqDsdVDjPRs2t0BFJ7khzEJHWvCQ4m+/hQf3t9l2O7x/f2pSpf/3U//lOHxvyFQgJvAh+d/P5IOTYd1HcC3wnw5V/+cd0F0mk7BLC7xw4DldE0YQTuq/rbPW/37oD37j2VGIltoF2cQVn4Q6A6RWrT3+P7SHmcTr7vPH42pOniX92umqdpn0p9r/HAdOva+QwKThyqSko92+0l4gQl07RljiWD5vnm1ETqt2zX53TdhtVSyaszyEvE+0I07b6cerYXj7l8+pDNxWPSdo1oKn07sjgyHsWBFsJR/rQsS53P+n4DBzBA/PT3HAh3m4hw9dkr7in/X8WUqFZkmQsiOowEdo/tA/78mjreZ7UvFBL4y8DHReRLMOD/2cDPue6Gfao+fp/+5Zxnx+Hwxq7Hpgzt9Lrde6Ti6tmxggYqRMyhbgL0e9BfBlGe/1mw7SMnIDOu4BD3YMPaR5LXtfr+8zmxN1ZVVKQAjpIzhQPSQtUFcfbcnPMA7Knf0InNmxPBB484MS5ABc0VQD2LxTGnp7eJ/YbF8oTlYmn9aKGa2RBFv7ng/NF9NuePSXGD0zqYQJZglF4FzQ4RZ+OGystQcNV0ugaEMCAKRgL9vIryK6WM52wV7EcMWzmFOWG7jiPZO7f3Ds+38b4gSEBVo4h8O/CnAA/8LlX9W9fdc3DTyuHzu5R8Kgpcd82z2i7NVhmX2kSDfU7gqjEOF+hOnxPgu35sg+DAdYtZAXWPbxkoQT1Vt93hZ9u4gEKVMgwstBNFpSBAoWzWigCciQwCqpnUd3QGaYS2ITQNzgcEDxJAHaqeEITjlSMve3xoca5BEXJKaOqJ/ZZufcH68ind+oKck82lusLmBzKOXIEdB7gBwCuLPcrLozhQuavpMhlCyFfO8/O0q4D2UJuTmpEjeT8U/GCnVzz+uv6+YDoBVf2TwJ98rot3WXs7OOMAxkunLzMB0h0KfxXLf7gfrqDk7MDiLtRf0x8jxZm+2Z7IMWHprmL57fpDb1H7k2vvFyncAowbjpG5qeOpVLEirlzuzeVmEQzYnaIZnArqQbKWsZhYkFMkxUjoGkLb4MOCEJY454rc64CA90u8NKBC7BJZE32/pdue03Vrus2afruBFBEc4loqZ6bii+xvMywThFDfQYA86ALmczKllsYBTSjz+2jXseRXXcvwlLmcVfUTV+mqnqcd3lfXI5S/b4rB3VaVcKqjZnpX5t+7R8a7P1u2WJBdYj05Z1RvkATeJ1+//+j9++dIYVfyruzziHwOKUbre+9KK/X37vYe8FpBHCO1nD5JhgMG4lUTIJBtDLmIW+rsYeIyhZkwriD3dL1HwpbgO4KPiLTG8ksE6UEzGiH2mb7v6OKGGNekHNHy50QGhZ+IR1VGBFD3S1EA6lThBxMEsEM8KvUf3to+K9J8fzKc7v3a0xzs/BSVqpssczYRC6aI4QB3MV3/2bkpVt8bz9XthUACMvx3iELLuJOBfUw9ynczcf0afcFzs1qz/q678DACGoYrz7OlDr1XYeCfcbPIFPPv9KoD+th70oA4oOo1xz4LBhkQiFaUOPISVclWN7TkqosHp6CaUNdD7onSI3RAWwA3onTk1JOToAlSSqj2ZI1UawKu9KienIvyTx1JKphPkdUI1CO1nxsAp0rf8cR0D42iwvNz5FIHYOOeE3g7vIPjqzWC+rzhnusJ3/T4HnJg97mmln7Wa7wQSAB2sJqMA5+t0zO4ospB7PZ70BIw/V/LhO0oCscrDo/XBlihbLx+xFc6e5eBCdxh8Q9r+es1lTLsKzUP6RfGpvOvV4oak61XKIliOgFXdQ3DQEdAmw5XtIgJVWQATFufUcwfIGtCNaJ5g6gDiaAdOUdTGKorfebJsyr/YZyA4tFiAcjkSswNX1DBXYb3moJ/QafG+g/zNed75pzD87Vx/kdudO+aut4zFFrntK7pSMUPmQSfYySTzwlnI7vn99sLgwQQV/baDG/PgVFg6uQ4srV1n04BTiY97KKU/Qlxs0ks/18BPAOTPtlLIjpcP5/3Xfy+i6fkSgQwPT9qr+eUv272mU9DRWqVB5CrDJVjG23aI1uaKciunpMJztNsM1tIXCoIyTkhC5BksDCoVOegaMo3dQh5pOSFug9AnCtLX+34BviVYmbRcvccmw5rAMN5nazAHtM+bKq60FM/jivm58otdLXL0RzVcHiZn0Xhpq1aUXYIwFT0mXI8+oy1f0GQwGQBZDZdB66UyUZlXMuKCJQdij7t6xmM0UEgnp8fHIR05/SgmJPZ9c+WA65a/H1l3768OgWE2a0jd3NV7zv6lopYKiqYj0HmSFbrvO6ym6YwFCekXPrKMiFOhcdQZdDDywQ4h2WtQF9vqyLBODZFyUy1+RVZzSmyDjtgZLu0PHfa33VAWK0KI4chO+fnfeyz6XWmGCj/Hk+wo9Ab7p0BeuVcp7qMGe85Xje83rORywuCBOabct7qlE82/wTQ61R+ViaVybMH08zs0VMZcZzMa580NfHMKPyU4rDz/apxjYA/vt9OP1d1IxS53n7sXrarKxl1A9NNMxEFBrCvvxxu2PT1eYWZz3XLG/WWCRWdSO2MdnEZgEOLMDGY8yZefPV1J8oIe6+yPiNg1G/jzpl/mbwS7MBJ5Sqmc6T7N7FPiQ+3KYcx9rW7m+bc3W4XI/KdimZX7qnpGkqdm6v32guDBA613Ykbjl9pMrz63DOtBIf0BjJ+vh9ZcV9TL8Om3j+2S913+5pje9WRBb+SM8Uu31X2Daeu0ikMSGdEPIYY9oUJKRtyoLHlYaNsmwaqXtdx6jOXYTL+Cqx1LFPEO6F6lbpP9zjzfTJyDnZLHm4ar9lvc64IJkTmioV/lp/K7gj3V/h9EIM6A2Xd5Qpz1lTo2+VFrmsvBhKQA8C8i53Lht71JpwqT57lG3DtEK68T4bz789eO/112FYrcl1/h7mGKRKZSrl7VpAZo3DIVq572G2XIg6I7ABFFNSOTzTp+46xI2DOz+xS6h3/eGG8r7LvWt6h+jBM7h+3/r7L7fzYVZaWfXR6yFV39/dViOKg81p5h+F3mRQdkKdece/OnFdAOLB1rtrBWp93RXsxkMAEqHfbFAz0wLXXORN9TubBA+157933+roewTzHk6e9P5N2TCm7/d5nHKd9UQTIuf5B5jftIUA1cb++68wSMlm10k1mFE1GYX+OtMxWblzAVGhQBc2FtUFH1+DSZaJGiGhhGHaB8vqI+VG7X68/hEyGNxom5TrtfXWBns7XDOnKeHwm7kz2rIiYo9YUSQ1AcDXCmvWv44ivai8GEngGLGhBZaM2+nqA3PWJv+rauvijGY7Z9c9yVnpWm4sE87E93/0jDd3nAPb7uMqXfPwh80Hp/EI7JVP9WjFl72u+Rfapy/T3FOx2OXEZhj+h0FREX52A6r0VsBmRCFMvv8l1te9yne7IQzIcPwS8I2BdhQDKgYKL9ue/WlJ0PHAQaN9X03r3Pld47T7KE+B/xqNfDCTAAXFgdm5+ZJf6Py/Fv/qaw45Gu9c+299/9559CnOor6vvfxYn8T7bhLXef0a5hHHDDVaYA++qeVQ17SlpgTTds9PPXXSyB2NTAJx/jtdXDmOHL67IosrMO8N+9pxfT2F1ULRe096vAul5xnYQh1TEfTUxuEJq2GsvDBKAcfPtwPzV108o/ufC5u/2OX63geyy988vFsgeIjj0nEMcw+7yjXqQ6RXX5SSYK6Ou3L+VQah3VXfWyePzIao3k6On3zELw5Sz4jBcjMh9vF5nHEIRS4bP2cvPWO7qqFTPXeckc7W/f/XJuJrFn/NEdV/M36+OS6sINFFyVpHps+Es5y/xXIfsuF7vJ/JCIAFhAhTPmJtdQBwUVpKp5qbPFSF8NlzFNb0N36a6uEO3z01SMrvn4OOE/WsZ+fTZZjsIhPXakePQA9eO+3UiJ0yeX8WIPcQ1jOHQO44Av8vV7drFZ1hq8u4zQFKK9nxyW7U07L/6FUB4WIE6Fy8n76lTRDsfyz4ZtgPj/89uegDzW4KUQ/1PYyjm7Vlb9YVAAruAe+WYK8UvFGTc5DKef8YEGxCOFPp619ur+tjnCGai9pWUZLia6VsOe/cA+38YWbBDQCeUc/7f/L5hE05Z/j2eeU5w9/qqT5xT+7l2e+fqKzTru9adA286+ZiaXXU+hZWj2H3Obm/XrPGh2aqUW4fuJ3Mz4MGdcOWCJ6TeNBdsZ0raeZtet6Ojmu6H2bdDHM28Z4MR4TqweEGQAFRV0ggHB6jv9PgeJdh/0auo9VTHcB2Lf51icJ9bmJ+7bsN9XkSX55FPh2tnT5/TihnV3UFOE4H+IF65gpu5digHke78uToA0O7zJpaRqRayAuCkg31QODSWCSu/d8kEyKand+ZSy1AGZKo6uXPCYU20/FeQiNm4xk/h4Pw/J9EyLvvKhwIvEBJ4PlPeVZl6dHr2mvuvf+bzXjulYp+Pvuv1U+5v3KC7QGptSmFH56EpgO8+fwrQh/il8fxAeQ8ii2sPje9zoOfxvl1EsHvFrklP2X33/bCsse+rFbj7ItYBtcCkr/F7nsnVhYuEA6z5rmNQjat8fwlL9oiO7uoj9t91PFFGONDL/Xun7cVAAnIYyMqPCYZnwuoeThX22XkGjv08c6iTsb2f+55nPLtDq5Tg2QrnigQrezges+M7zxz6vy7hxATo3u/77RLpKziGUXyyK8exHCTNe/cz9D0ilF3nsdEMvIuW6hruDfnqZw33yfBo86YcEe/uG3z2O2PaZK+za9dkhyl+1vq9GEhgb5HKURknG+qG2qV0I4Z+v9r7q573fq69HpCev10rrx6ApJlodEChtd+mu2gEgvfns/D8Ta/8UUazozuwZ1zHP+x1MLlsXzZ+lh/JfhsRqDFWc6J0JSLQw+AuE46rWnE+K1+Tnf19iNOZIsDPxrflhUACJrdcvWjvh+1+P5zA+wXgQ0jms13c99t2HZquv/YQgE826zMURfv3MqOun492SDfwvjL6FLn/0FocEgHeXzugYb+qrytZiWcjtOfxW5iJPc+4XpARKb6P134hkAB8Npi7tImssLsh3u8zK3V6v/v88wUYz25XbYKJKuqqOVAdAGeU+z+7IVwnXz5vO4Q89y0Rz+zkuQBpKi5ce+UgnhxiXSbdDb0+m3Adeuqeg5ZePR/XKZyv9neYjPM53vvFQAICzj1fRbSr7Lu7IsVnLxK8n2s/f1zAVeN932z451E8OdTP5wMBXN3/+9AFTNqz3/c5OYwrL5soXUUGQqsTVDDV23w+FcZzvwqdiQPXm1efPZbaXgwkcIVO4DlvtXRVu4ffR3/PMv8dfOznqH94nvY8PgzPVhqW99vhEJ+LMh6gOi9KM6bheWXtZ6voDioOB6QwKv9mGimtIsx1g5zcc4WC9BDmedbcXyWuPeu6Q+2FQAK7OoH3q3W/Cgy/EArCz7eb8rParsfaIVfXQ4qxg31BrQPyXNfvjuPz2T4vXNQBHcDVnOLz9LfzZfhdxCeZCwC7zmJ7z5neX9HI+wDoZwH/Ia5gX9T4IYIE4LA48Dwv9PlCAM+r+LpaEXndZF9Piaa0YKpsHvIGVsL0OWjyK+Xa3aszL7idc884eJADOTwf11O6+XWH6yfsPbOwQIdl6fmzpwrHXfa6jnk4fjBhxyHl39wfQArHcFDhOTy7CBGHqHxZm715mSyYTu45hAx2EcEPKesAImOBR53IWQe0nHtAqsrhjAmHFvMwldDJ9fOFrYt24K7JZItcBSbjSK49P+7sgf2s/YoKVpfP+sjKJEXns2szDC914Iddr2UOd0d8oJsd4JoeP2QyrZfvhDLN+OI58i0lxq6Qzfdf73mo3n56uEPcgwGuXKsUktm3w2rBqW9Cff50LPXeHcGiDmTyx5AncqrHrQlYVOv3A288cAe76ONwezGQADCyYDL82l2Pgyzk+2IrDyOLCneqOpH1BlQwu+8QFanIYu9Rk/GPKGbnsgkA1m6G7aETRkBr9twhBy8o5HwFZZk9dxeAZluKARFM73ifnPp1FGhvI17B5o6ej8/z/CuepfPcC+MI9sXNg+2a5+pw766Pw37GoukYDq/P5PhI4qnLwaFz2OzUNZ8XXznMmVE5hKtf68VBArvigLOdz/vejde2Z7P6h0zV1zkyjT1f75p53TPn3+2dRazMlwNisvJcWTNZLOW26rgh66sN8fVTeJs9TeffdDK/Ezx2laJ0DuTjRE1FgIH6Tzia69p12v7r5X3du3a8bnrNyFVN+6nIe9anHuZSDj9nV4a66l0P74mZ3F+Afpetr+env/OEE6hrrTv9zsWFybVXtM8JCYjIJ4GnQAKiqv5fROQ28D3Ax4BPAj9LVR8+R187RwqGe4aM/v5MYodl0+H+spZXsXnTew73vkf66x21k71nT/sXkdnzRdVYQu3puw0pRbLD8v+X66UmHpXdCMoJxTkgrhwklroPULOxjQMvtxza/HVjHuKO3j+afD9a78N6HRvj7lwfunZEjIefdxjZXc2R7CoSp+fmSKAAbn42Epih8UGcGwmQqpJz3tMbXNc+H5zAP62q9ya/vwP4M6r6G0TkO8rvX/6sTg6x2dYOU6V67QjA+gyEsb8Z9p472beftfPS4TvYA4idfiqgGUDbAjsFKUU7Uu5QTcPa50JBXMnRb/ey8xwBN9QRsvcseoaqdJxvU3c1kMrci04PUPopMh3daXdnQifoadIfI7v93OLdFddepxis5w8qnQ+s667ycHfk1471CqS3R/EnnEAF4Pl1wATIAVTycM5VBlAV1Wx9lCKxte7CdeP8QogD3wh8bfn+e4E/zzOQwJTSTIH/kPrlEItG3XAHKN7kKdanzCdz94p9wNhv74/7qJ278vz9DVSPOVeq8AgghgRqwj3noCpArbhX2Szqx/EeeHktVHkk9EUBBoi4QQVrf6lOwL5IUeelSh+HEM5EPNkBw71LD45V2Kl7MLllCoTDuufnsObUeS676RrN+cG99T7aVQSmnruSwhcksEvB5yz9hLIXIlH/ss770ykimYkPh9vnigQU+NNikPXbVfU7gVdV9e1y/h3g1efp6JCMfVVCzfl19r8Bz1UppWvLV07GgIR45iOv2CDX3VSo7gHz4i5CqbqFkdAW/YArOEAzglXmy04hT6jNdStdzF91a0i5vpb4Gv90LiJMXmHkOKRQuQnQ1FEPAF7PuSHjzxRZ7Y7U4EAHhHNonsaLtSDV+TWHWkUAI7145uI+V7/PahUgp2Ovx6bAPhMHDiAKihJydq7oylQzVTQZr8kTZbHO7r2qfa5I4P+qqm+KyCvA/yAif2dnIlSucKkSkW8FvhXgtddfP4AEDjGTB1plAur9V940ZeV08jl9oh163nWfyYjXXzkB6t0+xhMiQtY8jFbrf6r4AoBlW6AoXkpCz7pBpqMYgLZwAjKy3KPsD4rVBtwZ6dgqYNb/RIbwWWUSDlwvH1IF1znOCG7CJYwCwRTX1L88OXE9AJaSqTuANlV2DKhn0s1V4kY1EU6R8q7u4LnElDJfAyDncV12AX2k3EWDsicOjLMznstlzbR8H99/qlfIOZM123qoWRSuap8TElDVN8vnXRH5I8DXAO+KyGuq+raIvAbcveLe7wS+E+ArvvIrtexWA2iFSrNkOD7ViE/a+0DUo9h3BQLYZYVnFI1xPHvtWWnN8gxRjRttZFOHzUY1P1VhyO0NRcp7SCGIOSs6eA+UXgpyQEFFSFCop2BVgdyY2rsoFeVQsdfKTg9zP2HtJ2zT8FULSiyUqEKglEpElROZvVMV0Wb83zjve8A3KNx2EYBMuCEd+qsU8dDSTYG+Kjr32XEm/brZO8yEnwEBTMY9kekrcsg5D+cHoC83HuYGJpQeRXOacxFlzJqrKJBJOZE0z5SNV7XPGgmIyDHgVPVp+f7PAL8W+OPALwB+Q/n8Y8/V3/Bf+RzyAI4nP0vObDJmT90QO5A+eXjdxHMqPe/n/Q1Ey9j39R7l/CHkNsVGld+j0LdBv2CmVKkCwg7TVXsotHikz1XM0ErVJ++pA6OAFOcdo+TTAduDRxww8BhDHwMYD0VM6m8d3ZYpyF4nq1GQ/ZSa7jYRcy6z8Opi7tud0KG/jOWUnAP82Je9qdaip4y4ZLr+o+KwODRNwb8uEzD1CqyAWd/5EBeQcx7nK885gfrcKtNbRedkHMBMrLBzFQnknMycPEFC1/Gqnwsn8CrwR8qkBuC7VfW/F5G/DPxBEfkW4FPAz3pWR+b55idHtODbKggz7kz0Wup/NcYbMYwB5JTlKv1eccfe8T2A3b93ilr2TGzDWGt/FcvvP3/Qi4hOgLWAt049KydIrFKPAqVuvKNshokIMNyWR1CW8WpDOp6pCGHcgIwUXKcdVdAeeLkBseiBtZuJBAfmYL/Vd88jfqli0lSvU99VAXGMytDxCcZFTNfHYZS+EKCdQqe1/mId7zjYCvgycAIjAijenlNgnQH2eJ3J8hUJ2FypKjlNFX4jEjCAnygTi2VgRCRVB/YFUgyq6ieAH3Xg+H3g695XZxMqOTlk/Q0HKhu6e2aH+l1LpQ9R9fptVKYMlx6YuEocxpwxu/0UiqNM3uuwe+9BTbWMHzKhsjNCPLlQhofvb+4KkPP+6vE867XaYozoj5t5nI+KCASkUE2djmVvRnbGO/1/vGJ3FVVrT/M2oPDhpooIpiKAzKh3lVykILgB6EtHM1FAq+UoM1gzdpBKHehkpplOaUViI5BnBpHsSn2Ase9Zi7w/M++Z5j+nEQFkTeY9WvUDWe3eMnlzhWMREZ+BXF8Yj8Gp0mtarOFqB5xyzfsUEZ6PUxgx8TUjLv/nYfyz5zB6pV3pUHJofEw5AMoG3wWsuhPFCLqWmauIp15aX+HgOxeOgImuRRziKpA7hj1cNhT4AQgruMyA3cjyKJZMhn3VCHbnbKT0Oyf39Cl1XON51VzGXoOBGBlImPYOpZ/6fYpId5H03Gelig3TEurTtS1AVzX0hSLngf2fU/BcqDcVAUwQiCn3xnsqFyADmz8qhDUzKJXrGIaxXMcG8AIhAagLVJM3uCmevf6m52wzmXDYP/NJGpRfI3N8sI/R5FSTShwG9r0NpKMyqzKWB99SbbsNSEHG+alUzcQBHWvjyXw6pALENZM0yr72PKs25BDJiBhrPEMuMNE9jFRYh7/6rVomDrzYzq86fGDmZHRIMz83uY3vOQWKqel19rRCEfcUtPX+CRcx62MGRBVF6wTOtDJIoBSALxr8XLw68viXUh6BPE+RwAQBTJx+RtEhlfmpwF0noXAM1RIxcDV2Xp6BCF4cJLDDZu0yk/X47IaBEj1fOuf5gh50bL3yPthBIjvnpr8PeaMNFJVdjmCHlZ997iIiYSjMSnUb1hnrOmWNd/vd17xPPQ0rZa3UcfhvYskws5wgOC2BTINmn5Eq6XRt6vnKOV0fYzFQ5p35O+jhN50p3UfmU/Z81+x3CGGb3f35ckVUJFBNcEyQsekC8/CXc7oWCWieI4ApIhjWZAD+gjDq+9bCWwMWrmuQBxFQGS0Sh9qLgwTY2bY79eymCGCXWqvsgnPZanv8pu5tsLG/3TbdHCPgDceLxrlSyENejyNlqhT3injzKY9d5NYBtGQCWDuSkczuZ0bWRxiW2cRO+ZL9NgVapfLSgiuHDQlMeRKZ/F+Lg6hUr0QdOIkpF3P1TE+OHQDow+PdRaoThDCIJ+OTBtFnj8zUY27oY6bHGdbdrhWRIi7pTIafav2nyrtdRDCIAzmhudr9KxIosv70mWVBs2ZzJZ+IG3Nup4qSZUwVKVyDeF8cJFABSOt/wHQSJgu5i613X/AqPD4g050L95V2uvPbnuGGnAcj61dNfzUK8rD8P/XrP8TNmGZ5hosqKz2lcHXBB1k2D6LCFMmMXcskV4EO1Hh4xCggT3iD6ZV1fGky7qpQHAFp9v8ECdVHp0FRWc7syhe7bQenXyUWzAB58p7DcR3fbIQjY5Ur0h6QpSimYBldkQ/peUZkWj35TAOfK0AXpFA1/UwQQSqIYIokjBNIyEQ/U6+fPbsC/PSzoq/Je05IAEPmiQExHG4vDhIYgBumsiZQTEFTfK3DJjCEfyXY2//Tvg5dtUdlhF1kYPfWTVC5DLMCuAMcwKH+rxbLdnZ9oWBTN98KNFXOrtqC+aJPuhjk8Qm2mjxA6rhk8lsYIxcnSNf6GpGLIKh4Rkw1f67NX0Jk1EhUTmCCd55nJmZtzrrDITHw4Lo5GRBoRVjVGjBKFYIhAHeN/DzqAUbKrQUJVGo/cgLkNFxnSGBu0hsof84T6g1Td+CBmlesqorW996hZvNxT7mIqxEAvFBIAHZp+rgPdbAJi7idDT1unF3ZXUTm7pJ79esmVGZCmepG2mMJJxSZStkrZaiUZQD4qyd+5C5qNxPxpkDjVOCpyNHJyNpqBVRlfuVkDK52XeXwgYrV+dhBnkWccHXTTcWPIp7pxG9jr1jIBMKngsXAPk8odMFCA1cz83OadlXGddVs7iKNQ/Oe08gQV9FtvyOxvXUNxRzNerqjyR8BfUrhycn604mWf0LFR05iqrwbgX9ANBUuDNuA5OHdQUwvMB/p8DdYKK7BAy8MEthdvJHFnGC0CeEZKGFl6Sc7diqfOxkzsGhhucaupxzCfKJG7nKkolMA35Uop8+eU6yrZ1+qA84wAp29ruGlGvY70DCmoz4whNkmr6xipfR2fVURzm+tWvbxHWQGnXvjm3BG4xVVaTk9XLmWEQim7PwkZGoH+R1uI/Lc3Q/zG+uxIRHH8MQDrL4q1a360JoNwFhl8Z3Y/11dQE6JojW0EWj136/APwH4AQFM90sF3koGdHzfXDf9COwMszfOuU76ePGtAxOWZdynE953uGhGmmzDDDA9Bw2ZUI/R+WUKnAwbVYfFmqr+5hhhev9c/hzHM21Xm5jKU3Qqo1fSp8VtVnGVJy/zMAAW5tOmMjokzeZtthGmgD+ZIynXHdgXUzFC5l2Nr6kTZHQoPmw6MK0UdO7YM9NdTAY7/NzB//XbuFW0ILM6yOowMyEIqiXsuirtSuz9IA5M6UCl7vN1nlHt+lizxw1I8TAyKDb9AqSDjgD295GaRWGg3Dtzv48qC8nYgZlhboHByUN04Byuai8GEgAsNpxh19rUyUAtx4Utn7leUfTVlTTIOEE2JzUAZ44Np/b7akmQcv+oaJlQVMriFyjRXIKC3EhBB2q9p8CaUy97phtY7lQ5FFfeqYxhKg4YIhipQuVGbJxuMsoJdZwQDJnOIZU+TS4u19cgolGRWT61BvfUTSp4tIgEdaQ6dKQyytyas3Gx4gYFap5mwxmeMgLATNwZgHUqMsGeAnmgljr0lnM2xFrfefelYQD8Slgr1UeZR/WVi7WY9QYKO0UAlPsrkpg+ZPe7Dg9Ep/O3N0JrdXVnFH6YQ53RSLth7PO6+ggvCBIoW1JHCpWpzkKjfOzKt0HOGaLzIBQSpcWkFnWC/WYcxZxol1Cc2YQhOiCfYYQ7WDcPi3q1WnKKAOaczsTgOJKnAqllh9fEu1UPUICiavsnsYUj5ZX5/pou+8h87xDf2VtNkNXALcz4eqrupIoomueIZ+wnD5u2KszEOTweSiBXBdjJVrWlKsulBdCnoFHZZ9Epeq+fFShH6pwmMvV0HahzX46pKpLViIuOvc6CdCrATpCATPod53VH7Km4a2/iJ/K/pOH+YZ1miGM+u3ZvHgjJ0AauUceFnPW6314IJGDrmofFFHGzSTUKbBK9c2J/EyqQBWJle0RRgSwZxBVzi1hyzspC11UZ9sAcC++Ci1E786KrW2p0oNmTBPZapaBDEI0KvmihDVU5MkImg0b7VsQFiw5syCLgCjuZwUlG6PCT96jvpWVQIztrSrk0mXEVJZf4rF2rxmiNkVm/M86omP1sqebBNVCyIlFdixRSRLMjhbKWdR1mHIcrHMN07HWNGJF/OZx15IrqCu6x5vXYBIGMfepox69IYPLcaT/DA5mfHwGZA8fU1k1k4vZSN93kxQZTntq6VTpQQ47L29mcukKvxj0orhBLmUZ8jse8d3g/DdCbtxcCCUwnVqpzDDXRQtnC4sg5EXvTuDpnLwdqQRUOnC/suasAlcmYOUtR25DTDa87azFpM+XajuzI5J5KJWby825n9Tqp/YoRnEHZV+R8FfPdz+BU8WLIw2u1JQOuRui5guTSyEDY0eKsYxtHpDwLKc8bWXeb13Gscx3AzDXqoEZ95p/AXICqSEInyivzkptaCnb5hyIWqauTy3zaC6Vmsh4TRJ7r+YFTnCCBnT8Y5fScqoZ+sn4TBDJlr0bKPSzs+LiBaOh4zTRuml1USiUPQ0r5Stp19v46aASk+mmU6XOucGZFGe6cwzuH82787d21tT5fDCRQsTyFqojZV8Ub2ygCXb/l8aPHrC/O8d5xfHLMYrEgxZ5NtyFrJHjBN46maQiNx/uA+IBIg6jg8HNKwHSDHN7os0EePFZDk+fUdL9Vdt0wvZtE+JttXvGScJqNL8gR7XrSZo3bbmjVUpBnFVKx0Rvb5+z5mMmu2vSNvhhlUCmuKIVaS1WqUhVXu+OWCTBf904jIqhKv6kicohpGAAim2bb17mazM2gb9AhiWql4HNdhgG6DOcZ+lKLohmo+ZieezTfJS2AP3AUOqRok9lzJx1TL51gngOIYQ7gEwozTMbkfJFABxFjiHSs01WI4oBwRpHWnJ1c4Yp9+TRq773HOcfUHfxZbtAvBhJAyTlOBmsRYTpgfeXRwwd88hOf4PzpE1566Q6nJ1/MsvE8On/K4wf32XZrYrdhs12TcqRpPMvVirMbN7h962WOj05p2iNUnMl5YN8HLuQq19Q5EOhkQWvb9RGYHq/Pqq9W7RBaOBXRhBPFSwbtkLhF4pbtowc8fPcd7t99lxx7Tk9OOD07oz05oWlXSGgR50kSBg5ZpXIJFSiFpLZhauTZVIisYlfVrdgLHqL4V8xNecYYwDTV7tugqpHHYWKbiBbkU2ZTC2IcJ9jWYgiGmRDTCeBazM0caAeFnM6Bvx5PuUbzjcq+IdqwAu00Z+Nem3pS6uy+AQXIDiIgF/3Sjoa+KigHzkIHp7NBt1FWaohGdSZGGsAHQgh47ydE6EAsyHO0FwIJKJBzlVhN5gc1X4s6uUUGatuGGzfOODs94Wh1RO4jrmzu2G14+uQhT54+5smTRzx67x7vuTe5f+M2t2+9xCuvf4ST0zPEeduzrjjgmLco03JVc3l0QgGG8zbWYYFmIsNOqyqIiuEF0ISXjCchOeI0Qryku3zE5sl9Hr/zBnff+DRvfeqTrC/OOTk+4sbNm5zdvsPq5i2ObtxicXQLljdp2iXO+4LUHGkopyXF01/BjUAkVNZXh0w+VW8gs028v5GG30528MUOez8kHSkih+SZNXEqbORJ3H3lCgZx4Cr5XAuiUMpnnlP+wb++huzqPK9/rp6Qk/fKOnsF2BcLJy/IiLomyGFvDxjS290g9dugNyyvPTzCO7zzM3a+Un3j/lz5PlutgasdjjwHInghkACqpBSBSnUEJ25gwbwTTo6O+eiHP4I4+NgXfxG3b92iCS13br5E3/fWR7/h6dNHPH78gIcP7/H48SMunj7l8f0HPLr3iE3X89Ev+mJOTk4RHwzJOJtQHVZiGNRsAw6fUk2KMt2rVLFgt802Uc4Du+7oaUn43JM358T1Uy4e3eXJvbfZnj8iXT6m3dznqH9IunhAf5F45+3MuyHgjpaszu5wfONDrG59mLObtzg6OaU9OiEsj3FhYZyCD4xx7zpYNAYnJak0eeqUPbK543rs+zsM6LDeUljWKbs7KuwKItAadWBzVXgknIx1FKqib+qMAwzJM0xZVs2VpneYeuop1Tsvo2mU/6di30DFBwaoslKHAEZGE/AkmxK7M1b+k/L/4AYs8/kcxEcmFF4ECktvrDxIUeb5csxVT9lhz03nZ8r6j895tohr7YVAAsYJFD25K5aBqsQqud/apuXll1/m5OiIO7fvsFwuEOdpFkuWZWZUe85euslr+hG2mwvOnzzmwb37fP/f/X4e3H9I123othviYmEmRSkupZ4RFe+IBfvfq1NKGae72tV0N7rPHmmUwWkkdxd054+5fO8NHt19i82j+0juaCSxpGe5auBsyVHvid2W7WZLzEp3/phHj+5yn08izTHLo2OOTs44ufUSZ7dfZXXjNkdnt1gcnRLaFaFtkODBmRUCcah4EoYiUpnn8V8eNtvsPXbWbHzRnQMTsa4I28PhkqFgwBsiIM78QbLoRKYfk2xM3W1rxl1jbSoi0CGv3qBQy5auawigGrH1bNgDspu8h87ecEKite6BSgh0PD8K7CMCQHcIwwj0VZ733pR4bqD2psDbDUir81ftBYdhe6pgH97qmdzAC4EE6qJBiVFTo1JOrLCGZiVhKba7bcfTJ09NNFitBkqDEwRfZCvPsvEsjo45uXGLqMLRO++yWixZrZb2nJwHTXtOoLP01VBQE/Vb4TsnQ973wtqNWR+urVRDBHOKUnK/4fG9d3j67mfYvPsp8vqCRiPLRaDxgSAO1whx0dK5jGrPqoHQtkRJPF1HYt5CjqSnTzh/8i4X997k/tEZYXXK4vgGy5MzVic3Ob5h35cnZ7SrY0KzAN8gzmz2gitjL1F0ZVMPHDojxRwsozKRfycy/Qj/hgAsa5+Yp6tW6meXOGEIAzdKZ449VWIyQEuDfihPzHnm5FmRNhM5v8x2VmQmZoycyDD+YS2vB5KpCFJXdJTx5xR+WOeJmOgcE1ZeJko9Y/FrNqdx/0yHNy7CdB9V9DPlQnbbFFFdxxC8GEgATDEIZaIdKsns+oyBrAklaSQ+SSSUk5xp2gUuhMFzT8SjOZHx5pyygDuvfgjfLpEM3pm9NKlALtEEg/2/6B5mwpkOsrSqRZkhpsOwRSua+h3Ar0rB8Tsm4qjiSGw2l7zz6R/k0Vs/wA3dcNx6jpdLmkVj75EU12NmUKfEGFmEwNnRAtdmjpc9OWccjphhvY1s0xPW50/ZPBEuCGRxSLMirE5oj29wfOMlTs7usDq9wfLolHB0RHt0glueImGBb1qrdORgjKirjIwwQrKbeyGqkNXEqsrpVPqaETxSPAQNoJwWHCGVna9iRKHsUsSuwmRZvaWafScNVL760NfUXbWXYRXq4AcxaBegK83WATEcUqoNwDkcKeMbDjhcUdzJoLhzg8JOhEGun4kA4wPm4y7PnzJUU26jKg4r0TJnjd2xljFyCD3M2wuBBFQzGvtiR3dlMZJ9n8iZRkgdqVuTHie2/ZajoyOWyxUhBELwIGZZiLGn77Zs1ms2mx7nGrIoqeQxHvZHoXhzrZUMMzcAcp3kSiHrAuy03UhGrbIkzkSIqiBLiXj5lLy5YHFjycnpEcu2JWNViL2COocGIDiyBJxvWaw8i2XkaNWg2SHekVTZbiJ9VLZdYr3pibEjJqXrnrJZ3+X8nueJLJBwRFiesDg6ZXF6YqLDrQ+xuPESJ7fusDheERYe3wSctCCOPFE0VsLqVMw3SwxrODxjEFAma081YVYnKZtCV1KgV59JMa14oVi53IMrehcUVVcQsI5/NShH2TEpVnI8fgz6/h12X3cunBLfURZieCspgC8lF2Nl6+eKOjcx09U9ofuAzw4HMrAo45h0Z0tW027STN/3qCohBKtOVXRo0yeIahm/7JyZtxcCCQBoijbOmuiyiAKUF68vo+pxCNt+Q/+0Y7u9ZNkuWDQNPjRWgFOVvu/Zbrd02+2YsNGeRN0NOU/dOuuWmIcDDyYgVasVqAyJIOpmukoMGN6t/Ddm3BGCcyzbgK5ajlcNIXhUhKTFZVpMLsxeyV5xvsH7gJdEE3pUBU0B3y7AOdoAqkKKynoj9H0iZSUmZRuVba/0sadPF/TrNdvLe1w+hAd+iSxv0p7c4fT2qxyf3eD49Jiz2zdYnZwSlseEsIIQoOgRMqa4FTP8lR1qWDUDOMh4wOT6LEM6VsbowYoGZGCupSAE4zzMQxMc3o+iyiBXD+uQR5+BHfPeVPs/roWMJ4FRF1TOTuBwkN0Lf+6dAb/3MrD2ZsmS2R6YijzTY1e3EXx3r9sNZRcRUs6klKjOQIPn4AynTDmVHyo6gaHibpE1a0KKwjZWhODUTHpZlSSgKdFvNlw6N7BjJucnUk4UZGgbrWywqnQxV2XZSzNQMW7OmRgjKUZyVnzwNCEYkiqiRNVKH8w7MHk/50YqWqlX0zTockHjHd5NFlwczinOC96DDxAa+25sen1mKn8e7zPiHE3rkKDEiLHL6shZiVkhB3Ju2HaZi+2WTYqs4znrpw/ZPn2L/r1P8SSsaNslq9MT2rMTlqc3WZzeZHFyg+XpTZqjY9xiSWiWiGtQnLncusoVWGm0LL4AtyN7P4gQUw5gLE+GAbxzNmYpGXVxmJ642v59mR4xB6sS9SdFeZgljfJz1ZxXSl7+G/NRFARU4i6kALKbKO6MqhcxR2Qi01dZ3x1c97lMP29zRd/kXtlHAGNfVU81PifnUqQWBuKETEyowzwPPR0eEC8KEhhagRIFlVQFx7J+MqD2HM2+LU5ImslAr+OEMaHm5jZbKIR4EAYl5BBuOWGXKhKIObPddGy2G2KMqCpNaGjbxvywxZQ6PjzPFGaqu2dVDGVAvEe8K8yPIM7hsuKCEKKiOaKpR7Qn5w3KAhHPmHkqg24YFHrqEfG0kgleyWLRii5AShEPNK5B1XOxdmyiZxuV803mcrOh6zLd5WP6LGzeE3Lb4pZH+KNT/NEJi9MbLM9ucXzzNme3Xub49BaLoxO8X9g7uGAIVzBN/yA7F86hRIrW2a4WIKUu3ihu2VoUDsD5wiQKmgSXk/nLu4wr3n/VKXYsxln88fMUERTlMSZHixvLursqy7uyDpW9nwD6DEiHYiwjAZh+v0pU3PUsHRH/cNGBn4XST87VOAHLBD9XSlbCV1nQsY/D7QVDAjC4scJELpPCJUCqYTBiMJzKeVdz5jMqsgYbtxpnkdU033mYjzHwRZwpV3JKbFOi73q2XUdOeXTUQEmxJ6cICM4HmrYdKMQhj0Et5kETMzPOFRdhJzhv7FzwrrCcahyBgpNk7yoJ5xKqnUXsaQs5mw25cfimzJZEi7IshSpKwWKSWL56kVQ00h1OHCeiLDolqbBqG5445eF2Q4qZ1bLFLzx9jnT9mvTkEd3TwPpeA26BX5ywOL7J0Y3bnNx8iaPTW5ycnHJ8doPm6Jjlckn0Aj7QaybmZO66E2o6lcsVHcIFcBQjTFlzBJFQfOE9SCLHiHpD5h6FbAFjg3mziAa1gvPIHmBICYcPrsjTvlB5vwPAMqHodV1HrmGX1O8igPl+2NfO7ymS6z4/ABGzPhGcCywWfkBcY8y4DB/zyOEfAuKAyBhNa21cuHENihxfrnBlk6Ag3pSBOVf5HqouYaA8UpVTU921XeOcsyQRxd4c+94op3MEXzaHzJmrqqEVxiSj49in71YwdvUdV0VywqMlSIhqQxqpgxYvMxIQEacELzipUYbRPH2dI7iGnEwCd+JINYFEfe+sKJFcshZEBSceJONCh5PAyi/oO+GpyzSh5+aNJcdnC1JSupjoUqLrOroOug30T+9z+eBdLt894uHymMXqhKOjE45Ozzi6eYvVrdusbpoI4cMCcsCJIztKQJdxeIOy0MmwzjNLRE21nU3/gDNrCN7SxjmfBxFLMzhnHICxykX8yoUrGOBYEefxrqFpDblTiQY1sGmymjPgPrzMc0vCuD9G/YcpFXfbsG/kMJjKBAHYp13vfTB+ZkdMmOZyGQLvZ0jscHshkADsIoEKyVMmZko7JnLekBXTZmCYlOJSOqwDgkpgYD93uQUZ5Ugz57TD06sHWy4LOwgOw/27GHxCfYZtpaX8n53LRelo721GUHVhUHSZqBJBI04iIVjOBCESU2czpI7gAylZ8nnnjdVNkob+pYTt9jGRPAQHwSXz0iMjklCSmVNdwPlIWGZWJ2JRjApOWmKnbC8TsXNs15FH2y2XsSddXNBf3uPicaB7sOTp3RNkeUyzOmVxdpPVrVe4+cqXEI7OjJrn6m3pinnWEKwtYaJYB8nm52w6oGHNikZBwXvFK4YckgOJNouaix5Bx4QilT3GzQDZybhv0OqgNm9zpd5IPCYba869inGdhxBGZeNHJbQWBFB0FdP9xvQROttzgyNR+W8Qhqoiu4icjvqsPPR9qL0wSGAuCY0TNKjWyxvLNMnFMJ+V3Rvt8gOjqbZoqkqWSMXMwLg5ZNJnWRDv3ND/kEVIi0xfEU5VEpUuRqw8n/AxEoxROcg8yk2nGKuEU+daeooMkgBPDYYBRSUTc0cqsnYWsTwKznLTpyoXo1S92+DHX4AuJyVHIeeyCTUh2uEINM4oWNuCto6+9WgKdFtHe5lZ944umtVB8xbdbkj9JdsngafSkJolt177GMcnLxGWp0X/IWTnUGdxlMjo7FMnUMVs7sYZVO7I5s85EHWmBvFSFRBlztKAPCgIwtzPR3dlpdokGHIeFH6uzH1duwkbPqznpKcZlE/Y8GFjFnGisGRagH2E3AKsZZMPxs3JJYOepGbZxZSUdc7Glgp+GPsUxnxTeQojB9ozkYCI/C7gpwB3VfUry7HbwPcAHwM+CfwsVX0oNjO/GfgG4BL4har6V571DNhntarZYw+BDTM03jhVsgxLOAh0I0cguxhx1ECNuEZkCMSp7FfZpQP6GDFwCSIZgnB2mjJwKTrdXMNuMffYFMH5McDG3F8jKcfBPm7XRjMNqoIm1AmJbPpOEfCRrAl1sRSpTGbSKogtiMmRJjqoOSHlWMZp7+tFWThlKRbSDAnRZOP3gAt4Lxx7zzIJKTtScqQ+0vWZy25N7pVeA4ul4+zYc3q0wDUN6puR7a6iAQboDjHgVhkC7LKCJB0AQgo0Kb4EPjpcEbWyZhOXSIVrSIUhLqZKtIRwF0UgJmJIyctACbmeiwOTFZf5kQHAhiUtQK8jomEG2JV0yPg+A5dReZ2yj8fyFlSiIIXoMKCk0XRu76gjpzHMjBRu8OpcAvB8nMDvAX4L8Psmx74D+DOq+htE5DvK718O/GTg4+XvHwX+y/J5bZu+Wj1wiHmZXpcnx4aMPfXYDM7r9DMr0jDcTGEIK6ZQLT4AGS3s41DnXRgLkAwdlrTSE85jPujqXFSX2pBAfaZqIqVIkxQJRcmTOzRvQXuETBDwzgJisjpLMFTTUVWlmQORBPR2To17EDHq61RpnBTAsLEaVS08iVKQAARxBCDl2ldCMYQTVUACftEQCMbaZ4dGSFFYbGHVw3mfyX6LxKdszx8Swil+eURomwFw1RuwJE1lfoyKT1OoibdVV5VSa68ocUPAqymDi1HYwrKzN8RZAAGpWRPKGlnWGczsZ/EUgul9UpWpZxydKybqcT0FLS5n9XIDZi9CLYNe9U65rLr5VVT8XyMwjeOxN9BRTJgq+ESGHJo1YKoGZlVTa9JRm2EMg/Xosk70LZ9DGTJV/Qsi8rGdw98IfG35/nuBP48hgW8Efp8aaf5LInJTRF5T1bef9Zzd8qO7BL+Q3mGNxpz69ezIVu3B+URrWyn+DGkM5woQ55oeOpfy8qMPdh4SaCq4UACoKqgqMij+rsLI4pZxDLkLq29EjmjcIiHiUiapK8C/wUmH14zLyqDNUEqatQy+5AnIhriq34SgNL6y+IqUJBwOU5hlGNx4sxYDpjgQT1aj7DEKyYELQlRIyZyPNDtUI+SumM88zgVc6/HF3bgVaDKs4wWbdz/Dp9ceVm/QHp9wenpKe3RKuzo1n4O2sUxQzoEE48JUSTkbgnHGmVmuxQIoxTys2c6JNLjiRRgomZopyEQr0ci2nsVkqeIs9VehOAaYE9JSOTXGmEA7XNyZJyJG3YauIPgsMlDhQbSrjK0buYThRrHzo0A6IXhTbtbIkiGaiQk25Fjcqa10eUo9235L7ntS17NdX3J5fs5V7bPVCbw6Aex3gFfL9w8Dn5lc90Y5tocERORbgW8F+NCrr+zIWOWa2TcZMICUCauyttQJ30mKeai3iipmiKKKHjreVorWFMDOA3ch1YddzdREQQpIrQAx6WT3+TKhH6WmnMUzdwM11eyBiNAjGkvySw+5vKVaujDbODZmLZF3MkEyIubMa6JELunXivcbDk2GCFIWA24VVE0uHvNtVrdtmwzJ1DSOZvPPtcpQWQdVGswMGh1sU+LyaeLiaU9e3KNdrnjaLMAt8YtjVqc3OL51k+XZGe3xMb49RtyS4FvLwegqsDrSZHm8F6QgOMWZAtMJOIpHo5I0o6nGSeo8cWyZkykHN5cJJztG8g4hoZLzss0KuFYgrqeq0ljmrD6Va9WqPNThn+07WyML6yocahprDwoWt9IXC1ZOPbnb0G83bDcXbLaXbDYXbNaXpK4j9x1xu6Xfbg/sSWufs2JQVVWuy2d89X3fCXwnwI/84V9e528C+TIh9eOnYesJNigLWBHB8HltOamxyfR5k9/VWmCsaPEwtIGbxhyoARr1v3GzTF2Pd967bBhXKJXUApMpk8UV81ZCJJvcnx0peWKqLqreAm6ybWyh7r4anGJcwbjnCusppkg0z0xn3E6CFJW+S6RobLTF40ey+kFT34ZAcI6+T8S+zHJhQZOOef3teZnGZZwXk+fThthFuu0T8roBtwRZkPE8lYBfHbE4PWVxesbq9CWWx7dYnpyxWB3TLFe4ZkGWQBJHLNxLdePFVVs5uBxwKsTW0Q8ihrFNohBEh/cTnCV0kTQXHSc7YboPBlGv5J7ACdmNhMdWZaJDohKoKn4JNfuyWTd04Bctf05Za1XIth8kZbSPxK4ndh3b7Zbt+pJ+u2GzueT8/Anb7ZoYO3Lfk2NPzn1Z34RkMxt7X0S8a0Dhs0UC71Y2X0ReA+6W428CH51c95Fy7NltR9s61ahPeQLVuZmnnp4G7FzttTXF/AceOwHe+f06+ZizcjIggErlR2mtVkAzrrQiq+krz2htGZoW/FblYEfXCdut4hce1KPZgNAVr7caQjtsVnYi6koyDNVEMlkATZWLKNKzmLLQPPESSiSIELw5M2VAnaIul4xPpqBLKvSFMzH/h4QX8A6CF5atJ4kQiTQu02im6y+IGZxrcemCfvOQy/uex4tT2tUZy+J4tDo5oz06pVme4BfHtIsjJDRo9oaYC1tfsyepC2hjrH/SzmTnWBScpex4jYVyWDLXMTV39SodFW6Di/BksdU5tOgVRspVphhDgqKjDaJ2X5E+GKCn1KMpEXMi9htyt6ErFL1br+nXa7rLS7rLNf12Q99tSf0WzaYnEjFTaOMsxsL0DoI4Q3bmTVkQpu7u83n7bJHAHwd+AfAbyucfmxz/dhH5A5hC8PHz6ANs9kaV6KhZnW7uAthuetNIaWUHEVzzIK5mXPYjA63PAmgDq212ftskBpiIG6iGTpBFFUKcShVnC+dZFIquvpcj+Oqw4sxBRi3irusym62ybIL1mC3Xghui1xjNiTpxQqGIKIM7nlXc1Xo+gUhj/gFOcA68CG0Txiy2bjSBGsWrvJanpib3Yu9vm9S4CBBcMHHExx6XoXUtC2ecgqrDkdj25zx+vGGToD05IS1X9Ocrto9OWCyPLAz66AZ+dcri+CarkzN8s0LcEeKDuViXYDPxFN//QM7Loj/p0KiIhrJ+vvgmBHANOBurmoRGDRWHEpxTOLe6N+xeX8QyHSyV5p2YQGMRlRSNSk6RnCMxRvrNhthvif2WzeUFm82artvSb9ekbk3s1+TUoymifUJjj8uZgNA4WBTg96I0TUkqKlbyTNVEPgFy8aq1jESmfLyOJ34eE+HvB74WeElE3gB+FQb8f1BEvgX4FPCzyuV/EjMP/gBmIvzmZ/VfnjJSriozoQMwT9mzA7faffW77nIAIwKp7DzDwpYrJlrZ6gWoe9M2kfum9Hww8+yw/kIxFzGkSqsKRvszmdSJVIdBvKubFJwmsg+4EisQo5KyIyeH86F4wlV22GYvxjRszEEJKsVtmoKBaohr9uTeI76BaBPnvOK8xUO4YGHPOSX6vlAZLGjJucLcimm9nW8Ah/ZiFowcgYDzppdwRfHlnCM0AScRiw4MqCZy7HDqaDWi3RNyfMLm/B4bMbMizTHhyMSFxfENQntCuzwjNA3toqVdLFEf0OBwIdB6j7YOyY6uL4FjSEEK1WrQIK6ZU3Qx7s3WpFoeZNS3FKTniPaescjkOaJ9T+q2xH5Dv13Tb7bE7YauJMDtN2s26zXddmPIMsVBxg9BcCUYLHhovMV7iFezyuaEph4nJS8BxrH5quT0hXBMCKQrsS01JkXc51B3QFW/6YpTX3fgWgV+8bP6PPgcoEDO9AD1cMXOe1R+ULTUC/eBl8quUl1W59fscQ+Tbg5yFgNymiCvPR3ABNFMkm6a/JcHWcGXoBU3UJtsQK2VE7KhpAwpQa45K4cKOJV7sTyNKfUQ/GDKrJStPrLKqkk8UYWoDUkzSZN9kkkqZDwOR8oRIjReSrzViMBEHI13JYOz0IQwKK1yzkOMRi76B7O4CMGHwm5b7IM4R+sDx8sGHwTnEpvt1hBEjlxebLi8eMLDBw9Qt6RdnHDz5h2Ojo9M5m0WJCfQeNqjE5qjEySYjsDLqLFQxEKynUOcmTfFWYiwUQ9HjAmy4r0QxKJRNUVccUyKfUfebkmbS/r1ms3lOZcX52wv1/TrC/p+Q7dZk+PWFKfF61PUPFFbscI5oTVtQUq5RIuOUaMWKJVMsanZRDRJOOcJTY1xqIAtVYtbOLcaC1GzFtXPF774yG4b5e4KO9Z2Pbuhev1dx+4MQt7wUwY9wt6lO3qFqQunYso4LVp4KTH1c05Ad9QOI6sy6LPKxaKliIr4oiCC6jknGs1hqDrqiAzvKqJmIiSSsxVWydVrxaRdUMtmJFQfehuGxUkJXXZsonBxnlAVkvoSXyBEdfTJF+cbRwOm88jmO1H1C5Rcf84VGdg7sndEJyWJp9ngLRpy1HVIkS3ECyTBDUk1heCUxpkY4pxDnSeI0EvDeZ947/5dtvFt4isPuHXrzPrznkhJaR6W+MUKDQsIC4tw9C0+tDTNEt+YCOC8x1OUsn1BFFnRPpNypD83ZVvqO1LflSQ1kbjZkNYX5PUFabshVnk9RVR7ahr5YDjJYj6GPacDMXLFuy84j3gp/kp5CCrLzgLdsgpBHL6YcJNzJga5hiTO1kNzsehI4UzHwiPiqv7iaqXAC4MEauxPNfMNNLaawQobb4EhB4B38m3uODSe0eq1U+X1CZU/ZKKc5wnQ0vfolFknu2qFVaceiZPnTsdTR6jmhCOYHF79FHJOOE0oPUpEJRMaR2j9UGGp5F1Bc6KPcZwnyli05FtIRe+glh1IK3chmS4rD59k3n6jY7VqOD5aoXhwnoSjy0WeFCU4Z2XcnExSdClKRnOPk56cHSn1xt76QNfbWhrysLmoTi9OMBfi4JA+g7Pf5j5vYddBlOBAXMY1nuzNZfq9bs3m6VM4hcVpIsVIn8xDsk+wTZAksE7KOkLMAR9WLJZHHB2fcXJyxur4iLOzM/LxiqyRbrum6zvitqdbb7g8P2e7viT2W0g9IkqKie3mkoApN0O2QjFCRpzQOsF5tezAQkFo4MUNSlzzBRCb4xIA5pumbJJEJg6su/ce9cUcLYHkPF1WkoIPrR0rpl1xAR8a8/HIZrqWouOxLHp231XthUEC5nhDYW1qau4qHYxglPfYbhhYhl3qKxWd1FaAWmE0P+63KTewFx5MWcgB1kedQO1bKUCq4zVzXqV4JU5CXZXiLpxzyaUwenj54GkXzaBTMC/AxsaiFiJtOhRLxDn43WctQUtG6ZXqJ2D+ARfryMNHHSlBaBa4IBahJ551r3TbnjYoi8UCfAaJJleXjEy+BAFljcRe6bstjXiLUsQUqVb5yebAO8GLhVGbLtECmKpbtMGHybaasHkwYQiRhiZ4Vq0nLQIni8yNRU/2PX2MZFW6Xlmr0qmZ1dbrSOxg3cOjBCqe5fKY5WrJ6Y1Tjo9XpNyz2VySYof2kdRFcuzMh0MzjRNWR0uOmoDPFwSBVoQmFBFOACeFkymFQEqtTCdi7gjZFI8+tEhoyDhSBte0SNMQu2Ryf47m4OUanG9x3rIIdRliVjYx0it4v8T5xsQt5wntksXyCHHtkF3JOUjFNCEi+FFhsNdeCCQgztG2K2rkF8UFlGraKQoU1WqbZfQeK2A5ZXd2GP+JD5EbIFP3rp4D6Wx8U33EhGMZTEg7agb7vYNkZnjAqChFwWPuvtUCkScyTmHjSnKL7XbLhQh5oYXCOiRIMZvqUA7bEmdATmLfXaEaxc3S0SDScnQs3LydWS49vlFS7osZ0HNx2XH3naecnSw4O7tJuzBOxzwlFbQvcQnmtai+cgrmNis4UI+oebE7ZxGM3pWcCc70H8FpKa6a8cFbFiUBdRmnlpTUrKaZBs+yDfTLQBMiohd4eps/52jx+KysU2SjG1Yk2qahA7Yp0nWJbnPO+kHm/L3A0fEK581G7x20ztECbTARhJwIzrGQjiCJhTeuyyMEF/AhoMXb0fkWJ40hdo8pWZ0rjl7mCRmWK3y7ZBNNfJN2QXKeXiw0vLpn+6bFN0uyBLoY6bpIVogB1DtkeURYLq3MnjhC09A0CyjVqAZ3drHANydFcXhFeyGQAAguNIbBtLr+RmpGngo8SlVM6VDznuJ4UU5WNR3TqDSDYRmAS6uCbvL8sY0IZRdR1Oy39TopeeJ1YJF3ri8IYmDFxFvkX5HXIRuLL1Bd8Qw1BFS9uYBqQ5KWsMxstz0Xm0jXw/mFErxCoyZTl2Qd3jlLgYai2tI0wRReWjT1vkUJCMLpsYcPGWJUhYtLY0e9d4TG2WYODucC3gVwubyLK+ayjHfegEITvXpyNH0CagEskqvSWoepqWZHm8P6/op3Ft/QuoB6j+RMUMW7TFIrMBNTT5e2JJQsGUdvuhX1SE40mDWg0chSlCSWs6FpHFHMlNpHhbxlkZVF2xC8o2mUhbdw7UXjre5jb/vISU9wJcS8cmFuiXrLudhLQHSBp8X5wOI4kGRLlxVPS3AtzfKI5cmJOT2tt1b3ISyIYlxZ8C3BUUzP3qwi4nGaaKPpV1bOkZ1DQsA37SD6GW7XYR0tOlUgdaDGvaWhwtd+e0GQwBgQVHYENZW3UmRFqgadAegsFNS0tlXeN225YVWrK1edNyDFWBI01udM20SW11H8mF436BcHM6M7aFkQdsUIHbX9Wvz41WLlRcXs6kV0SeLIOaDq2ER42rdc5AXOO9Iik1MkKbgSXZyKUkvEvA9BcRLt/VGaUFKHY4Va24XlKxQRcvS0riUnS1xJFMQrQeDOzSOO2kDjheAipFIuLWdj2QnGGeBNdg/mVtypR70b3HdVExlzXBlQqzCIJdWOnclo6nChKM1cXygjiPYIEaUh6taiK8VSqblSDs3ji74hE5wQBBaNJ2aHOssPGYrY0TshpY6FU44XgeAdixaWAYITFk2ABNFb2viM4EMo2Ys8fW7YdI4NIMslzfIMZUnjlxwfnbK8tWKtF8Rui/olrlmQ2iWbdmFxGIuE9wvwgbb4ODTiEMzV2baXiVrB0iZZnshkbuap64ibDTGW9OuxJ8eOHLdG4KR4hMateaImJfbdlbD3wiCBaQEL02xVTbcOcveuFa+y6RQ7sGiJ7jKtGXgd5G4pokbue0SEENyQThwOKwZhVznInBOotuMBO0zPj/dWjzXjaqK5dKqx8zF5OlpEPMm1rNXRJY9KQx+OiCeQeMRms0blDKcRiRGfk4UrqAWNmC3bdAqmLOtQTfhoY9KUcWzx0tEEj/cyFP2sdQBQ0D7RX16yCCvOVgFHRvoNqLe6iSnhyGRnYcSqFmSEmmdgcp7soHeJpImoamZLV7TYKZFFTduNQ8vGNu57a0FBJJQ1ivk9iEbjXiThXW/mtGomw/QITjxKxmXBpAOHLwFJIhnxlnSlmlNz7hAnNE2DF6VtHKvW3IuDQEwWA4ErpdwksE1btrHn8TryuO9J7RF3XnqZWy+/jmhDcAvcYkVcecTfoBHzYkzOowQ2ySwQbuEtlsGyqiA5kdKWPm6LpaFEVWomF91RjJGu64jV+ajrSH1ZXEafBSdquoliAgVzkpru9d32giCBqtUe+OayK2uQh+zL2JN7x3guJkq4osKTmryi5BfM2Qp61LsPAP/UPHgoecT8a3l2vWemoJxfakjKcsT1EZ5eZsIWjhcLxC9JckS/WKKrJc3iiOAcL7/0RTx5dI/HDx/Qr5+QuzWkjhx7XEpI6kb9CQo543LCxa54q5mjiUbz5ks52gbPMiRc9SghmE055Z7zpxf0/ZY2BAtkEWXZtjTe5jgER/ZCVLNtSwmfTSpEXPGFjEUks9wIqDPKHkGdMwVYKRQjmo0j0MhQal1iKUCTgR4wz0TvzGPOFfOjmSjNs890J4XrEvPSpIgarn51MnhDmgMUVBuqw/QRQonIS5nkQJ1xHTEL59vI/cvMY/UsTk5pX/ooq5c/jEbFZ+PmNprokxCR4pshkCKxiwa4WdHOiAHRuLuYt2y7Ldt+Q0yx6htt/UgDQpDC9WnKmGuExzcN0ixxbklwdsw1K/BLJCwIoSGEAPzpgxD0QiABkSo/y+xYKRLIYNkDRggzMaCsLIOvdgnqEVeUiTlVzdJQMGL3D3Zl+jqGOYK40ht5dlHtqygsVYt/vinrVIQkDfef9HzizceEeMHHvuR1Ts5eIRzfpl3eoF0cExbL4hmYOH7ygOOHD3j88F0e3HubuD4npIjGnpBjKftRPREL8CVLla4lVFnTFpeL7Tsm84zThJT8Q7lQ6hgbLvrMRR8R6UseRCG4ZNr9ku/Qe8x82Hiaxji2LPbufa/0nSVDDWIebjXUVZUSfFQUjSVLUuXsPBiwSyihnAYE4PHiCSQcDu8avLQ4V0qZSCEHpRZBFeMkW4ixIao8s6F770vp+ExOxhkhUjRRxrHEZFyIJSZdWj/ORJNmecLR8U2WqxNSFzl/8IjHjx6Qs9InJZcCLS4a0GpK5nyUswUKZQscU1GiV/qCoPGwWC3MNVgsDsN7R9N4msYA2jtHCJ62aWiDx/mAbwJNsOMuLNGwIvsW8Z5QTZEH2guBBGAf4Ay7TxWBI1avCpCqP5Aa3aWj6GDZwdTspDEW3qAq7PY1pbuy/VV+A9WjUdhHJOUEOWdSHDfcmFUokFBiTtx93PHJu09ZSuRLvvpjHL/2ZTQnd8hhSQhNZTBwwMnyFoubr7O89Rppccb9d96k214isS8KTh0SlFQnHvNZMB92Yi5ZiJXcGxdh11jWIOcyUdRyG+SORE9KW0QjOfdDzgISuKTQVVt5yebjkgUfebCUZRZkdHKyMMWh25rloTj21MxN1Y1Xsd8QEAl4WeG9QzFvO5xH/ALH0tZWEt61hLAolZ6rb0gJH64OCWKIqqZVSzlZCLLoUAvQuD0tSVgVj5JjMbt6GcQti8hrCAEWQVhkYekdR77hJDTEGHnw5B7vfuoHiFFo21Oa5piFD6AW/uzbBmmbUh8i4IPVIXQhkH2JY3AeFxztqiUEU/JWwBbvCcHcuqW4BTvxBCeUlxyTsIiJMFksnNnMtofbC4MEaqssuFGGKVuuU0UAlSMYzP5QqsWMWnkKEhiAcIDVkqRhB9Crv32N26+nZ4kfdX79+KxxXF3XsVlvCKFhuVxNHJxMDo7Zsc1Crw1NaHBHt3Grl8iLW2QXyMFZSq+i5BG3pG2OOSuY3bXHXDy6j243uIn7cK6UPkc0W7w5qmgqmu6oJNeRQ4+l39IhctBJBcWMEPHaI7lHUm/cRcpoVPpkOodt1+M1mgaaZPs3GYUjW98LXZqpzS3M/cM1FqvgXEligpkbnbPakASgBWktQajzqHpc8FZuXZaISwg93jU41yJExEFShVrdN5UAK29aA+cLosxFNCnKYwZHL1ufpJm+KuCqKFjyRQTvUGloG2UREoukLB2svOe4aejSmpXvWLDmqD3i1dc/xPGNl/Fta/ESi0C7WuKCxYaEZYNvGlywzMdOWrxb4H0DDnKObLsNQi1vZn4kiBG9TCFmKqRif8lSkAHOFM8oLscSsv7Cmwit7bLk1RHGtNADES6WAKj110y9lQfT3qBMrN+HhJv73oTToqGMdzPvasIlzHQOMlw4ZBfSzGa95uHDxyyXK5qmtQ1UkpWi3rLmIIRmQVgI6jwJbyKDD+QSYqzOoZi5TSQgLZze+hDiGh40S3Lc4uvzcyT2W3IyKp9STx+3pD6iMZH6SI49se9IJeglp55U4uxzSpDMkuIkEGRlkXCuN2VmK0g2OVsS5K4zZdb2kthvTG5NFhgTyJy0jq02xKQk39oKOQ/BKJ5V4lUkAN5DtKAeXEPGWyIRMcWccx7XrnBxgfgOJ1u8NDhnplApXJ9DzaQZ8wxhD8lnREvg1Wjd8T5YXkYyCUGyErPpMlwhCt4JTfBAoOkSTXC0iFkhvKPxnhw8zVHD8qjl5o2X+dIf9sNpb7xEXrUsTo9YLpa0i4WlV/MOv2gNAYRA8IFGTLxp/AJQzp8+4Z133uHi4qIUXKUUwVXLZ1BFTimRp1qzYFm2J9EERV9kAVNXw90LgwQqkJnHWzUhlQ2KOak4KWmbBoefPFBizaYYUilSQbUaCIOsmthBMmVzzKj75P/6dU9fMBgtpqJAUUTihvJlY1CRUROXI5mewIYmbwn0eAkWg58j5FSi8yLmMlcUX1D0Hp7GLzg+usHm+Jzt5sKcVkpW4JR7UhURSu7C2PdoH3FZ0djRx66kCkvkbLb3lLP9jmkIXHGa0dQPce8arW5BToZGU2jJzYrUnpA1IWRc7nC5Q9IWlcxawKUOCQtEstWKDC3OWz1Jq5Jmqc3Ul9/irLBIMnY+ScQ5X/wGzCnKNc4iHZ036uh8kQCMYHQul/kqTkjewjQzQDIls3cOj8c7Z4pTTDTpVRmqYScLefaNY9E2NG7FplN8G1FxJBeI3tOHElwVgOUCd3KMPzmmObvJySsvcef1Vzg+PqHxoYQemz6i+E9bJiEveKEAtP1++OgRl+u1KRCF4kqiZqo1l0qG7MMAzpv+pIiFyVm9CVFB3AtvHdhpBZIPgCxMsFo1z40hxyNlrkrDQYKQSR8zrDgq8K5TEu61wTxYO69uxtnst5oHNs60hcWwLwlxHVZRKCE0ZloTA2RDVck045ZN0DTMzgJtBFMOte2SGHtTdgWhcYGAJ/owcDc+gw8JFopXRWOkTf2EsvRAMUNlHbgDTRFNkZwL19BHM+1FJadM7BNdeXYJDxy/a4/kCC6x7bYoa4KYs1H0nuxaNFjAjAN009mqOCl5BI2lFTeG/mZxVttQPHhHWDQsjo5pV8ekFBHfFNY4IdueLl2CO4fcY1GZJvKkouxzTq1ugdcSZVjrHdhaWq4GMylLRcSuYbk65mKbadY9rtR5mCe5LUAdTPYPqyWnN29x587LrJZLiyPIOoishUexnVvEDtODUaojuQmh0XHfM+VySzyHUPRAlabZ9zzkq7h6K78QSOAQzNWy1CM7XpxzvCtpqCdyv9bkGSUzW4H0IcPLaMw/yBVd5SNwqJkOQsZnDD4Mo7jhvaNtrdJwzfEHlpVHSWQXiclKdzvX0vkFXWP6gQAm57tMzQyc1NKCB28KzyCB1WrBdntp/VTZVcUShCAgDg0eF5SULACGUnTEUZiFbE5FmqOx085s+jn19P2WFLeEisDUNNwppqH8W9JMTJaUVZOS+2gIQKPZ/Ls1ub8k5zUSL0lNIjVC8j0+lHRbvgNnpc19CEhoCKHBZ1PGqTgDqrACtTJoi8WCWy9/lJdfuUNKiqonuAaHsl6f0z66z+PHl2w256hu8YXjIUcsI5GaLoG+OG5ZFiWPL/4FJftwUvooKBa1d3R8zNEmEcIGn7Jp6F0tWip4NQuG88EUoM7jmpYQWhoXLPmIjGnGTDAZKZrBeh72laseqeSBm0RrUtKxpmIVQylEZPCTL1YzY4p/iCgG9yP6hOrvL8KQScccrYsYULFwFQFK3j0DoDqhE+Ug14pHw/OvNRnqqIkYepwkEGnbhsWixQcZFRniEGkt5DMHNAtOHUGCpQgrwTWtmmInqbmoioLD2DsHeDKu6Qk+IhKrUtg2T8rF1944EnGJGrabSSDFro8rClNvopMvCUkdeG3YdlsePHjI22++SU6JtrGaizdvnHHz7EbZmIZYU3F4QcWyr2ezKPRpYwExaYOkDb6/pM0byBtivMDR0zirJOR4goinbY9pmgUhtDYPzvQLTbPEhxPUeZbtJbjASy9/hFdee40UIScrx+ZRzs8foTmwWLxjeo6cS/3Imn3HlXBwqLaJ4KARRzCJ0sK7nbHpRoxMzl4tj1gsrJaj1aOsoeC2/zzgtZYyd9Rya+OeGWRVRr3EBBHsyKVTcdMYh3qvK/tPBrG37kkZNng1mxqnIPnqXf/CIIEpNa5s0MzLqbBqQ7UeYPDZzzq87CADTEWDXcF/6PP68VwlFuzmHBiOF2VTCI0pgQpLpwpkY2lNL7VA1OOzEBRagVYSS0kss6kxewVSLBl9IyqWWSZ4ENezXCXObizJ2poHQuxImzUaza02F3KtaqG8PhWLSMlj63TUiYyvYeYqRXGu4el5x5MnT0wf44RXX+05Or3D6eq0KGwx5WHx7rR9mJHcQ15AzsWbMZpuoL9Eu3N08wTNG8Rly6rDI0ShaU8JzQIfWhaygCKrt8sjQnOMbxxHR2tSUhbLE9rFGdHZ3Dbe49RElSYc4Sna9tCj240VRc2U5CBlD1VXczUeriZ3KWBv1FwdCaPKi+WSpl1YjH7dXaoDsmlwBHGTAFAZFdplO47WpPGa3X0oUwQw2c4V1kcRlIHoVZPo0OeESx10Ble0FwIJjLJ1/T3/Pi3VVVMvA5Z1166qV097LRQKqsx/paw/os+ZbPIsMcFs1m62KM452nYxJMpwzg9aW1VX8u+Zo47LkTZH2hRZxC2LuKbNjqxG5TX3iHaI7xAfcT5YEooGXrpzxEsvfwjcKaRI7i7oLx6yefqA7eUTYrchpUjfRbpekYiZ4cpYU9Kia7Dxt4slZzdukjJcxMirN89YfMWXc3G5pus6+hhp27bUFohjPbxiY8+UoC7JpfCG+QOgAeWI7BIqR4g/IoQVIZ7jtcdvMuJWCBDCKaFZ4pqWJkRyvyULLFYnhGZFaB3HR+dcXHQ4twKWgBZfBIcQCd4UhhQ7uvcNSsmngKMo/klawtILsymipQCt7RlX9BPJGbcjHkITCI2JDM5P4kbKnvHB04RQ8jBI0WsUZ7epIovRQqFU9VU9ZntxMD8zrlk1RU/1UAz/2++xpqHswdVV7YVAArVd5a479/CrHFZld4p4kGE6uTXWQKmcku7pHg6ihAOc2RWDHdQzu2MPIeC9BbTkwqXgSp1AelS2OOlZNcrx0uHSU7rzd5BN8XUngU84nyz81puS0fmFZegNnvb4Jn5xm+xOSzzBgrSG7XGkv8zEDfTbSzaXHZtNIkYhJjN/paxEyXQxEfuMNJ7V4hZ3bjpil6zIaD7nznHi9lFD1taKnorg/RqJW9QZV5NTxkyYvkx20R/URCuIiR04svcgAXFLs93HNXhL+KmAutZ8CqTF+UXhWjKuWSFhQeMdTbtAL+OAVBlcl033oi6RJZV8BZM0W5QYAnHUEFucOdc4lSISFb0TUsyD45rWNa8uxznnYuo1wDNHKMuhWJ8rpZ5lWf4Rbqs4UL6Xp4ySwrANS7yMThGBUmMmZhtVCjbDMfZSzN/PEIBfCCRQ2fpD2vlpwo7R44/hUzAZ2OLT9xHI9Poppq3HdfJ7csfOoaq1rStY3VzLeHMVT/TA86vuoGxS6UF6Gq+cHDlu3ww08pjt5drYTg9tSLhFsrBW35p86hvb7CEgvsV7yxIsPuCKdOgakAU0qXjACRw5R78UUhL6mOijubTGCOtO2fQRcZnWX6D9A3xSjtwF2Z1bVqNg9viYEknV8geq4v0RGWeurgg4Z0hGM1FBK2ArxavQ47B6CjWrcs6QnJA95ufvPElaHGZLNzY9G3KQYPnzfAAHSRN9NrncnBkV1Y4ub0l0ZDF3aHEeNwCG5V5MZHOqqZBZADhncxhyYjn5TGdimaUzgHPlmBCjmVlLljDrpgJ+aTnnwRJTRYcxxL0ka1UteryaU9L2Tp4RIR3/BMzbswJB/Sji8nBdFZ8B2YeJaXshkADYhDlnNvarZG4jNJWtH5UgYwrxifBFQQj16ASu64JU9+E5yO5O1nik1r0fUIdUwJ/fsY/MzK0XyVYARMzdtm2U42NYhkyUSCOOhUs0foMLkUXjWYSICw2EjGuPcK1HWqOM5h02GkbFZZxEct6i3QVxfUFOsRTc0WL6s4AdL8rCW8barBHtIhcPN+Zrn3qO22hJQwIEX0utKTEmfAisTlu8NMQeIlhAUVZiFrqobBPElNhuIyknUp9wMbLwylLM32Cbe6KlNrVZcoYIJLSoE1zjCmfhEQk435gfgcCm71h3G7wYW+9yIuaOy25NzD1Je6tYbtVaLclpUSzrADA107Adz2jVORtld95qGFDqGTpvDk+UQqbjig9K3EpnYozQd5aXsI/ExgOmOxBGESEXJa2oFYwxPxjHdrOl7/tRCT1kjXKDqCJi8Q5SbYQYLIz73Y344BrW9oVBAjCnpFNAmjrdTH9nZahFX11+pyA9HJspXUdbLDpPPlbP78sEBfBlEDaG75MbB/Fj+tswRR7ul6LdyTkOUWA1xXQriUaSJbAo+fmDd4UCCq7xuMUC2iUaFmTXDBu6JhgQM96RUkfXXdJvt8b2p0wfzYmp1kwYNdeZpMpmayW9nLNQa0v5Z4pXV7wKtdty2XVsHgYWvsGpQ5pAdg4fFsQEQRqW7YqoypZESkLX9+S+w0kmxp71+VOePn7I9vKCPmXa0FgIslpAVPV9F1VUQpHrKf4Nyrbbcrm9NGWpAzQSc8cmbokCSTxZLGTXUqCpcSMuAJExsUw1x/mS5bmUYcsZ59UMiSU6shePOjP/WR6D0bHIldoU5rwkpJTwxcU6xkjsva1P8US0/WvmvyxSVBNjQhub9jxsJrP4SHH88YMzXV3+YddKERVKnwyw9IIjAREmiiYbdI3wml83kYQKMshVOzrhAHZ6t+sZlTCDvrCyUmV+VCYH2fmuUHTG+4Mv54fblRkqETAKhiBiWX00Wzisl4CXUgJMkwXSyAKJjeVDcN7kVQ2ImMyMX6KyQGnKozOUwheQChA3NKElbiOpT3Q9pYy4Nzm66leKlkzV6g6IN0NkTaOkOVpyjNjTb9dcnj/lnbff4sHb92iSsvQeaRwRpV0dc95llqc3+aKPfhk+LElZIEOIkb7bEhE2Xce7773H3bt3rbpRTmyy8uZ7d0kp89LtV/jQqx/CvC/VfKyo/vSJrJ6Mo0vmA1oz+sYEUQOdNnS5pc/QOgFZoK7DzHa2DkP0olgaMBdK5GJBAibSBMznztGrJ7oGDY35LZS8grUi9KC0xjwwEfA+0DTlrw2DjqOa7rJKidawcXgxIFcV2rbB19TsrtyZjdJX8V+VEpcycsPT/TlVOF5XnvyFQAJTdnrKCRwy01WRwSL6KlsH+0hAR51BKfk6CBHXYsYp+I5NBgZQRnFC9586dDvr3mIAMs5MftkXT7SA5sb+NJIQkmvMjyAJGk2EEC9IajFNux/ZWEqxTCLkCIXdt3TfHueWeAdNWAy5G1GLEXCFxbRQa19USiWtWfZkhOAyfa9sziNpuyZuL0jbLXHd0z18gnY97aJhebSwmPjLLX0XCTER7ryObwwBOAHJCfqtae9D4Hix4Hi5JCmsN1tiVs4v11xeXhJC4OWX7+Bdg6rVSxSg6xKbTcb5JaE9woWVZaluAmhi+7Tn0cNL7t99zNOn5oyVJBGTRQBmMQBPE27SCFD14DVkm1Jm23VIzkT1pt9wrXkmOkv7Ba74EpivRVY1BaR6SOa4ZaoSsdoIzhzHijak7KPxX90ldVxV7NSajEZqjERJSZ5HHZWTmccKlBJtMj3uXnAkUNs0lTX4neNzTuCwoqO+ch4UIoP4oMbaOnPGs0vLvIzlwg/pBOqpiep2Jl48x3uVzDSWd8/j1aK/Mp6YPbELVjzDK1sJoN7CdrMVknQZNDkjdamDfIn4YOhPA043kLbk3hJWOjy9BlSLJt6ZpcFVbqP+UWMVbDPFJIaAnDkwRY1cPO55dO8JaXMBccPCKUFazo5aFj5xsnCcnCxZ94k+B0gBnwOp6wmh6EIAF4QWy3hz5Bc0d17huFnw8PE5d9cPWB0d8aFXXyGljtVqUcKaFbJVFRIc3rV435Kd+QksVmdEAfEeST05P+Xe3Xvcv3uXy4s13kPqztHuvBTwsNLrltTTGbKsBEItxFtwrLcd9x88wYUltEdI06CUgqdJidlk8IDHqwmYGiz4SbLDZ1+Ui27IYcGwxXb0V8KQX6GKp2ZazKXycCoOYQ6HhRAPYpy4ktzVPAUth4YrWbmKuzXgJAzk4lB7IZDAzO5ZlBg15eYuJ5Bz3ov82w0oqqw/6BBQVF19K+atpUBLR0x0K5Rb63/jcana1nGs4qSkdDPuRCeLrZoHJZPl/bcsPj4no/zOipBrNsqeBbYOc+NNikvmUCRJyH3Edx3SrnGtFE5CIXk0rsmbp6TtJdpHkwyyI2dvyrnekmtaqSpz6kkJ29CpeF+WOTHtd7AswQnON/DwSUfebAkayY0VSfVti6OH4Og1WxRkWOGT0nXCm+89ol1swXua5QLxoDHS+C2NdGw2lifPxUSjQoujUWHZLnAIcb0x64eUSjvJQm7bxQJNCR8afNsW8ckUc6ujY159+TYLOrYXjxCBxckp3WVP12/YRrAaj96yACePZl8EcFBRC1YTR2iWZGlIyRUvy5KpSBXLiKbQKxpNn5KdpYRrpCVkM5emsv+GrEYmFw56p5oTZ8DDg8LbEqDUiFDvTOzL5v2FairigLmhJ9kS2aIa8eoRbRAaC9d2DY1zkH4IcAJTb6jRQehZ90w9CAsiqYoSmYSTFh1AFgvUyc4NsdkU+UyG63SAf639URWIMmheVUvAyyRy0T4H9GOKI7Wx5MKdOEpxEY2loAdFrDBEkDAzW58zLlYNMPis4DvcosPFAMFkXKKSNhfE9Tlxc0lar9Gup99s2XSJy01kvenJGctUhOUGTKqkXIpgSEmwgYXzijTkki4syYLslkTpySkjvYkzGo4t3VbqOb/I9BmOTlaEkwXn6y2X5z1Nb8hi4RcWsVcSYPap4/zinMv1Gs1Cu7RU3Q8e3EMl0bjAom0t2i4E2nZFszyhXZ2ZorTxpBzp+p7oGkPi0Uqf3Tg5wnenvBXMRn/j7Ji127JeC+kymo4Cj+QA2RuHFYwzQCCmiPMtp2c32fbC+TpaCbcMXqssD32X6NZb1udrwuUlXexYb3qCWCCXww1OVDOmtSpkhdmesnMMXKaryEMsqtZ0GMkCr3wmamS9fcrTyyds4iM2/QV9WuOyI8iSEI6QpmWxOOHm8cscLc6uhKPnKUj6u4CfAtxV1a8sx3418C8B75XL/m1V/ZPl3K8AvgWLMfnXVPVPPesZsKsXKPMxsQocvqeKCaOX1CEGfehHRuCkWg4qN1Ep+ES4quCMSPGCqxaCym5RKIcaQGseMHS50+zEAETTvGc1M1y27L2UYhGDxUOEHo8rlFg0oQlaQPqI325xTYNnAxLRiCGB7QXdZkO/2ZD7SOwtQUYWhzpjB1UcMUVjZ8WbjCylwKkPiJgpLosvFcYamqObHN/JxM0FLnc0LrO5OOdiY1gvpY1lPNbARVC0gfM+0AdPiM7qAeYti0XLnRunnBwv6dcb0lohWKbAVWvONn220GVxga7rcSK0ObPFcbo64sbpkqNbZ0jT0i5b+r6nk0xMGe0uyRdPuXhwn4uH92mCJ6tyuV7TdUofA12Ey4tLNustIXjW6omXG/w206yNozBPwh5xS7oI6y6zlAU5qSHOFNl0G87XG+J79+j+z79JeOsIkcSyT9xgYVGLktFsSV3SVM1UqH1FBDsaL2oRHSdCCCXjdtGBZbXkL/jIen2fT7/z93jz3U9z0T2kS2v6uDHCoJ4mLFi2C46XN/ii176CL379q64CvefiBH4P8FuA37dz/D9R1d80PSAiPxL42cBXAK8D/6OIfLla/uvna3WSZoeud3bY72JUzMzGpwXvanX2mdhRJ15h+y7Go1mxZj1CKcE91bvMsD7KDJNYsshsBUI1mwKvOI1o4UbM9l1EFxxRMy5bgg9z8i8ZZUJEup683RY51lkk73ZL2m5JW8tAm/pk0X0IlPLdOVEcXISswUKCE+RsIgAScMWjL2OypnOexUnDzWaFk8yysfTiD+7dZd0n5OyMViPdugMCm5i57DJrHJt1Jl5suNw+4c133sV7x4/5qh/JV/3wH8b9x094cO8pwTmCD1ZdeLmwzZ56ZNlw+eQx/XZLcIk2QWzWcHFBaCMhJbrHj8Evia6lT5FGe4iZyz6xjUq7OmHbdVxsLtHUmsLV90SXiV5wTUtsWrpknJOPZW2dx/kWIRBxaOPRsOKiz9x7csGTzZZO1ThAp/S5I22Fxtu6KyVyVIr+JacJV1v9RequGvflqCowomDu521JEFq3ZvV6VLp4wZOLuzx8+ga9u6SLa7ZpY2XNVGCb2SRHl25y8/IOMX/plfDyPFWJ/4KIfOxZ15X2jcAfUNUt8IMi8gPA1wB/8Tnvv24c156fuxwPd83OScp4hVCBvMgAMr2uYFwtvxVjxaqHmwjFTCN4VZypr3EFsdj9FRGZx5hHQHNx1LHClbUuQMkYgiJ8z5/8C1x05iBSmHOcZEv9VbXMwYpp4t1IVHIipUROseQFqOYqIWUtmmRDRhVPDRYWZKhkOyaosD+peR4plMlb4dT1es3540tQ83UgGxfRRSsFlrKVzUoKfS887FZklO0nn/DJy08S1xd85Wu3aRZL2+hNy+roGCTTxy3HR0vO0xucb96j32wIXeZRFO5tInhftPQt+CU9DZebDasAK+nRi0fkyyfkHOn6zMVaCdLgvKcLC9JRi4ae5B1925DSAu/MndgC1yxJZ6YoI8WhzYKn0fHW4wvONz1useLGnducHd/ipQ+9RnO2IjiFp5fo4zUWQVQ8WHMmJftzGABL2Xt1S2uVJykIv+yfEAIhhGGtLEVYSZzSr+niU5JcIE2HYg5SvtRt6PsLOsk0okQek2V9Jex8LjqBbxeRnw/8H8C/qaoPgQ8Df2lyzRvl2F4TkW8FvhXgtddeq8dMhp6yT8/R9pJ9lqYVGIviMW82XD5+SGpKWqqapXgqChT7+SAulFbDmAf5TEGOE6lZ0XU1uafO/rJmS1utFuyEKg0bNo8fkPotwbsS+w8gXG56fsWv+GVzJGDJtvDOUn2HxnLuWZ45HQqH5CGTrRZnFxNFqhIrZytQamXCdUhxZkE2YShjrVIVhILzwf5KZl4zdTkuzp/y7lufYbs+x0uJqw8NKWW6GOmjadCzONbbyNvvvkfMmS/52Bfz8S/9En7jb/xNfOU/8U9Z4U4fACnZcDMxdjSN42HnyJvMOj0AYBOFy20kaaRPa7bbzMU68c6Dp7x79x5HrePWqmElPQuXLO3X4hiVlmUwl2uagJzcwCv4xiMh0JDw3tKHWfFQq7iEa/DNgmZRwr/JPOwUDUtuvfZhXv1ww82jM27cuY1bBcgdT998hyePL0wMwOYl5cx2u6URSn1CSyqiqgXZTitbF5OgQtd1paDsVOyVQfTdbtdst09J+YLU23XBt1YhySe8JnLeEvNTYn5K0u2V8PPZIoH/Evh1GJH4dcB/BPyi99OBqn4n8J0AX/mVXznAW9Gb7l1/FZDvHx4xyFA7D8gpcv/dd3jjB39gADBxpowTrVp+NyZyUAZ23QdPKLnuLKOv2YRv3L7D9nKDCwuUCox5MAnlbMdiVhKC5kTQNd2Tu2zOz0tNu+LbXijwKE6MEQdalINatdJiqapTTsbil+ea7GhsY1YrZmnViS3Etl5rKgsBsWpBFCuMiR+jUxXFg85k1ZLn0NmnSrCknGQaEcM6TiwpKBmfTMttDjW+KPkafNOyWB3x2hd/aeGyzNtBjKVAyHSbS1gcoe2K6BfmSBMatFmak1OfkZS47J7yznuPeOf+Y1oHjxeekxaOl96CuLaB5WrJjcWK0HgWRyuaRQtiKbyN1c62Dm0guEoUPL5ZsFwdc3xyQtd3rNeXKBFxStMGVs2Co7Ase8KyKuVoiVhUTYEnpcx4Dee1j0p0CrdZ9EuDq/yEKE2zChU0gBQX6O1mTew2FmWaEo6Az97MqiHSOCsTnzWx7Tf08fOMBFT13fpdRH4H8L3l55vARyeXfqQce//PmD/vfYyNGWWf+u87sSq45ETKVlJKMIop2TZidkbtFKOexiEHElYaLGsumNwT44auW0OMiAh9by6irvh355yJKRFL7kBNiSwb+u7S3IbVzFNDWi1gKjAWIWbQN+QsVnUoWgRbSok+JVIsfykBQvCmMe9jHBBF3/WFraQoAP2g29CsJE1W1k2LO6yT8tssaGLBgmWTmmjQNi1oT/DGoYhg3n0CPcaFeCwHTs6Zbr3m8vyCFCNdt7X0XDi0xEAghhRzWTvnK5eiVnQzWF1FzYnktYQ150FuTuLoxXGZoAkN/SZx0iRaim+lWPFO5+xd1Hu8NARnOf2drxTX9BS+DfjGlLS+DWiC0DiaRUvbtOZhiHlVEjvLyRg7ci5p3xw0TWDRLmgXbSmaoqMOSZUa+Wc6JxMjHELf9wNBEjcm1jHHJEskKxJpG1u7lEtVZHRIfZacOaKlCH38PNciFJHXVPXt8vOnA3+zfP/jwHeLyH+MKQY/Dvzvn80zajsUOzCO48q7GLmBKv8LZ3fO+NL2SwmCZW6d5HAbApOkJDmVEVe7wibHFMkplsSenuXRGac3boNvLUY95YIEivhRZfVs1BhNBL3k4fYBOUeQyoIbbzLEkVXxkMl7S7E0JPtLKZmsmWv6MC1aejOBiwh9ivS12EiqKapqbceqEC26Aorpqlg9UCFKqZI7zFEu3ojKom1p/CmqHWimaayakOujOfCoWshyr7Quk7Xn8YP3+AyJh/ff4723PsnZzZs07ZLsAmHRkqPdm7oLgkROlw3+dGliQzDqrubXSMiOdHbEF73+EqujJTmZ4rIWVLlx8w6uXZaiIUrSnph7VBqL+/eOZRNY+EDjHG0QcBHL0W/FVdqgeJdYNBCcmRRdcBA8wQfjkrSUZSMCVuwlpd6CsjQP8+ycH1e4ZJOuNSIZdmvxBda5jsuyVtXsWnbMkfA+EVxv3phYVimL81AkCUhj7uUarjW3P4+J8PcDXwu8JCJvAL8K+FoR+dEF2j4J/MtlwH9LRP4g8Lex4LJf/LyWgSk7RIl+OpQI5JAr8ZB/jX3EYGq/Ak5NYHlyYgte0pjXrDlVgzv12FLNOC9oCWx59OiC84un5Jg5Ozrj6OYtTm6e4dujMskyhBXnUl1HKUCbjdXN28c8vfcGqU9oK1Ycs7DvUCPbzCFkqK1IoVwJ4xyKw5SJG4ZgcrIMP5ozsVSgTYVLGJyrdKI8xRJpWtEwE0dysZb86T/7Z/k3fvl38Ie+6//DV3/VV/NX/8Zf41f+ml89sKa/9Nv+Vf6pf/xreHx5zrf9m9/BkydP+X982zfzT/+4r0Fz5t/4d/49fvkv+Vbu3L5FDNAEiFHouzXvvfcOjx895Mmj+9y8cYoviUBXbUPXZ8u42zacHi+ReMJRA0NcvFi69iBWLiy0DYvjIz607kjJxJm+2yAKt26/zMmNWzw5f8zF0wesN5cIpmxrm4Zl4zlaLGidx5NpQ8lf6SklvwNt61mtAlYzsqaNN4LgXXEAlmxpxTJILLEuzlHLTeeiqK27cfjQ6e6sHGxZ66IbGC3eNRq27uXiM6AWkISW4rYllsTqbpZdX4KvruOln8c68E0HDv/Oa67/9cCvf1a/O/cYViwjtWop+eB1MCKCUelXJm3QJsrQj5ntFLAKtTEqOVvVHSs7VdxyCxKwkFBfgDjhUXoiF+mC97b3ePfRPR6995DbixssVqe88hGHtAuLtpMRcbmyshZYYvV1EglkQXYO7ZXcClsv9F7QvrqD+nlUWUVWWSwPf8H2WpSAmi23X9UZpFQ1CZCyQq5yvZbxYPNFMv8GLbYJMc3/xfqS7/r938NXf8VXWhRNVj7+ZV/GH/lDf4jVquXBvXt8/Tf8FP78n/gj/Hd/6n/k5/7Mn87X/fh/gm/9pd/BT/y6H8f/+D/9r/ywf+hLePml27Y5i5IVb8VHY0p0fc/FZjOINCkl+tjT95HVYoEko7yLRUuQJTklSygK5K64xgaPuMxJ07JctqQMXVK2mxZUWCxXHK+OWG82PD3vuVxvCRvjvlbLJSerFofHtSZsdSpFR+MKwu6JUdhudWI/ypbMVR2ala0HFWXRR9o+WbkxLUVZxWO50wvRynnY0X5GqXJx+50gCEp0oqtrFalhwSMiMBBxGnBZgBbRBdXd3hKpWuUtFwQJV2vaXxiPQZhS/n1vwasCiup908/d+6rFIcbEtuvoiQiWedcCO0w8sKAQVxRAbjCH3b+4z8P1Q877LY+ePOK9++/yuL/Hxz768cEkmWU6fqg6vlwRASVdVcXSBVZrMU8mVLrmQQD4zt/73XzPH/kTAHzTz/hG/sV/4Wfz7/0nv5XXXrnDz/+Z30hW+E9/x+9mtVryzT/7Z/Bffff38N//uf+Zvu/5CT/uH+fbf+HP5c137vKv/PJfzY/9yh/JX/tb/yevvPQSv/nX/79ZLJZ1Bot2VPnPv/O38y0//1/gd//X34VtuczRagleyCmyWa8x7fSGnBNPzy+sGpH3+NDwXX/we/mNv+b/ybbrEaCPcWTPihUka2a9XvP48RNCu+Fyu+Gtd+6Cwssv3eFkteRivSb1PZoz3XZL31vEYOwzXcxsUqTLGSTjJFiodJ/YdoZMYoYuZd67f59Pv/EGF5cXhOB55+57CMrpasnrr97h1Ts3uHFyxLJtcAlCMn0JwHa7LdGtJeNQERU9Rumjt2Q2fY4s+8i2T2xTpi36DUP+I8KuRMI7K0Vv8F4KiYghkDpV1WrjQxgUvzlnXCiBcc68TbUgWeccOLWcERIRySV3QaT1QuOuzjZ8tUPx38dWqdWzr5ub5Grb5RQsF6CF1/rQDBpbHwLtoqVtW9p2YQqcZkGzsISSTdPivefho0d84hM/yKc+9SneffdtHj1+yGZ7yVgtNo+23ENWDEbPwYoAXC2OWjL3DmbiwUaq/I2/9bf5g3/0e/ne7/6v+BPf/Tv57v/mj/I3/8738Y0/+ev53v/hzxWKEPnv/syf5xu+/sfx//3f/zKfevNNvud3/Ef8t7/7N/N/ft/381f+5t/AB+HTb77Fz/3nfwp/4r/+7ZydnfBn/5e/SNMEQmNKvRAcf/f7v493332Xr/1x/2TR01khi5x7/tpf/av8M9/w0/i6//tP5df9O7+cnCJf+098Df/Dn/sL/KJf/G/xi/+lX8jv+wN/jH/uG38yJ6c36GMqStFSPcrValHml6AZLi4uefDwIW+++RZ/5+/+HT7xg5/gjTfe4L333qOPPVnN0mIKsjHaTnGEdsXJ2S1u3LzDrTsvc+fOSzRNy3qz4dHjx9x7cJ833nqTd959h/sPH/L46QXiF2y2Pe+88y6f+MQP8n3f9/288cZbrNdrnHMEb+G7oQlWsryUMjcfDfPTcPWvJiaqPIIqUSEhxkBlY/YdVqUopszlekOMuSADSqITKUinIh8L5fa+MZOfMzduZKxxYL5dzmolekFdQn2HNmty85QczpGwwbmIF2hdg+eHQEHS57EAHAL6yjmUK6CwS6aBLSywpcE0G6orEXxVJnPe3HlL6XJwpaiEQI4sFktWiyUXF+fcP3/E4/OnxG3PrVsnKIk+bpG+s/t2U0tNQp4N4O17qskiqhJyEGXM1GQsYuYv///+Kv+3n/DjWC1bEM9P+vqv5X/7P/4av+jn/UzuPXjIO+/d5b37D7hxesKHXr3N7/kDf5j/9S//VX7GL/rXQWB9ueFTb73F66+/wkde+xA/8kd8HHB85Y/4ct6+exffmOmPgoT+g//sP+ff/7W/Eu/zoIQqtcT5UV/9I/nT3/uH+eQPfpJ//Zd9B7/1P/x3OTk64r/4D38dpzfOOL9c89t+13fx2/7T/4Bf9et/I/fu3+eb/rmfypd+7KMDZ+PE2GhBrPxXzlyuL/nMZz7Npz/1adq25fzJOR/+0Ct89CMvc7xa0jpIi5b1uqPrelLqcA6Oz25x65VXWa6OCCEY9ddP8Nbb7/Lg4cNS4cfTdT2IcPPmLX7YD/vh9P2Gz3zqB7l48pCujzw9P2e93SLOmQY/+JIg1g37S0QGxx2RElIuQhQTB0JKeNfhvBUAjdnqPOQusblcc35+ToyP2Ww23Dg7I+dj2lIluCpnkcpt2C7MyYK8cskYLWLJULJguosmWMk6PFkUiCBr1CeQDnUJUY8j0IZjvD++Eq5+yCCBq1n+Ql8Ge5cOKaLM4y9PpSg7Vl1/rcOSELImbzQEoVi5KOcCt27c4ote/wjxLUV8IHeRJiws716ykM9K4Q9xJjYyBx76rqPv+sF+Yd4BiUE7VDwJq2HQ8uZH1NkdVonI81N/0tfxp/78X+TuvXv8tJ/8dSyPjvFNw7f/Sz+Pn/czfxquUDGAz7z5NsvlgrObNwDh6PiIi8s1pzdOzflEHE/Pz/n+T3ySX/CtvwSA9967x7/6b/0yfs9v+y38qB/1VYi3Ogg/4od9nKPVik/84Kf4ih/xD9E0Dc55fvNv+11827/8L/JH/7s/zT/8Y380/8iP/mq+41f9en7Nd/xSU1zm0WdDc2a72bDdbHn69Cmf+uSnePvtt/Au8NYbb3H37Zss2h/Dxz7yIUvQWiocZbVw35isjuONmy9xdHICqlxcXnJ6dpOmXfDo0WNSTiCWlKTvI6+/fouv/uqvIuXEarngvXfexBNZLQtgF3PkIYvTbqLbunmGNF/mdEKPskk9oe/otx395Zp777zDvXff5q233qJpGl57/XVu3rjBjbPToSqyZS827qMJll+x6zouLs6Jsbd9XcWH4sfgpEVYoXlFzhtqGOzgx6GOHD1ejgnhFsjJlbD1QiGBw1R+xMbTa8fjOphV0Koxz8XDzReX36qQLd/NZoOvlLsmbChVjoaalWps3q2zm/yIL/8RbLNyo9uybJasH1ywaI9pmwWhXRjmVx02+6i9TyUzLUQSab1ms92YCzHmWmx16pWaqbdWCfqaH/Oj+Df+nV/Hz/3nfyq+XfKn/uz/xG//z34TJ2c3+Dk/62fwS/6t/xf3Hj7kv/9vfx+377zMT/lJP5F/9zf+Z3zzz/85nJ2c8Na7dwmh4cbN23gfuHn7Dggsj45ICjdv3xo4gRu3bvGZ7/srQ9Lmb/hnv4l/71f+2/yYH/Oj+MSnP8NHPvJhgvf84N97g0988lO89qGXzZbhhL/3yU/z9jt3+cf+kX+Mv/W3v4+z0xOc86w3G7ZdN4Z/F+vL4BQDkJUmBF556WWOj8947+67PHn8hPfefY/XXr7FIixLWbcRgVTqGJoFoVlwfnHO4yfnloC1XbLprASac774elg04q3btxEn3Lv7DpvLJzhNtF5xLpg/gncTh54xz+WYUNaCxaSYUFXMx8GUgUJzvOL45g2aRUvqNqTNBdv1BXfv3+X7v//7WS5XPHjvLW7euMlrr7/OcrkclOLOB3PL9rX6UWK73RbOicLVJqtL2Astpyz9S5zHNTmfYxmUjYPUbFYUUsvi+CWOlq+i+ehK2HthkMDURXLK4k8p6kEkMRyDnBJPnz7l0cOHHB8fc/PWLbMt55JBp9pavUeclQtDtIRpAupQTQy5BtTcOFrfcHp0xqt3XsM/ecqTx0958ugSx4Lgl4MsuTu2WpjUstgqMUf6vLDaARS2smiOtTr4V7EF+Imfusu3ftnH+eaf920A/Cs/9sfy4//SX4O/9Nf4R4CLz7zFR4+O+If+6J8FLHDjk6+8zk/8J78BgJO25bt++k9n6Rzy4BGr3/rdALT/61+h6zpW/8V3Xbke/s13WP3h7+XkL/0V/vpf/+t80//yv9AUJ6jf/nVfz9f/jR8Yrv2Vf+gP8Z/+hJ/Ax77nv+GXJOWf/W2/g9+z3fJrv/Zr+el/7+29vt945x6/7D/8Lzi/dYPf9Uu+hdu3b3PnlVf40Ksf5t2334HcIZLYbrbISS3tbojc5PRcLGwexHN+YVWgkwoX644+a6ng1HB645gQAk3T2jsfrSxhSoykboNfWVyBbyq7bxzXVBwY1rM48xhRKQSkmnadZ3XzBh8+OiX7FanfsH5yH5zQSs9HXr2Nc46GSOouOH98j27dFhGguA4XpyBVjJNBS4mzQucq1+Ejq3CDV298MdIHNv0TEEstpyS6vLUiLO0pt29+CafHL9N3P0SsA8BBin+oBkFFFCIUG6mSYuT86VPu3XuPlHqOjlf4cIRilXBqDYCaVLIqdgzLUsyMvjABFg1ufkOOxi/40Ide5+7D7+ev/9W/y8WDS/7hH70tjPuYsHJ33CEYNbIxOiQtjOWzCxny5WsaxlFbuFzz9b/i2/nRDx+yOjnjo1/yZTy6cXOQ1//it38LAlxOrCbf8ou/hX9RKsU1JZQ4+N9/5S/lsozp2/61bwZVLkdDdGGmivciwh/7xb8Ip8oThJ+G8FMFrLpQ4v477/C/vfsm3ivHp7f493/6N5Bo+ZsRQPidP+fn8fTxPe699w5/tN/w5Ok5XR+LNUT4nz/8Cr/1m38m3/arfxOLZolTWC2szBkKJ0ct7779abMsjLuBMcipFDlxNt7ttmPbRZ5errl79z6bbQLx3Dy9ycc//mWkbA5c682WdrkyMQHh4vKSRTgqooDHl9qRw3OGPWG6HAdDoL8jIFhhE5FM9gG/WhKOHCkb4ZF+gzpYNZmjl86M6hclZ79+THepprsoImi1ShgBicW/wJBA1mxrozq4IRy5G7x86tj0T6ycW4P5tWhGs9C4I5ZHdwjJsVk/uRLmXhgkYJMxsv5DTP5EFKjpyPeagHlhCTdunNE0nqOjI1arpSWyFEg9aCq+Aa6wWEUpMyQaVagFI0d1ouJxNG7BzeMFN44ecLq6TR8C240l6GhKotDa5qZOMwlmhZLZyjzpYiqiiiI5F6cPhvFVHUaMib6PNCUgJ0t1MS3hJzoijsH1pAJ0yY/f91tEhMWyLSbQwRzN5MMMgspgragp8nWogWfiC4UyxxhNvt/2PLm4BLfEOWdybFacb+gvL+j7zvI8igyOLKm4sSY1K0JOVmClaQKLxYLgAzGmIXjJOUdKpryVkvvf2GhP2yzwPvD2O3d56527bDvl9OSYW7df5kOvfZjbd25y//49njw9x4fAerOh7y0pSS6AKVKKuQrF7bvEc2ipX1DmRyjXa8BpAzhUEtJWz1JwyeGz5VJQSWRXXc2xZDeuxIkAIub1iY4h6apWQEVdVRxbspMMxbLlSDEjUdg+iZw/XXNyY8XqdIn3DYt2hZcGTYpsA/3mCVk3V8LeC4MEqr19ni1o/5rp9wHQisOFIBwdHXF0dEQIlpY5xRK3b+52RW4qO7xE9lF6KV+w1N3lqALq8LQEhNPlGbfPbiPbhuViheDJNSBnh5JPrH1AyVWcTUxImgcXVTRPnmfef1VdUd2DTfFomWgRh9ZUU+VBUvoZXFXLuzx+9Ii333mbpgm8/uHXOToqWmIdx1t4KsbZLMioKjsprHApndb3fSnI2ZNjR+wu2Fz2+IVlKd5s1gQXLUTZuRKFZ6GwGUgxc3Fpoa0x9/Qp0UXoe4u/3242k/oTmNJWBlWpRUCWyRWE09NTzm5ccHFxzsXFpVH24AlNw7brWK6WNG3gk5/+JJ95w3H37bd59OARuestHsMFsnpLSFqVfiWlmBYgVBHMzds4Q68el71xDM6RgpBDQcIeXFS8WrGV7EqSV4q+SXJJG+5BzL26WpcsZL26mYMUF+McihDiPIKnT8pGIV52XD7asAwN7UlLw5KlHNP4FiTh1NFHWMcvTCjx57XlHKkvOY3+m7ZDdnhzxLHta/HuVgbKF81rLVsuamZALZlbx01UpDyDpqIdrpmEbBPkYtoCOF4tOVot2B51tK3HOYtIM9/8EZnMRBbHoO131XpRko8KZv9N1bmoBvmU1897CMACbHI012JzF7R5qYUxq8Iup8yD+3f51Cf/HovlgqOjhY3D1BDWpAQsK0N2pVznWgenZXKOiFpqtL7ryGmLyJbYn6Mus1wEtmkDElgtF1b8MwV8aJhK0qix4utNB8Cm33K57QhL4fyy55233yVt1wg9L92+wbbv7S8mNn1PlxLZKUgm5R7VntXJgtMbJ4TWcXS8ILQelcjT80f84Kc6np6b2/D9+w/ptonUdwRg0RwR2iOQlk2vZDoLjfaulJWvIpL5OeBNrAsCDa6EUQu4ouGXxta/KA89GCK0jVrSu02sDVjm7JqLwiUjBjlXxGA1CsRVxG9rrqo0LpB9sM8+cf7onLOzExbNCtGEl4QP9tycI5vLh1fC3guDBIARaEf+dkZZ6zX2mRnKK2kJhxVHEksEYY66tllyQRSW5SXhctUnmF9AZfSK2EsWJUvN+BNQ8aUUlbA4Oubmzds8enhpZaimfDV12DIgAztQIa5yIZAtDMaQgPdEnwZRYWQWMVnUVfOVs9x2XUeMXZEbLVDF7PAQnDNP8ZzJOeGd45WX7uCDJ8WOi/PHxS3bFXnWl8o+gw2qfJehDoOIEFxjSS36XEpvJYQt6IbWt/gQWIg3u7XCtsts1udstmsDgIJsjO215J0A6+2GB48e89Y7j3njjXe5d+9dgot8/Mu+iG1M3Hv02N6rWXC8OOHYNfRJaY7OyAm2W8vIiyqvfeg1vvqrvoKu67BS5wucg+A9i9PbvPrSR8hZ6LdbRBONV26cLFmuzv7/1P1bzG3blt8H/VrvfYwx5/xu67bXvp5Lleu4qlyOTZAgKOYBFF4wDxYvETwEQiLMQyKIlAeCn5CiiCAREz9FKhQJLCUKkRxEhCwhg4RIUGwUW8apcjmuU3Wu+7Ku321exhj90nhovY85v7X3PnWsysPK2Fp7feub9zFHb721f/u3/x/oTHyFsoiiNLNVEZsrSKkyBp0SyHgKSFw6Bq6xChGceBNKLbLoDDp8nUKV5f411aF+a4iYc1OMZiUfOiuTS6nW8tU2veSCusLZ1Tn+bc/d4UD39p5utcJ14LXU79fhOhjW384YfK+CwOmCshnslu4e0/+287f0+fRitbVdH+8qjkBLd4/PTfu57dwVfrVH2AxDUdudRUyn3nZKh/gVElZc3+25P8wUfA1C7ZXqYjrNZBTbLVSXCcGskAs0wdLshK7z/G//jb8MamOyn/5//lN+72/9Kne7PevzS55//Bmu65nnuOwINltgT9o5Rxc6A0lzeqA4tPS3tZU4UmtMT9cPR4KU1vOxBEiOBJkSmccDu7tbxt0bnIys1xv61Rni17hug+JJKXN3f8fLF18xzWN9ymDPVxyimbdvX9v3kxNd8Lzd3bHbHsglsbpc8fyjjzm7vCI4pQueflgTwgqkY04KbiBPMBHJKVFm+ODqOfJdT5xnvAsM/YrVaqDrOxDH+fklpcDu/o44HXAkhg5WvTM4ONeMRaoWQnAE8eY45Ds6H46aE9QBYGnYUav5pc4IOKjYRalTgM3k5UE2WzkQTjLeWXs41zkK8WIdmVLZhZRqT+/IGaZUUB+gWzEfItd3I+ePZ8IQwHkCoTojZfp+xbcd70kQeFjrA5X8YIuqnIBfCw7QhmkaCAbHUU1t04h22G5pQNRpMdHq6fav1iNXFUoRY2JpsUKxfqE+DAzrS2JxzMWEKaW69dCyiXcyg0UrQLFhkVL1AbSgOVFSRhX+/H/7n2TeT1AyfQf/vX/3r/Fv/oX/Jr//45/z8a/+Cn/uv/Pn6TZXbHcHtCRKiTY9qLbo10PP+WZNSTP73T05V6KJzjgyKY7M40iaM3E2Su+wWvPRp5+x2pxbWVL71iIenM3vi3N0Aml/y4//89/lH/7u32O6fc2TS8dHH1/y6NmnbB5/iF89IRXHNCd+93f+Pn/z7T/kEHdsLq+Q4NjdJzQ5Nps1834PwJPLC37lO59yvrkgZnuti4sVn3z6GRcXG0LdZQWPlmB+hxmGviPQmbx3KXTacbW6QDeJ1GW88wz9wLDqGYYe5zyr9YZSCkMpTE5J8x7iyLTfcz/vLZhUwHXoO4Z+IHQmf+a7ATes8aFDOuP0W0chVLDV3rt4mx7UCuELNpFo/JNS7cUs0yjFbNzTPKPzlhJHKJbhiTg6H8hadTBxpJRJ84TTGXHBcIE541cX9FGY88R2HxlWSs5CEKHvgg2f5f+C9QT+iz5sjdduQNFlUTWwUGsQeCAjdtpKXLIHFoBwEfLUo9LPkZd/DDZiN9RsokJPRZBstlDeQcDaUlp32o8+fMZ3v/cZl1cXjVu7gFhaG9pHBRlOAEI1bEFb/Z+tXx2N3daAPlXMDwDDLgke6QIZpfeOYdWj2RYFajqCKSfEQVQYY+Z+jJV/n5AScSWSpn0NApGUsqXJqxXeg3N5qVddzaKMYW11qM3Ye6YUeX1zTUiAvyTmge0+MslNlUEXNCtXm57f+vVfwwmsz85R17HbRTR5NuszHj15BP+Xv8Gnzz9k1a3YT5mEIxUb6nry6Annm57gIM3RRqaLp5RMkObfkCAWdJ7QacLFiS5nSBFHoqSZaRKyt1T7FiGlxHTYM+7v2G9vmMdbctyBzniBnBM5zQQxXMCHntANuNDjujW+7/H9gOt7u63vcb5DfEfoV3S9lUaht9v6/oxhtaHr1/jQQ7C24pwLqepAJj+RnDLN1jHqfc96tWZYrVDK0gmapolJAjllgu/MMs4rz7sNT55GpmlrWUIJxOhIajZ9IfRMOX7r+nsvgoAtGrcIezRRjoX/WxesETgMJDseFXKS4139yU7cQKl3rZypzjFUayj7NwiZThy9A0i4MqMm7ktyHu8Gnq7hT/3ad/jog0cEORnVPb6lCuIcf9Hoy+1dOYyNOJfMqioZEQQZOnzu8BVHuHz2lI/Ec/HkEeqtBRV8VbRxVc66qhPlnIi5eheg1Uev6hBOiTwV0pjIc3zQ0swpUqJn2KwQrBWnFSeJc2Q8HGzikkI/2II4jI7bXUACnJXMKkX6TbShJO959vgJ58PGuh+1dWZlbk/XDazPrEtxeXaJK1UQ1XumbBFy5YVB3PJdaimkeSaNMykVstyRdq9tpPcwMh0mDvsD4zhRcqkii8a/iCmhjQlKpuSZOO857G4Ydzc4DlxdDFyse0qeyBpxCjIpzM2m3JHpyD5Ue3QzJ23ehi50SBjMLckbIBrCimFzwWpzQT+s6foB3w9GPcdmG4LvrErSkU4T3kNA6IvSpeoqJLZZDd0AFxW/qdlHkWCsxQIlRbu2fAV7EzjfgReG9J4zBm3JvwOmLbew1FFLy4gTZl77TxYOV8sLltttoR+RAbAdjpPfSntOVbwm1l5MQZZInEeSFrrSkXTkTJXvP9vw7KKjk4TS/xGfT5efGhHFVVsaBXxvKeS6H1itze7KqUXu5598jD+7RM4e4bqAeHMOJlhZ4bSQkpFJxmlkP2dSjmbRnWZKNjQ/TxNpnkjjTDzscSh56Hn5+hU3dzecn5/xyWef8OjRY6ZxYppmYiq8efOGl69emRind8zjgbAemMY1d5MwvZ3ZTHvOJk+/NzHUvu/wOZCTdXwKmX5tO6Q4RWp5BVCigZheMp2DgJoq+2FiGnfkNNqcwTyzP4zmW5iiAWXFnJLTHCmpkFNG9cQmHCXnmWme6IbBApgTss6I7EjsyGxxemDlCld9IoSpXgNaW6QmuIoKMR+qkrRhG6qOOdU+vwuo66CVA3gSpos49ytC6M0uzXfgAhmjPffDyn4fPP2qo+87kjii66rvgOK8q8CwdQokePAedd6GiMQZEInpITi1eRDX9xCsLbvq1t96fb4XQeDd4xQ8eZeK++DfNVVqZA5Uazlgt7bdeIEPGj+grb4GlLXXrb+iJAKZXhQnid4dyGSc68miDChnXeCqL3SSyE6Nur0Eqa8fx/dVK5kGvjlwwaHOM/gV0FcdQROGDKsNfsqU4NFgll4ewRUPGokxEuNILjPjtOf127ds91v2uz1xnkkxEdNsnPs4k8aJAGz6nuBNOHW3vWOeDjx9fEU5OyPNE7v7O25v73j1+jXb3Q5xMM8Th8OBcZ4Yzi8I4tkfRna3E/eTJ3Qz3juGoUdjsQzCOVabgccfPGLTe6gee6kGua++eMlufw1M9N5sFkq0OllKJseRnGdSikxxImk+6Ya4auRivg7SGZEohDY2WyxozLdsugvONiazdch7Ur6n0z3IhJfI2kU2TuldxIsFI4eVb8EriCNW6XBVEBfwviOlQioF5wuFuGSepQiqgVICZfQMq7UNZIpRjJOKjQuPvSlLuY7S98zBdBe9CyZhBnXTqN6G3kHnKE4oThZpOvE2ityJxzdjGedR30M1lvm2470IAq2W/rY5gVZnn94Gx12+ggqWwh7/eazDHyYBx37+CUaw1OPUqTVmRArOFRwzgWi68cHjROlUWYdMcBiPoNqeGalFH7ye1P9bm/J0xBhqnm3dDO9AjSfR6EMmnmkdEHUOFzoG7+no0Gx95904sdvuuLm55fOff86LFy+4u7sjxbSIpYbOVIDTeGDddejFFU8fXfLBs6dQ9fBX/UCeI+TMquvwVxds1r1pA5TMYRq5vrnl5vaGNCfiPDOPSikOsu1AToSo1paT9RmII3cBf3bJ4w+f21i0dgS1nWm9vuDli59xc/05aymsxNBwau3vKDiX6Uh4TVBFPMDRd6tqEVZVeNTKuxBkGeaaGZG8JzDQkZhiYj5smfdbyjwhOeFF6cU6ASTDf1o7zlpyivPgO3MDzpXM1XVSPR8rjqJax3plud8UI2MqbBxGIVddujLeR0TGqkMQcKUjT0LKBZslCFZOYdmI6VEqxakFATE5OqRmBc6jRQhqvhSzQLZhGdD3PAjAycJ+d+dfWgCVyPugHDhZ3UbIeieg1MKg4n0NYNT2b/vfyfNU62oaecfGfFs9LxpxjDhRgl+bykt9nw0VWIDMB+WH0KYdVZvmf711wTkd7VkKnBB3mheA6ReWnBEf6PsVqh05BC4fRZSO27s9wQ1cnj2md2umeSLGyGE+2O7p7PPd3t6zvb0nHkbG/UjoPCnNbO+3BG+o92q95vLqnEePnyyCIL7rKarc3d1xt7vhMO5J2dH5Dd6tSJMZnPrgODvvOL84BxEO80QYOs6vLri6vKD3K3y2Euo3f+tPk+dr7l/9iDTuKM4TnOAFOu/ovBg+4hLizEn57rAFOlahIxWIOUGx1mRB8au1BeRSIEckZyRn8jQx7g7sbm457Lc4NXFOFzxeelR7xpQJTtFQA7NAoeCl+j2oImIgKs1xmIRKndOoF5ur14Xz4EshhMLQ+yr5XhgGwftM0Vgp5QlcIqbClKN1opxbJluDmlR6SqYa1HXB/p3VSivnDZfIZpzqu0DnhUSum963L/X3Jgi0BfIQwX/Y5X+I7LffcbR2kmP1DQ0pPH0NO6kLHfYkRW+lgADFOZI4YDa/QBEKoQqQJpwWvKyqlx8P2oJfxzXqe8HVUqR9DKn/2QQZHKmxYiXnyeer91JFU2JWj8PUd/vVwPOPNjz7QPnk0+/zG7/xjzFPE7vdju12y+3tLS9efcWrVy847O7xEpjY4RT2Ufn85Vs2Z1YrH9I1XbA01Pl7Lu72PP8QLh9dMaxWrM8u2Zyd8+RZYs4TSRO4DjSQZyHNljaHzjOszC1JndQJysppEGHMgs51atQJQ+foiJS0N4chvNW+xRO6nr4TE9IQ0yd06WCqQyVXHRbTKLzb7kGsJOi73s5bBlcEjZnEVL0aI5Kt5+6atFs25/cpFaKUCgRKpRELQYVApfWqDY2lbC3h3HAIcTQR0KJGDS8q4G0TMPvwQuiEfrD+fYoWBCiBkjKp2shZwLb35kP1uyjWqQne1JFVFVJE1ePEETTjnOkaeiJe7H3OOTHHb6lTeZ+CADxMz+Fkl6bu4HoE+k7igpalw/bgaRpAKHr8Y+L55VgvVOzBlH0tOy9C5QhEvE5kD5kOw+MyfVHmOi+gy7RZC2DH9wAcFzZUUKm9bAUI6xhpG4gBcKJVk96ymFDFQn3RRehkzibn7FBEzG/w7HLg4vIRiu0YKUbG8cDt7Q3X12+4u7lmHkdcsc87zyMxjmzOVvRdoB86Ls7OSSlx2I+IQL/ZsL54xNn5Oav1mtAPZr9WjOFYBLtYBzEh0WL6CXNWSowUirlBFyHnQqgkpFIHBLMo3iudJIqfDQBzllHkBOKLtdy8UjST8wQknOvxgsmbO0fWzBQTzgVyssCDZsqc0BiZDwfrLswTWma0xKr3mOidjZarZlKqFnHF46v1m4Xggvd1t68bUwq5AryCV5Nmb1iPOG82ktjiFY2mStwJXR/oh0AuSiyRFO31SlZ7XRFyscAmPiDqq4K01PZjMGfkmIgp4QOVhZgX6TxHZqggbdaeafq6cG873q8gcHI8oOO2xXrS27dU/R2K7TFeLPFj8X3Xh4Hj9GmP+YMuD7QspNDktYxOYJeDqCIlsxQr76CBrWQ5fS8nr3DMBOSIFyx/qplle7Ntws2pgWad71it1+Y0rEDlq+VKhS51ZkG8Z933nF1c8OTpM76Xv09JeTkP4+HAm7evuL+/ZbUKDEPH0HdsNmt7byeBzWpjY1LOyfCMVGwGIGsm52RtyGSTeTlnY8c1k1UvdP1gn8UFOj+QnX2+MATW64H10JFSwKEUTewPBwM90xofLsCbDuKyyASQowZh6AKbs01F7ZV5nilpNl7ENJk6kygxJcbpQM7RhoGdpf3mF1BHuiupx0ga1Cw1I6klnBZgTGjUvjMvQmguSl7rSK9bfAhLzgTX03fd0dfRCz52pqCs1orsQqAXE3Kd4lEQxUxImsyZZ54nYs7H/FOVFDO56mR4UWKELnjWq3O6X7DS35sg8C4Q+E2c/HpH4CgyUX/JaUvwQbnQlmp73uX2k2Tg5HG2iEpNL7RGfh4EG61mE75t687SNusOnLyrJbN5CHraIUsGYejWkjoccRBAvDkEl6aQVDMLV5l85n57HLhqSkZN1MRLdclF8KGvmYSjX29Yn59xOGwpZYZFP6FNUVTCVS7EbJ2FZaKx8tJzw1lOP5WYm0/o7X0rQIB+GECFNBe8D3RmH0TK0U6hC9Yz18S4O3C/vaPkwtB3VQTGQEchkIsAmSnOpCIkFbNv97ZjToctKWc0RtI8GrtSI7FkEAP0VquBIEInEMTmSkpRuq6m0970JprxCji0tDNT8RktNhWqhYQSKybgcv3e1FyYRGzqbzfO5FKHjsRMZ3JSvARC6An9yoaM6gSlDwE8tdthqX0phRirepYL9J0NseWsxBQJ3mzJuy6AZqY54XwTyvnm470MAqf/fvd2eKf+Ph0rrRfnsohOPJ+PACN1V29dhzbDfawhSl3mBlPbfarWEI2WbGQUayGpPFwI9n5P3ncLAvU1Szn5bI1p2LIaad51drP3fpltbwu05IJKI4UcywjjkPgTPT+prkWVzS5CqhmOc0LoVgwKh8M9KY3kkqqpqZG0CmWZnkw5WVYgsvDnw4mwqq/GpTHOhnRUDn3RAs4Gm1LMjIcDs0S8s0vv9Zu3XN/cEFPGK5SUTEh0s8Z7z9XVBX3fUUrkkGb248Q4zZUY5dBKusnYJGeOsZ5jGxYTiYQOnK/ORcHjmqhvLkg2ebeWVXSdjQeHiua7qt/gfUAwvoBCXYzRFIDqAgQTCRGVWnEazyAE0/zb7yfiNNMFzzTnRZQUCWieQRyudo9EoO878K5O1hr7rwnohmDCOMEHlMJ+fzBZdoW+gPcdJcE0Z8QlnPsvgdrw1xWFHgaDh6o9TaeuBY5yJBs9ABPbSrTfLc/7tV35eFgHwjIBc5yx57RxYLASoVSQpjx4roXWvJQU35TJnGYrJ9mMPPjXyfk4SpOfzkO0c2EPk6U9aemxX/AJBYpW3p1KVbEtaMponohx5DCO5DzZqHV1L3LOtAFcECOraG8mIKWYTJbvELy5IZdCFzpCCAZs5UzGWneFwnyYub25Yb8/8PbNDfv9hBPPPwXc3W9JWRGx3c4JDL2NI3vn6DrH4bBjjiMxzsQ4U7QN56gFQ6QucNPXtyBgWVmczRw09MGUpb19h6WYT2MRy2xKyeRUA1bXDEtZvHu8Mw1/xON8Dzh8Z4rJKc/oaN9pqLTgkjGPx1LIMdGHgMNajCXDlCunwHlEEoliQ0OhLclaHroq0V6vlxCaH4FfzF615KqW5VGFlFq2oKRYUDUm4bcd70kQeLemPqbQ72YHpZRl9yw1lbbF6OpOSkVi63Pw8LlOA4SqVvFIll0a9Lj4MeswiqG7rRdsNcRx5HnBKE5mGx7gm6c/ows9+mGQEB4GjsoTyIY0e7Xdp2hZEGvLamS5r2Ul9Zla/BMx6ihtTNnqYNVCioKUZEMxruCq3qJznr7vUc3EaOn6arUipch2uyNnk7PmREx1roanu92OcRwZx5E5RqZ5YpwOaDHEO/iezWrNemPqtx99/CmHsuP+53/Afvsa8kzJM0ehT1d1Glv9H+oitM7BqU6kaUi46mhUbdiDsfe6YPcLvtm4JygZ0SNrtBSr9b1zEASt4KcAqaR6bjqCgEiH92IMv6yIy6h4QhgoxTGNhjGIFuZ5AoR+WBGodBC1Ya2YS6U1Ay6h0QrPZleuIvjQ0XV9NV41D4M5pgebY0qJnOz6jy5zkGij5pkl4H3b8Z4Ega8fDxeRnvytJ5v5yZ1E6+I/Tf1rbb+k+rrcdwkw9WKzFLhKi7VsYgEM7PmMK9AmFcvy8lJBw9OgIEu80AfvswWy0wBwOmjU2ITtd6WY0pC4UtV9jk+n9bU4wSHs9LRgdCQo2fuqk271fiVLDX51SKXuOoKrJBhlPCSmaSLOJpp6f7+rWIFWZyC7fRxtp25yYN57VqsVTx4/o+sDXedZDb1JlPuADzbaenn5iNXhGVePn7F98WOm3Q6RtBiOuNotEJxRb8UzTjOqmWFwNiWnkZijmZEKQDLz0WwDWilnWwgpsll7Gwo7dgZrOSgVc2hkLnM/Nq6Nr4ItCmQ0zeRin1V8h3OJvpMqGuKYEqia4lAp0SYFSyYmCH2/2KKXAuUw4jrLKpIqGV2qTTAsaD6MTGPk7Pwc54/Gt0VNVbvrOkIYEDG3opQKRaeqoenJ354EAL+cIel3gL8KfFjP12+r6l8RkSfA/xn4PmZK+k+r6rXY1fdXgD8P7IF/VlX/zh/1OvAQFzipDpbbvv4AltR72dmhZgfHcGB/N60gWAC59prLQjkBJOvjnVrPvuUUSzdB7TnfzWK+7WiAXqtXT25p72pJ7b/2IaUt9mMpIXXRnlpXNcD0nRNnz1GnHan6A4vEmibSPJHzhAZzBspJyXlPTpntbsvd7a1JYM8z8zQZRiJUV6dA3/dcXl4SQmC9XrNareh78yPoup6uC5gcWkbUiFgNB00xEbqeDz74iJufnZN2Ju3V9x1dF3ChttKi4p0pFpVylDEvxVyIRaPZywtQIprnxe+gqKJFmOdIHwq+8/Xzt+vthK+huQZemxp13pmDkBar732V/9CCqAUGkYx30AUhZ3h7v2W7m9lcnOODsfzmOFEShjVIZ+UKQhfMvk2Cx+WE1jmBnJVSIKbCvN2z3W9xPrBen9k57Qf7xisorVqsqeQsE7aqtGanrtrVf8vxy2QCCfiXVfXviMgF8LdF5G8A/yzw/1TVf11E/hXgXwH+l8B/F7Mk/wHwTwD/Vv37Fx5tdzxN29vO1yi2x9vqDsbxfm7Zidvf5cFzLc+N0sRKWtAoLWgc8bjj4uE4l4AeJxY5fa9/RBywp7YIr+VhJrBk8/W9LLt0WyVKVeI5CrEeH2h3KOUhprK8/ZNgZl547mEmU4ysstvecdhvbUhnu2e3PbC935FyJtS5+a7rWK/XPH/2nPOLczMLDfb7ruuW9L259Dx8H5aNmUV6JmomJrvPbn/g8OoVn3/5FYfDyGq1IoSMD96ATycLw7KA0aaHtbXI4owWZehskKpOVIGaTXgL1M45+tDRB896ACmmpWDfp6H4hgvYGzYYyNR+fJWHNzUlofNVLl5BpaB5Rl0h14ytlJ4YZ/aHA91qRVeHlormpaVbNDNNqQKRK4b1yuQuExYMnMc5JWfwwTHNmbvbLSkVnPcm5DIMeG9KRfM0L9ke9fpu126pprXe/TG6A6r6JfBl/fleRH4P+BSTuf9v1bv9n4D/FxYE/gLwV9Wu1r8pIo9E5OP6PN/yIu1/x1z3eLEbbbMt8vrRlrV+3LhPwb+T2f6TlyiCRe8TGzBBa7umEm9UK7GoBpLKR5ZWMrgamDK4bJlClmw7deX4H/ODI5ehLcr2CWT5GapdUg0ulgq29+7E4ypTrS3808e1T3gMKu9mEi3LKLYTLydVGfcH/vAP/oAvv/wZKU14Z3z89WrF46snrDdrzjZnrNdrAwedr9p7rk4CWtuKcqRzl9oyK5rRnClZqy3XhKbRbhNXgUCT0prnyPWbV5Q80fee4K20kwrS5lwYx0zMmYvLJ1xcPWV7d8Pd7RtEI5dnHUMQcKU2wowNKKK0S8U7MaUgp8d2ayVhte5KA33BOiopqg0FqgFuZldXN6CSKHVeRCtQbBRg5fyso+uDSaipIfbOefrO0QePl9pexNeUvdQSoJibWLC8RKWCuMX4AFrdokpJaLHvQGARpZXa/q2u6PXcZUqGvvv2Sdd/JExARL4P/OPA3wI+PFnYX2HlAliA+NnJw35ef/ftQQDsxOvp7s1ppnzcMludzklKTyO3tJ22WmJTF2Ntw6uc7OzYSZMa+ZHaeitlsdO2iF85CdLKi/reSutKWLfpYU9ikUihdRBKSz+r0Yi0FJ+jIOlx94alztcW0I6fZ0H+5TTz4eS5ln9+nQzV7gdkLVxcXjKsfpW+dwx9j/cdnbe/zYjTFn270Jf3YCehourJ/lRiTM6ZXLIBa8WGXERtAEiccfWluuSa/0NBy4RIxBg5R4GT9tr7w4HtvtANZzx9+oycJ+7u7HsWrMQSUUTDktZTW3WIBT3j9TRsZzmZCy1bmgAtpQ4JOdIM0tn9zBskV7cp+w5zNs6I4TAGJHfBaOC5ft+ihuqvVgOr1QopiZhrKzMXG/SqwUUU051DkLKE/yUTzikyTck0EUIwHGJRmPb2zRaqGEzDuersyrccv3QQEJFz4K8B/5Kq3r3T0lP5Ra/yzc/3F4G/CPDRRx8+mK7TuiiButhq2t5qtVrv0Cya1Eg+1Y3Z+r9iXvKtJ19qHe200nJrFYiWRdG33S6V+OOdM1FSZ+IchhabVFnRDNlQa9SYXQDHs3AEKYsma61h0bloYen7n9Tzi9AJx92pLfpW29bzzSkR6fgcx0Xe/q8nT38aC8zZd+CjTz5FtVm1qwlcLoHPuAItcyq0/rvJmZVilFgLALWWLict3aW+sZrb1+GgIp7SPp8DJQEzygQ61VkQrYGwwznFBwi94ILQrQLnnHF/t2bwhc5lShqXXVGymOxaxpA/AVIrKSr24+p1UGzhOdS6I2LDYiVnMo5IRrDhqy6Y+ElMsToDOStvsmWCTmqWiiLFQREbJarXiG+vqY0rIiY2mTI0wLZ2W4x8FnAu1EXsjNJeEiULEoz+0/tQladt65HShHdO8Sq3BIpvOn6pICCWu/014N9R1f+g/vpFS/NF5GPgZf3958B3Th7+Wf3dg0NVfxv4bYDf/M3f0JwzD7KAkwu9CUQ0q65W2zcgxLlqvllkie764I+dD5cKpNnAlFJI2aZGrKWUyPNMjokYR+QKPnjqcV5NatrpIvZ4usOfYgjHBbdswYtsWZMBl2qx7aRZbvvaDjoOEJ0GgQUQfICXcLxNTlb28m6qxFp7R+20QFVBarcZ2SQmS9t9bxZfpXkjtMBcA1CpIh65FDRXXP2k7BIxrn37WYCipvzs8XQqeJQkznY+WqwvFdxr3Zwmcaqgkc4Hri7XnJ13DCvPPO1QTaxWgc6ZnBiSLZsrloXY+25B9fjeywmwC1q/J6XUaOHrZODCjKwjuKIWGOy7MRKX1uytpfIGKZRaRHaUUlWaqlpSKYV5nslxNvMQ16M5m71YwGzca8bV0nrqRma1PThssnI99EvmltBl3LvhW7mSpXAGPDaNzW86fpnugAD/NvB7qvqXT276D4H/MfCv17//rye//xdF5N/DAMHbX4gH0NKcykirEVHbF6XVoKPer5kxGCquNY2zC9vAEVkWDieLRnPmcHPHePsKtDDNkTjPkBM5WV2a55mSEnMe6b97yfcePUO75kNku14RwxSKOkRtDl9rqtYWPi2NbTt9Ay7q+1oMOmkpb/0MC9Ho9Ato56Kl418vlY6B4VTJ9vSJ9MFPSzlU09UcEynNQDC+/pwWivDXSrTl9ep5lja8IovCcytrHIDYVKAn47WYPoAcdQwX/71cLL6Kry3B05IuswqeDKR5x5tXNs6NGkuvqPXEMwbyppwpoiYpVr8SnC5OSvXbtD3DEL4651+9K06ckEWcDQM5MUZl5SM4722h0TIm+8RFq1irzZUxp2xitNUHo7k2nSplpWylRWpdI60pPRbYci6kmG1UupWKVbG0qE25OtdKVwt4xq3IOG+UbP1j8gT+HPDPAP+ZiPzd+ru/hC3+f19E/nngJ8A/XW/761h78IdYi/B/8ke9QGvQKBCcrzLJ5agybFtYXQws6DwLMm87W9bGrnI1ta5yzlqI88RPfvxjXvzkhxaJq9GDFyMdlWyS4MZxm/joiZLShe0kEmoJUGrqqmhpSAC2QKvWcUvzTz+dE2e+eRWFzrV/vexYJ1U2Jx/twb/LSVbD8e6n9/v6ea13O0nLT8sCcW5JP6dpYhpHA5NSsuuwBmU4Ao6tC+BOiNTSAnENdq0cMHDVqL0ORepAjmsAW31LtmvbTqcto6tpuYgNa/m6p88xc3tvPfCL81V9vGVzqiBOzd3JoFBSzngviPeWpbhK96YGb6TKhCuKwwUDP3OlSdvQk4FwJdmCFHG229fAL86+Y0qwRnQ2HKTgLHDQgk/VJvAWRFQdMdddu7paO1fHk2up1cBBcyUySncpVNl5A61PO0eNXLYI9qpSUloyr286fpnuwH/cLqFvOP6pb7i/Av/CH/W87x5NkBIqSmr+08tsQEujW63dQLYC+Gr6sOADtR8t9fFNruOQZu7HPXmeUSx1NcnO2m9Xewuh7/CduQw3fMCJoE1EogWiGoGLyLGEbfPpQP3uza9A2u52kvYvqbR9JkfLDL52VpefFmLRaUr7Tcc7ScXDp1zQiqWGRYRcefsuOCsPKmvt6KbU3kMbyz4GhmMQaCCU4S2cZGqW7EiNRQ23OOIX7X0VrWFdjzbtRbNlFGKCp22Z2YBCrcOPfZS6P1gq7euMRdE6K9BkzKWWR1pbqIjVl+LAe2MOeKNcl6IgHh9s0c/RNoPls3GUxjcwswa8mhEsitftS1Tb+VNWinNQmr2azalonT2oNQFdnRUoairFc8pVdl+QatzacBmw68p7X7OP+A1do+PxnjAGj/V/u9SkMvhqzOY4pVdvR2m6As1qLGebzy6j7WDr1QpXs4GimUghhYALpukevM1uex/qhSdcnG+4uhz44MM1XQhQIUQnDrzg1MgfBgTKsrrapXDykU7wgsZatIuhzXwvC+QIJjw4Jw9P0fEJa6WzBKNvbg8+CJn18bZwG17QEqkFcBStBiTmtLsMM0EdJa730zro9C2ZANSOhmv99KP1tlCf9+SdlpaBqYFlTVzN1/dvu1/N7JLhEc6L0ZalSbZZC89AzTbN2d6fs8+Y7Ry6pu58ci5LDQLHgCcLNx9MTNQ7R+g6oDDH2XZtbyi+ImQtZDXNP3t9KyWklg2lFFqNk0o2vEHasFXLbCtu5OsZcB7nIr7ztQRJzHNG8/F9tqyqeQu0se+WPZq2wvsuOV4viRbFjhhASwml7prH2eyUEilF5jiZLVfOHObEOEdiSmw2Gz779FPONwMl24z75aPH5PI9+i4YsDL0Nvjiu6rHlzg7O+Ny0/N4dSCEPc7PFBGc63CiuBqcnOswU4mWgkibPD5J7k/GgqVddFoziwo4iQ3qtM9nWcnXkdzTkFBUazJ+Uh587QFLtFxGRx6EGG0BVZaA5b1byqtmAno6D3E6xFV7Kw/e4UmlUT+zpasnoWhpxzbor+3Cpe3ctbUGhvdQlJQtOJis+pJgoNk0/XJRSsYWWPVqNHxAao/fBneaOWrr3SutRLOSpbE6TD1YFgn7XGrK7hUfaoqtpujj8Yv8W0FOhGMc+EDWRNaWd1GpxMocoy126Y6jPa229x7vPJbzGN9ApL7/OrBEMayl644C+0sZJu5IN6+tx3l674OA1j6uW0qAojYWOs8T+/2eaZpsIGUcmeeZaTLp6ZQSipq3fBjwXW9TVs6R5sgoQJ1Z/+TT7/D8g+eGAGMIb7uQSyp1GksQYkVoPV3oyOIMF6htR60ClEsNUI07jybHDUg76RiczBa0W+wiLAsoJUtn5NtPE3AkMqn7htLh5JAHfz1YtEeE/J2HnGQo7wYBOLnQTp7vIc/h5MW0Bb82i1FvUF3Gr9su3OzU2ow+0lpq1ioz49ZQK5CmyFRHvNvUVA0uDWHPdfOvo2U0DoC5NoGW2kLG3kOq7sjN9yJpgZQwHoKh/i47vMNUfzniNO15jKPQsjv7nLllObUwLdWOnRwtFjbhGHfsElm5Uo1wS6liNlTmp41mG7bgjtfFg4Btv7Pz562z9i3HexEEtCjjfm+imIcD+8OO6XAgp5l5Grm7uyPGuKTR3pu+Xtd1bNYrhtVA1/cMmzPWm3NC19U5fEFzspPoHKvVBvphodGjx6lEF6DUejGUqjXvlUTG1VrTRDQcWQV1NhrKkhofzUXaAtFaYijvrFSBRS79pOQ5VskN/zg5R+8uND3dab/9OM7IvdM2rEFgec9SCTNIAzxO8Il33v876OSxJHk3qLQAkB+cGT3ui3W0tp2HTK5aep2zXEBb0qB1nh8FMY89h690YVlijKqgpTlSezJKUOvZi6OSckqt0Jo2gM0zpFTIdYHb95OW2QFfF2RKBQmCd93yrbUg0tJ/1QpjNi6EthbfMfBaVptQB86HKine6r1j37+oAYPAEiC9w0oTbzoTmnPNIo7ClCJ2nyVYvu+YwDSN/MN/8HvMMZJSJGeLvl3weOe4OD+j6wKrlQ2ndJ2ZNPiqOCNV583MHSq5ospX0RSpMGOGRgpq6ZX3Hmpyq8EykKAZ13VEyUzq6PF1y1JKNuddZEWzO5EKDBrZqP7huPQcvoI4rc9cF4McM4IFXhBOLNFYnuX0N5z862v0Yx7u3G2xLxQ5hSPZyEampb6ecNz5Hw4mHbGAd9+T/ethUEBYEHhLloxMY/W+GPZAa4fV+r3iNoVMo3KD1bO59vlKq92rXqSFgRa8TgA5bd+oTUPmYj4AVCyijRtnBVVzUXbqTRBVqw+jqpURNXvxzqMlVqTd1JOKVgeoJeUy/8aCaSq6CqB6FRs6KslOOcZtyY0W0YJoKcegoiYck9QyzLlkeqneJkgNAh51rfSxc1/qtW0dmKpob9bM37j24D0JAjkn0nyg7zouLi7p+44+BIvAtbXj6s8tGzhu5ran2PRUQUu0wKAG/pRqW63FkO+q/gjYxesawIfx9EXF1GmdMIujl0DnzIveEjtH1g6kt4uMYkAh2M6qzX24bU22lRnCXbOGikCLc8fpPlh24NPjweCTPkzha4V+/N3XE45lr2plSo03QFluO1JqdMlBvh4ALMjpyXMfX+c0w2gvcxJw6vxF0UYgqnwL2mK1V29zHTaXYAuh5ExO5sJTcIuQqTa+fyNgqfHmbZEZ6Sdr052oPwOuZVSl0HCArEYVz848HuyrqJ0fjC3aefu+cnV1kt4mCkWFmO1DS+0glaI2XIQFLFc8wQVUZ1LKdM40BnNRcrIMwfkK2BajLdWtnFSgOMEP5iaUNZk2oaudEO8oruojaLVBrwG8SMaH+jm+FTx6T4LA0Pd873uf2QSar2lNvfgFKoByWu/U6kuOl2/rzzttqXilbzQwSxzqfU2B7WgnxrXWXwXsgtppUS+oN40+LwWkmOvLogdYliCgdXhBtNCm5hYEv7UMFycZA68aGAY1I9DyTreg7bnH2vPrU4unu7Kdl+OfI1C5/EZamfK1cGPnTFoq8vCiOX2ehRjVQsfp+23Bpj7KAkA5IvYq5uTehFQRG/LRE5yi7vSqjfQC6kttjyWrsQVSzW6SKFlMuVjFmB6qdToQxbxRHNlj8mkqzDiiOiJwKEKHqRUVVWK2heFFAHP1sQzT6u+i9hxB7DpJatmLq0NPRW0Hl/YexIKQNQdqfe+8JTvOhtLE+Oo15bcNqali96FjdbYhqZCm+eREt3FyKy0MZJYHZYR3DvXWJvy2470IAs57zs7NkcZYg9RU7KSSFFmmpY7pl4lP+ipo2RRykWrcQBPVyDVTDnW3aC0oWxGNg6DOHtEkuRsN1ldePQ4SCmSMppoxEpMsi7U8XFm2yLWBRq1OtN0iFyOcLGVBJR21oHZ8jvb/b6q5T3//ThnwTmmwBNGTey/ZxLuvdppxfEM9uXQcW1alD+8jLUC3L+bk/SwlUHsXBZqgi8CiBWPpf6EsmVQhZZPiKgIJozBHtd3aqc0HJE3k4sjZ1JCd2G6anDn2plIYizBmGIsyFcdAR8mekJUgShBHR2EVXDX18HQi4AKi0bKL3FqPtnC9V5zYtKYrUJxdHwk4TAkvTQZM8aLgFBfs/GSXqxakvXZlHtQStgXKQucDrrFWS6bEyg/IpZa2LTuuGwraIuy3Hu9FEKAurGOLw0OlQS47mjQk/JiuHRkf9bd1FzJMoNbHbZFLqcQe41Q7PV7cR8pvQNRUXDUqmhXRjuxKJTP5qviieMkEV2h2Ew/345a5VARZTgC45f/2Nbu2UBoY8E6H4LiQ7OclG6jv+5vwnmWAp72WtI1bqEY5NNHEU5FUq9stfT8FJo/fiyw/K1ZQtBLj3YxAassUERqD056rJQHHMsPMRfNSGRkOL6bKU2yG3jkPxZGLDe0UkgmMSqk+EdiwDp6siVTkiCcUAfWmTJwdYwocijIWYVKPdgNudUHsHaVkkhY8hVkTU06Mk9AnYeUDvQ900qFJiVXWLGcoxVnGUCcJLVP19fwUpjnRucx6qK1hjwWCnGk6ljaIBJ3r8bUkUoU4z9zd7FidnXO+GUBna5umTPDWlkScDaa1701tw1FxS2vy2473JAhQQW5bONKowzRiS6uNT3alFgDaUS/yxrqDWpe+c1J8I2FwklrXQEFF+xFPjp5UCkkDSYoBQzXCIjYR56psbWUz0MhMzjlKcSClSnZJHWOt9NL6Hg0TsMzg3RnMBzU2Lft7KC/+C9uDJ8/U7iwtICwlVHvuChQu9YK9/teFSvQYMJco9fXM4fRl3/nxa79smVrJzX2xtsKQOnxXvy89BkD7DpKpHi+ljTNOQPGoduSipGw1dUyOeRIkCXN0RO2Z1TG7juJW+NUGf36F6zqTKFNTK9KSSHkilcS+FDoKXSl4FVbJOhgOpZSAlsRKzNI+FQPrnHqKpiWcmtR6R3AZL1ozAitvUy5AXD6v4KvQiZVE0ziyWp/jxZDAVEFd17XtpAaDk69HK0kqV57Ftx3vRRAQEbPdXoKAY7EMk2N/dFkY9WJtF7Uu/ezlRh7uy1QtQeHoHwdLq6imTG0yMKkD7RkVJjoLEghIIYmhw7gOlUYUoco8eaTuoh5BU0XAvbWnnApdF+qQimOZh+AbFsoJEt+AwdNBntap/9riq+fzIZWXBy1AEQcevPOVpadLVnFc998SAE7f2wJYHu/TXqtwGhhasaTHx5w8b8qFrIpXoNJmpSHndfHboi5HnAgxPgECxUFxlNyRsyNniFmZsuOQktXnxeO7jpg6sgjZdfhhw7C+pFuf0282iDfXZGqQcVqgJOsI5ETSiZmE5JmDZlzMxgYsCS3CkIXeCWTr4wc6os4mWFM9AkLo8C6hpXL/1UDOclIyqjiK85TilpLowQaIsWPFFZjboJcs2V4740Ub8Jh/4Y7xXgQBxIwxWu1cERO7bWl7AXKiCiPH1qA7XdicZA0IuBoEnFa87qQadUeyjbbBc3GortBwRSaR+46Z0XZ1SUSXLFPpBly3xoq6Sq+tZYdiC8wFM+/IrSQoBS9ukXo6ZiJ1iZzU2acpf6kXitZztVQQDXk82bUfnAeWBGn5vMaIN4msUPX7Fgp0ew8nz/BtoPIxILxbnjwMTHqy+Jey4QQTsO+qDVEZyFUQjoxGe42SCyXZrIBTj2gg54CqkBIkPFPpmSOMs7KfM5FAWa1Rt6K4DnzPar3CdwG6Dt+v6IYNLnS40Jh5bVK1x5SNzMy0pEwpG7vWSkazMVZNvCSbyEdOxkvJiaDgDpkUrbskdLjscZNjCC2rEWOhevO+VJcAIUtPI0cV52gsUgvSth5KzhRXcLk2oZ2tm5Y1Nwk9G47LfMvXCLwvQQCwFlKp6fRxl2/Jnv0kOF/7r0sQoHIB6s4IlVGnx7pWsN28WM1XTk7oEcCqJ7CIqdOItxM5dCAzqUyQJmKZ8SEg/YAMZ7gwLDr/zjkTpqhpu6ssw5ITRU3XPqU28dbqbDAMuzELoO3+9uO7efXp7nr698MAcPoQ0SV2gFgP2diGsrRbv3mjOEn7T5/va3eTdwLBUmUZYiI2f9GygLYA2udrIWH5eE5r5uQWbT9Vy6QcUpkEnaH7SdlFYVaYS2FMkEoghd4YpGFNH9aEsKIfVkYV7ztc5xY9ByiITDVjqxvKSXuxCGQH6Io23aO5VPDY6nmXk00CJpv0izlS8gzSg2QOCHPMHFJh6FyVKXMEb7bxdj12ODAcI7dgr2b1VnUKtL5ezsm8B4JfsJxM07xo17aRZJpozrcd700QWAYupNZ3jbDiGsB2PB5c7C1G1A99WnPb856k0K2fXHemY9psC9DGNeuO5DqSZiY6fLcBnVAZiWVPFKFnILgB53sznGhz9xxT2GPLy3bBolqFOvQY2urtx077uy23k9Rbm+mJcpKFn+wQD8+PPT9L21FbJ6JeXK3m/CWW+YPbGrlpuas+fKTWyHOa/oseP9eSwABLK4Al/7cFKJbtKaa2ZXP6xtacs7LPtttNUdknmIGoQvQ9DD3SDXT9mlW/og+DWXOFnq5zeG9IvneKl1SHzBJah5uM9GPzBNbKNYKYisfkw6nzDJaxainWQQjHYJirt4EQkRLN9GUeSSUxq03JqkakZLpU6F2mQwhSzE+wFJyzWj6pksRwgFJZh4uwqLRgVUeo9XgNuDoGXVKuU4/ffLwnQcBwcrO4qqn+kt62n1u6aI9oaeRynwrAeeeXoNEEFo5QQgXoHgBilV8NiFfEF3IRc3HJgiTF9z29Dzjp0RJIahryLgkD5hkngslsxbh8Qc2kM6dEbhe7YJNnIsuos320k6D1Ts18ulOe5ApL1rPM+H8DAvxN4F6u6junykHHTsMx8/rmb4qGshybGScwjHJkPjyIDsv9TgIULKPiqibzZkQrO1VFhFhMdjtrIZXAIQu7qOz3CUIgSyBJh/oO9RvCsCKs1nSrDavVilXwdApNrtX7QnBijkKaEDWE3TnjeAjmE0A1T1UZyPQovtbvSlTHlBSDfATRrsWu6nFQzI8g9IiolQjicEPGkyk5mnioJkqORJ2Z9YDPEZcjXgrBS52dKBySEovUjscJcKpNa6CqPSn2Ou40y7N2dGz41Dcc70UQsMXpj4u00YCde7Cjt/sqNKaNlQKVOtz41+3D20mpgpYVO3DVR0+pbLSc6/BHTeu8Mz5AFbnIQKyKN8E5ZHC4Yrbfqdh0ml8yjZp+VSebptxj5YC50bS6vslAGc0YI9CAjfLaT/VzlweLq4F3S/q9YAnH9t3pYaeollfa7p9JxZRnjr6Idvuxc/BNoONJCi92IR6Dk2UHbsnpy1LSOT3BQAQrtZY3GCl5oo2Si7ZsQyjqbddPSiyQEEbXE0OHSrBU2/Woc0jo6fsN3aan32zohhVdF+jIhFLo3DG4eV+sPVcZW855gveIRtCEc9E+iOuMIq4DqLdSj0zAFJKSCFqJISqO6OzcpCVoq4l7FDEPg84h0qO5Zo4UUy0uM1p65jjiJOLIlq2mDDkzT46sPVkDsbRxdk9eSiO3ZHXWym7fTZUmy9Ss5ZuP9yMIiCySyHKSroozvkCzoGrgG0WPeEDjCTjTBWjquM752sYLlXocqoa+BQFT0zkwTqMZS+ZEY+x1AiE4UrLyIooFBUHw0tcIn8jSEWMi5Lny4gxga/5zXgrkhJRkBBBx+JpqpgooOVVCAXX1CxUHHL3jji3BI8+/ZUbH9FuXc3R6PMjWK0e9iIIUUo7kJr+uVC4+yzo/lT/7psN2Pseii6Qgmuw9tgygprNejQ6rosatL545GvPt7ZufcnP9pVloFY8SASFmz5ThblS2Eebiya5Dut5wGj/gg4F63juGvuNsvaYbHF1wNvLrCkELoQalqErnfd31q7lqcHjpCG6FaDKsxGVwk7X6koF1Tqq2hEYLLBIoQc0ePFPHzYUk1uDTuihRG0YrUksc73Bdh1JVmbUgrMm6IacZyRlfTDcxTxNZI+p7QhAOuaNsM16F4DpiCeTc4RthrcRKua7CKLVU0Azy7dXA+xEEEI4pTM0CcoXKLVOWasVdKcX+KNLpvMN3vi7wQLuKu9CzWq3NTVZkmUFoCyilxDh2hK5jHA/EOANHeSd0WGSrcs6W5lcpbe8dXTXfvL+9QUuhX60tOifT2295snMeQs1WFFzwy6x61grkyLENCA81/VqnoHD6u5M0Gx4s3K+P/2qdq69tOwGkLBlQCybLE52UI9+UXRzfmzHaXPt3LQ3KCQZh2EfNFcSkuve7O97eb7m7uwPgD3/0h7z66iu7UBnI6snRUWZhTIVD8mTpKGHA92tCvwJxdP3Aan3Gen3Gqh8Yuo5h6BCXKSkCiaJKJ6ZwrAUGP9igmDosr6iksTzTEfDOBENcmfCuUJwjeseUs5mOSkGksy6LE1IpBD1mQiE4S9lxZIwHpM4j2GNyC9zOMggLnK4G9w4fViaYUjEDty6ElMnzjGhmXzJ384imTB+EQT2roqxCoQM6saGkkgu9q3MS2nS1vr3Eey+CgHAk20jl1jfXHUvxbXgoVKUXX62anG9mC66ipFV0IWW8D0sQsAENc6RtdmN9X7ODrsM7zzgdaHLaaKlMS6nvznrSWZU5JXKdBtOcGHc75v2Wi0ePGdZnePEMzln6V9V4ck62SIqNjlL/tJGkmhgu50Npo6m1xVMBnwe9+neOd3+v2njlDXvgISi4aBu2V6x/yUOa0jcBrHYYWrfU/43TIa6q49rrpBQ57O/Z3d9we3PDdrujIPSD0cSff/Qp9z//fa6vX5LLijEVplQqB8NBb628EAZ8v2IY1qyGFWebjr4PBBcI0tN3HX1fR3mDq+PEgtOMKzbJie9JycBHpyZL5woIkcHtWQ3KepXYrDLrziPiyXTs5sDr28zbfaHIQJFM0pGigopHqreg7zrbuCqIF1NhmpWUpfoBtrlTW5Ku4kK5VMZjwcoL1yGhP47O5yr8WrsPlMRUIlOObOdMN030DgZROin0QdgU6IODUkgZVN7zKUJEWG02NkBUF33oOvp+Rdf3eBeWWt4kxl0l27SdigXlb4KMVqJ6wxpCa8GUCn7VcctqeilYpmClwby4vpQq1yTiCd6APe89KUZisX5wnvbE3T3z4cDZxSWb80uG9Zk55zq/KCCrKolU5+ZL0yKxQKB5aSs2cGBZinXxnZJ67Nf6AExsf59mAk03zy3z9jVRPwFGefDcfOOG8U0BBm3nslSfgIrcx0zKhcNh5ub2luvbt9xvb9ESWfUdV48e8+TJM64ePQZg9egZB3reHoqN/cqKJFV12gdC1zOs16zXGzZn52w2Z6yGnr7LBMmImpy5dw7vjLsvnsrEDCCBx4+f4pzn5eu3xOYuLDWTkcK6h4vLPc8/uOPJVeR87RgAXzzjPDLmD3j+6JwfvnK83joOJZODY+jPOdtcMKxWDCtrQYYQEIwKHXPmMGUOY2I8jEzjgXmaSDER55kYo2VOVVhGoHYlqpoRheADvvoOWj2HdYhypCRTy45xJJfEVGbIEZcSXRK62mXwRZdhp2863osg4EPgydNndH2PeL8ox4aup+9XxuXXNgNQ09PTlhgtEBgtOIRAybqotIZQx3iLzXG3XbmlxCEEQuhgGpfHlKyL/rulyM5MHbu6i+aqzT9H0MKYt6RpJo0TF48Sw/rckGrnQR0ZIwq5Ze9sg+XUdNAWpKHGx44Gelysp8zBP+pYwL4GHNa8puJ/D44Gth4p2TXFPQkqp897DDIVt0BIc2I/zVzf3nN7d8/rN9dM04zvOq6ePOb5B094cnnBqgt2HqtB5qTCXoWxzm2gtpg737EaBjabNZcXF5yfnbHZrOi6vs7KRzzVLUqTBaWsC+XXukVw+fiK3/gzv450nu4P/oAvvvqCcZdw6iFlnIusVsqzD2Y+/fSW87N7myCclS4HQvK4+R6/+oz9sw+ZCuSyYf3sEY+ffMTTJx9yfnFulGMXDAzOefkec20npnlmt92y395z2O24vbnh/v6OcW+laMqGp7g6imxzD1o7CAaSd74jeMt21Qc0GG06xRUlmymOqloWotaJ8GnCa8L/AvGZ9yMIeM/Z5WVttQkxJlJMS+vPh6PI5ZEO2y5O5dh4tvu4Kv2UmxR1RWlVTWGoaCFGM7RsdX9KkXmK5nCk1H6x1l61zQs4ga7rUYWcMtM8kZM50jpV4uHAbXXuPb98xObikn5YU9XylvFUE8Q0lF4pdSTadv9mXdU+b3P5OWXYlVJbabXUa6Sor4N4evx/awA0Ka4H92+BqQYbTgJFbT1+nRVo8tv7w4G31zdcX9+w24+klBHvubw45/F3n3L16DHr8zXBKy7N+JLx2RYtwKBWyzp1dKJ0Tll1gfOzNWebNUPf0UkijHdI3JqqhhNUMkmzPY3akIx1OnJVAMh0Q8eT5xc8+egcv/L4zSf4zcibFze45EmHCd0fODtTnj0Vzjc29y8E6w6kxOD2JM3kuXAm8OHj5zw+/5jzz/4E6/NHhO4M1/UUjKegueLyzrpBDugF+rWyuXiE5kxOkf3unt32nv12y3Z7x+7+hv1uyzQdqjeB8SNSLV9VMz7nxWgnSyHVQSvD0TqKrMAH2yBrC5ISjfH4CzaO9yIIiIiRLZzgvKOrAOHSvjpuUMd0d2n51N2xnLCisvVPY4zEWE1DypFgYbjBTC7Nz94u7GFYMQyD7fDJ/OwtTa+ofUl0wb6EidlS4GI4QRcsyORpJE0T0+HAbrvl/OKK9dk5PnT4IHTO04eO4NxiW6XFUlhRqWnhcTEv77u17E6wASMjLSfxa+f12Pqrjyu6jEufUpaPZ/fkXC/xVR+o2JZSOBwO3N3d8/btW968vWaeIn3fc3F5yePHj3n8+DHnl2c4CcRYyClS5gmfJ1YOOm9yXwDD/T3rKXHlOjZdYBUc676j84qPB2TeUzQxl8yczVfM+2q1XTn3Rc30NEZbGFEjMU2sz1d8+qvP6VaR7izxwdCR9BkXZz35UBivE2+/+BnDKnK5uWQITwnhQ3ArNE/AW8ifM8iOWDJugkfn53QfPcI/ekrEk1TISavOhDP/wKYkhI0Vm6FowUuH6wI+9FwOKy6fPENLZp73TPtbtnc37O7u2N3fc393x26/J8ZUOQAFr4oj4sWRvTCrEotCsDmbWYVcMTVxNoQkMpgk/38pBoj8ETJxwRugESeKKj5UElBtFy51UanutyWT89E1pymtHg0yK5FCXU39PV0/sPae0LmFPxCqBFNKifFw4LDfVX64LRibIlbDGUSqS2/PvJtIMeIFKJnCTJpn9tsth92Wx0+fcX7xCKFHs+0OTkxRSXOuiLXUWq+m2434I8cSQGvG01B7M5iQ1id8CC1K6/u3wGFpO8Wop0feBTSMRDjSL5DmrWeW4tM0cX9/z+tXr7i+vmaaEz50bM7P+eTTxzx5/JiLc9N3FBHmeWScR0ouBlaVkVU+EOKBeTyw3x0AePl7f5f19pqPO0cfjDLuNVFGa9kauzMiqpWSmyAIzneVFCZVl8G0CrNkA25zJgUYDzegt/QuUELi6SNHKGsONyNFVlzkMy6HG1ZuppNzfP8MDeekvCWPM770+LKjY4+f3iK8RPdviYd7shvIDnLA0H1vJYErUklPhWzqB2gVRNGcF4IXAM7h1hvO1wObq8eUFInjgfubaysZbm/Y3d8T5xmNjWRkLcEuuKpb4Iml8k3EAk7RXDEgV9Wp3/NyAI7gU66iiahanZQSIZiEkqqaFVPJdXGnqhSTal+28dLrELL4OlxkF0vwK/p+oOs6QmiyZYYztMUlWMrfvqR5nsgxGpgE5Djb2KsqXd8h55eQMuPhvqrCJFuQMZIV4jShMTIfRs4uzpkPe3NAipEyOzQmyIU47hnjniye4Wx93NhPlGsbqreURErVKji2gOonYSH9YI9Z+BRyIgUmR+u243dQS6eiTPPM/jCy2++5ub3lzevX7Hc7ur7ng+cf88Hzj7h6/Jih76xVmBNxGk34I85oLngUr5FyuGN3/5rD25ds37xke3sLwNsf/X2Gec+5S7W7Y/Md5FQhkxYICq5YsPJF6UxZDxTMlqSCcWScZCQUnChpvEX3b9BVT8mJrhTOA2iZgcjjpxt8eYukt3Yt5TPUrUm1o+IJkBWJEZ8m0vyW6fUXJB7j149wa8WLI4TOfCxcwKnHqWVcsWSSaJ0dmcl5NtCZspR6UI1wCfihZ+g39JsLrp48Z39/x931G3Z3dxx226q6PaPJphv9iSpzJwIYoB0pJDUVRtsE3nPasFLpj3UXt4vziKDmlKwOytkCAyw7n0D1W5PaXbDOga9fiIlPWsvK0S2koVDT+oWBB1AZfSLQDyvb7UNgGkfSNFbAsk6WAV3X0YllLYXCPB4siJUqL1aUFEe2MTNtd8RHV5RiJBBNZj01bndcv37Jzc2O2+3EcH7JR9/5jND37WNaJiMnlOka7KraFS0wUJPQ9qdp+DQG5fGQeuvxvqbdb4t3HA/stjt2dztutzvGmBDvOb96wqff+R5Xl5dcXDwm9CsyypxmiDMuTUiOdJroy0wcrXNyc/OG7esvObx9SdzeUQ47MxEFwrzFl2SEnqKkWtYFseBsrcZgqg0uVg5MquKlrrL+qMGyECQyDJnVGazPPRfhhvnNH+KSY5z3lMkj+YLV5CnThJCJeWbUe6ufJ1B3oMSCTAckt6wSfC64ec90+4qb8cccdMVw+SGbpx/Tby5YnxU2mzN8N9SU3ARIBGzh+0DRjlJSlcuP5CKmW3Dy+c1xoKNf9/T9GecXjyx72t6z2225295xv71nPBzI0YBpt2hplqqmZApJInUQ630fICq5sN3urHUSU8UBDKzLKTOP08IGDMEvFGHvbYrqyAQ8Jcq4kyzAUsU0Q2vXGfh33EFt33QVYbVBktD1S1ZCMRKK1kEX13ZV7xk2G3xw7O7vuL+7YR4TLhW8Gr4U54nx/pZpe4uSGXf3FUgcefHzz3n51St2u4lxLjz96FM+eP5skZ8uxbCNlGM9N0dMwEahWqvQWGKNRtw2e1cDQJs0a3mCnRMDRbe7PXe3t9zf3nB/f8M0jYgKK7/mbH3JBx9dsbm84PzinCEYip+zMk8jKUdEky38PKLjPWl/y3z3kv3tW/Y3b5nur9nfvCXtd7icqxBmvfRKqg66tY1aTCloWFXlo+ypNAtUIt4d2Gzg/Cyw6j0lB3Z7ZXeI+Bw5v4RPPr3g+UcdZ5dwdpXw0+9R3iZkGpl3AukRZ+4TOr9mTIFxDkzbwvpuS9dBZgTn8TIyJUijZ95l5m0ikOjjRM+en3/1JXf553D2GHzH+cVjPvz0U55/+Anri0eEYYPrV+ZTUTUMnTPg2gBvb9hUhlKkDh2ZNZkvZk/mCbj+jFW3pt9ccJFmrqaR++0th93Wytb7Gw67HXEcKWoZkndNStb8Nttg3Tcdv4wr8XeAvwp8WC+t31bVvyIi/2vgfwq8qnf9S6r61+tj/lfAP49R7//nqvp//0WvkXNmt93WC5y6AzvWwxpZ2ckJoWO1WtH33UKicNXY8bijLzn0AhIamkr1tJOFIpxzqiVBGziqY71tBdV2Td91CEpw4DRT8mhgjNpsQUJR7wirDWfeiCq7u1vm7Y44zriiRgEtMyVPTPPItNtBVdG9u7mlIJYG49A0UuJIqt9ZSjOH/ZbDmIhxqiOsVKltOPYGjNcurRRyUn9WFnekVouK4Arcvb3hJz/9idX400TOmWE1cP74KY8fPeFifUHoerQLuN4jKNO0x6WEy5lQEkEjpJFyuGd/+5rp5gWH21ek7S3EEeJImCOrksghmItQ0op6Y2BfoeIihojjU5X+xnQURFGZ6IeJZ887vvOdDc8/6NkMQpkD+zvh9u7AYT5w9bTjk0/PuXpWCMMeF0Y03UKEISp+Uso8EYjgzgj9wNnZU0bXWxbqN7hwjhtWNgUskXh7w016y3TIZD1jyoXSJ84vhHF/y/3+LVmFPF9xd/sFP/nRJ1w8/T6bRx8wnG9YbwYDO4NYl8QpIo35XzeUyma14syWb9RCzArVVtyJx3dnbIYN3eacNI2kOHG4v+Pm+jV3b15z2G5JMlmGXNuUgv6xW4QJ+JdV9e+IyAXwt0Xkb9Tb/veq+r87vbOI/CngfwD8FvAJ8P8QkT+pv8AgXQRWq9Wyu4cQFqBOEMZxpBQIvmMYVotd1nHctNayD9DuY1Boxg82U2D/TjlSZiMJdV1npQPSMmUa91urgIRNu+XWi6gDG2aRZWVdAe8Yzi/wXcchBLZvr5n2h/r4jCuFnGbrBqiru6ApFakaSy7nmVxmpCoep/lAiiM5lcXTQMrJz7Ls66CNeGSpZWny3FkXRV/vHT50SCmUOJGmkbPNmmfPnhK6jvXmjGG1rkxKKy/GPJHyTCDTlZkhZ7p5Io/3HLbX7G5es7t5zXT7GsZ7JO5xpeCrIIcWCOKR0BlQliMUKwdKyvYdGverKvZi5VIVHfSS6IeRjz71/PpvPuHTTwJnZxMu72Dy5LOO8SozpUJY71ltJlbnIP1oMubFW9tPhNA5Ut4TpwNT6pgP54SzDzg//wTWG8LZJf3qKX51hQwBXCZsr9Fnb9jfzhy2E7utMDvh6myN7PesxgObzYazzcD1nfD6Zsfn+2vyl0pYdVxcrXh0ueZ8s2a1CvQBgjeOgnfRBEorKC1Q3a2MpVoo5GwkoVzLBTM59bhuzbofCKEndD1dF7h5+4b99h5NEXIyVaGiyB/HmlxVvwS+rD/fi8jvAZ/+gof8BeDfU9UJ+JGI/BD4rwP/ybc9wHvPo0ePFqPI5sPmnQUBNDBN1oMuGYIPy0Jd6mQqKVPr7+EoNrIUv3WMtPN4MT+4FBNCgWAGGU10JKWZeZ7JOZJTJM8z8zwyx5kcTRk252I7WgXdiloLLqwG1lyhqtyWzJQiqkqnmYbENwJQm4PKVW9+miYOhx1DmyosM11n04qlfrGixey6m2VVlecuGilxNH/GNJNTBU5ThmyZi3MeHwLed2yGjt/4wa8w54R4a10VNW59USxwOaV3CSeRviS6dKBc33D71c/ZXb/gcPeGaX9PmkY0TXSYqm6owaqUQs6OpKHSYtv0pmE7JZVa55uadBAFvPnoFUAyzu+5upz4wa895gc/6Fivd2i8RdOI14C4nsErYxrRVOjURn+LFzp/htOBFGfEzYQu4cuMlMKchPnuQDp4wqM1ZXXF5uwx/uojus0z6FYkTXRnH3D5eE93OFBevMK/3LKRMx497jnfzbx68ZZ1t+fqYuJsdc5qfcaXNx2v7yN328jd7YHbzcTVZebsrGc9OFZ9ofczwY90vRL6gHOCVrak93X2s4qrWKu2loG+eldUoBjXsT67MApF8DYPs9ui84SUbN9DdTH6puMfCRMQke8D/zjwt4A/B/yLIvI/Av5TLFu4xgLE3zx52M/5xUEDEdPecy7UmlvaNg8IXddRSrG20zihKlVe+QhtLZN1egTDmlF1k/wyRXatYKIgqTBPE+NhtyDlKaXadYiLIpBmc8JtrZ7SxC/E6jutj22GYlnVsIKLCy7ExkgP93dM4wwpL71filaSSbYvOAixFMZpxFVVWh/g/GwNOnJ/d81hd8/Z+qJabNtzxBKZ48icRmIcSdmCl4mQlPr+lZIKOZVKHBHwgWGzstaoQOcCpZiBh/n3FDRNpLxnPtxy++Yl8cVLpq9eM968JE/3kEYoyQR3tJjct2ZD7J2QszLOmVhblFKyGX7WS09cxzFTbe1QWYxKvE90Q+bxs8Cn3x1Yn92jXFOqfLcUQecEk5J3hTlA//SCENbkwVNWlzAMJH2D7r5gYLJyxll7LaTIPL5lF218eH31BP8443xCxfCpqMI+Fb54/TnXr77EuUuef/yM1aqw2yubTU+nBdIWT+Dx1RUpTOxzJG978hzY5YLkzLxP7DvlfA1DiHg34sOM78F31q0KnaPrzE/TMj23dLpKaUQta5e2MlfE0Q0rLh89wXnPnRPiTiDOaM6EX7DSf+kgICLnwF8D/iVVvRORfwv4V+sq/FeBfwP45/4Rnu8vAn8R4LPPPsN85IHS9NdqSqi6eLE550ltV+36ivBjzL4qt9ygviUolNaKKeQyGyobIzHaTj/P88LQKqqUkqqOYTkh1ehCkRXUiBdODHCpJyCJNQVK5RMUsRn34fyKK+/ph4HtazjcJ8ZcmFXrlJ3guoFu1dFt1pw/eoz4UBcKuBA4Pz+n61fM08iLL7+gC2vOL66YEFQjuURijqQSq+hlghztc2Pcg1wDgQEZNZMpyv7+DWE9MKxXhM0FHT1evQFT8z37+2tu33zJm5c/Z/f6Je5+iz9MuDRilWLrljQqsUfxdj7URo2TJppwSGrzGBX4DF3TeTQfSGMnerowgGRwM74vnF91nF+BhBHVGQ0edAVzQULCBcEHQcnEqRDygHPnsPoE7TakEXT+ii5XIdjcs0qemGCKE/vDzFQ8w9UFF4/P8YOj6ABFmHc73rz6ihdf/pBA4umzJ2zOPDe3N4yHwmZ4yt2b16wuBJGZOf6cZ889o3ZoumC/E8o8MWZPmYQYhLRTViETfAK3R3ymGxyhg34Q+iHQd3U0vtrtOQmIBMOpi9GEM7YZhEqn74aBdTknx4kDhbSHEpNxWL7l+KWCgIh0WAD4d1T1PwBQ1Rcnt/8fgP9b/efnwHdOHv5Z/d2DQ1V/G/htgD/7Z/+MznEyYkxpE3RuIemIVLaoC6QkVV89GzHD2f5h15Ht0lqUEs2oIs6xuthkYpqI87j82wJDk2yiZh5N4qrOvy/JxpFN51oHohqcWJ6Rl7spNg+BmGjm6vyS9XpD5834IvueFHq6wbNZb7h69Ijzy0f0mzNcF+g6j+uE3dNH/HP/i//NL/MV/ZfyuB0CoXM0CrGJyljnx8kAvqDugA8FFyISIuJzPfeY1VefkT7hsqfD4cdEnA50+wPd5QWeNeo2dN2a5EL9agXNgTIHLF5O7O4P3O9fs3n0ksPTp/b8Yc1+yrx5/Zrb6zc8O7/k2bMLhvUZd7uX/PhHP8QVz0fPPuTF7g2Xa8fZZcfLr37G1Udn/OYPvs9ZcHzxs5Hbu5E0JQ5TYpKO6JS9zDj2wBbxB1v8G8dq7VitPF0f6PvO2sXOWe3vu6U1btOg2Xgu0jYuoesGNmeXSC6MKhQ/U+Ifw4FIbEv9t4HfU9W/fPL7jyteAPDfB36n/vwfAv+uiPxlDBj8AfD//UWvUUphv99TitK1SUKOFGG3GI9AyJ55nlAyucQlKpbK/48x1pQ+k1JadnoD+SKquV5orqbKuab3LYM46aLXVa3VKYjaarHhlGojjaHwpdlLYe5H1JkDo/0aWt9dXLKeRi4PB/z5GRdn5zy6uuL84pzQr03HDhiGjm4I/M3/47/ZzrUJXGQhhDXBD7gqx1aqOEjreCwux2rdgtIEKhHIGZ8yIWckZWKaySVSnNFtr5495rMPP0T2e37y936HF//whxxu30I6oHlCNUMu5pzlqg5fsd3dZhI8zW4sVzZjydm+r2ouIqd/HEBCmpdjIzlVlNA5oQSzCJ+LI+MhrOxi12zsOEkgEWVGROk9zOOeuN0Q7mfU7SAk/LSHqLjZIRWXjDPkEsi5cNhPvJ1Hyo9fIKs1q9sbZjrGFPD9OZ98/Gt8+GRDYWR/2PPq5z/hi5/8lE+/8wP69SXqesasfPjkks32S3J8xccffcZ52HDmJn7/h7e82o0mEOo2zE6QfKCkHSXvENkROqVfw/rME88D/coRes+w2jAMK4qfic4ZplOnaEUEslKqBVqzIu/7DXmdiHMixUL64wCDWO3/zwD/mYj83fq7vwT8D0Xkv4ItlR8D/zMAVf1dEfn3gb+P5Yv/wi/qDNTHkHOubT9fVXtrm6ve3gQ2c8nEaCSiheqajeefsgF9uS7sVuMvooyNx13rdGqK2hxxbFCn1NTW2op6ur0rqLcFpS1I1Me1xeqxelZRkwqrT6QCblixunrEcyeUFBn6nvUwMGzW+DBUKStTNRLRRfnHe7PAUjXA1NiS5pRTNBqouLAnj+2RZWYCTHK91qXWnbCFJJrpnXB1dcGHnz3n+dMrpjeRIHsCW9Z+xGkkabQefoBTpeCiR8CpfU+lItkN6DW0u9q31/qpaQqKVEmsGnrNcsyRi2nxFYmE3uH7AQ0rE+lQwSQ6kp1eCqUkXDbmYNor6as96C1nrJDB4Q/XuFFxU0HmQsmjuUupcJiF263j5X3iVXzLq1G5/PgxVx8+5/Gzz3j67Ds8ffIRqz4zTXfEccv+5pqzVcfzD5+zPjdZM3rP2aMrnu4/YEyR3kdWjxLTB5n7O2W/O3B3L8xzgRBwZbbPmDJSlDROzIdEGiGOwurMs9r0lJgocTaGqjNafVsn3lWbdpGFXCoNI+jX+H5Cx2jB8luOX6Y78B+zJMIPjr/+Cx7zrwH/2h/13KeHAF3wdN7bAqquNDlnUjSGVUyJudImU0x13r9UJdvWsjsu+oVjv7QQWhAAfMUTtC3idh+lkKsIR1M0OvaxLQUry3tuFUN7PUdt953w/C0WmArSZfeYy0dXaMnWsgvBoo0EIyuVNg5b8K6jzUmlnCmpMM+RFMsSwJoqUWNTNhRYAFTI2bz5RMBrxlV77TQfiPMOLTPnz6741e8+47Nf/wSvibe7yHqTeXzhGBPMO1Pi1SCI70hAlb9dqMioSXFp9VjMpSyBtklz1wqqZkcWcFWL4Suufn4VcjEPCNPemzh7Co8/XDFcmF+A5gtjwMkI7FDZgpsMJCsFPwduryNxe0dPR7gYcWmH2yfYO9gpOlqX5xAdbw+etwfPy/vC/e2e1X3mT64e8Su/9Sv82q//ac7PnhnWUQ7M08jb13tKjvyp3/gBv/qD73K/O9CvPatVz8Xqks+e/wo//flPGW+vefyo53xz4PkHhd0OpnnHfg+lrGrnaUJKWkBq1ZHDdkb8SDcol483XD1+zLQa6AZPN/S4UFmxIdB3PcF1VRuzeUpUB2/fMWzOmKaZNL/nhqSoMo97dveO0ZsQR8qV1JOqqGc6pryNxVdqu6mpADVJb20gYa0hmkaf0BaP9Vvb7acjuKcswgVldMv2tYz1aq4EI6q4SfM+rJ9HK3XYOVkyBkSMY37C31ex1NnaP4XgXR1ntSQ+p0xMBmTmWEA9JdnnLloge7Kag0/U2ploXYEqU+VROi1IHCnjnsP+nri/Z5yv6XvwF58w6BO6fIGmmcAdm01htwJ1NpCDgmRXd2EB9YaZiNTSzAJ1G+wyHkNt/tsHtUGtGlRFCog/ZmnVxCUXEJ/swi49ii2ix08KYXVA5RLnPzGALN2j/iXqR/B7xFlbsSsdei9cvzXm3ZPvC30/I3OEaU05wLTbsT9kbg8jN1NgDAl5pJwNK371B3+CP/tf+yf4/p/405xdPMFJpHDHtL3j7YuXvH19S79+xKff+S6XZx37u1eEPNHnNYMGrrpz/ARf/fjHrL6f6dQhZWa9OmO96k31qHTmqFSq+IvW7DVmyjRTyp6Jifn+jnm35+LqkvX5mm7VmZxeZ+xZ7QK563Eh4L1J4Dsx/Q11iguBfhiY9/tvXX7vRRBQLex3d8yjteoa/7ldzFbPHxVwGlZQirnSiD6kRUrjCogty7YgTLe0Dd+cZAiw/NxiQKtRG/hy8m5rIGiORbpE4OX15RiAFmt0qrRZqTPgYgltVvAu4EMddtICxcqaOc7E2eo6Q/0VzXV0FchqNNNcJ9RiqZN3tTfsSsaXiKRIGffE+xvS9oa4v4M8In5kuBzo5wG9/Zz8uvalp1tWoeB6RToh9DYZqFkodW6nOEvdzQhUK2bRTF2Urn52rcV/gYrf2MlwYulskVItuEyZSEURFwmhIKVHuGTTRVa9oLoHLsCtEdlgvZl72mWsqSApQBQkeu5eJG5utnxPPc8+FvqSyIc16b7n5nri1Tbz1aHwJkLqBp5+tOKT73/Mb/7Wn+K73/uU8/WAxJGU3nDY/pzrL1/x6ostaS589Ce+y6NnTyCPlP0dabsluRVpnKpScOHLn31B54Xzs+fEw4ymjvP1BcGdk9MlKUxMPhHniTxLNSTBHI6Lo2SI84HX447d3Q2Pnz3l/PKMft1TOod2Hu08eRjwXY/vTFnZud7wmRqDfdcR+u5b1997EQRAidPIrMeUXDmpNWv9bd5qeaG+NqKMgXPUNdmmCetzSdPNAU4Wvd0kSyq9zNcDRhkGOQEkW2u9pfeoHukMJ1kHsIhwqGoVDGnvx8QFS63hpbIVQ23ippyY54k0TwZwRpudyNEyojYirVatkMRwAa0jqk1aqtdCnwuMM3G75bC9Jh7uYN7h8oSUSPCFlVP6WGB7S7x+yXTh8aEj3e+RPNMHRz90yEqYqu5BLIW5yq8ZYaUxNaVSsEFUCDWaplrSIc4Ud2sQ995KFcSZAq9YILW5kQQka4lpQNKGMglpv8P7O5y7Jk8ZxhGXC1IEUoAJOHgkGsNuez/x4osd5SJAX7haOeatsrvOvPwKvryFn+/hrR/wz8755Okj/uQPvsN3PllxubrGz5NpQ+xfcPPmx3z1ky+4vhHOnn3MZ5+csQ6R+9e3vPnyFXfXN/S+Z7t7A+LZbQ98/vk1+1F4/nzgZuvZbjNaOoJf0bk1dANDSEzTzOwLvlReSkzk2UBWKTDvJ/b7HePhwNMPnvDk6RN0CJTgyEMglIJPGZcLORR8yDjfgZpmhXcw1IG0bzreiyCgavTR0934qL7LsqBKOU4ZUhF+Lw7jnOdl1y5VmWfRJRSpMlR1MZ7s1EuK3ybzar+66FHKrAWLk9ZBDVRt4X9dlfco1dXATUPUVarpmAv0vYlJpmxg5zia/HlJRywk50yJVgbFkoytWAk/WTJoRHIiFCVoxqUZN8/E+y3x9p7x7o55vMNJpPPK4KH3Qhe8aeLOkXm/Z39zx3azohsGDvuReBgJztF1Hck3lqPV+Tmbv52jIv4owTtwHY2b0YxNYk7VPLOrn5+qD1lNOIvhBd47PB1mxzbT1Hk8Qpw8h9uAfFhw3UzRV8R4IKdIr3d4ImSQJJRoduSHnIh94un3Vjz9Ts/q0UzXgxaPHIBdYN5nbqbEyzmyWWU+zBmnIzq9YC5fQVLKPJKmazi8ptN7Nt3AeXeGbn/K/faSty8mfvajz7l5e83ZxYrb/RumSfnixVtevorc7HdsD7dM5YxSPKXYhCx6AM2kOJOjtca9D4ShJ+tEmuv1L9hoMsp+u6ekjCuOJx88peRCShGfCqEHn6CslEDBk3DFU9Ry1KNex9eP9yIIoFplvdoor6WlX1v8UJmCRrMtKVlqvczct6zhuCAXso8l5FCfvwWH1hq04wjooUvDagH6tD6/lR9iGu/+qPm/BAuOQcB+Z/HDBE/A+cBQ07N5monTZFTfea4LX0lzXLTnYoqUFBf585JTndMvBJ2RnGCeSdMBmQ7MhwPx9o683eJSZHBGxPIIQRzB2QBR0YJ3jjgW7q4PuHDDsF4R55l5P1LmhCYlxcycMqmm7c4FIEMxkpBzJp+mWSt42nCOyg6sPhCm7ygVtPJ4EVKKNRjUtisO5wPBq9mmquewc7z5KvPRJxv6y0jRHcpIdhORLZ4DoomIMLvAFrgPkatfG/iVP/2EZ99R+hW4PLO6EvpHgf6Dc/hqxZsf7vnixzNv7m55+ypxuHakK0fud+YGVDIdI/0wsvogcDgEst/y6ke/w/XNwIsv4Q/+8Au285bVo3N+/tUbbm8T/+D3X/EHP9ny6IMz1DnCsMG7NWiwVquOlDST5h1x3pPnA5InJM+kNFe/TKkmsnbeshbmMfPqq7d46bh6coXrhTgmUlR8ShSNKAaAi+uMUr7M13zz8X4EAWys1XZ5bPfURoiwo83EtyEfJ1JBQK2uN62tV9tRy67c0tU2eE4Fs1hAK4el9TYcWBdxXbitPajlKAqusPQPtQ55LCg5PLADa1lJroNG3vf0fQCUGCfrdowjKc0GgMbMPCfmyf5d0kyKc50bMMMSwVLHPidC3JOnkWm3Je7u7cLNCZkmQp4RV12VRIyHII65CGmeKBoZtEdGQbYJ/J712px2dYrEMTHuJ+aU7MzVReqrZmKbUKOCgTkfszAFxHlC1d13LiwZWJtfcNU5KicDCcEtc/gq1botO6ZDx8svDnz4UWAIA8HfE/I1zHt8srHtFGHKA3sCb6ZIPC98+huP+eBPCv3ZHnGmzOOGzHrjcOseLjbEixW7cM8/+NGOuHP0MrEKmd5d4zXiwUxJfKJbJVYKhzhxu/XcfSH8+D+f+eqrA7EXuhcjs3vLy5cHfvcfvuFHP73jo/KE4aLj6eoJJa8NUNYZ0ckAW28CujPmJZgrIH68jszjItjStvbwmHnz4i2ijmcfPgUp1i2TQpFEIdMPpU4sGmnt3VL49HgvgoCqmtOLHOfeH0iJ192m1e+uLsCTZb4YXuqS6suD54cm92k7eQPolmeofIDW9jt9hqNSUXs/DS8QckX+yzsZwKk4J9jYc/A93lvKPE0H5nGyLGCeLCDMMzFm4mRKRCnOJr6REq5kXM4mNa0V6NvvKeO9YQjTiOZYdQwF6aB4T1KI9dxY396ZSEbxtWnRE3LAzcB2Yh4ngqszCaMJvtriNE67ZGetwdwmKU1ExXwXW0lnwKcPoQKAHSJ+uQ4LVEt0CL4HClUlHu8E5wcbzNLafdGe12/u+eEPJ7rhMc+uNvRpj58SMmXyFqb7jv1uzd3ecbc7cPH9Nc8+WSHDSO4ElR5HD+xwOtOt4TwPfPbJhj89O+ZJ+fhZz4cfdJyfz3iNuKRItI6IOrWpP+/w2aNuxZPVmgFld7/j4D3z5xNfXr/i8y/u+cOf3vF2W9j97BVJvuDPrL7Puu/w4khpNCVgQErCobU8c+TiwDubMlXDSZohTsrFSkBR8jRz/eo1XfA8+vAJPngOcW8clsqa1R5CUKOwf1OTvx7vTRAoxUgxbfGcqqMed+S669DSfCxt11YCQLXYYWnXtefg+Byny//rb4YlBWkkoMYjOGYjx/dtY8XU4SJ9UAacfoAQOrzvyUoVT4mmnDTPlek4M08jcZpJUySPB3SOSEn4kgklI/NEng6UeSQftuT9jjDtIRt33HtHJyabRvAkLTZOWjUWVTwJb63LEGyGvQuoBHJSxv1ElEwfPJ0P5tBc+Q2SzR9PRU1XoZp5asVgmiqUiF8AVal2WFqtuJw0wLTiBTHX/ravmEymCAiewmBfhfcUUeYp8LMvZvpVonwy8NhdEaZCGWcOW2F323F32/P6prAT5TsXZ6x7s7JX/4SsAyXMiH4F+WCfXRODFj65WrP7bM/TjwJPzqB3CcQjfoWq8QOMlpvxkuk0M5TAk03P82eB7ic7Xt4lXscDI5FXb0au94UJx35/QL94xeNnr/i17z3HS8GlCS8RKVpH1Wccxpcw0dCO4q0b5BCcWo/fIeaRWf0zyhR5/eIVYRi4fHxBkJ6YZgp2f82Qu4zzYZnV+KbjvQgCcKz/j4vdWnwcsX2gtp3qffUkG2ikmuV3+rAKUqjMwK/fdsQPju/lm/zcTQS0PaaqwYjWbICTLgALMAksxA7EkefIHGMdXpqI88x0GJnjSJwOxHFCpxnmCZciriR8ihAn9LCHcU+YJ3ya0RIJziijTlzVuHO1/Vi9FvCLSvCCcixtUmNbalSKU6Qki6sJkrfywcaLC15soTdNRFJa7NYcYgi/81aKVZkz5wJUafKslsE5L4gLoIVUIpIV7yu+otG8EhkoblUFRK0NKtIR7wfKH0a2t4Gr1QqJ56bqvIP7W8fd28ib25HLZ/Bb6wvoI7LqYPURnfvAxo85VIfZgtdIiCNnZD59lLm6DPSSgAxhheoV2g1o2tZy5Z5mveZSpHcTz5+f8+z5BT9884avrg/siucQYXaO7AvFCffzxE8+/xnf+ezXCJ3DhwRpb9gAQiGhKaGY+nXoqwlqtrasFCDbbSrGtxBvASHPibev3iBOWF+dkSvYGInYsKvgXD4xuv368V4EgVNQrbXrmjnoEYA/Kv8UPR0XbkCeHv96kEXUll4tKdrxgEm4lCDtsWWJGG3fPwaKsmQKBVMWKnZH2l+NAm2TkZ5+MDeiKSbGmvrHGInTzDSOjIcDcTowjzvKPMGcYBqN3F4iPkV8mglpxJUZlyNZE9EVigNRW/halBwTot7s1Zt/gWufoxmfVd25asKasPQ+O60qxwGj5BohCrWFWrKSNVVsohp6Vg47dWZAMcts02ZQY3uWqvkYag7mpHI+pKobm1AGTlFnxhkpO9Pfc1SZ9I4YHYfX8PLak3vP9dbx6s2B221knDzlUHBE/uT5mn+y63ncH+h8Yegv8O4pSE+OPwN9jZQJyYpOB0LsOKcwiEPLDnUJ7VaonuHcJZQVSsDlGedGI0nlGco9q5Xn2fM1/ocd27Gw18CkkF2m+EyWRNSJV9evuLl7S7h8ZOzFtDepteLQZl1Jve6daWaIrxtPAqrPpQ+ApmruWkV3dnu++uIFH8hzVhcDmUROBSGhZUSce/+DgGrlydfV5JagwJJiSyUC5HIEEL1vTL4K2i2LuLX7oBmXWpvQL8HmIVGoBpdcUzLnDEypKarD4SsfoKiSlMVllmIusVLbXhYGPMGvAFfLgBVTiezKyFwOaByRcY8f94TdDrm/Q/c7ZNwjkznTumRlgNeMS5OZZJLwruAGQbJHM4zFzFslG4fC+WBknmLpf1EglYW2W7J1GdR5s+xSSLkCqZ5abkVErCRwzqNOmOZEjqYb0Hkz1EwlUKTu/s74Abm2B6nBYMZmKYqRF5HSnBcb8mq8/xAMFMxqdXGu03EmItWhBKJGxikRC4xOuJ3P+XI/8/L6lt1YgMAQCmeHxJv7A9+fldVccOMtdA7NWyTOpKxEnzl4ZRbzCRyjUYmn2NHlAZ0C+IPhAb5AX2qLr0MSSJ/QOCNp5Mz3bDoLgtH1ZO9Q3eNQijrUZ2LZsT284mrjYB4JOeJyxmVwddZEKIhY2eVRGxKiq6PpyViWwVdquRJQQr0e07jj+qsveMIzhvMVY4pksql0Y+/t2473IwhgLsFtYrCIq4h/vX1ZsFrbgkbm0eLMvXgZBeadxV0BQSfU7RAWYs/DYkFVaaTDJu9U6nOb8lsF+pq4Q+0YCFSRU7/sgs4Hq42dp+ssGORcIEU0TjCNyHhAtjvK7S3x1UvSfk+ZJ5wqnXP04vBqCyTlmaKJLOasA4UiijWDDLRT1Pw8WjquTU6t0VJrq7TkuhqNYux8ReqDia/UHNJOVbHvxYwwtbY6q1R7NvApq6OoBW7vPOpKbYEJEiBUoRLUgMhUMjnHRWjTO8vUihY0eXL7WQvOS8URXA3yZhs3x8iYJ0B4fHYB6nl9e+B+zMw5cn8f+fLnd8y/suaqTzh9CeGWnLYw3aNzIUWPqqeo5zAHbraFEALPDuesDhnXRcTdAltc6im5EDWgPuP7glsFdF/MmyB39OKg5EqlNnFPw0i96f5LoeSJnGcCVfIulwWvwSlOFC9VbepkstI5y7BcBVcVkGLKTVK7Y1Iy6XBge3OD754QOiGmiDmuWpfh2473IghYbZpx3i9rtWjd4VuNXaqVgpZFVVirbrvUFqFaHvoAlGuThKZjJ0vNDMeSoA0fNaKQZfyK5FKzkzrsAhAM+HJaLBAEB30DvWwNhc4Ukb33OIGUZ4v+hwN+nMmHke2r19x++SW7t2+J+y2aI0FsYYhzZK3tRapVWb0Q5uq30OYFinZ11FqtbFVbREidzRfLWrJpe+GFRbG5wgMmo5agC44gZqFecmbKkZhynau0C0krYu+6Du8tEJc2+2DNS7Kd3CXAiBoFFtR2vWwXuZUFlra0bI0iCwnJiRFdshovJI2R8TAxRdODcBRW4ni26Vn3G24Oyv3ulvvxhr//+xO/8auPuVh3rPMO727xmtA4UQ4KY0caPbuD42Y38PlLpdz1PP+Vx5xd7unTGzqZIa2Q0uNyYahBWXPCZ2AuxEMijckUg1HQZPwNXzkhzgLN2WqNR5mnA+AhW8dHckbUlKnFDARoJrkGRtu17USM+ie2oUlRXClIUTrMk0HzzO7+Hj8ELp9eLjqTrrndfMvxfgQBqn9btWsqbUteADxt9AG8r7W92IVnJ6qm4XJc2CKNxioLTVezyTg3olDrSpwGAxGTxRLUyC+lypHZlm96Q2oDx3iPekd2snQsLIsoUGZCMPpsiSPusEXeXrN7/ZLdm7fcv3jJ+PaafDggabbR3uCgBLJzJKhDSAWkELy9r6KOIqFFSnJWi/iqhNo6LTnXVNI2ASnJtObQRZrdsBVjH6aSyU6QzjIYKmptF5sQXEDFmSdftvOVpENdb5TnDMllGooCtiPmSgUuAuot+ARnOo5SpdtzmsixLKCwyWPXwUpMv4BSqdKxoHNGU8KTCa6WHiVy5i8ZHj3i2bPHpHzPF7e3/Ce/M9KvNnz6JLLxEPC4BHlypFHYHjxv9x1/8EL4//2oMLs9F989cPFs4MkGfBmRrJA6C1z5AHpAUsJNnjwmxilwP2Z2UzYMRjJeasnkAkU6um7DsydPcM4xz6M1q3MxHUa1YNZyU+uuUIO5Lp0v2+fsxDgE5xRXrGujqnTiUd+jOXLY7Vmdr5Hg0JIq/+W9DwKGkdqCc4hr9aIut0GdXqPN8rf+YH2C9uMJP70t9jaAlDVRijsBIlsGYLVEoxm7KuJYJKNSlrajYt6D2vgClXS0yJur0WfNTEPoi5C2W3bX1+zevmX31Uv2b9+Qdnt0u8VPEy6Zm0wuySbKKBA60y2sfXhVU5z1zlJCQ4yo6LzV2IsISlEcllo6SlUmtqkdEaqph40mU9LyOy+muZdLMqcf2ty6I2MzACmVitirmYEGc9/BuWpzJajzpgikRr2m8iu8E4a+r7qDVSsgx8U0hkbdLqbsvACtIgtjrnPBdBA9xndQU252BcgHNAfWF+dcPvuQ1eoJX7x5xd/+3Xv2nwkfbDxr5wgKJTt2I3x57fjRV8Lv/HTi73+VmCic/YM3PP/uBd3HygWFoYz4BBodRQ8kzZQRxq2wPQTe7hw/f5N5sytkF6pgq6sZHSBrzs8ecXF+BQpxnsmlLjznCGKf1eZQKq+1dsdowZLGVq2YdM0OEBu4ypprlhsIYszUeZzoz4Yjme1B+fvweG+CwDIHX2sprVJh9rs6iOO9iXiVo3qOqGn9iVgrCmFZzK3b0Aw1VduYcX3NE90B623XOWzn65gu4Cz9Van1bAHxpt7iUEKRJVp7hJVAKIrLiXj7llcvvuLNly+Yt1vK4QDTjFeld9bvjXXXVLEUPpNpQpttAMm7sHQ+cgWFSsnkYkamfWeW2FR76y6EOith04TYvN/CnhC19yzaiE91gdXF2BSSVGyyL8XENCemmExNCFM6onYLtAph+hDwXY+It7Atdl9EcR5jvom5TufkoDjImRiFmCZKilXo5CgoI+KMdSiO3gdW/QpJiSnHio4YuBhKgTxRbjNv7+84e7TGPb3kZy8843biyQADmSFYaflmG/nJ68Lv/zzyB19MvD0EUnFMv/Oa/nJL99+44FefXJLyjr7MOHUcEkxxIO082zvPz24Lv/tV4e99fuDFHrIfkG4F3uO6QD/0DP05j84fsR7OyMnMWaUUBt/hutrSdVbCmR15rkleNiKRGUbQwG6th4+PWgAAGXpJREFUQb76uVrQkGMW3JSv0pQIg7l8l/q4bzveiyCg1qGyaFcsJWyuqnbUcdPcBoD0pINgGgItOJ6m+i3dNw52VV6pO7+lXvbszkmtkdV8AKqZY8F2/SJq7SuxBejE4cWQ2VCEDhuAyslIQPfbe/Z3t+zv7xh3O/I4QY6QIs5VTQMypQMkmFx3AZFijMCcKhDkrOSomYlU3MN45dTPaSBcEzx1CMEJi3YCeQl+uYquhtDhMCDTYqqiziF01ZuxllClstRKLUOw2r5oIWVLZZtmeqg8CKMEW0tUfFeDdTbUu5KtTEm3oImaVUhtk1kg9c4tpU1rC1Ol4KTqTxbpyOJJxZHKjCj0kg1/KHC4uWV3l/iqF149OuPx+YqLlVDiDYf9gTe7iS/vlS/vlLcM7LuOnAufXyf+o791IMw9/9VfH/jOszUXa4fXwH4f2B5guocXL0Z+54s9f/snEz+9gYN00G3wq3O6Vc96s2Kz2bAZzln7QMqWeUopBDWsxxiBxz3aZOetFBV9aD/fWrUUoxdbFtDSJY9WvwkTtYEcEzpnpPe1+/aeBwFEkGBmF13X0YXOdNedswuuKgvlKgfeEH/nxDoDJeO0ELqwEGNOh3oW/QHND1IjbQhs6wouyLQsxMMWLGz6TU1fD/MQCFltZHeamfYHs5S+ueaw21KmyazN68BPS9tTFRspoqivX7y3WsY0Ay3lXiTXq8oOhbojSn0utZ1eymI77TF6sq/gkbVYvOkr5BYULdou4Gj9fDnDFHPdmYSU81ICpGK5hEioNlmFrJbxiFgQXQDXVqmJq3u0AZq+Ir6qVhp0zsQzszhKLERMSr5pPYh4QpD6Pj0lWgBLOdX61ngEWXqkM0WhQEFyrGCjMmXYToHtNvNVOLDuwXnF+TWz65hCQTaCF8FNjjLP5Ci8eKP8v//WgS8+H/nHfmPNZx+vGfo11zeOu7vI3duRn36+4w/fzPx8GxhlwK9W9Ksrus0Fw2bD2dk56/UZa9+h08Q0Hui91jIA6/ZkNfKwb9LiTbqeqpxUQW9tgnYVH8gKUmpXqM6+LOcd6zgAJRV8F0xF+9tjwPsRBLxzPHrylGE10PddNR85gm2NYjuOB3aHPXMcyXMyoEutpu18Q6DLCb+gqv+0zABo7cBKN1qwB5t5L4uAqHEEFgUMfBE6cbishuqmRBnNsXe8vWO33TMe9iYRVetaqRqBWmKVNW/KRtW/oNiMfhMmtZ0+W51IBQbJC3fci50r01KsoqnO6nbUBlHE16lFZxgGzkoXLxnqFJ/iSDEzxUhRFqu1OSdjqxXqeHO27kABH/qKUxjI5MTX91QxCHQZEbadyIgthZqNeSN2acUu7OKWaqmm9OJMDbhmDq75Tgo436Gu0I0TPprrU1cgFSUJZpNGhpSQPFf2aCM9OSgQo5KmbNz7kNEuMaviNXDeDXTOk8OAz46BwFRGfvxiy36O/OTFxPm5526vbO8O3N4ceH1XuI4Dc78hrNYE6em7nqH3DKsV3eqC0J/b9VhB01wsANr1eRSBleL+/+2dS4xk2VGGv4hzbmbW9Ez7gY09GAts5I1XMLKQF5aXgL0Z2HmFF0hsQIIFCyNvvAUJFkgICYQlgxDeAMIbJB5CYoXBID+x/AAs4QcYjNw93VWV995zgsUfJ6sYTTd4PN1ZUmdIpcrKyqqMPPeeOBF//BGRY8ic7oP3sRImzMqsgwejQQ5Nf5dnQ3JYRkip7A7rwNhMBuXBGcKbYQTqNPH6N7xReeNSDmHBYPFtst6+brdQK2U/aVLwMqtevTfW1SiuoRIaK1Yyr82Bg8ABXhlhRdKQs02ZPIIikCwyTZj/w+nQGv1yZr64YL53n/lcRTzL+YVITBGHjr8jjmt9Zckx0n5w9bgqRw4Bke6I7BMatzZ4C6UYJU29Gnmu9GUPrVGL4SZ0GbK7Ulfj6WJTNldRFaFXh6jZgk1z7jQIM1gMyPHZc3LYW2/aZK1lv/vkTWRdumPUmt6YXA1lMrLJCWgwSLGM7fOGLMU1qDUrOGQEnOLlGglME5JUTi7MpG7UdHPuC3G54GvTiVhhSR6Iu2OlZyi1oQRsmWXHkYFaDzjRonReL0zRsChEVNxkUMKMe8uOi2/NfP3eQp2+rRqPuTEvwUUrXDKxUIjubK2x6XumVrFlpu9nFmaVApsG51rXQBhC49YV0uW8DfIa5Ia+MhZiU1p6UqOhzhU2Pv5Ght9D5de9hwxBHn6v2ASiRyVeCtunns7UW97sPmoJFAsXczZeueWFutlRp3Pm/SXz5SUt24rvl5neO5s6cXa2o4402TUDMLyEQae96hLQtbCrvleMycC7KhzXywvO795hf+cuy/k56+WluPSZMjsgvAPQdGEKc5JthCgateRkWopmzZn68+n+FwhYTDf0Zqo5gmxhnRda0zhri5XN5Ey1KN+en+kQ5qjd0WHDexYXMSbaBBSrBJV1FXuwRzD3TiwCGwfnoashoApXYmApTs24vXiI2kvQ11nGq0wZloxmFiW9GCiZ+zeyS1JiH9ULUcQtmCbV3K9N3k71HFC72+hnC+Y2i01phgaMowEdk+rzWhRqdKp1PGSUWkx4DzpOo1LDWAjW3lh7Y2l78RHawmyF3pUabfcWOntgMCGNFaPZSjAzFWdTjI2tlLlgZQt2QW9Oq5WpyIOzsCvP1ZzJYCKJmrpR8ysxsUySlKL43+lXQNbAwdJjPpC8QgY3cqT6oHK377Ll+COX4Sop3ZbPHQ7tOMSYpVSmuqUPwKoFddJB1POkWuYLzs8v2O/33Do7Y7uZDo1Ixv8bSIy2flesjxBzX1e8dyaMbQTMM+3+ffZ37nDvW99ivn9fAF9mFA4hRf4sTCJj/R7i9aM0ziiFcnfGeToQX1ALKA+jryvFZTB6azlLQahyLaIkDxpwAcjYsEVkn79suEpcu7ESMB1zEwgZIlceufXRvOVaAVao/+HAD9KykG9JQQaGdEVVSbmq9GIQf4pSgMXHULh+mJw80r2j1Xx11yy96qyzphZZZoMsOtup4LGjRnDegLoevI914AhTFYsxKcrFHevyldwVsqxdfAxwwgVET0bW7IsBuapGStfHCsEm8SQ5PS3jbzyYvDG5U0MYjq+zqN5h1ObU6tQyPEpjQuXe03DjQ4xUldErKdjIpipkpiq0vpaPoR+A1gOfhBFqCjzsjDobbj4moOs8+P/S1q4Otquf0Q01sAIi0pVX5x0rGsa4rit3X7jL/Rfu8urbz/Cq27fTVeLQIjyiw9rzVNaE3xJBobOx4AxjSxCmNlpBYx+N3tV0w1zxm/K7Gc+NwaBN8wYDo5SK1WQ45MlVvByQbzej1Ak302l44AV09tGzVDdHU3vJlJGnW4lQ/Twd+roeptYO/r54E2RZcByap6xdYFEjUeaCjGCSiiKu6i5GyzbdpG0cVofOy4OVKkyg5MXKBgFxLSWZ1zfy1BIhSQM2C1WNSQhYFqXKXGsl4DFTucXptTLvJmoxWlvZLsrSFK/UMtG9UHpjWY1YnR4qqzYf/SqKyFiHQa4JsPlwqzdsAnqNq3LyqHQyw5G8E6wKZylKkYrND95WpuUSj0bpRu2FzWZDEgJldNwUzoWuh8JPtcmT5VG7vJKhqA8uSNZayHzKcDD+xkcCQdWLUUVu2+8XLtfvYu7A45JD62nIT9IZ5TgJ4Qkwd09m205ghwlIWnM2m2dzzHV/wb0X7nJ5/wUsGs88/bQqswKIhvcVQiBcyQ69GzN2pbKrztaM2oJeC7uzLbv1FnFxSd9fsu89U3oZh2PZ721lWQerDtynLMIRGy+aCnBqSeDRim5Y1zmgza+BIBBZm2DJoCvU4jISqGOM7GKRC9s7azhRJsL8AMgNpDxCN4GVoo0Uo7uSNpePpqEm0lOnZYJC1rg4mUbNeJSe3lsyFTvqZze5gM5MhVqTwV0HxoIYjQeuR9NxO+o11rUzLwJRS9XuGLl0+krEgqYWNYwmJmR0JlysyupYLUzhzO6s1jWzcV3FpThgMlfpHxkoP6QjhQMpfgm/3jtyxPPK5VsagY6rUCihT48VX+5jrcrAR1W/xKlSPTd1aEbF6H3p0Q7NblQPoP9mjjCUxFaGhxx2OC/lkWYKODyHuU4TZbOlY9y5c4/78+UD996NMAKRgBrpJOrC9KyHT1Q/c/lmuoBenck2XPsDzkl6MDBNlU2tvHDn23z9qwvf9+wb2d5+1WDAs8kbsvbG1Bs1Ojs3niqVTYJXmBHubKYN01PG8szC5eWe1oz5ctb47Ap41+CNzGNXVx8+c5H5LdBQld7pOVDVzZmKhmnMlxd56olp1tLVN4DehdCvKz2yJuFaC+9mOs1biKbqRXnhaJ2lL5nP7wfPo3jJeQDa7NoHSds2rXPxZA/mXVYTsDUz1lWnr/5l0rnJ6+JxOO10YuWgFlODjNFvvI9S5OQCpMU8hC7NSrYiz155IW68dYUbZis1GnVtzKuapnSEqJs7tZte33QwjJZs3mW8rKvopsj1HEiKvKQ8cRW8ZHbFR1bDE6jLqtaugaxOObD4dDuuapzr7XAP9bZiNZmZ6P6OFqM0RZs9a1Z0UIxd3g9AMlwtl8htBcLUej4Uoqi7taE5nRNL75xfXHC+3z9w/90YI7AuC2MR3cYhn5bbTDcd6W5mb7vqDtOGODMwTV6xnqfSfmEzbdltdtz99h1qwKt94uxsQ6Ez2XD9YTs5tXe2JhzAlzlBMAN3pmnDZIVlucW9e+dcnq/MOVltXVfWnGpUvbCZVFrbElnvETIGmd9vq7rybGoVnbdrxFSZJiHIg7IcXS2mMt++X2aWReGQFxXpiLknLMRMvIqlK5TQuLZGi2GU5J17wklt1TgyLL0DG6WrclfxQolx040YqouDYI7b9RMS8Tu2O4UqpGcXeaqZdOgE67rI+DDqMhLY7EWUY1fprTyZRmszsQRMTrXUgaB4UFzXMUgac+Naay7Volhv8mIy1rYohKf3Qch7Gr0jbISKSsuVJEINsDdCBsFd+nd6emvClSznAfbeEL7clCEJeZbbvOcsUVe3LMtyl4eQqShPXUi8yLJILmyktnW9ZbQEbPbeaYgrEg5W8x4kqJsd002vHYjeuby4lFvqQlKriQNncGCl9eiZC+UQY4qhZmx34q9bull9v9DLzFO7W8z3zlkvZ2x/yW5X2VbY5ntsHCbrMDdsWeiXs+78WrBaNFRj1cXofVWTkKmyr5UDecMN83LYxCNPr0aamihUDDXUrJ2WMwUUy3W2u41eg2VIoRkDjsp2rVS8btSSq+e4L4IwYwlV+U3TRLHB8Et2oBluU3IHukhLKJfcsh1YKXnmmeuxjdJpmYyWwGRr/ZCGKu5X5a6mQi2NkBv/V9emWvYMNNU9qGdPxrWhMmWdrAIrO2qEsrb54L30tdOsawR3bpTihe1mUs8EwK2pph7DUF2C4WxyUs/SGmsOaRGzXJ9z6aKcD+hp9ISIDFXG5+vkjAQfZb52yMYIeQlVPibwrPoXhUTuneqNjVXqQBTzb90rddLovZpDeOWA2jjuCYy+5kSpER9naXqLdtU6LvdJi1DNx2aiGcyrZhA8ZOzAzTACPYLL/YVulkSJwwvNh0dwrWmHNZXMwsFSOiG3rRSibqBO9OyrVkuh3n4VT28nXrOt3K7GpjgV1W5vcEoXMy4uZ0KMDtw16Wc/L8xzw6ywLAsQbDYTT53taL3hXUSinuDgoQNyqTqBSzaqTKpvqY5FYd3POg2K+g9aJzn6e+Z1xrzgRVN+wgyfttB7bnLVDXSCNVOPbsqPq5jJssvsCBrzNMsYwiwLskbDlUSUimkoyDj5Rx6agdIzXNQsUy6qtaiTSql7a7RFLcTLNAZlKhxpq2ZLWgJhrXeWTLHW6rgnsp0ltiUNKKWovDk75moIpzJFMOo9FhZxnMUrUIEHXmryRZKT3xuOsakJMjajjFFqY2MWvWdv7VB+XSEnLskwRALSGuyqgrfBv4x030s6rcWDyTrV9N4jkJdh5JA69YFYZ/gYI1QZxLIQzTghAZG2mtruK7Yz3IQTWSl4FTa09kGdv+H9BCI6bdmLI9+rBlz4mDirjVOyy40PTMCvIe4ExEqwsCuNp2pwa+fMa6Xszrj1vbe5NVWe6QubvlBxAVMJhC1do7qviofUuEI5ZFnWcersdht2my3t6c75xTl379/lfO5ZsMRVe7TMzbaVwylaMiooJUdIrT3TnYpr1yW9ADKDUKpOoeg0EoCyTjOjmXrvDW9kXZeMUcl+f9rYbYQkoBjSlIYqLjZeGXUCTePJ6Y761utEbxnHj/i9p1FoKK1XSqWWbP2WObViyO1FfQn6APtCadQ1iUjgeFGLcfJ03k7gts1TVUy6AQiadaZaVTBFpXhjKs5+KeznFbPlYBQxue54Z6py8eeQ0XFzvCbLNGcBRiRdN7MQa5DFVyF2ZPHkXbQrWjqWxWRKFbeENjznKnhRethj1WERV9dGNGHhAo3IQ04BsTI4WufeW8b8WVacGR+lVRX6rmkIeu/4VPFp0jBYF3akdPENDwfk9q2HKbbdE6k18dInSuastfAUx3pncmdngfcZ1kv6ekFbz+ntnO6X2FmwqxNnpeDrgi17WHSl1JQj+7J2qEXttCJgXRbm1oji1GlDmbayzKVytmp4dpsb0Di/8IyhdWFLuo89gv1+f3Clp2lKFpwuZImcvdc1SVlch5AVN3lCS8bjXWkRuql9NMWSLhxEH4MquEL6a1Kfx83UWoYlmtg0cJeanPVYZoArnnpknUGMTTDKpiPBRM2+rZ6AIUDOjqymTdBDm743hSjrshCohdichk6bq4LXAyC3zfCkLWvqWWg0SpmYSo5td6CpwOZAQiqwqerR77VmylYxs6fBCRRqytHR5lZDlCZMyTPTE8FklV60cTQ4RV2s1mVlbZ4pbTvMWtQE62w4U0oOUslQwXpiGCPLMrAH8QMGsj9CSAKVkHNAHrQXlI7K7TzwsyBIlmrkcJ7MkPg00c9FGBuj7l5KboYRYOBO+iAeXQCRQ4xUSnR1XUWjy8n86YR68LX5Pv3iBbg4p+wvOYuVzRScbaDGSp/3RDTmRTfgSmeJEftVvBaiJJctc+1lqvi00Vw3k0O8soqaWdQrfrOZWCOLbAbHAblqbcm+/aaLM00V6Kyx5BBRxarLMAKZJ+/hyaZbdWNlKNTpLDmyPe2OkOoYJ1+690keynvmMAOwM4Ze6oT34nhu+KsLIY6AWJoDaR6FPfpwArJKehN2zT1uMtDkNKlrIcWhPXsXySvMsi1Cxr1BhmiWDLrOqOLqrSe4qahZuJpSn4a8RTeNtjeveNX1UsjRMkXaBFBONTd+9l30zG74aNaaNWl+1ZzTXXhJRJ4hGN2FB3QyvLGsOu1ZMhWiQld3dWxyVXeWMuordD0s8ZVOO/ApIpIvMJIn49pkBuJ6j8wBZA660Rg0U6tShCNEdL8amPtisf91AxxJzOw/gfvAfx1bl2vyOk76PExumj5w83S6afr8QES8/sVP3ggjAGBmn4iIdxxbjyEnfR4uN00fuHk63TR9HiQPKTA8yUlO8iTIyQic5CRPuNwkI/Dbx1bgRXLS5+Fy0/SBm6fTTdPnJeXGYAInOclJjiM3yRM4yUlOcgQ5uhEws58wsy+Y2ZfN7ANH0uErZvYZM/ukmX0in3utmf2FmX0pv7/mEevwYTP7ppl99tpzL6mDSX4j1+zTZvbcY9LnQ2b2tVynT5rZe6/97pdTny+Y2Y8/An3ebGZ/bWb/ZGafM7NfyOePskYP0edoa/Sy5fqY78f9hRrj/DPwVmADfAp4+xH0+Arwuhc996vAB/LxB4BfecQ6vBt4Dvjs/6UD8F7gzxB95J3Axx+TPh8CfuklXvv2vHZb4C15TcsrrM+zwHP5+Bngi/m+R1mjh+hztDV6uV/H9gR+FPhyRPxLRMzAR4Hnj6zTkOeBj+TjjwA/+SjfLCL+Bvjv/6cOzwO/F5K/BV5tZs8+Bn0eJM8DH42IfUT8K/BldG1fSX2+ERH/mI9fAD4PvIkjrdFD9HmQPPI1erlybCPwJuDfrv38VR6+kI9KAvhzM/sHM/vZfO4NEfGNfPzvwBuOoNeDdDjmuv18utcfvhYiPVZ9zOwHgR8BPs4NWKMX6QM3YI2+Ezm2Ebgp8q6IeA54D/BzZvbu678M+XNHTaPcBB2A3wJ+CPhh4BvArz1uBczsaeCPgF+MiLvXf3eMNXoJfY6+Rt+pHNsIfA1487Wfvz+fe6wSEV/L798E/gS5af8x3Mf8/s3HrddDdDjKukXEf0REC5W//Q5X7uxj0cfMJrTh/iAi/jifPtoavZQ+x16jlyPHNgJ/D7zNzN5iZhvgfcDHHqcCZnbLzJ4Zj4EfAz6berw/X/Z+4E8fp14pD9LhY8BPJwL+TuDONZf4kcmLYuqfQus09HmfmW3N7C3A24C/e4Xf24DfBT4fEb9+7VdHWaMH6XPMNXrZcmxkEqG4X0Ro6QeP8P5vRajtp4DPDR2A7wH+CvgS8JfAax+xHn+I3McFxYs/8yAdEOL9m7lmnwHe8Zj0+f18v0+jm/rZa6//YOrzBeA9j0CfdyFX/9PAJ/Prvcdao4foc7Q1erlfJ8bgSU7yhMuxw4GTnOQkR5aTETjJSZ5wORmBk5zkCZeTETjJSZ5wORmBk5zkCZeTETjJSZ5wORmBk5zkCZeTETjJSZ5w+R+vRjxJjnV3zAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d7hmx13Y//nOzDlvu/3e7U2ranVZsmRb7sYY28GAMRgMoQQCgdBLgkkIKYQECM4vJJQAiQGHYlMDhI5xl+UmyypW12pX23dvv285ZWZ+f8yc85737q5tIE6UB83z3Pu+7ylz5szMtzfx3vNse7Y92/7uNvV/ewDPtmfbs+3/bnsWCTzbnm1/x9uzSODZ9mz7O96eRQLPtmfb3/H2LBJ4tj3b/o63Z5HAs+3Z9ne8fc6QgIi8RkQeEZHHReQtn6vnPNuebc+2v12Tz4WfgIho4FHg84HjwEeBN3vvP/W//WHPtmfbs+1v1T5XnMAdwOPe+ye99znwDuCLP0fPerY9255tf4tmPkf97gOebvw+Djz/UhdL0va0ep+joXw2zdM2mrmpDlleYp2jZRRpq02v2yZNUwCyvGB9dY1RNqBwMCwFXAlpCxCgwVV9zj0xm/1L41gcR/W1PvdZNOdAq233NPv+TE0mb/ls20W7rl/g4v1V91zy3La18I3+6n4/3Ts13tt7sBk4hzYJohS+mmM8xiSAYL1DiaAEBE9ZOpS3THW6tDtt0jShyEvObAwonCMB9izM0eu2WN3Y5Mz6EK8mX70jnvmpLr1ejzRNEITSlhw7doLBaHThBMZ9lxhNp9Om2+3R63UpbcnRJ588773fsf1NP1dI4DM2Eflm4JsBaPXgli/ctt/+ukDkL3Hv9k08CawCKO9oJ4aFuR5SGjodxRVLLe647WZuvekGDhzYj4jiiWPH+KPf/WOeOvJJjvUt955XyGgFv+8QngSwgALnwbvwV2+WS49ZJIyxEs1EBCRsNHH+wj5k/K4eH68XxIL4Emc6ICBiwTkEj/MWpRLwCu8dXnxzr+G9Q/ojmJkGSUEcXiBIduC9rTdYmMHwzPGYJJ6R+qdvrsV2hOQZ3++rd6z+Gn2qcZ+T19edjPtuHo9rIN5BUYC1eGXiddv6q1qF/yT0qazHK48vMlg+gh5t0lvaTdKdwjkLtkDwzC0s4bVhWFpSYCrRpBScWR3Qyza588YbufGmGzl0aD9PHTvBf/rz+zidDejmJf/4y76AV7/kefzi7/0Jv/iBT2H1eB+ghat0wVe94nncdtvz2Lt3icSkbKyv8e3f9S/58P3345Ud7zXvwVmUh/275rnxuqu55XnP56abb2RtY5l/+JVfeZSLtM8VEjgBHGj83h+P1c17/wvALwDI9JJHGpLJxNq4C6lqtcOkufCqce/FoO5i1A08DqcM64Vl49wGCgOrJVqmeJFReOviIyUCq4DzKPGIeEwrxSmh9BLHoEAciArDcO7C8dSbLwK/RMQkEmCh2vxewvsTvo5HLdvmCBDFUqJ42Y372NoqcSg2RyM2hwWDvGRkLaPCk3uP9QrvBOc8VgQX59DjEe2BEkHVwID1E6gzjLea7wa1juOfQAQTwNlEGhebj4st0UUAtl73xrlqvn2YL5SErSNh7bw0xrtt/ieeWb2zCCg3gWCqt3BjzFnf6mPfznusByeqfo53Du89oyzD2QopKgoUW8MRIpp+ofFK4+N6E/eE1hoX7/fOxS592JfVWGvkO+YE0zQlbbXodNqIkrCel2ifKyTwUeAqETlMAP6vBL7q095RTTxMwkyTYkxcv31zNCZiAmlsY5W3d+U1WANK4ZQg1qFIQRLAYbWOi+tC785R2hIjgnhPqg25UigneBQeFQE4Ar/S44150ZdufpUAWzUgTdDqSH233R6prWjPbKJ44ZXzrK0NWdq9E8Ej3iMorCiKwtMfjuhH5LC2OWK9X9AfFYzKktG6IetOkRVChqPwDu/A4hg5R+GFkgaFF4nDlgZxjeswgffCe4g03sWDxPfx1VxVc3ABgqs+t+2PGmCb51Wg/gJeBa7Mx2f7JiKv3kPiOBgzCI0Ox+N3buIajw+sf92Xrym4cw6viUArWGcpy5KyKCmtDXtEwKPob22RlTlKp3EcAUmF8QZC42P/IoJzNjxLVEB8FQHxzYkApRQiglIBgVlruVT7nCAB730pIt8O/Bmggbd57x/8tDddDAGEE9s2xQVQvO14pArbT0/slsZDBNBl/Bo2SonFUuKkhjEAnPN45/G2QJxGfIoXoUBTs8MSd5aLf3hqqunDom4fddikqrEJK5a4ApJt79fsIVJbj8KiyXyLpJWwtT7CaIMoQWtBxJFqQ2dmlp1zsygVnokI1jmsDZu08EKWW4a2pCw9zivywpL7ks1+xqDwrKxtcmJlk7W8YHWU4yTFlz4gPwUowScuzKhK8F4H9jy+rW8ibqcQEhCHdxbxHi0e513Y6ErjPSgFeDcG3Epk8p6aRleUtyYG8ZiKayE6npucyvEWqdYwrrcC8fF+AVA4D9Y5dNxPnsBReXF4b/GiUTicj6uuBK0UidIkSYLzARjFK7yy5MOM3JXMTXXBCWKqfRoWXghiWJCUBMFjyxLnKsLSIG4Vu+g9pS0jXTWINmj9f54TwHv/x8Aff9Y3NKn9BCFXF8L95I2f5bFLnffjTVNRI68CkfGgGnK6SAA2EDQWtGJkOoAKQNzcjBWLWrH5BBm1puaVWC8y1k9VcCLja7yikgga3E/8t43jUUpIlMakJsj4UZ5WKo5FBUTjEJyrACtwCmnSJk3iM7yPQBm+lmUZKIsStFEoregKDMqcYZZjVMLWqOD8Wp+VfsHq5ojVkWOzPyArLKXzDHCM8OQWSusCMkWwAnlZYH0ZOAIvWFGBdGADmKkkro4Kisua6vq4P3QYdtR/BH2KC5KZVw3mUC7OVfqKq5F6jgIUS4M9iPtAKUQpsDaIURI0QQ4fORqFkjA+UYL2GlGBG1DVXlYKLwrnHf2tAVoUV+3bhfKackLEDftAa4VS4b2dczVlClfVrON430U9kVIapRSJSYJq5RLt/5picLKN2aAxIDZOVe2SCrZPc51sP3gxXnOS7Z4c0vh674PE5hESFehAKYH99KIacmfjr0YCBGC+YDzbmZUIsDXh9JNjanJGvtGDErTWGGNAa5wtIbLBSoWNWCGyilVsToEXH9nzyKl4jYgPxD1NajnYe4UtYKg8npRupwMO5hPPbK/Htamh399kenqKPC8onaO0FltCVjpGhWWYl9jSUTjYyi1rg4z+YMhgmLPWL1gd5mzllqy05M6DlDgRnJKgZlE64skwXq98nGYhYI+gGKynSQTRGn9RSJB6nT0RIce5CdMdATeKdHWfDR1BpQ8It0pAUBKeq5zHaINOAqhZFwlBRE6DUUFZWA7vXECJinoUHzaLUoHLi8/XShAVfgc9ThQJmBQ3BUgSg9IKE60Z1l1KJH3GIAEaVG77Dr+QffvMfTV/+G3Io8Ge17/HWCeAQpRhGVNpqRCCd3gcyqQI0ElgRFjwsRjiG1iZiuQ2yHo8V1N+X1MjKlmvOT7V5CYa7xeRhniPV6C0QhuDt4KIwXvfkA3Hn0qpWsasOqpk27jj4maOQ/WgCJtbIRRFiWolkVMKMr2KuCrPCtJWmzzzOCdoMaRJik9gSilMREZKQGuNj6wrQFlYsqJkWFryoqQoHMPSMsosg8KxmZdsDnM2s4Jh/NvKLFsljJww8iXOWjyR04gA4yuT3qV0Sz4iiiirB46gWrsKIYz3R82JxPnVKuhKVEQAPop9Do+Ja6m0Jk1TtDGIhxYKI4rhMGOUjdi5OIsxhhFFAPQ4Xg8o0SgRtNK4SCQ9xOsqwtOQ+QWSNA2cgA4cx6czWT/zkACMAaLZmi9xganoIvePT0Qgq665CCdwAecgeF9hdI/HIt7gcZR4bGHwEthOYzReJ4yxMoz5z4rKVD8jpboAv1UsgkA0ydEcqt82xu1jJSiCtAipMeCEXHm8eFIvOK1RoiPrDyIKIci1TiRwNxHHGFFgHaWAqlhNDbWCRDxKRzHbewrrIsKw4dN5XBF1Hw28pXV4L6XChhalIjs9ZmeVFtpK024RuZaLiYIBkWmtMErho/6gdJ6twYj+IGNldYOz6+sc2xzwgUc3GQqgwrtefM2lnuZKuUgUocSXkTNTiNI48ZgKIQg10Dvra5NitS6CxnmHSgzWerAO5z2iU15+5RR3XnEtVx08wObKCvv2LLHUTRkWQfGnnYoG5xLxgsNiEYyu5i9yCJXI4ivriI3j9WglGKMQD+7/tGLwr92k/jchCVz8mksA/sS1l8L4FWu9jaVuIAeJmHa8CQNF9CoAUOE8/VEerAnSZeR0DbiV5tkTTYSKiETGj63eRRq722+/YIIb2vb9ohxtOKgigBQGjAg4cCJoQGGRxIS94iBRKYV3KAXGOhSKXHkK8UGJ5F1QREVZWomADppvJRoRhVK+5jZQEs4p1ZiLMZBMHKuBMHBb2zmTah5rs2zjePX6znqG1obelMcozcL0NDOdDrsX5ji4sc71CB99/G5GDryVqGeIQC7VnG6fR7nws1LMMeYIfRxLLW55d8G+ExG0MVjrAnwagzIanOPIqQ1aW0NOPPY01119FYcP7GImNZB5HC7qmCI35sNnkZdoneK9Aq8nNxSNMdeM5XgOP50k/cxAAkQ22I/VHRe9pm4NgLjo5dsPVsBzkRsuQBgSRWy5QFcpXihEUYomlcCyOZ3Um8VLxMq1bmCCnx5TdL/tLZsUqqJE9VP9uJ9P04SghdY6sIy6dJAYirIACVp+KSziBW00PvG0MJRlCVrhgFQCex6Gq6KNXSGoqNX2Y7GoHrpEtl5471/+BXmWjeeslooiQr3otIc1Gfv5bOMCtyHMiRW8CE6M4jjOWbayksWVZWa8C6bC2vFItve0fVDjzitvwTQoKU2+iRT9sIbRBJguD+k0vBITBeCZKYLH4LFHHmDj3Eke+liPta1NZs5uMPKOR2zGGe0ZrJ/g2NF76Zx9igODrAEDArrg7g9s8NhDH6fT7jI7N8MXfskbQSqLUtwfFSERUF5IkgSlFUoHfdCnixF6hiABuCSVgzF7X8nRNbDARbHAdpl6QrF2MVNJvQPHGzcejjQsaq7BiqF00BEwEjTdKFXxko0xNIBZKmCOj3LbZbTqPjX5btX1vvHq1S6fuDcAp1Eaow3Oe5KW5sQ993Hsd/+YnlgkTTEz06jZKZKpHmp+gd3PvZl0xyLiLSCIFoZnVxicPA8OWotT9HYtQVtjJEErRRnNU94FCq+1jroSKPOCf/JPfwDwOOcnFJFhSsbcwdj5inqDXmyjTnACF56cuM5H5V3lWLO2NeJDj51l5IrGSldim3CBQi0qB5t9i/f4YohsnkdwmKkeSgWTp3cWpRTtbhfrKqSgSHVY41HhmHIF+3btZHHHTuZmpzizssbHjywz8NArttihMg4eOMQVVx7kunue4un+iKg6xAP7Tc71B/ewe89uup0eP/5jPxrEU4mOTFGcEoJEIKLAl8GHIYpevrIqXKI9s5AADQisZOoLKMOnoYgXOSfRltx0tb1gO01AfEXVwz3SYKt8xL7iclBtQmxUBxE9du4TIuWvvAf9GOCjU4xcZJy++j+BS8bIYGx+bJiEGjdbraOHrUYrD0ahCoc6cYJs2A+3egNiERyjpMPo6HGu/KavIdUJ5cYmT/3Zu9j46H2Up85TOkey0GP64EF2fMlrODkYsHZ+hTRVJImhMzXL4sIcS7t2IArK0kV2WdXA2AR0qSh+hexrWKtEhGrZJ0WHi7ZatIs919MUFWoRkTqIloPIIk9MblP8Gt8rMPZjaOh1xgh5fP/EuwXZIPYhuMjdVkCoKiwe9SDiLNgcT8mgn9HtdGvi1SQJxWjEcKvPsD+g6I/IRxn5MB8zhxFJ+mD7jc5pYe9WIoGz0QP0Eu2ZgwS2s+tNFvmzun9MLZog4pt9SUXXG+xR/VwarKeaOOajLV2isigvC4QWiVYU0ZNFPHhxcTPJpOdfhQji38SY8IivkAzbuJht83BJPtjjRWO0xujg6SgKsBbxFu09vpNi9uwlHw4wK6sk+YjNd7+f4g2vwSYpj/78r5Hfcx/KjcB7Whr8mVVG59YYPf8mPvroo3zoPXdhtA9+P3Rotw2LO+Z5/Rtez0233BSpdsB1SkdrRKWviHKpeBXnP/oxNClulLObHEGNDKpzzanZNhU+Alpl3XGMlYHjOW/uq3FvFZKdQK9Bv4bSwccivngttobeIkKqvB7jOlV+CVrpSJEVoGmbhDk1ZEF5xDo6rRRbFjgHvW4b3x829kiw9qStlFa7xXS3h04U65trZKMCJQYrZWN/h/0pWmMSM34XHzizS7VnEBJo7uqxh11NpT/jfY3FvqBVaNPVzEW4r4Hp690bWHuJmvSadayRRnBO0TKW/eq+KrYXXZuQQmuw/xUVq59JgzrK+Bn1y9Q0cswhbaeScfGN1mgdvNpELNgS5SwKaF11Gbf9+L9i89QZHv/Pb8Pe/yC2HLD56CMMj50l+/gnMXaEM5r06suZv/ZybGkZHl0OMQZFRl7kjLICRNBqRJFrNtZX+W8/99957etfi4lrpbWKXEGD5Sewy5964FOsLK8wNT3FNdddw9T0dOTUxnPcvK96v6ZScOJ4Yw9MnJdgvZDa5Nqg/NtY/vGx5tyG3wKB9a+sIPXZcN7hsd5HZz11oUgT58RaiyhHVuSITsmtpR01/eDIC0uvnVJ5j9Z7TwRlFKIVymi0SZibn0UZormwGRPR5DKDqKZ1MBN+OlL6ucon8LdoFxlu7Sddh3ld5K95fRMzSj2Z436q2yoEUMni1Sf1pvNR3g7dBUVL6QJxNwK4YHppShm+CfDVZ4PqjSlSY2x18FHQvMv2MVeyrOgL/kQ0QjARStxESgScCx6PSuFaCV61mdl/gM7enSSiUV7hbM7g7ntIXAFKmH/hHVzzlu/g4Ju/ksu+9qu59p9/Bztvf25NJ5V4brrpBl7xqlewsDCH0p7+YIU/+V//i35/Cx39EATY2NjgN37t1+KchDkaDoecO3eOc2fP4kqHx0cX5mpJAsD/+Z/+KV/0utfyDV/7tQjwT77nu3nD67+Qt//yL/HTP/Wf+NBdd9X6gvq+xv0Ve79y7gw/8wPfCgInjzzGn7z957ZtmWqPhHVZO3ean/2n31yvkUR2QLzjE3d/kM3VFZQIJppktQSznRHNB/70j/iJ7/9O/u33fxf/89ffTmUyBTh1+iS33XQD7/j132DFGp5a2eBH/uUP873f+3189KN3kxWWXrvFO37ih9hYWa51E+I9ZZazubbBxtoWW5t91lfWQgxBvYfH+99HYiEOsMFy45wLCuJLtGcGJyBSU1EmKCgXp3qX0nR+Wt1BtfINxZq/8LzHo7wPbJzoejNFfzoQIfMKhaelHGJLqsgvYZLiSFykaiMEIK5YxxpjNAhUQBZjrl8acmSFQBpcROM1FAqlDUoJyglaFJQWHdzLaJmUreVTPPLTv0r+4IMkrsDMz2JLx/DEiSAyzM+y8w2vY3pmB06Ct5tOFa1WJwKsQ2vNLbfcwpd85Rs4+fQp3vrjb+X40ycZ9IccP3Y82MUjEtpYXeWdv/HrfPXXfA3OB2paWRlCaHMYp63nJ7LfwO/+9m/zr3/kR7nt9udx7tw5Hrj/fv70r/7qAlavaVYM4sa4L9fwrxCEfYevZu/l1zDWpk9yg1IhhIrRr+I5vEWJcO+H7+LQlVfS2rU7jNWFfTLV6fDwfffy8Cc+zr/6qZ8l0YqV8+eCYBjH99P/6a285KUvI2gqDJ+86728+BWfx+fdeRtv/Y8/xVd93Tdyz4fey77DVzOzuBS4UYQiL7DW0Wq3mZqZotfrsnPXLkxrGuTseF9hqaJXxYMxmiQ1URSwlMUzHQkAE5D56ZRC8JnPf8bnyPhrs1WKoKDWiZeoiTsRTUFw70wM+NLWyGHMCl5Cr1H/VuPNvJ0jra+TSQRxwQ1+23eCXzsSQ0cFX7o6nBZnOfKLv0Z+90cRKZBWyq7Xfx7ZyhDjy+BMND3HwtVXBw4CwavActro648QWF8gLxy79uzh9jtu5/jTv4cSGA6GlEXJcDDi2FPH+I9v/QmOHT3KF77mNbz4JS/l5a94GT/2o/8OpRQrK8u88IUv4B994zdy9uwZiqLg73/t1/GGN34ZP//zP8c993ycH/6hH+QVr/w8PviBD3D2zBne+PrX88//xQ/zO7/9W7zs5a/g1a99Dfffdx///t/+W4aDAUma8ktv/x90ez0CQo8K3tiOPPRJ7vqj3+Grf+Df0F9f43d+5sfZXF1m/1XX8eQD9/DN//ZnAYV3jj/4xbdy/JFPMb2wxJu/7Xt59J6PcfLoUX7t5/4LJkn5lu//ZyTtFihF6Ur+7Pd/l5d8wd9jNBzitGJ2dpbMKSjhgx94H7v37GVubi74XImgdcJwtEWWF3hRbA5HvPN//BJ/79v+ddQvB4RkWi3SdhttdIwFAets0HUoQXTwJwjEwtWiro6mwSzLsLZDXuRcqj2DkEBstYa0YtUbNuRa4/JpdAR1Pw1Ke6lzVF01gTbQfB0pdnMTAaAUGcF5wwiIcpPKKiUh8gwulA+byECokU6IXqzOX0S8GTOH4Mdhu+M+A2AqLWMW0RNizr1DvGBGDnZ1AIsWhVpcZPcrXsLTf3g3onxgHU0Ln6SQD6MSzONcXAtXISYX3IRFkY0yrrzySnAW0QZnLefPnueRhx5lY2OTl7/8VRw7epRv+uZvZ//+vZR2xNGjT/Ft3/5dXH75YY4fO8nnv+rvse/AXq67/hre+IY30O3s4MUvew0fufvD/NO3vIVrr7uBV3/+/bzlLd/Lr73zN5mamuZ3fvu3I4X1fN93fRf/8T//F266+RaG/T4mMcFK4n1IqFJHz+mac1bO8p7f/TUOX38LL/7ir+TxT36UT7znTxHxCI7l08d543f8IG/4pu/jHT/1b/jUxz7Izc+5ho8eOMhrv/Kr2bv/IMoFV2mjDUppzp46yRMPPcif/s47SJOU137JGzl47Y2ofMjv/tZv8p9/7hf5/d/9LSp/iRte/Er+8Kf+Ffd88L286eu/lXf+2tv54i/9MkynwyCaNAM8q1q8qUONI4cjVOJhvLhhuVAx6Cgvcvr9/v8jJsJt1D3Apo8ybtzmlW/rX6evi4kFFxxrKO7ih9aKEBoa/cErsVFpRjZE1hlJqVxxKyXU2PLgL4IEmJRFq3et2P5aDxDfswpFbloFtkeNVZ+VAim6kfoIBCpSRLW4wNXf9DXcf+/jDI8dpVzdYu2Bx2gd3I31JoTvDjYoz54nmZuueAuC+2/cdCLbHICEdqcNSrB4rLM8+sjDrK1v0EpTrr3+GtqdNt6XHH3qKdJUcfnlVzA3v4hSgnMFf/XuP+PRRx5Ga8Py8nlyk2FmpxiMco6cWcN2T3J8bYO8sNz14fvZs3sXWV5w+uwKv/Hrf0C702Pf/st45OEnKMuCK6+6nKIMEXseomLUY8RGzY9nKk14+tEHefP3/DAazzW33E6nNxUSxeCZ37mbvZcdxvuSfYcuY+PsabjuukB5jcF02iGDD2AFtASEP8ozvvtH/j0njzzJ237qrfzgf/xZ/vD3fosv+dI30u11g9Y/Kkc63Q7f+n1v4Yqdszx2NuNXf+Yn+IVfejvf8p3fw8bmOnd+4Vdw4Dk31NIglbhTK03DmvvmfokIQ+mgV9I6iLN5npMkySXB5ZmJBBrAcwEYVQBzwfFt35sa9gtY74rLkCBHOcYTieBFk2qwaDQ+RHdB2ARKEBJKl9MRR4KQK43YGCfvKoRVIZXtMnz8dH5yjJWSS6Re9IpbqKhHwBON968Vm3FzJDogLQXeKcQVhJAfh0eBTem94GaKkyfIhzmbH7mPg//gqznT6kA2pL3W58wn7mX/S1+CEkOpHNqDowhIruJctI6sqObcueXg+ySOoihYW1tDRNHptNixcwdJkjA1NcX6+gYnjj9NkiZUWowHP/UgTzzxON/1Pd/Prbc9l2/9lm9ha3NEu9XBS+Bspqe6LMzNkKQJz7n52vg2kHY77N63nyRNWcsKXNoCk/LkqdWYWswyKAtmtMco4cB0wrIuScUz7YdoHDMyYpZhjcin7BaJHZJqRTdfDQ5TLmdQ5o1AovDfx3GID4A4u7DIjXc8Hw9cduVViCg2NzZ48onHufeej/H2X34b/a0tEOGVfcetr3odJvqY/c93/g++4qv/AX/0h7/HVdffwsHnvYh3/uS/4Ot+6D+gvEPFuAtXJaepiIVqEA3R4EvAI15FF3JNt9cGLK64dOzAM8c6cDEu+AKlYPzXtBY0AOHinTb6riesOh+hSUn8C6YYlCKRmCnIjUNIK9gr0WRFjhGPqWQyGf9JZQ2o7pywUsS/5gI2v9cKw/EQA/EI53xjvM3wYBHQ2iACRjQWjXcWHV9b9RKMNuz4vJch+/aRUrL68Y9j188xc8eNoBRFvsXK7/wxaw89hEodHS04HOVgGAOEADRaJSSiSdB85MMfCWYoJaRpQqvVBg/aKKbn5hj0+yQmUKFhVkRPwrDt+v0h7Xab+fl5+sMtjjzxOKvnV3jwvgfIhhnnz63xqUce55EnjpCNMj5570Pcd/8jrK6u8/SJMxROc+7sGe76wAdZWd/g3PJ5VtdW2BpuMsiHKFcyHfMPMOojxQhvS4abG1x2+RV87L3votha44EPf5BBf4tssEnW3wrZo7a2KLbWsHkW9CFK02p3GI2G453lg8rYe8/1z7uDxx98AI9w9uQpbFnSm5nlLf/yX/NLv/pO/vDP3sXXfP038Oav+0Ze9Lo3BgsDcPz4Sc6fP8dznnMjeTailRhAUeYZLi8qiZiJWJNqDzQtSHFUXsZxGM450jTBOUf5/5RO4AL17wVftl1zEexRzdzEZRU/fzFOYtv93mOU2oYhx0BtkxTnKk23muy71iEIjRW88BnNfhuxAb4aKwQrQvPeCQQmTae5oKnWgQLgPZaSwpXkYtESovcKcey46mpWXvFS1n/1t/Ajy5Nv+z32f/XrGTx5Cn/mGMWxp3nkh3+Kva95EbJridXzm+x46W04CUkyFJoTx09y70fu4YMf/BD33ftJrLOgYGFpiW63SzbKcc7zwve/n5cvLvIzP/yDvPbKK/mqq6/mZDbiXxQDODMg67Z42Ja89Qe+j2sWF3nRvr28ef00Lz/b5k+yPm986kGel6/y1Noaf1TmfN+JRwC4d2uN1505ypcd6fHCL3o93/Ff/gPDsqRjDH/5tV/LVMwOva4NP2o1ZVFw9LEnWT1zliLLWD9/ljtf8lJ++9d/lY9+8P0cOHgZU9Mz+Lwgi/LzaDBAPNgyZjwSx3NfcCe//ytvI0lTvv2H/jXKmEBxRXHnK1/FO/7rz/CTP/C9JEnCV//j70RH8RDGMRdB/yN4W6Cc45d++Zd55Zu+EbThS9/wpXz5V7yZtXf8Eq980z8ApUNmY+8CMRKpkY7zlSjQMDFXzxOhKAqUhBiCPFcMBoNL7L9nIhLYTtmbirv62CVJ//he74l+lNuAtEnTL4JAfGCgExXD7RohxTXWNSmusOiOR1dmoAbh9/XCy1iN0WBK/PZst/WYI7M5YWmQyWHWSGHbJEWzZpVXzpiUfS9+Pt2ds2ycXSHds59UJWRZztLn38mpv/wr/PlViuNHQTRXfPc38Kn/7220zp5FZMDpP/lztO+w48u/kMWrLsNbH3Vtlve//718+MMfYWuzj/eOJDXs2bObQ4cOMTUzw+rqGsNhTmsw4J/++m/x8QceJGklnDKKr/qSN/JbJsHHyMuvueNFGJOQpillnnOqyHinVnzbC17Ckx4edyXeWv75K17FOwBrLS+79gb6WvPfRhnqmuv40a//Rk6cPEmn0+bhQ/sDJS8tL/zDP2R+9yG+7fveQifRXHfzzVxx1ZUIjrlel+/6nu9hdnaWRx9+lNNnTmH2Xsn8fs0//sk7ggFHwZ1fcRA2zyO24LpbnssNL7gz7p7gj6+iu7bShq/59u/GeUtLKaz3FG6s0BNRfNt3fjenVjb46PGN4Izm4fv/2b/gvlXDqCjZtWcXb/2Fd3DPyWVQYe+5itOrxZHIOSqNqBAViqgYBhHchwUhTVNarRQQjDGXtKrDMxEJNJtsgyDgQoRwyZvHH00E4BvnLvFMJR5tiPbrmh8HQrguaRdVJBiEuUSxxbjb2se/0mNWlL7JgTTGMSnxXCAPNTiL6h3qBzWuCuJBqoPTUCkOI23mL7+cHdddi26leDxlltHyinTXHl70C29ltLrOKB8ipMzt3cWt/+Gfc/Jd7yd/4mnYWgPTYc8Xvxg/cuzeu5fDa2tYWzDI+mTDEmNaJKnm+hsu58u/8qt44BOf4PDhy1hZXmFrM1Ce97zv/bTn5xiubVJsVS6xPprqg6ilYi7BQMRiog4TojO1CunMfJTDq4AkZx0mDaLH0WMnsdaRDUcc8ec5sH83S/NtAOyuQ5CmqGKTNE1CopEi49ypU/zMT/0nEALl/offgrSn8GiiejfmOLQw2MSNRihRuCKPadeCIU+3WriyDObYyPk5rYNfhKTxnVTtvVcjbK0wygRgRhhkOd5Dp5WgRHCEUHQfFZwTu8N7vKvEgIaSWELqM5MY0jRFGYOI0EpbpO3WJbf8MxcJXMwX4NNq2xv31c412yiu345QLuQCghXAYRJFjAKPt/u4oIJXhsILHa1oeWGcTVgmzDTjR0g9rtpFVsbsfxVcEqw8MjGeTzteqHUCHki1QtAgOXbkeezhpyjLDmVR0DYl1iS0U0O7bZC2odVqkcz1aJs23lpmF3cx8+Y3kGcWKTNMYSinU7QVvvwrvpRh9oXBeaUYMcwGbG0MabU7HLj8IDO9We6/5+Ps2LmD2573XO79xL1wrk9W5pi8JE0Ms7sXSbQOKbgJOfms98Hr0lXydXgvF69xzuLKAu+DjBuOx+lx42vBo8QwHA3IyoKZm66M8+vwusUwG1FsDQNQze5kOi/5R9/yLei0y+zcPH09zUiCh2Bzm3klICEHACIxc5Or4z2U0YjW4bT3IXOQQFGWuIp61xr98RpKjJ0oIqeaOYcrLN12gpbKUyWivkjEpNoS3lNHQ6ommxkTzBhFmiToJOSaTJKE8v8JE+H21gSW7W644QIuAIrmz8oLrVK6VX1GzfTE9du07QpFUrFQ0qTWkTNRCmc0idYM87BRKi3x2Bwh476r5zaAf+JVK4tCpTBsvj9hc00yMNLoPnABUkI7Cb7oiU8wHc21N19FYXNWzq6xcmqd3QcXaaXgC09pNXl/jbxv2GSEuJy8hKIs6JWw6TVeZ7RcghOhnQhlokjSDtOdKabm2lx2mUErFwElzIsoxa49u3n5/Mvhnb/JFVdezsmzKyid0Ol26tAs710wdnpCEg2v60w91VxNlEdpOk75sfnVS8gCXRYlZWHZGGRs9QfkuY3LrylbHWzapbQ5IhoxQtJaRRtN2ptGOl1cewoBlBvR8iVdLfgkJStLhlLikgS0QUwCOlpK4rqIUpAK4qKFSAc9gY2ipIiajOmXmF5NCYUL+6efh7TkrSR4URYTXqWN7VvtA2EsClCZ0cfXl2UZzYVhTw2Hwwv2XdWeOUiglpObx+K/7dSxSV0nrq2+RGDczjhcjLvYfgkxRbRJYtrr6lnj7r3SjJxDXElBixDNUS1wU1vXZNWEOnW1dZNjExjHBjTGWHELNfJqiAPb38srtHhyW+CdIEmJVxpXGu67/0luve06HnjgKC99+a14W3Lk6AmeuO8Y3dYC192+i9n5JXTLsHxqk6XLZqDfZ2HHIpt9TemH2L7j/PIa2htGq1scOb3GaOV0yB/YnWGmrVk9u8na6XXStoEksONakpC4N6beTmNewTQJlhede0waEo4GD2epKZo0llFq5FhJd2FzOx+4hzwpaItnYCsRowIIVacuF0qSwRpdZent3EGdCcrDgs2wfoT3Fpvn2LJgfuciPtGccgWjatYlumQ7F8WZkHK8WhHnPcRISRczFlcenHH4cW84tFLkToOCYSEUeUk31RilkJrjaQQtyXgMvmkdqChEZZ1SgkmSOq+kdbYupXex9gxBAtIwqTVazfddRAy4mGRQwZ146vJV1SRdEgE0nh2ZBKU8OoYHN9FvMLeFybdolLNMG+Fc7cU3zhcwSbmrzRATXio1Mf6xX0BTzosQ4PwkJ4Ewdm6qrg/XuiKjcCWJCNZCMHF6krTNnn1LPPLoo6BKRCnOnt7ijlc9h4MHLuMD772H+Z2LSDnkiYeOcuxxw3Q35cbbZhgNhhw/dpJ8MGLf4d0s7Jyn3D/H1N5Nzh2zXHb5QfS0kJouH/zIX/EjP/JvmZrrkqQpV773Xbzr/R9hbXOD6U6LbrsLErwYd3a7tFNNJ2khowEntkakrYS1rMThUHpya4ZEG8F5yRiDEsUoyzFaU9oSj+CsY3VjE8Twoeuu4PBf/gW/csX9+DKnbUf4/jqUBWkrpdPtRrk5AIuSWD8Ajy0to+GI7swUCsXq6gobW1tImqLSkGC2SgyjtMakaVhOF5BCSwm5h8ILc5TsWFxkaWmJxBjOrK3zyLkMna2wK3X0k1nOFQpdOh7+8yV0arj7qRUGRdhLSzLg4OIs8wsLTPV6zMzOBy6kXnegoTdQEPeuQ6kEEYNzl44bgGcKEqj2tm8eaLJ/zWtlkjVsNF+db7L89YXjAKBwhW8ghybQVpUFgnxfM/jRvFPZ5suI7VvGBJMP1Mk4674nBtcUE2Ry/FWEYfVeMSloXcKsiUxEXdg3IdFnJ03CJrYG7w35sI9Qsm//Ir//zndz6/Oew9bWAI3jiit28OTDZ3nioTMcODyPLUvEtNh3eBf9zS2W1/oUicZ1cmZ39Tj2SMa99x7jla9eCPJ7CZl2+E4CzjHVM1z9nBfx3OfsYWOQ8Zwb9vDat7+Nd930+WyVmj07drB/xyItbVkUzd+/ch9T/RGz1+zi1KMnaLe79Ke7vOPBpziZlUg7QamQJlxpHU1xwtzcNEWeI17oDwcYpegPBgxLhysc5x5/nCSZ5fVv+nK+7L//N/7dS7+BxeUjzGXLPPHE4wzynLTdotubIkk76DTFJCmJNihjMMaQjXKGI0vqC7yCzcyxnnt0u0Nnaj5mGypwZUGrO0V7Zjqk9C5LRFJ2tYXNUrNVCktugxtufT43P/cWZqa6fOiRI3zw7lWmz9/N/iXFA+2reLrfRm1tcOdLb+amW67kg7/0QY6uZig8u+QoL7z9em567nPZt2cPSavF6vnTASUqHZKm1HtKhfkyMYRYhNS0KF0gapdqzwwkAFwAGE0N+HaAv6gYAOOCfc2KQBc+w9fXjmXOyhddCPKciV5agtTBMwGJBEpf+MCijkhCuauKxa/H5iafC8E0uB2hQWBVK0RSRVFO6EG26TBqUajiHsJ1SVx4pxxlETLSWFuSpi1ueu7lZPmI9acsQoaUlrZto5IhqydKzp48zVSSU7oW7emd7E7WWT65hdYecsXcfIvdexdQaIxRtKcTZgezpNogxpGH9MSUrRJKSy7BOaWdJMEcpqEncPnCPAsDSzLfYlBaZhemMKUwvatLdj7n+j1LnDp+HOPTYOAVhStKTGowJiDAVtIK79UyeFvQ63UYrfcprUOUQRtTO8e0B1scZouNzTWKosAD2pi4Hg5bluA9koTKUmWh2NjYRERI2i3KwjLK8wnnnJAjJuydZrhwZBEQQs7GSgxCorefEjwatMc4i6AobDDpioGVzRGtdsqUSUFGY6Ug0b/AWWxpA6FpiAs1YYip7bWEJDPV/d77/wdCiaGm0FXzTWo/Qfm2y8ONL83vxFjwS5WfvphsHaYaI4pWktaKHxg7fYSrNKUE19lcYqVbkZjaScDbwEWMmRCaGXajkBser8acSI0IXKwyyzZFIQ0rRGP8Ho+4kHE35PvTqESz69AeXJlTCmgvCI7SU2vby9zjGGFLjbUWVXpKayglJ2mlDAcjtFiUdyRpB+eHPPKpo+S5I7U5I1IefeAYPSPkqs3h/TMYSWl3DMVa2HTOh2pNbVFMGcffu3KJ2SkocrAaClegphNcq0eZKtRwRIqA1jFTk2N+doZur836+gbeOZJWSPHus5ChqLQlzlbP84hSdR0FlW2xurzMaJjjomlOGxMDvcKclmVMI5cEy4Atc5JWi8LmWE+s4xcJSETOIbCn6YpbBZyHfWsJHIyWKLqMRsj8TNB5YDGuRJs2hY+sfMuw2s9JEs1cq4PoTVxpx2ItxHgLG5yzwiAmREglgilGdHstRBuMDpxNXhKQxyXaMwcJ0GTntx3cDqsTSsQIbL7SKAfKWUVc+SrJZ1PeaFocfC0M1I9TAokxscpLiMiqU2GJQjB4AqYl0XEMKm6SSku8nZrHAde17RqfkYPwVdJIFWoeBjVAuC4EnsjYUlA5MDHu2lT1BRC0tuRlgLTSD7CkCKH+nVEzeHJ0zwEJ4tOgYDMl3graaqw4nBecHdJJelgKkqSNSTxpq4VJwegU53NsYSmGlnJtyGA4YHnDc+qxkwCcOr8COkUlirTI0Ke3yAcZyyW4PKe3cw8MDeXxc2RLs9i+xkiXzJWgFLt37WR9ZY2+sxR5ibNDsmzIwuIi65sDEpNQlFmcT0dpPUppOr1pADI74uzxp5ma6tQBQCoG1lhnQw0xBCuCigFrRZGjU4PFU8aKwCHFuo4Sox9njpBAyW0Z9061gUTjRZEoSNOU6ZkZqhBykZKOUiStNvko8g5ac35tjWw4ZKad1mKlrqpde4f1QqJVQ0ccRQIJ+0IGmyy2YOfsdA0PSkmdFflS7W+FBETkKWCTMJWl9/55IrIAvBO4DHgKeJP3fvUz9DSWg7fpBSp26AIPOmr8CIRikFqlOPS2Wh1xEitEMR58nMxG+u84cUaC+aaqYuucI4SZRoFBPF6FZJGJDpxAs8imV0C0LAhMhCOLML62vqeJ6aqYcN0QXSquKFaciWxnZBuo9CCiQoWBIOkYtFI45VA2HYs7XoFkaKUoHCHnPyE7bTDTBdZYIifjkw4iHu01zhXkGXgnFEOAHOfKWD7bo2c7zC10mNvvQe0EoNNTMKzk01nSqR1M39JmcL5PvrbO02fP0PYl6fwe9PImdi3jypk2vfk2Z/vCMBuyuLjI1tYanW6X4WBEluUM87O0UxPdt8HohKIYIiqk2g65FkGlM6gQ4whKoYwJ4ptSiInFTtF4iAVYLa4owXmyvKhrKoQlkBiVGQp71PU8nEeFiCdMqbCeEF7tBO1DKbbhaBSsCrYEoyk3N3BultyF54t02coLummbmS4gaXQDCJmXlHZ40XgfMhxjQHRjHw3W2WW26CYt+nlBqjWtJKHMRqyeX6bMP7exA6/w3p9v/H4L8C7v/Y+JyFvi7x/4jL3UlVSgBuGJ2PntVLUp2yswKiCAbddMtE9nIqywqwhaj0tkNYti1Cy7d5ReUQQVfI08Gg+qLQ4eqfFN3YdvAHd1ffNvu6WkYmYmsJ+m0mnU1Gmb8qdZ+IM49irYCAHlJSjrhSrOsL6vAmwVA1JUI1jJWYvSGhfZ0uAJ5yLCrNysw1izkQVKwNFLC9KdGgY55ZkhvaVZevOzZCvr+KU2vSnPvjbcutRiyinec3qLJ9cHbBUZrVZKf1iQJpq9u/ewvLbOVLfHcLiJ85DnlQweqhPVGYd6KTuWlsjKPNYkNJgkxSgNOiJ4FzhD54M44eJe8c7j6irS45JuwXffTUh3FRdQEa22FOhiRN+NOHfuHGmrxcLiAv2tdeYGJ+m1BWM0hSQY7/Bas2UtRZaxY6aDsS6WTwvFbBwJiQREFtbUoFSKF0cyWGcnQ5Z2L3L06HmyzLK8vMxTjz+BxjHIRuTZ/9kAoi8GXh6//wrwHj4bJFDVgZMmbET5K1ZkHW+ui+gFvN5G/Zvntl2LNKhrXMLqOgmyVVU2q3lbbXtWGiuGohyhvb1QXHFufEzGyAMisyONFxWolX/R3n9ha3JBMh53E4cQogjH56PXXQOJNXsTLyQqwfo8BBhJKFzpxVOUAWg9LnbnqZO9iNQb0RiDMVGfoKr6AsHUplSYP+9U8AiWFKOErfUhrZZHugmpz8k31xn0+7QKh0sMV2bCxz55lH2HDtF3nna7w+kzy+zbvcgw79NttxllI2bnZqF09Ho9TFGS5QOc86HmgglRjQCJ9aRJyAGB0agkCWnYIvJUSsdEoYGYOBs5sW3c4zh3YZyDBsdaIwNPxM1CK+/TGw6Z2znP1uY6jz8+oHVqhpWzJ7lxeIbzLic1s3zx1bsYlpD7EYubJZuDkuv2zPL5B1ParQT7tAlp7nwQL5QSlEm59erLOTSYw/sCVk/SkXkeeOIo+3Ys8pwrD7E0P4dOg1hnnaPd+dy5DXvgz0XEAz/vvf8FYJf3/lQ8fxrY9Rl7qQEhKtBqLrma6aqgZHW9TFLeCb1BlJWbQUZ1JaCLjH77OFBoTU1VfZVKumGLRYV01taVzFIQCmFXWMRNvE8FuJVKsS42WQN0dZ0a31dT/omBNeaqkkirNNfhffWEUUQuQADNTLTWeu79xP3s3b8DWzg2Vja47KoDnDixzMHLd4PTlK7EFjnOQrfbCmCjPUnbhOxESkWmRddyc5gvF1NsE9hX7/AU+CIh2/JkWUExGNLqzrDSz2gpjS/AJmvMHehwpZphUJSc3xiyWVjSdsqo0vZ32oyGA/zIogRmZ3t4hDQJwOycxZhxia52PiBU5fWITlA6QatxXUalwntWnGg99bpC2kE/40UCl1AVOImLUe8TGjULPOgyZ5oc53JaxqDThCIbceapx+n5EZ20y/zSTt74ylsQDwV9Hv7II6yv9rnx4BK7u9fRmkr5vf95NORj9GUoK+c8xii+7DW3k5gRw0HOcDRibW2FJ5/472ydOc5pU5Cow7SmOugkZW6xx+bmOpdqf1sk8GLv/QkR2Qn8hYg83DzpvfcRQVzQROSbgW8GoDMbNesQfWgnAGTCnx5pAEH1u35gA16acvc2qKqRS5VWfFLnIHWdgIDefeTfQxIJcK5A0BSuZA9DWjiGqFppN3YWEsbpnyJbWXMiMOkhWJGSiitoWAIaH/X3WmyKz3SaJCWWIQtmKqqxVM9uIFUllpnpNvd98ijXXb8X1REKP+LkUyscfewpHI7LrtjHqRNnKUeey67Zy3AzI88L9l92mKUdXUajnHbMf9dupfXztNZ1Wi/nS5T12Lxk92KX9LI95C1gbYMzXkgXuzzx4BG2zCY7ZZ58dZNs4Fm9rMX5YwMoFbqlcXlBN+2wub5Bt9dhc31Eq5OwvLbJ1HSPosixOJyzJImpaUBabkQlICAmIC6iWU6FyVQiWKh9QILYoJCY+EUihyMNS42PnoqViFAzZy6UeqM9RYZGG02WZ3hb4mzJsLBsesW+njBYP8vv/+EfYVzOsMyg8Ozbu8DWqvAnv/WnSNuysdHHHDxMhid3lo5SlNbyibvvYjRcZ5RlZFnOYDgiz3MKURw7cYalXftIVEJSRxJeWhT+WyEB7/2J+HlWRH4PuAM4IyJ7vPenRGQPcPYS9/4C8AsAMr93DL0V26kkKNcqObkCnqqJmlT0waSoEAFvLA005YLK1kuEvbFNvz5GFcwSNsCYcw8IwaqUkVOovE/Sc2QocMEa4asyY5UZcDsEy/hdJdp263uqR/pL3DPR1xiJeO9ITBKyIDUKfG4v/RUeq4IZLDXc+ZIb8a5EacP09AxXXbsLL7sRB0u7F1hY2EE2yjlweInjR86ycn6DU0+f5BN3L9ObbXP51Qe5/MpDeF+ilZ7QQUAUSZQPQUJWcf7USWaKghPLGbumUh6/7wgHr9zNjFGkgxE91UMWDEefOI1XmnaSQCqUNlDBxKR02l02NvpkZfASHGVrFIXF2xB3n6ZpPS+SjUL1ZQ9oFRJ2el+LTtY70OGY81SJ3xFROGKl5cBXUVlravEubqlqb3ilMDgQx4p0ycUwt7XFnr1TXH3tDaTiaC3u50MPP4EUJzg60rzv6SGFL/Eo9onl1q2M3uyIt59ymI7itk6IPGxB8MkQT1lYPnnv/Zx8+gkGwy2s8+SlJctzSlfSaXcYjEZsbmyxvr7FYDDkqSdPcqn2N0YCItIDlPd+M35/NfBvgD8Avg74sfj5+59Fb9Sbu2kXtQVOmcgJROofBbBx3Th/ITIAqCwLPlYFGnPCATlMaOarr4HFrpRLFf9QmezHdfE8eEfuFCZJ8D4G0Sgh2pxi4NKkayfNR8o4RnxcYkzqsflJ5QiTwB+vbdZJUI7UJLFGYAQAGX9uFwsKa9jYsJw68yQ7FjpsrA6wmWV+sYdvaRam5/A4pudnInM24vJrDnHoyhKTCK4MSG4wHICUNftPVISOS3SF78ZoTq0VXLXbsNYV5qZnKbItrrvqOlafPsma85wfjHjuNZczaxwnjp/EuGBpUTqh399kx+ICq2vrbG1ukbY0ttKfeCExCVX+vtQkdbJXVWQInjICqjEJ0kCqPoowoVpSQASJMXHtFaINSB78Di5NTBnrlxRoIbcpvtujmwo7duxix+IO5me6nLJTyJPnSPU6fWmx1p6n1GHcnXyNlZWzXH3NZRRT+9hsa4b+MZwyoYR8rM+glLCyep4TTx9hppuEGAznWOp00LpFoTQ7d+/k8JWHue6657C+vs7y6acvOfS/DSewC/i9uNgG+HXv/Z+KyEeB3xSRbwSOAm/6jD1JjCkX6sgosa4OwKjkLmdDwceKksdbqbKt1PoaIQR4VOGTSkV5lYjRLa52JwmFJfDB7IcXTHRVtb5ioSuxIXSnRXCuxHvPyDa5iyoHXHB3ldift2VgjysxwVWMT0MMqeMJfP3MutUYTGp5v5JChSqYREiMZnv134tXow0ms+mZGa66fj+jrQLRa5w+tczTT53lqhsOkcybMMyKM3IGrzVaJ6AErYPuo2dMTL8VgS4WHqkQnKu06sZgekBW0p2dYWNjFVSKz3PObI04tGuRHa0OZZ5z4tQmq0UZkJzSpF7odTugLN1umywrmJ6ZYnVtCxWLpOZFjist3kMrSeq16JYOK57SVVmk4z6Tmh6MFX1RX9NqtYLLsi3HzlqNdxIl+Mo8WAO/gC9wJFRmXFEGpzSpaaE8JEmKMhaTb5B0DWsWvNJhPbxjRMJ999zLzTdcza5ewlMOWl6i1UEH3YoNepblc2fpD/o4a1BAmii2+gXOCTsPXoGIJjVt2kmXLb1FXpYX2Qeh/Y2RgPf+SeDmixxfBj7vr92fc7Xshfch0W67izhf169XjTzr3rqI0QGJ9tsIzMGBQ4ea9BUysCF0taNBGUs/L8NOiCHZ3pUQmDlSFxbaWVur/CoxQHBoHLkILi+weUH5wF3o3i789ELY2CqYLL3WhDIlAkkCSqNMTGyhImw7H2XPSJ18xXr6MYdQIYaIC3xNaStKDyiHNkEUCKLOWMS50FFEQOV0eg5vS+Z3dplZaLO01GF6dgZLyGjjnKPMLK2WkOgEUUKSSvQ1CKx06aFK+KFqgPC1ldOpsJYOONtfx5hZulbQ7Q6WBK2FhdkZlteHZN5xqN3i/o11RKdYW5K0DFkUXdY3BnTbHYpigCsVRV5iY0GUKgLRe0VqdIW26YxyMuMDQo+TpZSqRT4lgrMxl0EUr5xzoaqveBCNOLC6yiAVELCICzkBpMrmA4rArmsnWHFhnkgpihHelXgveCtY52mbhC1SvNgwf9pQ5I7OVI/pKcOBuRZHV4ZRPA0ERyjBtRE8s1NzZAvzIFV5tJj5yStUGvQ0gZBZnHOsnF++JOw9MzwGRfBJMt7o9QavEk9IxcuNXQkkOHpUQnxVzFNcqCAUZGON1b4u9YwIubfBz7/bxZfBySg48xgimo1uqaFVmQZd9CYLjkQOr1W0BHpaRz/G1N4r2NjzBeQSzE8uArHzIEWBH2XRHg1CrBtvgjLUpgqfxLJiCGgfiX9ADuJi9EA8FvLNqXEsUeRwkiQovoIv+6Qo4Bt+BM45NtZGvO+vPoFRbZJWwvNffB0P3PMU8wuatdWc2+64ntGwz1NHTjAzvUCe52ytj5hfmKa0gsZz+OqDLO6ZQRsXwperSXNj/wSlQhIRSstWq0c+1aV4/H6GZo6k1eWxR9dpzfZQvR6HZjVH85ynN7OQIk23SNOUYZYzHGbB9z96VA9Hw1Aj1EmditF7h/OeNE3r8jGlL/E2+O6LMnF4DQLCGEkqEUbO0UpTEq1IS6HUhmDxUWOOwTM5t/GAw9fBZJ4QOm1MgtaaNG0Fj0UPqswxJqEUQ1lzd2B1gpteot2ZYvdsG788GD+HoBNBAtfgRNAmQYmtQ5VHWc5wlIMEMTUxCRLhpEkUtrdnBhKYkPOBWOHHRz9wE1NMlWVRF1GQivpohXc2XgteE/y9o+hey/9Rm+vE4NM2vixRNPIF+ACE3pVoEXA21hWILHVMO95SwQvMiSezjlIJh6enyBPDWh7cUl3MRCNEccak+ETwOm6YyiGFyG57QTIQsUEcGrlQutqNqY+vchGIxEpkEkWOqEfIginKGIMt7UQV2iolV4UMRBQLizN8weuez3CYYV3K/MI0tzzvarLhiN17LP3BiOnpGXbu9MzOd2i3NY8/dILNjT6SaBKXsra6wc59C1iX1XMMhMIXtU4gxtWLYVBscf/xZV68ewfG9ji/tcnc4X1IkdEablJmszx4+izapIxGW8zPzJAVOUorbBFk9CRtkSQt2u2E0hb40td7okI87Xa7Tu+gVUFpo9KvsvVXnJSMd1JFeDw+RBMqjUkSiqQdcxYEQAseg/G9arM2McmIQ2LpukrmsKXF6ARrHQqP8pC6Eq9TCgcQzZWisCrh/Kgkt7BvRxuOjPVIUpWnU8HdeWV1naeOnwZvQ2yD97S7HXbu2o02aUhq4oK/h7UlTzxx5JLg98xAAgBaRYw+VtpI3PRlQPOI1vgyLJiXMUsX3KsDNyDBTF2zzD7Kf5FtiBsy2n1JABs4gOg+UkVejbKMVqvDBMuNp6WElrMo6yizEu9hJSsZjEq8VvF5KjrZBK8yW8np9ftFH3Lvw1hVCHSq9RlGwOmQWMKOqXrluloVQ6lC1cRZEk9I2FEhyXrDj5WClfMQlKQtOHuq4MprDrGxsYYRz579C1ibU+aQtMNGWtjRRSTBe8Wtd8wiyjLMLGI1SUfHjdZ0rIpUq6GL0DrMbe4sZ4cj/MxhTL/P1Mwsx4+eZNfOReaWdvD+p0/z9KDEiKWdtNDakKYtsrygKILycTgcMTc3S3+wiUkTCmdx1sW9EN61laZIVR9SHLa0E9aSmmPx0brfOOZ9QGKVzqVUUTdCQGzVVvKRMwxu12O9Qm1FqJKjeE+70wnWCOcQ51BlRuHbFE5CUVhCpSsrmoFVjEY5vaSyi431QRLdlyPdCIjOeSTqIMq8jI5a4bfWGo/FWUv5jA8gqkQAVangmi9eLUhkskxSrcIYGPT4Hh/c58P37c+J3EAz+Q8ET6z6nBjW+gPOnLEcPjSDFRsNFtG2TEGRj3CjIQU5IkI/L9myUdMswYXWK1dzEOO88JVLCZFQSBxrY8A1f1+lqhpzA9J0XKrkA+fxymBaPuS7cwETVpvnQgQAYNhYWeHdf/Zuzp08wKOfOsdoZPnSN7+aE6fO8PEPf4oX3nk9933yGEUxYv+BPbzsVbfx4INH2FjbpNvrsXffNK2iw8ryGvNLS/SmErwLNnfnx4gL7YI+IU1Iy5R+XrAx8mhlmZltwbER03MdBl7x5GCEOE+uHdPtHlorRsOcwSgLgVESVJpFWWCtp4wl0ZwLRTdKqygQuq205kpKUgpyHC4mYg1UFeeCjF4x83F+NaBMCMzRrsDqQKkV4Cqi4gNX4qOrtMTzqASRKvYjJBe1tuT0mXPs2X0wxi1YeuJAd8hjSrVq33ut2MhGnF9eYbYtJFLlYgxcgLWOtK4y5eu8h7U44mN69IpQEPaWc55ed+aS4PfMQAJQm3QiLq25AR+PUR8LCMC0NLYsGxtOmrij3gRUvVSVeyqf720Zvio2GyWc6ZcMswC8lVLSRyAaWEcuCT4vsKMho3zITG+azCQhaWStKa4GoyaGMfnSjXdDGheMEQVNc2Eco2/6Q0STaqIcJpopVeVhGVuVoLOOLfAWFYtp3H7HHZw+9S6yc6ucOrXMQ/cf48jjp+l1LU89cYbp6VmKXT2WT29w/OhTHHtyna3hkP17hc7UHKdODdi1dy9f9fWvIs9drXsZqzQhSRN0mmA6bdbF8f6jRzAtYWfaZU0bepklTzSZMRgREm/J8gwV7fq9XpfRaBRkbmdDKfAY5ZmVBc6WQXdkAxZttyZ1AqV1Y1fwSjSsRxfnvdpvrjI8+2ANUSYEZkmw1wdz4sWWM+YV0DTe3QVOxBaIjn4ntiRpJZQqIUNAj1l+j2YzdyFjknO0Uo3KKnf6CvuM3eeD9WlM4WdmZ0ha7eDsFLMOO+fJ8pzXf+kbuPsD7+Ji7RmCBKqNXv+8EEAi619dE0pfRTQK9SICFd/cuB/qqJ0aOOvar/iIEbwEUcCpaUwChbXYMogQGkAUpUoppINK2jDK0NYF84IOHEUNBE1q6Fyt4wit2owyMcTx7qo4CJicFDd5fY34hLZJMVqBVkGb7atEm5VlRdW6Aa80C4s7eNPffw3tqVk+/wtfRWlHLC7u5JrrLuPmO3Zy2f5rePrYMk89eYLRaMTC4jwrq5u0Zgras9O0uo5Wq8vW1nmWCo/WCd4Ng8JK67HuJo7XIvSLAutLNrISk2i0W8cpw8c+9VjNsXil0M7jjGKYFSEmP/51TBIy5FhLK03xomm3O9jSsrm1hWcFgFaa1uyvSDCrhTyojcCiiAhUVdwDsHGdqopJohXaB87B1cFaQdDYbnqtUHhFMEJMsSdNEgb9PnmRh+xDRRlYdzR5JUZVPL54Nrzi6aePs3j5YVpG8Fkwn/sYzFXpqKZnZti5exdahXwH3vsA9ATLWEjLbllfW8NozbXXXcel2jMDCYiAMZHFgShcEf41qCsSVlNCuWxRYyCYAHqRmJorfveN59RUVMbdVo/0HhFP0urRSgu0CFqNs9CE0vJt1NwSym/iz2jyUYEkBifR5he5iYlxXyqxCdUlE5A9VpBOIDJP5ds+6YQEeGE6DUUmCoLZqxlRWEVEVs15C6Iw6QyjMqc9PY1zPfLSkXZ63HjzC7CF59qb5rjljucgCrJRwT/8tq/EecMoKzGqwCRw5ys2WVicI8uyCQVk5fasUBRFzsZGn1YrIdEJpVIYQgQcAiSGwnq0dzgHSgyZteAdWX9It9OJGn2Hci768BM13y6y3Q5ng4Kt3U5qnYSocLzaKi7G1gdmMSjzvI/af4gZogIga0LMQZ0kplqbihpHrrQiIDiPFoXzDu09lCVOLIsLi3Q73dozUWmPwwSrlwsYSkXudaRSzp1fI+8dx1sbS5mHLTLs95meTjHasP/gfjodob+1EVylWy3mFxY5ePAytvoDpnozbG31MSZhcWkxeF5eoj0zkEAF/Cqkg65ZnglubTJl85gzEGof/EoMCIIfEBEy0byCaph0GuJGRXWjsmdKKRYXFhGvwVcJGcKGSUhwug26x6ifkedDjIQ876OaDZ5k62sQr95JRRdE5AIEUN1dv29NYqqzagJ5SdQQzbeDI5WqnJtqS8CF/SsJzlNVf6HUeKU489jSx+HpOnU3KIoSoMQYj9DCOc/i0iJxZhE1NkMaFTadH3iGus/y8jKeklYrpdNuQztWzfUhjt8WkQq3grk08ZqitFh8cPcVA2WJVjELUFN5jMeVJUoXaDHoRFH64ByT51lc+2gVUNRKvQpY63Rh1hNCw2LsgE/JO1Mo57GVd2fU2QjRElDtjfHKhcBfb9FYnA85CRKjw5Q6QApK0diiAFcgWkI6MIGBbvHxRx7n5o4jK+eD8lgBuGB+lAIlGq2lph/tdov5HTvZsXM/87MLXHP1YUZDRz4asHquYHZ2iqOnqpi+C9szAwlUzVVKFYLMo8eRfL6qBrSdRW4KaIEfq7H8mAkYs93j6ubSEDtCB14Uvix51fWHmEmy4LsgWcjg6g1ew4uu38XsVIs/ec8Kn+hvsLKRMFhbQS8cQBkFXgW2rymd0HgmjBHWpVo17okN1ryfhmwbNvF0r4si6jCwDeRVPXJMwZQK11k7FhmaZrYxF1EBjzQ+q7mN7raqqb9ujDS69L7o9pt4z/vew/n146yfOVU7fXlaeC8oHaIfgxolZC1S0RSIjim6tEKLItHB9OpiwpdEK3pTPZQyZKMh+ShjttdidmqKPDrIjRC8K2sLQtgbLipxpdYdKBQFZSzrHXIp+FabqhaE+OCX4ZyNdqRxyjnnLMoLZSx7ZxFst4tWU4jdxCStwLI7hy9zDDrUJIguzFUWKZRilCQst2YpSRm5MC7jFbYoSVopQuB6kkTR6bSZnu6yY8cO5pd2kOeWzlQHow2PP3wfg60NNtfWeeFLX8T73v/+S263ZxYSAIQxF+C9Q7QZWwgqTxE/VuSMobt5rMIIMpbPZXITV0AU7O1qTKV9wtMnjnH0oft59Re/El/qeG8AlpXlVaR/hgNTGffaEevn+oxGA1Jrg8VOVGT/m8DbiE2vD09goElOZzuGkIscqxBiZL3TJNTE8zXwj8WBcV48mdBNVMig4hia0YYX9TKsEUHFNYz97sMQx/f4mH/vW7/lK7n8sn386tt+jcHqBs55ut0uL3rZ8ymdYMuStfUVOp0Wjz76Kc6dPYLzlsSk4BSLS3uYnlnAKc96tomgGIwGOG9ZXTlHaTOUKNqtWfbs2s0XvOZV7Nm5wJFzqwDkpQZd0EOTrW5g0wGSGERrjChUGsp+eWsxPqQTc9ZiRSjSbggsUjqofbwLZmxf7TdQMcuwjYlrxSo0GoPCG8GgMSbI6IUrKYsRLdNi6IMjkmvUrAgOrJrldJGpzgzGpHhrkCToQpQnWqhCyrLZuTmmpqfoTk2TtFosr5xh0B/xSH+DzbVl1leWuezQIc6dO8Phw4d577u5aHvmIIE4qXVOQB8n29oY2hkrtJZFI7OvHst21QZssOQ+hoZWHEKtMfdjBFEDZzzutfD+45tcVQxxqsCKxuNxyiEFPHo64+33LNM/fQ7nDOv5iNSnpK3e5Fi2KY4qtqSporhkuwi8j+dIGpmHKnHBMTc7HRTNldgz0cnkE0PCDdeQbbkI0G8f/rjHWpnmxy7dTQ4icD4htLjMFC+88xYOHNyJiCPLCpQorr7mKrxXOOvJsj6nj5/lrT/+cVbPPB086yQh0Snf8W3fxNXXXUvpy8Cmi0a8456P3sdP/9TbyIstlCiuv/0avvd7v5WpHUsYbAB+IFVTLFy5k1mTcv7sWR5/6JEg75sETEJ7ukeSpGxtbZG2OuRlwaBlEJMyQmOzIlokFKUtKKOvhzaCEaGTJHRMwoggnnqx5FmGcSXe5mhxaAl6GZ0YPBalAmB7p0NqM5GQVFUJSQmF6jHf6bITwyuf+wIW5rqgFe12K3Aj3jM/v0hpQ/Sn9bC5tcXs7BSrK+t8+KMf5fChfRy+5mquv+Fazpw+y6H9+y65ts8YJCCVjE9Q+NDIFCwiAfCj0sibSsnha6w89vyL5Ztq239g3WoKGVnZCtHgoeUV3cSgjcdohy2mkbkljCRIfIZ3IZW3JJqO6VDOHkS/9h9StnsUXrMqSSgiKYI4jxiFWB+qAOEjUNpIT1VIHRVdOSvHEqL9OvgDVGnIbRhkVaKsUkgpFYpSQngfHSiRTkKdvOpcsCoFrbaNz3OujGqUEAcggaTVAVO6ModRuUqroEyc0K6Dw2GdDo8WQvlyUbHibsj+65UlbXU4fPnliES5WAIgiQJv4MypDX7i3/8kjz76KVxZoBIN3pLbgp//uV/mm771H7G0axaj05jNSHHDjdfygz/0PXR7M6yvrrNz9wLTS0soUZTeMozZh1f7DrM6ZNCF3vQ83W6X9eVlyqxAa8Uw69OPTkMlG+ikxdCGJKssHCDNwQ828J0Z3MaAcjBEyhKnNUz12ExS8s0h4sGkiu7UFIPRgKwLKk2xZXhhi6cjQlmG9bKS4sTEVGaBs9LOM+3XuVZvceXcAf7dSxe4+roDFKM+VhuOPXSCpYNLvPfdH+HKQ5dz2aG9rK1tsr61GQq2CLQ7LXbs2s1ll1/Jjddfx759+9i5azdnTj3DYweMKOZVN1CASmFGYHNFdISBIDs1xWSpkkBW2YABb220H4YulAhahT8joEXRUoaOhtlWws7ZKa7YO8uOmRJVDCkGJefX1zjy1EYICvYe632QtwWu29fjh/bfSJmV9POcc/0tjh9f5uTmiNN5ytpI4a3HarDOBiTgLB4oY6iqeB9TYcVXxUWzExATp4LgfCgwqmLFoUqJ6QmJK1TkZJx2vP/BJ7lspsPsbJdOAt00ITUGoxXaO2am26BBGxWsHjZkwvUJ5NbW8nbAMUHutQA6bGAImm2JYlmJQQtRng3BX8qHYCiPxirPaM9e7rzl0qapqr0Q+IrmgaZz2+Mfh+/75r/2nnoRcLI3w/U3Xkm2tcLs4jzGKIpiyPzm7hBHEDeTqxTMFsTouE6eIu/T39xgkKSYlsLMzaCnukFBiSBJQmtmmrTbw1lHohy9zhSZ8niTEB3HKcuS4WjEVK9FWRZ4VzCqswBHhYh4tB2x9/TD3DA14n3vO8O+q2/j2hv2c/LECqfOr1AWjgeefIzRcIMnHzzJbc+/hnPDAXd/8AMcOHyQubl5jh49ztKOXew5cIjF3fuwhDoMR5968pJz9YxAApfvnOHnv/PVNOvNIaB0VGY5XwN5FdftXRUtGOTa6t6KTQ3icnC1NDE/gI5IIX7BKEhNyIt/9tw6y+sbnDx9mjLLWEgSdOnJixHnz59nbn4GJcJMp8XS0gy9Voc00WTZFsPlVfJ8SGtxH5aEteU+yfQcRRGi7HIHpS0pnKdwLvoeQFFYcmvJS8hLx6goKIqCUW6xgLWevLCUVihKR14UZHlOYUeUCKNCyL0it5AXlt/4xCbCZnBNlUYglbe0Uk2Cp6MVCZ6WOLoiJOIpXclUx5B0UtKWoZUmTHdbdLsJc1MJMz1Np23odFokqcKkCu0y2lrwhcKJwhhN6UMJL1uEqL97/vjPCWgjIB68q+3tVXafsrR89O6P8+M/9hMM8/WQ2dA7rI0muiIn0WnIUKQ1LuaSNK0WU3NLLO3cz+z8LpK0hU4Skk4aysiJpXQZiwKDxJFtDTjfH1CoFnq+jWgdzX8hNLy2KHlHaoPuyeVDcAMwCamKRWZMEnP+VYRBIYnBJ+B8TGbaauGTFBGFVhprPc568myEsgVtBUNXZcUe64YK0+aRnTdzevMk1zx0N8fOZTz3pst57NgRTp86y8Lu3SyvnODBe+5n52LCL/z8L3P8xGkKLIcOXc7CzCJ3n/oIl11xNa1Oj970HCvnllFS8slP3ntJ+HtGIAHB06YYUxVROAvlqABiWTCRUGI5arQrOdSFhIBU6Z6896ESTaUvdI6QYbqSVy3WFXTTHt12j0IbMnFkhWOq3eLy/fvpief8ufMUynH85CmeemiFm2+/nE4nRStDYtqB1dOKPGuxUlr27Fig12lTDEecPv04z7n8+aStbvA31wrROoame4xSmJoCjLkYiSAjTmI9vlgduVYqOrLRiKzfZ3p6mqQ9FUKSfR4i6jJHXioGRfAj99aR5wV5kZOVOaNSUVhDXgrrWclmUdIvHYPckuclWeEoC89omPP0MCM/63HHSnxRUpTgJMdJiWhYkoReu6TbFZK2Y+eMxrQ7KK2YThzTS9No5WkZMKrEOUNA4ZUVQiitI0lS9u7bw03XPY9zy8sMixEei3M52SjHIOzds5MizyisJysKCldgRXCkjAZ9ytGTOGsZ5iW5deSFx+UWypzR6nm8Lun1ukinFdFPpWsVSudjQpjohatUCL+1FmcLrEnRSlAqiaHKHus8RgJ3Wjob8kt4H1yaiwKnFNZ7TEjjjJbwVOscOjG0ei3WcgVplKMi1+t9Sd5JWO4c5OPi8K7He/7Rv+O5Vy3yDd/0ZnbMz6Pb1zPaWud//e6f8vSp43gK5hYXMTGQrnQlZZHT0oZTx4+za+cuzp5dYTgcXRL+nhFI4Pz5Vd72y78blHrOYq1HRGNMdPUMuaAxrTS6v2oGwyGdTqdm9Z33kT0ONlylVFCcVDKqUmSjER5NWQhJolEmULX9h3ZxxRX76LRTNjYGrA8GFIXFlY6ZTo/Me+bnp8nyIoju2tFqhYASqzxHHj7CR46fYDTMQ9GOcsSHH3iEdncumBfFkCSKqU5CSwliEkySgAsJLKwOsd+h6EkIQXUioAzd7hSiPDpGOiemDTqh01lHLGQ5KGOYnupijCYx1cYKZjXvHY4QXjvVS/ACabuF9oEhSowJps1UhYw81oEtkSRQcI/HWhs87LzgnMJ5KF2BKwjJSMuw6W1MlqLF46qk/HWhGIdSPng1Rg5NR0y9c3GOa3/iMNkoZ5Bl5GVBXhSMBiXOF+zeuxS4pqwkzy1FYbGuJM8G5DbE4zvryUYF1jr6gwFPPnGKo0+tU4yGZNmAMi/Yygu2RoPg9Z8XFM7Tmp9mkGhy8diWQafgVIqVAjn/NLJyDusF520UhwKqLgobCn56RW4LrAvrZY1gcsH1ErzSaNWiVJb19XP0N0oEz/SeJZbPddFpyDdR2pj/olCQW1yiGe68AZPC3nP3cNXl+5md6jK/MAta89KXv4T3ved9tFeEwhucDbUfSheiR7XAaLDBjh0LdLpj68+l2jMCCcwvzPDFb3op3ntSoyHmqjNa1dVpRSImVYLRhjzLSGIOgvELTtrCy6CFiemvPSsrqyjxzExP4ZzHliXDYcHG6pDlcyt478lGOYUb0m13yLOS6Zkprr5mF2mqGGWeza0hgyMZqTbgHdZaks4M8/tSNkcjNrIRowyyUmEHAYxyNySznswprFOhSqyzgW33INaiK8ZZPOLKmLkIEpG6EIh1FlTwTix0gkk8iQ1mFN1qkWhNomMWYKXReLwtUdW8lkFUStot0rSF8ZAAnSQNjjsCptsineqC8hitSZQJCSpUMHWlSchko40OIbdOIaknUapOO54kSQjA0cFJRqtgk1c+qDkTY/BGY1XI9CPKMT03w4z32DxD65AMVBKDbpngFagS8KoW8SrnpvDMEF1nyxBwIzrkHrRZUBh75/A26F0sJaV3YKGwwsg6hllOkRU8fPIc/+tDD3J+c50eQ04UOVlHMSoKvLQoo/JaJxqMYrrXZW6qi/WesgxxAloZkhbcurSbq/fsYWm0m6lWl3xTc2p5k43+LMnCTm5mL9IxGAVTiUflW+zqpcx2NceXV3j82BHOPHGWQz3F0t5F2t02Q5ez0JtlaccS7bTF4UMHePL4CXSsqhQs0ZWoBXPzs6StJCDeT2OTekYgARFBmxbgSdI0TKq1KJNglK4TdCQ6bAjnwKTt+v7KcypEFQaAcd5HBBL9vZ1jfn4Ba4OjCMpj2m2mW47ZxbnYh4BTGOM58vhJnnj8cbTWtNstTJICI3q9Fos7piIwBORz8KpduDKEtJbWorVhY2OTbqdDu5VSElKYSVRsWiolv8dbz9ZgEJJORKWbtyEnwrAosbHP0pZkeckgs2QU/PL7TvLIVhYokymQLBb+rLwMo1pKXDQqSMhPEF50iGIL7Rzaloi3wVuvQrhKSAlKVI0EFUpEUkaFstddn6GG55HuHlwHUkst7mil6UqKVmCUD4jJO1RpEWfD3CnQSpMkBqMcxjnEl5TliHZq6La6iNHoVhtjemgduQeToo2h3W6htdBqd9FJQpFndJIUiXkAWmkrpGA3JiRAdQ6tPUYFsUQpgnckQXfS1nDTwXkOL97E5tY6G+vrfKLb54MfXuf4YIBNHPlwiCstynu0MeQeNkUYjjISY2iLxieaK/bv5qtfeQsvvPkKdEtITIp3wbLjHCjjKLwJIgBBXNja3OKBBx9CEsPZmYwrSLjn5Fk6Hc30bJetzS1mxKCmQzKRvMyZmmrznKuv4MSpZbQal2gXgU4rpdtq0Wl14j57pocSAyZmf1WxqGdZAlUiBxFspPhC8M2uE1tKI7NvxRVUPgfRBm6tBRG00rGCYB0GEoExGO99pW33rgIhQtJOjTCOUQ5FJQ3OS+XRCaJxUuIJFGmqN4V1lrx00Y8s3BssDTFgyQsORdruhuSmSkdFcRh/j7BBPMQ0URbrPKku+Z27l0FneK+jbSGaVis/BKl8CiJyE/CqyrAULDDiHdgciiwgzrQVqC0ar/UE7QhqiSpRiifJh/ROP8nmZZdjyxZSKqR6JiCusuv7QJnwKGtDIhccysUkH5QYb0N6N1eSCCg3QpOhyi1UmaGkFda2LNG2wLiSVELuRqNUSEib5aRKocWSJiHFtlYak3ZQ2uALi0pSzNIeur0eDNdJEoO1DmNMyHmgDVmR4WzO5uY6g/4GZ9Y3yIsRrd48XhlGgwFZlpMS4hCyvGQ0yrGSI0nCVNri6CMn+eD8B1g/fYyZmVmStIMX6LTbtIxBUOhU0ep2USYkxhkOc/ICZqe7zM7MsbS4g4WlWWxhSbXikceO0NYzzL58gRTHnTfs4/SpY2wwT15MupaIgC1L7vrA+3n+C+/EliXWfg5yDP7vbCKCSZLawUULdFtpHYzirI1BgOPItNo3qAqb9dT+8NHZFaI861xY6EoHQ1VAwrPNx75CNEEfIV6HTRwpXKV8NKqimGEwEjGt1HqJqq8qmYhDYkUj5cOYlY6ymveNVN3Rb70qQAoUMT5cCAkohnkWzHG6SpbqCIXpaCRPaSqcwhgrV99qfvA24koJilUddADU3pk+ViRim3kyvpKHwguIwZtOQDASEFtU30+sbwizbaAVif8qN+KyDOsYrQhiHeIyvB2iu7N4ldalviulHtGBDDxiLRIz7Dhn8dkQc/IIfvEwdjjA+Bw7yPDDlHmt2HzwSdywjx/lJIXFWIdJNK2eJp1qISbB6i7DRFHaFi1n0b0OM72FoBy0Dt3pMj03y3y6MyDu4YA0SbEm4/333ssDn/woU6rLwq4dzMzMYod9zp87Q0+lnPWaQveYnu4yP9Viz4559u/fDR0YWkWSCNMLs/RX1kESlqYSCt+m1TWMtgryPMRVHHn8Ma694bl02h2cDRmndaLRJmXXrlDN2aJBnvGcgEStfhlYUmlEoyHbAJW4CJZm1pyL5dcHMMaM3XEvIhY13WUrrziJ+eQm+/a167AgF5yvPOeq5txk2qvmeCfGGjoYP3/b+1QchACokFq7lWgS03SoisBeAdEEXWDsxVi/65hi+xh8JVUNhJiVeQzwDYxbvV91rzZ1QpZwWsYYuqqey2SS1LrVFZmDo46vyycR/BWqa4zBYgjZSoOprXIrkyoip3p3G13LESTtwPQCMrWIa01TaB0jETUrziPXvTS4+uKjHwSowoIvgsOS9XjlWdxaQ49OM8yGSO4D0orMJguGXPcZ2a1Q+l0E3ypooznTnWWUbXDLYpdrb34OV1x1BcVoyF/9xbt54OFjPLTzRrbmdwTz7cDRe9qxZ22FnR95BEm6bPQUm3Yv1yqLco7FQwfZs/sACIzygoceO8rK2ml277uSTBxpr8Oov8rle6bpaI02La698Sa0MRituf6aa3n4wYcuBACeIUigAq46XTVjIKkKYQak4Ovj29v2Yhuh32bYJxcgkqo1w25rhEBVjbjO0TNGGI0NXQNrDMJpPrNCAtsLhW6/d/v37dc0x2SMoZ2aUGCD4far48c41Fhq8UDq7Ma112FFjaPoM45srPqoB1HNznjOIIgM2kQurYEAqmxKtfemUIWA192oGPlZZTxSuv4NKgRLeoOIGdvSpTGWyku05u6qfRPrBrvAEVDG6DsXg55USC2vLISUbgHZKRFsaoAU2iFewKewdt866dYmnV27GJWefDTEWxsqLumgrN7c2sKXjpk0mEXPnDnH1pXPo0uLgpxRXpIVOe2pHt3DV/NIf4H1gcJLD6+g0LAlwpkhmON92DON7S6gZtvs6p8FZ5luTzOVmuB7kKQsb5WMyjY3P/f5rA9WOXv8GDNdw9xUi1YrFF+x3tMyCpxl3949F91f8AxBAt4TEyPa8b6MQFdlxRm3EP+t1Dgcts7A36B0wWcgbMKmf7t1oZJwsBhEihM9+EINuzgAiUknVRVAdCHyqPrcDsDVsWaAzvYCp03u47Py3/fBYUohiLhQYyCmuApAIGPkWc9hBZzUVBeRen4DObXhe42oZAKwJq5vNEFwooIAE6BojADiMc92xFnLcA18EgU3BVhbB9NUiKjmRrxrIKNqTprzJyGHfxRz8IIXE2RLF7kEnYR58kFRqqRKGhp1PUrGLtwi6LwIdQN606g0Ie22SKe7MQmsxYnQnu4hrVZ0o1Z0tKe9Y4ktSXC6i0rX6KYduklK23SgM0/e9fjRCmLLMGYVS9hJTNGuNDr3Idgpy8iLICqVoklFEGWwusdKNuDP3v9hDu+d5vEHHgCB22+/gztfcAfD3GLzkvObW/zVu+7iioPPcCRQFgXnT59hfmmOD931SQ4e2MOByw6AeD51/+Ps2bfE9GyPRBlWzm/hXcH03AweR5FZkraQtJJQJBOHVyWKNp6cRHfJy63g7OGC1G0UuFJTuBFpkpLlGaJVqGFnA+CHbOAW60PO92CeiopE51AYvJQgCTSQUKUTcExyCRcTBWC8iS/FFVR6iHA8ekxqRUtHiieheEWtEwhXjqlu3OaTrTIZuapTqqSslT5jAvhrCaNiK4JbbbAdOEKm5grgw/mqNkEAch8SiDTEkEDxx1yHMH7PethVoFTzRD1XMq5R6WlcF58pnhRPrhzYkHHJ1+bmKkknNeIKcRSOKjeFE0ClQCicoo0BpWOi2vEcFGV1D3hrsaIwKArVIhEfE9+GjMciHuUEcQUejTcK78eESwCmF1H9jF7/NN38HIkfkrTaJCrEcIjXKFEkOw/Rmp0jKzNW1zZChGJuyfMQ//LEo4/x+GNPsLa6wrnTJymHG1yqPSOQQJ4XnHj6PBubG7zvLx7g4OWP8Y3/6Bt4+JGn+IPf/iDX3XyAL3rjq+i0PX/6Pz/O+eVTvO5LX8rZU+d559t/jxe+9Hl8xde9Hrzmw3c/QDbM+OD772F1ZcRoWPJlX3Urjz+yws5dcwxGIZvtwkKH62+5jvvuOcLNt13OmdPreO/Zu7tLf2PA5lafRLUxxGq8cb8ZbbBlHxITMto0XJqNjq6zUf43Zjy925FAs11KXKju03X225h9WKROmTjmhSPQbU9ZFjqJn43AqQqolYrJSdW4j9ryMpbbx32M70Mn4X5VucBWwwkm3SpbXw2lzXefQDaCt27cN9UtMY7CTyIyXwGir3CSnxxnxUkCiAuIUgf9iUhMhFqJTBVSBhBdryXE6kneoXTIG11GxOVjBiGlI1JQUd8ggcigBZe2EFtQFvDJ+x4gR/P8229B0iSot5UZj6HWthb49jxJDt6eYebco7TnWnhb4JSQe0dbBKvAt9rkozUMsDYsOXTZVbSxnD55gnvvuZ/Zxd1cc/1zeOKxozx0/6c4dGDuknvsGYEEyiJn+fgKW+uOl73iOew9tINRPqS/tUWWnWNrqxdcOC0cPfowZ0+fpd1+KWWec+01+7n11qvodIQidwz7m7z9v/8mizsMo0HCgYMHWFyc4hf/8jfpTSU8/4XPZfnMBn/88KPs3X8F+/cucdcH7mJ6us2jjzzF53/BC/nI3fdx823PYXZhB4UvIjUuKYqSB+97gocfeJKrrz3AF7/xZeSFo8qErJQCrYNF4rNg8S+lzGy2ca5CPwYGqbd4lASqzRxk4nCiAr4KeJs8fnU+5mansgxoquSqrmK1GXfRVGAGK2kCqqoAXIkX4Rkhk7I0HrmNqkvjewW8SjeCvyKiiZxFY9Imfzf7aM6bBF+L7fdP6JNqhDF+t3qo1Xs4h0qIrukSdRESszfHoce18Z5oAA1IytkC01XccON1XH/T9SQmAL5DEKVjAFljjnyKkFPkqxSPfZCjWxtcMXsASdoIwctYO4t2MF30WRhtsnx+hQ2dsLKxSbFyhq5JKKznq77+6+nNzHLzrTfy5KP3MtNJuVS7NAn6P9icc3z043ezY2ePuz90D08+cYrSluQji6bFiWPLWFsi4tm99zAHLzvAxz54Hw9+6nFWVi333/8Ud73/sZCwotNlZrqDUiXdbsKuvT3m53Zw3Y0H0Vpz9VVXkheOO192B53uHLt27SHPS5Rk4OCmm6/nOddfyQtfchtZluN8QYA6V+uzvuqrX8511x7G+yK6K1c2b6mLblxMebld+7/dEnCxdlHuYYKYR12AV0S+fhtCqCh7vdsj615R/gj8SoFEb80YtjxGLtVz42avazwavNJjwGkUSKlFiAqYq79mLsZIvSfTxqnxPfVn9V0a70fjnm3HqjmSWAKuglbvG4pRPnMfBBd0Hc+p+H5SE++YjCVWXFJQpz4LDnAGbRI6vW5tpRJpzAOy7dkOV/bxTzyAP32cYjQK+opY0MRoUycXWXAD5mwfUwzJspz1XCjSOcSkHLjsIJ1um3xk6fY6HDx4kFbrGZ5jcG5hnu/7V99KmnS56oYbEQxKO577vCu5/vqDoCwKxTDz/P1veCXWeUo7wpYl/U0b8gCkPUSVXHPTFbzlR76N8+dW2dgYMhqMmJ2b481f86U8+fg5Dl99Na2pWW648SoefOAJ3v3nd/OVf/+L6A83mZk/yVbfMr+wSJS+USicL/HOhDJVo4yf++k/4ZWvvokrrj0QAbTA+xjyKxZlFK5UeAqqzMJKKrkvUD3nQVQZioxUVF3GFgkYIxLvbfweqHSqJFSvEQGx+IniH2O5eEIGvwDPRCShAG/GPgGA9xcCVMWBVETVO8FGy02ojlRFgEYgU9XWUvHZjkkuoIKkbQCppKncCE1HS0NTwVgjjOYrV+bKcNCJG89FU/wYKzkmAL8aVvVLotJUx8Sx1Xo4F+pahnd2tWVEvEXQ4KP+oSwwWqO8CbEBhNwUygWTaNMPQ5yDUR9OPYasHMEPN0hmd4EqCeXuBevykE9Dwex0ykbWZnqrxWamQVIKV6CmWqRTbQSh3W5jkhazc4vk/bXtG6BunxEJiMjbgC8Eznrvb4jHFoB3ApcBTwFv8t6vSti9PwW8DhgAX++9v+czPaMsSj7+oSdYOX+OqTmD9ymHL5/m9Ikhp05ukY0y5uamKcoBN9x0DQev3Msn7zrCVKfF/MISTzx2hLm5afprM+zZu4sT53LKXHPowH527l5Aqy7d3ojbX7AL50v2H9qFSVJuvOkKbn3elVhvyQvhttufh9EFN996JWfPrqKVCX7+hLqD2iiuveEyrrpmJzfceC1KPN2OoigNSkMxEpTukkqOVp4sK+pp9rHWfSCiCUiJLVPAYXSsWCQywUFcaDmQGg7KqohppQ+ob5pYvaqjiyCB6vyY2obeZPLeCXl87MjkEUQl4bRqyOTV82AM5Nt1kxUgTvTdZNP9Bbhhot8a8BvAXfUhKhZAkcbry7b3aiCBybedeI53ZR00FAqUqolKPj5eO5nFqUJOwd09eOvFZC5RZPD12hE4k7KAfIisnoGVM/il3XD4KuzBKynKs6RW45SvrQkeT6fTopW0xjmkDHRajp2zXVIdIh7nl+bw3mKSJORYvET7bDiBXwZ+Gnh749hbgHd5739MRN4Sf/8A8Frgqvj3fODn4uenbXlW8iv/9Tc5fMUSUzOz5HnBx+/SdNstXvLKW3nwwWNcf/Mu/ut//DNe90UvQEnCB/7yfvbuazEz3+XIE6f5gtfcybv//C5uff5l/Navv4/9+/aw60CLPfuu5oqr9/Gz/9/vYXTB4ct38ad//G6+5utez2BrjTNn1+lNLfD+936M62+4ioOHd7K5ucnRI0NuvmNHKMXtK5NiyBD9sbsfo5VMs7K8TJ4V3HLzYZ584iw33HKIpx5fYWlpgc2tDeYXpylKT7dX4qygTIHWrWC/9hajFIULcrd3F5oKt/s11LovpSitw9cJSGJrAntNHRsset2aSjvChaqq5LsNQJqUsinKKInh0Tpo0muK20AEFVdQjydcU10e0nRXJ5ufMJZUfUQKAbjGJsexUrGpe6zernqeCGPRYizwh3Fsx0ONJpWy0jmU6HHtSMaFVcZiWqUPoC4p5lEh8KuyDMX7PBLWH1UXapV8BMMNyDcAC/uvRu86RLGwRHlqHUzwJB2NMnppGyVCmhh6LcXOxTar64pNM81ix3D13gV6aSv6rZT1vsmy7MKXjO0zIgHv/ftE5LJth78YeHn8/ivAewhI4IuBt/uwm+8WkTkR2eO9v3S+Y8JC7Nq7RLe3jxufu5eTx8/wZ390H1dcOQu+YH5+lpm5JZSeZnF+B2sbm2AVM1NzbKye48nHjuNfo1hd3+L97/0USqUoZVmc38eoP2T93BZf9IV38qEPPMD66jlmZ2bJ8y3e/e67yEaK5995M4tz07zhS5/Pv//Rt9Ob6vDGr3g9Z86uRl+DsHzOeh584EnaaZvfeeefoKTk7rvu4+u+4XX88R9+iNvvuJ5HP3WGF7/8Gn77d/6Mr/vGL+epIyfRKB575CQ7d+3CYzlx6gxv/LLn89u/8W5e/brX8srX3UxeOrbrEZrmw6apEFEhr0JTho7KqNpsIIyPVfL0dlm4gSh8zQtXrH3DLl+JJduouVIGK5oQv1GfGJv24nXbH+qr66rzNXA2lXzbqL5q3C2N+6s+quvqeaqorovFQpsITsVhVdjjomwSYkuqIqOBCxvnqayAS4BxZXk15g7iPTX+FfDeIT7kORCn8WUORYHPh4gPbuBJu4db2oN059E6JRVFAeA1STeNz3YoHPOdFl0zw4ncsmlbeDfCFnlMviqkOgmmw9Je4KfSbH9TncCuBmCfBnbF7/uApxvXHY/HLkACIvLNwDcD7Ni5m6/6hi9iNNTs2t1jdm6BpaW99HotejMzHOwsonSbm2+/iqwswUO7DVubGQs79rO0c4P+YIuDB/dj3RZpOkM2GHL6zDJPHz3B2vnDnD+/TOlyuuk8r/uia3nurYf4y7/4EFdcvZfSwup6zqmzW/R60yTJiAMHd3D69Dq44B8gxHRh3rN33w6OHztFWYYc8O1Oi053lqTV44qrLke1Qh4DbEk22OL0sQ0+/wteyNrGJnd94JMc2HeAJx57ins/8TFe/Io7kBhOi4tlsC/KCzc4SHG4wkXAkMgPXIycNRWCMEH6JJ53Em341TUV8ok/at1COD3/2LuZkRxV5IgrcBuPxupRTc7ib9IuJQL4BlLY/oxJ7mayL4dkQ3z/ccYKUpm8/ALRqTk3ghQjSDK6ZYnvl3SdjHUT3qPXRugtM77fe7SCjoPp/l2w59oQ9xJ1PRqP9SVSFngtYAuwRdAHiCBpGyUtfNrFpy28EqxKMF4jKgSfhUxbUBQhecr6VknuNYjHaiGzRJHNxbycjlE2ovxcBhB5772I/LVX33v/C8AvAFx7/fX+0OE9KBUSVyztnKf9Aks2gLQjWBvq6335m2+jLDxp2uM7fuBNeFJQhle/9gWISXjuHRpxhtyuU4wcxkCWlbQ7hsFghNYGj6bdDUmh/+m/+CckqceVwvPuWGHXnmm++/u/gbIckqQ9tPE4F3L9ISFN2aGDu3nPn3+KF9x5I2urOb3eDnq9Gb7je7+CdrfNf/nJP+T6267n6ufcyNrGkHZ7mmE+YHOQMbvQZv/BnTzx6FPcfufLuPq6GzCJCcrBuMB1SrWaq26w4BJYSe89wyJSpZjqaoLlr5Vf1fcmIFULQOMaopxRUTl3YR+x7xkp+Prv/CfobIj4AteZiQhokmu4WPu0aCI6zFwI4w2RZeJdGuNvvlSth7DIYAvfm0KkEnW231OJL9v6qawBo014+lPM9Fq4JMFGFt67ECxmWiHEvHqk4EmUUDjPf/qld7BFTLwa9S0qOkUZ64MeJXIaXilQbZTRuNEW7thR0u5ZdLuFthv4pAw63EIjSawupTSn1zZ48tQpVs0ufLfHxiDjxDrslhbKJMGj01pG2ZCizC+5Ln9TJHCmYvNFZA9wNh4/ARxoXLc/Hvu0TWvNXe8+wn2fvB/R59m/9yoOXbaDez7+KF/9D76At/3cuzl4uMvxpzaYnnXcfMt1fPwjj3Hoij1kw4zNlQHX3HKQ2190I5/82GM89ODj3HTjNTx99BjawK13XMMTD68yMx9ClIu8IM+HXH3tFczMzYMvKa1ia2uVHTuW0LrHow+fxCTUyT28D5GIBw4u8a9+/E0sn91ieqZHr/cSzp/fpNXpgSje+rPfQlGMeOGdd1C6DKMTBoM+oj1Gt3nBnbey1d9gaecUB684RLfTCR5gRjPKRzinana2as0AJRFBI2yWHqFRQOMCJNBsFaWO3wGR4KYquip+4S+EqWa7iB0eLxfK1E0RQqJLcCVOfKaN8LdtEbE1aHoth1/6hm1iR/NsdABSSkJFYj8WZioc6if62obB4s+QsCVwEeI8lDZGVProdKXBJHiTYOd2gRLy0iPFEJcrsOBsiZhg2nV4hnnJxmBEXnqcUqjSYocD3HwbgxBcGzzKGNqtNq20xaXa3xQJ/AHwdcCPxc/fbxz/dhF5B0EhuP6Z9AHVfF1z4wK/8esfxtoVFudTfv937uPKa/by+EOPcdONu3jt6+/gB7/vVzhy5FG+5ItezH//2UdZXT1J1k9YXj2OTYbcfucNnDu5QrY15A9+73cZbngcIxYWWjz20ClOnznLzEyPPLO8+gtvJE07iCSMhn3e+5cf42MffogDBxa57bbr+PO/eA8vf/XN1AkDhKiMS3j66Cn+zT97B7fdfohua4l7PvkJvv173szBy3dx7Mh53vsXH2dhaYFXve5m+n3PT//ku/iSL7udP/+zd/Mlb7yT++97gpnZFt6mTE1bpqbXOPLk07zkFc+PUcHR9FSbCCfz++M8W5aQiNOHykkTkznx6S9AClJRQB9TtjuHb3g3UnMf4eqL+TxU4DAGCWk+sXHVZ1z6C1QCl2yfhssY9xaAvtYAeLnA4rj9+omxbFOg1m/ox1zKpbQIFcLzqMgZVFmP3NifRMdqTyK1cxZKB0SgDJgOXpVo04ZOF2dP4FGUrkQkmCdLZ9kcDihKhysdJB7KgrZYZttttJZgHpXo9SjC6vLKJWftszER/gZBCbgkIseBf0kA/t8UkW8EjgJvipf/McE8+DjBRPgPPlP/1bQevOwg1990M3MznrmFeaxf+/+p++84yY7rvBv/VtUNnaYnz2zOEcAiB5LIIAhmgkmkKFE5J0uyZEuyLJmiLdmvopWo7JciLYoURYk5k2ICiQwQeQFsTrOTZzreUFW/P6pud8/ugtT72q8/+7sfYGem+/btG6pOnfOc5zyH0ydWuPSA4ZFHn6WTZHSzLuOTm3j8yZMMjUXsv3QHD9x3ivpYnUC53vCrrSbt5gJKxiTpAmmqieOYvZdt5mv3PMgtt1zLmeUGn/ro17j9FSV27d9OY6WDsjW+53vv5JGHnuWD7/8ESd701+/FP61FypBWo8MnP/NNXvSSncRBwr333s8b3vwyzpyZYcv2afIk4ezMUZwOgeXQ88+h85N846s5rWXN1778NU6dmkVRY+fOjXzyw88xNhlQqVW59aU3+HJX0atKHMxNgwtvVrI2qTEun1+k03qj8oXc3v4sK3IDSFz/PeNLc61wiP0FR7gYPBpFcVCPPejPoefEDE6mwfTheU++/++aL7jgH4Nr/NqDrIUlLPd9/IPc95G/Y/Hsaf7d332ByvCY29VaPv2Xv81zD95DGJd4/c+/k/W79oOFRz7/Ub76gb8G4Obv/BGuesnN5GnGn/3eH7O0tMSLX3oXL7r9TgTwT3/7P7jxZa9g256952QL+ldkTIb2LeGttQjlOkILq10DXhV4opYzBtZ1jwEpMCbFBpJcumKlwLqwT1tDnuVONs53uzI2R5gcVOx0DwOnb4hQWJOg85xS6YUZg/+a7MDbXuCtl15gXwv81Lc75rmbMRBG8G9+4e1YnaC15PaX3UpAGVVSjE6uZ3ysxs49exgeg24n4w3fcRfaJNz1mi2sWx/RbVmsCZneOEpjZYiXveZ2zp45S6edEAQRGzePcfvLXsx1Nxzg619+ltVlwac/+jCvieps3z5Japb5xEePs3NvlVfffTtfvefLCBE6tNmZAYzJmZ9bZmIq4oGHniM0CSoSPPfMcTbtGOH4sVny3OExzz93goX5FVQg6bQFq8stojAgUAKrBUeOHOHKK7cShhJjUtotQRSGdLIuQhiM6WMD/UIkqNVqVEKnnWg8+U4YP3mLCjgfHqwpRDo3DVdQdbFe/170Vq+16cNz9y+Q8aJ5yuB3DGznZBZeyBAYnfV0JN1+A79ccAUfxDXWOuO9t61g8/4r2HPgat79n//tms88/+DXWDx9nJ/5q49y6uDjfOJPf5Mf/oP/Saexwpf//i/40T/8e0Dylz/7VvYduILjTz/Jjj17uO3uN/En7/xPvOiOl3L62FGMNWzavqN/RueGYMJhBEEQ9LUxrJPFEdY4MpHsU7VRBUsTQGGlBQIXcvkeFQaDwsm+BQI63Q4on3yUEh2UyIWjJJdC317NWLI0o1wqX+hmAhcJY3B5scX8TINHHnqOF994GUoJ5uda7NpX5czpFfZfvhVMiXWbXVNHhGD3fomUAcZqrNEuz47lxTddzotvvBIpLVt3bWFQAOT1b72LICgxvXGKpLPCkeebbNg4TKlS5s3fdQd5JohLEdIK9l2+haefPgEUIiIurTQ6Uefqa7ex/6rtDNeqaAyrC01aLZifabFtZ51Xve42zpxqImWJ3Xs2c8crbmDX7o088djzHLhyOxu2nEXf5OC0l9y+n2q1xMzMHGmWoWTkMQiH5rqWYcU1aLK8Q65cK2+X/8YzzzyJRUDR5mfNFBkE+wrnwRQfEBRiImJNaIH/7t5RBjbndC+ePc3//LUfZ8OuSzhz6Gkmt+zkDb/wm4TlCqefe5LP/uXvkHbbVOqj3P3z72RobJJ3//IPsW7HXo4/+QiX3foKhifX8eW//wukVMSVKj/w2/83eZrwiT/9TU4/9xRSKV7+w7/I9iuu45HPfYSD932ZLOmyNHOCfS++g5f9wM/1ztVbMtbv3Ie4QOXcM/d9mcvveC1CCDbtu5xuq0FjcY6jjz3IjqteRHloGIFgx1Uv5rlH7qMSKLI0xXgRU2vhcx/+EK//nh86b+Jb6+oGehiExxAsnmci/DMQ0nsBwQAtuqBW+/et8WAirqhJOH2ASLpK2ShUaAwqihA2ABViVYjGIpQiDELXkdtCN0nJsotcWSjNWnzwvZ9nYfkE5ciytLDE5z7zCL/4q2/nd/+vv+bX/vPPMDoZIEyAa4nddQuL8W3GZAQ2w+gccCq3xhqCKEBrkCrD5IowctLUlXKJarnK+lsgSZ1eQbU8ia12nEquFIyMj2PNKRAaY3VPpqxSCwnDCfbuLbsOQVaxeUvOwvwSQ7URwkgyPDzEpZfHaOM+e/srrkHnkp37ttHtZmzduY3cZggRgbaEoUGJiFY39foJzuUd1CUwXmwjDCO6aUaqwXpwqbfK91D8CyyhvQHrDQcOpFII8p4hEL39zj1Cob9YeBhq4CMLJ49y98+9k82XXslHfv/XeeATH+BFr387n/qz/8p3/vofUR0e5Ykvf5ovvuePufvn3gmAzjK/6lr+7CffzNvf+S7qE9N0G27i3v/xD4AQ/OS7/pG5E0d476/9BD/zVx8BATNHDvJjf/R+gijiT37k9Vz/2rcxPDHNC6IRPVKRpbEwy/Dkut711SemaSzMutcn1vU+MjwxTWNxjgPXXMnTjz7IH/3Gf+SWV72GZx59mA1btjE8Ntb7lsF7Zaxxq3vvq0X/kRShHVDQyXtGQBa/e8+AYv9C2k0gVeDQDpMTRyFWG8IwBBtAEKBMRBjGCBX4zlcOQ0rS/BzcaO12URgBayQzZ49y9TU7eeD+x3nmmedZnl/lY//0eWZOrdJstBifGsKQI3GNG7ECW8iBWtevL1DKpfSM53N78RFXXOO78SiBtIJMp2Rtp/GPEAiZomSMV8hAyQBt1hJ4RFGQIpsEqoSVGcJIDCGTU5NOydgahAjJjVvJrZWY3J1Lu52hpCTLLLlRWJs6sEcHuGIk7dM//RoCp1DkyohdJYMkTbWrQCtYhD2+ve1N1LVbHyfohwiuHl8rAd1ikvdJQ8XAc6sSA8d14YIEz4yD+uQ6tlx6JRbB5Xe8mvs++j52XXsTs0ef572/+qP+GWtqoxO9U7n01pf3ft98yZV85A9+nUtuuov9N74UrOXEU49w/WvfhgUmNm9nZGo9CyePgxVsv+IGStU6AJNbdrAye2ZgAg+EL/9PEMpzdrUAxqBUwPf/1M/QMQKda/76d36L7/3pn+fjf/9eVpeWuP62Ozhw7fXucwKElX16cJFyBZcVUJ41aI3LyhRMRiHwUqx9Yy28kpZVvbMSVoF0hUmVuEQQSIKwjDCO0WhzTdbtEknH5FShE57Nsq5vVHvh7aIwAlIpbnvZi3nskee48bar2HfJHh596BC3vfQqZs4uUSqVESikDLEm956tV/XB5V+N8H30iqaYOJ0/a7R3jQ3WKhc6CKdEq60ThhA4so3sOXJ91WKjnbdRbKIQ5BAgUFhR9OcrrL7y51UUnHiFXuH559IVD8mCWurjciHcFC8SXOfWEQBeMNUZAackhGs8qqBHiHnBbSB2twWab72aDv3J7o0LAwN0zccLXGDgd9Fb6opdHSI+tXUnP/QHfzdwDn20PSqVe/H7a37m1zj59GM898BX+MuffZv3EM477d4WhP2KOCFdLry3nwcGXXF0n+xbnPvQ+BQrczO9z6/On2VofIqhiSmOPf4QBRaxOn+WbUXM76/zG1/8HFfdeDPHjjxPqVzm7u/5fv78t97ZMwJrMgkDMZTx5KIiu2MZuL++xqEHqA5csPH6BaJY0ITqkbiK1nyBihCm6BJtyHVOblzhk/XHSNMugX3h2oGLopR4amqMl77iRn7ul7+HF910Ja987c388ju+iyuuvZxf+82fYf2mCRer2hzEWs3AYuvJefnctBSuw41rAeVLff2Edw9i7TaoRbimfFdwwe/7125OFEQNCKf2j7+mlTdrxUUGNRPdvgqlAsDSTnTvc67T76ArLwaOeO7JQCHF1l/Z9TkTbeBYfafhvOMYax2JCsvK7BmOP/0oAI9/6ZNsvvQqJjbtoLWyxAn/us4zZo893z+Y9RPAwuLpE2zad4Db3/6TVIdHWZ2bYculV/PYlz4JCBZOHmNldobxTdu+1Z3uGfDilJUYYAj4X/becCuPffHjWGs58cxjxNUaQ+OT7LrmJRx6+Ot0mqt0Gqscfvjr7DpwdW+RabdbPPXow1z1kptJ09Sv3oIsTdecQ2/zTpkxnmEoRR8tsPTLt5UDB0WhsTi4SR/sFYK1+M5O3iMVQqJ8sx4s5HmGHgjZiqNlWfb/CW34f+vm+tIlCFsCoRE+4My1ICr58SqclrqQqjdZpNdmK7ae4u9g4Urx3sCEct/ZNwQ9WbCBv3t/rQHHB1bnc/Yvjln8PTiJB8uDGXivf/2WAsgbPKd+zUBxLAnkNLqZF66wKAuBzcmEV+Utzvk8JpxYaxusBwuNK3vp1w1cIJ6w/UO4H7582LjnML5pGw987P189A9+ncktO7nu1W9FhSFv+dXf51N//l9JWk2M1tzw+rcztXVX/6D+fn3ub36fxdPHsday/crrmd6xl4nNO/jEn/4X/uwn3oRUirt//p2+Acy325wRvO9j7+dr//ReGstL/NlPfwe7r72Ju3/2P7Hnupt5/sGv8Uc//FrCuMTdP/8bAJSHRrjlbT/GX/2sS4bd8t0/TrlaQyyvIqXk8x/+EHe89vVIKdlz2QHu/eLn+J1f/rfc9LJXrLlF7ne/ulsIvN6CGWBECiFdGm9AU2CNdkORqZHKe6O56zlhtStmsq6K1FJILEgKIxhJNeC0Ce8JpNjwYscErGV1qUu5bEnTDGMkcVkTKEWSZJRLzsWO45hONyOMBFZbhLRepNbF9tb4XncIrHWVWq7pjmtKarRrlWUxGO16thn//VKoXmsroLdy28I9ppiIMLjaFp7FC0mHFceCwtO2PpZfa0QGWYLnTn73PW4A5UYgdUJNJYQyZ0eYsD7UHEyqnNA1jHX15t9+c0bFCttbhdaoGA0aggtdljeKP/jkl/h80uKxW66FW6517z36if5+b3rt2s/d+yHe8cZXw9JBuP8gAO+46+a1+zzwYQD+y41XwY1XudeSk3D/SRgGrtkH9/+T++yr7oDuCbi/X7KyHFf449d+Jy9+6SvRtXGvbWB6K+Srf+o/9K7B3Vm3Ql991xu4+uVvcBcsLMwe89id5HXf/X2Ao21HYcyP/MKvEJVKyKJJy4C3WIwRIXDpT+tA5TAQPbFY6zUKerjLeWEXIIXPHorewiQRvu9g4dNZCkyhFAZEShGgHGCIQOc5eZ5j1EUuKqLzlN9953vZsWsDjdWcdneRHdt3MToxxGMPP8OBK7ZTr9fZsXeM559b5JZbr+TjH/0XJibKnDzZ5mWvvJ6vfOkZbr51Nw984xBxbDhwxXbOzmRs2FInCHOOHFpg7+71nJ6ZJSzHlMIKQWAp12torZHCtQwPghiE6QNz9C20q0grVkofr0nLhShp52sB+Hpy98I5nkAx8fpYwKAHIZxfiZSS1AjGbJtbaic5juT7JmZpdupMiSYf7JRJjXuka6mya8/P+pXGrT6+LVuRQizcLnv+5wY/L3xWop52masM844Xv7n3vgT2xF2mwoTnujFlK9HCMJuHbC+3WUwDKiKjHliea8d0CJkMUjpaUFWGpdyp9jbzgBxfwfftNAaKlRbLO+7/MJ6356aJKHCdQePdDx/cRNJY6/pLChH4XpEZQggCHzv1nqe1ax/5Gr6CHTAukBkQVvtWbs46B8V+4lzc5dz73y8Nk/57hDVkucuCgQKTOmOBpBQpolj1FhungwB5msHFrizU6Xa46dZLGK5PM7t4koVZePKxwwRhi5tvuZKnnnwKqSyf+uRZ9uzfx223HeALn/kqKmxz+hjs2T3FR//p02zeGvHnf/L3hFGDX/qVn+Z/vufjfNfbX8GTjx3n4LPPctvtl/GFz36d6150FY8/epKFxTO85bvv5oqr9lIfq/tGHB5AEf0HXzD33AQ9t17v/LAAGNjfXuD9vsstBjCOYpAOeiPGa+654a2JY8WsiNlfahFkkroIeHeryuWhINQJiXIFSf2vEP2fg6csRE9tV8hChmsgHLjQ/B/0dHytwbaREX7qzz/SV/GxFmlhe5wR2JwrSl2sCtAGgmbMrjjhrDRgNNtKOYe7MaE1XFtb4XRbMVyC5a4FGXLIVmn12Izn2qWByb/GAxs0CmsjmUEkyB3LdR3YrDK2VhJmk4ChwDCTWepBQDtMOAlo5TyjgidQHLFndjzeBPgKPuEWeenCTOHDVKMdfdgIOFfo9Fw8QPhrsNbF9FprpHILguumJT0OkPf0Y1XgFIxkoX7sge80TYEXJgtdFMCgUgGPffMgx08cZ3xiiqnpTSBiytUyzVabICpRGx7i9MwMKpBoA+VKlWarBRiOHZlhdASOHz7G4vxJZs4cZvbMHGGYMXP6NE998xgj9TqnT84yd3aFoWqVUycWWZxb4vSxGe7/+lMEgXT6bd7yBr7ow7X2Lsaa7Df8GcABvlUoMAjuXXg7//1BwyGl6wzk5KmKFVsz0xJcVurSsTGpFQyHCYIAaZXnvw/G9qKvzyf7A08Y61NHgyvRC5znhQbpGt2AwXddf4cWlsQEzHRCTiUlLBlnuoKDjZjj7YCnlgVJaglNSoRmMszppIYOIYkOGRE5RWzTl0MXa79sAGwdfL1nAmzvgQ2caP9/iUSJjFNtGI/aIC1loRkTLfI0dfdeK4e+UwiHnO+UFN6V+1bbO76xBbDnftfGktuBe96774PXN/CWLDovFzJ0fnFy8iVgLcoLoBapSSGlU6j2Kcrze3es3S4KT6BcLnHTLS9i36Wb0MaQpYLJdSOMT4Y8/dhpbrlzF3EYc+CKy/ESbtz5ihcTla7nxKEW1XqJG158FVEsecN33EmrtUKStdm9ex/zc01uuHEfn/38FxHBZsJSxNxCg1I1YHh0PVob6qNDPTfOFrJUAorCD4/ROi9goOlJ4apfKGlwIXWg4t/B/c/NPBSYphADIYW1CBn0RDInpWRFlZiIV8hFhRdFTZQI0SJ2DTdsCt6NPtcW9M4PgUWDNR6kv4ABeMGLK87XX+OAq96bjFaSEnEsDamLHINhycQEK4vUmvN0kowzeUJJhoRxwLPdgOmRGlZIWlYwKryX1NNmlOdNvMGtaHAien667b1W3Nc1Ho5wT1V4fHRdBRaykMRaqiLgRBaSUfSxEIORBOcaop7RHgD/8DZBSecJGGsIemBv4TEwcNDz77+QaqALVt8TEQKHgVnrtCY98G+s9QuG9A173XjRee4xsgtvF4URyDLN3ks2Mzm93mn2qy5hVGVqXZnpyc1U6wHCarrtcYKSaxJ6+10vQcocbi3alRviUkyeacLAxUXddkYQggo03/F9t4GAPNMoFfGm72qSZwkQggyxGgShE30QBYPeei3L/sNbC7CvBfIutJqfCwBCYTjsmn17x7d2zXvggE1rc5RQxHHAGQKezUdYn4c8s1Bn59AcX04mSYXF6m6fsTYYEvRPwhkVfMcd7x30iFB9C7Rmf3+ivdeKCQQ419cnGKwPoVJrOZ3FrJqQqdAghWFh9SwLS/No4wQ4jbXYpIvQMSu2TKu7SHV0jJEIAgGaMgKBkUXo0rsha7eByb7GqXFWgbUzuLAKzuPTNkDIgCPNgLawjIcZZZVzIlWk1nUQDoQLlVyH5fO//twIRcgipHJiMX3qOj2cwt3XfuOSNYZFFIiLMz7dpIvWmjRNEIFrMVYYtXaSYSMfpkjHjJDKaxj442TZ/x8YgZPHZ/iNX/0T3vk7P8vY2DhRHPO7v/lhfv23Xsbf/MU3+NGfvp5HHjzNkcPHqVZLvOEttxGGCmvdRUoVIJUT9rRYtENjkJFAYzF57HQB0EgZYXJDVKoSlWoor8WmtUXKFKE0rtuQ6PUOKFbjAh9wm/g23nPfEyj2/3bbYOhQlA+7Y/jXLeTdlOeTMs93x3h6cRRrJV9e2kCAxkjPRFt71AFXk77raRxaboVrHtJ37V/govx1rNqQd//hbyO6TVAR5tlv8O4Hj/RWv4LE9Jkwo2EETRMwLhJKusPsmTMENgcjMNI18CiuMwxC13eyUqVaq4M0nEnLJFb1mHdr7+OgO7X2F/v0V3nPPU+huk2yyvCA8vHA5wecpEmZ0jYhKbAp6FANYbaryBaO0+oahsfqLHcdH8Aa09MTC6PQ4ymF5+3cCi1CGvUtrme06ZPailtUSJhTZAguhA0U2QDhqOLFWCjezvMcsNgBQmeWZViE1y9wx2232hiT0+78L2gM/p/YrNWUSwoFrr8AAWm6ikTQ7S4TipCTx+d53etuZW521rtCGmtdUUYx0ZQqWnxb3+XKpf2QxpOIAmc4rEBK0NagrUWKEHB9DYSJeqvIICAIjhdeGIEiDTQI5H1rMtG/zhg4rgNAn1tgjGM/Cut6Gk5HGbfXZ3nMTHI6LyFIMTbo9dELLORyYJTjB1thDAQ9CcFCs6/v6b7w+QkhWN5/F8sSSnNHSKqjvONz7+c33vJqd+5KYHJHbz1lJYgOWlY4bizh4QcZXT2KDSxDQQkR1KiWqwwPVzl++jhGKVRYJR+Z5uCGW9GBJBGudZxV1tNxe2fSv6cOCu+/bC3v+PT/5L++9OeI5o7T2ngJNq66VbfXZ9BdpxCGQAuWA0PXBmTWsCo0sYBFkyPu+ygxs4xv3M7S7BLWWnSagXZhYW14CBVFaGt7RsDqjG5QY3nnS5mYfx4hhF+ZC3feGb/eCfdWkguHYxY809S5+fisUfE74FixRtJutck1rrt0UUTmF6/8hSGBiwMYrNZqXHHFlTz60NMcev4UWWYJwwZ/9a5/ZGHhFH/02+/D5G3+5A8+wtHDZxB+4huMV8XBJ4SkbwAhUUIghNMjdKxsibCOUaiUizGVCJGimHSRc5lE3nswhZ5bzxicN4HPieEGAL41oYGxvVj/Qu7+hT7bFxFxcaVUFhUJRAibymV+avw5Xl49QWgNuVCkVmGEqybUBfNQiHP+l70BZ3EegMSlnfpB/XmX1b8fvbcFmIEsiffGrX/NYtAyxVBGakNFNom7c6S02btlJ1u3bOeuu27nppuuY2J8lEq5gkktoc6IVpeI81WwxqEAViII6VG3e5Pe9r/8nPvobzpG4OvqPR178Nq8d6FlwKoRpMYQ2IB2YFgVCq2hiySQ1jUgtbpAQFxTWxjoot0P9ShGiQ+xpP+JKBiitgf2CjlomAtD0L+WIichC29DSC9RBrkxCGF9kZoXeNEGISRBWIDaxWfPASLP2S4KT2D9hnHe/v13MjuXEVUkYQD/4T/9CIgEa3KaK10mp8Y5dmKGHbu2IxAoGRGWcpJOThiUyNGY3PeSsxGWxA0e3GrnXHuDEgHW+njUOvqnsQIlAiSRi5eFe6jGGF87YHtWXMpCKsqhr9IDPBfiBUARSviJ5xHmczMF59OVz3F5rSOYFD8z0+DvZrfxgJjAyBBDjlDG5TVs6AfWOai/HPjdWkBjhELlBoH/7ADCfc4Juv97XopAag1ioMGItb79tzdkRFhhEDZl4/yTZI0TLCWWbtJCBjHdbsrZM6dpt1oUFY2tJGW0HHNddpR2eR2z0TiHsjqZMX01ZDFwTsXJFkrKQvRes54FKaRxYaAAvaYGxBF3jPEZCCEZlpqbSl02lOZ5cDZmSXToUGRblDu8tC49j+257KqYcFZghEJa69qhW4s1GXlRR2Klq0gVCisFNmft3Cy8tgJ48Jdjcu3C3gL0M2CUxE3vwEV2Srmq0MDTzP29EMrTm/9XJMf/T2yrKx1+4WfezfCk5Fd/4/s4cWyWD3/wAa64ejOPPHiYt//ALSwuzXP4uRUuOZBjbUijscxXPvIEL75lL6cOHaVcNWzeuQPQCNlBWEWaWFSYEwQRWWKJYgXCdQUKpUBrhVIhlgxLghQVtNHo3PevxNDtdHpxHViMhqSbENQkWVcQxBolHTvrXF5Af9UvJt75mzEGrS8sCb2m4o++l9BONHeOnyXvWE6s1MhCsAU3wO1O/48LFRaJnvKMQSHEC/iKL5AZcAbFo+bnvem/06selZsnCI4dpDF7htxonnj2WcqVOs8fP0ogJUoJhBIoCWhDRcXURYftUxFpV6JyQwYv2I9kLdbRN2JFvQjeePb6/vl9++XX0oGOUhCrjLrKqBjB5lKbNG/TUZAL7b1NvxD4kEL47xRCkOu8B/gWGEDv8Vl/LsY4odJA9cfFC2zO5vVlzovFxwJ4NqtUCqs1hYoBwqI8KNzLNmmNspCY7AW/66IwAkIINm2r8NKXX0+5XOOBex/h2KGTZOlZzpxZ4Qufjnny8WM8/fRJgrjFnXfdwFf/5Une955/Ymz8tdz/5WO0kg4//e82UqmUMDrk/q8/xgc/8DHWTY9z2eU7+OAH/oUf+6nv5UU376NcUbznrz/FkUOHmZ6aYHFhiWptih/+yVeQ5fDpj93Dxo1D3hUrxpdESMHxo6d48N4nuea63Xzxs4/xpu+8mekN498SICyoyZbzswIvxDNYgzOIItx1r53NJfcuj7K7nnnRkYh+M47Bo1wg2vOToZeiEpLzhsGaCeVnn7CuCMb6FTT3PRrdB/wg7JcgG5EjOm02tc5S1g1aQiOEpDpUcXwM4SjfQdhX0xmpwkhVkCwtknQtzzUqZDp1ac9zr6VY9HsegP+7MJa9fgMWgSood/3rG7ifhZ1MtSS1GZcPpzwxm5EHEpkpAmvQInOhiU/T2oEJrwsPzz+rosRaa0OeZlhtMLljDWJBh04XwK6xFAPXJYrA0+NS/jtFD8/w7FPhej9IpZyYiBQ9glIRBqRJgjaWbveFPYGLAhNIujmV8hQbtkyibcaOHZupxGVKkaLTaIMJiOOYKKjQanbpdhPWbaizfv0Ezzx+msuvvIRrX3QtSgXkmUUbsNbw/LPPMTNznEsu2cPk1DjX3LAJax1IePb0Kl/8wudJOk1MFtJszrqKLCt47uAMJ0/M0VhddY1ybdEpFyanh7n3qwdZml+m226xNLe4ZmJfiBRUOK49R7+XEuyLhqzNP/YNg6thwMW1wikNrY/gzuFZTuUxGQbBuekfsfb/wXMS/vjWgvUr3Ln01WLHQuVmMGYt/tV5zztxp9xfdd2i5LyNdtbhzIlTdJOEqFymVCpRCkNq5YjhoQr14RrVaoVKucq2sWE2lBTtbs6hpmVVZyBUvxZ+gGPvUpsDnPte6ON+SOv7BTIYYg1cD17Mo/cZhyEsZjEPrURsqXSQee4nnkIWKtBC9H4W7D9bPNPiUL4VulK+8tP2tSGsMRiPUYg1z2ntsyuMqZTSHaOwc3YQU1D+lsue86eUQvqqVWvosQdNdpF7AuOTNV79hmsYG6sjCVm3cYzX3H0zNszZtH2By67YTDtPGZ/cwP79W4miMqXKMNqE7Np7KcZYYmI+/MGvsWnbENt37CYqRbzuDS8nzTTDY3Vue+mNHD20yuFDR3jLd1+JziV79lxCbajOdS/ax9n5WZJEMj5RYt++7ZQqmrPzp102oWgRZi1RJCmXQ06fXKZaD11s6Ldzw4HBrf+4XcXY4OrvlIScEQhCx1UAKIpRhABjhWczCr7ZKPN3c1dxWlXRQmC1PN+cD8bPg8BQsbojXXwLTtzCfWH/p9UMAomDA1VYz3/3rqdzU4tAtjhmiCwLlivrKI9vxLYSou4yIm0TGEugU2IdEecVcm25ZMsGtk1YOrZK0m7yeB6hhUJb6Q1x7+T7p1qspD1X3/QuIdSZU/WWIVZorJXnXIbHOXqhkyQVEh0arpwwvG9uBCEjlLVkuXUCsFI5dQghXNxfnIc3ekKA0RqjHL/A9bLE6RoEAVbnCAtaKuiRn0TfgxswtBaB8E1HwBXEFRoVxRiTIkSgMVYRYJEq7HFEjHVguNaGIAwwF3uKMM8spXLANx88xYErt7K8vMRl106hwpjTp2ts27GefQd2gjHozJUdX3rFJt71f/8SxnTJ0wCXKtzB0UPLDA8Nse7aYa68Zi/adCjFVW65Yz9pNyTLIpJU8JbvuotW63rK5YhyNWJy4whBFJHmcODqLZRKisWlVYzWLh2JxhjNqZOL3HjbJey/ZCtf/XKbdevXrXHdzzcCAoV7qAa3ckhBjwlmjGVhucPISESoRL9TjBo0Kh4n9t5CKjKO5HUyabEyxJHRXyCuv1CYIvqTqOeSDu63xm3xPmyxj7++TBuEWjt8ejErYI1GS0VjZDftK+vI5gr1Rz5NvTmDVJooVZi2YfO2LbSabcpJg/Wlddw72+C58V2sBJuxNkWYFIuX3OqBnZJevnDNeYqeYyCFS/8ii9Zgg/u6F1wTY9szIomFJ1rD/OGJEsdyg85LTMSpA5a9t1ZkeIB+M1BREMD6HYopFIal9GB1H1MQSg1MfLnmnNY+o0FNCXptz8HhBUUFoxDC6QxY60It5TMP3vOoDVU5s7pw4fHBRWIE5ueWuf+rh7CySXt1gU987FFKcc41NxzgG994lLd9zyu5+oZL0blAkGCsBq3oZG2EcDxigescvGnrFEJmBKqE1pZQKjAhw6MjaA2jEyXyDLbsmMDYKkJE5DpnQowihCDTOTv3bKXdaiCVJMuM1xh06ZepdcPsumkbtWqNLds3US4L7yL6FXCAV1CUf+qiCIZiHvUNhTGGQAWEQYTNM//Z/rFgQI3GuiyHSbw7rwWg6Qn+/as22//X4qnIONe6N+EZ+Mk5YUJhwBRSDDAT8QalADCkAwdNPISNqsh6Sn7yCUqtGaZLNRSaxdUmm0brjG7cRKfVJWl3iITlJZtH+eJ8k66KScMyyAyZGyyqh6+c7/m48ywAP4Huxe0uxpZ9g1dgHMXJ+4mmBayIMstZGa1PYYVkQgiyvFjx1xr4gs5bhAJFpaL1oqEWekCdNtqlVZWbpM5ABOdXIw54ZcU40tp1ndLaNbE11gGBKgz6kE1xTrIfRkohEVojjSZLLvJwAAynTh/k7EyD9RvGeNEtO/nER77Bvm6Lt77tdk4eX+TFNxtaaeZvkiuxhBBjJEUfeSGVl+0KnRa7xN1MlWG0Qgj3eWMN1rosQQ/ttS4XLAOBtdKPFUtcCjHa6RNaIwiCEBFAqhNKFYchDAJ8PWNAf7XX9FcO5zR7mqewKCVI212WsoyxcdclZg1DbuDXwqg0M02uJKbQPHghL+CFNtub7khjvELQ4FI54Cb3XO3iHEAoidb9oVdgc3bQ+FmLFQYrHQmrni8yQYvlPCVKYa6xwmRtjEqlzqKwPHzsKBvycYJKnRviNm96xQRNrTixbDnZspxoZpxY7XKsZegIhR0oLhIeGbe+zRfgOAvST1KpsGbgeorbYC2D1XxCCoyn3hJIhM2RQqD9/elHRn3DQe8uOKq5Eu58BBYjbI9yjO8+jRW+0cgAs3Mww9G/0/4/0TMChdEp1IWCIOhfj3DaBUpKlM8kGOHyXrnWDB753O2iMAJxHLBt2zakOMWevdt58L7nufqa3dTrVe655yAvffnVpJkGZcBGQO6fW98NdnPP/d5LDQF9IMfSy/X2pgAI72JavGtlHHKNcHGbwFlzKQXWGC/1Kbzn4cQ/sYMU374xMNbDPwPheI+CjBtEaaqZX2qBVaS5YXp6bYoHQa+62XhXNMsVhZ60EQZhVT/ldWFIor95T8Mh5hZlDEb41UxKCm0D99IgqFZo44FVklz3V2OBQqFxUatrjSaxWGWITcJ0d4aNC8+R0+G01pxorIK1LLUbfP7RbzKybpzK9AhL3Yyp0YgwjhkONKMR7B2LGarVCIOYo8stHjre4J+f6/L4Sua/MUDiV0oZYk3X3atcuLkWRh4P6Gs59AZML3awWOkouEY6KqX0UL5UIaC9/qx7dpJ+EZjF+myoxQqNMmBE4DxUoYgD6dqHGeu+x4CNYoQI+rjGec/IH9u3HAuk7PWGMEg0hk6qXV+BzCIqshc2KAFKBg4PsIZukvLww49SKb/wVL8ojMDo+DAvfcWL6SZdhoaGuOZFlxKXArAxzcYCY+Pr0ZnwhRnGs/zWKu+cW8Bz7taf/P0JdqG0XBHXunrtIkfr68F9VWG/M5DomZOCXFQcp3hog2FC73sL9B9Jq2FpNC0qyCgPjXrjA/2QwJ2LNcIx+4REF+W/YmBynjuaxAX+WIOku+ObnphIgUgXZ0jfERhwsvE5AaGCAe9YYKRC6tRhFEgilbMjn+FAcoq67rKcLNAailkdGyJJuqBhamyEerUCVnF2boXJyUnqY+NUhmoIYZAIOp0Oy8urrJ+aZqIS87rLh7hum+UtH3iEphJglEvlaQ302TeBdUy63qUj1trHIuwavE/SW1wBbkHJkSpwdSdruBR2YKwMhG9CIIWkrlNGlw6SrpzkoDVw+ChDI5NM1mOkSQmDgI71DVyKs+oPpP7zt46lmuWZLwfWrkTYwvPPHuLE8RPo8hByPMZ0U4QUKBX4caeRwjW72b9vHydPHOGFtovCCEipKFUqlKslrFXUR8YIAovJoVRah1QWhEabCCETJ70MawzBtzIA527nV/b1fxfFqujdPm82nJUd0JNXUrqwt1D9tf3iosJIFBV1559bQQJJGRkP2B+Ok3Utldj5I0baHu5VYAEWgTUaQ0imXbfkQe/9PFeSC/zZm7VFhZrEaBBS9Vz5c+P/gTFeOD0+Hx4OLKoWqR0PQCBYzwqvLC+wO0yYW8o4dfQYabdLZg0EESUU42MjbF4/TTWOWW112Tg6BsIi44i4FJMlXVSpQqlUod1JWW41KFfKlMtltk1JfurKSX7v8aanSOc9fKN4YqFNSXvxf+H6n3NvzvEKe5bPLwAYn9sHhyn4XJC1lmL62sIoCoGyEq00o1HKyyZyPvXcWb54fI5/efBJPvOVJ/np732dj2Z978FzOjidF40VL/dSgEVoAFlu6XZzxFDoFg7rhU2k9OIjFtDUKmV2bN/GzJkTvNB2UfAEbO8BAoUeoEmRCAIZA85NlUEC1okzAX23e6A/wLkc/BcyEP0c/IX3Eb4e2x3bjwk7UNRTIMSeyilEX1XYH8GJQ/p4rti3d40iRIrINTqpl5mYGEIFAVoUw6rvsTgijpOU7nRS2u2kv3Jz7rkPxB7nX3T//549MOffn95+/tuL/oRFaGAB6fLRxf5GCrCKmm7y+okuu6MUGQkqYUQclwgE1OKYeqXM0OgQUxumkGFE1whUtcz49Bhbtm1hYnKi6JVKXCoRRRGjIyOsNJpYQkI0SZpyxXSZdeUIITI38VXo8uaFJ+DJSWuZeWLtNZ7rIdkCb3LjTVgXCjrqOK75K16mvhg39MM8YUOUFoQqQgegpUVGJUS1zFJ7ic/e8zWQyrE6BKwheInzT7MgB6mixsA6AR5niJ06kxYGIx1/ROJ6Eigl0XlGICVRGHDo0PO0Wq0LDAi3/Wsakv4P4DXArLX2Mv/aO4AfAeb8bv/BWvtJ/96vAD8EaODfWGs/8+2+o7HaYv7sEouLywwNVclTjdZdRqbGGB4fprncpN3qMLVumG43JYogzwxRKfar8VoDYK3t0XDPBewGt3MBPbFm5TC9HgFCWFw/AVe+icWrxQRYY3nf3/4VzUZj4Lh9IzHg3K29r71/BwC2vnPoP2DXfs4YpJLMnmywebXdd9EHQYfznI5zV761JyGSDHs2ZM0IPNem+JNYJWbpkrsQJndeia9RL8KbWGhePtzkyrGA5QVDKEPiOGCoWqbbbrG4tEh9qOzUctOMVq4ZHh2hWqpQiiIqpZhqqcLI8CjWWsIwRBtNXC5R6ZRpr7YYHR4haTcYCiWXjpQ4M9tFCOv6LwiwoTt55Qj1vkuTw3x6adTepRYGu6+vWIwBIQRSF9wA97YaeK69ehLvC7gFQpMjUQhCGWCNQFnX90ILw/JqG0mODIbAaGyv25Dt3+Ti+MWY9GK5hayIsY6pqbUrFhNZ6Dw6awmiEOUxKIEzYlluePbwMdaPTXByZp4Lbf+acODdwJ8A7znn9T+w1v7u4AtCiEuA7wQuBTYAnxdC7LHfStEA6LS7fOj9n+GBB+9jev1msiwF2+UVr3klt9xxFZ/68KM89eRT3P3GG7nna08yOVVhet0Ud77qOrLswpTbc1l8F+L1n7s5l9GLiXgX0qmyuH2jKOozspTqhQytZoNf/bVfx2hX4tlLYw1kCvwXDIQY52+Fe+mQbJ9BKOJNBEpYlAr4+jNzPL7U9PuLtRO9f9UDg73n056/S6eLLZXWvnnB41ne/Ye/zbJwWg0o4QBFAGGQNmRCdbihbojKJarVIXfIGoyNj9Npt+m0m8zOzbO01GBqapKxkWFCBIGwlOOI6alJxifHKVUrNJsNtNaEcYks04yPj3P27AJZlpNnGeVAc+36mK+dlXQEA6k2d79yY0C5Zh0C6+sdLnBdPV543/tznqmhSNMVnajcEQodCeH3Lei8Au2UaWh1uzQ7HdLc5e6lfz8OA5RgQF688MrWGoDeY5DS8UoCtQavGnxGhZ4BQBxFztypEKkUURwTxzGTYyOsrv4vtCa31n5FCLHt2+3nt7uB91trE+CIEOJ54HrgG9/qQyOjdVaXu8yfnSfptNmxYzejkzuY3jhJHCuuuHIH87OnkVKRJTlZVzv5ZkLnDl5g0A6u8mt0/1kbMhRxfM+N742mvkdR9CF0em9OizBQbmXpUz/XbgL/sM/1NP41m199+4xBXzDS67rkUXwvvTWA6K09lRdCn6FYVwYtVP/LBwC1C33SGIMKJHkhs4YFkTMmoaoEsQoJR0cxVtBqNdA6Y2VpkSBYTxBGdDrHOHTwMAu1IeZPL6DikN37d7P/0suoDg0RxTEjQUgQREgZEUaS8YlxFpfaBFEZWk06nYRXXLKe9z65wok8d9Lplp68WGZAxCH9FCD00xnFNRbX6b1GnG6BBJ8JciGeMdrjAMWt6pVz+UrEAotwBCUVBnSzjEw7L6Dg8YcqQArRb1paaD4M3vMBO1B4JdafcxF2rFnABrMdxTkKQRBGWAOhVNg0J/z/qO/ATwshvhd4EPgFa+0SsBG4d2Cfk/618zYhxI8CPwpQqdTZf9kexqdqGNsk60bEoSJMnFjCvfc9DAo2bZ5manIj6zaUKVfL5D0Hw6e88A+WAcAOryNHMQmFK8g41+UV4Eo9jQ9//TornMiji+eLji/4EmLPBsN/tein2NbY9EFMyp7zpAf+sr0n7nYWoog9+w6jFKLXOu1CYf/5Rx0cYAOGwnohDHPusewLexZ40o2mV9devKe1YG91iTBw6SylQuKohDGCKApIk5Q8SxkeH2dq/XqOHTnO4twCWsKuvbu55Y6XMj4xTqACAhkRxIpyuYoKyiACtBEMj07Q7eZIGdBqJ+ytBdyytc77Di84kM2I3jzPjC8lpr/S993/C21FKCgLKMTF4FJicu3LlYvDOOOgpBtLRTDnaSk+q9HtMbeFcFTjOPLNU5T3AM710PwHCmKkEY4Boo0jPhU1LNZnFhAuHWsBaS1Jt0ueZ97TkKRZxvFjJ5mZmWN8rPKCV/7/1gj8GfCf/a36z8DvAT/4/+QA1tq/BP4SYP8ll9tXveEa0uxqcg15ltNpGkbGFQbLG998O900ZWyyxqvfcC1h2bgqNStwhKGuJ1oZhJUOtMJ6jEf2YvheHN6r1/ZuPzlCxBgjMbaDFAHWapRQ6EyRZbk7Nq7RY5GqFD4nDgUXoHDr3PO0pojl/Nf1MAeLtRKLBm+8BklGeKPlikUKMQ+fIcCS+xRhb+ysubH0V5TBn+fef786SrE2TbjWM+h7Rf1/rSseEgJs0Q7NrYSX1iw6CKjWqszNr1DWkqHaMGmqGBkZo1QKabU7hFHM7j170Llh46bNTE2vo1Yfpt1sAi4NNjuzzIbNJaw0xLEiyzVBGJDnWS8NNj/f4cadw3zw2SWMMoTCkvt5brRH3oV3l9fUUhQXc45R8AbdWOvHgLME2g76e04XQgpnCKW/dwaPH2Qaa3La3QTHcZT4OlLXSdhKTChRVqAHH1DhnVj/bNz0R6AIpJPLEUI6g1CEJtbpCgjjiqVkHPVUj7MsI5IKazX1yXEm6hUOHj99/kA4/y786zZr7VlrrbbWGuCvcC4/wClg88Cum/xr33JbWWlw5PBJvnHPISrlgKPPnebQ888SKMWhZ05x/NApRkeqPPCN52h3EoaGRhkZmmZhdpW0k7E4t4LJNM2VBIygtZJgbZcsTcizjLSbIYQlzx1T0GQGrHYgipFIIoTNCQNLFJSRBEgZoYIIpVwcbrzScKBwGnmEWGkIcVz/Ah9AaGdcEN6Np2fa/81P/jgf++g/Y2wBVNGz7O6+un+KtKCUkte98uUD7r7FWtMT2RiAk3rb3//Gz/Cun3hD7+8nv/pp3vVjd/MbrzzA6WefoPAvjz/5EH/2Y6/nL37x7SycPALW0m2s8t5f+RGs1hR02IGn7j+rHZ9fBRRroLSWSdFiarhKoErU6qOMjI47vQEpybWh0WwxNj7B6NgUU1Ob2L7jEnbuuYRNW7YwOjblUG80eZbR6XZ4+uDTfO2e+3nkkadYXGoQxzFZlhKGIUmSoaSgmyXsn6yyrRwgyJFSu0kJBJlGqkFefoHRDHhI520udHB2esA/G+SjeMzAeYiib9ixRTsrhIB2kpDlGYFwQqXKQjmO3TwfiOPPA27P8RCEz8sav4gJCjKc/04/viyCuFymVC4jhHDhqhCUSyVuesmLkcH/5nBACLHeWnvG//kG4An/+0eB9wkhfh8HDO4G7v92x8uznKcef4p7753h5lt284XPPUqSLvH0E4d59uAM40PDPPrIMzz97BH27N7P23/4VoIg5P3v/TyjoxXuuecefvbnvo8//9MP8vo33MGHPvgFrnvJfs6cXuSS/Xv56hee4g1vvpGvfvVe9l26k6/fc5Arr97MzMkm23YMUx2qMjk1RnM1J8nalMujXHHdBoQ0qKBEGEdEUUSSdEhT4zTmRMrM6SUWTjsXbPbsCvV6lWajRa1eIQxCGqsN8twQl5w7bHJDs9Gh2+7QaLQZnxxxyjdmrUMuCm8Fy0c/9ZleWIMFbSEtykILoNEvJk/d83mictFkwu0/tXU3b/mPf8DH//idvbgRAd/40Lv57v/8LlaOH+GhT36Qu37k3/OV9/05N3/nj1A0tujHSb0jYvKcQOdYWYhZujBob9WV3YZRRFiqUhsJiZIuRkN9dJzFhSWCMKRWl5TLMQZJFMYgFGnaYXVlhZlTZ9BpzszsWYaGRzl2cp75hYQkgVtvvdZhC6sJ7WaDXBu61rKxFPGGKzbzO994BhNLd4OAss7piOK+2uLGnnNNxeuDE8+trK5U2t3fQi+gTzUo9neYgNC2By8YY9EFUczLyrmwC0LpvIiePVoT/tE/l96vBfbjflqvkWjXRo0ed4BSKe6R1KTXGayUyjQXF1lYfGFg8Nt6AkKIv8cBe3uFECeFED8E/LYQ4nEhxGPA7cDPA1hrnwT+AXgK+DTwU98uMwAOnOu0uySdFvNnzzI2HnPTLQc4feo0o+NjbNk+xkg95qV37qVS7SCsQIqIILB8/KP/yMhwiUPPnaRWHeLLX3iIbmeVz33usyjV5FOf/ALL7aM8+PBTELQZm6gyMqa45rrtnDm5hBKKz378AQ4/d4gvfOp+/vgP/oyvfuWrYFyhh6bjwEUMSikWFpssLiyzOpvwsQ/ezz9/5GssLzR4+P6nOX3yLA/ed5DGyirvffe7ufO2m3nVXbfy4z/8Qzzz5GFWVhp85pOf4zUvv4uX3XYj//j+fwAUrVaDt77xdbzijlu485Yb+eynPok1TsVo95aNdDop93ztq7zhNa/k+972nfzK972yX//iPYmk3eIbH34Pt3znj8HAqje5eTsTG7f1b7Y3BEoFZN0uaZoig5DFMydYnZth2+XXF4cdGJCFOyyQQjnBDtlXEzAINlVDksxipUQFEfXhMZLMGVGhIsYnx7FYmo0uC3Ntzpw6y8njszz+yPMsL65w7NhZDh1Z4KmDM7TaIXPzLYwO6HQgzRStVpc4CplfmKfdSQhChU1SEIabdo2wuTpEZgKMxz2iPO15ZH0PwGspfguHwPtwCGucu23dpHaYUuGxF6HbQMhkrW9MYgmUQnlA2ljbkyKr12vO6xsgnZ0z2fqGasDzkEL2WKtrwGXheQ0WFJZqFHoj4fZLkowjR47x2EMPk2b5C86/f0124G0XePlvvsX+vwn85rc77uBmrGF6wzpGx1b40Ae/SKfd5cyJWb7jra/lE594gEefOMmBK6Z56smUkVH4u7/5Om/9/hezbec6nnt2Jy+58SoOPXeWVnsVheLyy/ehxSrlSplXvXIfn/n0o8wunGB2psG+fU12b9/Oth1bGB3fgpRDLCyvcvLkEmnWQeeWKAQplOvmalzZqseMGR+vcuLgSRZOGYKS4fFHn2DHjiatVouzZ2dpNNrce++D/MHv/y6//dt/RZ5btu8YI8tcv4TZ2TP80R//Dx555Jv8we/9F978tu+mVC7xN+/5OyrVGrNnz/DG17ySW2+93bmzgApcp9nHH/smn/vSPTy3WuF4t+tqCoTASsO/vPdPeMnrv4cwinpe4hqU3y8fwneruek7fph//t3/QBhFvOHf/Tc++9e/xx3f97MeH+1PFJeW8iAHQBhBbhBBmaKoIVKakUqEzVeAGlYKypFiamo9J0+eQZo2p04u8MDxBkmSMjY1jskVpdg1IcmzOqdPrLLabZMLy/zxDgvLq5TLQwRBF6Njtm4us27dGOVAsrCwyvh4mTRNXdXneI1rt8SceR5S4aTBje4yEeU0tSFVwuXlbegR+XOW0mLyWXDVhy7swaZgLdrii3I0BRRS9GnQaAdQC0HgjkakAqIw8t6Aw30EECpJIiRCqH7FpXs49IEqPD4g3We9InZuXI2CRDlDJRyDEeHwCWUlkQxckZp0oKEUAYvLZ7l692YwludPFs772u2ioA1v2jzFK159G3e87CUu72kEeSIYGg255IqdRdEVC3OLlKtDIDVxSXHLbVdy5RUHqAxlXHsDjE3czamTZwkjSbk8RKPZpF6psnHrZkoVRSAjjNbE5SGgwp2v2kdtCH7kJ19PGAo67ZzbX3kV5UoNITUSSafVwuiCNWhpdDIuv/UAZSX43Oce5ZYbr6LVfZwNG9exdfskxijuf+DzvOktb2Lnnq20Gi2yPCDNO8RxmVe++mZUEHLg8iuYn5tFYDDG8t9+853c85WvYo1l5swMX7/nYSbG12GtJUtyLHDlVVezZetWnn/MkT6cjJVl5tDTLM0c57U//G+Zm3UPWloX3UqTENqMAENgM0/5FazfsZcf/d2/xVrLsacfZ2hsEovmg7/1b5FBwF0/+u+pjU4OpKP6ktnkOYFS5NYNn5IUjAYWoSUyKBMGCiEUo2NDzJ5dYnVpjtmZRc6cajC1fpgwMISlMq3VlOOnWyw0DrE4v8z8QoZQEaVyThhXERLSpMvq6gKHnk458oxm++49NJvLjIzGGA1pkhCXYm5dP8nHDx2iqL2wpGgBJha+NVtIj6GHl/by96JYfXu5f4+9CAovADDWS9QXen7CG1V3dwpiYlEaLjx4p3w7OyUUYRCSFNZG0jdGg1wBf6+BPv+g4Cz49/o/XdmyNq6mpFAbisKQPM+plyMu3X0FV7cXmUob/MM3Hrzg/LsojMCZ04v83n/9IHe+/FqazRSsYf+lG/nk+77JzTddwSc//kXWr5/i1pdew8pqxtfveYT9+7cQyojRsTIP3X+EXXs2EkUj7Ny1mSPPzrDYXGbHnikOPnWWS67cwuJCByUi1m8YRgiYn1th/4EphoYqJGmbUqmEtQHW5ghCWu1lwgjK5djrxrvnVa/FiFxgVcAtt17NzTdfwd/85VGuvn4vYRgyNj7K40/cQ6O5yuZtk2AnHU9NWMqViC3b17Pnkq0uxsM96A//4wdZmF/gQx//DN12xuteeSuVSszwiEvrqMCBQ5VKFXCT3630YKXg1NPf5MxzT/L7P/xKtNY0Vpb521/+Xv79b/wWNsuIoohIGKZlm81yha4RtIjQCBKj+cr7/4I3/crv8Kl3/Vfu+sFfZHHuFPd9+H/y0u//uf5DKr4Qi80zxuOcU8K5mBUhqEqXzlUqRKnAa98J6vUhFmY61GoRd7/xFnbu2UgYGZYWV1iYX+HeP19FLVvStmH7jmHmZtsEsszk+piJ8RKCYUpBif37NvGPH/w4R0/OML1uiqQ7jNaavNNBDteplAKUSXzVH0iTs5gHSM/Mc3oBBQDrJ3Eh6yZEP9UrAC8sW1DFLUVqFp+aK4qJ/ESXsj9RhW9C6g2E62/pJnug3OoupIDcnAu5DN5o95s3UK703WK07ukHCn8dUrleGhKNJHd1INYSKMno6AimkVHutAkrL9yQ9KIwAt12Tpa2OHbiMfLWMEGgeLyb8vfv/jSbpkc4fbTFwuwMV1/b5LmDsyycXeDDjz1Ho5Fxw4u38oXPfpP16zfygz9+FyvLOf/0gQcZmUx44olp7vmXJ9i7f5LTp7s0m/O847d+BBUqfuedH+TkiRle/dpb+OpXH+I1b7iRrVtH+fznHuCOO27iz9/1HrbtHWHT1uvdAzD9em6LRUuLiiTGU1GDMMBgCKKQl9xyCz/0Pd/Nj/7ETzM2Ns7K4gJjY+N4bNe5al7ay1jNyuoKExMTVOMy33zgAWbOnGLTlnE2b16P6O07sFLYgvtgiHSHl995G2966U1UyhFnZ2b4v97xH/nV//ROhMhRlQCjXV18ScFwaKnqnCkyBJbPfOmzXHHd9UxWS+SJa8iphCHvdqBY8eiveK7DkStyEpkbPhMKytLJaIdSYbVARAqjNbWhmDTtUqsFVGslhoerdDoNSmGVXbtHuPSyZQ4dn8HIhFtvvo6FhVVy1aG5UqGxqDl8qMWWHaMMTW3gjW//Pt79nvdRrq6yvLLIUCli/ujz/OOHPsk/sJdOVAHtQFOpNZVA0EGS2wBjnWx3T7TD3cje/SyIWcUqb13DCVfI5Vl/RQOY3tz13mGvtMIbkigIqJZLDheQ7vkJbQkDQaAt5M5gruEJCBigPYLoP/He24W7sWYTCAyx1NTjoN+UxDrDNb/a5sTsItdsqL/g/LsojECWpzz80KPsv+SV3PeNg2zdMcKnPvkwmW5x6sRx5mfnGB4bRQUhU9M1PvfJBW686RI67YDpdYqp6SpXX7uD5vIqp44tMDSW0my2SbIjTE5LGqtL7N0/zWOPLXL8xBnieIgf+onb+eaDxzlyeJZXvvpFHHziCJ//5D2s21CmVpNs3rSNPF9EBNJpt0uXFzbWgV/GSF/o4iyvsdZbbMHN997DfzpwGW99yfUoKblq3Tre/frXU376ScZ0xoZjhwAQacrGP/7v/FS7zWs//Unu/uiHuXbDBvZNTDD1t+9m/cgIIkvZ+hd/ypGjRykdPczmd/0h3/8t7uXR5WX+otvhB558GIB/fvppfuZTn2Ku3eb3f+nfcuW6dXzm7W8HoJ1l/PGH3s9n3/52wvs/xg17t/KTv/h2IqV43xvfyN5vfHDNsc0TX+Idn/jb877zm7/xxt7v7alpnvvSN1AKssSilKG52mGorPjcZz7GoWM72To1Tala48ySpl5vsG5SIqfHOHJ0Fp0rksSg8xWmp4bZvmszzz07hxWK0bFh6lsvITenWV1tcPyZo9Q7beqVaXJSsCVMEQ4Y60hKwrWrQyo/z3za0GjvjveXY2GLomlPeLLg5Mp9VagoJiLAOdR0/7+UkjiOiKMQbSyqMD4iQgaBSz8LtZaSMXiQgayBqxzFV48aUE4dqddAVvomMmlCnnTJjHVCI96INZodllYXOTI7x7D9Xygg+j+xbdg4wZve+npedNNVzMx2ueSyXdSGNrJ1x20szawyOV1i32VbiKIys7PHWFpusLzaZMvWLRx+/gTPPT/Dpi1LvOTmqymVRrnvvoPkmWDXzq18+Bv3cN31+4jjGvWhEbbv2EKtpvjCp8+wZfsk7STn+cPPEpZijNXMzjb50r88wOh4mcVmitFRrzMxeHcQl/4x3jJb38Gn0A0KVld56V+9mztlgTYJzlj49R/9aU7NN/lkogmCiE+/9ce5PwzIjOZ3fugXwBhKgeSXSopMGI4FAc/8xM9xShn2AH8OHMvhi4/PMt9aYtwuEQdOxiuMImQQYo3lN+9+G+/vNMm6KfbSa/i1V7+J0YkxSnEJi+WjBWUay0/f+jI+lOVOkeYGy6++8S0EQcQnEsE/lSbJPdpsZcC7HzzGf3nb3cTHnmbnFDwd7ib73e/gFf/tH3nbBkEnS/jxH/ou0qxD0LFkSqGNZXmlQaVe4+Fnj/Ghrz3B2HCMVFVsVGXryCa2rS8xPT5GGFVYXF1ipF4jTVKkgSsPrOP669ZTLjucaHzPDo48Okt47BTHDj7J7ukRtgzX2ZF2WaJK4GdWZHJSY33Wvz+p3Fag78USXiD8xdsO0JMeKygwgl6nH58tKKoJezqF0uXzlQqolEsooXrfLfwzyrrG9w0oqkXPSVMMLvQ+w5Alaa+WoaAN+8AMshTbbdNpt1lebRMGgSdTwczsWU7NHKIGHDp59gXn30VhBKI44q5X3QAIfvQnX0+W5dx4q0WIkCAQvJk70TYnyyy33nE1L33ZtT5XrnnJzbt509vuwAjHLKuOlPmpX/wOtxLEkutfcjnTG6qcPLHErS+7irgUkWWay6/cjYoUey/bwdHDx9mxcytxXOLs3CnKcZ2HHniCoZUQS+omvDF+RXAgoatHkK4xCYo8tczPLzA07OJ44RtBWGOwBlZaXZ556hgToyU2jdZRYYBRik5mWZxpcObkccIQwnIFGZUJ44iNk8PUKyE6z5E2o1SOyJKcsmgyqZexJkWGFaRy55F2E8rlMioMKBHTXG1SLYd0u9Btd4ijyOnUeVkqaw1ZmvpeIgYRRigTkqUZk1jy7klaiaFtJWl9nRMzyt0Sdkiu76kNbytrKpWIuVOrAHzwPe9jamyES/fvZ2zzFtqrDU48eQYpNatZm0YzJaoqtg3DpZsVzbarApQmp15TTE5DFI5RH6kSRwqdJXSNoFyOmB4d4+87JVbvu58oaNIeLhOrhB1ihYcY76XvQmloqgDTqxMRa8VJB2Nv/FT0EusCCzrvpwd9mu+8ojNBzzAU4J5EYLXu3V9rhBP9NKCEIremoDL0My8vsBWYQBRFTsuiF531y5gFBpt2yJOuq2QR/eMaoamahIlqidOrF64ghIvECCwvLvN3f/MxMt3gJbdey8EnzzA3t8TOXVuYnVtiw6YJVpe7LMyucsOLL+FrX36Mm27dw+mTXbrdFi979bUMjZQ4c3qZZ544zMTEMDq35LqL0ZKzZ8pMrauwOL/E/OwK3STnsst2cPTIGVQQcMnllyBVxuypZYaHJqkMRdzx8iv5+Efv9yquPmfrjYAQxneEwRMzLI3VJl/78oOUKhE7ga995SHGRkeo16uUyiWWVhO66RKhGqdegqFahJCCVEMlGkHJlENPPEu7eQIhBTv2bGPnFZuRQvDwY8+xtDRPELgUUBxYMilI0pzm6iq14VEASnHJK9BagqDEUH2I1eUlRkZHWF1peNzbFUIZbXosNPe7pRRBohMCpUhbHfI0QbY6DEdVqvUJNpUl+7YMc2yuzDNB7D0f0M0mB59Z4JmDhwH4yPv+hit27ODUw/ew47IrSRtzLC7MsH8oZveeCbrVKg+eWaZmJKqzyq4dOxmdqDNcH6ZcCSlVIAgCoriKMSmdVodqrUxcDhiKSnSGNzFfHmNT1qYUlgDJJE2UCMh9DwZlDE1RxsgYpV3KTwjV9wYKw4DoewPCudjCGp8iND1gsKDqFqs/eOZBwfAUnslnnSCoo6mbXm+AQEIchSBSf7y+HgS9ow3+je9EazFGOyM00PGpYC5i3HgUOiNQ0pclOA9CW82UDImV6fVPvNB2URiBbjdleXGFpZUz3P+lKoEsMxwP8dwTTxGoLnKqzF/+yfuI4i4TE9/NtdduJm0bnn7yCU6eXuTN33UHxnbAwl/8yQfZvm2Iickxlha6nJqZ5T/80vfz13/xflqdnMiEPPHUUd745js4dnSeTiL4j+98K60G/OavfohX3X0Fr7j7WjqdkIWFBmPrIj/53UNrrHZ49IEn+eKnv8bCfINtu7Zw+sRpjhw6Sau9RKPjgKnnnn2cKI4RMgCjESJAhSFLc3NMjQ1zw3XXUCpFxIFifT1gZM96Nm+c4PRCg/mFJaS0zM2tsm56hFajgbWadichiktEKiYqx+Qmp7W6ypDOiUslkB7A8rz5crVCq9Wi3U2IKzGtRou4FGOs8W2zBEGgkDKksbJC2nWMwNymZN0WCkEmLdddfwNj48N8fmyIF03XOH7VRmbve5LldTsA+NCsYPLIEYZXnXrNxqlJRocrmKTBM/d9iUxJZk7NsbTcpC4Vo6MT7BsdZSWxHD87w4GXXMnY+AhBKMizhFYjp1IbQsmcTruLEAFRrUSMA/hySsxt2se2U8vuHoqQLUHLpQJlX+MgFyFgnNCrV9pBKM/EAwfS4rIDwkmFCcCqCKG1S1HmmsC3NtfejErrm3oMgInCuJ9KgjI5SFcxaEWGMSGTw3XGh0cR8/OEJicp+jielx4EnzfEKuU6HvumqtL2RXRchyVfoZgnkKc9kpASrmGJyTW1UNNMEid4+gLbRWEEwjCkUqlSqmyjMlTj8KETPP7NR9i9ZwOtVkJlZIpavUyuE3RuOPz8HC+5+XJ2793JS19xAzNnzlKv1xgeLhNHFZ586iDXXnMt1gTEsUBEglMnTrGwOMtVl76Y/Zds5fihFrsvrbMwn6GEYnlpBRueYXZ+kjzXnDw5y5HDh9m5dwStM3RuscbSai3zuY9/iaS9SLdtOHZI024t8Mwzj5GZTi++VKEiTbsO3Q8UJs+xaZdWy9JqNNHWcMP1VzNUq6GEoBoaoppkvDqC2TKOzjWN1S7GGPIsw+oMJSyBdNryqlxBCoXONNq4SZ2nCXHs+tY5opGhUi6xOL9AvV4jCJxSbZrgVWklwnsOpUqZlaVlgkCh04w8yYhCRa06hDWGaqXM6HCFm27YRau5Ebo573rwMQBWg5DVy29nvD0PX/oE8wurlETKyNAwOvO9Fm3G6GSdoUqZsfIQmzZuoDM8wd7dm5EYjE5JtXWt6YWitdpADUtyrVm/cQNBHNHuJCx1unStJBwaJ1Ml0jyj0+1SlwFR2iSLS4DLwMlCkae3ghY8gOJXv6IXIUOhJwDecPt4X/hj+cW0+HyRIRC4OgKbO7XrTpIzu7REklrKMuLAzj287MZrGapFrveEz+uvyQ4Aa2obvGcifDajp1BVZDdVv87BIrAy6FWX9jZfadhKcjJ7kRuB8YlhvusHXk4QBeQmYXH+Ekz+cvIkpdEyDI1WueLaq1maP8vOXdu57+vPMLl+iD35FqanR3j2iQZbd1s2bR7jTW+5i0cemeDAgWuZPbvCWGeUe79xmDe+8c189Stfw5Bw9OhJ/t0vv5xPfOTrrDbmkBLmZpvIoMLMTJNc51SHKtSGYowWvbJvKaDTTglUlbgeUS4p3vY9L+dX//0v82d//t/JDSglyDtN3luqeVfb5YWVDLBCUI5icp2jc8P6devYtWsz5UqFMAxdzzosUkCaC9qdjGo15sknnyHXCVIKcm2IyjW0dQOj2+lQH6oipCDPMopy5zB0jzbLMpYWlqiUy1RrZTLXwB4p8JoIlsZqg267hZKCKI5ZXW1QK5col0sYG7JpyxcZnxhlqD5CuRRSLgXcccc13POIk4kIPvrn6GtezuKu/e47bYnZsw3ajZwokJTjCGUUygp2rRunUlZ00y7dziozc7PsGKmRpSnWFlJsOcbC8qJhbGqda8iSOObeYrNJ11qiap0sqpBmOcYahkPJuuY8h6KtgE//ex5Ar9qzmL0FN6AXk3vBUGsRRTrWuvJdbTQol1kQDptbE8fLgr1nLSowGAPrt+wmknDDlYogN9x585Xs3rXV8w/wSkVenbo40DlkIeFnu4Nr+opIwmco+mA0GBlA6Ho89qTsvNRdo9lmqdmkebG3IQvCgKGJuu8DP0S9PopUIUFQ9Fd3RRdK7EOblN37N6BzuGR0DKxl7xUwPFwjN4rXfse1vO5Nt2BYxZgIEGidEsgyt911gCyXCKsJSzEbt6wnDCVGweXXbOZnht9KuVxCSMHoeJldu3aAzZ2TaF0HismpMd76va+jm3ZQMqI+PszpBUk7WyFPU9CWd3Tm+Z3pneRpTiAgTTsEUhHWKlQiw/TEJLOzC8w8fYyl5SavuvNGNmxcx7XXX8fwyDCqVCPJA2bOLjM7M8ty29BNWiAFYalCUKliZYQ2lsWFBTaun6bb6dBut1DKZStK5SpxuYJSkrMnT7O6vMK2y/aQZppWq4vJEtJOm9WFeVqJBRsShpL6+Cjbtu1gcnKMbpozMXGA7/ie17G82CWOA7rtnDgM2DQxyfbNrmA0n32K8OPPkL/oTQDMXP0qpg5+BfQq5bSN9q2yVpZXkFIyPTTKbLfN5K4y+4brtJsd8naHJE0ol0tIqUAGhCNlhJToPCfPEpSNybVD7Y2IyMISlsTF30qwm2WeE9sBUDg0380l4anABZpfjDw/qwbANp+Q93Rf0MYgw0Jmvg/MFUpFAno1BkhFOQp47tgRXvmK29i6eydJp02lXieQIbnJQfi+BrZvk9Zsg5kK48K7QlGoL2Sr8UEIQlgnWhqWkFI64ZKe9+CsloxCAn2RYwIIZ7XTNEXJDlI6FzXLAoLAAXMCRY7CCkmuBdIIkDnGBIxNDOPVuDFGIcjQOgLrGzZKQWYMSkUEwtV351owNDIE5BgUVli27ZrCGulX1ZTA87OtLZSHNNVqjXUbJojKEXlu+MzH76HVmcEIgyXvKSGnnTYqCMi1JohL5GlC3mqSdTsszc8RRgEqDDh08hTv+cBHuGz/buYWFrnu+uvZtGU7QVxhYnyU5eVlLIY0z1BhhDKGLOkglcZaQSgtAuPkuPIUWQrBWpJOG6ylVC6zfsM0qysrdJodV7uSp9g8I2010FlCrV6l02hy9swpYqW4ct/lWHIsIdt3bWV0pMLIUJWF2SY6y2lmXcq1mImJCff8xkYwZxcQj34agMbVLyPbeRXVE48y+dinqOqc+nCd7Rs3snfLFjJhsHnOpg11dNqllbVZzTSZzhkdG8doQ6laIwwUSbeD1RakQFrDcCQpKUGuAhKpSDNDZnOQMIrpsZqc5ILyYOAgH2AQXOutuf1xiAVpEXnmPAFrUD6d2J/2XlRFiB5wiAWjUwyCg0eOkn7sC6goJFAxL9m7nqnhK13jGuU6N1mxFmDknJjdFv8qiQo8vlBcgffkvH+KEAqh3OtFiXPhLUgJpSgmqFThyEVcOyCFoF6KWWzlBHEJMOR55kg6mVf9tRmGBGEtygYIFGmmyaWB3JF5Ao1zuaTBCpfekfjijwCMjdxOVqMIHXEE5XqagBs0KkRYSywMTjxA+wVDeW8AEtPl+HMnyLqCD33gowhSTOZ61jmGCegsweiMIAwxWUapVEIIS6fZADQmD8gz527OtRXfuH+FJ596mnsf+Ca1Wp3tO/Zx3YtuQihBOY5ptX1/OSx50gWZoXNIOl2yJCVpt7A6IxAxYRgSSINJOyQmI5eKjRvWceTQIbZs3QB5SnvJSblNTE9SGx5jeXaOSAn27ruUkfFJkiyjrhStRpfmYk6prKiPRDSabYSM6OQ5u70nIOpV1HwD1Vlxz3PuBMnEFkRlFBHHdHIDWUJoK5xsN6nVaowM18mzjG6akKWpy8YLidaaLNOMlkroPCdNukgZkLRzhobqjJUjYqlYLlWZiUZpdRs4YZaQSpATmDYACon1RT6FNkARX+MRdLcNxuAeWZcgM+cBFkxCx8/vfbzH4HOrunV9Mm2ONBnGNjh17CmUgDAcYnY4oJMnDEeh0zYRDq9xTVH6ojO9zQ6eF+Q+25DlOUEgexqUPRzDU5mFChFBXwXaeFm82ugIIgxfcP5dFEbg+EyTf/Ou+4lKEZChREIoNMqGhCogUpJyKKiEikgKWlIxk3TYOzHpnl0gCAJBLAQhuJRMFLO4tEoch9TKitBqAilAhbSSjFAFVKWkFggipZFKuWo9pUDkaCtI8oxxVUHKwm20pN02ojvKxHCNL9z/ZQ4feYRcp77wyXgVYj9IjEFnOaGArJ0jAkVUqmBMjtY5SimCIAIshoDlVsZX7rkXnaZI8Skm/v7vmJicYGRyhDguE9dHCaKQMJB0Om2yzDJz8gz1apVKKWBxbokoAJtlpFhPY5VkuSE3grHRMWyW0l1dRJmEkZE6o2NjNFttRkaGuPKylzE+UqfT7jJUKZFj0KHl5Pwio0NV8tRQrpaRMqO1lHHgwF4ArhAp125eRzS9Dv7l86jFJZKxacIoJApjSpWIQLlYuJskzsU3miCMaLXaRFGAlCGlSpVqfYQ0SbEImq0WwyMl0jSlUq0ThhG1CgQ0sTLgzKarWHrmKGQ5RidYq5kSPjsgTV83cmCRHew/0FuBe4VFfcEQk2dI4ZSGnVfhGov0+UR9NSl3CIHparoixK406LbbCCmZqGfUg4gABdaiAuXamVt6hmcNaahY7v2fpshA2KIXRrFbP7xBuOakyjco7f1v3OeCagmbX+ThgArgy40mjVWJECFW57gOKrlbra0jRQRAYAUiCMFK7JETGLz2vwApbE91xeJUV90N1gRo30JMYq0hRBBlKeVcExj3gJV0hSRSBIgwY2c+y8S6LRgr0ICUluVWzj//032snj7FE/d/gXbaxNgMVbiHPpYUwhkBoy2ZtYRKoYyrXgtUgIxLZFmOMRAqQZqlvTg0jAN0mnD2zBHOzhzhiuuuodOIWVcfI81ylM7ottsYA+iMs2dOs25qBHSGzVKWGi2CMKRcLZFnhnYnp911cfWmiSrlQBAN10GFZM1V1g8NsXXzRgQQK4EqBYTCstpJyVXGylKLOHT357lnTzE1NUEcBkR+9PyH9UN0W5YvZr5OfnLSrU4ypFQeIpAJw/UyURhggdVmg1q9RlSKsEKighgpJeVqDSEV9eERyuUKYVxGhTFBWCKIy6goJIp76BitkXWcrUyipXs2oZEkvlPyGmKPBwJ7hUPQp+n3OALFvJPO9c41EkHRclEgenLja1z3gixkDVIJcmEIth7AihJTqsOLNo5y7VWXsbi0RDmeJtMu0SiV7HGX+gPGjVz3p/sOY8xAL0J3bk7puu9F9IyBJytJXAcsjCHXlkolxuj0BeffRWEENgwFvOPGUf76iQZfW9V0whJWeNqHkAijMSIgV9apvgiBMPTaRUv/BI0XWCjAHWF0jysuipiwsMLGNTQVQegINLi1wWKRJifsZEzKFOFbPktcuqYrBM/NHefY3ByLKgJjHCqbp/RbjuJYY7gHFgQOrDHWoHVOKCVJOwFrCJTrpiylRWN7jS4yr2ArraG90qBej+i0VqnIGknSJe10iOMSw8M15mZnmBqrYvKMTichSXOqtTpJN+Xo4WPo3DI6PsamiVF0d5WOgFKtSjkKMYlm++ZtEMeMjo+SZ5ak2YRyzGp7AdtN2VsLOHNmhbF6hdhKFo4vEJUiOt0u1wCfmkk42Mx4cHmFvwb08BTKCqTWVEeGkaQI5QhAeZYyPjFJfWQUGYSUSiWCMAKpXPYhLiOUJIjL1OojdJOcSq2OsJK4WqEzs0hicpQMMUIyN74TYw4jZQlhM1ZNUUqsfENS/GRxSjv9TkvQQ+j80utAaPecle5irEFqg7TWqwTZ4sh+YfIYgZ+gxkbkeUrrmjvIR9dRPfoAUbWLtjnr1m9ChYJABgRI0n6esueZuOpE68aRtRiTIYyToLdAKJyoSyAlQrh5kOP7YQqBEMa9569bGycTFwcRHd19wfl3URgBozXXbbBcvW6E9zzR4iNnDE+ugrUZRlWcmILSmMwjveRYKRFGYnHa7G4bYF0VltVbb1sozQ5WYtkiQdT3HhzMZrHCYISXEvG15SAJgChPyLSBsUns6Sqm6+JQVybqvkcKJ3gqlBefsJY8z5GBxCpFqELyLCfJukgLYRighERnXadfbx2YJZRCBQHloQrGJOSpYHVxkUq16kppc0PSSViYW3DKuF6ENE0Ssixh545tCGOIQ0m7sUCtViXPDSSaXBiuuPZFROUKOZJmamm3UjZu2s7c/AmefOgRLr/ixRy8/ymyVLMwVKZS1cRxjZnZnCR39/YTx1ZQlTLxlTfA5w5hjTNopXKJUqVGpRQgdEKkBOPjEZVKxanvKEWt7qrbwlKZ+sgo87NzjE9OMrVuHaurTcrlCkIIQhkRxSHNDBJAW42wkm5YwiQZ1hgCNHF/PUcXY0BaKAA8X8XphontZweKhrLePRc67bntReWg9JkFIQrXvN+CzoJrBoIgDyQ5km7mmn8YTy7KraYYSX0wchAQlBQaA0W3K2Osp6ZblAcHtXbZAdcR25+HFKig3w3L9UtwpcdBGPiU4oW3i8II6DTl2NNHKdcDvnvvOHfuLPEvh7p84HjIyXZOSoY1IVpZjBKItIQlRysLtmBuDfCw/Tz/FvwItwm4kAS429yqHqjQ4T4eZJESZJ5jTA6EmGgYkZ/EyBBp80KA19FJrUFal8ZxEz0kzzOSVhNhLCqKUWGMRJDpHGsN1aE6SmhWlpYcBdgatFSUq0O00y5W5+huBxPHaAlJmtBpt5idnWH//r3kVpJmyySdDuVSQJ40sHlO3tJEYeB6KAjF8bOz3HTL7ZSHJ1haWaFSKaPCiOHRGo3WKvf+y0Ocev4I1XKADUYpl8e5/bbraC7m5GRs2DZNGDoXU9ZHmJs9TXXeq9nmBsIQYwQ7d1+CEhmxMuRJmzxtY6ym1WrR7SaMjo1TqVbZsGkTwsKGzZsYm5gkSTOiqEQUhbTabSbHh4ikYjnxQquBe9pGKLCSUIXsHJUMe42DHItRyhOBihhe9SS6/SPuT0JRSNG7sCHPNcpapNFFv+o+SKgHiET+s8JanzUUWKGwvXZmhWvvRWKFRQ+GIucOSCtAOIlzoQKE6rfdK67FTfSiWtIglStnlp7Q4vApR0rKshQhy66S8gW2i8IILHcS7nvim1SVZHx8lM2bpvm+3ev5wb0h7SRnLqvz/ErC/SsRXz6V8Cw5mYHAuhvac/EGHAH300/wwRzQAOp6rpWwRUxmbc9j0NrTNH3PQYTTfLNpB5tqBBoRhMioDskKQue9wxcrB1iXLkxShDaYPEHnGSbtIFQIYeSOLxTtdpvx0Sqlckynk6JKMSNjo3Q7ba8LmBKXQirVEiIqE8clksayq1mXgjiM6HbbVKIIjKa1soISgsAzzDSGuFbn5jtvZseO3bTamVOolQqlQrrdFKlytmzdiMoWaTYD7nzjXTz66DFOzi2xa/tGDj07Qyc5xPS6cQDSbkYooH3wIQDW1xSnujk615w5M8O+PdsoR5LFuYSh4XEq5RJBoEjTBBUEjIzUSTttyuUKY+MTvUEcx2WSJGFycgIVh+jccnKhicZ4mTRDmmuWG03Gm02Gq6MMrzYB0BiUKoIz6bUH+65zf7wUC8cAXmCNE/CwhZCIKFA2lzHwcXmx9Z6z0W7SKuWQfysoFmDtm5taiWsnJ9SABzswaKU/D6MwwmWw+vQF70MU3+fVhKzRhFGMNKbXD8JYQ57lCBUSxiXfav3C20VhBOZtmb+an2bLwtNMZ08zUavwkquvY9uWDZCmjIyPcvtElavjDq9bF/Pew20+MGexJmCN2OOFtgulgnoW3PbfKWK04j1jscrHe7LQ2XOKscpkkGuszrC4TrvUx7FNiW2vgm5j89yTWEInu911GICxOcpo1+rauHSlQSNl4AaYhpXFRUQUIsox63fvYcO2HcR5TppntNttZBxjjCYUhlAZhmtlWs02jz38TTZt3UolVsRKsLyw5KjEUYiQASaz7Ni2mSuuvtbH2xnaGuJSCSkESWbJtEaZiNGpdZx89iCnjh7kG1/6LDff8XJWV9qkueTqG/bxxc/cy3LbhUHdTocwiEAoaDdYH6bMdqEkDIFSPPPkQV5y0/VcuXkzpTgkjAKwhuXFOUqhJA4iEIJ6vU6eZ2TdLuXyEFJKSuVybwK2Ox3OrDZ8vz1JLhW63eX02bOMjcSQlYg8t9fhRM5oW2QPRe8tGNAPDWXh9+PxI4PQuQ8LRd9OCEtujRf+PLfVnesS4Nx91yMAqbAm6zXMFX7i2l6/isHNDhgnZ6iklFgpCIKAMAh6KeLe/8KPYa+X4EIs0ectZDkqjJ33Iy/yFKGWAc9PX8Hx0V2sP/sU2w7fy+mTH2NyZIxQa7omY9fUZrYfuILW/Dw/8OKr+Ze5EmdU7rIEa1b+wa0H7a71+Ac9hN57g26E6cV8gfIxlhRI3yjEZJljY/mml8JajAgQlWHQGrIlRz+NhSu/tQbyDCFcgwyjFMoqtMmRQNXkBFISb92OzlPy0KCqVepBmRvufAX5ygr5ygL43gmVcg1tnLSWybWn2xqWFxYxec6VVx5w7nanSRQGrtM2gi3bd3DJ5ZczOjGOMZJOJ3WFR7hutrMLy4yOVjEZRKWIjJSDzz7K7HKbq6+9mhNHmkyMlRkqTXL9Dft591+/H4DKqKLTrBFHEpZnCVREoBOG82USkzA9PcajD3+TaiXmwGX72LRlIyvLSygJWZoQSMH41DRCSpIkoVobwlpDt5tRrlZd7YQ1Tr1YFCCcQCjJZOsE9VJM3kxRwQKqvMOPKYlFuZVXqH78PzgOitRvMSY8V1+Y3GWocJ8twEWnIeDcbim8FHlBQbY4MdBC2QdvfAqgrzAcAF4S7PyBWYw/P3q9kTFeS8DgsSZvBCz4ikdJqv3fsp9ZsMZglfdaguiFpt/FYQTAYoQhC2JObbme1ZGN7Dn0FdJ8lYpNqCWWZw8/zwMPPsCmXbsZ2ruRUG0gzEt01QUAjwuF+GtWAOg/gEGYxvYyC8VuBlys6D/i1IUcCGiN7pV3un0kNnJabsZIyAwqsAQSuuQoY5BhQCAFUuckUrCpUuLq6RFGR9dhXvNm7r3/q8zMnkJYyeTURqan1vPQwaeoZW0mxqfRpkFunLuadzNMlpJ1E3LtOgWXwoCk02F+bhZrcqQIyLKMDRu2cNmVV2FlSLPVRciAMPQrjJK02wlh6ND6THZprSasNFZIMs3eS3dQG6oQhimLCy2M1IyMDbPzumvgH2HD5mvI8hSbh3D6IIfbhoyc0aFhouYC1hg2b9kMeULa7TJ3doZyKaDRalCrVphcN42x0G63CIIIk2uyLGN0fMKRXwwImWGIuGy6zqfPLqCDgJH5o1zePMzESMhwvUp9uMRm48KxQIVo36armMTnDoVzym28jbBYm2ON60DddxxdpaCkmKb2gsV/tvcFBqwhkEEPPzhv/3PH5ZoT6Y9LW4id+kHYa4veS4cbhzvhW+Z5I6RtjggkQRgQl//3tyH737wJhC2hZYa1gqXhTTx0+Xcw3FiknneI87PsnHmK6VLA9k1TmK6hmQYYmSMKT6DIBJx7Uy/02jnvF3ZbUExmX6AhfHmp/7ws+r8NdJpBCh+3WUfI0L7BqTGEGNYN1whyy5KGLNVII4miMmZIIbuGiXIJjOLE0iIcPkyeCZI0RWSCobERjjx3kMPffIx9W9fTipapD9d8zbulubzMysoyq6srLC83SNOE0fFhlpeXWFpcJo4UAkGr1WFsYoLUGFcim6SUyxFBIJEKcp3TWG1RrUSk3TZaW9I0o9FYxWSGpx97nNM33sj+y7aAMDz71Ckmx+vMHDwCwCUvu41ON+HkqQV4ABa7Bo3g4Ik5DmwbZ9/unRw5+jx5t8XocBmThyzNL5N0O1x26aXkBqzNqdVqCCQzp0+xYeMWJ37i1ZmMAbKcbZWUoUjQyjpcMvM0ddulHNcJg4xhGXCg68BJY3ECo76H4JrwnzVk4YGh4CeqtaDzvrHwIG+PeThwrP4QLoQ+iuyDVyvWGViNkg5cHhjyfY904Bj9XwcLnAYWot4J4MFM7b7T1xlIXypdiJGGnlNQrl/kGoPusbQRnqElrCWXkrnRSRalhXwrR8cPcNvcE9y4ucw/dsZpSMgCes0x8Yo/YD01s1DzpX/TBj0A0f9baov1+nLS2l66VhapI+k/LFynFysdyoy2CBVhZeBa3JsMkbl8rBYJpQz2NJtkyiKylFIUkVpYTFa5Zmg9T+ZzqBzaqeSxhXk2zJ8lrlSQ2hLIENFJuOeLH6M1P8NJoYnDmOGJKkPjozRXGqwur9DtdBkbG0N6tDgMA06dOuOAQCVpNZosLS/z+IMPEFVrjE6sc7Xm7RZSltF56uyWzjDaIGwZoy3G5j31prOnDvPf/9vv813f94MIJcmyFkEQ8MQTXwDgU3/6R+RKku+7zV27lIhcMVaPeeihb7KycJLx8WGGhiqEkSIIFFObN7O6uEir1UYGEdVa2dFwTc7U9BS1oZpXb3KCpVYEWJuweUiyvhxwYn6Fcmueo4vLXL1tHdUoJAwV19acJ2CV7KeFL7iJHhOvCAX8qwhtnTEvsD9fiNT72Rtb/R6FwhqksC6coDiWJYpCzqx0aepZLtm5zncnKsYhazEq+t/nhEoCpMGTg4oMg/VD0YcveeYKiIRjSMqigEg4dWKkdOls+cIL4UVhBAQCZXyzBjswZzUoKTAix8ga35i8mmfnljlTqSE1xEiwqp/j9U1CHZ+o/1CLyMzBA24VtYDMDbFSbK3H7B+PqJZheWkRaVNaSc7GTGGsQUmQuFSdGkzXqAAdlhBBGQmYtIlIncSWEAE5ikmVYoXBxopZawmE4NJylaeXznLbZJWjzYSciJsnx3ng+GlG9+3DWkVYisnTFBtBPDnCfKPFpm5CliQszC8SS1dzPz4xTnWo2ksJLS0sE/rKO6sFgdWMdLtkB59mdmocdcC5i2EYoYRTIe50uiRZjgqHKJXKVMohy1IgZAkZBD222s133MzRE6f4+3/4EJ3Vk5yZmwFgdNs0rdo0S5e9GL74Z1htiExG3Sbs3rGextIcxuSUNsTey8hptJpUqhWM0ZSiECUVeZbS7XYZHhuj2W5SLtdd3YcKkFjyUDJSqbC72uH5lSqnO4rK/BItbZiOqqzkcN8TB3kNgIocLtDH+wZcdQbCBHpGoNft19chmUKj0HcyMr7JSOFV9AwArty81wRXuI7VIOgYTZZkpCpxc13K3mJ1nodanNDAYqas4wlgDI2VFTfKc9fKFCmRJkPL0K34ytGajfcajDaYMCKoDDF/8uQLzr+LwghsGCrz47fsBaxjPPnXrXUujrIaQ4oVAYEI/GosQeQo4fv++lJRoJfvFYCSgevoqvqulxSCSBoqgWB8qMx4RWCyFrlOaC4oOkmbmdOnOXXSGdms06bTCIkqVcfRLoAZIR3jMKhisy62s4LRifsOVXFAkrIMKYVODNNRTMtktIzh0rEaz7c12yfHmVtqccS0GTMxEiddFkURMlaURofI05DuwgpdnZOkKaFSJFlGrTbUc1XDMKDVbDqhSylJjSHUimolZjIuEUqwjzzOyeUVGrsvpTY2TqtWo1ytkeYZYRhh8pxWwzX/LMUhk1PTyDAGa6iUx9m2bSvV4WHiD3+BpDIDsTO+qlQh2nYJRsW9ZxqgKaUt2qJFuRyjhPD9CASVSgWsJs9TtC0hlCM3dTstwJInCZXaiMuJ9wA7gem0kVJxYMTwsZkqCxv3UT/5IIdOLRIawUJiOdJ09z9EoCW4ULOfCAB6s7fn3BevF/iO1WDytaunpd/iHr+AFwQ/URxJuHDRg3dGSCqhYc/GUYJyjDG+mE2uOYFBkMKfm1u2rE9caJ2T6wxM7oDjNFmDXfVwgh5e4MDEXGuMFLTaXZYWLnKNwfGq4geuHyMIQnpgiC1cH4sWBpuAlRkycKrASguskmicGo1zmTyYZ105JdaBKsY4BF1K115MG0GW5ehUo2ROZizt1NLtZKRkdDpNdN5EyxyTaY4fPsHZYJZLrr7E1RgInP6+EQgRQKmKXZ2BvIuVJdApUoVIUupBxIZSyFHTQWeGTbUSJzuakSikaxVKRwxvqrI6s8S4hFajxURthCCO0dqggpA0T4hqFZIsRQKVOGZhdpYk6SBkSLtpWF1ZRghBqVSi3e5QrVUYrpUZQ7Lp8g0EpYjkxGGWnn+aYyuLVDdtZ2rjZqojo8SVCrVymTgMSPOc1kqHWikiKpUIoxKdVpOkY7BaMjE2wVAc0+36WnagnbYpNeYJR4t+dwYpNLXAQmapVGpIacmyjCRJmZ+fp1oKkCanVIpdilFIlDCU4hgpIM9SEAF4yXARh9TqQwRK8qKNq5SeXGbp0uswpsmOo5/nK8+vsHfXpZweHXWnEEr6PQTwlcSD2QB6rr0ndfQXYqOdtoUIKVJ1jsEHWEvg+QcGVwMghcRkLgWMVL7ZiWts2rUZRsSMjW8gSduu9NhnlfqzHvqENz/zfbs4ay1Wa7RvItO1BmTWwwoKTkvRfswJozoj0O12QAoOHT1ONfpfaD4ihNgMvAeY9mf9l9baPxRCjAEfALYBR4G3WGuXhPPD/xB4FdAGvt9a+/C3+o65uUX+6i/+wdEbUf66nL9lUo2RCXkmwDjyjESghKWT5+gkI8sySqUyiKKFlIvNrLVkaYrJtW8oKlEFycNqYiWpVkrsvWQXu/ZspVLRdAWUxusY3eXkbIPQWs7OLTAxPkGv1z0O9nFtvrTTErAGIUKEikE3yK0lEJbdm8YJV5fZm5dZHlK0MsUrtlb4h0Oz3LlhivHtU4jRzdw8sswzmyZ55sQitdFJuo0G9foIwkAQRuSpmzCRUpw6doyZmTNIC1E0RKPRIctSyqUKaZKQZglWxphul7HSKCPrNhMLzfLhx1FBG1bmmK1WWK5UaHY7TE1MsOBTjTIqE4Qhx08e5bHHHqJcrpClOWm+yOrKEps2radernLqbMcxAwEZKCIyMlNQc9yAzpM29Xqdaq3C6EiNSrnK0FAdyDE6Jy5FVGpD1GtDpEmHOKqCNXRaDSpBCSkDAuW49koocp0TxiG7t41z23SHT82ndIY3oW2FWqxZWtEcX3+Zfz4e/jP9iR5ZSyp8yy58K7JiIrrkDlJYrMkogCElhNMTEIUNcW6+sY40po3FkqOEJBcu1ersjRu/IXU63RY661CKAscjFDjuSQ+ttN6D8GXPxvrvCwkD4engKUbk1OoTaDHrQUqD9diF1pq023UJbqOxNqCbpqQy4OCzR1k3NvL/3ggAOfAL1tqHhRBDwENCiM8B3w98wVr734QQvwz8MvBLwCtxLcl3AzcAf+Z/vuB2NoXfm1EOVBWeFw3ewgVYKmBBW8es66GqwqnQWGuQufR5XEEhJulauxfpPgtaIIx74NJqV+O+kDF99BDXPLZE1SzRWTxLs9FltdNlamqSDRs1O/btZN30OlQQ9tlbwomX0G1isoRQgY1KmKgK6bwrQjEh2gZMh/Bwq83+oXXU44xnDPzEFXs4MjKObDWZDCTx7Tdw4OHHONJYQg3FtFttjLEEQpELRRCHLK+sUkJx+uQpWq0GURgCDsUOVECe56RZQikIMe0WY0nEjr2XUqkpKkePUm0vMVcKEFmH1TOnWQ1ihsYmWQwFI0KAmSSQioWFszz52c+xeOwI9akpRkqCdjcl1xmlUDFSnyLQhtSz87AQq75IhkFSWWmwpV5DxAFRWAJigqCGzkNqQzVE1kYIS7erCaQ7dmO1Q31oCKViAiEJcISsdpKS65zWSsbZhQWeeOKbHDYTiHCCpDLE14N1iOmd6KlR5qvr/MAuBEWLBwaOYm76WMA5W494lue9cFIAwlgX7/ewJed2O8zATepAKFKEk2zz2oZOZNZLlvmBY41LHfaqVoTvW+H7yyshkEqS5pnzBExGo9FG2JAzZ1ps3TKGJHRes5VOMQlnVApVoSKrIKxhaW6O4Tgi6rWxPn/713QlPgOc8b83hBBPAxuBu4Hb/G5/C3wJZwTuBt5j3ey7VwgxIoRY749zwc2okNbwOv+HB/R6rpvpIbPWuERt4eaJHtmjaA5W/Cb6AE7vMP3A0OIkxihphLUsa8vBpsGaCFnagIkssU24JVzCKEN9ZJT68DAUeWLf+NHKDNNpIULJcCWiqSskygldSiIyOpjlZWQZXjQ9wVltmRiuMKEijqqILTbjUDMhPXuUrWmXhxtNzNICsupWRIlCRTGyk2CVYmFphVoYOZDNswZ17jwEY6GbdgkDRSdLKS3M8//j7r9jbUvT9D7s96W11o4n33xvpa7QXZ2q00xP8iSSI9K2RMM0aUEkQQmkaciWZTgAImDYgCDCpm0ahmHToEFblkDJTEOTFoZpOHmm2dPd06G6uqor3qqb7z15pxW+4D/eb+1zbnVVc2iKQsELuFXn7HP2Pnuvtb73e9/nfZ7ndTHy8GsNl8oC5Re0haHrLDPf0C0XHN+5zXhzi/FoA994Xnv1e8znc/Y2p4Rbt9kuHdev73B4N/DgoKAoSwqTePrZZ/nH//CEOJcg0K6W+Pkc1TtxKliEmtfe+j7Pffx5rly9xGQ6ZTyeMBoNGZSO9974LoWF8bBgOC5Yzg3LNvLGm3e49/ABd+884s6tfe4+OqVOgbZZsmoiqYp0Jyse/egfgo9to6sN7vz0n6LQmkhNiMKM6yyy4yuVAePEplYcEkEV+HWH6FxaDcSkoetQSZ9rKZLvLLVOv896jvJ4SonNYcXM5PkAeYqRNkZ2ZsTc9bHgo7Lt2fomzeUsCWWk7RxjoqjEheqX/8nv8t/6YxtY24OYObhohbYaV5izAajaQEjs377PqHT47r8kFaFS6kngJeCrwMVzC/s+Ui6ABIhb5552Oz/2oUEA1JnAIZtCrM9xLw/OK1rl9og8pNapXczlwxkTi3OQcP6mfzjlYJHyzHdAJU3UQhPVGnxyqJzmaSUDNqP35wZXWqIppBbzDafHh3g3RVkBxwQ01Oxc3GE8O0JtXODpgePWo0doP+fS0xPevf0ew2rC9++f8vb373JaWlbzU5qDEboakdBsXbpCfXMOStFm6qxWwo0XGXJguVjQ+shwOEKHhF4tUdFyOITdsmWxt8FBU3JyXBMmQ965+5CHcc7pwTHFnTsEVVAMBkw2Nrlx+QL18SGHi1MYFEwnQ2a7N7iwuQFJYvTTz1xhsUBaacDi9BS3taJX56UEs3nDV3/zK3z329/id65cYDicUBYDxuMRk9GI04NDUvKgHV3wLBY1R4eHHB4dMF8tKccTfBvYvHCZ1hjGzrKsYVoUtKVC33qH9MRLBJmcQkotUGB6KrjSwhZEZWvuRJXEJSpodU5GfO7oMYLQkIjo2CsLlezo5+7LlKLU7UomEaUQWXQNtfGCCxDz2u6NSOO61382Ebm/NXugMGVymrT0xFY8grZYl/gzf/bfoCzK9QwKsTqXzoFRPQFSrb0IbeFwoxEPb92kKg0fdvy+g4BSagz8HeDfTymdntkzQUopKfVD8o0Pfr0/B/w5AKZ7Zyck2fddG2nT9IhqSr07fB+8zzvE9JBtXJ98GUQJ6/HvfbBQ8ropBJLJirNkIEBUCdO3i7zQLWOQqB5SJEWP0g5MQhUD0vE+wVbEcrQGy1LpYNnx2tGKS1dv8OWf+aN0MVH96t/n5dMZWycL9gclx8enbGnPPz064I8/fYN/Mtvk9GSFNwXLxYqrTz/Dw9tv46MnKljVqzVtwVjZbboQGE/GpJAI8wU3xmPi9AIPH73Hl0ZTnnzpM5y+eZdOz9n83BcZfPVb3HnlZWzqOPr+mzw8POITn/08mwPLSLe89+5NUhtpB5HBYEIYjnjpCz/Knfdu88QTl3jh49fwjVi8gZzyNN3G55tcMt8OrwMn8znz12uUQsxCtVBzZSGI5wIaQkyi2EQTokaVI5JfkHSicCW2sqgg7baRUhSLRzzoWrpigtYNozDjGgUP8hyykLzcG6qX+xpuI1RiYhSb83P8PzKGgAIdGhIBsHmDiZh+zgCsM4KQR46REtoYOq+J/QalkrhDe4+1hsVsjtsQws660OgDQQLpS+p+bSD5bkSbSIwFiZLC9ePLIjF0EiB8ANVgVZJzq0Staoyh7lp2r+2x/94bGHvWuXn/8cPYFOtDKeWQAPDXU0q/mB9+oJS6nH9+GXiYH78DXD/39Gv5sceOlNJfTSl9IaX0BYYb+cSyXsRn/7JktI+S60fO9Vlz+4aUkDlvej1FF20yEmvyx7XyddSkqGVHj8ICVDFhrOpDNT5B0HIxxb8kYlAMDVgttZ+6cAW19zRx8zqqqFCuyG+pBGd4YaPAzmvq116hvn2Xq5/7HD9/8SKvbF9lK1icb9GrxL/1xCV+tUn84c9/lp+/comClpNH+2xtbFK4ASokYtvR1Q3j0UQA5NDleGlo25YqdHxyd5fnP/95ntqe8NTGLr9x+4C7X/kaR/6U6BLm7Vs0Oxs8f2mXrcmAU2Wwx3O+9Y2vo7/2Vaa33yXeu4c1iso4urbFFwUjI1nX3dsHbG5aqs0ba4r01vVnOZ48SVQuX9uWWA1QScxCotboYkhCBrq2oSOl7PykNFqXOCPuQdYVYBTWiBWXbwPCvFMMK0tMYMsKUw1QfplJQYagJ9w3llWQcsy5Et2DZ0oymIgSnQUQ1Rm21DMBhS3o0W0DyeSwoMQaLAeUnjBGimgVsxuUBAoV5H4zMUIykGIeXxaZHR7S1fXaBl0WlvxHGH+IaC3X8ymb5xCygM0oUgf9ktWqw/gZenWKnd9FLY9RgDGCjSUSvvXMlw3HVvPMl370Q9f3PzcIZLT/rwGvppT+8rkf/X3gT+ev/zTw9849/qeUHD8KnPwwPKA/1gsbzp0k9fi/x34/p/d9UF2/YWTmU6YT/wBjeB0dzv0g67CTykIM1Vs8sy4X1qkd4IwWXwPriK4kDDdJgwkUFanvPhiN1gPGV65RDkvUjafYrAbo4xXmqQv8N567SnPxacrJEFzk5f2aP/Gjn+PKJ57huY8/xYWQaNsFoe0Yb21Lm6xpmK8WhNhx7epllDIYpSmcQdUet6rZ95727gOqaoONK1e5Vmzwt16/x6tvHeCXiYcOJvWSu7M5Gse14QQ13eCydnz25G2athWBlILtsqDxmrSxxepUxEimVJgQ+dLPfZ5nPvspAOLFF1lNr0I2GSEk9GhAGo3AGFmMhcEMh2BdtnjLILjSmUCTsM5hi1KCOIKKN00NKVIv51ROdt3Od6TYoUOLzuKpmR6wbyZ0RoJwq8y5krL/4gygW/+ffI3PfR+8mHEYrdBG/r0/0VVKCf9E9Ir5Fkq5zleAjDFLQYbBXLxyBVuWwog9N6gWeLx92f/TIl5zKFFNpry5KVBKzERV7CjiCu1XmNhlsVtuWQYxsdk/PuLdBw9J4/EHLTvg91cO/DjwJ4GXlVLfyo/9BeB/DfxNpdS/A7wL/Hfyz34JaQ++ibQI/8zv4298wGqFD+P9p8cupDoLGn1UTYFSRZp+x1f98IY+Wpy/oAqVjBBEFFn+mdav3eMPkI0llaJWmsZaCEZagmYmQiJbkPJ4KeUU0Rvufu8d3Miy4zre9Y6pG7F38Tpf/eq3+KnPfJE3Nra488arPLEVOHn0iIHVLE5O0aEltjX7x8dMNre59f3vsuE0YdFwenTE4eExddNhreby9pTUtExtxdgZ7KjkmYvXOGgWsLPDaH+fo4N9Ol1QLJY0XcPT0wl35zO869goBky95+ntkm9WQ8oEOGhWc5bBsDveZXdryqvffY0nnrlK07TceOFTvOwr+Ge/zsH2E6QEhiafUwtmBBvbcNAAHlSimkyoF+J/l8tsVBbYdCHStB22KCTDQsq5rmtJydO2NV3XUFUFPkRi25C8hxjy/ZBAeeqMKbnkJLVP/fI/t/D67tK5jSDlLBKVSN7LraCRFqGWrlLv7GOUqAhj7jwolavNNTIPJE9MIQc0jY9Q5OcBUhL1G1lKP6hozLtbDFm6bBTG6HVZvLm5xfUnrnNyfEqMAWMLkjJrZ6kYE+PplNPVirYLPLr/kA87fj/dgd967Gw9fvzcB/x+Av7df97r/sCh1v/pX+js/z9ArzwXBM6fSIUgwd7zdJF4yyca7Nn1Pv8669n0nKG5GczpyRrnKaf50uUaUZNsSSIQrINiJK/V1ai8EBQlqMi1QcMoet756lcx0wu8M9nA/IOvMP3yZ3j47rvsmg4+9SLNK98m7Q44uH+H2+/ep5ufUmE5fu8ek60xxaLlghswmhoehcgyKQZlhTUdm1bhjOdoNWfPtNT1JjF0uEULT9zgc3t7vHzzLWbHp0xOjzlymp2RZWtjgzcOZmwWii2jSaMpdSgIXUtpNKEccKAdT06mXLq0w6O7+xw9OmJSFmxcvc6j91YAeDRKWTkXyOKJlOitS6RHd0m5n20GJW6Q6LoWazQ+CO7iO5ni6zsB1QT7AeMcoWtIUVydlqslo2pACpFuVRN9R98BUFFovTaXJJ0TFL+3/qLvBrxv8Z+/n7J6BBUEU+pvBwGSxTkoxd7M9kyDqBWolHBG5RZ2yvJy8S3s23Z92ZqCpO194vT44u/fo7gjeQRfSCkIzpDv+el0g6eefJJ3bt5k/9EBZeFEQKT1mtQUY8RZy87uHnfvncfqHz8+EoxB4GxzVh/w2Ho1Ks7GN507YYq1xlO0/wOwC1IoyDAwj9UM5wNCIk+nkZp3fa/0N0uKZ6YQSp2JRLQMfMBVpKITH4EY1pbjqaxQMXLIgFIr/slb+3TqIT92ccI3Q+Iz33iZwTPXOFaB5Stf4/bI8bn7j6ivXODZ7SnlN2/yFROYHz3AVSW67ZgMaj7+pS+w/+pdTgrNw+WCi94xPzxhMJ3yk7u77G9oJkfHnDxvaQYbXLr5Hq9vVwx0ZK8KvD2a8kkf+N1777KzucmTmyUvP5zxIxcTh4OLhNBQWktaJpR2nDKmchWXLu9hqGialhDEZi3klqDPngs9JyOAmKlMxHnIKHG6ISqcq4hFSfQeXVhUSDnVTRAioevosy5txaZbxYhG4euGFsEAmiRZgDZGdBJaQdT4PPchZkA5xpADS/qBRfa4cEehuogxHppllqPI+Dh5P5KWS/fIENHiXJS7RlobvPEkzHpakVYCQiYSRSVTqJXSKGvF//D8saYe928rkYKMY7PGiuFoFsqJl6Dj8OCULgZ8VIQYxcXamnWw08rwC7/wCwwnE/xqxq//1m9/wML7KAWBHzj6lO3895K26dwWIp6BNY9dV5V4o3Z40lmw+MBcpk8Rz/9CfiEtrSXpGp0ZTIo1uck5oEHZgmQLKCQz6F8m2hJ0R9N0LNWSZyeOO3PNdw9O+PT16/zKfuBnHh2wqI84KjU/duUyp04zLYakZcP3hjVbB4l9dUI5fsTHhkOK0YD2/iPUEBaLJU9Gz8bTT7BZ1xyeLjkajLhaK+64hvHBPtXJkjdMzdYbp7wxm1MvV/zIpcToU5/gxwt4a/8up6rkhWnBM/aIB3uXSLdnmGZOihCLkloNOfIrhqMhVQXjyQTlnNhl995Za+372fXSKZK6gEqRkBKEQLtaMJhO0MMx86MDTOEEeNGgrVoLZVS2yLJKQ0iEpqV0JU0jvgmmsBjjADGFNQZQUXr/+T31HnxKPDfO1dvnLnPsiUO562Q0GEVsYyYCSSkiGYUCJY5IVjtKV+K9/MxqgyYxUCUnyhJVJPqEDpBCxHsBI0MvJe7nIazvzfVud66yzd4AOftUuTTAGVJK+JhwxYgLlwbs7kT0cLgmDkn2o2jajjvv3cEWjkH54Uv9IxwEOKv3z9fm+TqWztIG0a2vj3wzajydSEhYj6H+gSwg8fgPzv3Ns/ph7fra4wFaqfWFQRnZZVwJySNgkLyMNhblBlwYJ3bqyINGs7c9ZR4qbt074cduXOTrtx5yIbUkV/Br3/g+L338Gr918w3a+YImaZq2g+ICB7fexC9njJPjVnfMICnMrKa6tMtUl5TjAc/t7fFwcUi9TGzqIYvTJaNUc0FFTqPnye2SO65Abe2yRccbnSKUU4btnGKouDgqeXO8RXj0Tg58Gj0cU2vHg/kCXQyYbsFy1aC1ZrWqs417f+7PncKMwtM2AvhGse72YYXe2BBkX5Ft2cUjT2vh2kuvXHZPY0RI44PYjq/qOs8XjBhr8wagIXaUOkpesuabmHO04HP3Un8DncsllVIkDYOTW2zUjxhWC+L1a3Sho5pOsUUp/P0i0TUdw3KAxVAUFqfFechaja879oaGQTplHxkqozK5LUaIwYskYJ2FPnbS3rfnqRxwIMSOGDq6doUrhmhgNl9xf/8IbEInxbSUWYRnWatmuVjw3ts36UJLUX7kJ6NdrgAAc81JREFUnYXI1+a8gyuPnZR07r9KKbzvZFqAOtfrzdE+JfFtT6r3IHx/FOh/Nz32cJ9Q9A/FlESOmU+sRqyllFZn8uVowTpIpRR7/eZYFoQQeWVR8bxe8tRTN7jXwfbhfW5vTajefpfdy1scBs3equaosHzj5ducdi13l3Oene6hq5LNEha3a4xVXJ5scLRYsegC1y/uojam6LZm79IVWhN5oavhxpSh2cJM93jznbc4fe/7bFzdAG/40QsV7d4l3nr9TYqdbY7eOqZsNFYtsA4aDPHhIYsI3ahk4+IVEomDowW37z7kpRc/xnLeCLdCWVno9Kcxrm9qoawGEVnlNFzFSFIGoxXGVmKI2nUY64Sm6yxy8hRg1t0CbYzsoErlXrzH5PRYDEQDWiWskq5+zEHA6IKzcH5+jvAaKcx5oiYqyT7Sd76Bmr/HMrUobXBGU69WjK3l0t4uSjuUUljriOSBMkrjnKPxDTO1YuJP2Hztd6hMRd0EqCSgGmvpumZ9r6V1QOrxrfxtf0vmdrTC5yDQYtcThoRJGGLC5FFrWluUsjjrxIwlC5V6MNP+kEbgRyYIKNI6/T4DSlgvKnUugopW7dyHOh9RUx4l0iM6KRsqpHOvew5jOPfENZNLpYjMtZWJRZI09DVbwitNsk7qfwtEA9GhTIFy+ffsEFPAMyPNxYVldTxnf37MVw4X/NQly1diyxe3B7y0uc2bm9t8+Tvf5tdeeRddFvz0x57nwc4OLx7VHCxP6S5tccVdxn36OZ578x6NsjwaBi4+OuL+UMOdu1wo4OHYcvWde+z+gS+gNwYsv/89fnG24PN3ExeefIH9aYH+1ndZXdxiefMm9dGcO13Hv31DYYcVs6MFqWmZaVDlgG60S90EUlvz6muvsz0oKGxBqRXv3H6Ysx9kyIvRZ+WBQmYo6ISK2VpLyQCZlECbAjeaUh88QDslE3asRqd+5FdCp0jhnIz3itIWtK6g6zqstBXQWqTXCUPrazaC5ijf0kqDSXF9L6gUSZxhPvJnAkYZJJ+0lPWc8cig4kAAuJTwMdI2HUeLlhg7mZUYgrAElRDIVErsbk5xVpOMRoWA6RqG3kMXaSMQAl2I6CgeGWdgND3yuI5P9KCkSnTNCuIEnQRrsSGf56yO1SH7GsaAcQaSjK9XBJKX8Xja6B/KBfjoBIGUMhPPrOtwYB3Dz3UBzz3pAwv9s+c+lm598O8+jgvI7yUlbaxezpzoR1pn2zEAbVkPrLdicZSSFVwAiNaSSs1ysMXuhqfUMzbDkmtTzZ0HD/jp7Sk333yLt9I7fO7pJ/iH79zj6sjw1FPPML94mSfuPOLdQcF2sYMtE0fFiGfvHnD74ohRa9lb7JM+/gwv3n3Ia4/ucXpxyhdXK+4MVkxf/j3eXS7xF8b8G+ULvLpYkFYnuIcnvGUUn249f+fOIy5sTnhqoyCmfR6UVzl5eMioUByvWjYHA04iBB9JxvM7r77DRqno5h1PPvs0s6ZGZz+/dbBdd3QgGEOy1bnrC5BvXK0ox1MWD+9CKEU3T0Rpl2/2lpCs2KBnV1/fthjr6JL08UOIKFugkyIosZ+PpsZkyH1oEk6LxbooU8/wgLR+PxqvvPAW2hXT2DAZDvAhifdBElZhGzXj6QZnWgQ5fIosl0uGZcF0XFFYR9O0aBsp65amWaKdzEuIMeC0EvA4SDaT1hnBufxzXbZonJF/SkknoZ+OhFJYk7teMRGizxWOdCPI96nvOnxTo1Sk/ag7CwHEnJ6rXBYAa6Rdjr5Oz8cP4RVoLRiCz2nk+Z89jgj3L9Vf2MeDRkQm6fS5Wu/7Zq0Rt5HUR2ULJkBy693QGkVtRvzFwy1uxIpdteCy3WbHtTx1qUKHFT9eVNiuY/b2a/zpK5t0R0ek45ss5vdIswXDG0+hjxuaumZ327N8uM8T3QUwBSeriL55k+82Lc/fuMrD/WO+pgIvbRV849bbXP3EE0y9ZT6CH3nqBXwbOe7mxJsPefnoAc9d2WNed8zqhqsFPLRTmvsPUUZTo2m04XDeZDR7xWGAX/qd3+OL167w+sE2N0+OzgCt9P46Kkpm4Cp6RVvKLMwYREZcOIsbDuhUi9YOfelpuoc3IURMQnreKWGNpQ3i/mtcgbEGZwvmbSJVVW7JlqyiZYFjamUgitfQREhaSzJpekFQOlcKajARHQPlzVcYD5DBqE7jSZhoMFg2p9s88/zzdH2pF2SD6HygbTuMThA6jG5xWoNO2NJyNFsQ8/AatKD8PQh53rWIjJs8FqVQrFrPKiZQRohUWTF7fk0opfLgEY21Vu7XnEl4H4hBDFOP64YPOz4yQUBFBO0/vyufPz4oE3j8Fc6Q+fPB430qsQ86eu+CtS9hf7P0P48x88cNxmiKwqG0kbag7nuTMhUmaTml3jp08DwYjdhvKxKb6G6F6TzmcMagg6H3TGkYq8To0TFXTGRnOcPpQ3a0Y/DW9xkaKAeW4uCIUA2ZHd5luDvAKs/DwxnP7u3QnD7Epo6Tcsjh3SOKrR3eefchO4s51XMvcO/N77Bz6RmuPv8c977xMoqSdnVKkzQPD08pdjQPzZiD2U1OvCK4AdZUHPuIcpEitiziJm2RWDnFN75/m0ctAogCIvI6d2Gkr4Uph+sGbcqZQAgB37UURYkdbtHO76EvPIn+hT+F+tv/F5gfkahlzSYwzuLnK9q6RbuCmMREJpQVFCUXlOYwKFqtscEyCaJsbPSQGPOiWV/Kcyi8TnlqkCF1p2zdf5tiXBKTRsVEMOIClDq4vHOBz7zwPCGICCjFiM6bjLKWtmu59d671H6WZyQmSt/BdETsO0kqoa1MFOpHpq8xgJ4+qSVa6PzzaAqCrUAbfBcwSRHDOQar1tl/Mbcw9VmrNgZP23Y0rWBnR43nw46PRhBISM9XmV6MevY4/OAO/lgW8P6ooPgXKR3O2oMJ0roZs/6hyuWAOBRJS8ko4QlAFLah0YBkBirl6ssaIhFUScJDivgUIGiULVh4+bwpalKI6DbiksfSwGpBmToqFSm1ojSa0hmGRUHhO3beMVwejnl2FCnuzVmmgpRgO9QMKsMgrlidLjmpa+yrrzJWLc3DY2ZvvUGgY6vzvJUczeqUp0uLGg54qAYsVOLpvQs8V0x5syxkvHmCpXIyE9pYfvW9fRbFlG44XePronrTa4xAIqmGJz+B+voYddoSEE2+j2KRlrTBVg59UqBGW6TtJ4nbl1Cnj9C6IkXpkZdVxfHRIaqCuqtRwbL0DenCLnEwYN97mUgEdCpyP09GbqKQvwTmEfPYdO6e0FkBqEJkfLrP5sDjQ8SniEmyk7YEtC65euk6l7ameJ/WJWaK8RwRKHFweMDJ/oKgBKEPyVBOJ8QgMl+VNFizpqhLC1RmKpJboopstEs2PNG5/ag0FIXwDqQfyngkRi3OJDwG5xxJS1tRxNOJpQ/MmpYayyydlWbvPz4aQYAkCg/3/nZf/7M++r1vgkx/fGi9Dz/Ye/mAHykgqfclGxJMYozrt9I/HhGbcbQBkwQYTOHc4Aky51QCRdL5DrROLMqtjKqKJKEoh0BUmiYpmmSghEV9hPZtbqMnUmyJqhGAx8DOacd//zOXeObiDt965w5/881DDmLgczdu4E7vo1THxdGEXXvM9ckAxgPUcc1zgy3unD7iRae5Q6JkwGxjE600P3H9eWYq8BtvvU148klGOjE3kVYNScaiFRx3AWxN4szHPsUuA/s9/JRIoYOd6/DZn4Xf/EXh+CMOuDEEkWWXDoUjDMYyV/Lyx1DvfA2dJnQ6EmLElaUAdCGioscpTQwF6ZMvoZKi6/0ngKQ8PZI8LLLfv2KtTegDvtJ5UcYWE2suHb5FoTqWecagz0a1KiWGxZSnn7pKVRR4dbabxhgxVkRpzho2RlPevXePEGWYbBciuJIwEA5BMprYBUnd86Y2LSpWdWRFIume3qQJuS1tlMIpjdJZym4EmI5ZtWito3AJoyzOOZx1Ge9WGGPQxlJNptRNxHzUg4DqudhKUPn3909VOrNa7kc0PX68Dy+A8/yh84/+4HPUue/T+35Vnc0cECaipFuiZszchTUJJb+vdWfDgAqIy5GX929EtYhxMoUm9lJaK/qG/rOZUkavL/dRtNlDX95vTBodC067lr/7cMjWz/9Z/tN/+r9gEQqSSiw3pjxcLDjcn5MOaga6IO1do7h+gzIEimVLNdzExBY9adgoO/5xu4MpFb/TJO6rguc/+QyvnwSM1aJVj4qUWoglk7DEU9LEuM4EpDUqtat8n1DJkuo56fmfgle+inp0SwJgjBIwvUc5gx0M6YqCFBPquc/Bb/99mS4UQo6bFqzG+5YyDVGlha2rpKeehc7nRo9kazp06Ci5ZGn1WVdIy+fo3XvyUkIZuH7/HTaWx5yEht5fQioXxbAyVG7I9WvbFFpj1dlyiTGtr79Vid2NMTEoQg89KZlYtfCBVd3y8PYdLu5dyBODBKw8XTWEpEjaCMPyPPkqwSAFSiIqG4U0saPKZq5N17FYrfA+4ZOmGk9lg1C9dDpRNzWndUOTCorRv5yA6F/9Id7Kj7Vv5HEBTWTww7lfP7/m+wt7TnkoNZUMrUzrJ/5g2XCGyH7A++lbgkoIQ73pqQCGMtaqn0/Y/1Oc87rPNFYZW6OkVIA1kSNlDAGdSCEDRPZMBq3dHrEoiPOH6K5eq+Xko7YEpZjHku1nn2YRdmjD66BgebokUdIhraHZ3lXMU59krktp12lZsDqBXgSuTBPPb2/xnUcNX7NDtIfqxFOUFbOkCDgSktEYIq3XKCJWebp80+oUJBvI8+5UTGKGaQrUyJI+819D/crfoPfESykRU0Q3CTcZsvJ5iMzlZ0if+1nCt39dZLUk2c0GA5RSBB8pqwI2NjHBEGKXvSSFK6D7eQFAyEBb6jsX78Oako5sze9z7fhN7qcFDkun4to3EK2x1rC7uc3utKRZRYK2+V4AtKTtcgkDNy5tE2MUP4EUxHtQBZK2vLV/yI8++ySutOt7QNtMQw7iD4CXobepdyIGpk4xwkPwmDxRuecTiPmpeBr0o89jTGtcACRQ+aSIyuCKDycL/b78BP6rOGTwY3EG5OR/Ok93FavgTIxAMBRNerxsyMdAiZ2UIqFUPPv5+W5M+uAAIGQNI77zKbu3nruBrNa0tkB1NbrzqHMX5twX8lqZabgeU61Nfhv5s2gtQKI1uVRwgoobjXcFjLbQ04tQTIjaZbccm9VikcOTO/zmV/4hxh7k3UWhkmc0LFFVib76LOmJFwl6ICi5NUQMSWmCinRl4v4scdIkTlcalQzRFby78GwQ2OpdlXLXBhKD2OBUZJJWWNWLpTxFqHH5XGuC7MhRMpu0c4NUjtYtMemxywBPtKWMAZtAWUv67E9jJttyroIMHykyJbuqhkTvscWIFFtSkLtBa2kvJz3ILEQ4UUNSzqxUWiNw0NfbIeDe+T5Hhw+Iq46kkoyHI+FUotCJpknsXhixWKxEM9E1xOBlorSXLgfZ2ntQGK7sbgEJoy2ls3lhBt47PGYWctYYgzgVJ1Fey4CxfI/1mUu+Xzvv87j7QNu16Jhb1jEQghevB9/RebkPnXOkFOX8Eum6jtAFfNeJG/KHHB+NTCCvzLTWfa63VskCFGKs0CP4MaK0wjpL23rWbR9ApchV2/B2UxLMOZCw/zvvrxzW35/PDM5GQMWYB05kFDelRNQKWiEsp+qsPFlnBshnWJcw/evlGKFMXvRJnI0ee5NRbgqUJiqLHmyCK1HLU9LiCFtoQhtIvqNtFjy4f5PCQa0MGk3rA9VwjHny4/jpE7KwUktC0kgxb9GQDIoAKrGxdYWfujbh9ldeYU6i3b7A/cUxP/niBr91qHnYicGGjh1DVeONFqQ7SfpvtMd6R90TdfLnTskTlYVL10hXn0Td/DaJKO7PqkWbgqAiqouEzsPAoi8/SXryJeK7X6XrGiaTCdVwSHNU08XI0Fa0W9vEzoO2KAImRQKakVWkPPdh6Yrs6NuXa3JN5EoJHfnwwQO6g0coJ8E9KiWAr5K6PQbFm++8zX/6t2ckXWCUZTCoMJl8Y7WhsE7KFuto64bTwwPZpX0nkmfJ/vmN9pv88T/849g+g4iKoNXZ1GOVvTEz81IBhI62XdHFFq3FNiz4zEOJQfgSJjtfKzEoXd9GIVHXNW3bcLSYsV1NP3T1fSSCQAKJ1jr7tp1r66TYCYGor79jzIFATBOAcxhBwpAYhyU6ucwW608unC30DwAKz9ch6exBibxiKR7zYMjWWOLGBgSP9h1h7VKjz4FjZ+9pHRv6xa61gINrmmx+POayoG+3aSelh3GYYgS2IigP6gQVW7rQoZxlPBkxX85I5ZilGjIcbKOGFxB8BZIe9lT0fG7zzhMhmoqjesyf/SO/wG987yGvnR4Qidwpxjy6P+Nnn77G//vmilVqMMZgaIgpcDs6IUwBMRU0boiJ8v2IFStlCEpMQNRgk3TtOdStlzkr3WSoakgdrJbQzFF6i6Qrit0nsW/8Or4r6TK1OCjLIPvqu+FQrN61IQaZ7KwSrIxn0mUqs3ZnGVyS63GmI4mo0EJqxSY8erqM9scQcikhXaB377zL/tEBHUAMvdMMRmt8iOs9K4REZaEcD9YdJa0UMUrwPzkd0XZ1rvcVxqg1ACheBipveCrjBomhAhUavG8orJiNkpBWZUqEEAhBsuje/MYosTohIlKWzjNwA+Yn8w9dfx+RckC2Y5W56P21U/nOFbLJ+d9FavPHyEQACqs0PhrRXof3L/YPwAc+sLFw1gqCrG5LfXqvqROoYKQroE0GBc/GofXvT2ozuQsfTz76zoKRrKDfqXpjibUFVb8raKJypOkF0vgS7DwjyPt4j0XtufL0xwnXP018+gs0G9dwhSW02fDS5AHZOQ1ROZCSZHBKp1r+6Xe/y6/99tv8zCe/DM1AdsNywLdWiUlo+PKVMVYXKByj0LJrG2Ia4XscUFmCgiuIv8BPqbfZSk0eFpsgBfR0m6gtqROMJyqFtRZnIixP0YePpBS0mm52n04Zog+0bctwMMKWFU4l7MiyqRXEldCVAZ80OsJG7PiUOQSgdb2PxJkpDJmNj0o45RnTon1AR+n/++BJKWK1wijw0ZN0ICSPVi3KRApn2N7cpKoqXOFwhcWVhqLU2MqhjNiPKZWyz6DOKveePq3BaiIerUIetS5WZT3wlaKUs1WM6K5lfnrCcj4TvCv7Beh+rkbXrTdDrTUHhwc8erQPKLqQiK6AakDzQ+YyfkSCAKQktlVrIA0FUbTlGtPbDcpF7QH4DLYRk7QRM13ykR6IhFWbM0CvP3qedkb/5bF+51XnZKcGr2Rn7kUaMUGIHmwpF9IogjKSluq8sPXZaybk40BvrBnP/rbUBcIxsDq72uRg0Jc3GYiU3EUJHmAKqMaknSfgyrPst5Ynrl+FjQtQDUhGfP/Uap79DRypn+WgElEhDjgp5vJLc8KS/+zXf5lPP3ONT1/+FApHVDCzQ371+/d5bhB4cTJEJcUqFahuJV76OQZHXaJSxGWiThE62iDqOhVB+xVp74YwOVPE48UUlSB1PC36G78BXUfqIqk9lgCmYLFYoLSiSIaoEg2OR25MYRwj5ShpeVHP+K+XD/k3R3fZUku5lLku1jHmIaFGJOhGAmv15qtcLeHy5W12dnbY2d5ke3OT6WhMVVWUZUVVjqnsgOlwxHQwZWuwwagcEnygKkqGgwGDomTgSipXUNoSiwBzVlmKZNCpgTbiDDhr1xmjyYanawwsgkkKpwKVMdjgKboFQcPq9CHz4wPhEsWEMSUxKIwyaAq0djgrWM9oOObCxT2aeoFvVvigadvE3s6FD117H4lyAIAUhDrMeXAEtLNndd16umrOHLRmPbk9p9wNmoedll0nj4he/8L69Xsg4AxL+IG3k85etO8QxHWNb/LdLeKR1KO6xmYDC854Ai5mBEiQfzKtNKVsdJHFILlyOasR4fH31uMhyE6RjMOnxKOjE7743JNodUBMkSYE7r73Hslto8abMivxfKlz9mLr00JS3G4e8jf+3q/xR3/sJ7n/G+/y0B+RNLyrd3nv3fv8sc+9xP/ze3d5lCZ4u42ig3Q2zQnrOW0kk2sitLogIXiOBsLGJVIxRXcHpADJSt2dUGirCI9eh0fvwuVnMbM5RiucdYQYaJqWYjChrmeYSUVTjoh2RBuWXFcdHy9m7KQVp6HiraXwFzQKQmI9p4KEztVXVJrm0X3uPzpgNK2I0WOzX6MtCgZWsrOiKLl+4wZbW1uSBYaARq3Vg7awxJjtv5TitG558OgBPnS5aWVIBqyyLEPHq2/cYbJ5ic1Cs99GInnasDrLdH3UVKlGqRptFBjYHY9Q81NIQpFORGzpUMZgrEI7GTqilcIU0hlLMTIsSwalZekVd2+/96FL7yMRBNb3euY80/dqc99d/Nr7/TBbief6/LFyP79QUBaxeOqAvLDWPW1Jza0SUkZMHxwIlBL2lTEmj8iW99GXBGtOgMo4gBYFF9noEised+IaK7p5OJea9u9pLYX+AJzifSfo/WO0UZp53UGCHR0YDRIHiyV7ly9xWjs6VwBa2HLnlGqPxUHyR8DwtYPX+MTRU/zU9R/hF9/5TVJc0Q08r4aKzVde5gs7l/jFNxNzVRGjAidBQKfEbtexsvL9TFVEYwVAVYmQEqmoUDc+Sfzur6CiPhNjaY1WCRNWdK/+Lurqx/FhwSCJY5A2Bt82jKcbtMsTTFGBc2gSF1LHDVVzt1Nc1x3/uL7Iyp8AUBj5kCmS6bgyIDQmhTYJVx9TOIdJEs8lfY/4KMKbAJzOG07qm6Dfk7I0qbW1qDNSoxtjsVrLYBHdp/agtCFSUxYlioa2DtzbP2K6c006Jxnj6jUVIlVPKGVoI1hbUdsG30SOjufo8RA/W1BNHSBEJVcW/Ztfl88quw9FEssuMPcw2rnI2FbcffeDnYU+GuVAjpoyRLTv6cazAPC+NdoTd9Z19Nqk8VzNn3KTsOf2w1lZkKRGe9+rnr2dXj2YAZ6zt5m/V5qElpHZxkpdb7KvQLYcxxTSN9cFylgw+uy99AFLnSsB0nkc4kPO0bq0Ufk8aNoI01HBf/NLL7HyFfPtHeJkQlkKaq3yJB75xH3gUefOm9T0SsGijPx/vv5V/vBPXOHFyRWUVRBL3mst96Li4dvfYEhA6RJHQOV2XJVWOJaQNgA41WMKm2R4R5DZkoQa9amfQJlhBlqD5GghYlMiGYv7/u+i7nwf3bV4hBcRg6drO1yhGI0GpOEmajDF+IaLaoUK0q673RnuqAEhSuD3fcsN1uVinz3qk2OGywOgk8GjKXtHZNCvd5WOscGnjmQU2imMUyQT8SbQqoamW1DXJ5zODjg+ecRsfkpKskCTSiI0C4mubul84mRxRA3UaHEGTrnMU/29LEP3vHLEkBiHFpVgurfLdGeHd95+m5P9fZL3VGVBNSgZT0aMx+M8A1FhtSWGRBcSbdIMNnZpfO56fMjx0QgCAEqGhqoewOKsdH58gfZU3vN1/vmFxVlwkPz6B/5UArokmvD1i6r3/4ZC9bbVcGY6qfoBlRLJQ/93tVCBsTkIaBGLKCuceykVcqB4rP5X6935LKs5W6Bn+IFe/0zlGwYMQWlefuMuv/nOezxIDp0cq9MjLm5NUVGhPIIJ9JgEfUl1Xu8gTLcUPPeaY/6vf/uf8K9/8Qu4+iKFsujRkG8vDAM3wA4UNmiGJglWA3hleeAnNFo++2lQtEn871XMZC/fkXZ20UMJFDH7MSbEdivEhnByjPnOP8V1C4KK+Nz/1hr8aoWtStrxJp2yxNjyhh4x1AHr4XaaQPRYL0FAx54nkvKGIaVhsgr36C42iNlproYISURBAsWkbMhhMvlGvg+thxDRSTQV2gjXPyoJOkLWEWo0MeK7gPedEIdS4PB0QZc66m6F0lDoyNgqSmCkNTp5hH4uMSvVSxLymqvVguc+/ixbeztZYg1VUVA6gytET6ASuKJAGZmi7AqhG9fzJccH/xJuw/9VHRrEQ42+Vs7p72Nhqk+d3vfYD9tBeV+w6J9y/vsPOnKqFvPO4L2XXUSJBfXZX++zDQuhO8METG4BxgjJ9Zu9vJ8Ys39C3yKURS5WVEHuqsdKhL70UGcBJO/syRgeHZ8SKiesMp2YVhscdkKLTSrhgkeHmM0+A6qXr6Y8hYmMWkdRSb47u8fi4B4/99RTfPf+m2wWhvuHrxC2LcFratXhQylUV8CnEpwmauGn31QXOBuWmdbdHpRCV0PiMmXpbH8tEgQNaYn63lcIKlGYgn6kVte1dKsVcTSh3dgm6YQPFYnEN/0EbywaTUgGovAEfJ4HAPk+yuk8QcGGI0QozrlS9W29HluSc5JIeFQSDMA4ec/9W09ZVXiWWSZ8FNxAaTmzPiEWdVrx8OCE6d0HPFm+wKFWnJiOGFdc1ANmoaFQitX6ljCELuB0QewC7XLFfHZKpSwpRSaDip3pFOsSXWTteKWy/wLeU2hFKkq2L29z+FEPAglpwWL0OXouZ6nvh5XMjwFn6oN/51/kOB8kMrW1R+tDCJgQMFpnvwL5fXF1scJxiOeClivOuhj0hqcZ1+hZQzHJ83RvStLrB1h3BtZHb2nWtyR7iaoxNN4zTNLam9YzhlXgrfmKaVwx8jOmLFGDAdpYDInSaJx2uDLbc/sWjca4ksnWiBeff4Kb3/86z166wuevPUm9POLvf/cW3XiXGEbYpLEqEsxq/d6itqgssIk6ZmJUD6RqyTgwdP1nigEVe69AaaP5kGhP54yHYzrVgcpdlxBo2sRooimHG3RonrKnhGiZaUurLKtohYGYywGUQREzHpQwWk6/TommPhEmqFKEJOPH03nzTwUKGeBRJCfKTy1CoRjTWhCWMmjce/sppc+G5qaUcYY+0UtMiyFbG1OMVoSlZxwtcxU5ii3LGJgol7O0SKE02nuU1URjGYzGuCqrK9sV01HJ5nSExlN3UWTPCJuQBMl7htWAk1v32dwbce3yDV7/1gff9h+JIABS30bdkadI5vWvPnhxfxCYl859ca699qHHh/28z5RRpCwdFScbMcOkv7n7Nub5utMY1iIQ49Y1fApeFrtxeafpA1s8+xfza/xAEpBfv09plYxV663Xo8oDKVbHbB3P2PAnHM88F+KAsfJQbTGzE9rkiF4WlF52gtzrIJ/VOjBaMrH7J3zlrd/mE1e3CIvEX/3a9+nKFjXc41K0uLCiiJ4yelzuDsiuWaB6KfHa/70/z1k/nxTKWXq9e4phvZMGggw4VT67/QxkB82LteuWhKbgKQ65z2XKsORSGfheu8EiKryKoBzK5/uHIGxMYxFtnvy8S57B/oEkapyVeIID9MFaHjdKYbUGB9XA0px6yrIQz788zuwx/CjrQs4gKOH19/flKq3wbcexUI+IBLa0pU6w0opllJmHkUQTI1ZBVTrKwZCExbgSX9eo0DIcFEw3Jhgd0ItaCGv9bZPb6Eklmqbm3q33qKrJhy6Fj0wQSERUUJCjpwp9D1Wspdeht99qM/Nq7cjSL8aUx0GHnHJj3rfYz329tpzKr631evElJQwyq0uUSsTQklJFSOBUbv/FTMvKJYAIlvpcUToUIhoXJ2IdHckolE6kVKOtJfkIVhF9DnZaUlfVv5eEdCiUJhrxPDTKE6nQwGR1yKefe467t28TqLl25UmuX3uGJ597lkFVEXykbjq0cbSNp+06fIxErejawNHRMW/ffZub9+/gj+cUuuLnfvZHOLp7F4aWdmtCdA5tR0R/k1GcA4mhb7io5GZW0YBu1jhNUuINmPL17M+t6iy6GuLpiN4SQsL03QqVZOEmCEZTONmJ+7kPbRc4OTng6VvvMN27jrMzbkTHTQNVaHiQNCvV0WZMYCt2PKKTwADCPyiXFEFRPnqIVTIPAXr45azrFHIJuLO5wWe/8Gn0xwp2L43Yf/0BX/nlt0kdpGRRpoU8c6CXSQcfMa5Xh4q2P6WIDwmvEvPlgmNl6GzHwCYumsDrqmKw1LR6TmobKhOJqWDYrkgq0S4X+FBn/AmWPqCNoypKYmwFu0pSEshkpAZbaBrfsbm1TWdLyqLk5EPW3kcmCJDXtPrAHfo8cJfOfZ9yqik3i4A/mhhkO1c5m0jvfy04e37/zfmMIwljSxu1ZmYZk2e/p4RNPps4ip68nyXXa9cBucOSpPw6WhJGkPqgUbGUkiCcoIyWG0rFdYmBQVx0yWUJEZX56jokYtOyOUxcGxU8eeMiT17b4vnr11g18LBtuTlr+N43XpbnJElF++ebLJJRKghwiMKrmukI7HRM5YYsFwciVonSnYkZXGvrDhNFGHOtmDHJQKBWc0glUffba4RQY1xJSAoVHSYmoMEbh/IF2gRSV9NpIWGpTjIDVVgx0Ww6Ir3TcxTDmZM5L3/vK2xtbPGx5z7BLHRcUYcsUkVgxB07QOddFmNxqsysTEWyRoakzmao+hhcn02d6/6khLUyTGRvb5cLe3ucHswZM+T17z7Cnxzy6S/u8sZv36JRkTaQZ2Cc3VvGiBS+v5dLZ8VNiUQboeg6dieBuhPfw1cWkekg0LqG68bxQAWsLUhtpOhmpLajWylMDNSnM4ZlwcbGJkU1oBoMKIsRPmlOli3OFrKPRUNE0XoHKhDmxxzvH33o0vvIBIHeFvoHyvrzGmIFZ9TB/ED/pJyGqQTESKFlKEUdIZ3f8d9/rB86l4MrMnItVFLIu3GQul3HAMGjtH3c5KRP5R97/URSBh2VyG2DZ5Ra9jYU7z2EoAziaCclUVIaFZ1EdyWTbl3SjDEMUktl4MaTezx1dYeqlKGo949a3tk/4t3TFfudonFDfA4oah3gEqQAXQvRo5SAWhojYCQ7aBypU7x2q+PHdwtan9tmiK1VTG3Okz2F1ywKOV8qCP25b0JpFEk5EgplEkq1mJDQwWOqgjQciB9e19KcHEqm1fncX9eEtiOGhhiFxiuuzgkdDU2zovnl/4LT4yM+f2UXkmbcBAoXWIQR3b13AVi++U3s3bewgA2B1HX42JBWHWo1g/L8fSQlwfmvN6cbKG2pY2S4jBzsz5kdHvOTH7/IvSuJB1+7y+a1JwgxyEyBGDGmV43KjmZMHm6XIs4YVIST2ZLr2wlfJkILU6NYYdFN5PrFwMMDx6LzTJLn6sTiRiNM5VDOoZTGFSVN3VKWFePJGKKnKArUqhMuS4pURcWqTsxSQTPbR9VLJlevsviQSWT/3CCglLoO/CfAxXzW/mpK6f+olPpfAX8WeJR/9S+klH4pP+c/AP4dxCX530sp/aN/3t95rKZP5x44377rcYJ10QW94k6ed/a10VK3x/hBC79HpvuWUJ49h5xE6A1PIQQxBLHGZJGGxroSbfvBJ+nsvSfWenZ8QAcPvoXVfXZWJ6iTIwrg0taQHR1p5g956soNXnzyeZZ1w/HJkYB0MSLk2khsFdubu2xsDjFqwXRgiUbz1r1D3nkYudtEZhG6WIGpxOtUVpN0D/JnksEeoJR4IcTsFJx6arUyeDQYzQqDNY6m6yGSAHSgO0xT07zxLb6TIlUGAvU3/xFWKcgKvuJX/3NUaAkqgRYSjNECzoX37uJtQbOcEbtagr8x8p69p7KOyc4ui/lKgi4ygkx1LT5GEhGvEunObd5pT3HNjGkxQHvP0wUcJaEuH3zzt6XfrrR4K2hNaQ2qNJSjMUqV9KPlYkwZZ1Xrx7S1IkCLkY7Acr5gsWx5640HXP2Rj3H7tX0s0GX+gdxOcl6dMYQoLcPGe8FsUgKVMPMFTzZLXilKVl3HuGv5RDnjn+kRNw+WTILHaMPF5oRruuEBmmgKtCsYDDaIGqBjOh4RuwZnDUcnszXOopKm8zWvv3GXeycN7sJlwTTih/MEfj+ZgAf+Jyml31NKTYBvKKX+Sf7Z/yGl9L87/8tKqU8AfwJ4EbgC/LJS6rnUT6r4kEPWczxrsSktOxdnIHOP+QkukFs6UeWKIIGKgjQnRRsSIaSzACHbe/5rsrupfuyV6WfVIb+XeQgyFiv0704QYA1OBXQIeEueVstZJyEHhMIkNppjmvvvYQ/u86UXn+DGp27wvbfeZv/gAYtywgtP7aC14u/91jdAa7rgMQQqpbm6M+X5p69w+dIey2UNynDvqOZ3bx9y97jmOBjasgJdiYmKjXn+ngGy6hJYt0+VFi1BkkEg/VuVfn3AOH3uHCmG2tIk6aPr2TEX53e4/sST7G5H6tt3Odi4xDKWwG/D3g20cTKe7Tu/yuTZzxPsgGAMwYo/Qlk5bD1jfvP/Trc8wiRFMZkSOvHYC7EjoahXK9TRARFNOZoyHE8xxjA7PqY+OmA4GGKfe4nqD/63MVsXUSGw0rCcnzIPgeZ0Br/3VZo/+OeFbegcyTmwFlVYzP67pFd+gw0r9mMxM0hTysM+ldTVRVniozhBxDaiPZjY8sar3+O55z/P3h98geINT3swJwSfs60ceHtsJApbstCW4D2WSGj3+Xj7Kl/avsYtn9jQJ+wNNc8XA+xqTh0TXoErPBcGY07LEoultJnebEpQCucsZeEonKKwpUzGspbDgxNe/s6b/Mqvf4M2aYpqgFJG/C0/5Pj9TCW+B9zLX8+UUq8CV3/IU/514P+VUmqAd5RSbwJfAr7yQ/4KooqOpL47kHdwEwQ00saI/ZjKC1fnKB6yzVXsF0AmW5DTMjKtUvXa7SQ/1Cq7uJBT5fxWVN8AkJ0zhnMsskxcMSZlgE9SX5dKvNOEdoE2crJH8zs8wy2uPDPg+uc/x5PXn+TeezV7bsBo4zl2p9vE1GKqKXcnr1GXns4qNlTipz51iadvbPP6m2/y1Ve+y7uHLUfRMPcRr0uiLklVr1NIBJUzoB47DQmdrDjjpig7MUH0DyqidMega4laFJE6QeoCFBEVDSpoVKxZLQMqBnTXMPQdA6uJRcfl4YDkPPWFjwHQPvUSrdLYzJacP/FJOtvbdCUoCkb1EbNf/8eoNMNVQ6DCjcdwekRpoe1iFh1FmsUCZSxdF6iXK/YuXsIYzfbV6xQxcfzoEcPTA7YGLUeLhqNVTeqgXXl8ttauju+TVjXUHl17TEoo26DVikGIoD1Kyaiws/h/toDJqbXKGn3tNJWzVOUmO3aLw81jVoMWaxwxJoYDK0Bovp9U3qgUeXZmlkFXrmAyKlCHj7jsO4wztA08bRpCBb6IlNZgbIlzFbcHFbPTBU3TYJ1MO1JaeCuxidTdkg6PMpIB/Md/9x/xyrfepmFOUIbx6gYbV66hisGHrr5/IUxAKfUk8BLwVeDHgf+BUupPAV9HsoUjJED8s3NPu80PDxr5kCmzvalDykBZ7F1tVMAlMX9oSFhZyQQjizPkWkypmNd53u1zqpb675NYViklem4B8M6mDqeY1nruFCMq+8r14KDKdN+krCgEU+QT2x0PFooHbU0KNQALH3l42GEa0N0J3fI1tncv8cnPbbOaLakXczY2hjjXcmXnEm27IJSW/aMjvnfzJn/3K99gv45ipFlaWVBmCKrXnEu7MCEBU1nJWnQS5x5lIkkJMagfYKkS6K6homGjOYWqYB4tJimsVRi9FIYglq4bsjqdwcMjkg54FsQUWK1mbE0tJ2+/xWRxKpfud/4WKnl8XkCrf/h/ZmCAGDG6IETN8mQfNT/BlCMGubNSL0/ZvHCJg0cPaFc1hoBzTliXPcjoO2aHh0w3NmhCoPWBnbJh9Q/+OuOnLjIxFlsZdNJYrSmsPO9PbB3jLpc4W1LZiRhxGssrt+/xO6/NsRRyjZMAeFGoqLIoigLvxb+wpxxZa5mpksXBEXYZeXHnIl/3DwmdLPiubTHaobA5K5XsU2mND0FoHsZgbSF6A6NxSTKEtvPU2RI8pUgL+O4ErQLz+QJXOKw11MsFRVFi0FijsDZQGof1no7IP/zaWzxkg+HHn8PMpEQwRBaL03WA/qDj9x0ElFJj4O8A/35K6VQp9VeA/xDZQ/9D4H8P/Nv/Aq/354A/B8B0Ny/eKPVnyi5DJDTSWzcaTAgUrqILLTujEatVw9Jo4Wq3LTG2GK2JSWez6Si7nNK5ns81f077FUlMdhLZ045cL8tFE9mtpNXee5wr826rSVqMIaNRvHbU0gWIPuAykOjLCe9tXOfu6RHqnZt8clvxB392k83LWyz9km9/5/s89/wNPvbcE7z8xsucPNzn3qzj9f0lvhySrAENGo2qBTBMpobOi++CUXJSUDnNF8qpShHVedndYpReeejQsSXFREngU09cYGvUoFQgKmnBKqVwWtN1mlhO+eTzP84TswWr2/+Am69/l8Wg5MFmRQTGgyHLdsb0VLKeK0dvYo2hqIQx+Llhg3UFZVny7nt3OJ610vWpEio6UJ7F/JSuTbjRBuV4TPQNtCusNYQE1WhEWTqcthhTyG6rNd5KBkZoaTrFFz/7CQaDkbjrWkfbyPCRpz/2wrq6Swq01SRd0Ny9Dzag8MSUS8VegIP48mmVfSpTXHeHQuidfCre+OYtBrsDOJRBdZFISOJWEFPCKDLvQK27RhEJNnXTcjKbMXKFbEIhUddNNgyRVC4mGcNmtMwg0EZmanZtC6S8ISkODg+5dGEXbR0Hp0tee/c+rUoMnWNvY4+jrsN3Dd1ylsvaDz5+X0FAKeWQAPDXU0q/CJBSenDu5/834L/I394Brp97+rX82GNHSumvAn8VoJxsp+tf+1vUbcNwOAENy86jjcUVQ4GlgmdQOWarRqyWR2OaRc2VyRifYNW02NgxHQ0IaFw1IHYdu9tbDIcDZssFx6cz7GSbe0tPNJZOKaLOhp8pS1t9IMaOwilKV1N0exlUi1mKYCkXj6huvYEPDWme8DQUJFgeYzLgVv7eLxF8Q2w6dLfi7QeOd57aoxqOICZ885BXvnVK17TM5ytm7ZKt8YDNW/fwJ/OclmpQ0qHoS5SYeesxZn+67FmfUKAt0XekIEPZe91MX+kYY1F4Np6YMC1keEYXE/NVRwgRZ0uaCKUdYNWCgen4+Z/+cb6+OaIaWL7/vW9z+eIlkjboCM1SbqwvfvnLFMZinYPXX+Mzn3mJsixxVvPEE0/wu1/7Bvfu79MuG2IXsNZQlEN0IfqK0kZapH5uuxZbDNje2mC1mJOSZzAY0XQBQkAR8b5Da8sbN2/z4qeeR2mHMwbqmjPQ2KOsXetDDNB0DavFCqcUCQsIW1CzrqbWJaZWikAebJuJR0J5Uhw+PCE+mmG0ISafM1DJPvvXEAKVTB2KGW8wRHz0jAuDKyzLVY21jtG416gIPtG1LSklXKFBg4+y8QwGI4wtMKrm6PCE+/cPeHB0ynEdePuVt1mdzigHY37muW0+8/wJ//Gv3OTNI4+tBpTDM4v49x+/n+6AAv4a8GpK6S+fe/xyxgsA/ijw3fz13wf+M6XUX0aAwWeB3/2hf2M1Q337H1CpSEziGVgEfW5AaaLUGkxiMylcnldouigJfxQ3GJXEvDIo6JDa/54SxWtCiylISmyFiDE2m4SIq4s4wEhpoKwmUBFe+Dj1i39MjDZJhNBhNAwevsHkl/4TVJrTGYM1gaqquLy7yWRrDwD9zrfQSt6fGYzY2L3My9/5Ls8+8zHqxSHDsmQ63eTbv/dNtGrY3dvgaH+GiTVWdazdlJJCx0hRVcQkHnNKyWchj9jSShSNG5s7+LalqRdYJ1OStLFZYQYYQ2hrDpaek5Xw2X2MRJyM/AoaVxSsmo6j/Tu0XaAoLQPVsjnc4IknnuXdmzcZz1bUqxWbF0dy66aC1se143iIsGo6mk4zGm3wcz/7c7z96rd59+ZNZm1ksLEnnUrrMMMBvmsJTcPp/pLReMTly1d47bXXiSFQDQY4V4g0V8n1iz7Qxo69nW22NzcprMFnF6neGmyxXBBCkPTZWOpVIACrVY01NgPMIgYz2aMixITvPNONDWkJZ5chnensQuiMhODRJpviKrX2qSE9Pu4cIHgvZSTgY+Lh0RGPHg2ZTDeYTieZNSlOT52PNF1HYS113aJ8kL+NRvcqWwIJxfdefZvX3nyXvd1tDg6PifWcJzc1n9zx/Ft/+CW2L+3x9ddPOV3c4ejkkGb+4Uv995MJ/DjwJ4GXlVLfyo/9BeC/q5T6LBJAbwL/PTkP6RWl1N8Evod0Fv7df15nwGrY3SpE2JKGoBRN22GdE7JKFMVfSAmfArYwokH3QlftW1BNm/AeRoXc1FqLHKv3AUgB2hBEq5KNG1Vugqls2ayxdNlqyibHsBnTdR1d12LLkqQVxahi99KU6WSDQmv2JhtsbE2ZDB3LTi7+sLTUXUOMkeFoyo0nr0CyfON3v8Vw6Lhz6z5P/PgVrI5sbEwYDya8dv9tVquapIIsXu2wtqCoxP66KArhsLuCajDEGMNgMOLk9BTnLNVghCJhtMqDXYXGulqtUEp2lNVyiakqtLFoLYRGpQ0KLUQirbn5zl3uP3zA9t4OTTPnyt4ms+WMjc1NtnZ2eO+tV7l4eY/BYAMA72uKwsnsR2C5Wkltj+Xb33mVzrdcnFo+9eIL7J8sOZitOFp1XH3qKY6Wc4gw3tyhXsxom45nn/4Y77z5Nk3W9t+/d4+qKmXhIT6A4+GQz3zqE+jU0dQ1IfVioy4vvo5BPkegKIuKRd0wXyzOgiI91ddkJWVAKYQa7D1EsJjsHyC06hQj1pYyDCUT1aS1mBe/LILMQJRgoDNHxVlDpQ0mBOJqyfTiNklZVvMFy1WNj1KOLBYLjNG0TSdZiRNhkJQtMsg0qEhXz7lx42NwOufPf9lRrRIn5QaTccm0WPDn/+hLfOo7e3z3jXt87827fOf/1yCQUvot1jnWY8cv/ZDn/EfAf/TPe+3+cNays7uTqb5CHAre5xQtS3eBkDTaFjhrMUYzmy/ogtgvxxgZFXKCMGktN+4poH2XcKSM2DJZSxe8sLlCVgp2Xc4+EnUX8ammUXLTOFdgtKOLLRc3NvnRT73A5kbJsLCMxlO0kwX15u19AKab2wxiwGiLHYwYDzcZji3f+sarpJT4xItPoY0FCrQZ8fobt9jY2uTylQvYQlJrcYuRtLVnpq157j2vIYrTrTGaoixksWczjp58ORgMAEWMAbW1KQsjk7Bi8OuFokjUrWdre5eHd++jgkwAWjSRFDtKV3Bxd5et6Y9QNx11K6XPaFBliUDWM4TAyre88+5dHj465MZTT8LmDrdOTzk6nTObtdTLGbfefgNTOI4e3MW3DVrBl77wRS5c3OWFjz/HK698H+8DbbOirZe4asSFK9fY29thOBxyPD8lxssUzqJ1HhVfCQq+NZ0AirqRacYx3yNt50mFMD9FWxRJUYg9KggoPD89ZbqxASHy+vdfJSkYbEwFKO7xoyCbTFKsW4soqeGtUev5gJBEspxkMyIGlos5Xb3ku9/chwSrpmG8tU0y7kzxGCMxtKwWS8ZbI0IKUh717kjRczqrsTYxmMLt2YjtUvP0i8+hFg8htTy7u8En/sizRD7B8eERH/+Tr3zg+vtIMAbrEHnzGFJ0REHyxMQzJrQ9E+WkLJbROsmwCT0SS3ANSSmaNlAWRZ71kausHJVJEKIw/kL0KK+oqg1cVWByG6iIaS37dD5x8cIVCm1RSqN0wlotLjnWMdzckXFhvqOtO7QX8G6pBBz7+Kc/I4EoJlZtza3bd/jClz7FH/qFn6JpWza2Nnjl5TfZmAxQqePa1QsUhUVbm1HrntGmRLyUyUrAWjxkrQUUY4YZ3Uzrz6K1IUQpHXRuT1lrs9NRJv4ZCaZSYwsterlqmJ16djYKbr31DhFNSI69vSGusjgbGVQVkwibWwP41u+wtbGBNhqf7bCLwnFyumS1XEKKHB7sc3p6SmxrUtdiQkdsa/Al08mYpRYy0rAa03ae77/1LtV4i63tPfb3H5GI2KJkMBoz2Zwy2dqkrmtOTk4ZDiomg6GM+gb6qb07W5torel8IKSIs5b6wSF121EMyuwd0JPJsoQ91+6nx0e09YpuuUJ5Tx0Cl0cjysLhO3H7NVa6WBJL1TrgqtwFgL5FfQYsKqXoYqIOIXNQoswwIHHnzh12LlxkMBhQFJVc2+TZP1ygUqReLhhd3sOYSO0D0QPKsj3ZZPfFId39u3zp4yMubQ8oumNsVaCUJYaW0M0xtB+6/j4SQaAaTvjsT/w8hdJrUoPc08IP6BHa85ZfGtY3NApSUrSNR2uF9w0uk0ESCd91GGNwRqM1rGYLitKxsbWF0ZblckFKidIVhBQYDEpEkakx2tI0K7738jHPvfAsSXuq0Qi7ucuqW4ntd9B0qwZtFE0mz9qyIPhAvVpR1562Dfzar/weVy7sgkqcLhaMRhUXd4ZUpaT92oh01vuwriP7FlPIfgBaaapByRlLjexOK1N0tRHPA1CPnTcxp5ASQSu9Rq9DCMTk1pOTxuMhb7/1LoPNy5iHDzm+c8SVK9tcubLHew8aXnjhKcYDh45nO//WdJQn3Mh7euraNdpmj6Fx3H/4AKU0ZVlx9dKTlE7mKcQQqJuGoihxn3qKGCL1qhHCUOc5Oj7l6oU9tsYD9g8e0XhF6gLHD/apZwuqsuATzz5FYRTBSxZRFgUqtxYHpXQUqqqkbhqUgvlikXfu3L4jE4R6sin9eVKsZqc0RyfUqxV2a5M6BApnc9tYr3d6mQSURaQZOOxHiIeU1uAtKvs5aEXTdaQgLe7FfIYPga3dHVanpxw/eshoNGIymbC7t8NwOBDxWAyE6ImxJUTF009eQdU1VYh8+qltLrygGcaaYljQ1htoY4lo8NIp2tjZ+9D195EIAkYblq2h1i1aFaByCq+ApEheeuGuEHVabCXFCiERs0eb0Srr0hWmHNGEuI72VBVdFGR2UpSMxobCGZKPdHQMBiMU0DaiyKpXHYUTIolKieg9t269yzMfexLllAhrUFTVgEE5IMRAKAu01kynUwCeuXFDxlJ5T9vWRBWzp12B1gZMQOmAVYauC/lGSngfsSOLtZa2benalkFRYZ2jzMM5e5WFcw7vPdYYnLVoLWAWILtg20oWg6ToRVHIOG2lCMju5H0Sv0A0IY/z+sIXPsX3Xn2H5z71eQ723iP6jrffO2Fzd8zu5ijX0KC04mRzk7/4v/1Lj13Pv/iX/uK/upvl8NzX3/pn8Lf+8x/4ldnWFnXdkJJieTIjpkg1qHh0cIS1JQqp061RhCAzA7oQsmhLzkVSCjuqMFHmGqTWM9yY4L10aGz2FvDeMxyNWTVNbi0qGRTiBbBNWSKuEQ5923km021c27C1tc1oJN2i+WqJtQZnDU3ToJRiNTvBtx12WDEcDkjBU1aW5vSYz12v+OM/8jkubm4xv38bv4q4ao/aH5HMkGgsbehQPqH1kNCUP3Ce+uMjEQTGg4JmtqIbKFS3Wte/fYq59hSsWxnPjKjh+kmzPfCnjc5t3z7VE+KQDwmloTKK0CwonWa6uUHXNrI7JjG3sNZSliUxhjxcQsqHsiz4mZ/5UaabA2bzBqulp47yFKWTSTxK46wV7wBgMqxk0cZE10aKwmSCn/TsfPAYYwkyHoAQPZ0P+BCIMeKcxZcF1hjatpOUPgiZRnaFgEkwGAxJKVE4h7XiOlvXQljS1q3Pg7aW1WolqDeSqobOi5mnkiEeMXS0ATq/YlxY3nvvPmUxIiXDxsTw9PU9lPfYqpCUN8H/4z/4nwsAi6IoCv78/+h/zF/7K/8nfNvRti3EmEFC2XGrqkfVBWirFwu64LFW3j9KJkxZI8sxeE/PYwgh0LSt0JNz790YB0r+trKWru1QRuO0xmnD9nBLAFKtOZ0v1lRqo4yowAGMdBVUP+ZLbj5apWnaDsOSJ65d4coTT/DVb/wenRcfBK0NMULwAecKmQEQe/NaURj20hWthVJsUUw3Nxll74XFYoazlratUbpkcTLPGa6i6xp801IMwShPPTsm1gOMTmwXnnHYx88U0Zbo8S61b2mWkaQ86ET0HYqAKd3ZTI8POD4SQWA0KLiyOeWdxQyT6/uevddf8JQXt9Zn5gmSMifBBMjpXLZvPgPPpJaP2fQBBWXhaFshFqUYsNaRgix2paKogTNDMMZEDJlliMYoTVWVjEdDjI1SmmSefvQyGutkY4P/5f/mL334B/7/4+N0c5PZ0TGxk1Tc+8SyWTIcDmmalno+lyBalXkxJlxVCHZhJPAqIxyGPvgNqpK6bmhzQCjLkvF4RK/QDDGgrZG26HgI9GxPGSBirUUZzaquhSuhZKGHdDZdSjgDuX6XsIHVlmvXrrF76SLLtuE73345D3JJFEUhgUNB5z0Yjc1yc8EOo8zRRHCKECJGK3xIHB3PKMalcD1CwseIKyq8j6BMvleFc+BjS72aMzs65u7+AzZ2L/D0sx8TaffpCa0WIdZq1VCvaharFSiw1YDhYMJ0+wrD0fCDrDbXx0ciCBhreOmZizx6rcWHZm2jFxEH1cc127lVkgMDCjGDJFcPZKGPQkZco9ZIeWUUJZGNiaT/WoEpChTSghN3GL+mkza5nkoC/GKt7OYpp40pJtH6hR6akF3vr/x7/8M1IKnVmcCpD2I9UASsqcj9FJkz8E8+c9/lUEom9nifiUNKEYMXLnnf/cg4QN9OIkkQdU4AwP5vS6egH62dPfCSWg8MVfk1YghEnwdorifupqyQi+v3F3Kp0evxfdcRfWA+79bZSU/AsVVJ29ZURmevAoXRBpM58Sb/vtZGMgnAOYc2liKXMkopOi8SWu+FN5+UwnsBAFPGTiCt31/wnmXdYKxGa6nPQ+pZqWILtvZEzAWXcYZVs+KtN95ksLHNxtY2tiwweVRZjNm0NeNXec+hdyuWuy+fp5QgKplPiGUwHNF2nXS3fMIVBaltKQqDKmW2QIoBezTHGEVRjfjMl76Mqxyth8WiJcxmLOslyRmODo84eHhM3UoW5aODCIONd9nd3ebixYsfuv4+GkFAG/7Alz/JN9+6y74eA62QdrQAgP0wxp63D2eLRI6Uh0DkRZCRdENu3yQheCilGA0rnJVU1hiDzUBa7xuo0JkZmOhO5ygElBMJrrTkClcRkgB3sWlpugarjZgNBdlV+oEUIdeEZVnmVpy4655f7OcXVP9/Y8x60bvcLvRe2lxOy/BRa91a4mwLl8elJWwpC9JojTWWonBnsxNyQOnnKQiyLQslKSX8CGckCGiFLhy+63BKyFU+RJySNFf4B2evpbU+95gihIgPnnbVMlETXOHQ1jAoHMY5QoiUtm+Bynv13mOMAJdVVaK1iGaaVjoY/XW3ztH5juF4RJO7G4KtCCLv17MiIBmYLZd0IVJYoaGHlLLoLGeMSokKMy9gQ7bp1hqjQUUZG1YWhi4KBNj7Ya4Dfp+lxj7QCmAbsow7poDSmsVqhXM7aKsx3pOilHrWWbq2QSNBsIthDfK2PuIGA0KIhBS5c6QoVgOKosBRMLh4ha3NhvlsxrJJ+KZjWsK0GhCB+erDU4GPRBBAKa4+cYV/8+e+yN/47W9xMFO0WExK64FDPZLbGwn1MUB2/rNdVinBC/o2Wr7W7GxtsDse4IQMSgyBQVVQFBark+xCWnP71j3ee+8Bm7ubXL5ylaqc4IxmUDqsTlSlwpWK4eaE4WjIbP8R1bDKc/NWhBiwRtxkQq7VY0pSfhgh/Mj7OlMmKiUprtaaqqroZ8zFGBkMBuvgMB6P1zepcNvDemHHPJevzyy01oJ35MXZm2GC8Aj8OSZbjJG2bdeLYT6brT8DKVG4gtZ7jBNj0hDF0LLIfoEhBIx1TCbiYxdjZD6bMRjY/Nm2SUBZlrRNk3fpzP0I0glpmhZVabQx2dTTYoyS8dohCvKvNF0n2YVgGZrgg4z+IusDlMrj5C0pRIqypG5q6sbjE3jf4YzFaXEStjmAxUwL712DMXnATcYnCi3y8LKwLJqGlHKHJfNKYpQsSFqEWsbV9ZSknFkao0hJ04XI9s4Oi8WCFISw5pOYN/huQNO0LJdLjk9mPNo/4NK1ITLnYkChNVHN+fqrb/Gtr36Fq3vb7FQV0Q14c/+ILhlip6nSkp/87FPErSEpBO7cv/+hy+8jEQQS0Cr43I++xNWPXee7r77DP/jqd9hfeHRl0b4TFx8tVGLOAS9KZe/4KAEj9mlZPqwRQcpqsaQzkfF0nOtCZKdRiarQzGZzDk7m7O8fUFWO8XBEvag5uH/A0YNT3n7lPXzX0jQNb735NsPxiOnmgIu7Y6G0Gk9ZWKwReme/CGOMUrOee1PVYIBWMk9eakh5z33rLgaJcn367r0XkVTK6a33kvbmFqlIhHs+RELFSLNaoXL3IAWhEIco7PYYI1ZpuqYRY8soqsl+GlNVlBS2yLuTMAFtUZAy+JcAHzpJ51PEWsk0hMQimdAoB68UE77tZDdf1UDWB5SFBCDvSd5TFg6V4roMSCTohAthjKFuGlBKdPkuD1bJu7BgO4m2azJXQRh2krJLebNc1ZIpaenpa20oXC8oExwoBPF2lJpezoXSBhPFNa5pPXGxROXgsyZxSd+R4APJ5tI08zO6rsMaQ5eNSRWJ02bFcrVEEQXkDRFtVQ7Ket152tneo/ERMeIWHoMpCopU8tKnP8u1vS0xsMXiXMVzRqNSIKqE1ZZCKYzVtHXD3ubGh66/j0QQiDGQvMfqyJW9MVd2P8PnPv4sv/udt3n5rdu8c7xPSmBVImrQGIyzGb2Xm4A8ARZyRbdedAnfBgoDe1sTBqXDh4gtC6zWrBYznnnyeR49ekTXBTY2N3j06IBb793C2RJrClaLBdWgRCuYz064dGmP3b0RO7vbLGbHjCYjouprQAlOzrlcXytiF9d8B513uX6Ba63xUcwqdb5xrJNU2jlL13UURlJnY4wg7WW5xkRilG6CD5I5EBMD5xhYIySjfKOqXLsWzqG0pnQl3ns676nKcl3jGmtBK5wraduWopRgkPJOh+q5BSVa6ccm4orldU9aEmygR+NjjBSFIwSZNByi6CB05jl0rQQTHzx102VoLtfWOduoqopBWZKAqiyzqk522qZpiD4P/fA+Bw+RFksAWomk1xUkEp330lXSkkn2YHI/c7K/NtpoQtuyahqCqRnYEl2Wgg2dw2sUah30Uy7nzmjpnOEFKbJoO9ouMihl0/C5Q9PUK+HBZNvxalCyMR1yeDQXezeVed6dZvvCNhvjElfIMButRAhljASalLO+pvUsl8vcofng4yMRBBSK1aJmlRTDqqLTHdXU8DM/+SI/++WP8VtffY2vvHqL/WYpLsBZWNQDZCoDPDHX/XYNlomLQIwt1aCgcgZnhImlQiSGyP079zg5Oubtd2/iypLT0znWFbjCMV8eY52ljS31YsbGxgZbF7a4eP0K2kTq9pStrQ0whq5pcNYRQ8g9/uaMuhx6ApQ40vY7L2RconB4H9FObKn6QRjehzVpKvhOrMC0pm2FmBS87C7OGFLfWjRG2qp5GWnjcIUEpLIoMPnnMYNso/FYOARGcICiLGUkV0pCmooSSIqqyAteYa3GaikFVArnyjOFshl30KCLs2AXgxecx4CpxC+gaVpi6KTksH3WErFGsZrN0Si8c4KJKEVY1XS5ndtlAlTXtZkIZvFEysIRrSEEn8FKSF2gni9IiAoxqTOfCWsMXfYHjDFlluUZ5qStQTvbs7IIvqMYDqmbljUQq6SVba3FFWell1aaZCQT0ZmNqJOirltefvlVPvfSJ+ialhQ9WxsbDMtSAqlSnCwWlNWAbtFy/533WH78E4S2QzuZAL1YNkyHU4qhEYPWCCRF9G0OYCbrHBzTyZT0Q9bfRyIInJ7Oee/mQy5f3qRVEe0KGZDhW5Qp+fkffZFnL27yt37jm9z34gQcYhSddV5MNn9oldPsnqYZYyQ6zaUL25RVRddKDZqUkno9Jm6+/S6LtmVaDLG2xBoN9GOcFNqe+fW50tG2S6x1hDYyKhXGSL1blWVm4XmqSsgZIQS6zFg8My6J6wDhvdiAp5SYdZ4UI1UGgPqsoSwLCutwLnMZrFljCdZaUZopRdt1Mr8pA1Fdtt9WSuODZ9V2lEr31ZQEl7aDFNFOdu4meFm4UVqkoWlwztEtl/I3Te7RR/k8hZHJvN57BoOBCHiUKOtiSIS2kR01Qd2062yti/J7vu1QiBNvz48oXUmhDc4YOu8xRlFaKwQdhJYbckfDwBpENUbGhhlr18E2JvK5PMNf+vazzu9TpSROdqpnAeZ5A4AKYgJbWJvLDgH7xJbubPlU2UsBBAi0xmRnp7QO+GJDJuDn8889gzMaWxZoU1G3HePxhJQ6bt/e5zd/++v82E9+nq1L2/zIpR+hGGsOZw/oUiOsxmHJw9MTzNJweW8T56w4MnsZkBqCz/eZZIK9sOqDjo9EEFiulvyz3/plPnbpKnY549KVq8zbls0LuxQG2pXi7UcLotGorgOl12nt2rVF9VQM2SFcrvtTikw2xgwLI/RhV1AWmnIwIMXI3oVdDo4esDyZYwtHvZJe8mKxQGdC0nA4xncewhKdDH6lGY0m7O1NGYwKYZtlog/5ordth3N2DbituxlJdp+YF5rNgyRl5p20FKtBlfn8et12kxKjkOk1VSnW2JmYEqJw2UdlKQEgSk1rc1oqYKQEIMkeEm3TYK0w/3zbolJcs+CUUmA1XdeitWQO/blQGfFHGWlrpezFqBSLZa6XY2A4GOR737BYrcStR1BIfPDSelTyuY3Wa7cna00G4gpUSjhXYJ0TXX4Q8M4WjsoY6lWD0Vr49yGg0HgiKYgK1DhD09SECMvlUjpN+VrEbFyZUsQYncFEkYyTkA4SKnsfwmq+wI7yNOvcsWm9PFf4LJq27Ygo3KBcd2p0xqyUkvZninIfVKVlWFhhLJL4p7/2m/yBP/iH2NyaMn/9PV599S2SNuxdvUiIlvrNAwajOzQp0baRbjFjdrjPwGj+yL/2E7z4wlMsFzPAslrVtHVNWRa5e6nWUusPOj4SQQDruNWV3L+zj46R8OgNtHHw5gNxCtKGJiSCslhjJb3NnqHakIE1lRcUZ0BVDAxKw6XdKdbKAhP3IotOCR8C9+4dSKR3Q6y1jCdjYXZZK4Kh2EGyDAdDNjembG1NMEpcdMqRtK5CyuKcDO4RE1UlNdh4XJKy0YhSisLYzEaM4hxks0Yg9UamMubMWNEHOGfztPaEMoa6bSislaBEFqwgdmMh9Aapcd1a61mP0Xd4L1lJNRhQViXBi4qyqCrxumvb9fOWiyWlsQJqakMX/LqmL6hwplgHOGelvdZ1HUUpGgJjDG4gQWy0sZlp3hKAerQ85s6AqB4leKhERsxTtviKeBSrVU1VDfKuqlmtmtwO1hSuQGsLCem9Z6tyOmn5WqO4cfUq+pW3qWdzytFAzrGTVlPjA15FjM+y35TwbQtG/PvPlk8idh2+aXDDET40qBwASm3BRKoiy5TXEviwlrXHiEyhInFyumCoNdqKs9Dr33udX/uNr/LCC8/zuZc+wf/0f/ZnWJ50WOPWwiyIFAOLdRZXWtqmZmM6ZvfCDqaAsRpwejJfU8SV0rhSMtLzWcsPLL//Epbwv/ShlMEMN4l5mk/oAr4f2230uj9PiGsDUBAwipSyuEbsl6wVNZmknYnDo32ee+Y60Te5Jw0qI/hlYdjd3qLtZjzaX9HUnul0IoBZWzMcDBmONlnMG6qqpCxLmsZjbaCZN3TditHlS0xGo7WHXekKoR2bs1FhIbSyq2bugELlEWBaLKZiWo85SyEAZyBiVwuPHK1pfaRphV48HFa595xRbCTF7zkFy+WSxktqv1gsATJzTnrcISRSUusbfTFbslwuGA6H2C7iygpnnQiS+owrcxX6DkGReQvaGAkASsoy6bHLDt+XPQlEK5ER85gSpqw4OT4W2S5p7QLkuw5tNCZJ6zKEgK0sXd7hV53P2VV+bZ/wfkkIXlqbXZdJVSorRxPTYcG/9uVP8+Bgxm9/9evM6iXWGYwrpfwclHRBBGs+CW6gkyhYVZT2gM5IQowRo6AqTOZXBOqwEsdlq7I/poIulwJJJho7rUldwIREOSgwzmBSx6QwlCaRYsM7b71BZQ2feP5j2M1EVVXSbs4BU+zRs9CszYS1LnK6WhK9ENfKgfAHQvAUZUnTtOj0Uc8ElEJZmdKDMbhCZZksIrDxAZV3m9BJ28k5h3U9JiB9+Bgj1liReaZAu2zZ3dpkWBWkqEkhURUlTdsSvcdVJV1TMxyIQEMbk+mdhslkgisK6roRv4IkgcNaR0rgXIFvO0aDMePhAGfdubqfNYPO+w6lNZPplLZpBTg0FpwTEkkIdF2z7vebnFG0XSddjxiF+JLVhTElSlcxPzqh6zomk4nwEcqKGCOrtsXkPnrbtrlLIV2E5WLJaDSkazvZTYoCcgZVDYdsb2+vS5d4LqNQSmGUzGT0bSd1dMYldAZgrTHrSUwkQdmFL5cw1mSSi9Bho1JrP4fBZEzjOxlHBrmLYnKmAIUtxR8iI/ZFkm5F3ch16bOfruukhFI9qUp8JjofefRon6JyRFoUDdHXJN/hQ0ezaiHBLDS0tbQYQx6WGpVQ2EeDEVt7u6iyxBZWOCGLU9577TVi0wh4qA2FK7PEWNqThS64dPkq061N5idz7t69w0//xJd47qkrjCvHo/0jth7cYqde8URR8JY3BKUgdTTLJfv7B2xsbtDUDat6xWg4QmmYzU9xpaNZtWxMdjidi/godoHCGS5c3EUbzWi6xWK+YDAartfTBx0fiSAgiH6ZjTTOxD9Ga6yzFMhJ9d5jkvRWC2soCptbWwFd9D13aJsaqzU6eqYbY2Ynx5k1l1jOl2il6HxLXa8YjQdUY0tRTTiZL2nalsl4TDUYsFwKD7tezRmPR2xsbLBYLNnY2iR0np2tbVxhsE6irvce33m8D0w3JM0XEwhFU3dr8VPdtrhz/nc2E4gWiwVFv2sqcVbWxlBaS0yRIgNnISTseCLgqBZfxJDBRWlDSUZQlTK+O4SAtRUhRKqyRBvRUigt9W3XnTEUO9+J9Vq/gycJuCihX/fpfuj8uvUHAoDOV0uGoxFGCWLe4bMrU0dVSRtysVxSViXWOrq2W7fi2ii4Qz2fMxyJH57gPWd8CfLvrlarDHaJNVcIwp1QSrN/cLg2o1ktGxarFQ8eHFC3nlt372KMZb5o2Lp0gdHGFqYcUBYlmsjh/gEHB/ssZif4xQwdPJ1v6boVXQyouiVqS2ELVFSktmZ5dIjO92dZjrBVwe6FC2xs77G5s8ulJ66hrGW722Pr2mVmPhBDoiosO09cprtxkcOu4+c//yWeeusmx8enDIZD2g6sKWlWLUVRotAMqiFlVVJVI1KErgjiPuRh1dQMqpLxeMJoNF7zTHqCWfyXNRr9V31obZhOp2Lm4SQFrZdCPxWUHwZliRkOs4+A3DDW5V64NnlXkFqobQfcfe8Ww8qwuTVhMBygFCIvVYkHDx5y9949mSVnFM4annn2KczdQ+49FGcg7zse7e9TN5HN8Ziu0JycrPChQ5+eMp/P0EpMSRUHGKXY2twkhYhzBfP5ktPTE0ajoYBHKVEU0psfVEV+35IB9RTTsqxwVrgBg+FQmI9JuPpaWZJJHJ+cSjaSL7JvhfUWOp8XqywAWxQZmGwEn0hQmj4wpXUHZTgcCkEmuy1bK+DcmvaaA/L5mYwKSM4JppCDQFlVoDXOChZiMi/CGkORORM+eKbjMT4EfNOtn1+VZSb1GAZlRexEjHF0eMh0OqWqKmJKEsDOlRij4ejcPSTA3GQ0QVvN0fEJg8pjZ0c0q5rDkzmTyQiFYjqdMh5s0EVD10ZmdY1GYd2Q6eYO4+EIE1oqpzA4ZouaZWxQyVNqzZNXtonJsvX5H2PiFKldCZkranb2tvEKFitP6y3L45a6meMKx/ZkQpVautWC69c+ngNuue4gbW9tsVqtmGyOiCissmKdlq9TP5exH3DiQ+T3vvF7PP/CU/ksCCC9/+hAJMqQS9v2fTT7x4+PRBAwRjPdmK7FLavVio2NKQpJzXVmtYlGvqEsRSnWti0pBXRM+E6yAx0Ti9NjLl3YoSwVOztbOOs4OTkRWm3hMFVBNCW/8zu/y97ONj/70y9x/fIuezublK+XHBwes2qXDKuK8VAEKbPZMWUp6XPXdsSQ2N+fsZg1XLi4w8buFrPlku2tTeEiALsXdjMDVfAJ5xxtK2izzmSaED3j0Ui6CUWBtobSOcmKlOgZ6sWSshpiNGwU26QMvIUsabVGlHRFYXNrUq9bjEUhQdVY0QAEH1BGsARtbEb+pcOw3pXbbh2A+3KgzwiWyyUpRpFJk3UQZPRbi/mFXMeI92cju7u2y205jTUCoFZVIZ0Ppddlnctt2xgjW1tbawJVT4pyTujJNkuj+/dcr1ZUVSVuSc6wMd2gbTqqwTOkFFnVDcu6ZjGbs6o9D/YPcYWh84nWB05nM7a3hFXXtS1WK5rVgnt3H7BYBe4+OmE8cVy/tMMzV65y+clrzGcLNocDRoXCOYVOltFoIH6LPjIcVazqZQaaXbYMk3Lw6HCeSUaSDVVVhdaJwcaG4BhRkbToVNrUUq/aHLjFWqzv2Lz00mepV0uMtpKp5azN55Zg3xrsM7YPOj4iQcBgjaEsC3wmblSltMNS7rl2XUdRFDRGWmygaJpmzZUfTcYZKIs46wi+4+oTN6hsAUkxHcqNc3p6wu72Nt4HvvTFzxBDpHAl77x9h2rg2NncYDAYMpudsKprdna2pNWSNPNZza1bt5lsDbnxxFXKoqCuV1irGQ4HdG0jZUu3ZDqZrskqPYBpjM6U2yA2YFqxOR5L6yt7GaxVfAh6XhYF1XAg9XYGAUMUkK9rO7qmQSWy9iBLcJuaR48OeOqpJ+nFQb3yL4ZIVZX0ppxaG9quFTks6Uyw07RrNltPb14sFms9QV3Xa8DPe0+RlYrCdBQE3FpLXdfEHExC6HBWFl4v1xbLLk8/HMZ33Tr7WC3bdZnSB5M+KLXZlrv3TmjqFePJlOFwgDKKGH32HtS0Xc10PGBjVKG2NyjKisWyoW5qjg6P2NrZZf/okJ2dqYiYQsh2ZYpbt+9x/8Ehe3fu87lPv0Azr7ly9SI7l/fQV3dJPqCTQqmULd1TLld1tg4XanvhSmaLpSgdg1DMe4xHay3n2wqfQsDNVuTIWosBDnK+nNXEKNmrmMJ4BoNhbu2Sr4HP/AghcvXB8sOOj0QQABgOxSDSZHcV+v63UsyXC5x1NG0rOuqsGquGg7yDij9AVVW0bcfpbIFLHfv3H9Isl1RlhVKK4XBAWRRsjseMho693QmuqFjMZjy8f8KFi9toW7CqO7a3BmxsTlgs5mxv7hGTGJR8/PkbWfqpmExHpATHJzNSCOzsbKNIODuga1qCD+udH9Kauae0ZlnXUpsvFmsGX3dwKPTa7FIUOnFclvWfCD6yXNY0vmG6MREPfyPnyuXFJCIW8TyYzWasVit8DNR1w3AwoF6t1jtGb7qijV6/t9h1Ql4KEd+z4UJYo+K9d0IX8oATRGItFOQu4y1RJiRFoXgnBSHI4l4uxdhjUFVSp6ZICF2mRct77/n0osaUwNBjAacnJwCMxtLKlVZYLzePksXkUrFpV2xt7gi/IoO+KXrQmsFIM5mO2N7cYDSecOXqJUCMVgpX0vqWsioYFI4vfOZTLBcLJpMhxhnp7fuWrvXYcixz3PAQsjogk4TKShyhuqaja1s2JyM679HakiL0Q4HqupZgW5TEpAhtwgdRwb5365YwVbe2sE4IUV3bZk2CXes3xB7d0DYNPrMlTaZMl1W5pnd/0PGRCAIi2Oh5NpnM0rZ431EUFlfJ0M0YIl3nAYPS0gWobElMkcGoAAXNYok1mit7F9je2STGTQaDal3TBu9pmxYfFMYMiEFhbcXWnmJZB4aVZBpVWTE7rlnVnkHZEFNkNBkzWyzY2thkvlhwfLzIQiFH17WETnryNiPnKXXZdERuwFUtO26R2W1d3eEbv5ZHG2MpizNra1AslxkEazvKsmRjc0xV7RG8Jw3OlIjei3YgxsBwUABWRmMpzcnpCSmBqSqmkwkJmRTsgyzoEFMWxMjF6IND3yVIKYic2Fl8FKTeB49RZ44/MS/i4CXLUVqtswalxXPRKelS9LLtlNLa7ahuaqqiyp2BeO5zeZSCzgeMNbLbZe2FyXZqIYY12FkNKglMzmK1lbahs6JK1IrlImV/BYWzBboQtaTKIKQylqRh6CQru3LxgizogcUmg7WOlpZkLM55nCtYLmucq/AKuraRMeRKXLSbpsYVBdVwwr37D4gxsLuzRYiSIcQQ2N3bxntPSBENNKsW4yzDquS5jz1NSkoMVZQEH5MCmIRx8plmq5qDg0NGwyHL2YLFsma6OabrEj56LuztfvSBQSDPeY9r0oxvRVSjYklbB4gNg6okaaHAtl2gwJFi1sWnyGw2+/+2dy4xkmTXef5u3HhHZj36wdZgXuIMSVGELQ3HhCHAhAwJhmVRgGnvtLIWBryRAHvhBQ1ttLUBeWHAMGDDAmTDsAA/BGtj+CEY8EIY0WOZGg4pDkXOs3umu7qq8hkR9xERV4tzq6ZFT7etAaezgM4fKFR2VqHzr5sZN8495z//4ezkLi8+e4vrx3MmNaImddl+eiEwyPOcXCkSY+TOeTATvfZyyY1bNy9bbWfzWkxLgo6mHJqprtEErh8eyod/GhnChFaZlMSmUZJ60afeWktdyviuIb6RlymaeBcDIAqOnHPSjKREMDTXDdMo66ESucvYvpdpP5OUApTWOGPl3K5TTNfF2QNKtO6ZYgqJXJzEASaJiGyc95S5+DqK/l087rI8v2h9IYSJPE1kUEcu7jnjRedh1AmERMWGo+wyGkFJSJqlGUOUMBOSS+lw/sDff3R8LJoAP3B87RrbdkOIOYA0TXHekxeilAw6YdO25CoF5DOTJAm9kbyANCvll3qJAPjBMSnF0fGhiKIUTKNntCN93zG4gaaeAYHm+JD1comaRsw44owcO12M2KSRCtJc43XKZr2NrQUjgx9kgEvXX+Y6qqpGp5rzs3O6vqPIc0JQNHXD2f1TBi98nPMyfavtCCphu9mSpWI/v9luSbTm1q1P4Y0lxKhntey4d3ourk19R98bPv9jP8YYBqwb8W7i7e+/x3K5eOi1dyU2AWctt996R6Sw40BVimz2+NoRB7WiLCoUEwcHc7FounAPjp1R0zTRtlv0M3P0F55ls1zLm85IorTIcqMV98TI6KWKMGsaUVcVBSSK44MDCbFjiY3Y6qkuHXwnZlUVa+ATOoFUZ6hpoC4LOdsj2vFMp9jRUhY5aablQ5w/sNxRsZjqRNR0k1yYVVajY52ZAGNU+I25JODGcWRSMkknT9OYWZ84nB9KGB/P9TqRv9l7z2Qty23LcS6dk0k6oZWcwjOVkmgRMBVFhjGGZlYxxd4BIEpvx8sLNgQQTVPCpmupYilyGEbGMZDnwrM1fVRuxqafwZOlkidxThyAl8slR0dHDG6QhBhQvv8Bzroo6ZWoKr+oRowjeVnQO3c5M7Dv++iCNIh7UcwhpFo6It0gZUqGiaapUCrBxk0zzSR6mYaBEWiahpBpvLGy2aYpdVUxOE/bdRwcHJClGcb0jGFC64y+N8xmDc50MYJKMNYxeEczq7FRiZnolK5tGY1n27UsV2vmsxlaJ7TbLU3TsO1btr0I1fJMGtKcH0RhCizWG+qyJFGK5WrJZtsyToqmqQk4xklzdn7C9Vsv0FrLYr3CW8t01S3HtU649akjAIYohTw7XfLC8zc4mM+o65rRezmXBlBJLfrtPJPOvWni4KAmEFgtVwzIhZLqXDT3aSZuOSqaVEyWREv/QRqVfVmW4awlKFFcXfT4i2FGHCPl5UPW9fZSDZilijJmyi8ijjTR0Z1HLtAQ5wmGkajfj8m2VO6oprcyej2M0iATrcHHYcAZA9stibowTg2oNMU6x+CcvJZOLxNkOkYT1lryPMcYR9t3DGFkuTgnUZL91/Gsn5clNl5wF2alF8kk9cAFNSEZ/ilMl8koaSSSeX6ECe/cpc4jyyXJa50jVYphGvHDGBtaND5emIlS6Dt3YZREYojNOzpJ6PoekOacRCeXHgplVWKsIc9yxnHCuQHnLWk88hljODw4kATiOBCUnLszFMccMY0Tm01LosXExVqDVgl+8HTGoNIkug4lmGGALKPvOgY7MK42ZKmWZKdWjJOjbTs601HG8jZKMYSRgYkB6P2AseZyQpMHNtst3XZDb43MmkwSNsZgvYc0ZbNY0lRiViNqS43WKa41nNw/o8hlIK4ZBtIsx08jkl4NtNuWd9+9w6Q1aZ7TmQ6dX3GxUJZlHB4ckGcpVZmxXa9Z3rccHjRcv3GdYRjZ9AbTW+bzY7bthoPDmnFU9L0ly1OM9fhhYLXpRIGmNSpNsM6xbrdUZc00weAd0yjjoAfvqZv6w4466+mNwTiRreZFQd/38gFKpF04TVOG6cOkjFKK+cEh1jk27ZYkFdnqj9y8Qdd1bHtz6SwkoWROv2lJUvn/jekxXU9Z15R1jYtlv4s7ZZ5nbNuWYQzMmkaUaEWGVil925FoTd00rNeSMHPORZ1/LtWWwQv/NGXyliwVP35vLWlR0o8dxsmchlXbxZkHKd5b6YzMM6L/Ln1v5Q0LE4vVElAUZYnpDUmiqasS4uZVliV935PnOZ33tLYnzQopnVWV2HwPgSROV15v16RaNk8IzJoZRV0zDCN2nHDGiuhJa8JqjR8Gxmjl2zQzaSO/qMBoTefF7VgEX1JSDXnOvdOFbOhxTFnbGxaLc7nRTLDctDR1TZomhCGQZAm985i2hxCdibKMLEkk15EX3D87p5pVZInGOkM9a9huDWWRg85Ytz1niyVJAk1ds1ifkOcFo1J01rLZyvs4TOJAXUSpsOktTV3jvcN6T900tF2LJon6jwLnHcMIXeekm1SnhDRj03u23So2d02xovbRuBKbACFQFBmKidPTM8Lo+MznnuLWrZssF610dWUyh++d997mrbc+YL1qefEzzzA/bDDW0m5blosFXdthnafvehkBlqao6BqT53nsNguX+vVZ09D1WzH1SMQxRiEWVwQxn6iqnME6jDEkWsLsLJNGEZ2m3Dtfyvk7Nsc4Yzk7X0hSLE0BuYtN08gwGlwYGXqLXS6oijLeLTy+7/ExQZfEELh3Hp3moCYCivV6Qz2Ti0ghrbjrVoZxXBhzhthIM0V15RQC2+2WprzO2fmSYRBrMOUHQiLjy7bbLkYPYpjRdh3GGNTRQazUhLiZebpug0aRFzlZlpOk0uE3IW3MwzSy2W5E+hum2A78Yebfx7Dexr6AQCAvCoJS+OhMdO/0TDLbRRHLl9FVKE3x1sZNZitrlUTRmE7IlZQnbdsy+pGyqllt1kzGslm3VGXJar1iPm/wowz3HINi00kZzTl3aVYTkHJdolPcMKLUwGgH/HrD/OgQ13fiozhNtCtHWRT0pmfRdSRJynrbc+fuCXmZSzlbSY/rFERjUkRzmLKsCGEkU6lI5KforzBJm3eIbe1936LUdDkwZRiH+HlxVHVDCCNVXWKdZXI9SkuU2vYt6Z8y6/3TuBKbwDRJKJlqhXOed958l+eevcWd2ye8f/s+t2+/R1mV/PgXPk8Igdk8J00D680ZfjTikWctxwdzbNfTbTqR6g4O5x06TaL7jlwkOpG78NnZGX6QoY8oMNZGhd9AmZYYYyjKgt5aTNdJEixouQsERdf3sbNOzrzDOOCcJ08zxtFRFHLnCwAqsN1sxQQjlWEhxg6MwYJOyLUmSzSr5UJEIdNImia0bct8NidJUoaxF7faWPK1zuL9SNPUGCv2WVmW4fqeQIhGnUp630NA55qgA2GccJMMRinqEuskpFVKYUyPtYaL4S9933P92jWW6w3GeE5PTzk4aGg3G6xzBJVIVBU9C2ezGmMtRS5RCCq91PbjJXRXSkVr8YQhmoJcHD2stfS9iZl1R2+MlLt0gvOW1XpJplN8TN5WVUXf95SVlOO2bUtZFuRZQZbJDAatc6bRkaSBiZGDoxnjONJbh/cyM2AcJ1AjSms66yiKUvo1QiAbJ1y7Ic3FYBYNvelk8MGFZDgv6TqDM15KcqMRkVBeMUyB+cGcwXYoRo4O59R1ie09WabJ84yyqGi7HhcjmNFLZKPCSJVnUZIuLetUkFcS0VV5zjDJUF/vB8YhUJUlvTEoleCskUlYV71EqOP5HGQI49npgs3qhGefexrrW556+iZKKe7fvxvP3ZAXUmZK1YT1hqN5Q5pqjo/mLBdbuSingSkM6DTBdp4pJBAUdrRs246iEDlqUHLez2NzkHEe50fCOOH9CCrgpw+755z3WOcwznG+XKJj63GWyYfTYmO3o8IPoxh2DA5jpb6rhwkzWXpjGbqeo6M5Y9+z2WzJUnHwmcaRTBfUZc1isaRpmug0FFgtl+jovJsmGc46NtuNbFpFQZaKoYUxcs6u05L7JwuUXpKkCpUVXLg5F0XBarmKfgXiTOy8o+8dmcrYrNcsFkvGALPmgGvXr0vZKyYkJZ8AWVEweMdmu6UsRLk3hSADQIPkMnpj8V5ESkGFaDBqUUmCdyIG63tDCFBkOVme0nYtfhjojSXPM5qmxlnPYrFEpxkBRVGIZ79zPeM40W56TCpCHe88OstIkiwelUYZMBNEUDQGWJ4uSNOUqs7Rica7gWHoCUHR255rTcWnZg15meNaz2rVUw45WapRKjA7usGbd++yGsWybCKhKnMyPeO5536C+dEhb7/9Hc7uv0GqR+7eO2d+cIz3km+a6Glm8MHdk6j8LGKbtvQYyFFH8bkXPsuP3LzBu+/f5s1376Az6UTcblu07ijLkuXZGddu3mC5WsVRfGLqakz/0OvvSmwCwzBw5877LJdnuLbHW8NRfcTgOlaLBTrTIgjqLROBvEix3lPlGUWqUJk0CyVB/OBCqHj+hc9ycu+M09P38EPHOGV88S98iW+99l1Mf5+8BOtEbpmX8oFzTjrvRHyhQG4OlI0k8JarLVWVkZBiTEdvHDpczLub6Pu1tOJmOW3XQt+LMYZSBA3zQxnAMcRsb91IY0iuE4z1dMZydFCgEbPRbdtG3f1IwDOMI6v1lsN5gw2O+eyAG8c3WK9bxmEpgiMnpdbNqiUvSm5dm/Hll17i+9ee45XXv05WKPKiYvQeYxynpyu0TijyjN56tpv7DMNA05QYu8Z7jwqi5uz7c4qqkg+vEkFP5yzr9YY8LzicZUwj3Lu3oSpSlI4JTG+YNSXL5YbD4xsYJ5ZizveoROG8kYpNllFWFcZZNq2hqRu63uHHLUmQ/EtWFqyWaw4Pj1m2W5ZbT5L0fPGlP0ddp7z69T/AOzFmLWK5sJlfg2nibLHlxRd/lFRr3nnnXVItMnSCDCQ5PdmgkoS6TqXcFxL8CCvbcjibUbqEv5QfcvP5Y0JV0WQZ7emKe92Iqo/4+mpFkil0UbHpPdNkeTrkHB0eCm+ryPMUN5WMG0tZVyyWW2bzOae373F4OGfbtqw3Mnvj5s1rJEmcC6E0379zjw/ub1i1S6qDQ4YhkOYpR9fF71GRMD8MVFVFWdWi6/AOrTOSq34c6PueV155FUXg5S/+JD/7cz/D6698h9de/Q4oOdO2fUvXbbn5qev0XceqE1vm41qsyJq65OUvvcT56QnPPvPj/MJf/yv87n95hW9/+zWmYHjuuT/PT/7Eyzz/zKf59//ut3njO68zn1cMw8DR8YGc4VZb2raNAz0yfvZn/jJvffd9nnv+Jr/3e6+Q6Iy2M4RJYU3HwXzG9XnF5z/3LN984zZv3znndNlRVjXjKC6zCWDcksDIwcGc8/NlND8JlIUk0gY/gk7pjWGz9XHYh0hCk0RTFjnjJOaUbTcxDoau79F6i/7MjLOzFavWUOYakoz7yzVpkpOgaY3j/7z+TT5YONp+ILQDSSqlyTApyXCPHqXkGGMceA8hmRinjNn8ENNKOQyV4EdF70eCF6HMFMANikRDmlUErdAukBUVJBrrFSjNGHLKpiCoUsQ+StGZDbNmRj3X2N7ImPW8QAdFXiT4IVAUJU1aE6ZB5gqguHHzpti7hUCRy1j0k/sLkkRRNUegWtJM09QFx8eHdDbABNeSY4ZhYLPe0DQNeZ5i+hQmRTPLo8w3cHQ8w7mR1kzkZcFoes77gdvGcq8YKKYMvRyZqUBeaU7SER8Kjq9dFzfnYaAsMqZJ8ebb3+LO3deom4oXnn+GotScnJzJ39UU3Lxxg7yQc3yiFc+kTwGa69eOWC4XZHmKShR1M2e5WDNrZizOzxiGgePjY4lEZjUhgHeDfK6i03NeiCuziKoeLhtWj9IUPy4ope4DLXC6ay4P4AZ7Po/CVeMDV4/TVePzfAjh/xpPfCU2AQCl1KshhC/tmscF9nwejavGB64ep6vG52FIdk1gjz322C32m8AeezzhuEqbwD/fNYEfwJ7Po3HV+MDV43TV+HwkrkxOYI899tgNrlIksMcee+wAO98ElFJ/TSn1hlLqe0qpr+2Iw9tKqW8qpb6hlHo1PndNKfXflFJ/HL8ff8IcfkMpdaKUev2B5z6SgxL8k7hmrymlXn5MfH5NKXUnrtM3lFJfeeBn/yDyeUMp9XOfAJ9nlVL/Qyn1baXUt5RSfzc+v5M1egSfna3Rx8aFd9suvgANfB94AciBPwS+sAMebwM3fuC5fwR8LT7+GvAPP2EOPw28DLz+/+IAfAX4z4g/yU8Bv/+Y+Pwa8Pc/4ne/EN+7Avh0fE/1D5nPU8DL8fEc+G583Z2s0SP47GyNPu7XriOBvwh8L4TwZgjBAb8FfHXHnC7wVeA34+PfBP7GJ/liIYT/CZz/f3L4KvCvguAV4Egp9dRj4PMwfBX4rRCCDSG8BXwPeW9/mHw+CCH8QXy8Af4IeJodrdEj+DwMn/gafVzsehN4GnjvgX/f5tEL+UkhAP9VKfW/lVJ/Jz53K4TwQXx8F7i1A14P47DLdfuVGF7/xgNHpMfKRyn1o8AXgd/nCqzRD/CBK7BGfxbsehO4KvhyCOFl4OeBX1ZK/fSDPwwSz+20jHIVOAD/DHgReAn4APj1x01AKTUD/gPw90II6wd/tos1+gg+O1+jPyt2vQncAZ594N/PxOceK0IId+L3E+C3kTDt3kX4GL+fPG5ej+Cwk3ULIdwLIYwhhAn4F3wYzj4WPkqpDLng/k0I4T/Gp3e2Rh/FZ9dr9HGw603gfwGfVUp9WimVA78I/M7jJKCUapRS84vHwF8FXo88fin+2i8B/+lx8op4GIffAf5WzID/FLB6ICT+xPADZ+q/iazTBZ9fVEoVSqlPA58Fvv5Dfm0F/Evgj0II//iBH+1kjR7GZ5dr9LGx68wkksX9LpIt/dUdvP4LSNb2D4FvXXAArgO/C/wx8N+Ba58wj3+LhI8eOS/+7YdxQDLe/zSu2TeBLz0mPv86vt5ryIf6qQd+/1cjnzeAn/8E+HwZCfVfA74Rv76yqzV6BJ+drdHH/dorBvfY4wnHro8De+yxx46x3wT22OMJx34T2GOPJxz7TWCPPZ5w7DeBPfZ4wrHfBPbY4wnHfhPYY48nHPtNYI89nnD8Ceqk7gIjZr1IAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize results with TRTorch/TensorRT\n", + "plot_results(best_results_per_input_trt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We get similar results as before!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## 6. Measuring Speedup\n", + "We can run the benchmark function again to see the speedup gained! Compare this result with the same batch-size of input in the case without TRTorch/TensorRT above." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, avg batch time 72.94 ms\n", + "Iteration 200/1000, avg batch time 72.95 ms\n", + "Iteration 300/1000, avg batch time 73.00 ms\n", + "Iteration 400/1000, avg batch time 73.06 ms\n", + "Iteration 500/1000, avg batch time 73.10 ms\n", + "Iteration 600/1000, avg batch time 73.14 ms\n", + "Iteration 700/1000, avg batch time 73.17 ms\n", + "Iteration 800/1000, avg batch time 73.18 ms\n", + "Iteration 900/1000, avg batch time 73.19 ms\n", + "Iteration 1000/1000, avg batch time 73.21 ms\n", + "Input shape: torch.Size([128, 3, 300, 300])\n", + "Output location prediction size: torch.Size([128, 4, 8732])\n", + "Output label prediction size: torch.Size([128, 81, 8732])\n", + "Average batch time: 73.21 ms\n" + ] + } + ], + "source": [ + "batch_size = 128\n", + "\n", + "# Recompiling with batch_size we use for evaluating performance\n", + "trt_model = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(batch_size, 3, 300, 300)],\n", + " \"op_precision\": torch.half, # Run with FP16\n", + " \"workspace_size\": 1 << 20\n", + "})\n", + "\n", + "benchmark(trt_model, input_shape=(batch_size, 3, 300, 300), nruns=1000, dtype=\"fp16\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## 7. Conclusion\n", + "\n", + "In this notebook, we have walked through the complete process of compiling a TorchScript SSD300 model with TRTorch, and tested the performance impact of the optimization. We find that using the TRTorch compiled model, we gain significant speedup in inference without any noticeable drop in performance!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Details\n", + "For detailed information on model input and output,\n", + "training recipies, inference and performance visit:\n", + "[github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD)\n", + "and/or [NGC](https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_pytorch)\n", + "\n", + "### References\n", + "\n", + " - [SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) paper\n", + " - [Speed/accuracy trade-offs for modern convolutional object detectors](https://arxiv.org/abs/1611.10012) paper\n", + " - [SSD on NGC](https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_pytorch)\n", + " - [SSD on github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/v0.3.0/_sources/_cpp_api/class_view_hierarchy.rst.txt b/docs/v0.3.0/_sources/_cpp_api/class_view_hierarchy.rst.txt new file mode 100644 index 0000000000..d9a1cfe767 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/class_view_hierarchy.rst.txt @@ -0,0 +1,18 @@ + +Class Hierarchy +--------------- + + +.. raw:: html + + + +.. end raw html for treeView + + diff --git a/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.rst.txt b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.rst.txt new file mode 100644 index 0000000000..15c144b4f7 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.rst.txt @@ -0,0 +1,22 @@ +.. _exhale_class_classtrtorch_1_1CompileSpec_1_1DataType: + +Class CompileSpec::DataType +=========================== + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Nested Relationships +-------------------- + +This class is a nested type of :ref:`exhale_struct_structtrtorch_1_1CompileSpec`. + + +Class Documentation +------------------- + + +.. doxygenclass:: trtorch::CompileSpec::DataType + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.rst.txt b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.rst.txt new file mode 100644 index 0000000000..350b83a12a --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.rst.txt @@ -0,0 +1,22 @@ +.. _exhale_class_classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType: + +Class Device::DeviceType +======================== + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Nested Relationships +-------------------- + +This class is a nested type of :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1Device`. + + +Class Documentation +------------------- + + +.. doxygenclass:: trtorch::CompileSpec::Device::DeviceType + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.rst.txt b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.rst.txt new file mode 100644 index 0000000000..9eb7aa2c58 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.rst.txt @@ -0,0 +1,25 @@ +.. _exhale_class_classtrtorch_1_1ptq_1_1Int8CacheCalibrator: + +Template Class Int8CacheCalibrator +================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_ptq.h` + + +Inheritance Relationships +------------------------- + +Base Type +********* + +- ``private Algorithm`` + + +Class Documentation +------------------- + + +.. doxygenclass:: trtorch::ptq::Int8CacheCalibrator + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.rst.txt b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.rst.txt new file mode 100644 index 0000000000..49d3bc8feb --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.rst.txt @@ -0,0 +1,25 @@ +.. _exhale_class_classtrtorch_1_1ptq_1_1Int8Calibrator: + +Template Class Int8Calibrator +============================= + +- Defined in :ref:`file_cpp_api_include_trtorch_ptq.h` + + +Inheritance Relationships +------------------------- + +Base Type +********* + +- ``private Algorithm`` + + +Class Documentation +------------------- + + +.. doxygenclass:: trtorch::ptq::Int8Calibrator + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst.txt new file mode 100644 index 0000000000..a72ee1f8da --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1a18d295a837ac71add5578860b55e5502: + +Define STR +========== + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: STR diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.rst.txt new file mode 100644 index 0000000000..4879a7acc5 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f: + +Define TRTORCH_API +================== + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: TRTORCH_API diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.rst.txt new file mode 100644 index 0000000000..0c4b4b7b7f --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055: + +Define TRTORCH_HIDDEN +===================== + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: TRTORCH_HIDDEN diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.rst.txt new file mode 100644 index 0000000000..3cde6c2e55 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba: + +Define TRTORCH_MAJOR_VERSION +============================ + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: TRTORCH_MAJOR_VERSION diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.rst.txt new file mode 100644 index 0000000000..40f8d3ccca --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f: + +Define TRTORCH_PATCH_VERSION +============================ + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: TRTORCH_PATCH_VERSION diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.rst.txt new file mode 100644 index 0000000000..c68dcd5476 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1a9d31d0569348d109b1b069b972dd143e: + +Define TRTORCH_VERSION +====================== + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: TRTORCH_VERSION diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst.txt new file mode 100644 index 0000000000..4a1ec266ca --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da: + +Define XSTR +=========== + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: XSTR diff --git a/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.rst.txt b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.rst.txt new file mode 100644 index 0000000000..2020d04f78 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84: + +Define TRTORCH_MINOR_VERSION +============================ + +- Defined in :ref:`file_cpp_api_include_trtorch_macros.h` + + +Define Documentation +-------------------- + + +.. doxygendefine:: TRTORCH_MINOR_VERSION diff --git a/docs/v0.3.0/_sources/_cpp_api/dir_cpp.rst.txt b/docs/v0.3.0/_sources/_cpp_api/dir_cpp.rst.txt new file mode 100644 index 0000000000..bb3ea254ec --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/dir_cpp.rst.txt @@ -0,0 +1,16 @@ +.. _dir_cpp: + + +Directory cpp +============= + + +*Directory path:* ``cpp`` + +Subdirectories +-------------- + +- :ref:`dir_cpp_api` + + + diff --git a/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api.rst.txt b/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api.rst.txt new file mode 100644 index 0000000000..84b35cc289 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api.rst.txt @@ -0,0 +1,20 @@ +.. _dir_cpp_api: + + +Directory api +============= + + +|exhale_lsh| :ref:`Parent directory ` (``cpp``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +*Directory path:* ``cpp/api`` + +Subdirectories +-------------- + +- :ref:`dir_cpp_api_include` + + + diff --git a/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api_include.rst.txt b/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api_include.rst.txt new file mode 100644 index 0000000000..43d41fede8 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api_include.rst.txt @@ -0,0 +1,20 @@ +.. _dir_cpp_api_include: + + +Directory include +================= + + +|exhale_lsh| :ref:`Parent directory ` (``cpp/api``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +*Directory path:* ``cpp/api/include`` + +Subdirectories +-------------- + +- :ref:`dir_cpp_api_include_trtorch` + + + diff --git a/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api_include_trtorch.rst.txt b/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api_include_trtorch.rst.txt new file mode 100644 index 0000000000..9954d40c4f --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/dir_cpp_api_include_trtorch.rst.txt @@ -0,0 +1,23 @@ +.. _dir_cpp_api_include_trtorch: + + +Directory trtorch +================= + + +|exhale_lsh| :ref:`Parent directory ` (``cpp/api/include``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +*Directory path:* ``cpp/api/include/trtorch`` + + +Files +----- + +- :ref:`file_cpp_api_include_trtorch_logging.h` +- :ref:`file_cpp_api_include_trtorch_macros.h` +- :ref:`file_cpp_api_include_trtorch_ptq.h` +- :ref:`file_cpp_api_include_trtorch_trtorch.h` + + diff --git a/docs/v0.3.0/_sources/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.rst.txt b/docs/v0.3.0/_sources/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.rst.txt new file mode 100644 index 0000000000..3ec34d1feb --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4: + +Enum Level +========== + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Enum Documentation +------------------ + + +.. doxygenenum:: trtorch::logging::Level diff --git a/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_logging.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_logging.h.rst.txt new file mode 100644 index 0000000000..b1407fe3e4 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_logging.h.rst.txt @@ -0,0 +1,80 @@ + +.. _file_cpp_api_include_trtorch_logging.h: + +File logging.h +============== + +|exhale_lsh| :ref:`Parent directory ` (``cpp/api/include/trtorch``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. contents:: Contents + :local: + :backlinks: none + +Definition (``cpp/api/include/trtorch/logging.h``) +-------------------------------------------------- + + +.. toctree:: + :maxdepth: 1 + + program_listing_file_cpp_api_include_trtorch_logging.h.rst + + + + + +Includes +-------- + + +- ``string`` + +- ``trtorch/macros.h`` (:ref:`file_cpp_api_include_trtorch_macros.h`) + + + +Included By +----------- + + +- :ref:`file_cpp_api_include_trtorch_ptq.h` + + + + +Namespaces +---------- + + +- :ref:`namespace_trtorch` + +- :ref:`namespace_trtorch__logging` + + +Enums +----- + + +- :ref:`exhale_enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4` + + +Functions +--------- + + +- :ref:`exhale_function_logging_8h_1a9b420280bfacc016d7e36a5704021949` + +- :ref:`exhale_function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a` + +- :ref:`exhale_function_logging_8h_1a118d65b179defff7fff279eb9cd126cb` + +- :ref:`exhale_function_logging_8h_1abc57d473f3af292551dee8b9c78373ad` + +- :ref:`exhale_function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f` + +- :ref:`exhale_function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb` + +- :ref:`exhale_function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b` + diff --git a/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_macros.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_macros.h.rst.txt new file mode 100644 index 0000000000..134bd1d31c --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_macros.h.rst.txt @@ -0,0 +1,60 @@ + +.. _file_cpp_api_include_trtorch_macros.h: + +File macros.h +============= + +|exhale_lsh| :ref:`Parent directory ` (``cpp/api/include/trtorch``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. contents:: Contents + :local: + :backlinks: none + +Definition (``cpp/api/include/trtorch/macros.h``) +------------------------------------------------- + + +.. toctree:: + :maxdepth: 1 + + program_listing_file_cpp_api_include_trtorch_macros.h.rst + + + + + + + +Included By +----------- + + +- :ref:`file_cpp_api_include_trtorch_logging.h` + +- :ref:`file_cpp_api_include_trtorch_trtorch.h` + + + + +Defines +------- + + +- :ref:`exhale_define_macros_8h_1a18d295a837ac71add5578860b55e5502` + +- :ref:`exhale_define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f` + +- :ref:`exhale_define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055` + +- :ref:`exhale_define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba` + +- :ref:`exhale_define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84` + +- :ref:`exhale_define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f` + +- :ref:`exhale_define_macros_8h_1a9d31d0569348d109b1b069b972dd143e` + +- :ref:`exhale_define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da` + diff --git a/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_ptq.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_ptq.h.rst.txt new file mode 100644 index 0000000000..f805619116 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_ptq.h.rst.txt @@ -0,0 +1,82 @@ + +.. _file_cpp_api_include_trtorch_ptq.h: + +File ptq.h +========== + +|exhale_lsh| :ref:`Parent directory ` (``cpp/api/include/trtorch``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. contents:: Contents + :local: + :backlinks: none + +Definition (``cpp/api/include/trtorch/ptq.h``) +---------------------------------------------- + + +.. toctree:: + :maxdepth: 1 + + program_listing_file_cpp_api_include_trtorch_ptq.h.rst + + + + + +Includes +-------- + + +- ``NvInfer.h`` + +- ``fstream`` + +- ``iostream`` + +- ``iterator`` + +- ``memory`` + +- ``sstream`` + +- ``string`` + +- ``torch/torch.h`` + +- ``trtorch/logging.h`` (:ref:`file_cpp_api_include_trtorch_logging.h`) + +- ``vector`` + + + + + + +Namespaces +---------- + + +- :ref:`namespace_trtorch` + +- :ref:`namespace_trtorch__ptq` + + +Classes +------- + + +- :ref:`exhale_class_classtrtorch_1_1ptq_1_1Int8CacheCalibrator` + +- :ref:`exhale_class_classtrtorch_1_1ptq_1_1Int8Calibrator` + + +Functions +--------- + + +- :ref:`exhale_function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31` + +- :ref:`exhale_function_ptq_8h_1a4422781719d7befedb364cacd91c6247` + diff --git a/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.rst.txt new file mode 100644 index 0000000000..1ba097fb7c --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.rst.txt @@ -0,0 +1,88 @@ + +.. _file_cpp_api_include_trtorch_trtorch.h: + +File trtorch.h +============== + +|exhale_lsh| :ref:`Parent directory ` (``cpp/api/include/trtorch``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. contents:: Contents + :local: + :backlinks: none + +Definition (``cpp/api/include/trtorch/trtorch.h``) +-------------------------------------------------- + + +.. toctree:: + :maxdepth: 1 + + program_listing_file_cpp_api_include_trtorch_trtorch.h.rst + + + + + +Includes +-------- + + +- ``cuda_runtime.h`` + +- ``memory`` + +- ``string`` + +- ``trtorch/macros.h`` (:ref:`file_cpp_api_include_trtorch_macros.h`) + +- ``vector`` + + + + + + +Namespaces +---------- + + +- :ref:`namespace_trtorch` + + +Classes +------- + + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec` + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1Device` + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1InputRange` + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1TorchFallback` + +- :ref:`exhale_class_classtrtorch_1_1CompileSpec_1_1DataType` + +- :ref:`exhale_class_classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType` + + +Functions +--------- + + +- :ref:`exhale_function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25` + +- :ref:`exhale_function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a` + +- :ref:`exhale_function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65` + +- :ref:`exhale_function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10` + +- :ref:`exhale_function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08` + +- :ref:`exhale_function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447` + +- :ref:`exhale_function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e` + diff --git a/docs/v0.3.0/_sources/_cpp_api/file_view_hierarchy.rst.txt b/docs/v0.3.0/_sources/_cpp_api/file_view_hierarchy.rst.txt new file mode 100644 index 0000000000..318f4316bb --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/file_view_hierarchy.rst.txt @@ -0,0 +1,18 @@ + +File Hierarchy +-------------- + + +.. raw:: html + + + +.. end raw html for treeView + + diff --git a/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.rst.txt new file mode 100644 index 0000000000..c5c18c2830 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_logging_8h_1a118d65b179defff7fff279eb9cd126cb: + +Function trtorch::logging::get_reportable_log_level +=================================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::logging::get_reportable_log_level() diff --git a/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.rst.txt new file mode 100644 index 0000000000..dde0798088 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb: + +Function trtorch::logging::set_logging_prefix +============================================= + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::logging::set_logging_prefix(std::string) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.rst.txt new file mode 100644 index 0000000000..19184ab00a --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_logging_8h_1a9b420280bfacc016d7e36a5704021949: + +Function trtorch::logging::get_is_colored_output_on +=================================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::logging::get_is_colored_output_on() diff --git a/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.rst.txt new file mode 100644 index 0000000000..8c330ae929 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f: + +Function trtorch::logging::set_is_colored_output_on +=================================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::logging::set_is_colored_output_on(bool) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.rst.txt new file mode 100644 index 0000000000..e4b1b0c8cf --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_logging_8h_1abc57d473f3af292551dee8b9c78373ad: + +Function trtorch::logging::log +============================== + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::logging::log(Level, std::string) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.rst.txt new file mode 100644 index 0000000000..7df3c532aa --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b: + +Function trtorch::logging::set_reportable_log_level +=================================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::logging::set_reportable_log_level(Level) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.rst.txt new file mode 100644 index 0000000000..d4943e10ac --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a: + +Function trtorch::logging::get_logging_prefix +============================================= + +- Defined in :ref:`file_cpp_api_include_trtorch_logging.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::logging::get_logging_prefix() diff --git a/docs/v0.3.0/_sources/_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.rst.txt new file mode 100644 index 0000000000..ee1876539d --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_ptq_8h_1a4422781719d7befedb364cacd91c6247: + +Template Function trtorch::ptq::make_int8_calibrator +==================================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_ptq.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::ptq::make_int8_calibrator(DataLoader, const std::string&, bool) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.rst.txt new file mode 100644 index 0000000000..eb2ecb6e4d --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31: + +Template Function trtorch::ptq::make_int8_cache_calibrator +========================================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_ptq.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::ptq::make_int8_cache_calibrator(const std::string&) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.rst.txt new file mode 100644 index 0000000000..3cc1eecbf8 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447: + +Function trtorch::get_build_info +================================ + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::get_build_info() diff --git a/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.rst.txt new file mode 100644 index 0000000000..9a38c65fac --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a: + +Function trtorch::CompileGraph +============================== + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::CompileGraph(const torch::jit::Module&, CompileSpec) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.rst.txt new file mode 100644 index 0000000000..dcd01d0663 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e: + +Function trtorch::set_device +============================ + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::set_device(const int) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.rst.txt new file mode 100644 index 0000000000..0716194bf4 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10: + +Function trtorch::dump_build_info +================================= + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::dump_build_info() diff --git a/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.rst.txt new file mode 100644 index 0000000000..6fd7dd56c8 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25: + +Function trtorch::CheckMethodOperatorSupport +============================================ + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::CheckMethodOperatorSupport(const torch::jit::Module&, std::string) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.rst.txt new file mode 100644 index 0000000000..188bb9ba0e --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08: + +Function trtorch::EmbedEngineInNewModule +======================================== + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::EmbedEngineInNewModule(const std::string&) diff --git a/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.rst.txt b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.rst.txt new file mode 100644 index 0000000000..8f48edfb56 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.rst.txt @@ -0,0 +1,13 @@ +.. _exhale_function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65: + +Function trtorch::ConvertGraphToTRTEngine +========================================= + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Function Documentation +---------------------- + + +.. doxygenfunction:: trtorch::ConvertGraphToTRTEngine(const torch::jit::Module&, std::string, CompileSpec) diff --git a/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch.rst.txt b/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch.rst.txt new file mode 100644 index 0000000000..d65b3ff688 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch.rst.txt @@ -0,0 +1,58 @@ + +.. _namespace_trtorch: + +Namespace trtorch +================= + + +.. contents:: Contents + :local: + :backlinks: none + + + + + +Namespaces +---------- + + +- :ref:`namespace_trtorch__logging` + +- :ref:`namespace_trtorch__ptq` + + +Classes +------- + + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec` + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1Device` + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1InputRange` + +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1TorchFallback` + +- :ref:`exhale_class_classtrtorch_1_1CompileSpec_1_1DataType` + +- :ref:`exhale_class_classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType` + + +Functions +--------- + + +- :ref:`exhale_function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25` + +- :ref:`exhale_function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a` + +- :ref:`exhale_function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65` + +- :ref:`exhale_function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10` + +- :ref:`exhale_function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08` + +- :ref:`exhale_function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447` + +- :ref:`exhale_function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e` diff --git a/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch__logging.rst.txt b/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch__logging.rst.txt new file mode 100644 index 0000000000..b14cc385a4 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch__logging.rst.txt @@ -0,0 +1,39 @@ + +.. _namespace_trtorch__logging: + +Namespace trtorch::logging +========================== + + +.. contents:: Contents + :local: + :backlinks: none + + + + + +Enums +----- + + +- :ref:`exhale_enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4` + + +Functions +--------- + + +- :ref:`exhale_function_logging_8h_1a9b420280bfacc016d7e36a5704021949` + +- :ref:`exhale_function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a` + +- :ref:`exhale_function_logging_8h_1a118d65b179defff7fff279eb9cd126cb` + +- :ref:`exhale_function_logging_8h_1abc57d473f3af292551dee8b9c78373ad` + +- :ref:`exhale_function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f` + +- :ref:`exhale_function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb` + +- :ref:`exhale_function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b` diff --git a/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch__ptq.rst.txt b/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch__ptq.rst.txt new file mode 100644 index 0000000000..271bf1e07a --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/namespace_trtorch__ptq.rst.txt @@ -0,0 +1,31 @@ + +.. _namespace_trtorch__ptq: + +Namespace trtorch::ptq +====================== + + +.. contents:: Contents + :local: + :backlinks: none + + + + + +Classes +------- + + +- :ref:`exhale_class_classtrtorch_1_1ptq_1_1Int8CacheCalibrator` + +- :ref:`exhale_class_classtrtorch_1_1ptq_1_1Int8Calibrator` + + +Functions +--------- + + +- :ref:`exhale_function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31` + +- :ref:`exhale_function_ptq_8h_1a4422781719d7befedb364cacd91c6247` diff --git a/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.rst.txt new file mode 100644 index 0000000000..bd3963343d --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.rst.txt @@ -0,0 +1,51 @@ + +.. _program_listing_file_cpp_api_include_trtorch_logging.h: + +Program Listing for File logging.h +================================== + +|exhale_lsh| :ref:`Return to documentation for file ` (``cpp/api/include/trtorch/logging.h``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. code-block:: cpp + + /* + * Copyright (c) NVIDIA Corporation. + * All rights reserved. + * + * This library is licensed under the BSD-style license found in the + * LICENSE file in the root directory of this source tree. + */ + #pragma once + + #include + #include "trtorch/macros.h" + + namespace trtorch { + namespace logging { + enum Level { + kINTERNAL_ERROR, + kERROR, + kWARNING, + kINFO, + kDEBUG, + kGRAPH, + }; + + // Are these ones necessary for the user? + TRTORCH_API std::string get_logging_prefix(); + TRTORCH_API void set_logging_prefix(std::string prefix); + + TRTORCH_API void set_reportable_log_level(Level lvl); + + TRTORCH_API void set_is_colored_output_on(bool colored_output_on); + + TRTORCH_API Level get_reportable_log_level(); + + TRTORCH_API bool get_is_colored_output_on(); + + // Dont know if we want this? + TRTORCH_API void log(Level lvl, std::string msg); + } // namespace logging + } // namespace trtorch diff --git a/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.rst.txt new file mode 100644 index 0000000000..50a28d4773 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.rst.txt @@ -0,0 +1,39 @@ + +.. _program_listing_file_cpp_api_include_trtorch_macros.h: + +Program Listing for File macros.h +================================= + +|exhale_lsh| :ref:`Return to documentation for file ` (``cpp/api/include/trtorch/macros.h``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. code-block:: cpp + + /* + * Copyright (c) NVIDIA Corporation. + * All rights reserved. + * + * This library is licensed under the BSD-style license found in the + * LICENSE file in the root directory of this source tree. + */ + #pragma once + + #if defined(__GNUC__) + #define TRTORCH_API __attribute__((__visibility__("default"))) + #define TRTORCH_HIDDEN __attribute__((__visibility__("hidden"))) + #else + #define TRTORCH_API + #define TRTORCH_HIDDEN + #endif // defined(__GNUC__) + + // Does this need to be gaurded or something? + #define XSTR(x) #x + #define STR(x) XSTR(x) + + #define TRTORCH_MAJOR_VERSION 0 + #define TRTORCH_MINOR_VERSION 3 + #define TRTORCH_PATCH_VERSION 0 + #define TRTORCH_VERSION \ + STR(TRTORCH_MAJOR_VERSION) \ + "." STR(TRTORCH_MINOR_VERSION) "." STR(TRTORCH_PATCH_VERSION) diff --git a/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.rst.txt new file mode 100644 index 0000000000..3358447613 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.rst.txt @@ -0,0 +1,189 @@ + +.. _program_listing_file_cpp_api_include_trtorch_ptq.h: + +Program Listing for File ptq.h +============================== + +|exhale_lsh| :ref:`Return to documentation for file ` (``cpp/api/include/trtorch/ptq.h``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. code-block:: cpp + + /* + * Copyright (c) NVIDIA Corporation. + * All rights reserved. + * + * This library is licensed under the BSD-style license found in the + * LICENSE file in the root directory of this source tree. + */ + #pragma once + + #include + #include + #include + #include + #include + #include + #include + + #include "NvInfer.h" + #include "torch/torch.h" + #include "trtorch/logging.h" + + #ifndef DOXYGEN_SHOULD_SKIP_THIS + namespace nvinfer1 { + class IInt8Calibrator; + class IInt8EntropyCalibrator2; + } // namespace nvinfer1 + + namespace trtorch { + namespace ptq { + bool get_batch_impl(void* bindings[], const char* names[], int nbBindings, torch::Tensor& data); + } + } // namespace trtorch + #endif // DOXYGEN_SHOULD_SKIP_THIS + + namespace trtorch { + namespace ptq { + + template + class Int8Calibrator : Algorithm { + using DataLoader = typename DataLoaderUniquePtr::element_type; + using Batch = typename DataLoader::super::BatchType; + + public: + Int8Calibrator(DataLoaderUniquePtr dataloader, const std::string& cache_file_path, bool use_cache) + : dataloader_(dataloader.get()), cache_file_path_(cache_file_path), use_cache_(use_cache) { + for (auto batch : *dataloader_) { + batched_data_.push_back(batch.data); + } + it_ = batched_data_.begin(); + } + + int getBatchSize() const override { + // HACK: TRTorch only uses explict batch sizing, INT8 Calibrator does not + // work when reporting the batch size here and having explicity batching. + // So we just report batch size 1 (warnings will still be printed out). + return 1; + // return static_cast(dataloader_->options().batch_size); + } + + bool getBatch(void* bindings[], const char* names[], int nbBindings) override { + if (it_ != batched_data_.end()) { + auto status = get_batch_impl(bindings, names, nbBindings, *it_); + it_ = ++it_; + return status; + } else { + // Reset iterator if incase calibrator is going to be used again + it_ = batched_data_.begin(); + return false; + } + } + + const void* readCalibrationCache(size_t& length) override { + if (use_cache_) { + std::stringstream ss; + ss << "Reading Calibration Cache from " << cache_file_path_; + logging::log(logging::Level::kINFO, ss.str()); + + cache_.clear(); + std::ifstream input(cache_file_path_, std::ios::binary); + input >> std::noskipws; + if (input.good()) { + std::copy(std::istream_iterator(input), std::istream_iterator(), std::back_inserter(cache_)); + logging::log(logging::Level::kDEBUG, "Cache read"); + } + length = cache_.size(); + return length ? cache_.data() : nullptr; + } + return nullptr; + } + + void writeCalibrationCache(const void* cache, size_t length) override { + std::ofstream cache_file(cache_file_path_, std::ios::binary); + cache_file.write(reinterpret_cast(cache), length); + std::stringstream ss; + ss << "Saved Calibration Cache to " << cache_file_path_; + logging::log(logging::Level::kINFO, ss.str()); + } + + operator nvinfer1::IInt8Calibrator*() { + return reinterpret_cast(this); + } + + private: + DataLoader* dataloader_; + const std::string& cache_file_path_; + size_t cache_size_ = 0; + bool use_cache_; + std::vector cache_; + std::vector batched_data_; + std::vector::iterator it_; + }; + + template + class Int8CacheCalibrator : Algorithm { + public: + Int8CacheCalibrator(const std::string& cache_file_path) : cache_file_path_(cache_file_path) {} + + int getBatchSize() const override { + // HACK: TRTorch only uses explict batch sizing, INT8 Calibrator does not + // work when reporting the batch size here and having explicity batching. + // So we just report batch size 1 (warnings will still be printed out). + return 1; + } + + bool getBatch(void* bindings[], const char* names[], int nbBindings) override { + return false; + } + + const void* readCalibrationCache(size_t& length) override { + std::stringstream ss; + ss << "Reading Calibration Cache from " << cache_file_path_; + logging::log(logging::Level::kINFO, ss.str()); + + cache_.clear(); + std::ifstream input(cache_file_path_, std::ios::binary); + input >> std::noskipws; + if (input.good()) { + std::copy(std::istream_iterator(input), std::istream_iterator(), std::back_inserter(cache_)); + logging::log(logging::Level::kDEBUG, "Cache read"); + } + length = cache_.size(); + return length ? cache_.data() : nullptr; + } + + void writeCalibrationCache(const void* cache, size_t length) override { + std::ofstream cache_file(cache_file_path_, std::ios::binary); + cache_file.write(reinterpret_cast(cache), length); + std::stringstream ss; + ss << "Saved Calibration Cache to " << cache_file_path_; + logging::log(logging::Level::kINFO, ss.str()); + } + + operator nvinfer1::IInt8Calibrator*() { + return reinterpret_cast(this); + } + + private: + const std::string& cache_file_path_; + size_t cache_size_ = 0; + std::vector cache_; + }; + + template + TRTORCH_API inline Int8Calibrator make_int8_calibrator( + DataLoader dataloader, + const std::string& cache_file_path, + bool use_cache) { + return Int8Calibrator(std::move(dataloader), cache_file_path, use_cache); + } + + template + TRTORCH_API inline Int8CacheCalibrator make_int8_cache_calibrator(const std::string& cache_file_path) { + return Int8CacheCalibrator(cache_file_path); + } + + } // namespace ptq + } // namespace trtorch diff --git a/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.rst.txt b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.rst.txt new file mode 100644 index 0000000000..d79817a5e5 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.rst.txt @@ -0,0 +1,216 @@ + +.. _program_listing_file_cpp_api_include_trtorch_trtorch.h: + +Program Listing for File trtorch.h +================================== + +|exhale_lsh| :ref:`Return to documentation for file ` (``cpp/api/include/trtorch/trtorch.h``) + +.. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS + +.. code-block:: cpp + + /* + * Copyright (c) NVIDIA Corporation. + * All rights reserved. + * + * This library is licensed under the BSD-style license found in the + * LICENSE file in the root directory of this source tree. + */ + + #pragma once + + #include + #include + #include + #include + + // Just include the .h? + #ifndef DOXYGEN_SHOULD_SKIP_THIS + namespace torch { + namespace jit { + struct Graph; + struct Module; + } // namespace jit + } // namespace torch + + namespace c10 { + enum class DeviceType : int8_t; + enum class ScalarType : int8_t; + template + class ArrayRef; + } // namespace c10 + + namespace nvinfer1 { + class IInt8Calibrator; + } + #endif // DOXYGEN_SHOULD_SKIP_THIS + + #include "trtorch/macros.h" + namespace trtorch { + struct TRTORCH_API CompileSpec { + struct TRTORCH_API InputRange { + std::vector min; + std::vector opt; + std::vector max; + InputRange(std::vector opt); + InputRange(c10::ArrayRef opt); + InputRange(std::vector min, std::vector opt, std::vector max); + InputRange(c10::ArrayRef min, c10::ArrayRef opt, c10::ArrayRef max); + }; + + class TRTORCH_API DataType { + public: + enum Value : int8_t { + kFloat, + kHalf, + kChar, + }; + + DataType() = default; + constexpr DataType(Value t) : value(t) {} + DataType(c10::ScalarType t); + operator Value() const { + return value; + } + explicit operator bool() = delete; + constexpr bool operator==(DataType other) const { + return value == other.value; + } + constexpr bool operator==(DataType::Value other) const { + return value == other; + } + constexpr bool operator!=(DataType other) const { + return value != other.value; + } + constexpr bool operator!=(DataType::Value other) const { + return value != other; + } + + private: + Value value; + }; + + enum class EngineCapability : int8_t { + kDEFAULT, + kSAFE_GPU, + kSAFE_DLA, + }; + + CompileSpec(std::vector input_ranges) : input_ranges(std::move(input_ranges)) {} + CompileSpec(std::vector> fixed_sizes); + CompileSpec(std::vector> fixed_sizes); + + // Defaults should reflect TensorRT defaults for BuilderConfig + + std::vector input_ranges; + + DataType op_precision = DataType::kFloat; + + bool disable_tf32 = false; + + bool refit = false; + + bool debug = false; + + bool truncate_long_and_double = false; + + bool strict_types = false; + + /* + * Setting data structure for Target device + */ + struct Device { + class DeviceType { + public: + enum Value : int8_t { + kGPU, + kDLA, + }; + + DeviceType() = default; + constexpr DeviceType(Value t) : value(t) {} + DeviceType(c10::DeviceType t); + operator Value() const { + return value; + } + explicit operator bool() = delete; + constexpr bool operator==(DeviceType other) const { + return value == other.value; + } + constexpr bool operator!=(DeviceType other) const { + return value != other.value; + } + + private: + Value value; + }; + + DeviceType device_type; + + /* + * Target gpu id + */ + int64_t gpu_id; + + /* + * When using DLA core on NVIDIA AGX platforms gpu_id should be set as Xavier device + */ + int64_t dla_core; + + bool allow_gpu_fallback; + + Device() : device_type(DeviceType::kGPU), gpu_id(0), dla_core(0), allow_gpu_fallback(false) {} + }; + + /* + * Target Device + */ + Device device; + + struct TRTORCH_API TorchFallback { + bool enabled = false; + + uint64_t min_block_size = 1; + + std::vector forced_fallback_ops; + + TorchFallback() = default; + + TorchFallback(bool enabled) : enabled(enabled) {} + + TorchFallback(bool enabled, uint64_t min_size) : enabled(enabled), min_block_size(min_size) {} + }; + + TorchFallback torch_fallback; + + EngineCapability capability = EngineCapability::kDEFAULT; + + uint64_t num_min_timing_iters = 2; + uint64_t num_avg_timing_iters = 1; + + uint64_t workspace_size = 0; + + uint64_t max_batch_size = 0; + + nvinfer1::IInt8Calibrator* ptq_calibrator = nullptr; + }; + + TRTORCH_API std::string get_build_info(); + + TRTORCH_API void dump_build_info(); + + TRTORCH_API bool CheckMethodOperatorSupport(const torch::jit::Module& module, std::string method_name); + + TRTORCH_API torch::jit::Module CompileGraph(const torch::jit::Module& module, CompileSpec info); + + TRTORCH_API std::string ConvertGraphToTRTEngine( + const torch::jit::Module& module, + std::string method_name, + CompileSpec info); + + TRTORCH_API torch::jit::Module EmbedEngineInNewModule(const std::string& engine); + + TRTORCH_API void set_device(const int gpu_id); + + } // namespace trtorch diff --git a/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec.rst.txt b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec.rst.txt new file mode 100644 index 0000000000..fbf76df0c5 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec.rst.txt @@ -0,0 +1,30 @@ +.. _exhale_struct_structtrtorch_1_1CompileSpec: + +Struct CompileSpec +================== + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Nested Relationships +-------------------- + + +Nested Types +************ + +- :ref:`exhale_class_classtrtorch_1_1CompileSpec_1_1DataType` +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1Device` +- :ref:`exhale_class_classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType` +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1InputRange` +- :ref:`exhale_struct_structtrtorch_1_1CompileSpec_1_1TorchFallback` + + +Struct Documentation +-------------------- + + +.. doxygenstruct:: trtorch::CompileSpec + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.rst.txt b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.rst.txt new file mode 100644 index 0000000000..7aa584cc8e --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.rst.txt @@ -0,0 +1,28 @@ +.. _exhale_struct_structtrtorch_1_1CompileSpec_1_1Device: + +Struct CompileSpec::Device +========================== + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Nested Relationships +-------------------- + +This struct is a nested type of :ref:`exhale_struct_structtrtorch_1_1CompileSpec`. + + +Nested Types +************ + +- :ref:`exhale_class_classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType` + + +Struct Documentation +-------------------- + + +.. doxygenstruct:: trtorch::CompileSpec::Device + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.rst.txt b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.rst.txt new file mode 100644 index 0000000000..5b25b99395 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.rst.txt @@ -0,0 +1,22 @@ +.. _exhale_struct_structtrtorch_1_1CompileSpec_1_1InputRange: + +Struct CompileSpec::InputRange +============================== + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Nested Relationships +-------------------- + +This struct is a nested type of :ref:`exhale_struct_structtrtorch_1_1CompileSpec`. + + +Struct Documentation +-------------------- + + +.. doxygenstruct:: trtorch::CompileSpec::InputRange + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.rst.txt b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.rst.txt new file mode 100644 index 0000000000..dd0ca889d8 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.rst.txt @@ -0,0 +1,22 @@ +.. _exhale_struct_structtrtorch_1_1CompileSpec_1_1TorchFallback: + +Struct CompileSpec::TorchFallback +================================= + +- Defined in :ref:`file_cpp_api_include_trtorch_trtorch.h` + + +Nested Relationships +-------------------- + +This struct is a nested type of :ref:`exhale_struct_structtrtorch_1_1CompileSpec`. + + +Struct Documentation +-------------------- + + +.. doxygenstruct:: trtorch::CompileSpec::TorchFallback + :members: + :protected-members: + :undoc-members: \ No newline at end of file diff --git a/docs/v0.3.0/_sources/_cpp_api/trtorch_cpp.rst.txt b/docs/v0.3.0/_sources/_cpp_api/trtorch_cpp.rst.txt new file mode 100644 index 0000000000..5c0d0c4a17 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/trtorch_cpp.rst.txt @@ -0,0 +1,10 @@ + +TRTorch C++ API +=============== + +.. include:: class_view_hierarchy.rst + +.. include:: file_view_hierarchy.rst + +.. include:: unabridged_api.rst + diff --git a/docs/v0.3.0/_sources/_cpp_api/unabridged_api.rst.txt b/docs/v0.3.0/_sources/_cpp_api/unabridged_api.rst.txt new file mode 100644 index 0000000000..0037244a77 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/unabridged_api.rst.txt @@ -0,0 +1,203 @@ + +Full API +-------- + +Namespaces +********** + + +.. toctree:: + :maxdepth: 5 + + namespace_trtorch.rst + +.. toctree:: + :maxdepth: 5 + + namespace_trtorch__logging.rst + +.. toctree:: + :maxdepth: 5 + + namespace_trtorch__ptq.rst + +Classes and Structs +******************* + + +.. toctree:: + :maxdepth: 5 + + structtrtorch_1_1CompileSpec.rst + +.. toctree:: + :maxdepth: 5 + + structtrtorch_1_1CompileSpec_1_1Device.rst + +.. toctree:: + :maxdepth: 5 + + structtrtorch_1_1CompileSpec_1_1InputRange.rst + +.. toctree:: + :maxdepth: 5 + + structtrtorch_1_1CompileSpec_1_1TorchFallback.rst + +.. toctree:: + :maxdepth: 5 + + classtrtorch_1_1CompileSpec_1_1DataType.rst + +.. toctree:: + :maxdepth: 5 + + classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.rst + +.. toctree:: + :maxdepth: 5 + + classtrtorch_1_1ptq_1_1Int8CacheCalibrator.rst + +.. toctree:: + :maxdepth: 5 + + classtrtorch_1_1ptq_1_1Int8Calibrator.rst + +Enums +***** + + +.. toctree:: + :maxdepth: 5 + + enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.rst + +Functions +********* + + +.. toctree:: + :maxdepth: 5 + + function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.rst + +.. toctree:: + :maxdepth: 5 + + function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.rst + +.. toctree:: + :maxdepth: 5 + + function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.rst + +.. toctree:: + :maxdepth: 5 + + function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.rst + +.. toctree:: + :maxdepth: 5 + + function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.rst + +.. toctree:: + :maxdepth: 5 + + function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.rst + +.. toctree:: + :maxdepth: 5 + + function_logging_8h_1a9b420280bfacc016d7e36a5704021949.rst + +.. toctree:: + :maxdepth: 5 + + function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.rst + +.. toctree:: + :maxdepth: 5 + + function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.rst + +.. toctree:: + :maxdepth: 5 + + function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.rst + +.. toctree:: + :maxdepth: 5 + + function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.rst + +.. toctree:: + :maxdepth: 5 + + function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.rst + +.. toctree:: + :maxdepth: 5 + + function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.rst + +.. toctree:: + :maxdepth: 5 + + function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.rst + +.. toctree:: + :maxdepth: 5 + + function_ptq_8h_1a4422781719d7befedb364cacd91c6247.rst + +.. toctree:: + :maxdepth: 5 + + function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.rst + +Defines +******* + + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.rst + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.rst + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.rst + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.rst + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.rst + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.rst + +.. toctree:: + :maxdepth: 5 + + define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst diff --git a/docs/v0.3.0/_sources/_cpp_api/unabridged_orphan.rst.txt b/docs/v0.3.0/_sources/_cpp_api/unabridged_orphan.rst.txt new file mode 100644 index 0000000000..79d71714b3 --- /dev/null +++ b/docs/v0.3.0/_sources/_cpp_api/unabridged_orphan.rst.txt @@ -0,0 +1,53 @@ +:orphan: + + +Full API +======== + +Directories +*********** + + +.. toctree:: + :maxdepth: 5 + + dir_cpp.rst + +.. toctree:: + :maxdepth: 5 + + dir_cpp_api.rst + +.. toctree:: + :maxdepth: 5 + + dir_cpp_api_include.rst + +.. toctree:: + :maxdepth: 5 + + dir_cpp_api_include_trtorch.rst + +Files +***** + + +.. toctree:: + :maxdepth: 5 + + file_cpp_api_include_trtorch_logging.h.rst + +.. toctree:: + :maxdepth: 5 + + file_cpp_api_include_trtorch_macros.h.rst + +.. toctree:: + :maxdepth: 5 + + file_cpp_api_include_trtorch_ptq.h.rst + +.. toctree:: + :maxdepth: 5 + + file_cpp_api_include_trtorch_trtorch.h.rst diff --git a/docs/v0.3.0/_sources/_notebooks/Resnet50-example.ipynb.txt b/docs/v0.3.0/_sources/_notebooks/Resnet50-example.ipynb.txt new file mode 100644 index 0000000000..5d2602b891 --- /dev/null +++ b/docs/v0.3.0/_sources/_notebooks/Resnet50-example.ipynb.txt @@ -0,0 +1,965 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright 2019 NVIDIA Corporation. All Rights Reserved.\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "# ==============================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# TRTorch Getting Started - ResNet 50" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "In the practice of developing machine learning models, there are few tools as approachable as PyTorch for developing and experimenting in designing machine learning models. The power of PyTorch comes from its deep integration into Python, its flexibility and its approach to automatic differentiation and execution (eager execution). However, when moving from research into production, the requirements change and we may no longer want that deep Python integration and we want optimization to get the best performance we can on our deployment platform. In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. TorchScript uses PyTorch's JIT compiler to transform your normal PyTorch code which gets interpreted by the Python interpreter to an intermediate representation (IR) which can have optimizations run on it and at runtime can get interpreted by the PyTorch JIT interpreter. For PyTorch this has opened up a whole new world of possibilities, including deployment in other languages like C++. It also introduces a structured graph based format that we can use to do down to the kernel level optimization of models for inference.\n", + "\n", + "When deploying on NVIDIA GPUs TensorRT, NVIDIA's Deep Learning Optimization SDK and Runtime is able to take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family be it an A100, TITAN V, Jetson Xavier or NVIDIA's Deep Learning Accelerator. TensorRT performs a couple sets of optimizations to achieve this. TensorRT fuses layers and tensors in the model graph, it then uses a large kernel library to select implementations that perform best on the target GPU. TensorRT also has strong support for reduced operating precision execution which allows users to leverage the Tensor Cores on Volta and newer GPUs as well as reducing memory and computation footprints on device.\n", + "\n", + "TRTorch is a compiler that uses TensorRT to optimize TorchScript code, compiling standard TorchScript modules into ones that internally run with TensorRT optimizations. This enables you to continue to remain in the PyTorch ecosystem, using all the great features PyTorch has such as module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning objectives\n", + "\n", + "This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a pretrained ResNet-50 network, and running it to test the speedup obtained.\n", + "\n", + "## Content\n", + "1. [Requirements](#1)\n", + "1. [ResNet-50 Overview](#2)\n", + "1. [Creating TorchScript modules](#3)\n", + "1. [Compiling with TRTorch](#4)\n", + "1. [Conclusion](#5)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tue Aug 25 06:25:19 2020 \r\n", + "+-----------------------------------------------------------------------------+\r\n", + "| NVIDIA-SMI 450.24 Driver Version: 450.24 CUDA Version: 11.0 |\r\n", + "|-------------------------------+----------------------+----------------------+\r\n", + "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n", + "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\r\n", + "| | | MIG M. |\r\n", + "|===============================+======================+======================|\r\n", + "| 0 Tesla P100-SXM2... On | 00000000:06:00.0 Off | 0 |\r\n", + "| N/A 37C P0 43W / 300W | 891MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 1 Tesla P100-SXM2... On | 00000000:07:00.0 Off | 0 |\r\n", + "| N/A 35C P0 34W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 2 Tesla P100-SXM2... On | 00000000:0A:00.0 Off | 0 |\r\n", + "| N/A 35C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 3 Tesla P100-SXM2... On | 00000000:0B:00.0 Off | 0 |\r\n", + "| N/A 33C P0 32W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 4 Tesla P100-SXM2... On | 00000000:85:00.0 Off | 0 |\r\n", + "| N/A 34C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 5 Tesla P100-SXM2... On | 00000000:86:00.0 Off | 0 |\r\n", + "| N/A 31C P0 35W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 6 Tesla P100-SXM2... On | 00000000:89:00.0 Off | 0 |\r\n", + "| N/A 36C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + "| 7 Tesla P100-SXM2... On | 00000000:8A:00.0 Off | 0 |\r\n", + "| N/A 34C P0 33W / 300W | 2MiB / 16280MiB | 0% Default |\r\n", + "| | | N/A |\r\n", + "+-------------------------------+----------------------+----------------------+\r\n", + " \r\n", + "+-----------------------------------------------------------------------------+\r\n", + "| Processes: |\r\n", + "| GPU GI CI PID Type Process name GPU Memory |\r\n", + "| ID ID Usage |\r\n", + "|=============================================================================|\r\n", + "+-----------------------------------------------------------------------------+\r\n" + ] + } + ], + "source": [ + "!nvidia-smi" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 1. Requirements\n", + "\n", + "Follow the steps in `notebooks/README` to prepare a Docker container, within which you can run this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 2. ResNet-50 Overview\n", + "\n", + "\n", + "PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our ResNet-50 model from there pretrained on ImageNet.\n", + "\n", + "### Model Description\n", + "\n", + "This ResNet-50 model is based on the [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf) paper, which describes ResNet as “a method for detecting objects in images using a single deep neural network\". The input size is fixed to 32x32.\n", + "\n", + "\"alt\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/pytorch_vision_v0.6.0\n" + ] + }, + { + "data": { + "text/plain": [ + "ResNet(\n", + " (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", + " (layer1): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (layer2): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (3): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (layer3): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (3): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (4): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (5): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (layer4): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace=True)\n", + " )\n", + " )\n", + " (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n", + " (fc): Linear(in_features=2048, out_features=1000, bias=True)\n", + ")" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "resnet50_model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet50', pretrained=True)\n", + "resnet50_model.eval()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All pre-trained models expect input images normalized in the same way,\n", + "i.e. mini-batches of 3-channel RGB images of shape `(3 x H x W)`, where `H` and `W` are expected to be at least `224`.\n", + "The images have to be loaded in to a range of `[0, 1]` and then normalized using `mean = [0.485, 0.456, 0.406]`\n", + "and `std = [0.229, 0.224, 0.225]`.\n", + "\n", + "Here's a sample execution." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mkdir: cannot create directory ‘./data’: File exists\n", + "--2020-08-25 06:25:22-- https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630\n", + "Resolving d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)... 13.227.77.77, 13.227.77.154, 13.227.77.109, ...\n", + "Connecting to d17fnq9dkz9hgj.cloudfront.net (d17fnq9dkz9hgj.cloudfront.net)|13.227.77.77|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 24112 (24K) [image/jpeg]\n", + "Saving to: ‘./data/img0.JPG’\n", + "\n", + "./data/img0.JPG 100%[===================>] 23.55K --.-KB/s in 0.001s \n", + "\n", + "2020-08-25 06:25:22 (38.7 MB/s) - ‘./data/img0.JPG’ saved [24112/24112]\n", + "\n", + "--2020-08-25 06:25:22-- https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg\n", + "Resolving www.hakaimagazine.com (www.hakaimagazine.com)... 23.185.0.4, 2620:12a:8001::4, 2620:12a:8000::4\n", + "Connecting to www.hakaimagazine.com (www.hakaimagazine.com)|23.185.0.4|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 452718 (442K) [image/jpeg]\n", + "Saving to: ‘./data/img1.JPG’\n", + "\n", + "./data/img1.JPG 100%[===================>] 442.11K --.-KB/s in 0.04s \n", + "\n", + "2020-08-25 06:25:23 (10.9 MB/s) - ‘./data/img1.JPG’ saved [452718/452718]\n", + "\n", + "--2020-08-25 06:25:23-- https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg\n", + "Resolving www.artis.nl (www.artis.nl)... 94.75.225.20\n", + "Connecting to www.artis.nl (www.artis.nl)|94.75.225.20|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 361413 (353K) [image/jpeg]\n", + "Saving to: ‘./data/img2.JPG’\n", + "\n", + "./data/img2.JPG 100%[===================>] 352.94K 774KB/s in 0.5s \n", + "\n", + "2020-08-25 06:25:30 (774 KB/s) - ‘./data/img2.JPG’ saved [361413/361413]\n", + "\n", + "--2020-08-25 06:25:31-- https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg\n", + "Resolving www.familyhandyman.com (www.familyhandyman.com)... 104.18.202.107, 104.18.201.107, 2606:4700::6812:c96b, ...\n", + "Connecting to www.familyhandyman.com (www.familyhandyman.com)|104.18.202.107|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 96063 (94K) [image/jpeg]\n", + "Saving to: ‘./data/img3.JPG’\n", + "\n", + "./data/img3.JPG 100%[===================>] 93.81K --.-KB/s in 0.01s \n", + "\n", + "2020-08-25 06:25:31 (7.44 MB/s) - ‘./data/img3.JPG’ saved [96063/96063]\n", + "\n", + "--2020-08-25 06:25:32-- https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json\n", + "Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.112.158\n", + "Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.112.158|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 35363 (35K) [application/octet-stream]\n", + "Saving to: ‘./data/imagenet_class_index.json’\n", + "\n", + "./data/imagenet_cla 100%[===================>] 34.53K --.-KB/s in 0.07s \n", + "\n", + "2020-08-25 06:25:32 (482 KB/s) - ‘./data/imagenet_class_index.json’ saved [35363/35363]\n", + "\n" + ] + } + ], + "source": [ + "!mkdir ./data\n", + "!wget -O ./data/img0.JPG \"https://d17fnq9dkz9hgj.cloudfront.net/breed-uploads/2018/08/siberian-husky-detail.jpg?bust=1535566590&width=630\"\n", + "!wget -O ./data/img1.JPG \"https://www.hakaimagazine.com/wp-content/uploads/header-gulf-birds.jpg\"\n", + "!wget -O ./data/img2.JPG \"https://www.artis.nl/media/filer_public_thumbnails/filer_public/00/f1/00f1b6db-fbed-4fef-9ab0-84e944ff11f8/chimpansee_amber_r_1920x1080.jpg__1920x1080_q85_subject_location-923%2C365_subsampling-2.jpg\"\n", + "!wget -O ./data/img3.JPG \"https://www.familyhandyman.com/wp-content/uploads/2018/09/How-to-Avoid-Snakes-Slithering-Up-Your-Toilet-shutterstock_780480850.jpg\"\n", + "\n", + "!wget -O ./data/imagenet_class_index.json \"https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (4.3.0)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (3.3.1)\n", + "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow) (0.46)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (1.2.0)\n", + "Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2020.6.20)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2.8.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (2.4.7)\n", + "Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.6/dist-packages (from matplotlib) (1.18.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.1->matplotlib) (1.14.0)\n", + "\u001b[33mWARNING: You are using pip version 20.0.2; however, version 20.2.2 is available.\n", + "You should consider upgrading via the '/usr/bin/python -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install pillow matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7BlSX7fiX0y89jrn3/lq9r3dE+Pw2AwAwwAggRAI3JpxKUkhihxQ0GZ1T/6S/pzQ6FQ6A8p9J+kCCm0sdQuuSRFBwWWhCHhBmYwvnumbXV3VZd9/l1/7zGZ+iMzzzn3VVVPD8SanQpVdtd79517TJ403/z+bApjDE/L0/K0PC1Py4+nyP+2K/C0PC1Py9Py/0/lKeg+LU/L0/K0/BjLU9B9Wp6Wp+Vp+TGWp6D7tDwtT8vT8mMsT0H3aXlanpan5cdYgsdx03/8B98xs9ms+lsIgRACACklWmu01ivX+HOEEBhjqn/N40IKEAIpJUaDLjWFLklaHcIgwlASqIA07ZAkCUEQoFRIGAZIqRDSoBRICVDfWwmBMRqtm88zKCkIBEj32ddzpRgDBgQ0f9Rfu0MGKAHjzrfnnTm34Ulin2NAmOpGxt3IGENpsG2gqdpJSgECytJQZjlFUZDnOQII4xgB6LxguVgwzzNKo/FPPPNWDxZTn+PboNkWv/TShR96i6flaXlaHhPoKqUIw/Bjv1dKATVg+OI/N0HXHzfCHtdaI5BIKVFSoJQiCEOkDAjDkCRJCMOQILBgK6VASgiVBSYhTXVPKQVCQFkKlAKBQAqBkCAdiAoBCPFwYBKiAtWz3nf+tYwx9R+NYt+vOhshHrzHo4oQYBww1wuVrT/agDaYoiRfZmitMdogpaTIc7Ii55O6CvrzBPXit3LcLYJPy9PytHyy8lhA9+MmYRNgf9jEPzuhjdEr3xljHEhKAhWgAoijmDAMCcMQpRRSgpCgpGW4UhgExoKq9PcCI8FBFhJ7jvv2gXo1v1l5g7MkuHnoDPCaxmFbBw9iZ270iCYSD1kEtDYIY9BFgS4KijzHlCUCyJdLx5CNY7ifDHQFdlHxoLvyfNc/D7D/p+VpeVoeWR4L6H7cJGyy17OgK4SHOqtGEEJa0BTCsltLde110kKaUiFCSJSCSIaEUhEqQRhYFiyEE72FI6UCx249g7bArQRYAb4Soi0AOzA0Kwj6Z2oVqymo0LaBp6IJgWfB9CEPPdO+XioAKIoSnecUeU5ZFNV7ag+4uqy1G40nVADauK/WFpzPAm5djYcff1qelqfl0eWxgK4vTd3tim62obc9O2ntdxZkg0AgpXKivUZSYoyuAMZoQxApVKCQUiKlQEn3uQIEj3QCjAV1rY0Dc0dArbYUIVYZuhRexfAwfav7/Anawb7T6rlGeHj1VLdmvU3RvTr/rFRgHjxmjKEsC6vLLQu0MWAM2v0r0I22wDHYuo5KKZqwW1Ku9F/zeU8Z7tPytPzZymMBXWMMRVFQlmV9UNQc7qze1hq8VKUu8JNbKYUMI0BgygLQmLJ+BsLqdQMVONCVSKUeUG94PbBBVjpcnApBSqz+4SHitmGVRVZ1d7TXiOrVfmh7NM96qGBvmh9c+/iDZ8AYrNr2QR2ycOoAAYGk1CW60BitLdyKVeRfWQQabV49Q+sHwPapDvdpeVr+fyuPBXTLsmZInlQB4JjtWc8FrXWDORkwAiEUQZgQJwlaa7JMUJZlBZgajXDXCKyR3xrWJKIhomtjKhiTFaO1F4gGGxaOEfv7aYS1R/mXACQCuWL8cq/FDwdeW+dHqWhF46evoAXdJhZrI9C6UgI7pt4AYqcOMAKkVASBoTCGotKFP6KWDouFgSBQVR+Vpaz6qulJUlfzKdN9Wp6WH7U8FtBdLpeA08WaGjqEkNXEPQu8vlgRWaMChZDKeR8otDaYsqgs/sYIhFJIpRz4WotZiUEYbYFblxgHrp4AutOQynopSGpPr8pCj2OSeJcsJ143DG+ChhEMeJhhakU9QMNT7OOsbyuN4YDXiIZ7WF2H5jPKsrSLnTtBCgFKWbaqLdt92JO8ikMIYQ2QUYgQgqIoEA2dsH/WWeB9mjDpaXlafrTy2NQLURRZsd4YtGNaSiqUlA5YyxWRtulCpmQtwla+tEpRqhCDoCw1UlpgjuOYKIpRYYQIAoQKQFnRX0hpvRUqS7vzYFACKTRKWHvcGZ7Z0K2C0XbhqEBOWuquVhwMzA9luh7M/ywgZRqqBK2tTttLBt7tzatnmnpyL3F4dc9Zv+eqbk5KCMPQ+jMLLzUojPKGxFU981kV0dPytDwtn6w8FtCNomjFWKbdby/+Q83MmqDanMBBIGmqDoUQqCBwIKMRUhAnMUmcEkURKghQKkApiRSglEQp57XgrpdCO+OYQXmWe8ZFywBaOHZprHrCG96MsSoHf6LHLdlQodjbiepe9Y0/iZPWKnh7MJcCtPB10ehSY6RGKGn13kKglEQIqxv3BsymPrYC/LPuX8KBrqr9mf0rSCVQqEaF6rc8y+Kflqflaflk5bGArg1KkDXoOrbljwshbKRUgzX587XWKOVAM1AEDoyjMERg0E6XKaQijhOiKCIIAoKgBo0gUCjvn0vNyqQLeBDOVcCsGIlqPar2In2TqRuJ0M77QTpANIBzc5MNtGwCpwdh/Qg2uGqkqmvhrzVeL+G8FYzWlHlOYQwyCCAGIYKG25d/V1ktbFaKWLW8nWWs1ggpG2oL61pnjHjo+QIbIaiceudpeVqelk9WHivTBR4A3bM+umcNNP5zEISEQWiTQzirvJZWDwuW9YZh6EBXuWAH+33gXL2E/+0woekOZURlOnNYZKrfCLESYmsc2/WGK6GdbtirDPD6WmF54SNc4X5YuJkx3pXsQY8HAEqDKTW6KMmyDBk4VUBj0aqe1WjLyuPgES5fXtKwXiQWeO016kxodFO/a+r7PAXdp+Vp+cTlMYFuSGVeMmC0xhjLXhEP99FtqiMQomKutWFLI4RxIbrSqQ9krUaQNcjQdI0Sq/f33goebI1uuF9VzrQWZP0/i8XGGukk1tPBrOqKjaxZqnTnn9FcsBIQYZqHLdq6Zcibtmz93G+rVijRRUlZFPaz1hQqQDo1QxUIoR/Uw0ohQVgVTxAE1lDp2hYhUNKrKuziEgSyMtyZhirFnr7iV/EUdJ+Wp+VHKI8FdOMoAqgYotG1TtcfF4EDYVdWAgMkKCmde5bBmBJjChsg4RiakpJA2kgyiWOxxgKiEQZtrOsYpQfjmvHaoAHHZDWU2lSBBI7OWj20Ng1y6ABMe/QpEY5ZSyWdasO6hUlEA6Sa7PYMc3U0WTvdsdFiBdxwPstaa8pCUxQFRZFTlrlj/1DkGTJXeD2rELWxDaxHgg+fls5AaQ2X9bPsmfZvJepaai8NnF0phA8neXLLv/5H/3tjnGeNqRZD517oX80fdyop27uNL10frBhiXZvVx2uXxWpRbZINF6HSvBPggnuk9a0+a+yVXkVmJTa7wPu5ZN9JVT41tUul9/yxmUvcfa2OzLWBc500tZpN4vvfYIxGVHYXe2eNbg4Q3AzEVZtS2M/akxmcYRqDNgIjbKSpFp4kuPeo7mmciku7RpT4m9u+0a4V6xZGSIwp3XE7I42o6+R6D4NGYtvD1tragzTY6FfquSEBIyTGSIQoMca2ocFFWbn2qOsh+O//vf/soZPksYBu4nxrLTur1Qsrhh0pKq8GOCt5G4SwBiLb9bbBm25STY8He72p76PtYJLOH8yHAmNk3TXeUKZtVi7dGExN39QmaBrTNE55piudV4RAKpzhyx5fqfNDJqsdUE5vXOpqEXBnuWs96JYUWUaRZ3aSuZcrnWeCcGAKxkkI0i4KUoKpo+u8+5wU1JWr3nM1BNkvUrVuuaEaEuJMnz1ZxYNK82/lQIFq6hh8lre6dawkJc5kRW0aJs+KM5VbHnbi2iIRQlffCyEbz6wnrzDWE0dR+4xXajLhAcN2jXTgFlR6eFmDQ1V1gRINPVZVA/eGXoXmztUOiGsPHeGIkLWJCCMxQjsQrJcO42BNIiiFvUsJCDfWjDcsG1EZrm17eUw4Kz0JN/5M9edqgwvbpl7ZJyQ2r5+ohne9sFoQ95Ko7WIbIKUNSCQr88GpNA0gRenaRGJEHRNgViv1seWxgG632yXPc/I8pyy0jfd3KoYKdI1AViI1K4PAApdECIURxrltgXH+uEpa0dhojWkY7JrAW3lFCGvw8XrKaoRiAVc7wNXaiuuly8gF9crvrzPGsQtTMyLLVFxQRqXnFb6f3HM9qzfumJ82jsmW2hq9CkOel5Xngb9WGwu6uiyQGMIgQEWx1b+6eGallG0XZZwe23lxSL+Ge5hwE4vaDa5aWswqs7dMos5gVg1e46ZGUzp54pivZYNlNRVrrmJBoTrNQlI1t2vA8izVL6SsfHSszV/TAF7fByBtWtFmtdzYsH1USyDey9qCsEFWgFgDvhAOkIVjqNSAa6tRMz6BBTthLFBZANXuRI0xHohpABM4HmjrUdVcYIQi14oSUEiMyQlk6d7BuDHoFjVjKmhtLvhVR6wAabN13DHHkKtOqhqrkSsEAOXGuQf6uqctKOuqLwy6AnXtZAGwajk7192SYpxULbQdQaIeK8KTQyNX+/RMeUxMNyIMA4oiIssysiyzTK4S6x2hN2cb2lVeNLNXGbQU6FLWDSqcOGCT6lLiY4NlpZv1zLp0oCuFtGJZpffUNViXJVqXFEVh1SErTKXW3XqPhrMGq4e5YjVz3EolCENVeRZUUXAVoNlouzzLyYsCm1/CPt9rPASSIAyIopAosjmC7bhR5IVmsViCKdCmIMtz8qxESUOaRqRpShwpklg5lmPQqApky4rN1QzOLjAeHEQFun7htHW0K8ujPDN+kkvF4kwFj9UwFI3XEY7mi4oUeDYnaknGeInLI25j6gvHrDxIu+koK8C2jNe4yV8BPLWw6q+S1XfKAqKwgCndWLNisV1gqyd51mysxCiRLkUqyCZz9IQFKlLij9cQKNzybdACChNxUq7x0WyHo6zL/izGFAU5AlMuWQ8XXGrt88zaCZ1gau9i3Lsaz4U9RywxRmHVBY7h+2WlWugsSPpxV9sW7EJUtZjxoEj9Tu4pvj/9nPV8wRiBFFblYZvNzQXhOK45qwCq11l7XmPhODOGzpbHlNrRi90WhLTWlKJEOFVDvTJ7EaJem2rvBesGhsCFpBaUZYEdpAoppNNLaYTGMmKjLSvWpsr74AFcSolQTaCr1R66tCyyyZgfHnUlG59pnOtUEvXC7+afravStk2ak9NQVPfxzwqjgDgJq3bxKhrv+RGGgXOls4NhNJqTLa2uF6HJsjn7+4cMh2MwgtPJlBs3bnL54iWyRcaVq5d5/pmLnD+3TiBroC2NZu/+Me+9c5cvfflTxEmdC9mLfZ7d22REfo7az2Vzkj4hRVe/a72laKpMDJU+VTqQscxHuAklqolphCdbdZY8b8vV1Tz0agDhAFw05qgFAwuIvi0dUBvjawi4SMOKCFhW5Zm1rWKtIpJuofA5TWo1R40KDntqrrmiS60XI9sUplogpmaNPzx+hbcna9ydaOI8oxXAUodMspz5MkDrHvNlQl9s8xeunfJzl28RyMzpWz3k1uzVAq+smHHFkr1upFn/Wg6o7uUD/UUFuMbNQ3utEdQEwQO46wYp/P2o+sWqkajayxJFWV1fae+9eqW5PnzM2HtMqR1NNaZMYBOaa21A1MEQ9rwafL0rGEAYhsRx7FzBLJhqrcnznKJwSmxhRTNhR6vTi1oPg6ZlvQmkpvQ6Hut7aypjmQNoaQ103uAksACuS6t2sF4BtWHEv4MQhkDJFYZesVxpAxdsTgNVjXCtvbpBVBnR/LXWPxb8wDfG1AEQygaW3D8YMhpOWRu06bZguchYLOd044CLz1/j+PiU06NDXr52mc9++kX27h3wX/7jf8rGzjZf/urPcunCRYbDER/dvEk2W9Jqxbz0qecJw9oLoqpD1ZjNBah2qys/doj9pJamOqoWK33P+glEZRiz5pSmuklWk9zeT+BA0i2aRjiQNP57J/RXk7I20Hjg9dKGvYOsUot63S3U9ZFugtdA30BQe8i/TQ3+1SlWnWAX0jpEvAlnYCq1SgVcRjLOY753cI73T0O+tT9hOlmSRAGZEIQG0sCwKAx6OWOJ5ChT/D9+cJ4fHHX5H77yDp14QmWEc8CIM0vVAKqopFn/3sYvOE79Iex5lZoADUL55nY4XSlZHJh7hrwqebgRsUK2Vs3FHmB9D8hKCgWLYdb2JNwrPTzNATwupuspvDNgqSAgNAKTLSlMjgqVBSKXEcznZPCvppQiCq13AkJikJTGBgOoPKfUutZhenFOG4pCQ16gi3p1FG61Wu08Ay4XgRAgpCQIZRXR1hT9dWFcOG1J0VAteN9YpWxQgaqCC0RlpKomYwNYV1zjVsRY/722E03Y1d84ZhUaKKXheDjnjdffpbfWY2e9Ry+WmLJkmS9Z63ZQ/R6T+ZyTowOe2d0hjkPK+ZytzQHzyQnvH+xzcO8GG7uXGU2XXN4a8Ct/4RfY2d2i1Y6IleMZbsn3CYMcTcN3kjB1foonT7lgJ5g3tVSCqBHOeu04q2sDz2IrvV5FEpxe3DFXbwTzXK0ilK4PPUdbyVospIuMdJBqqJ5jWa4HeAcCwul3jQUZC76+zzyfrVUC7iEO7hsqBNfHVowXjvI62HPz14vVSEGpYTSBd26OEKFmcfv/zfXvlWTqZbLoWTKjSWTOX10/ZXF8g4Fo8WvJF5iKFBOHFAa+drfL6fRF/sEXrrORnkKjnlb14aUprFfDSn2tlGsXy2ZWwFpv7GSLql+acFq1hNPveu8EiVUz+QWqAubGlbaOsvq+Bu+6HlZb7dQQDT3vw8rjyafbeKKQWHHYDd4oCl06Rukc8a3O1XNIQR3g4N3BtBAoIyiFIZBRxfxkA6i1AaWMBeOipCx1RVe8catallyRXt8rqfI9rJxiqLwabAYv/1J+cjgVihSVvlji8qv78/wEWhE5zuizRXW6W4D8ANBIY11eNIL7+2P+8Jvf5+T4hF+6vEO/HaPQZIV2O2cohicndHo9WmHA/+ef/wte/exrfPrzn+ajmzc5PthHl5qPPnqPK5cO+Wt/5++wNehy/94tBoMW25sDFM3salRtrMG5KrniA0R0432fpGKgrJh8xUGt+FkxIcdYcYsppmoPW7yRxU72SjAX9jsvyQg8K2u6E3o9II0nCcpahHJHvHiL+2Qaul1RfbakrqGDdwazFV1t9TQcG/Ocl5rR4q4xVQQQh8cLbtyasjZY49KFCzz7wvO89brmp+/8Gtfvf5O3j6+RBDN2VZ83bn2EWNtmcv27/OKv7PAv58+gc4GRbUy54M3TmP/Tn36K/82X3qCbjmnuBlPTIu0WA+oFwb+FcGcKqjkkMOClQ+MNZ/67GkabR01DlVTZWKormnzfX1cz3YpxN5axapETteLqUeXxJLzBA4hlDkElPoe2gkKi3BY6uHOsfceBk/S+t3ZCK6xuTAqBdg0kTe0gooXzByyF1fcGEl2CZ7pQN6wFQte8wjarEqZ2pzpTtG9asxrxJZrvSDUnqH/5c011rKlcr9SgZx7ZnNSeFWkER+MZ3/z+u3x48yN+6atfYLPfIlKCPCuYzWaU2jBfZHTaLe58dJM//J3fZTgaknRavP/+B/z+738NJWF4fMTm5haDzTW0XvK13/0WX/7ZL7O7vUUS26AW/26ejHvGrrG6aW3A67ikXH2vJ6UY4/1uDQqq/eZqo5l3KRI1EDnGW6/fxulhjQM84WmaY6eec2oH3O68+gjuEbYIN64bKg3v910zKrkCHk4z2TD0UTNUanZr2Z1nkk4+EV61INyZ9blGSMyy4HDvlKPvfMTLUcTkT7/Nsij46Fc+x0ayxn/69/463/3eH/Ivv3vI3nBOb3HA94+PGX50g+fW21zK7jMYvMLQpOjh3Ga9KwU3juD/+c2r/C++/A5RsHD5TPyzdQMQzQooV4BoBJbhej25Z+ymHrfO/7daYar7i6otKiml+rbmt6L6q1bs+LlRjQNjXVurJN/g6vXxwUKPBXSdM0VtRRWGQFovBN9w0vvR4vxHm+zY/RTgwmodALv2NsYZ66rnuYGq7DNKI2qbVXW3M4AmvOHBA/gDRBj36Lo0d5ao2KhfBb2IIlaubK6SStRro6b2WV7RHFXsy2u5BIfjBV//7ntc//AGLzx7nvVeQiil9d0tNIvlgnarTzuRzJZjZtMx33/jde4fDUn/5FvMllOW2ZzlYs5seEqr20ZEbb73+jtECJ594Rk6aVqBgHF6auOi8Yx2/SbqnMDataGsl/gHG+8nuBhROhy1wGUMSKGrPvSj11u3lRB+lWZFQSAcTxXa+sm6Y1a95sGsMSqqcWN/ejWFB9CaZImKFIBnbLhxUfOxknoc4p5WOfs3B6+B+m7OK0DXblDeAOQXF4lAfv8jvvi7f0w62mN6MGbeanH/8jny/iZhWnB660Pi/Tv86tU+v/52hxFD/u7PtZllc346eYXfiq7RKjOKokSuhQxNjB4uAMk3T9f49Xcu89devo5wC5yuXA+9l4KveD3T7eJF9bdDQNvK1fzU1cJJhUJ2HvqZVTGFlWHrodf29YoMJFzYKT7oApwFv2pxT5NWqvyQ8tjUCx4cPVtD1oMGqHLZgn1/n2PB3QD7oqJi68J9Xa1X9cJesWLjDjZ9SJtFrHxusAzhn994/Mrf4sFGFM2PYpXtuRXUiNVqGC/SGTt8KmbRsP4Lt4IXWjCd55yMpnz9Oz9gOJlzbmuNZ69copu2EMK6mS2XS6RUJK2Q5XLOnb37/N7Xv0nr3FU+++oWeVEitCRSEeeuRpRakrR7iChFxR3SJEBGXZvH4UyzVbkl7PysJmgzc5yVDp68MOCaSQm78DqQ8lnpvA7XLjb1hFJ49ukjuxzQOb/WpnjvLS0Cl5OjsahZNimqZwG1IcypmEzj2cbUS7Of4DYgwou9ZnXYmhq/ve6gAtYK2BxYeZ9bx4CFEciy5Oof/YDd4QFsXaN1paCdbnD15c/w4Rf/EipNiYKAsfw/svfOG+jwS9zQM8Yn99nd2OWN8hLLuSLsCXaCgmkQMc8zloEGbE6PX791kSvpAa9eOiQI5Eq9bJSQZ6ENtml01V4NEQGvy60XuNrvtlYBeVBqinBepmggpVhxuqsl4Ia/tQVXHx0nEaKwLm84cP8Yj57Hpl7wq480dXrFphpT+ndwxbvAgGXG/szmTjorbdwYhAbBinHCn8PZQzXsVwKEH6Efd6142BdnmHmTJjfdyqpDxrpWuQO6gfLNKpRI5rnmw1uHfPt7b3E6PGYyGXHlykVeeu4KW2t9Qul3drBizWCwRpYXvHv9Dn/wx98m0ykbu1c4Oj7EGMPOuXNcuLiFEoL3ds+xv3/IzqUrzOcFk0XGG2/e4NlLu0Sy1mE95FXwPsUr32tvXHyymK7wk9QPMAHC1LFI1mug3plEimraN1J5Os9X48NJ/cKkGxPdFi0MCOkmXK02qKexZVcVLzPuemNVZ4F7utf9Ao12bwjHxpujHHXxztU05tXKcHfuWRUeucVgPmPxrW+jn79EMp4Rr19hSYn43u/x7XxOvrFBmkruvn2d1+92mYU7FMll7uqCu2FKLxKslxPaizFzJGGR0Q66iEiyREOYMivhn33wPM+em9OWEyuqe2C0rXam17zcqGsCgGe0UBmx7BcrJG0lxHilETwAN45Vi58/ZM5cI3D5BdxzDFJBKQvI5ZlrHiyPx3uhMkvYjjYOdUWlgK7XMP8KEq+XEmeYHyvzuYIpUQOoXD3lgbICHJWBYpX3muaJTfxcee7qIH9kqSabndjaCOd07a3SjtW45xa6ZDxeMp1l3Lx7xPWbd7hz5x5GFyxmQwaDLjsbfdZ6LUIJs/mMKI4o8pLMSPb3Dnnv+g2uf3gHrVpMpkfMxsdMhqfErZTBoM1Pf/7TDHodOu2UW7cOee0Ln+YHb97g5vWPWBZ2GyTdWOCaDV4aXGy8qJIDVUEmjvU+qaXmrWZl4ayBV6BEDb5+bmrhmK2pxXjvmVL78joO5b0eKpD1IQb+tyUcfhybxjhBgKoMRlWlG0zWNGdbBTj+dz1k7eLombkwK6Y/Vl2cDGW7xclmm96Ht9jsxIRFBhsdTp9bR8j3uf8n/5aTsWI4URTn/xrdQNHqrFMcnSKXS0ycUBAwoKCjCu4azdQIkk4LjSKmZCkD7i4H/Kubn+HvPv8NBEWlbzbex7iWA6hnf81QESW1uqei8u4eZ8lAWelxhWi0kbuuXiSdHOONeWbVU8F6J/gxY59RFAIdztEdTWS6tNqdR465x+Oni3eNMfVgbQxCoF5NcM0p6uOi8UWzySpyWIkG9f0+lmf5xVOssrSzxTzkLk1uXD9HPHDOyo2rfpd23zH3vUFbFyUhyDTMZkvu3zviO6+/x9f+6NtEacIim7K+3mc2OeXk6JC1QY+rl3dJk4gyzyiUYlkWTIYLjIasKJhOxvS7bX7qs6/w3oe3OD7YY3tnnTQJWFtf5zMvvcSLly8hleTalSv0+5u8/NxlDu6NmPVP+at/7gvE0lBQW8Kbi74X3DzLbWZsqwxrT2CpXbhWXYcCRCX6N6e4Bzevg/TBAyWe/ZpKPyw8cALepcwDg3cDFI48OE5NPSGsF4VqqNusB0StZmh6G1TQ6fRq/r/KkOQHqKAGNWGcT7/1lq2kegBdgAyY/8//Fh/+n/8RwXJK6/AjbhcD7vzP/iPO5Queu38ARnBddvnXh4eMr32WhIJpHDIzEWvjY5RZMGNOphT3By8glguypINqhYRhTIogTiS3FhE/OHqJV9bfqMhUPae8GqapPqnbpY6apL7Oz+SVEN1V2lSzYqiXL98DFsibWkVvIwUaLmtixVdX5S1EOaccHLFMfsxMF2oglX7FbiIsnt3aT7Ixy+vjVMzfg29Td7qqg/n4ulgl+8ecVonM9T2FaMbFUOljH9aU3gjnrf314LDpKEsjWOaa6Tzj+GTE/b0jvvPdt/n617/F/t4+QaQ4d/4C7RaUImP/zk2SWCJNxmR8QreTEAUSnRfMWXA6GTv2XLK9tsa5zTXaaYtAKr746RcZTn6GKIk5OhkSxgkb/RZpZCg0LGcLBt2U9W7KZz/1PL/8s59hvZcCxhmCVhlfjb7unVboFvjkKE9a8RKUMk4ag8oDwfu72n617SEFNsOcU4x6IqFFnYjGMyctfHpPnEhf+wdoIQjwIC0QxrpHni2ymgUNiHELXaV/baJCxRD93847Y0XCMpVvNRVAg/fJNRWvFBbBr11h8p/9T3l7/4D+0V3iO/fQCFQYE196kUuHP2CTE95Pj/ntvGQkBDpQFJnVdx/JFunwAxady5j9OxTE6O4OYgmpglgWXGkJBrHi5vQaF9t7dKN7FTP372aDQJxKQQgwZ9UOVY9SgSHGRev5+VsrIQWNH16/S71QrhI6YRvLNGf2igixUgdRxnCiyDh+SB1teXyg662vDcD1zN9HxVhgrkUv3wYPmfL49a8palTkeAXqHlKXR3yuniGaHLduTOHEhya786dIb2EVEkFZueNoYL4oGQ5n3Ll9wGi85HA05vbdexzs7TE8PubNN94g0wW9tT69jRYvfPo12u0upydHsJyTL5dMTkfsbG1wcnrM8dEB589vk4UBk9mM3BgOj0/pD3qs97u0w4BAKQSCJIhY725QGs3RvT3+b//Xf8iLLz7P//jv/U2Wy4zFLGNrd4PppGBjrc3l810/qh/q+iWEQK0wB4GRVNFoT2wRLv1hteALG/0ILi2iJ6ieLfpBK6qgBS1xuQ6oGShe4rQAK919rNHLkQVRxzrVkoWsmJcwZ0dpTQY84NZagzMilqgDeGrWp13CHDtPhF9oTM2K/T0rtZ2xmQ+CtS7Z2oB9nkHoAm00Umiyi+fpfvPbmI0X+IK4yu+3Byx1SJiEmNmYxWiPLO4g4x1GokMkDWESEk8+oN9rcXl5wqX0mGd7Uz59boboKbavHjAZhty9E5MtPLuvddS+XhYOHbgKy9btO9lFc8VWVIGO++XGsKdPdXjzgy1dua6IJg+ulybwWQfr1rbqiwB52n/k0HtM6oXarYXGyzS/95Eh1Wrhxa+qjcTKgDLGOB/dB23lDW3bJyiNla96tHOEasSj+/sqLatggWrYa8NsWbDMC06HY0bDGfki4+jomK//ybf4wVvvQBSgJWzs7oIQ3LlxncnwlPliSX9tnbU4Zmv3HJeuPYMIFMIUzE6POD0+Il8uSeKAWzc/pNVKuHfnNucvnGM2mZIXhQ2HRhJNFxSFRkSiVuO4MEiD4PnnLvGrv/xV3n3vOllhkw5dvXwRhOAHb7zPl7/8PKGsRavm0tNU9yhRD1LvklSfena1fzKK16kqF8qLqNUMYCdPFVRj8O4xtXHGWMnA62MNhtLUY76+j80V69UDNuuXqD0VqgHvdMsVMallOStFNSSOisjU7e7Bw37fNKXV9bWM7UxvVYuFdYsypnbXsn1tsL6nGgjAaLSBaTtGKEVw9H1e3BzwuX7KR8uI45lAixl60GUzvcPO6CZX+orL3e/Sj09pn5eU0XPs7E7obL9N2s1odzXr6x02OhvoLOflV36Rd97ucevDkqLw5M2DHzVgNtJA1q54rj1WftR2JNPow4rsroz7+vp60arBtl5Vce3UbM1aHCw+xs7x2JiuOVO5s+WTQuQne1Zj8P0wWdc0zqucxe0xrSV5XrJYZJycThiPp9y8c8TxcEZRavaOD8myHKPhYO+E2WTK/v37TKbHjIaHSFMwOr7LfDYmTrtcufYcs/GQnfOX6Xe6mHLO7vkdTkdjwkhw7ZlLbJ/f5vatW9z56Cb7d+6yd/c2cRSytrHOcj7DFEtOT444PjokTlsMhyOyLKPf32AxL/jW997kpz77KXrthEiCcF0qBaRJxK/+ys/x87/wM8RxgGpLkjRGI3n2wjn6Hbs8VpotcXYq1wxfuhXdR58VNMt/yN78cRYXRS9MrSIQLoy9ORGhEtNpSGLVxDU+ZEFWxLma2MYBvI9M9Bci6oAKTOWp4L1DzcrEdueYVSWA19tW6V2ag3lFHPZVF1ZEcSB+liVbwPUidukut1mG7fUlXuI0Eg4vrXNpumAvU4ymM4Kw4Od2foPzz/w7zqU32T03p50IVCEoipzd8xCngiK/gwoNSQIyM4gSysmIMlaUhQT9r3jttWd45tpneP07XQ4PbIPaRVHWORsaEFstUcb3a0PyqFqr7pMqWMpTKa+6MasYIhpjodIrO3dQzpBCTxxLYfitm7/F3+X/cHbAAY8RdKuK4Fcqvzo1VpOK3T5U6K8pf+UPStXpXhVTr3zuk1vRtRbkhWYyX5AtC/KsYDKescxKjo+HFKWmKAvKIme+WHJwcMrp6YT79/eZL2Z8ePO2jehKFO1OjzhJkXFAO23R6rSZZwvSbky3TAjba7Q6EccH9+it79DtbzA8us/1N75Bq9NnPj7EKEFvsMH1t35Av9+lu7vJxsYagpLpZMxkNGI5nyJ1wfhkRByFpGnK0cF94rsJk+mMIErYu3ePk+MTtnbmnL90lfsHR1z/4AbPXbvMoB0TuHBmKw3YfJ+t2G6triT02hFCKgIJUitK2QhhbLR9XVYNOBXgNAbcWZB6MordHVpUYGmqAAgb7CAadoAmADdMOjUO43XADUEYEE7FUF/v3e1XzxKNC2vm3Dxu57hu+Nk2OZ+TBPHAUIeoNg1QLiVLpVao619/bgKJoN4ZwtfUzjRbj8m1V7lxe4f/bfjzxOK3+V994b/gwsU9ugPI5rBcClopxInhxoeC6cxQloZuIklSQ9oKKYqMREGuDQeHRyRpC5XNmQzfpLd2j1/65f8R3/3OlPff1mhjEwDVRjFRBUH4hJZe0vC5V5qacR9I4k54KL7IQFQBZnU4cS3nVh1SNZPhLKl9d/g2Hx5/l0eVxwq6vlRJYjB1NE1DZIXGmtVcQdzqpt3g8/7NutIEGLz1SgtBtiz44IPbfPu7b/Pt777JrTv7lCIk10uG0xNEUbK5vcUzzz1DnKTEcUSZLTg9HXL3zj1AM5mM6Pb6fOqnPkXaaRMFAVlWMJ3OOD7YYzYZUpQLtClZLARJFBMEAVkQcv7qs8znM6SBS8+9yNHBffLFlDCOGWysM5vN6bRaJGnKtWevEQSK0ckJJ4eHLGZzMBCqkHlhmI0mCAFRGHG8d8jx0QmnoxGHBweMjk9ZLgviVptBv8NoMmX/4Ahh1ui3WwQN0bjOUeGc3oVEIlBGUtmFVoZxUxxt6tOoRE88IxZeDH9MA+cxFpsWVFY2hTrpjFMPVO67oiK5niH6iC8/gmufW+9ZcAaqReWUVkfwOfCs6IJwfzlfbkkz61Y9x21/NVIX+msqOoL1SnjAXdQxW+HfqwG+fuWoeWx1DVDpf6m+tYzwdOOn+a9ONrgW/Vf8rb/xXxL2CqYzu79hqDXdHlAYtBbspBAqSWugMfMSMYHZNGBjQ7IYLUhDAyGcTnLWe5JIaBbD+xTJb/Laqzt0Wld443uSsgwqRikE1TtX7+7aoyJp1Ri331UJsppN49VIoqTYGCNnbcQkrFU2Kwvd2dJQObm/d5INvnrxSw8515bHlNqRh9ZPNBpL8GhVQAXA7n1Xzmr44WEMeQkn4wW/+/tf53f+/R/yp1//BmU+YTYfgymJ4g4bO+c5d/kaV154lqvXLtLpRPQ6PVpJSpktuXnrNpefu8RkPOX0dEjaSlnfWKPd7SCF5M6d++TlksN7d5iPx0RpQhAGLOZzgjBES8W5CxcphWDj3DmbI8LkXHzhWWaTMUkgufXhB0yHJyRJyu6ly1y6dJGiKDk9Oebehx8wm04J44TB5iYqDJjPZkwnE5IkYXRyyrtvvM7lF54nTVImwZjp6Qmj0yFr/T7z5RKk5PD4mDLPWVtfs6kg5Wroc70jhVhFBEyDuYpHDi/ftys+q08g4AJUuSM8WHqpy4Wq48VUb5hpsMIq+0GDTCCc6qXBHgQNY69otKsDAoS1sFt9ZH2/GhbqZ9oq1ZFZ9nLjpkPDwGxKl7ugdhmrwdasduwK+Bv8VjrNr6tzhGW9fpjk9Pgn77Y4GP0aX/zMP2O2NFyOIFKGyaLElIJyDq0k5nSUkSQGoQWbO4rDvZLJCWTLOUa3iVoh5b2cbgItlXG4p9je7LGcLzgpv09/a8iF9QM6P/sa3/h6xDKLEI0cFMKtWqLRwFbaNxVe1AmAfP9Q9Z1xunSDIB9mLNr36bavEkyT1dUOGlKfqPpFlzYcPohiirxgPdhma23rkUPvsRnSVuWi+uMnYkV+ArjrVkJ03aossHlc/+Bb1/n2Wx+yv3eXeHOTz/3CVzHacHRwSBSGpN2UOA7Y2dmk1++xmE1QJBTLJctWarOdBXBy94DxeApIAiVAF0idM5suuHH9HaaTOUJq4jRChZLZ+JTDu3dJO13agzXm4zFahZy/dIF2O6IVhizmc+ajIe+98QPufXSDTqdD/+KAl155BSkFZZkzHJ5yfP8uk+mU7YtXWD+/w/r5bWajMcOTY/JFTrvb5aP3r2NKyzKKsmA+nbI9mTKbzYnTXWSgaMcpJ6MxKowJg4B2miBUM/G6YbnMCcMQGUnnHuXac8VNxglVzQHqz6mFkCe6SLd1jVXBuHdzXiw1GWi8bAVIoppwlQqgksTEyrFab+h81mkksBGaFRcmj8aehXkHUGMw0hIMb1wWou4nz8YrPadoAHbF5yqqV1va/fuYRi5aalnHLwq2LlRtY42CAR/cPM8HN7/P4LV/wdwM+P77+5RKU0pYTgVpDBt9wUJpaBsWUxCh4eDQ0N2KONjPmc8NJ4cTuh1FN5V89K7kmYslcSHgpmFtvY+YhKjdNsWuplu8yRc+c5mvf2vLJrQSgmaMXjPrWKVqcKWZaEi4v42LEvTGRBAkyw1yc8pJ+BYX1n+a4rSk1KVvhOp+fqE2WjN+7x48G7O7+wr3/9E/4+Zxwk8/f+WRY+8xRaStqvt9GHBznvq+/6GGL1/cYPLstyg1f/jt6/zBn77Nzvk1Wu0L3Ll7l0IbsuWS81cuo5QkihXXrl4kiRWRUoRBwHyxQAnBeDwG4PjwmL0799DacHR8Qm+jz+65c6RxzCJbgpBky4xur8vJ8TGL+YzhwX3ybEqQxyzmC46PD9nYOUc2n7O9OYCyIMszlosF08kEtCEvC5bZnMGgx/raGrfGt9FFQZEvyRcTENDq9tnd2WI8GnLzumF8MmS+MMgg5t6dW3QHa4RpAgGoQAEFRVGChlAouv0Bk/mCbrtDVhQIGbiV2WC0YJZpymzGZhCQOBlaV24vTi/pPtuFbZUcSGwwhMLg86w+iQFpWvidpA14HS41I13xIarkcYHfKBJq8ljtqGsHdGOcWyCzO1XbGVDpGJ0qwxrYmlpeD9QOId1DVo/725laM9CQVrz9xJgHWeDKdpz+najByN0Jzxb93bVj1ULAUm/w/e/c5I1v/RP+wa/scPlCCnKfG3cisjInm0G/Y/M/T5cFaRsWBjolLMeGtJ2zsaU4zUvSDcPshmZxpAiF4a2vST7zSosiKjHvKFQ4oDwKSfcj9GaHMB9wrSt4/7Ths99IROU2E8K65dWv6d+kIg7C9kZTCAiVpDCCbv4swtxjmLzL7oVPMbw3Rxe6kbLBEApFi4DFyYjh+gGb6+d496PX+a//5bfpxJJico+//Yix92PR6VK97I84Oxt47IHAiAIjBLcPZvzhd27R3wrIs4w7924wPB6ymBdsnt8hChSXLuzS7iQkUUgcBiilGI2GLJdzjqdTJpMx8/mcyXDEeDQkTVtMR0OUEmRra0xnM7rdDlevXEIYQ7lcoDBcf/tN5tMxhZF0Bht01zboDvoYYei2U5SA0mh0npNEEWEYkXZaLOYz5tMp8+mYMNyh02nRbqeEScT8zoTZcITWIMOQC5fOEwaCD9/7kGJvH5O2GI3GhHnBMy9foSxyQqXpdhKy5YzhaAhaM1gb0I5ipJSUpWGZ1cvfcDLnrfdusMjmfP6V57myu1GBQc2K3Jrvx2ZDIl1RK6wsoU9e8aoFfNaqpjuiZ/ZeZvOs0zNMxwC1yyviXc6qlhSNdmy2U0NP0Yi79Nx21T9X6FobYCyke1nam8k8AdHNEF4Pjm4Lq+oZlbeCoN4up77GG++q13f5DGqNhFduCPLJBmb8Fnp8xPT2r3Iop2xf2gN5iASW0vDBgeDOgaDThUiCUYauhEFfsLxtF4ZOB5I9xZVXOrz5jSndjmRr18D1jHS7BdsCeRpgZhHFXhs5FVDMeT5a41gGnGD3BRQuT0aVt0L4gGrbOq713BHrsueXSd9LUkAQSMq8QIiQbnGB2fFt7mc/YG37InoUoeeCbhzTyjMWswnLUnBvfsxN8w3E8YssFxFXPrVGm4JpmD9y7D0mne4Pn5ArZzSWpIdd2VyxNJLJtOBf/9rXyMshct4CMUSXJXt379DtbnD5yiXWey3W+m2MKZjN5gyHU8oyZzqdoLUhCBRRFDGdTsmyJfPZmDLLyOYzllHE6ckJSknOBbvESUS32+HW0SEne3eZnByhi5z13asMNneI2y2MEAwGXYJAoIuc4ckxw5NjDvf2kUqSFQW6yNFlzng05OjoEK0LLl66wNbONvsf3GAxmTAajVFBRNpOOXfpAkWhMWXJ6fEpUsV0Bl1a3Q4b6+skShGFijgOyXWJlpIszzA6QMuSMG2xyHKMgdIYfvO3/4B/+J//Y9I05a/9R3+Z//R/8rcqY8QDbW5WVYDi7FkeZP4Ma+lPQqlcvBx7s8DjRNXKJchL/aL2lqlWIYEQ9QartZGGBxzyvT6xVk54VcYqm6zNWqbOhQ0NxkuDSZsVA5c/z2e48oDrXZs81FfZyqrLdOU37GtBdb2nhKYi+wK48/YH5PM94rTF7P4V7p+csH/rZZ77/J+Q9Bao2BAmMB9DvhRoLQkDzUgLJhmoqcRkgpaQ9LQmmhdEax1OhpLOPEcJGE8TknmXYNliOtZ0lgWq6NMSU/LJXb7Susx3WtvcE/cxxuZUsEl7vHmzoqWu1b2qpNaz1wEWBoFikRX88e/9Ns8/+ypbFy+SyIvoacbxbEivLbi4m3J0b86dXGCCBEJgvcVHXzsiv/8tds6f5xd+5mcYjcZMFqNHjr3HptNdWeErMWB16q4kEzc/jDs5dqEF/+bff4s7J0fsXlhnOBqxnM042TsiX+Q88/mrmGyG0AHCxGR5QZGXHB2fMBqNrEdArIjCgCCQtFoJRdZhNDwlm82RSiCUZDaZopRCO4+HMAkplgvuvf82i2XOuWsvce7yNVr9AUkaU5YZ/UGXvFhyerrg4P4ew5MTymKJwKCkorW2ycbuOZJWmzLPkQLCUHL1ued5/3vfYzI8YDY8RReGKErptltky4zx8JT5YoGIBJvbu1y+dInBWpckioiCiNFwiAB6vQFSBgRBSBQqokDQabU5OhlTloa19Q2SVoft3U0++9pLzpJeD0ItwPrLWCCpN0ypebDGiqJ+s+tKdH3CSu2o0FAnOOOXqVBJ1BJaZQjz0Xm4eS1qpuxN5fh7u/sYb/Sx9zLSwUAFppV3bgXEnr1675Km4oHqXjVce2BuYnBtaKvr7bmsEaW9t3expGbc7otqkfHqKQCNYnFySLGccGHrHMdHEz61nnLvncuM42PM7of0t8a0Yxj0DOMjgZ4betuG8VCwKCELDDrXzGcJ40IyMQotQ47LXa6i0IscUcYMy4hEBQQ6ZDEr0XKGaIeYoENresQXcs07/T7XObXtY3xwSW3kqgyWeOjVjTHv29UloheSc88+w7/69X9KN+ih4oDwqkC3S37mxUtodYG8uAbC7t+WyJTZwU2YtrgxnZMmQ7pITLjk1c9+7pFj77ElvHFjou7KWuJaPbc58IF6mj/sxprb90f87h99k/XtDZSQHNzfoyhz0m7Mf+/v/nfZ3Nni+PCIu/fusFzOMUCeFSwWCxaLJUEgEdIwn82IwpAwDAmjEAwUZUEcR2hdoPOM4/19hsfHTMcThifH3PngLebLjO3z19i8eJlrL71Au9clX8wpi4xut4MKJPPplLIsGQ6HlEWOEYK03SZtpbS7HSbjCZ12QpIkRGHIzqXzdLc2mdy4w8GdO+zfv8/GRo9W2iZJU5J2i+3zO4xGc6IkodXpsr6+ThQEREFInhecnJwSxy3Wez27RXugiANJKxS0NvtkRcHmL3yBn//Cy3TaKf1OihFWZJTG7cyB1XU2s7y5LgT81kWub43bFfgJDQUWWHZXpfaqXIwa9N4ecWO5ZnuVyC/qhCemoXaoNlkVhgfUav453jfU1IK7hzWXAszVp6mVOKOQaOh0K4Cvamga7lKeP3sG2GDW7h7VvnBeyeAYsqZmwJ6VB7miKwpm3R6z8QeowTNcEkvK1y+w+M6SzpcOKPsLZJIRHXSJtmYUyxItA3prC27fDtBtzTwv6JsN8sOAcBZSGMW/f7/PX+5AMDMoUbKQIAqNIISyhSYgTmG5KMi04BWjyQYdbpkJWpQIF8RdtZQL9268GR6gjajTa+L649qV5+h9/jmKtzMm+yeMb024+qWUyy+9xu3b77EpnkEYTRQkdEWPV69+ljTc4fW3/4B7t9/khS8YLm78NCsbHpwpj12nWw2IFbZb/101j2cO1XmrdzEC8tzwa//NH1IIQxILPrpx0/rEXjjPL371S1zYXGdZZJRZxq3bmtt379FupSwXdhdhMHYLcylZFAXLxYIgCOh2uyRpwvj0FIREKsHRwT66KBifHvN+WTIbT8jzgu0rL3Dx+ZcYrG3QSlt0khgTB6RpQhQHHJ8cs1wuWWZLWu02YMiXc7e9eky31yfPMmazuWXSWpPEEa1uHxntkc0mHO3tMbq4SxxJtNb019dI2i1UNKTd6RKGCf3+AGEMoVJs7+xQFCXtVgchBEopAhUQhMq+jzCkYUASStY6EWCd9ksEyhtpDN5F1Hk14BgXq4zKa8aMBdyzgU9PShEYjGyyVFzS/zrss2avVJOy6cXQZBE+p4JsjGfPRj0JaVIKUcv+tdbR+c1WgURndTsNIt1MxeivtefphgrCis5Gu4gyYaj3/qhB1FT3sEY27d2rhEA6v2S/gacwhq1OyIn77q4M+HB0hxeThM2woJj0ib4dU7Y1WmXIxSYHUhM9s09na8FiPiTLCopJTigMzAOiScYyO+Bof8GNe4r7syX/4PMXSOcLjA4JlQKlUIsSFeyQjeZESc6snPLWOOJKuE7RLrjHstE3rlSGT8t+fXTgivzQ8BQRSD539RW+8Y1/T0vO6a8F/Pxf+QyH0wNMadu819kk1l10UXDz1n2W84yLScLzL/wqOTOqyL9HlMcOuuKBD/WfPqT0h6kV/O93rt/mez94i/7WgOlswuHhfbZ3tviLf/6rnN8aQGkoMkO7FXPx4gVmsxmz6YSgHXF8OiIIQ8Ig4uTwiPlihlSSdruNaIUs5guy5YKo2yFutQnDmOlwyHI2ZTabsXP5MkHc4ZmXXmTj3C7SGHZ3Nmi1Y8CgtWE6nRBIu8Pxxs42rc6MIs+YjkeUeUYcxygpGZ6c0lvrWDXGbIoKA555/nn2b96l2+8yGR4xHY1pd1oslzlBGBEnKZ3egOHJmPliQaQS+u0WYOi1NFIq0jQlTVKMMcRKEAlZGSDtVjCqblXHbI3d/tb2gYZAWFHYbsdj4+y1sB4L0iVPBx8J5LZYeSBBy09+EcI7G1nxX+C29XawqRu6U/DEoUErvSTuFyq8aqIB2v4OHoD9pU3g9JFRTtRfCUYRHpztg5rhvzix2QBCu++NPqPCq4HUg6rPPmbBWzcYoK71v24xKBtqBbunmEGQcfFci+TNIxbtq/zrbMI46vNdPeLlKES2N0hNjljElFJykiQsyiPErT75XkmYJaz3DFlHQxqQF0uOtKYbJZzfajO7H/DWeMb//fvH/C8vtgmkoTQRSocgFMUsBxRCG9baORkZ7+yVXO63KDZDDrDhZH5BaUYQrvaKB+EaeO1rl7ywfYXB3/hFhifvs/a5Nbrra9y8/zY7wTOspVcYJB1u3bzF0eERJwfvooIJVz/3WYK4y/2D91ksT4ij/iPH3o/Be8ENk4oRNRzR+WGAa88wGHQB//yf/wZFmRFGcOfuXXZ2tvgbf+0vc+ncFgGGhc6ZLRdky4wwCNjY2KDXbQOwNuhy99497t29j0BQamN9Wzs9Ou0OoQoZnY7Y7fVYG/QJlGLW7ZC0O2xsb9IbDCiygsHGGmEc0UoThITFfInWJZPplCIvUM4vNgxDTCsFkxAnIUIbsjxDRSEAJ8cnhGFIEAQEUjJdzInShLTbI4xj8iJjOhkznU0pioJz53ZZG/QJn4kpi5LFfMHmYIDEMJ/PabVTkiRBSkEgBXHQ2CBG0Jjy1XytVUCrSFCJJqISv+oILOWcwz0rNkI8iZhLzVQFPvNUU+rygQ5e99dUO9R6X/e3eLBdfWCEV0VUCI0FSSNrPa5rSHA7UJTCpwv19fGczMZnGliRBFdVIk4mMdYP2D663hzK6nIFhqKWXhxLtuTbApAWVCzX5tw1blHQqPOKFzZbvD864qpU6FbMWA15J50StxRyEVKUBS1dEEUgo4CAQyb5kCTJScqC9kyAWjBtLch1ymx+hd7dAV9YFzzb2+R7R0v+X3eW/P0LChkuEIGxyeRLjckiJ76nbMkIFkOOQ8nOScp4sGQhdW3gFT6Et7FaOtZv395YNZDB7oLiFs3Ny5fofMpQJhmTaUmRTxkkL7M8nnKvOOTOjbdYzu+yfvE83a0XAIk2BZvrlzgcfovN8AuPHHk/Rpcx+4pnS3MVegCCqwEMN2/c42tf+yNe+PwrGAw75y7xy3/uq1w5v0MsDNkyZzabscxzltmS/f19Ot0uO9sbRIEEU9LvJkSB4mQ4oRwa+mtrBFFMkra4+OyzTGYzlIQ8W9BeX+PchXNMxhOMgLTdYj5boo0mjSMwJVEUki0LRqMpi8UcKRWjkU1I47dtF1IglKIol4RxRBhHJElCktrcCmEYMpvOSFst0m6Hzvoam9s7CAnLbEFZlkRRxPbWJlvrPbqdPkVpMCUURU4rTUhI6+17BLTCiEDQYF0/ogagCci+/xCVZKI8CLiZ/ySqdaWT1avxJ6QDHLAA6TcY9DZu/666Er3tdbU7UqVScKW6lbt+VaPm1AkVABjX5h4UGjPCR1Y5pt3MEWufbVOpV6a+Cl8MPomNPVClo6eGIlNrUKr6ldhE3bhzLeha9UfJJB2xce08a+8cc2m84PX9KfGFDcxgimwfIucFQQbLuaKbRBQ6gwSiSDLLl8S9kPksZ5wbkhZkLJAHAbKU5BgGIuOXzke8OY34N1nE30xDssUI044RQQSRpigkaSkopWa5iFgOD5Dn+1xo97gZL5pLStXfK3KEMY3+tm0dCEMeC/JoStY6oShGmMwwnB0SKcPiqCAffcDh3VuE6ZTzr7yCilvO08cgXKrHJGmRFZNHjr0fC+gKQFWswRbTmNQfx3oNGm0Mv/4bv0PUbxEmMWnaYXdnhyvnNkkUFIVNsyilopW0aLeXxEnCbDpjOo2Jeh26aYs4CMgvnSdOj5BS0mp3uXPvLkJIdnbPsbbWpxXHTMZjjk9PmC/mxFFIr99hOpsQyBKdzznYmxFEkoP9fYxRFKUmz5YIYZjNpmhtUEoRJ0kl7kVxhNCGKIpY31ij0+0ShgHCaNppSrfX5YXXXmXn4mW2d3bI8wVhFNDrdVkf9Ll4bot+p0Ur7SBlgC4Fi/kcgSCMQzCGPF/SbnWJ4vBHA1nf+qIeqKbRG9LY5NfazU4fQGFwuzU/gUxXC7f1uhe+a5JLZd12Hg2W8UHl5jWfIlqdWjqoVAx2Ikt3wKx8BxXLwkOfY5jeXcvrcr1kUukaPZj686BW7mpqv1RPYCxo6srHpHKYcv9XYielwOr1/bMAjLTvLGykmzYaQwkuiq8g4+C5y3RPp1wcTTjWmt/7kw+IdiSXfzGht7NPp5xT5JLlokOazMiyMShJ2JLslRmtgSTUcDQLkKpHkiZkg5TpbM5yAltoPrsOhyLh+0HKK9mMfHqCXAvI5h2k6WKyiCRMWY+m/Ob1j+jODrkWXKF9oc9QZtR+eo22o5YgvB7el9xoFvEe8+SEEAlKYjJJUQ6JswHTwz329j5i9/Im7Z0X7B10bWrUWoCQxOE1TiZvP3LsPV7Q9YPI/mE/P8S/yKy+e10cAzg+nfLN773DS6+8zGQxY12UvPDcZfrtBEzJMs9Z5EtrAxZ2l1whBVEUEccxutQURcFkPCJfztlcH9Bpd5lMF1y+eJk8L8iKJRtrfZ6/dpXZdMbB8RF7+/sYDHmecXx4xOnxCSCQMkCGkiRtE0cps9mcZZ7RaqW02m20hiiKCMMAqQRxPHA7D2ha7YR+v0un27eTrczJlhmDtQHbu7tsbm7T6XaYza0+uNfrcuXiBbbW10jjGCkVUgSYQBIG1hAnBcRRDMaQBEGVOPuBZNjNRa/phHv2S/9xRWT9OGR98lDXJgyXVEmyjXafqRZKz3DrZrLvWYg5AS3srrGyyo1rv5X4UDB/bcUoq6Ws0fYNwH3YQllfU0suvu80LqjBs1nhccbVAcu+akHah1UYB0Q1dmeTPVRng0AEaGHVC9pYA5xw7oMexLQwjDua4OWLbL/7IV8YF9y5dIXvvf5d2uYi6Z/fJhv8gDCaIdsjhEmIWyFaz5DaoGcBk1kXhCLUiujup+gtJK2oQPc0ccdwb5ZzfxyStAr+6f4Jf70V8fnWGmLZwoRAZndjkUbQTwZcu7jLP73/IT97+y5rukRc7mGzj1m9ua7USX6Bka7JvF7btlA0G7CIFyyLBUrA0eQGAKM7EdO997jy6qcJ09SpW1wOZFOZQhFGo2SE4cccHPEfqhjHrn7/a6/T39oly2eYMmNt0CIJDNJYH9xFtmSRz1ksc0oNZVkipXQ6TismlaVGm4J2GtNqdSmAsjhgPJ5VTOLFZ6/RayVs9Drsbq+z1m9zfHLCfLFECUlv0CfPS8ajCcPhCUoqdJEzHg4Jopgo6RMnLXrdHkEQIoSh00kJAomUIEpNnISkaYySAbosMEJSFoIL53fp9gesr2+glGS5bDGfzdha32R7fY1WFCGVQqkAjM0sGgSK09NTgkARByGtOCENokYo7ydp5NVzf9hlBrfli/ddFT6145NV/NbrtSbX5b/zKgLhw0ybrlcAAplI8nJOFHTcEVvq3UVE5UyAVwx7P1oHdnVQRMN7oKmqqBCxmapbNOpTbxvvizDWmOa9IOxi4gxn+Ag3Uz3DOH221Ukp3t/7DZ4795frDH44SdMFgze3gS+F5nC3xbmXL7D25g0+O36T/JVXObx7i+LtK4zOpchwSNR5A9ZP7K4ZMkCXJXFaMN6XrB39ND2tUCZlsRgxH49YHwg6qSHtLpmWGXePNXka8Q9PCqJwjc9FkIp1dBIhaVPMphRhl1999nPcjyPent/hheGIZC8g3E1swEvlSVArG+rlzPeZ1RnH0RoTeZu8mJEtJWVxRBwMSFp9dr/wHEaG1nXSg7fPLF1JMCXCBPTT5x859h4/6BqDkA3JpfHVD5+rgsl0yW/+1tdYv7jJ8PiIQX+Nrc0N2q0QTEle5gglUEqiTclwPGa+KGilMdlyyWJuWBpNEYVEYUxZLih1iQwCa+zSJfsHRzx77QLddko7TYjiiCzLeP7Za8wX58iykuPjU6Z5xnSeMZnOuf3RR4yGJyyWM4wwhGFAFEVEUUgQBiRxSLfTodVKAE0QSLqtBIAoCtF5TpHnlEVAUZTsbm8xWF+nlbasONdOyFotuu0O7bRFFEVU+jshXSYzQ5rESBWQhBHd2ObTbczch7byyo4c7nclJJ3R5dZ8qaJydqiuGEN/GBP+ySsV2JgS69XReIdKZ93YgNC3ijBI0WKsx4R0qsi2KvS3oqU1tNn/H7KduHPvqlmp/ezdfEEijE+vLljV+eKU6f6+PueAVyPUKgThmZ7diRLp3ARLYVBuMQjVgEl+g73J6+x2Xqv0lPX9G0oR/2pCcvTFZ9k92OPSB3ukd77Bt8+/QpQtOf4owRQxo/sv8tqXWkzldVqJIs9C5uMUWUj0acYUzWaqbb4CmTI5GDHtQX8L1joLorUFeyddRt01/nWhiUSLV+I1mIxI9Q3MyW0UG6gw4z8+/wL/l0M4SWaojw650L8AqTcB12y03jvOvlWgFJv9TQbrL/DR/EPKfIouFafjd4iCEC016zsXMLk1ltXhigar/1ZACUa5cVASyh/zbsC+WCOAcImH+YTzsnmS4foHt3n3vXe4ZMbs3f4AVMJLLz3DbDYl73Qdu9AYrZESWu2UVjdiPl8wPD0lz5a0Wwl5vsToiGVWoEVGGkZ0u12y/DZKCXrdjgXMICTLC6RS9Npt2p0OGEmvN+B0PObkdMJidp84bjHYCNA6YzwckcYJaZqQpi3CQNFKYzbX+iRxjJCCNAlJneeCEII8WzCdTgmDgDC0+Rk6nQ5RFAFWT50EMa00RaoAIZSN8zd1KIlybD6Qik6auK13WJn7n7QYqnFY9YIlPIKm27w31vidJD4pof7JK47lUI9Tn/qlZnmVDsD+dMlphIgpg/2GEc1U92j62ZrGdSvqBMc4KzW6qNlu5S3h/AasCqRmxBYjPZCb2j1XmAqgabBoJ5u4k1YXVuNCIqynRcQg3mZv/G1acZ80uISudKG1/rk23tlxkLVi9n/1Z9j+V79LdzQjGH3A/umbiK1r7Ld3iXsbmJMN2sWAyeQEqTWtpE+eFxBrhF4yzjLalLQxdJOU8WTG/kiQXI1orc+5cPmE3gKGk5jfVilr8zlXZzdAQNTpIlUHPbpJO8v425uX+c9P9sg4Qr15zLnPbdREotEvQkhaccL2xhU2+hdYFAV7hx9x1/w+udCcnuwhy4K+eZFApERxgM6cWga/GAn8zsC2T4tqd4+PMy8/ZqbbEF9+5Olp0Bq+9oevs7m1jilt2OzoeJ83vv0dnr18jqLIAUFRFHj/HK1LsmxGnucoJTBaMZ/PSeOI6WLBdD6nF0UUeYEx0Gq1UMqy1CAMabXaFFqjlAJhCKTBGElfhYRhQCttM53O2DvYJ1YJZRlg9Ih2p8Pa2hpxHLO1sUm3k9Jrd0jDGBUIpHQMV2uMMSwlSCmd14EhTa3Ll/DK+VIjld0FwicrqXLhYpm9/64dhkRBvT/BnwUIz/bQ2f3pHjy72VNPHtO1G0VqTOW77CaKZ/BeMvMAJnyyH4NBEUtDqXMCGVFDr3Gg6tkmFZN12OoIqMG4bdyprmxkKTO18avKcdvwZrD30u6DdpqIuvd1pad0LFnU6gQf8uuf4esppWBn7WfYu//PuTf6BtfWWkCfWtaxP61/t6zeRwPzTkzrq58j/r032FEh17przJdHfH1vxM3tFyhlSBK1UcWYwhTMR4d0khbLuaGMQpZGMCtzpnrJQGp6SUjfRBzdK7l1DN3Lku2LhrQ35HDc4d8VEf8DuUWr2GeZQRhHYCBYLHmmr/krg/P8epLw0Y0Pad0e07tkg5QMNol/v7PGzuZVWvE64+EJ9268zfHhDSZtQ7E+YjaZYJZjLse/RGTWMcsSk+kVQ2bl2+va3Bjv7K6wKobaJ/5seSyg6zsEcJl/GlZXL/I0LWfi7NV2oo+nS67fuE3SjhmPjphPJgSUzGczCm1YLDMbclk57YOPE5fCMJtN0GVJoOxmjbPFkvkio9MXCCkpyiVxEjMY9FlfXyOJLauMAxdUIAxC2YkiBXRkhygqef65Z9ne2eH6++9zdHzMEYLZdMbObkgrSel326z3eqRxTKgCVCCRfssAZcONlwiSJLW+gca4wI3ALhzYHSO0bqSoa7RRoCRBEKCEIAoCYlUDxYO63MYBszpxG731kOM4nXrTwFMzXnPWSPcEliobQSMQQrhN0rzxy4dz2i3Vfe5WQde0mDIkZJsKYJsgCc4Vqzag2RGq681fTNUl1TELZG7zGVFLF9oYl0uh3pSnfi5UjLbipRbhfdpze62pL3H5fDGghUYaSONztMMOs+w+x6NvsNb/RffOxm4rbwy1I1k9bgyGoyvbbHz6KtEP7qBGc3baAX811Lx7+D3utT7PMEiRYUAxsTurHJ2M6KQh0LJ1lAlTrVmKnCw3dAVsRSFd2ebOjZz3jjO2Lq6x1e9yeFTyu1HJr+Z94uiUsrAhw7kuiWYnfDFe563DY17vtrn3/iHd3RZhHLLW22Jn+xqKmGI2Zv/4Ovfv3eD+7Zvcv3+D8790jjIXLGenXIy+QsSafT+/WHp9PGWtYmjOBa9TFw111EPKY1YvNJJs+M31HjJXHzhkDAjNex/eQ0SGuJUgVJcyGzA+Peb+/Xucnpxy9fw5kjBiWWQopZBKYbQmzzKKoiDPlkipGE8mBFFEVpRoA3GUEEYxejJjMOgx6HXY3dogTVLiKKxq5BXm2u1NJVQASNYHfdI4QpqS7MoFXnr+WcbjCd1ul3anxfbGOu0kJnALQr3A6IbXgLCJaVSIEFCUJWVR2nOFIIxClllmLchWiQpCEghBqARBIEhUaDvQjf+PM56tKm3ONDdUeszV46KewFXXCErj38bvE/vkAXCVZ7beSMepZQTa+cVWngL2itqtTICQG8z0LTpiG5vQRleA6bdor9xAqeP7q0CThlrBCO8D7ZmuA15TJXGs7lLfp3JUquaY96X1f1W7Yvh3qJ7vWXJZLTgGUEZyvvtF3jn6Dfa5jUzepB+9WsHr2dFRxcc5o+rxa1fZHM+IPtgnJ2TjwnleObzD9r3XeTtaZ6+9Rh7FFFlGJ0kZzeeIxTHr3R5CRGSqxVhCLnNKWVAi6QjBtbTPUR5w+3sLutsGFcfcXE+5ObvBZbNBHEhEaQiYscgCEnWfv7Xe5fU//RNGG22Gezlf+cWfQ2rF7Hifk8M9JpMht2+/S1FMaW2sce38Z8hbQ6aTA84HnyVm04Kp0VUf2g+6+l01K9bqgbO34PrlUeWxG9L8RnhQ5xb5JKU0gtwE9AZttJkhRcpgexMVWPE7yzKWyyWRVFUgwmIxt65hkwmnp6fkeY4MYgptmM4XLLOMQAWUZcl0ukAXhlYccX5nm7V+jzQOiYOAyhFe27R3WpcY47bY9kYOHXHpwjkbATfIybKMxIF2GNgsZlUIJ1i9s7FtkWUZo/GYdqtFZ70FwDLLyLLMtpOURJFlukbbd8PYoIRQ2SQ3caBWNkKsfTx/VAD8uPNr1tY8Vk9rgzZ2D6wnrRjRXAyd3lQooA4Cae7eULNh3MsHlGZBQUZgAhqmSAtGnspWkCUaf1sG3Ti78kjAbZ/oQdme4hLiOJWEB3aqBa/OSGaPObLQID22FhbEvfLBLziWndkzeu3nYf/3GC3HBKPvkK4J4vAFtFYYqYlFwLzwFnuDESUuiJpSSY5+5iUuLgrK+yOKk2N6pSZopaRBxt2T9/gwWGNPQCljOnFEXhoOR2OQ0E375ElKrgMWpmC7pciDgNQIttKQXjvhsMzJBJhWyvubA6J794kwtNpbNlhpdsqBllwc7PK//txn+N995095/Y0P6A/O0yn2ORofcTI8pJRT1s5fpj14FqTie19/j1uv3+Ol7Rbp8ztOpaep9gX09MO4PHtnREK7htduefy41QvNoqsKPfqceiWtwTnX8OGtO9bVyulDh6dLpBCkgx4yCEjT1PpWOn2nCgJKXaKUIs9zptMpKtRkeU6Ra/I8Z22wxmw2I4wS0iRmfdBjo9+l00pJwtAao3yFlAV0IwMMFnQDKSm0IZSSoiyRUpAFAWUck8QxSinHcLR1V3O9U5aGUpcUecFsPmc6mdJptRAO1MFYll7kFpjzDBBEcUygAkIVkAQBURgSKVXtzuFL7fBd/3y0iFOrfCpNYO3jdKZvRGVA0ca5i7l13QYMVFrGjxsGP3HFh9TatrCpLL0Ry+fcqv1s/S6V3gfXnherhFk5oSsGVOkZTS16N+9RWf1pLoxeRNEIoahZq6+LqZ/nFm08Q3ahy45ju6d4FlZtBt+QQ/x2PDXb9uAhMG5rJo0SinP9l3nv8NukcszR+E+4sn6bY91lPB5zbvDnqy7X7nleR4yQFFHA3a++wva/+zazvSNm2ZSynRB11nklLNku97mtYj4sI05lB6lSkjhilmUsyjnZaEYUd0nbHfaLgJmAXrdNUuQMkpBzUcJEz1noiGI04VY5RBQlg6xEqR2mWUEEzCYHXFvb4u9fu8R/cTjl3/3OH/HMTkZnU7B25Txhq4tQFlyKXHF4qHn7T97kK//JL2GMxCZ6P2NUrQhULVrWUgh+5awk2UeVx7sFO1SVqo88vNSOL7buo0lBaUra7ZTDw5wsnxMEimWWky3mHB0fk+clYWQTzKAlKggQQhKGIb1ej/FkynRsk5YvFyWtdsxkOiFtt+h1Uta6XTbXB3Q7LVpRSOhFraa6WdSTUQGhtCJnFkjyUhMEglApm8tBCJsUpsFq/T0QdgFa5hlFWTDoD9je3CQMFEVhiMOAKFCUZUmhNdP5jKLU9Lo90igmDUNacWjjzw2Vn2mziAcPrbR4JSo3u0SA0BWO2D6rrLweMPyJTqclvIrBDTj56H79SS1G6MYmOaukoMlYRQNk/WcPyS25xqke0TU9e4+qv7EgLOuJ6lVrnmueTWFaC+tQeeZWklJzZ2CzoqZY4bHC19FOfH9NjdWmSk7e1Mp6HXLpWPBO7zXevP1dxkFJojV3xu8z1Yae+lm0bqTzEX4hqY2IYMjTiL2/8FPs/PtvENzLUIscwilZ0mEj1sRFwdrkDvdUhw/VgFGwRhSEhHHCUhcszIKDowWDjQ0K1WM+he2t82Ro2qIkUJrg+C7JMicXHYweMprdoysySm24dTKnb9qITovLly7zV4J7/OZwzN1Ri5/5wjVCVW8oZnLJd3//Tb7xO7/N3/zbX6R7/jxWaWaogx6avs/ufZsugRWFqXsFUT5y7D2+jSn9QK2OfvKJWRi4dzhiOhmjlDU4KWW344gjxfHxCfP5nGWek0YR2kBRWJ1KHKdoBHlZUpQlcRyT51bxrVREHEd0kpitfp+tzXXaSUIrjohUbf23VV9dqZoAKoQgkRAFiiiQFKEmy0tyU1pVQOnni9V3SSldLlobHpymKRhBGEUIY9lyGIZIKZHC6hZbrRZHx8ekSUgcWb9fJWQt+p5pXVvHWpD92BY/S0xFY357m4BF19Vzm0DrpG5rCHyyWC7gdoc404LOluDOsFOpGsxucvkFSQgCnVCIQ0pKpAkaY8YuUP4ZFUutFKPNzFfaZTRrSBqiwq+Kr1JNea9DrY3T/hxRTfx6zzNtGpBd9a2us8y5f6VVEGCMIAi7dJIuRTBkni3JCoMpFBfPPe9SQHjlRaNtGvPFGCiSkHu//EU2v/k2nTffR0/mmLBFGEkG3ZiONAzGEwb5PndMxmFriwkpURATiAQlMxaLU3JTojZ3OTge041DljpHzIdsrfUZrm2S3HiDbJyRyx5MlyhV0ou6fHhrj05vi/vlGoPBJf5C+y5/NF7y1rfu8OpPXUQIQ7mE4/t3uf/m7/CVn7rA1VeeRQYB3j/Z+HGCVynY96wlSNcC3kiJcIvQiuLvgfKTEZHm6+f6LddwcDJmNh1xfHzAfD4jimJkEBDIhP5gwMH+PqejEZ1W6nShAqMFRVEymc0odEnaahEECfP5Eoxgc2OLQbfFhe0NttbXaMcxaRSQKFUPbuGHbUN05wwGu68UIANFJBVRoFhoC/RFYRmrB10bqisIggAppY1WcxO4LMpqa3TlDIFSSNppitrYIAmtnjmQFnC9wKrP1GW1ORsHfxgeVqc2tX/1V+bsaTgw9mpLKexmE09cWSUE9v2kY5lW1F+REpot4RdgaRPez5nTNjabnfdYsOJmzZi9F4rdrt2Kr17/ZxdKiXU1Em4XA9vOPhlOzbY8eGqEy69g36bBfo0H59qbwWccM84wJD0jxuC3bPe1NcDGYJs7syHjpSYNBIFpoWSCdRIS1bn1gmzcIlY/uwwDDr70KvNBi/brP4CDA/SgR0tIwihmPV7SyhS7Ys79/R9wEG1wuPkMw9aAMG0zW84wAhanh6jWgIUQpNmUVhSwzAsKUZLuXGNAymkxIysN29KgZMTa2iV+77vX+epnv8J3p0uS9jZfPl/ybjnk9vv3WN/uEwYlF+KYn/sbf57O7gXXLz51qV/iKkUa1WropQi31tTSvGj4bv+3pF74UYqgFo1n05z9w31yvSROUrQ+IkkCAhVzeDCi0+2yvrFJrzdASYVUActlxny5ZDKbMZvN0BqyvERj/XV3tra5tLtDr5uy1m8TxdbvNgqCKtbei9c/UnENHypJoCSFUhSh1c8WpabQusoAZkzgEmS4dxbSbpHuXMOyPMdgiFWIAJIoJlQhoVQos/LIFdHYH3tI1R7d2NU5fnLb47IaZo30hY1FUXqmhXTO8x8/wH5yi3ENWbekwIvLXoGAsxfoOimNcKYoPWEvu49WMAsmtLK284d1BipjqsRgHkhlZWzzOuKGCgOXuMZd531gJdSAGIIuDUL7pdfU7+H0vjU8+BSQlvfWCmGb6Me1gH0fb3cxVCkPZRjSCqEoBK0ogbzd4Nv1AlQPDZ9j2ctati21gPHLz5Ftdtn8vT9BT44hADlI0ElIK9BESpHKGVtmxGT+NkcngkOdMuxuM+ttswCMzpEFiDCEQKLDNsvphPF8wigJ2RXb3F2OOVrM2G4NQGo2Nwu+9u77XHvhc3zr6DaHoebqQDHuSEQIQRSh5SGdnUu23U1ZLyY+L281Vvw76WrO1DbW2pPEjhuJz9L2sPITA7pVETCeZ7SSmCSNmc+mBIEiCAKWyzlrmxuEYUh/MEAKSZ7nFGVBVmSMxyNOTk5Y5kuyZQ7GMOh02NneZmt9g05qlfZJFBMHIUkUodSKUqEC/hWuexZTRP2hXujtehdKSQQYqdCBNb4ZasbbDHIoypL5UiOVdUsTQlGWOYXWSKFRyu5g7PNHPExtU4upn6BpRS2sVqKRA1dTsWdRg+7Zdzb2Hmdg6uN2JvkJLg6pGvrRFY+GyiBmqNMclggtMdIgiIkXhpm6T9aCTA6IdVyxnpUech/tXlyl+6aZE8B9b3S1a4NxddDCeyEYxosZ707f5HP9L1Tb8DihtmZf2Kmv8DsVawezZcW068XDL6B+0Gvb7/mSXrBBf+tV3rv1fTC59SGncW5l4KMWA5s5an29sL6ry61t9n/lF1j/8AOK4zmdvEBtbMH4lDLXJK0UpQ2xgGh5Snt5l+n4A07fSxivXyH71IvMpxoVSMJ2n/npMdlsTkBO3O/x7r379DsdTsKYSXlKbBQRGf2O5HDvBpfXBtw42WdeBlzJQ9LQYBYTlmt9KrewyubhVWb1+9Y+IY1jVVPUPtUf5xrry2MLjrB1N1Wuzh9+hT2r1IbxMqfUGULCZDKl0+lSFAVCSlrtFtPplLwomM1nlEsYToaMZhNOhsMql61UkvPnznH14kU21taJw5AwEERBSBSEtKO4Cpv1qzzUjNv7WPrtaqqygsb1F83cEsaxGAnIZnJspVZukwnJsihtp2uvZ1NoY8h1aUN/K9VHs5Ua1fFA+ggn3Ucz93qiGOxuwf4W2tidIqxU7I0kq1f6JN+IOiHLk1Z81i6f16Bq22b/ntGfGqFdnyr6yRUSPeCouMepOmCXi3X/g/PzpBbjsdeZalIKB6y4/Aj2mDwzsb3TUitIuTXdIw6/yyutzzXGrVcggBYlstJDupzAFNg4Ml3psWsI8ZCsq/sJFbHV/SxaLCF4FyE1gfb6SnNmwvjE6s4m4s5pmNvwrDfr9th79TUOC83W2+9wYaaJg4hFnrEoS2RUQtJGbJwjUhFifZOks8Wm0cjBJoss5J039llMpsh8RhCEaKHI8oKgHdNPDe2p5kSFFEFE0dqE030SITk9gp3+OofTE66fSq4GIW1OEWnLxn8IL4V44Kw9F6rBYWo9uaha3asUqpCXHwp4jwd0Rd0nTUb1qLpUiwqG6dKwt3fEdDpGFzb6SkhAKdZ6WywXC1pp13Vwxnw2YzwesSxyWkmLVtIijSOSNGV9bY1uq0WSxCipUDIkkIIkiQjCB+mZMA2x3QGvol7R9Kqq91Fv07zjg89oIGggJaFU5KLeOk/ImgEZDIGUKD8OftSyokZo1K0aWx5pdDWYPHu153kWXHVPJdZqUTNs9SP7Bv8EFGFY3cTQR37VOb0sZrgwbN9UDnAMGklAqtbZ0IpjeY+lWhKVEX6Dd8t46gmpG+O88nRY4at++5iaMXqfXL+4vjJ4idePvsNOcpF1uVHxapt3GvxWO3USydUlsflU795mz5XVEz2kKCLaqsciG5Oo2IF1nSrSn+cXLaone021k5e8ntpAKQQmDNn71IvIW0vk3SOGZsxi0CV+9RolglIpiqRDGQQIFMrYHAd33z/it//Nf8PhDL782Vd47TMvIYqS+WREuxWjzm+RTG+R5iF7w5IiVwRr58hmEwbyhKNxzk4bhsuCt+4ccmHQov/WHtGVAUU/pnar02fe0CXIcdJEc0NSuy7Xfs5Uy9+jy+MLA37o0Yd/47/VGPaPJ8wXM+bzKQcH+3T7fSaTIabUTCZTdFnS7/a4dP48nTQhl4ZgOqPlksIkcUK7ndJutYjjmCSyzFZK6/2QxCFJGNphsSJus8Ji6zR99WHP7syZejfLA0tLrRN44CoJSCVR2qXTNrU4JtAETr1wtlUfxWofWpri8sp1ouHOX6sUqgley7h1jU09LXWDAf8ItfnJKW67bmvkqkGuNlPWe4bBag82eSsIUjmgnZ8yCvdY51IFuR6k7BCo4a7aGr0C9dKBfwOwjK6kDekT6QCX0stcT9/nm3t/yhfPfYl1OUCUtSrIg6b9T9ebBVRGNeoxDngfZGnsBj4esr27RS+5wOH4DYJOHxv+Wve220u6qnUlblfLiHurhsrELdmUgWS/16O97PFuNiI317nU26A2+vlFz5AvNe997wP2PvqQZy+lDMYTFrNb7F5+lXt7EiUi1nYGmEHEYuMZBIaNRc6dW/uwCDHpgDKf0o5zsjKgFxQoDDdP52y3OuzcyUiXmnwrporz8d4njZa1Wdo8sNajwr+r7eemXPrw8uPT6fpGfxjmOhpXmJJFbrtMm4K8yDCihQEmoxFChSileOGFF3jlpZeIyVmGIZqAUhcEQUyapsRhgAosYEXSZvK37mYBaRyhHlYHGvj4kPZqKAkAp2b3YsbZax64/+qXzaXHiic1yHtFvHK5c/2qWqvQHt2Znxz8LOsqDRXQl8a7F+H8fX3oaj2JvLuQ3x0Wd45+Ar0XbGrKRl4QvKhvkMoarNxSC27XhHpsyArQhBEIoenLixyU75AHc6IiqU4V3kiJQBiNNIYSl8OgkV2s/l3Rp0pFVTpDmxCCWIZcSM/xQXGL37j+L/iVy3+BzfCyG4ueo9WRa9bg4wVn75pmbQj+3HpZddzaCJBWk7zWvsK9ozeI4z5nN860BMF5WlRuUp5FuyZ171LrQ0UlMYg4Yl7kLIpTNl7a9qMM77onhGJ8NOG9b32f8WjCaDwm6bT48quXePHzXwQZEKeHdNYiZD+mEDnC2Dwr3x+9x5unb/Cc7rIVf55+bw1TZARGovOCbpQRKc3YGPazkM0TjRyfEl/eJI+Kxtri6w/G1O9m54ZXo6wWz4YfVR4L6K76yterQekqcjbptR90RamYLpZobTd7DMOIstDosiRbLmgNUl791Gt87rXXSCNFWWiCKKHbC2zUVhghpbT7khm7OR3SumLFYUQahTZBTrVS1fU9G1Tw6GKv9wKEW4yrCdnchujjigdqIQS6NE6jUFu1lVRIHwjhzn9YHT00PPQZZ2vu9K92AFFZX/371HrG1bXHJ8/WojawWR/dT/CiP6nFddyK/CVAGImRJctkQTyLwXmWVAPGBTxY4PDymUCIgF55jpPyDtviGQvSlZbWMtcmjHuQ92TaCON0sa5ezmCpHUN1HmQIA1fTa9zNbjCaV5pUB6zWywLvN+rHjqlBHXD8tAnSpvEN+Ly7BkMr3iIQAUncZTVCyw9gqjsIIdzu0E1a4cC8ESTiv9JBm/v5PZbdMZ2d5239USChzCXHd0557zs/wJgcIUo67YJXf/pzbF26bN0tjWZrZ82RkrJCGoPhm7e+xe2jE2bRPpdMwbPyK3SCFkIXjJaQqpBUFnTzKRPR4dZUcj7tkL0zJL3UgYGXOJ3b3orU6z77KNCK4Z8JFX9EeTxMt7ICNirR6JyKQlVWT/tnnpVEcUin0ybLMptpqywYj8ZIIXntlVf4uS//DL00RZcZQioCJQjCyG5j41IdSpclSrnk4kkYEQVhY+6sov4D4AQ0RfEHV606C9XZRv7kbLPZLI5He3bjkuRU0XCf5KY/VK9aqyaaWOmTofs8EaXxgu6Zh7p5VBtI3OF6PD5ZpbmCNVmNEJALtJwy62Sk4341ma1vtWyImeBpm8EQyz6yuEcWzYnLlgNjU4Gll4qEA2Sb18NU90A0mLewqU1rqK7HZDfoIE3BoHOODOtmWKL93heNOQa1kz+V769XLFXqDGPv4Bdgq3Kx1ykRcGXtCu0gJa/uWQOqcIZBD9I2MsgZ3cyqcclLawBlPuDD714n7Mx49uVLeBkPBNPjJW994z3uf/Au7b5CRCk7F3e49vIXCdp9F45eUO/grIHAgaQdy1+69AWm5deY64y3xzcQQZsX2z8PC0kYCO4eD0mTNmsRBMsZyzDldpFwMQ44/WBKsq5IL7coxbIxZhpjvamSEs5NrGr0j5+0P3ZnH+NX34dVRgnSlt15YWdnmzAKGU+GjMdjfuqnvsQvfPkr9NshQuQu5NamOAwC5XIe2DyzgRJEStJKYrpJShIEKNPItvSweon634+tCCwrh8qVTIoG4LK6PHycauGTFM9uV0Nez5wjrMGwydhNBcqNK7zjv1ldoJ6UYkwjfku4yDHhDUCGdLmOyRdMu6eV7ypQT7YVXZS095MB68FLTMq7zjPCnVONedujwj3HpyG1U7YR1OsmicCyX+kSyUsn3mpt6Ifb7AwuMy4m7Bcj/vDWv61Zq6tb0yBnsAuq56rWD3gVfr1Rze7/Vffthc7n2Zxn9nvj8sqaOuDCvpNvIFlNIsdxfcPhFxadD/joj2+ytlty/qUtZJQCEl2m3PlgzJ/+2z/kB3/yLVCGu8cTdq+s8eznPoVKu2hdorWVDI0x1uvHuIXD2N1jtNG8tPkCf+vlv0S31eeli5f5+c99iZ1nQ47jJQsRMOh3mSwm7C0jVJjQEiUhOXd1AkJx66MJ9753ilm67d5X8h/b7bJwPVfLLv6YQHyMH+VjAV3dILOVQNKgRD4Jjql+24qEoWUA/X6XXr9Pq51gTMm5czt8+UtfIo0iSzI0lEajnP+uUlYkCZUkDUM6cUSv3aYVJ6jGbgq4Oj3wjwboQhWD4uvus2n5wXa2NK956DM+pgROlSCEdDkb3CR0IFDlWaXShj2yfLLHPvwupTY0sxF4tUaJVSt4gVEYUMZ6LCgJgfoEJPsnsAgf1ul7zW/uaGrzYnuxidQ5y97IjR+NinyGWlOBsTd8lkXJ8fCY2LRYqrHH2zPPtWIrxrNfd1IjYY69Z8VvXdvX0CiM4Znkeeb5jFJJ3j+8QyfoNURfp5JoLJAeUv1+abaD3WTyG5ZXqjcPpXYn4KWMicaCdunv7+5nbHJPr/PUoilD+Xb1Bmk3gkyP+985ZONqQP/SACEFulQsRwknN4bce/cDrt86hnHG++8d8+Wf/wzPfOY1SwZM4RaksloAbOBHiU1Q41i6sXXabZ/jv/P8X+Srz/8CgYzJOOUk/XXyVoFpt9naXEOUc06WUCIRRYEQJQciJIlDru9NuP6tQ4pJD2Gsn3JtZD67mEDtGggPbs9Ul8eiXrBuLla0qhxebQ9UPxvdUFVcAr12QhLCrN/j/LkdMCX9dockCjFaUzqmYA1N1uVHSZt0Jg1DAimbEg1OJq41Hg+przlzvOlb/OCkeZDZmTM3ftS19fe19kkJ4RK92zbQxrkymYe10ScsTSa7Ym0W1fhonOCukc5ljBWRWLp6eFWHwC6aCPtbCwjCJxJ1HeA5Q5AT8QUCvVwi4gCDIp2tMxsck68vCIYtlvEQwphoHnlaWukNFjIhS2ISBUtzTEwbKus+tfrAi/Heo8EZJ3H+tfZ2plKNCu/Vgq5SPq4HawzyLtvpDiY+4UrntZrpOD9T03hWLegb58xf67MBB1rgYxLtHezPIgi4td7ihUzwVmKcR0ZtOKuzlTXNkg/OAl0mHHz3lKA/onO+Z4OBFimJ6DCb7GFkwLffuM7w+IT1jZT/+O/8LOsXzzvCo6lD4N2ENnaLeCEC1326lkDcuO7H6whRok3BcLLP/M6MD5b/hue2fxkZr9OOU+ajETePp+yud0gQmHaX8XJCu9vmnfunaHnAztUt+ltjjCwstNe017np1WZZi78/5oi0UuASMD8aLs7qBsFm8GpHAYEJ2NlYJ1SSzfU1Bt0uaRwBporOUoHd0kFKSRoEpKHCewKcBcHHXVbWlR/5WmGzp+V5JcbXIqZxLMKLon/2lzKP+AyNRdsVn5wcnNHT+yXWta7uUy+jTxjw+rYWjYXJAa8MAxblESfilFa8QZilzFojWmsaU5YsxJBlAKoMoABTGqSJWJpTgkAyni9Jk5hup2QyrlUKLqUMoqETttgh3GaRThKkFhWFG8xNQ5oPNn0+ucZMDNkIMuKgQ2XZdCu2195WwAiVFKVNzWg9d29uRq5NLf1hoFCSG8WEc6bFHe+54V8Ar9sVVb09/vuidcrh95cUYo+dZ7dI402KaYRZjDmZ3GM+zxDlEUUBX/lch+e/9FP0L5xzuaSNFfGNRldBzML9r5xh3ts/vHwq0ZQs8zH3j29y7/AmxbIgStfZ7JRcPD9jac5xchQRBiH9tM3twwM2VERWTGyehzhibXudvaXAHCxZ3+ig5ekKuFYEvnpZrz56NCI8Ppcxt9gI3ZytvrK125QHEzu27J5kOlR0kpRwQ7GxtkakAqTwW39DEKhKTAuVIg4DOKOHfBio89Aj7vgZJvzAeaIayysnNgHrRwVe7yYmhXSDWzi/XGmTkFALew+4pTXrfhbvzJku91JmAyIbtaBK2egYUakNpZ/l7lWlqV2+/fVSNCfrk1Zc4If2IiN1Z0pFwjZrOmKSHTAu5uiFZKruE0U9RBAgXEKXUmQYtbDjTS+JtaBMZsRlQPvGDcq1rzCTzUlqMC65DYaG5duDqden1lvj2BQ8NVv1ORISIuaTJW006BIhrDHH522wo8eHuNoNYn0f+160+ltfO1cvqofYdnIr7jSK2T5dkrQDFpFxsmkj/SFeEYZlpiKwcXDqWZaHBUfHf8BnvvoMcbBOTJuFmnDn3h7T6RHdgSDeXCOVcPnZXfrnLqC133nX+ewaWeGH82tEIjie3KdYwPp6jzDooCkYL/b54O7bHO3dohUnhJ0+7W6HrDzitQu/QBCt0RIjWmHKZNliOosIYkmkp1y91sGIJfPpnFInGGJCtSBXS6pOM17P65cyP6p8HX/MTLfGgHql9iKqPUrl81cnm3HGAlm6DRkFkXI6WyEpiyVKWZewstQoJHEYkkZB7YJm6mecrcnHEbGHbUleXda4t/Zzs3nP/wAETwq3kJfY3LqRXKHPBlz6v4YO8GxpVMzgVADUags7qeuiGzqpyiVeuOEi7NaDNm+EfV7z+hXDPc0h96SVOm4LzkgsAlK1RsKAwkyZLQ85KW8wlrdJozZxtmQep2RFhi6WGECVmtR0aMldArXJURJx8fYxty+tUzSt3e4hujrmVQj+O8c2cRKjUwVIU3NWr3pYi87BLEPIWqQujWF+PKO14TwonAuZv0YbXSXB9/y6AcGVdFW1RhXyK/ioK3jxxPDWpmiQnIpCoXKBKefopIUIXqbV3uXm7Sn373/AK1/4HDKPWCyWHI4+YpLdZFwcsvvMLoFscffNG7z08oD+YAdTMVbh+mk11NaD3TAb8lvf+E2KxYJ2q8X29mXG0yHF8phep83GxTU6SUpgBLvd5zjKdyjKDGVsutc4mhLFU9Z7ErNjkCpBiBxDm3bP16HAZ2ezZM/jQr0Xjl2CBDY16MfD6mPfDfhsqSvcONb4UliBASkFJrDbpwhjKvFWOoQNhKkAt3Y3+bOXB13ETFVf+yaPB1gE1hglhaBEIP32PD4S7SGS+yqzPSvK2eFoxdhKYl7BaXPmam+0EWADYz3YilrkteyrRtsn2UUXcH6xzbGHl1iBelILKQhNh37YpRte4ih/i5nYx2QT5jpDouiHO8RZjzhaox1s4fN45RHcCXK27o44ON+llKbiheB0gcbvFlEDrXDfVfpRh5aL6ZioEyNMiBIuLF3Y1KJLRzgkkJaK0/EJrY0UIZyqyEA5L5BKI6OwSudoJXPtspl5vWQtk9q28O5QmkIp9uOSrVnJXttmRSvnBhUFoASDY8UyVUzl82R5l3u373H39k2O713nM+dfo8jHHBzdZzK9z2n3JmVkKPeHtDoB53d32Xn1GYJFgREB8+k+aXsNUNSubiCEJtM5t45u8Uff+QbFYoYIwMxmZHfeY3unw8buBp22IRGK7eQKrfgcQoScizbBFHhAMcL7WRtH3ux8sLti+NFRzzHTzPhfHfMtJisK83Fy7+MJAzZ1tzUdy1cGOFS6EG/QcIes2KoUQkqkBu22sNHGoNzgjMPQbvzob+ce9Sj3pR+2d1jze9H4WX1ssMhPXB7BSM9WUeJy6VK6XKpN6v4gSMIq8Db1vaZKM0fDAv5gu1jG5CQOp6CrtHy+HU1T3VL3ozYO1Fde88liuwLL9qWoE8rUAShOhPGN5CFIhKzHn2LKhEWSckk+gzSSRTinJVNitQu65ogCQZlE7G8Ytm+OGG8FzKOI0iXMb5UdjCmYymlDRePcsUzd1z63gdBzFuUeO71rMMvASOY3P+Ibb32E7N7l81/8Emo449QEbFx8llCF4H1atWZ5cojqSwhsStFSlGhj4+MklrlawiPRJUwmApkUgM0THUQSIUoOe4rnb044jTssAwmhYTGc8dEHQ9aLAduf2mGj3SEb3+bDN3+fZZ5QFCVvvfVtwkTQWQ/ZvXiOYLTgfvtD5qKk3zkHYZvTe0OU2ef+yYQPb95BhS1QAd02XFt7gfWNcyAk/+7r/5bbh/vEseDSpS79XoKIuyzyA9JWQUdKziWX6MbPIqVNlWqngETKqMpJ7Iup9MaNUe2ApREc7dJXNrBGuLHiB49Xdv+4DWl++Ngt9iwgNLQIlW7UxzkLU59jO19gpLXga60pdQlCVqn3pIAwDG1juIAhDVVk2Nnpbxv8k8Hlw6Cjqe9ducsPuaVnmSuLjneba1zv45aUdJ3q6muEdXoHgdB1ez3s2RXUul/KtaM2D17iF0WNz/8vK7ClCukVFWhrUQO0B6BK1+ysyE9cMX4qeUt801PDBw3Up/tEMkIIxFJwPniNUKQIBK1Sc5If8Obwj/nc+c+QztuIQoGBxXjBZDJk794pl/YEXF0nMoLWssuL95YUZcHh+YQblzOklNZ9UCoiFSBkSKgi0JqSAN29wqK8QzZK6HQ2GY2m3D6+x3hkeOvr73Ep7XB6fMRwrrn43Cv01nuk7Q6yLDG6pLO2i9YFerIkDLvMJxPK5ZwkHdgNUMvc9rUOQIRweMrN0wX3bn3IVAbsbrV4+fkepie5vdPi/PUh957dYBFAsJZw6YImmLf49DPPM5nM0WstvvgzX+D9A80Prt9HqHe58PKLGBOAKNnqPsOGuUauC+4F9+gUEWZzn2KoaZuES5d7LJeQL0uSSDHJbjE/ukkQJGxuR2xcuIBWGa00ZZ4PCeWIbhACcHXjMyRqC2MU3g1Qg7UNoZyE4UK8G/lJVgJf8MAKdeShP7dWK9Sg4+a2KRH8mDem1L5yxgGvq7dwIp1PyVHvF79SZ6eEt/coTR1KqaS0oOtUDI6ErBSbKcwxhD+DA6lhFc8+Bud+5Hs171E2JzQ28Y1psiRnSCu1sdu4mx/l+WJlhWjuamuMF5/c4tZkrH6BsGhqQRvng2yoB5oPLDB+DWmsLE9I8ctHJdc4pu8FMx+h5/N+2WsEQkt2g5cISav2FSrkzv17/P77v01Xh7wQ7hIFO5DlhNMZd75/ne+/d4uLW+fYigQXd7aYHt0g3L7C2vlzxN0e59b7SGET8s9nM5aLBVlRcnh8wjKbk2dLuruGd//4HeL2Brubp7zz/kd2wK+3CLYkv/mtN7m4nWCCiPdufAdxS5OXBhHEREFEIBVSheRL+86dJEFJ0GafloLjo2OSVsLpbMk0A1TAu+/dRc+nLCZzrn3mKuKu5vu/9S7PvPpZBEPa77UY6YLdzYjnts4Tb1zmzu2PyErD9XfeRHywRznoMz0uef7nX6VQPrBBWDIF3BLXGeolaaE4Xu6xk1xkrbtFd9onn56SDtY44BSlQ4xYYoSmnWyRFyMEJaFe0ultgM4wImI5HxMEbazhrUQYae0xjpVJC782DWYFgc7P19Rzx1C79VEpXmTFGivpshK1FQ+f9avl8biM+XB1UQMu1AmUbZz/gyHCgGPDAiWkAwF7IyHrTEoekB6gnQ11gxcnxMpxL/Q1rjlTAc9Gq+nYXAXPqhzOVPxhTd0kgZUBpII6UekAvJuJNqC1oSw1SGknjRDV+5ytefOAwbjcEtWLNL6vdbf1Pwu81te77ij/vTbGDUX3bOOT79RubGfb74kpogZe4cRDUYlKojpn1RPEYIqSUHUbTWvQZckrO59BCcls/zb3Xz1PJI9ply2i/gbPnV9n8/MvUk5L1trr5MMph6MZp+Eem2qX/OSAk+tvkJsF5BOMztBojC6IWzGaksP5PpfUDuevriFVyWx6mxc/veES3e/ylT/32coToU4saRPbGHwUmUaUmjvf3+N3fvt7aL0kz5ecO9fm1S8/T/uZlE63Tdt0EMpKSbvPJgz3DzjeO+Wj02MW5ZKj6ZDBdMhHJyNGp0dcO7/J5Kgk+lzKH//ev2e0mKH3DpnfO+Xn7mpef+4IHT+Dfv0j5GuXKEVZGdJPgxOm5W2Qm1wffpuB3EKFAQLBoHMB074AgNIR0/yUuShZFAt0MaSlWgzUNn1xnijtozFM9ZB9cZ2FPqVFx7JZUeeoqHpdmJVZ7xNL2T+dgdFLdkK76xuBHg50jai9Nqyvs6oW7EeVx2RIc51uRGXxF471KgzNDQE9CFUY5iaD0i4SSkqEtBs4Gv+SIuCBzRCrFxXoMwxXNJiep9X2UY9IUNFQUTzS3+7s4TOA9fBTxZm/7ZtrQAhFkCTkmd05whiIAhDC7jospGdkjuWbMxV2v7XRjYRCjYFiapBtNp1Pnu1Zq48+w/mVelZSjTXjo+98RJCoVCJPVtEV2NqtdHzxIbkuiKB5hZM6rJuZPdcXKSXPb7zC1+/9CW/fn6DCIc90Xua51l8nCge0UsV8Pud47xYHp3dJP7pD9vVvcfxPfo212YLWr3yK4Oe/hJIDkC4oWEiEgA+PPmJU5PTa66BCtNG0er3G04uKTriluzHnLQTbmCGFCQQFEZsBDF6+wGe/8jJRt4ORPlmNdpKNVTy112Hn2W2M0UxPxty7fkArNhwuTtmfZNz46BZryYyjXHNndMj61T4XX76AGJ6QmnN8OHqTo+5rRPGAO298n6sbfYoLbQwFURLzwewbtJIBi3yJnh0jWtskSQfw4xAwgkRukYQ7aDNlEhyzVxZsqR7r7c9iXHiRBPqqgxBwOr1Ju3setMCIAOmsEF6aWXF8xnMfB7KmOYubQQ9VeiFXP1O1s2fBtaT6YwZd3VCTCO9V4f4uAVMl8sCyWFZDaH1cuG0gZ+81BuXAY75YUASGJI5XnlsFY1QNUf+0t/a65UZeA7FSvdX7+Po86kX9CY0+elSWsRX9IG6AN9pAImhFMXMkeZYhwIGtxmhr4GhuB++7tzKWefUBgtVMi14HUMf2N3YAc3WrjZmN4NEKbN1crM41HsCN3+zwjBTwBJTKma7BaoWQjVaxZdW3uWnucj+Ny0BgBPeP32BKyVYR8Fz/L7LT+TnmM7h7b4/ldA9TDmm1A559+TzpN79D9oMPCJVg+cw6k2cvsRkm4Jipvb0GoXh38i4Xo4vgd6o1grPicO2C6bmF02I624BfaddGil4acfHv/yyiP3AusMbqdF3SG4MHFPuHT+y+tbVOe9AFo1iMBMn3b7JcnHCvzPnUZy/RvbhFe6tFND/mdO0Ok7yNkgWL995nOThlOt0j39/CXGhjjGS5yEhklzhoc7Q4YS3uYYqZ8zemnjQNVilFi55IyZOctuqgfXSdERi3a0YvOE8p52g5RplBNaI96/U3FV6P5OcQtl2NP9Cc3zQiXU1zjHhdhEUx4/a5+7jY+McDulU2POP0u64ONoloQ1L34GYrLtxgkS4HaWl8x9tBgbSGtel8jtYLer0eUQW8lcDeANGmzqUuzeQt/tkVO3QN7UV6aUSj/XzXiAaz9v1YG19W3KlWKX11Fw9eQBUYEQiBkgFLCrIiJ1QCco1SCq2sv7JButBh15ZU7uyNJCyr9a3UK8blUjAOWt0MrdyTGoPFezV4wG1Oglq9YI8Xj17Uf6KLX1ytJk5UQ1IY75PdhNzV1dRvVCkESBmRtvpcan2GZ67+JfJpwOT0kOs3vwVyTtpJWNvsEkY7aGeQW/wnfx351c+QLSbol55lM06w4bSNXQv+v+z9Z5NlSXrnif3c/airQ2Skziytu6rRaAUxADEz4CyX5O7azu6SXKORX4D8Jnyxb+cVlZFmpNGMO2u7JHf0zA4GaAy6ge5Gd1V3qdQydFxxlAu+cPdzT2RmZVYDqG7AEE9ZVEbce/Rx//vz/B8l/ETeXz3kteRSt6J3pI8jACsUg4KqqonxpK737qWzSCQbjxfMjiw335igVOrDoqwLYyi+715eWvQBBC9MqTXp4BFHN9/m5PNPmI4usHP5PtfeV0yuCpQ4Zv/oIwp5Ff3WJR66u0yPEoa7x3B8xGAn54e37/PON66FueIYiHNoO2eaDJH2yNOi6yWRCGrxPfjCP5ItLiPqEjGQrAsHRf5dsTF8naw9wIgAhH0QFL0Ei/h3F6LXzzfrN5F1a2ztXUtcEOgdr6fSPVO+mugFz1pH8O8AV1g/kNbOtV42WhzinXPNA4JBYLWlLFeoJGU8HDAshjgLWmuQEpmm4GSo9+NYA5w7lTjRXd8pLtKttbXwjrt3IWKr6gjAp1ToMEnXtZbWwUedconr/91dAMRaQw7AOr/A4Llr7QRNq8m0IU1TlHakCtI0QTrraRqV+Hq7T+joPHkaIriLUIgolk2h54nsg3OYfFaE8DN3KtKCaJpZ3wLcuSfrJ//NkBgi5QFWhHRnIH4elAXTaZZxkfL7C6lIVcHGeAeVb9CalMd3E/Yefowwc8Zjyfkrm8j0nN/B+epgeH3SF0p/+1XWLyLEZ0Ogw8JuCIyscemYGDfirMSiUTK22HE8WO3zs+OP+drmuwxlhrCRVnIUpEx396kTy/6lKTpQJOvUiDXUeKUoatGOrvutcBgL5iSh2n3E1vYWh0ef8c7fU0yHQ8xuy82f3ODad98lTc6DnFBt/ZThf/kB1w8TbKIYv3GRc9K3pnLCa+FZmpJlm6wWc+4fnPDKhRFdhS5HF6OM6M8hh0oLSEbhWB0crwEVaOUW0org+xI9LVex7puyfobQX6xOQ3Cn8IbrWjPCov8hPpv0dATEk/LVcLqd96zn/OrUut7NBbMopsM+2a02pkIumpq9w0dsbWxSloJBkVFVJcXAFyUWRiBV4jtEOLrIiVOe6O4ZrB9Gz3rx5eIC4MQibq6Lg45FLEJth5ji3qFvj5AIlYYQget06ztaLzBRg/BiXPxxNMZytKiYHx+z++AemxubDPKEzY0Zk9EE2hZpLaPpFOMaikERx+RTa2tnKgbe1hBL+znfd2r9wnoDKvK4dGnXp7+nC9vrl4L9myaRoVtX4BNrIEZQtz4Bx4Z254lMUConSQuwiqpssTXcPTxk/+BTyuVDGvmY119+kyy76Bc2Zz2AdTnc3mxY/xUth2BKhKyx9bu0HNQnLM0JTe6b6TTacevuR2yeG7E1vhwWB8FBteSffvRv+V72Q3YmV9geTtkuJkyzIZcNHG0a3tp5h5t7h+AS1oGKXWmccH0ReKFfjSH6GG0+RDnLv/7BZ+TZp3zjW+c43H3A9NEWV97+gERtYR2kyZhcTTlUHzO6eJXNzXeoqiNGORh3sQOtQZpyYjUnD0uO547kwpPkWKxlALBWMjy02kAP+eLnHj56EQQCnAqKhFzHoQjWIOufv/AaYaDZrIhV4J5USCDCu6PrHwKso7X8M5M9Rexp+Wo6R8hokq+B1EckrCdpmMtE0lCuVQ2kAGM855JIWNaWz289ptKQSE1Tlty9f5dXX3mVRDleunqRjdnEa7pi3ZnC16rteSl7qBTrK8dn5eLs65QZ//8+VdCZ2eG61y9urfpGDpTeCrwuqCKI3nCD6IDXOB/xoa3Fast0NESXC6SzJMIyPzzCtpbdvRXlcsFoNGDHwnSQMSxC2+9nLKyR3xNCrLVRG3ucuW49WHO364FiOw5XEKMWwPkoklMe/dOW298UUdIXaInKvm0sRZpzdFgzXzY8fnhMamsmsxnFcEhjNOXygJPFkvnhAQc3P0ElNV/7rW8w3ZpQJw8ZFglpNgqWQdSO/NSM7z06X5yI0TyBMugAd60JCCH4ycMfkCU5K9sCls/ufJ9qeBvDS2xwiXlb8dn8If/9z/8VQkLrKo6XtzmoFHfSBN1oMif43WvvonYe0sqGnI0OtKIVIwi1TejRXp2WD0hBnRyxWO5x586QGzdv8+v/YMliUbGRXEe8/BZpUoQ7ElgnOHfuazys/wiR3Oew2iVVx7hSMCi+g+AaFhhmI6q25fHth2RSkspBOHlvghKei4hQF5xbIkKx7FFr/TkZHL39OS38YrjWxFzvJ2zjogUcQldPqbj+u2jfdpSGc0Di7z4sUF8kX03tBbHmcaOmKYQPTJasV02fDCGfelTga+M652idYzIcc/Wl1xFSMBzNGE43GG5uMRsPUWim4xGZiB5a0bsOelrGEyUoYt+78Gf3XEVHdJzawAHuVLxzT2M+9VlwbnTfrReTvsPJ9UkJX9EEULjCr5UXJld575Ur4dmJnrni1s/Y+aObeI1Pkdd0xbHBIZwlCcuQdutFpXOW9RMzuoknwmITBqYJGoQ9vc/fNPnJjw+ojGN1cMj2+Q1G4y1SV3L7xg0ePrjF7vEhoyLh3GbGcJQzGA5JcTz8/AGf3H7MxfMT/sH//O8x3b7Av/mXf8LRuX/DN1/5D+narrv47mPir+tMJG819RZn6F6Cj+yJGrDg2vQqP3v0Z9TlPsxeJ9s+plWCeb3PP7v5T/j85k2OTIMdO0ZFSpGl1IuKWjsSPeDtyTW+cfkDssmUZbtkYHMe17c5P7jeo41cZwGtLbFIlVmEgtLdZmX3yVdfY+v8kG9/e5/tV/aZ2LfJR2/hocSDkj+GYTi4xJXsdZrkNkoopLxCq1uW4lOkPWYo3qSWLZMyJxMrCiVJxCDqjuHifEztemb7+WSDJiuxIPol4Pv79SZvqCsiQrSKv9RQsKZzprnee3BrbaKnLPUd+6LTavojy4TzfDG0fqVpwPF6w6d0gBFUwpgrfhp01yubQ4CyXDlXcHX7ZUQctEJgQ1iEwvO28TRPaV3dCrg+fr/Lb/e56P8rTiNy+NU+eez+KXp/fWGY2ReohP3jehDsg7ZbL1ysn0+8h3Uq4rOuq5f8EPaPi3y3FAUE6J8z1p5YV+iP6cFhUYmf2agNPf0U/rrLv/gn/xoh4fz2Bp998gmb2zlvvLzNK69v8d43PiDNc7K8AKnWb9MY5Mkfcv/zO/zeb/09fnd/C7F/gLt+kXuT32Gshghng5LrwMmup1psJeNrTfcddesIFG8FRqvIQ8vLs9e5cHSOptnHCkcyzrEnxwyzMdORY3vbsK1n/NwdsNIGYQy/azaYnXuZK1e/RqYGOCHQwocipqKgXNXctze5OHqJWAvXEfnb02MryR1V+ghXz2ExZv5zzWLxmI3LDZuDtxlmb+OiSe94YuRLcvV1hmrCYPgAbVt0ssGiqnF2Tt38FLnYJKdic5hSGshc3iv6c3pM+WJMXn2Kuugph1Gn0IRnDxBAOfQ8DkArOgBGmN6MDe+jc7S5LoZ9rQeH6IRuaeipcn1H9BdhAL+EbsCue4BBgsl9GifWnmMCjysj7jnPj0gkRshOQ05wdO3C6dcreLasIxZeJF+w4TMs+Gcern+rX3RNMXrgGbsp1kqtA5yQnKq8/+Sxe1zT82W9CLqwfxy4Qvrnbc0afE9p5QGdIx7Y0BrEudNpxn+T5Hd/5zIb0w20tgynI3YubDMYjoNe5dBB24/OpPj43/r93+DlNy/x24+22Lr957iR4e+aR/zod36PwyLvqAURx7n1emQM6VpbqrG+Qnxzrlsg+1NGAl+bfYvPTj5EpxXNao9sdB6BYOiGvHPpHabJDt8E/vjOj/jt0WUuJTu4y74uhHMW6QTYBGN8LtbVzVf5/3z0/+M7bww4l53zWOGilrquNJYOBW22j9WaeTOnaF7myhsv8cM//TE6WzJI36FfczT6+sM0Jrqi2vYNZLnBcOMBSi5pbA22omkqsgdHtMOUedmQZxmZHPlBGtkF1ub8Wp6IkxaxInAc0cGh1jnVXLjMsADiwTZkDaxBvlMeOlOF6HiOFabXVEPYTsSXFekG94TT7mn5ynqk9U3U7nl0cWMS60Ia8DNwKQ7OSEn4TgYOiUVhvXYb0bc7wZeRCDziC3/idqcoEtG7BeheQ2ztLllr7JEOeNEi4Ho/9M8j1ry0FP5VqvD7i44ohHvq/P0Gl2uHouvGi6+JG6IzpDh1DClBKf9vvFpfca+XmWY9H/03Tb7x3e/y6rtv8ebX3+XqKy+RDUceNKKmal33Q0+jF1IxvHyNW7d+hk0F4uLLyL1drvy7/xqvUURtETwMmQ6MYjBYnOg2WjFBgfBAHL5ztguhvD56hZPykEflh4hsRqLGCCkZ5EN04jg0B7w0eZv/zUv/AZeLC4iLryOsxFpfs9disPWK1XyFcAIlFO+ef4//9of/jAfVbsC4tWYHkBY5Oi+Z1wvmi12yGi6lrzKZTEmLkvMb2wjykB4etcvA94c6vN6pIREYmnqL1eHrSCbk6ZBRAkN1hcHs13DuAw6PHInNSPOJ3+8UpebVrvUY7lFmwWom/E18poH/7drGx9jmPhiGtj62i2TwC+TakxPDIn0VGREtYNbXtT5vOKdLcC+AVfFVNBX88MQGazRMdhmcYuJ0kw+B7xHWQV0XxRByTCINEI7TNUjkaS3yRbAbgeVZ2z3rGazLO37R83nW0QLz2R8Hv6A8sxXQM87ZNwG7LLIvvK71QhYXQxN07T6nC2CsxTnZOz4+fAxfB8LZHuA6D7jOCX7jyt9Ed9qZnMkvX74STffZQO7Wk5w1SDyz0eMTn4keiP117zwbG1jCae31Lw9Jzz6A+AscvIs7fOJa4/Ge1Jaf3K5vxcgXq+BnciZn0pOvKDkCz21HbjICpojkc7dlV8lKBM7F/7M2863zgcY9NpNf7Szvn/vpBUCKHlvrnrXFL3Kq9X27/kH7VxA4qn5U2pPf+y96h41avxC9YNuwzSlON3wcgulPXwfdec1f73XwTM7kr5V8RY60kG0VnTEOZBJrjPWbXPQpknUmSdSEPQaIngupB9fur0J79PLlS0CuyfovgtM177Pe/BdRzvvX8lyioXNs+fMJ8WyjJVoJ0bERWZNI80i5Tuftn0JK8YVWiLdY/HX2GbAzOZMzebF8JfSCStZTsc89dmmFbg1azoXQpL4GJQgZVIGLdH8zp3WfK/0Kz/KC78WpxclaX3uhrzjbL7jIU+8sbNw/lguOnudl35zJmZzJaflKNN00EbQaOjXvVHDxWpsNW6z/jlpZx0s8fey/rHb7F23n84tIFznAM5xqQav/smD8Qg47hn6dCtI+fS/r6K/TdEX0nPcpEc84BBoo3Ie1MdZXdGU5I5VsnUD9zVwTz+RMfiXylYBuArQhsyYqtY5+GJPfLuaaeImg/CQc98URM0HEM79/sTzJM3+JPX7Bz58Q98TC8ouc+6kNxVNfCXxs77og4BdcV+QPxJrTjY0J+5WTED5AxxoPvDFipKMo7Joi8paI8EVhzrxpZ3ImX0q+8m7AUoZgJdHXs54sOQFdrB/uFD8Zyyh2YWadm/0vOs0F0Ux+Mfj9JQGXpwH3Ly/rI/aLBb2YZDjNN6/rFz9NjgshOueZCMG9QhICcvv8AqfC+M7kTM7kxfKVgq4ATpeyPF08O7rIYt50P7v6lPRwwWPEaYrimft8mev7BXZah0w9Ybo/47e1Q/AZUOjoPYG/uMSMnFOA+wVGwroC0nrDbv8vOn7vcDEJwoOvJ9ytiwtp/8RnciZn8iL5ykDXd7MVPsk8JEfEkE5PI3izWMXKH66XvvAFc7gPuH8FV9j7/S93zH4sw5MBbac6YsTvBU90d/iLiCD29Hoy8uBFEvxfxHqrPmcoLCouLIPhQtcltXv7x+ys+D6/qCjFmZzJmTwlX23BG+fo90OT0ZPuonbb02x7fK/7Ao0tHB0Q3rkTmYYvAcRd4ZdfFfco6DIQnYtXFL76CywkTzvYotPyi8+/3nmtKXdf90PV+s+/W+hC/IJda/yxDqs543PP5Ey+tHyloOuI2m3gUeF0cYmuxiPd5O6Dyam4/qgA97EmgsdfSdDuFzutIFzbE1uJU78/C9L7hXzo3arr7fEc6a9A4ukH0IXjPYcm+CJ5MqIiXuKL+p0J6dX0GGbm3BeHnJ3JmZzJ0/KVgK461eBvDTGOUNLOgXJ0uueTk7zfRSL2lIr1Lxyh9GwHchEKnw9hPWXtGfJ8wH3WVuILfv+ycrpm0rMvLVoAsT5VTy89zel2C88vdg0dH9wZJqfbDYnedk8S0Z1m/Fex3p3Jmfwtkq+k4M2ZnMmZnMmZPFu+stKOZ3ImZ3ImZ/K0nIHumZzJmZzJL1HOQPdMzuRMzuSXKGegeyZnciZn8kuUM9A9kzM5kzP5JcoZ6J7JmZzJmfwS5Qx0z+RMzuRMfolyBrpnciZncia/RDkD3TM5kzM5k1+inIHumZzJmZzJL1HOQPdMzuRMzuSXKGegeyZnciZn8kuUM9A9kzM5kzP5JcoZ6J7JmZzJmfwS5Qx0z+RMzuRMfolyBrpnciZncia/RDkD3TM5kzM5k1+inIHumZzJmZzJL1HOQPdMzuRMzuSXKF9JY8ozOZO/KfLdf/iSi002xRMdNoVwCKFAKIRSSKFQKkHKBCllb3uBcIKu13PoOyjAN752/jNrNWDXHbGxGGtCQ1B//ievITZl7V1V97e1ltjW1EoXP0Rgw34Oh0UIh3UG6yxWGJzVCGdx4cc6g7XaH8/hO8A+IUI8u5di/FRI36BUiCeator1fTnhsIBEglQImSJlihSq9zyFP1c4mJSyO85T536qv6MI70uiRIISCqXWP917RvircALhwCG7e3bOf7f+2+EwgAHsuoN5r52sELHHt//v//Vf/ei5rVrPQPdM/lZLf+LGLtQd+AmJiIArE6T04BABoj+JhZBd+3oRW1cHETgsFikTcNZPWecA47tZR3R+poh4BhAidIj220sZFwuQcX9pQZje8TxoKCEQziKcxAkJaCzG7+9ABHB29st11+5fXTwG8TaE6H0QgcuFDtO+u7VHO4ezFiefeHY9ie/EPdF1+knA7f4OnbFdeK4d4Lu4eK0PYkOHbRH7ljuxPoSIz8FfZ/egT935M97Zl3hsZ6B7Jn+rJbahF5zWdIWUCKmQUiFE/Fd2Kp0L2pLX7MJ/fc0XP9HXWChwTuCcxDoLLkz48PuTMOdBlu64p7TxqFm5JzQt5xAyXCO2Ayrr/LklXgt2CJwQCCcxTgAakGAMQhCu0/XuxwXcET3ceQbghJtwrBXCDrrC3wKHjJaBBScJVoDFK7UR+FzvLH7nJ4G3/w7X12m8thu2755np0WL9YWd2n+9gIHtrgLC+ulc0Pb7b0r6c2JfsHCeljPQPZO/1eKI2mO0j0GqBKEChYDsAFdICTLxgBWAC8AJ4YEkgmNQjqKGBd6kdk5gncU5gXAOLEipcO605hZN8r7m19fA1yBLp1H6T6KGG/Q3Ec+tAmsQgR9sBNEOSF0AZNOdbw28a6RbX6Y/YwTB04Do1rv0wHctYq2NdoArsdYhpQvA704fYE1kdNf3xe/0tDz57FyfCiI+w56m3Lv4+J/saJOnNXFEb7+nKI+n5Qx0z+RvuUQi0oOqVF6rRUoPtIE6iD8OEQA6TOZOG1pTAP1JKyN4SRE0W+npBms9nNhwDUEn7HOg8fr6gCHlWtPtT3DPlhI+i0AVOd/gL3eiQ0YZvhUBM6QAKwLFELXop7S3Nc/5TI0z/K+7crH+LNjs3WUQjYBwvS5oks5ZrA3KejxnT6Nf0w2Rjug/v/Uzi+fvy1NALdb7uSd3d/GReSpEBGqku1cXPhdP3ueL+YUz0D2Tv9USpi7C67RIkSBEguwDXc9LJKSf6FKsKQUREMIJAij7o0EAtHAih0M4h8IhrMUIgTABeF100njpa7oe8IVfFIQI5/G0hAxAYOPZnPU/qHAkS1TFRGB+jXAI6/x1dcCjcCIJmrrBYnDYHjO8ltPgFcG990kPePufRcsAJzyv3IGn65yN8Xqd85p6IHE6ugH6GrjreNi1uinp0wJeqX2a+ong6KkP0QNad/pm49F6Sqw/lu1ZEoEOOaUlf7Gcge6Z/K0WGbzYUsjgLAs/EWRF0KY617wItMMadLu/owa8tjc9+Io1EEWQEdYiRIsVYK30EQzO9LS66LX3x5VSgJRBSwznlh7E43Z0vKt3THmoiia19Ka881QI0lMdEo1z0v8QqBMhAx3i6QrvirOnlckgz9J6+xpvZ7gLiXRBfRUyrlBr8OvRDP4DgbMyYKl4AvSf9SafNus7e+NJzrx7VuvFrQP/Dn9dj5y2RIPE00q2u7lTijYgxOkF6FnyXND9R//o/+BwgqZtODg85vHuHgfH+8hc8u4br/PGS6+yM52RiBTTao6Ojvj05k1++NHP+eTGHU5OVtSNoTUGYwzOOUzPEaiCFziREqVEWJsFUoiOVF+bWxKHxDiHsRqrDdpYnLVY6/zn4UHZ4KSI75XAY7nOXxmYPD/2ghahArXjItODCyblaDjm7a+9z9Zsxv/o7/wux8sVg9EIpw1pmuKwXNg+x6qqEVazu7/H4909Hjx4wL17t/jwo49o2gYrFaQKlyQY6bAO7721wXxxDqzBaYvTLU5bjPNaiR+fruMOVTRdw4ovXF/b8SuvjQNDeI0gun8QMmhdfo7bwGl5Tcj5pxO9H8IiUH5Vdy7wkoTtuycV9B0R9ybaztJKf3y33oo4Rh20Rw9frBp8heLBVgVaIUGJJGi2EqTo6U2eVpARDAlgK+SpkKd16NP6Xy+dPY1wDmsNRgi0cAgDtnO0eUoggqXXbkO4kzz9qHxolQ0AEd5A984j8Ad1T0SiIWjGIuzjPI9qrUUIFTRMTXxbzvm3KsO7sx3tsBbnelx2uPoumsJfaPedEBIbn2oY8z6czD8nay1CxvEDOIXB38/6XZw6ezwJnc3iZNBMRZj7YdEJq198Mmt6Ol51AOC4VMjesV0ct2v+V4hOb4YQnveX1nRt22KApmlwzqISRTEcsXVuxuVLl7l66TLnNzYZpAOwlsXihNlkzGQ0YDQa8vNPbrG7f4xsNK2QAXgN1vo3YKz3ElrrUFb4sBYJifBOh/i7UhIlE5AirIgSm1ha3WK0xRiLch68bHzxYXUzBB+jcBgnO2ASUSvoTEtBkibkRYFzjp3z5zl/8TLTyZTz5y/yja//Gjs7l0jSzIOOkKhUYVtNpiTL1QJEinOWC+mAy5ev8u1vfpfd3Uf87LOP+ezTT7jz8B5HywVaCrRzlHWFblsQ0agSYREIf8nwzLrx5SePn0+ym5g4P0DW/oAOOrvBGPeTURMLpl2Y4x0gSpTfX6wBWgRXtAtjT8ThJfrPsZuW3eovUKAEMkxUF4E9EGj2S/BfX7lIiehpuBFEkRIXnqkQ3jQWwZviAVeE8DGFCnG7UiVrKkB4J1wwPBHYEM3gf4RVXmtyJoxJ2zm5+qFrnROvpxFG8WPcPvH5OsTKhse7Zp4jIMowSSwW5RdWIRHChvOoTuPultPu+OZUZMPTsbJhq6Dd+23o7ifeo0DgpAdFGx2LUQMNVIPo+Gl/F/1/+pEb68gK0XGtka44fX3PG29ewXPdOW037uNze1IiGaLWR/gymPt80G3bxr88o8nSjOlkyng64/LlHS6du8D25jZbm1uM0gIBjMcDijwjy1KyNGeYF/zs81s8eLTHatXQaBBGYIT1jgTnQdIKg7F+2iopcMqhhCRBgvSrbCIFSiksXpN11qIENGiUlP541muGOB+Dh8P/jQ+bkU5gndd3/XvykyeJzgUB77z1Dm+89Q7vvfcely9fAyR5niGl5PhowXy+9NchJGmSoCQsqppluUIbg9aGQZGjNZTVksFoyK+//03efet9jo4PKVdL7uze54c//yl3Hz1kZbw2YV2I2SSQ89Kbd9L111bHqYVCBC0WOD0mxPrz8J0MZpoUfnGLuxjp38OTDp3weALo+q+i88U/SxsCy8Oz613dGvDjQVh/GpWyuGD8ikUI5a2cLjQsQSoVFMQQJtT3fiO7WF2lElTUkJVCyKTHA/vjQcAvZ4mOLW9AeO5V2oTu7ToXNLMAan1OmTUY+6SIqBH3gSn+tbZ7XbTounfrQVoSTXeHcSoAbi8aQahgMdmwuPvjSSe9xRhN9me8wmiad9+7J+gBJCB9yNjajmCtAAfwtR5A+/zrk6eLgPvEBawVrw5411EI63cfNrd0gCvEetvuYN1YffIK3Pr73rL2Inku6DZtC8aAUOR5Rj4YUBQFly9cZGfrHNPRhNFgRF4U/mCpIgkZJkJIVJpSDAryQc79e4+Zz1c0rcYYgQa09UHjuDU9YPA0gou+CxNiD631WkkYAELiNWDrV2gpFcYKMH4wC/w7U1ZgsEg84Mrw7CLJrqQiSxO2z+3wxttv8+1vfpdXX34NYzXNqmS+WFE3tacshCJJE9pWo61jOCxASOrViuVqhW5blEo52Dc0bc2oyBmNxxijqZsW3WomwxG/9vrbXL9wmRt3b/PJ7Rt8dvsW88UC66x/Ic7TBj6DKAyQ8Hk0+ZwIfJ1bm0MuALYLWqmINEt4nwpICSSCEEEn9c/FBc0khsjEYSSwnt+LjiPpEMZheqaaE1ErWQ/IjnqIWk3QmPxg91clvsQA/apFiiQ40Dx4CpngZIhzBQ98ku5pxAgHn+WU9oA30AAd5RCAhRiv2y1Z63AyJVFG4Zz2QBQUBiHocZvu1DyOzibXRSbA2qhfi79aiROuO0Q/UcBrctEk99duRcxiIyw2PQCMCkHUkkWwaOLl9cGsD0AugrBYb9yBaJiE1uHEOnFDhHEdlYB+mFqnf/fQPi4I3TlF1P5lAF2feRc0D9ZaSNhfRmBeKx19x906G++LlITAn7tn6cNPy3NBV6YprW4QwpGkQ7J8wHg4YToeMxmOKPKCJEkhTfxqKgYMgC1nMNZgrMNJgVCSNFHce/CYk5MFdW0QWuCMwVpwxhCZamct1oFxAoVFI0C0HRhIIUP4jZ/ISskQ4xcHocBaGUxtQ7A2wsvwVIYTwmsnScqbb73BO2+9xRuvvcXG5jZGO/b29nDOslquqFqNblsqrXHWURQFCIGxmlSl5HlO27bs7++jtQWhcDiGwwF1VbOqG8bDzJtMRrN/cgQC6qZhczDl2299jXOzGX/+yScsFnPqVRk4VosIEZYhuAiJ7WJCuwEdV2vCYI/KQVxYelpPfAZCgCJEZIbj2b6GC0TKAiE9vx7MahtmmvM7+31FT7O266Epw8VZLNKJ4El+drjRr0p8llmCUmmgF5IOFyI50D0+KUFJRKKQKqSwqpQkxPT6Y8WJ/URZk6DtRi0xnlslCutUsM5sZ31JKddamnWeS32mBMDtca39pAbv+Fkvo+tvTNg4On4CRRQ03Oj5i0uFd6p5e6YDuUhBCPsMBa/3QXSEuXUcQme0xwXI+tSN/tjoogzCDo417D77OUSQNmH7tUUdHXUicO79CIg+0HaWQy/++Wl58tNwXrFOq3iePBd0i3wAxtC2NcJZlJRIJUlUQqoSP9gSFVRSBwnIPCE3BePJhJ1zLZXRVE1Da1qQjiRVHB+vaKoG0QqUNrQONM4PSgcGvzoJK71WFryuxgbtVqqgmQikTINp7jEiSTLawIOaqvI6gQMhBZPJhDTLKYYjNje32D63w/vvvc/li5dJVIoxGtNULFYl1lnK1Yqj4xPKsgQhUUnCMdL7WIK2kyQZQinKsqTVGiu8JnByfAzOMp7OWI4GbM38YqWk4HixpNXOOxCl4Ouvvc0bV6/zo48/4qNPP2V+coJ1ApVmCOGtDSkEmxsbjMZjnHbs7+9idBumkX/hnkijC2VZG/sRSKELyREhm8aGCdvXpuIvViADYSWcCGAdOF7purkZeWLhvIPGurjqd3pJN04jxSDigvArFj+GFEIknmro6BDV03AcQnjAVYmnH5RUJEqhkgSlMu+PCM63yM/3Q6f8O1HgJDIQ6UIphPVj2QmHCnSEVGuu3liLFYFOeM7j6sDq1JwX/j4CldCZ/QGEnYhAGzReT16zTmmOR3HERGMhLM4Fd5yw3docxcVFub93CBHz16HWerlYn9sTILKzLiCE5YVxt1YJ6LTnNa+8/mIN2jb4F2xwVls/N63tHPjxHtcpxH2yI1oU8ZNwnfF64y7xfkW8+ReP6ReDrrXezHWeTNdtS6tbCPGGfonWwQyyYB1SSvI8ZzQaMp0OOXduk0W9oNEN4FBSMT9ZoCpB3YRoBWM9PWCtv9WwMlkLTgmc0z5KwShU4shSr2dFU0MpxWS6wdvvvs9gOOTe/Xvcv/+Ao6NDGqOD0paxc/4yX/vae7x87Rrj0QQnlDf9paVpKhbzJauy7Jx0Ks3IhGCxXLI8OEY4S9s2DEcTBsMR4xEkMsdZi25ayrphVS0Ct1ugraWpK8qyZDYasDGbMBuPyLIcawyJFGhjGeQjvv7We2xOJnx29x77+3ssT+ZgU771rW/z7ptv8+Zrb7A8mfNH3//3/NmP/5S9R/fx4SDBidYfNNGKioMyBHg7S3BgOHAO4bwvObrrgjLq36xzGCsC1+eCLmSRQmCV9JRCGGhrnHcIGxw53VTpmXVR83IC9ddA411Hx0TONgBA5HPxDjSppKcU5PpHqARU4jXgkFxhw0E759F6BcMFeis6QKWUuMANR7T01xNAMdJhcSHrm7ynltO4qK11yL7IGOna+TPighiZeLV+xyIMqVPgsf49Fufxv0dtfg023jLwUTAmAJFfwEJiSYxf7qiN4HQM7+E03x9Bbg25z77Dnu4cQTpE3tAV9bGdf8S6J6IruoiaOH+itmvDc2MNttFe6C5CrDFYRHB+vjwXdBMlSdKUzA595IAAY1pWqyVVXdG2DXnboELoiXMOjPUhXcLhEkGWpwzGBdONMRurCVVTYq1BKoeaK0RVo2qNar0TSluBsCbit395xmGsQ1mHVI6UBCUdUvhpraTi+quv83u/9/d5+aVXePXV10FIbty8weeff86tW7c4OTnhwsULXL9ymdlsC5ylrluO50vGwwFNU7GaLzg5OfYcMhKDB120ZlWWLFdLjG5RQjCbbmCNxlnPSSslsVazXBzTmhaVZp7KsIamrkmEYCk8P50qhcKSJinGtAggzXLyfMDlX7vIay8f8cmtz3n44D7/yX/4H/GNb/w6/8O/+uf8i3/635OplPfefAsn4U/+sOTo+MhzsqemoOvGjcWFyRE+cJ7CERKEW/N9/eEnoOOn/ICVqPhNmBhJ/N1GoyxcgQ3DtyueIrojuxDyFiNI/xoouniAjbDk72kNvi5wuKIHuJ6vFcFRtk4PVqwdTvgFrT8JnQwgEIEVlJA4keCk51dd2M+/J9dN9Li9k6ZzeIbloLuHtXbZT831n6z1tfVn3iHmPDXURazERTfo6uIJnjIA6Drd2Es/VdhB8DeE6+u4KdldQ6ddhx8Zn1s8f/QfxHuPx3UhVkOG6I541k7jjf+G751PazZO+kxAazxf72z3rMIFEXnI3vLSvaunBuraG0zvpvz/vpAGWstzQdfo1m+UpCRpQpIocILFYsHh0QHTQUGaKorce2Ct8TGzdasp64q6bdBYpBLkecpoVDCZDmlti5OgUkVWplSrhmrZULctSmu09nSD9eoSzjm0A4MlCVqxNhpJQpqnXL56nb/7u7/H9//oe/w3/+//mu98+7v83u/9PlubO1z73ZcoT+bcvnOL1mpWy5L7Dx5S1zVCCoaDIavVkoePHlPXDcvVkkQlDEdjlExYLVccHe6zWpbUdQt4XqiqK4ZyhFIKF7TZ5XIeOHCJsBYdtOUkcdRNDcIxHAyQaUqaFeAcdWNpqgaaliLLWC4WzAZDfv3Ndxh845t87d33GRUF/+D3/ydMpxv83/9v/2d++uGf841vfJMr166xWC3RTYvpAtnXWsc6KNwSPcjOOqTwIXpOhOgRt56McXB7JTbsYyxOSGSk+8LsiBEUhgjgrgt5iiZkDA+KmjY9g809QXv+KiRqWggZYp5lSIyg41al8pXGhPRlA71Wq0IMbaw61qcm6KwO1ws7EiHLChupCAdKgUtCBTBvinj/BHgADZw6rnM40XNmQc/RFL2h8d56BGnfk7/WwNehaULEhTmEj3V8bWD8g+YekyzWMalrAHIixI2HhVl0lEF0xPYffPjbRe0xLBvi9DYd4IXH6K0vh4rFcbrtXe/f+Exk8NMFP48M+q2jZ2W5aAp2C2X83D+vJ4A8hrP29/8FnRTPBd2qWvoaoklCnmUkMkEbzWK54PG+YjIsyIuMRI0QwmFaS6M1VduwKktvkpcr6tbH+SaZYDBOGNkMJyxZLqnKjGXesEpqVsuKuq5phABh0dpgBV25OR++ZrFCYzQ0CC6dv8777/8a/+Qf/2M+u3kTI2B5ckxd13z9G7/BaDQkUZL5YsXxfI5zPj62LEvG4xFpmlGtVqRZxny1wvOwY4RTrOqKo6MjVmXJqq5o2oZECoo0wVkYjoYYa6lXKx+G5TwvV9al56SlQuBIkhlZMUIJ2N/dZToZM5tOGQyHTDY3WZUVTVOxXC5IkwxLyyBLef36K0jnONo/4Gh/H9doNqczbt38nD/53h/w1rtfo7x+nRs3b2AbvdYyO8iL2oePAY1RCx5MoxYUHSW9Fdr5fa31zhYTQEgRJpMUQUvz2kgM17PWYS2Y4MCMA9wbQrYDa+UCQ2h/9ajrq4nJDkzjBIpZYDEkzIeUheiFsM86GSJ81ivn6CKvE4CiSwp2wTXnAoUR4nud889QWHi6dq0/rwjVaJ11T2lgp0oX9t/lE3gQF17RM3HifYmwuMYxtKYKepYSHkzXBw7jTIiOYomWQyQbIn8cTta77rUW779yp77rX/Pp+wh+GmHXMcfrLXv/+sXCWo0VAmn9NVoIzzm+6+7JnOKHn36IfhvxxD10K8KXNN2eC7paNwihyJQkSRSp9Brtoq7ZPTpgezZhczZlVORICa3W1K32GmO14mi5YLFasiqXVG2JoUFljnyU4GRGlivyXJMmGalISIRkKQRSNvigMoG2GmdCdEJYqbWxCGEYjoa8+cZb/A//6l9x49Zt0iQhy1LmZcUPfvinJNmAy5euIIVg/+CARV0jhMAYw6VLFyjynOVqhdMGrGM0HMJwiHUwny+o6oaqaWmtJksUrlUY06C1QgJ5kpAVA1bLBW3dYo1huTyhbRpq3ZLnBSBJ0ozNrW2yNGEyTajKFcfzJUhJ07akWU6aZQzdmPlyRbmoGeYpn37+OYNiwMnJMccnRzx68JAkzZhtbtFqze7jx1y/dIWjoyP293Y7XvYpviB86HqgYEUE46jdrg1Ej90hWD8QVt5D7TnIBHziQCwTiMNYMNahrVkfz8mw39p2FM6Fc5+6uF+ZRJBA9njdoOF23K2IlIJfbGLGWkcvBCdRl7oblzQRQk0FdFkondkeP4qTWOL9XQ6JX8Bg7WX3hb9lSEh1HQsRzXHg1Pv14ug7i2LCgXWxmDhEbnit8Xtu12K6MeHvjRDBQGfleAvceSshxDkrodbgD+tQwz5q9qiELppFCIJZSxd+EzbuZz72B3ccp/HYp8PI1hqqz6TTGOvfH0KGiJvT+9A7T7cQdCRG/Dl9DetzfHl5LugOh2OatsI4b1YrJdDGm5xl1bCqSnRdY9oWkSQYa9Hax6Quy4pFuWSxWrKsllRNiTYaJxxJahmpFJMmpGlKIlKkVd3LlaUCV2NFC1oghMFon8Hmc8AliZC8/PLrPLx7h/sPHzEeDRkMBmTFkGI8Zjgcs3+4x8ZkSpKlXrtzDt0aLlzcYZDnHJ2cIKVitSzRxiCEJFGSarXE6AbnDK1uWCwXlMuSpip9QoRKKIoihKMYhBDMl3NarWl0S1mXtG2LNhaVZKxWSx4/fsT1K1dI0oyd2YxyuWR+fIJKU4QqGQ4H5IMBCIFKFG1Z8dHPPmJzOuF4Mef46JjZbJtLl19mON1ENzWZStjYmLG9tcNqPscYg9aaGAVioUsuOjUshFtrIsJPfp9B5M1TGfhE16cFHFhpu/3ipMW5LurIuegA8ls48eTg7H7zk/EXG6tfiZx2oAUHlwjVxlSCVOuC5WsaQYW/Q8RDiBCIxzjluxfRpO/f/zrzrD+Ju/cUaR2/abBgRadJxyiD01HYT//+tL7sN5EuZqud1s5EXBB6+7iQRkvoqNCP447XiZQBbFWIL14f18cfeRdsh7uRchEOn5TRewoiRo93Vxwu5Ik/gyM4jtG+xtk9axED1PBWW9TGg2WyVjOCBi/iEXqhbOEuYpECF8233oU9SeO8SJ4LupvnLrBaLaiqFc4arPVpvFIpMAJr/YP3GoAiEd48qmoPuquyZlWVrMqSqqmodYU2NUJBliWQSJSyCJvijCJ6wmXiX56qBFXdorWkRaCNCTnikslkzKULF/jopz9hOBoxGU+YzjbY2NxmtrFFPhyQqJT9kyOUVFRNg3UwnUywbcPBYcP58+epyprjozmj8ZAiTXn4+BFGa4o85XhxzPzkkPnxkc+AU5IiT5kMCibTKePJBBAkKmE6mZJKSV1VmLbFGo01LavFIc615EnCweEB+WLJaDRiMhmTTCaU5Yp6sUQ3FVaIQKWAMZbpxiZ1U1OuKl5/9wOK4ZhyueS6tWirWcznKCl56y04OT7k+HC/S610iOCt9Y60NdngkyR8/GUYVCJWnFpP9Fj2z2u5wmthDmQvd12G92WFQ0qQViKjsyiYpaLn5IP1xP/FWLCvTkTUrIhmpkCESAWpTtMIMoT4OSUQSegkIfpgGzXPmPvvUTQWKl/XyzI9sPfFbmJxGQjvJZqwbg0mhIhqAZ2XH/f0RF+HQK2/jyF8YWnxCyvrFFp/nSLEUwdAjSDUWyxOvbmo5UuFJCxGRO1R9CKoYtCZCkZPKJYu/DFcrFsgpNe+XSAl4o2GouwxvddbB5FE6wNeeH+hhKUIWjjhb2tbhFAYqSBQNCJQmU8r4t7miFE70bqIgN7PUPsr1XQ3N8+R50PmiyNsW9E0jXdgyTAok9QPPCQqvABjHXXTsKpqqqqmrGtWVUXVVrS2Rbs2xNoKRCqxWpLlDjuQ2DDusjwjy3KyKiVZlpSrOixSImSmKUbDEeVqRZIV7FycsrVxjs2tTcajCRubW96bbBqOjw853N+jals2NjbRxjBfLHjt9dew2nB0dERR5OhGc+vBQ4wz1GWFNi2PHj6grmuKLAMhyRLFcDBkNt0kywtGwxHaOk8PpBnj0YSsGJIdZCyXy/DSfOWkxXKOEGCNYWM6Y5BfZzrbIC8KmqbhcH/PJ5Q4x3K5QiFQITMqG4yoVyV5NuDyxYu0RiOFZFWWSKOZbcy4c/tz2rpktVr46kzOoq1dO2+CPtbNRef1FuHAhhAyEQaxw2tDRvpJHwdbwN4wMDsVjKgDJUqAlV2UAkHb8BRFT0cSgli39VctpxWoNWfb74G2ph0kLrbuET6+9pSW23HCAcRw4PRpxUisNco1LbHmCWOW1mkd9PT1RgDoajnAE5pz2Nb2v1uH8XW6aG/f/gX2HWCdNtlbkf1YiBx4XHhU4MYjWAXtNdzIbPs1zl3/DtONKZSHPHr4M3Yff4ptSwQhvh2HwARuN8QyP3X3T5r3LlAxdO8qZmpa5SlKiUR5lRxrjde6u0pxfeIghOIJv1cXZ91ZKWvgffKNdH/9ZTXdwXBImuZIpVjMD1ku5jRNAwLSNEWFHHXrHNo6WmOo24ZVXVFWFWVVU65Kyrqi0S0WA1KSiBThJFZbnFMkUpEmgjzLUEKhrSEvGrIqI88zTpIly+WKpBG+OE6ScOXyZbLhmMlsk+nGNrPNbWbTMVmWs1ouOT7YZ//wgFVdkSQJaZazWC4YjUa8+cab1FXF4fGc8XhC01TcvXeXuqpZLo5ZLBeAIM9S3nrzLa/ZS4GuW+qmZTAYMB4NKfIMkRdYB7quqKoK5yYICdtbhqIo0E5zsH9I2zQoJbCtYbGc83hvl7qpGY2njMdT7GyTxeIE5xxN0nDvwX3aqmI0GpLnBQeH+zijuXrlGm+9+wGbm5tsC6+SltWS3/yt3+H45JiqKhFK0DY+JjpWf/KDpzeIgxYRq4fJbtITtJ3oPhFd3Yb1lPeDS3XmmNeGlXQ4Kda0XNhYEMP/4jk7Q/CFA/QrFxcmW1xUOhphDbTIdbSCiL3SItgE4ImA08cEn4xwGhAgamHhGVkbTGz5BGj6hTP6MWJkSP/4IlbRIjaZXN+UV7LX7wsIFJuHs5jQ4Pdzp8HCRTgKDrTu2DGszt+zB9xg1ciE4eQcGzuvceHa+0zHG1hn0dWCew/u0O7WfG30MoeN4PuPar75a/9bvjuBo93bzI8fcHh0n73DW1TlkU++yhSL5T5Ol8hgk9lepEOXKfjEy3QueDaCZiEDZdbF8dhIdcTylacXVhf+XZd0VMhohQSrxpecPB1e9jTt8MXyXNAVQpHlCQM9RLcNq9USbU3gunztTWN8R1NhDG3TUlY1y9KbxOVqxWpVUukW4yxCORKpkCLBOYXWfgUWSKRyZFnikwZw5G1LlmUM8pwkTUgzyWpZ0dYtaZIxHAxoqoat7R12Ll1lUAxwbcX+40d8duMzFosFFhgMhrTGIFSKM5bJeMruwQFKSooi5/DwgDt37jCfz2mrEpUk7Fy6wje+/gHf/tavc+H8RVSSsiorpJIcn5yw92iXBw8fUJU10hkGeYrLFNsXfAGgc+e2KfKC0WiCShN023B4eMjnN2/z0YcfcvPzz7l77z6rsuaSUIxGI2azKdpZjo6OyPKMjY0ZD+4vefz4IXVZkeU5Wmtu37rB3t4u3/nObzHd3KIqK4zRvHzlOucvXuLx7iNWZYmzJiiiEXhdAJj4cgnUQxyOrgPJmFHVH0MRgCP2WuHQiA5cvcfaRZWh89jH2EoZw2+6w0aP+K9WLD5wXoUFal09bB1LKqQC5SMYYulHGbRUGcxrYG3quwhmJjyHSF/4Ce61JfnEj+sBb+R8w2E70F2nNsQNooYbzrDeJ1ghT4YCQsCTkDVon/kK3FN/WSLfrXDCh2JJfDZqPrrAa+/8fZLZK2xuX2C+qtnXNeloQCtrHux9xht7tyk/S3nl9Xf5dPWYf/PzD7n40iu8t/V13rr6myxWCxJhGaWSaTFgMhixv3rIZ3d/wB/+4f8JXR9GO+208tC7Sk/RxIxLgXQhWzKsVvEpGRtGu/KcfPdOIqhHK0T2/A5BOREh0nztJzkFvc8ZaWt5fsGbpkWFNF+lUpIkJ898XrNE0DQtZV1T1Q1JKljVFauyYlWuWCxXLJcr6irEkEpAKTKVokSGswJcUPUFOCxJpkjTAin9sfM8pTUZSS5Ic0FepKwWFc74WMpBkSNUTrlYYKoV5XLO3Xt3uXP7NvlgwGy2gW4bZKLQbcPWlWsIIUiShEFe8PjxI27fvc3x8TFZorhw7Trf/M63+eCDD0iEZG9/n/1HHzKZzWi0o2lqxqMho+GIDz74gNYYFkdHCARZkTOazhDOUVcV1apifngXhGQ8HlGkGe+9/Sbvv/sON2/d4nvf+yMe3L/PvXt3MG3LxUuXmE2nlFXN0cE+UiWMxxMGg4L93cfs7j7CWEdb+3C8qi55650PEEBZlgyylK2NLZRMwVYY7YdBzGjqD9Lod4iakw3OsgjOAl8z14aNRa9uQqdlhcw24YJTDIcTkkS4LisrRiooBxF6LA6F8DywfXrq/LKlK4YSTGapet1+pfS90rq266ENew8s6aXMdhpjr7054K2GzibtkRmRaiBMcuFzCZwTWIyvwWEjuDq6WrsdVRM+c2tA8a8wmMkxe8ytz9zV5egAG9YLoOnOZTug8geN9W5djNrAa/0b17/L5kvf5cd3Dqj378CHH2OSnHprh5Foafb2kLfuIB/d5N7du8gffZ9HLmFvssPj2w94tHOFodC89drrGDHg/GyDyWQLl2ZMBxm/9f7rLOZH/OBP/q8g2i9+j0RKwkczeGVAdDfuO23EzDMRPIm+UFYE2o7xDqnQwsV0YcI2IYY56tpRS+FZ/36xPD9krK3RGtpWY40mSVKKYogxGmthvlyxf3RMKhR5PmBVV8xLX3FruVpSVQ2Ntjjp+ck0T8mSDJxEa19VyNeFNb6WiFLkeYoSEpVIUptgSVA5pKkkSxOSNEVXliRV1HXJ8WIPISRFntPUNQ8fPUQ7SxbCsbRumeRjLl6+wmQ69YCbpOw9fsSNz2+wf7hHkmW89977/PZv/TYbswnHh0ecHB+zPDnhZL7kwf077O7too2hKDIuXrjMK6+/wWA4om01o9GYB/cfkOY5H334Ex7ev4t0MB4VpFnGufOXuHDhMtONLdI04cqF8/xn/+k/5N9//wf8yQ/+hFt37rBcrdjeucBoOCSVkqPjIxSKw6N9NrbOsVgs2X34gLb1ps6tW59zeLRPUQzIs4JBPqBqSoyxVK1P05bQBaXHqmMdQEZtx7oAOAFAXUzTDYjsQhqpdd5/KwRGhPHrfEowDk8tBICNwfXR4lo7dkBaP0E6IP8Vi7UaQjyykKJznCEErivXmPpaCzEONXKXkU6gD4ymA7uODwzn6kLFXOiR5ghOKx/jK4UP5I+WQ8yocqdO40IGYqg05ggmsutxj3TnX1caW78D69bX26dCosZsI/ASy+JEzjrwtfjrTs5/g+PRe/z4J5/i9Iq2tbhqRT4Zs9q/Q7q9w+PHj8hLzcCBahv2jpdUkytMt6Yk924w+vkfU6aSf/kHFnvxNdTFd9m4/ipv70z52pUrbBvNd7/5v+Te7R/yYPcH3ZLlOG0rec0+pLpjg4baA8bofHMAvgSsQ/v7EQkx9lh00Rb+WLECt7cFo+XoF9xnarZfQtl9frseIWmbFWVZYo1BCuerijlH2zaczCtff8HCeDjGOMuqLCmXK6pVRdsaHD5FNs8SBnlOJnO0NrQ0IHzdXJF4QJBKkSTehEFBrhROKJIsprd7TndhGuq6QteOk6NDdNv6kKti6LNVhMS2BjkUDEcDNjbPcX5nh9FgyGwy4dPPPuXh413mixMQkvfee4/f/O53mB/tc3J4QFPX3Lt3j729xzx8cJ/79+5QtzVIRZqk3Llzmx/96AfMNjbZPn+ZPM04Pj7hzu1PKQZDTuYLjg/3GeYZ29tbGAP7u3uMxyOuvvQqIrmEdJbvfOtbSKX43vf+iMf7B5RNw9bmFtPphM3NGUI4qnrIYjlnZ2eH+ckJ5dEBSSIpBgOq5YJ6ucI6x+bGNiJXNLoh1ly1EUjjGh7ivCyiq6XRmUhurQFjRcf7xe99IL+f/dbGwe18ny8Rq2CEvl/O+hoDUWMKJrPXLYJlLBzCfYkR+hWLtRr7BFBGgFmHivn6IP0KVZGSiXVy17zoepJ28oTjpavv2uNSOw01bCuD9qWF6EAwBjB5JxinNNzTZ4jb+OScrtB5/BE8EZngemDRu7ZwNiF8HV3CIuGcRMxe50hd4t7tn5CmjtHVGVJnbO9coRCKebXL+QQ2r7zK0f4lDr/f0ipNee0lxu/+HdS/+wOKz36Ak4706puMRlPakyO2q3/Pnzz8Mfdeeouf3LnKeJBzbucyZvoqPP5TzyWDX4yehXnOc+Tdk4prTdRYQwESIXw1Q2dACNOF/63hPPo4Qj3h7ukYBBbh1DoTODpc8YvSi+S5oKskNM7RthXW2OA4AITEOkNVtxzLklSl1I2nHRaLBYvFgqqpsE6jlCRNhNdy0wIlEoz2JRqRvmWPFaBkBjK0SokAnIFQPv3UWIM2jqrStI1v2ZNnOfOTY7SxYDWpSqjKJa1xbGxskCjJdLLBtStXGKQJq9WKw4Mj9vf3WS3mtE3Dq6+8yne/9R3ywQjnBJ9//ik///An3Pz8U05ODmnbBmOdT2TQPtZvvpwzHo2RScrh8UfUbUOiFKvVgnv3bvuwNqVo25KTkyNu3bqFTBKmkwmXb97k+quv8frrbzDVhpeuvcTe/gE//+gjHj58SFlWLFebpGlK1RicdUwnmxwd7HLxwnnK1RJnLHniM+iqusE6y3g44NzGBT9UbPQArwPFugFqY3h9GJQ9ysDPvzCSnO1KSlrhSMS6LkMw1oLGFQabE0gbIjl7cZMxWkqKdQVYP5TXR/tVim/1ZFC2xTkNLsMFMiTeq3dU+Vbp6wjl0/Gs8al2YWendLL4bF0X2x0dWF10CD1gID7TkGggtHfcuPX33oEmscIELl76oi4iIUkSknRENpxQZCOsgzwvaI2mWh5R1UtWywOsXnW+P8/hh+zC8O79nYY76RyyAmRKPbnGY6MZzlp+550NZtIhxQGfJFC2Jb+9PeHyZMzGxkW03uRHV7YpphPUhfN8dgyLf/if8tpbr1JYePDa+9TM2Ht4i8mnP+QiJyj7iL3Pf8RussOd5ducP7iJIlYd9FZGTM0JD8zjRkcTPOEc7JacfinLjuUNqdcKKdOo0+L1XNtZPvG5d+nWLjyXbgn+cuP5+ZquWxf6aOsKZAJChYI1CVkhcSJl2TpaswDTcjI/YbFaoHXrNQSVkKSSIi1IZLqe4zKEpqgQpqO8iSWcwODTI5VSiMSHk6Q6J80taZ6g0tSXaEyG3ousBPNV6dv/CAnCcHR8yE5+no3pDGuhblqcdhwe7bN/dMhiueDyxUu8+cabNHXNZ598zOOHD/nwwx9x4/NPODg6pqobX1oP/zLTLKVIM0ySYI1jVZUYY2h1S5YXvgaD0bRNS1XXGGOwxrcnsg6yLOPew4fcf/wQYywXzp9nMp1x/cpVdh8/4sbNI27eusGFcsXm5rYPR8szjNGMZ5vs7j0myzJUmlA3VaB5jOeUsxyEIk2TENolMV2H2aChRp6Btekb2TARB5BzvcETnRZ+YYyh5n32KmqJwoWMKSFQzhekj/47rwlKbNBA/BgQfy00XeGC1h7rrq7JgHXnAusCMR0KxEQ+lwCUwblyyvv15PwLWr8N6dKdOe/iBBdhofQGvYs8qoPYMkxH0AgvwVmHVBmTyTZbW9eY7bzGK9feIiumWJkxLkbkwwE3jlbMnGBzNGClG4RoaI4f89PPvs/Nj7/H/t4NhG0C5bDuChFvIsKK/1Piih3ulEvy2THfvVLwQbZg79GC+WLBlthlMMqRw5bH8xssyne5y8d88O63abMJS10wm7QMVgdc/f3/GcPZmKZasViVLCcT5oNrvH/wEDk/ZGf7EgtjOBidcPTwdp8N719VeI/h2k4t5uvvY2afd2LGob+mEYRwOGFwRuBNbx3ANr5SSYzqcL1ZEPXhbgx8CXk+p2t0KLScgfD1YpNQhS7LhwyGGYQA+LKe0yznzE9OqOsKh0GplCxTPu42zVEqwTYt0vkMFqssCBscEyKs1hKpYzm6UNlfQZpCqixKZVhbcTw/Id8ak6gEbIvBl2jcmM148OgxLvFV/du2odUaYwx7+/vce3iPummZjqfMJhOO9h5x+9OfsVot2Nvb5e79+8wXC+ZlybKq0NaRCEWSSmqtKVVDIhSZUsjETzwlFatViVCKuqywVqO1pdYtrTY+px5BozXWOcytz2jKBS9df5mtrR22Ll5iNpswGg7QbcvD3cc0bct4MvUJIcZQVSuG4ykH+3ukScLx0SHWaPKsQFtDlnn+eDqbYVpNWZXRb9CN025+s079xEk/2ASBY7eBG/OcVWw17veK+xG0WdcNXEuICQ4zwIfWuI6rjEausFHz7spo/0olZioCp8195xcFGcx650ISCGvawUt0hHlC29nglAtkisdh662lTtO1Heiuj8Gpv23vmfuQLIVwDiO8Njve2OT8+Vd4563foJhepzKCRkv2hGHvWDOzAjlo+PSTXa6gcNOCn69adGv59mRAOrzC1ssbvP/W73P3/o/5wz/4f7A8vOG5zrAQBZYFicB0YWSCk2xCbUt27AaLKuOfHx2gVzVtCbSGy2qLRw/u8d5L71A+vsm1a+9y88YtBqMJP8okejpDnR+yKw6wtz8kvb/H9OYtvnb4GNcYblvD9mCDNMkYyxUfjAb8IEloqgBxHTdLNCFArAvxeKuh+/KUdArradUiLGQOh/FWBconBAnnaQfnaQcP2qJbLEWH4OG9fgll97mgW9c1WZaSJCkqyTFmhTXG56RnGcVwhHQJTdtQV0vKqmG5KtFaIyUkSpCmgiLLSdMcZx1au84sdVikdCQKb9BZidIy1BBwxIpGwkli1XlfOUgg7DpmMAnNAbVuETg2ZzMcCmuhtZbZdMaDe/e49+ghVd2Aszjb0jYVn332McvFCavVioP9A47ncxZVTaMtw9EUKaWnL5wllwJtDcZaGgGZFSSJ6gZqW9e+8ItxNK3BIhgNJ+R5Rt00PoSuqsA5jHmAblsODvfZODpgOtvGGUOaKtJi4GtCYBmPJhjn6YKN6YRy+xxFmrBYHPvJYB3j0YjxaISTlo3tDZyE5OTE935L/EAxofMFwtOQxnqTyhqLCQVrgjpLDLqXUuG6tuBhkAVHW+eMESJAxNooiwgfV/7Ic0nnqYpoTqsvqRl8leLCpD01h4mJC8GTHb9x7tQVr60F1uFeveaVMZLBOuedYtZ3AXaxxgAAaj3r3XoBWDM0PpxMWhBqwM6lt7j22ndok/OkoxEHImX/oEKJlNttxd2jkt90lpsZfFwN2GotW9OEf6drnNa87RSfWM18XpGSsCot7fZ7fPf3//d8+Af/F27f+mNAdNp1bM8jgpYrkJSmROYKuWqR+wOSuiCXCkGFSzWr5QHJsOCnxw+5sH2ZO85g22Ps0R1+unhEXmRcE2PMUrJ7/xHHieTnJw/ZGGxzvzlmunmRu6JmPJtyZXIBZaAQijq+h85cjl6C7sX1tOG1NhqB0otPOHLdPfUyCcN+MdbXGl+RTwRrz3O+vVoPMc5XRAdcf+H8Ynku6J6cLNja2kApRZYVmLZF6wYJpIkiTzMQqZ+8zlE1DU2rcTiSRCJTULl3oqVSUTcNxlhfTEP4ojUy8RSDtKBNb/CHAeucwFrPHxoXy7RBkfnEicl4zGJ5TKJ8oHaaJpy/cJHjRUma+0yx+w/u8Xh3l6qumB8fk6SSyWjAYnHM4uiQx48fs1wuWdY1dWuo2xYpFePhmOVqSVFkDEdjTNvQ1hW69Xyy7x8mUAkY68PYGmupW09JJNJ3GnDWYrWhGGQYbai1wa5K3N5jqrZhvlxy8ZJGJgqzMpSrE5I0ZbFaYY2jKHLydEC5mvPWa6+znB+jmwoc5FnGZDIjLwqy6YCsGDDZVmydv8j2bMrO+fMURebxVHqnkHMC3bRUVclytWA1X1BWFdYE0xZBXTeUizlNWeKMoW5a30beWKzxrZiMc34AhapSvqW8nwjCRa2E0C/Mc3BJsAqfqmz2KxIf83p6svYnqBD9HP3ednHW9j6UMaKBNaY653x3jlBb2dcAsN3xZWfCBiuin+7kvGJCkjG78B7JpV9jNrrAR/OKa+Mh9+49Jskk74x3+P8+vM0DmfPBquWTy1t8nCXsWMGvTwZ8qFas0oJfEwM2i5RbbcPWoODrGxt8dLDHQSt5Y3KZ1379v+Dxoxusqsch5EoGaqlHNghBimagGww1d3cfYquKNFEUqcC0DaNRQpZKhplB2F3UvUfkODKh+MbREYV2WLHHz3CYNANj+eD8dRQFR82K8yKnSSQTt8It5xxlU5bVYRcrvqYW4qLeJ0N6j8+dfp/dghZos+4hd8ddfxI1ZutMoB+Cr0nINYMUk12c4slreZ48F3T3Dw8pioxikHtyPstoTUOrW3JnfT8o4SkCawxN603TJMPH1eaKLEuQia/s1ejWa4rOIIRBKF9hTCmJbmJ8oPGmggz9uILKH4u5tK1Ba8dxteDaRcnlK5e5fUcjcMhCUgxHXLl0lQum5fHxMUWqeLD7mKPFCYv5AtM2JEnBqChYLudUdUXdNNTaoK1FO4t0ho3hgEvnz9HUQ27df0SepmRpijAZw3xAXmS0bUOhEpyQNMag0oSqKmG+xJYVhbBcvPIy5weSP7/xOeViTpakXYWjpmo5licIoFqegEy9485otNGMRlMarcnJyVPBpeuvUGQpN8qSIs9xFlSacenSZaRSbEynvP3W2zw+OaGpGq5ducZLV65w/dpVJhsbpFkalCrfBqZtGxbzOYuTI6oA4m3b0jYG6yxHx/sc7e+xODpiPp9zND9hfuJDAS0OlCVJJUpJEgRGW+q6oa4bnHUkeUo+HDEYDEnSlDTPfY85maCNoVwsXzhAv2rpish0wBscJcGq6jvN1o0dodOJOyqBuHeYwFGzDbG01mCt9iBqIy+8TqqImpsvOO+1J4dgtnmdwaVv8sNjWO1a6r3H7FQrbowk+6bm68WQfywln4xzXm1ysksTHm/k/GYx4+uV4d/Klmy0wXsiZ1Nb/qhdsZOnvCYKPj7a43iUcbVNKZua5fZFfv03/gv+4F//IyDE0BMtyi6imIFtkNkGqRPkxYCVrdHtirIFIw3CpLTpCF0JmrbFrFYUSCqryVXKsasYjydUJ3tcGU7IsilOCZQY8rULr6KSEUUxoGkPGactjz79Q0xbh2flwxdjKJgN+Ns1sjwFsK73e0/bFcFiJhaejK+gB8AuasDBXRfWWNsD3GD7hf0iWfZifuG5oPt4b5/RMGdbbSIEKClQSYppa0zgSaVwvsGk0RhnUakkTVPSXJIPfEaZEorW+s4QzrUIYUA1SOWQCXjfr8OGmgGRK/Gagw0xzwEotKbVmqpsaI0hzRJm05m/JhxpqpDSYQ1MRhMOj084Ojri5GRBVS99aTeTcXCwB87S1DWt8eUbkyRFZTnV0nF1lHBO7/Hp0YoigTQbIBxcuLTD1tY5VCKpFicIJyirmvnihNF0hhOCffmAut1ju7Bccw/Qq4TUGJxSGJEwGGRgbWjD7aunncxPKIaezjBa46SkqSsGgxHOCt+iXgp021DVJXk+JEkUSZby5isv8+jgiNFoynBjg8reph068tGY6WzG+fOXuHjxPMPRaD0YA8CWyyVtW1JVJcZKylVJ01YIB3VbcXJ0wKOH9zk+POLw6Ii9g0NO5gsf6pNJhoPE00OBqmgbQ1XVqCxja/s829s7TGdbTDe2mE03KQYjrIWqbpifHL1wgH7VIsSay312CJI3+z278BwtJkZyCIFzXqO1oUDTKadZxyk+OT29Nhwdk2k6Ynrhbabbb/HHe5px2/BoNUdXNVZpfr59jd8eXmbTGT7NHP/BZIfL8xX/VC7YqBzX2hG3L0xoKdmwNZePJfcvKq4OJkzKCnfcoC/MEHv7TE3Oh67m6myKe/WbXP35ezx88Oes9T1BLGYDgqJakkwELYKN6RYjJUlsg7KORbNAJIo8kUyKKdb44vyta2n1ktlwRl0dkljD1668zTiZ0LiEe6v77Ex3eEMNOTGG4TBDm4pHDz7BLHd7mml4b0QAXBMDnDI8nn5XPuxOdT4HQlLMekvRWT7rs8RjuS7kLFJHstdos4vY+RKV+Z8LugeHh2xOB+R5wnBQ+KQyqVAqQUqwxlftsabFWY2QDplK0kySFYk3i7MMnKJ1bbhJi1QGIS1pqlApWK3DoA6cYTBLLZpE+BbqMb5OIhiPRrzxyhtcvnyFh/cfMBkOOTppmY3HIBXLqmJVtZws5jRt60sumhbnIElTlJQ0VYmUAmNaX4c3sQzGExwJk+GMZZbRmASb52yNc7Z2zqOkZHNrk9l0A60NauMc1lkODg8oRmOGY1/wxqxqrBUcL464VxWUGmbbl1CJ9BqiEFSrBeVqiRQC3TTUdUs2cJhW47ShsQ1JkmKNpqyWqNGE/SNfeEgKyXA0QTjD+Z0L/PzzG4w2Njk8muOUQyGpbEOjG6wQoARp5osIDTLPPVpr0SZjPCwoq4qmqmmNZWdHoHWLw9JUFeW5bTY2Zxzt77N/eMzk0WMOjw+xzlAMUoaDlER5jcAag259iM1s6wJbmxeYTjaYbGyyuXWe8WhKolK/cDY1VV2+cIB+1RLB0PcBNF2jzn7MrC8c4zsxWxMtvJ45GjhD0R3Peiohxv7G5p+sNbB1jLTPiPJtkVqMcwxGO9iNN/hslXBwdA9VGz62DtkYNmZDfrxxjtcbx3Bi+JcbUOiUZNXwxxemZEXCSNVsHjru2QWX05ZLmcCNJ/yzxQHpwZK/p3Lubsz43qNH/MfjnHJRMp0KOFhwYg3Xrn+Dh/d/6jVxsYa1WLMgkZJhklEPhhwf7XJlc5NMOExdszWbYLCsmhpjGwZJgjQG1zRMiwmDZMRkc0auchSKYT4hcZI3Z+8wTAcsq5KLGzO0bHjw6CHzozt40JNhCQg+HmJ0TAy5C7yrUwEAJTzhqu0qg3XaaqQKYhxzn931P+sY3bXmTMCpTqsWxnO7wZfxInku6C5WJfP5giJXWDMiS1IkkKUZSZL4dcEZrPHFbJJEYkhIUt/iJ80KEpXRtr7BZCwi4bAIJVCpT7E02nhng3eVhtv3//kydz4GMklSprMZm7MM5STL5ZJ8MKCtK87n55EyoRgOKJuGRXlM2XgOdlUuacoSqXy4m8GyqjVpyDgaFENQGVtbOwghKVcr0qJgMplxIcsZDoYhIy9jOpkw3digDe11kILhcIw2xjsd04IUwcW6YnFyRJokvmGh1ixXC7CWNC84VBJjLUr6V143Lclq5QurpAoaizGWVV2ykU0pV0tEUSCtj0HO0pzRYMDJasHJqiIdTrmwM6IYFlzaOc/xaolIFaZteby7x6pqKbKcYZrhnGU8LFBpStXUSOGLOw8GBYNhhpSStq2xgwHNaERaJAyKgnw4RGUJ+XSAaVuGw5TJICNNvCFqnMZqw3AwZjK7wGi8wXA0ZbqxyWS8QZEPkDLBGE3btl1nil+lxAXIRseitRijg+kfdDspfbxxDOfCeeB1vTz9HkXo3Lr1tw9f6L5aa8sCnDMhRofgF4Gs2Cbb/oCPjxWptTyuKl6fbXCiG946KZkPHW5nwrvqHDc5Qds5b6TbvKQSHiQrZm3L9ZXh/rmc/+dyFzM/4r8sN7g5qPhp/TnnxBhpzvMvlh+xEo6lvcYfyBr5cMlrMmU6TBhfeZfB+ALlatc7iIREyBSVTtjYvsLmtQ9YFhd5cHiPXN5jfnLIRpaRqoRU+6zDaTIkzXMAlBgxm53HWUNRDFBSUVYrknyALXLGLQhrSaRkcP4C8/qQTz77tzx+9DHS1V6XPGUa9KmfkBpNb5OnzYjuXccwxtN93dY1L/qUev+9QX+dFT0odl2CyZfNsHwu6JZVTVWWVGVKmjp0kpKqjCQbkAbHlTUWY3xFqzRRJCIlSRxp5rO3cGC1C5kfPuHCSRe0XNWl5pngORe99s5C4HPQnY+/TdKMohAM8ymT4RQpEnb3D9AORkXOaDCk1JbFqgTnKMuSxXxOuVr5hyN9dk/dtGSJD4TWrUGphJHKSZViNtuknU5ptWYynuCc18Sl9HVPh+MJUkhSJbFtg7EGZzSjokAmviX95tYm9vAQwRSJIFGStqmQqURaaHTLcDjC6BbpfJo1StEa7TPqkhzXaLTxwHR8dMTG5gbOOXZ2LpIlkmFRcHR8yO7hIVYkHBwdoVTK5YvnmE1G7IynaAR7D/a4+dkdkiRjNp0hEsWgyMmyhPF4TJEXKCU5f36LrXOb5FmCEI40lThXIFdLJky85iagNQYrQeuWYZ6wMcpIlfB1ZkOcazEYMxhtMR5OGIzGjMcj8qFvvJkkCqMtbVP3eoH9aiVmzlnrgpNQI0yoNeCkD3OTaw+1cs5Xq+plrcF6Kq5TdZ8Il+/M4RBahvCF+h1YIbD5Oe41E+5/fAu1LNm3sD3Z4M8yx9vpFHs94/FGyrfmmvnOkt3thDEVlZnzx8NN/tn8NklV8Z+3lxAnN9le3WVYHZDZy2Sp5YOjG1xUG7TDBWnzkOvZBsux5Ejf5Zsbb/ATseLdUjGpDG+99z9mf7VH02pGk002t64y23oZm05YOUFuWh4Dn+8/4ooqGGgNbUOWpqTBcpe1IEkyisEAh0CngmWjEUIzHu+gkgG6aRBZyng4RkjB7Qc/5uOP/w2mXaKk7TIYZY+W8b/EmNkAht3iFjndHs/eA9r+v6coCPFEnK3r/7Ju48QTTleIET1rV9qL5PkhY1VD3dRIJcnSDISjNQ3CpJ2ZZJ3BmJZESr+yiQSVGtI0RYoEY5yPNcWAMAhlkQkkWUKaKJwRHcg68CnAOO9Lk/4OpRDkWQ5WolVCIjOSNKUua4w2tE6gTcPm1kWagzlaaxarJW1T07S+M6+U1ncDkIK6qlGDAlJBWviuvUql5FmGdJZRPqBODXW9Yjwc44xhVVdcu3YdJQVG1wyLIiQkiFAQWdCahrrxgKqtY2/vMdPRiKpuOTk+JMsyRJJQ1zVt1Xi+1rTeSSGlb3kDtG3DIC84mR8xm23ipKCsKsaDMThQQlEUA+5/8jOOlyXTydRry7rl8HhBnhdY23AyX/B4fx/joG4095SvXTEaDJnOpowmYy7snOPVV67zyktXGI0yIGQJ4qjqCqQlSSRZnpEXA4rhkEFdolvJsEgYDDOyVPk0bSt8UZg0pSgS8iIlzzOSVJKkwqdzK+HbjosUp5sXDtCvWjp6IYRzGaMRbXCkBOtLCIFQoWasA0KTw34JSGDtVCdywQQaIU7T4KSLCQgdPyhwesyD1ZCmbLAP7iE2p5x76S0uTbZ4kLbsjLb5UJ1QFXOYnsNYwfGje2wmQ95qE/4k/Tmj/Z9RVDXWHXE9kXzz+AHt4gShDinR7KyOmSQHHI8esN3WnB9VLMoVV03D2O2jzJy7gy3ydsX7b36Hv/v6+xyXNQNVcDj3ztvGNMzbhp8c3ueRaKlfusJnN/+c+eGcaZoxlAmzoiCRjsFAIlWGtt4XlEjfTmucDUmSnJP2hP3lPdxckx8pDvY/Y2/vBtD2Ig5YF3SPXEfQLruKX741KmtXWN8R2tds47sR3avyASjeIllrv663v4/TXdc57mUjRudnuArnX/gLx9zzNd26RhvDcDxlc/s8zkFZrmh1Q9NUCLzGo41BJSkFAissKN/6xhhH2/gGk8aawGdKUpmhVI4QSSgY7FAelv0gDRX6pXI4KZBWY/AmmBLS92pzkOeZL4yTZlgp2D8p2Ts8oq4rhFRkSUGSVFhr0MYDgrEGmaSovMA55wuFK8d0NiNPC1qtIU1x1pClKcuTE4aTKa++eo08z8kSyYULV3y1qTRhtarIkgTjLBIPmPfuP6TIU957731u3viMtq04d/4Ch4cHWO1LVg7zAVrXWKNZqZJGaw922ueUN63vKrxcLdna2ibNc99bTMJ4Mubm/dvcefSYVvsSjkmaslACFRocZllKVZfBUehjbrEOjL9OZwyjQcH2zjYbW1sYC6uy9gCapt7xabXPetMGKWToCp2iEoUx+Ayqrp21CDVm/Shv6pXPMkwkJGAVPktNKbSx69ZCTF44SL9K6RxcoSuKsRqhg1ZrXVfgRjhH4gAlMEoirDdv/Xehu0TQgmI4XD+qwbn1JAY6dclai3ED7i5z7h/tsXIWNRpTTce80pR86o546chRbo1oZ3CuPGJojvgQw8HBZ5RkLOxFvilrNnaPcPMV0hyyGhQk1ZLEOkRhWdU1IyfIaNk7WpIJgZSOk+aQGQUPVyXnVc49dcDlnUtUxnBveUyR5CxcQ5Kl1NJyJGFuDccDx4ULU5a3PqapjnhYarAKnSqaZcXmcIheLsjahsl0E0nuo4aGIwyOOw//nDu3vk9TH60r4Qk/pnqVnL1OIwzWhZRkF58wfjKEJB0Rk8wddLG4kR7yWl0Htp3DrVOOXXe82App3XEivC4nOsdZPIiN2/IEdfQCeQG90NBYb1Kf2z6PUgmL1ZLDw11f0LsqaX0NQdKsQCWW1rQY22C1wDhHW2ma1tIagwltOaRKUVahtcLq0L/Iqa44i68rqMK65VcrYxx5NiQTBXlaUOQFR4uK8WTi+5CVFQdHJ1hrSNKM6sAXMJdS0tSNj4RwPsoiHwx8xShhUWnGMA28ciYYTaZhsjmkdVx+5WWGowlNXbM5nbC5tUVRDNjf22VztEWicpzVHB4dMpmMfTyvhXv37jFfLLh0/hL37t/m7q2bjMZj8uEIYfFcLwXHJwekSRo4Q582nQlBWWqKvEAb38liMhwzHgxYLhf89NE9Hu7t4pwhUZKyWnFykvgaukZzMj9iUfrSmlKlIT3ah/dkxZDFasmm3mQwGrC/v8+gyBkNUrY2JighqJvGh+xpTdNqmrbBOecrtA2HZMsUWkmuFCpm5ztfj8MZn4GnjfWOXOmTKWpdI8oTLAJtWk+lGMe7Fy58qYH6VUlXGtFZMAbQGL98opRD9LRaP/HBkvjiP/gmkkKEYtkQZnjM3Yrn6BG+Pc3Ip4cLjlYD9u7tkTjLxmSDdJiTXnqVidbcYM6Va6/y3fEmh3ufM683uWBXrNQB+cEhg9pQNfts5YrtqqJ2giJRaGspVMJo4NPTkzRllOasdE2aJORSsr9YhhjqFWVjGExmDJKEVZ5yNLJcEA0mK1gazWLg0E5QuhotLNdlAQf7yMd3MfWS0WgGCMq6IslzjHOkzmfwtW2LzBxGGG7e/SkPH31EtXjon5uMzyuwsjEIoNNMw+IVKtcJEZ+hd611RZn6zEBHM6xB+bT0qIeowQpFLgdMkinjvKDSlksX3+L+/mc8nt/HoUNVOdEVe+qfdh0D/GJ5viOtrFisaqyQDIYTRqMxw/EUIR2H+3uUi4Vvvqgy0qTwWUqtQtca3WjaVtNU2sfXWktDi0pDQ7/Q8M9Z0DWY1vO5ntpVaOsQWvpoCDWE1NCuDK20FIOUujVkSUJpK5wx6LblZLlgtVqyKlcY3eKc82FqAmQaiulYx6AoGBYFuqnI08THGOvGJ4EoxbnzOwwGI9/7SUmquubqtWvs7Jwjz3LytEA4QT4YsH9wgNMt587tkOc5Dsl0E4rJjEcP7nLj8xtMZxsMh2NW1RLTthhjkU77AtrG+PKBypebs8bSNDVJlnrKoakxQG0MZdNgTcONu/dYLhckWcpwMEAmGc5osJrFYkmiJAqLxLEqV1gEUoUURqlIlMJYjcoUaZYynU6QUlK3Gu3NDTBe81AKv73xcadJ6PiaJCmJSkkS6UPGhIPW+XhsUyOSFJUmtG2LqEpsu8Lg02F98SLDuvnPr1ZccAibEI3j+dwQFqRCgoCTfpETaTRafTFvv7J4Z0wgD5/tzOlPfNE58Bqds7dfc2QNzc5FNoxl/8oml5s5P3tpghUwzUv+4KTip7f+lC0xZK7O87WBYGPlaGtNIkC3ilQohBRkg4JlXZNmBaiUyjbkec6yXOGEIBWKsqpIZIp10OoGYR1H8z1skTO/X6KuJ+Sff8qVK1fYnA6ZSkEuU47qOTeO53zy4DYff/QT7ImmtYrZKMO0LZvZkHExQruWZDAhH05I8gEny10ef/pzVsuHgOm0z+45Rco0FEj3CqX1WYxBoxUiVMZbVxZnbT04TodrRe3V9k4gehSQ64INBJKEnLHZYKfa5OrgEte/9jXeeevvc3Syy4PVbX5y84/59O5POan2gxUTQ9Z6C2ooZfAieS7ozlcVhycLTuZLGq3ZSFOSLEWbc2itfetxYxhmniu0Dt9V1wpMa2lrS11pGm2ojUUDmU0QSvlc7kC4mwZs60iF9GawEOC8CdsaA84gXE6SCUbFkLbRrFYrlpXxYU3ViqauMLpGiWCGKIEiQeiWRCkSlWKM9gVjhKKuSrJU+UD+sLKqNPFF253nNWWeYVvDq6++ysbWNmVVc+fOJ3z9/Q/YOb/ji+gYjZSCrc0tcI779+/wk49+xpvvfsAbb77NZDTmxz/8Uw9uyRTnHNWqRDoNtiabzUhVyvFqxd7RESpVYCTWGH/N1qG1JlEpdduSJfFZO5rah5VlQtJay9HhIcY6qrpECNHV2kUlqDQhkcq3ULENTVuzt3/AbGvG/uE+o1HOaJihEhUcQZqybmgbTx+12vgmmVWJ0RYplG+rkiYkytGa1mtu2tLUJVb4NGaDr1ngs0ldaOcTujOI9IUD9CuXEC4mnPTOQuP7ajkcyiU4FML6Ce+kn+D+0wR/U7HmbiwdGE3awDF2QfpxttsuM01rwcM7J+wtBGmaM1MJ56Zj9NGSV6cz2F9SGUluDtjVh7xS1Wzalsq2iLLgUpJwLAO3mY9QrUYqh1aOxlVQtxzVKx+1owXDfIu2qaltRZokNLr19xousUgSGoBqwZ27n9O+lHJ37wCO9tG2Za91FEJw4/F99u7fgFXDpszYnmwyUyPSYc5QJozyEXJQkA8mGOvYe/gZTq/Y2LrMxvmr1K0vP6qUwmEoqwXGtlhd+agZXWFF61sZuSbgYzD5hQNUqHPbB98eoX7qs/C5iw639TuK4V15MmRncBGxr7j101tc+sZV3nv5t9ne3mY22+aae5fvvv33ebR4xM9u/ICf3f4zPr37E8p2hXaNt5JEoD6+BMPw/M4RZcP+wTEPHj5i/+iQ6XTKoBgwKIaMRxscDY5o2hPfPTVRoB1atzS1z2pqG0vTWKqmpTIa7cA4hQ6al09oczgdiGwlyFNF07SIRGGlQiW5HxhWMptuMsgybBFaAy2PqKuKtm1IEkkqJa02CGsYDUaYZYlEkA6G1FXlU4UlaK191AEWJRPSJMEazfHxsX9NUqLSFGk0Fy9eZnN7ByEVn336U7737/4VmXS8/vo7jKabIBSD0RCVZNy7+Qk//ein/OkPf8i5nfNMR0PO7Zzn/Q++zs2bt3DAowf3aNoaXde05QKlFC9fuUY+GGGNY15XmCyOHxHC1QzCOvIsp6lXTKdTdFMzXy5wVmOMN301od4xUNcVTasZFAaZKKz15TKzvKCpM9+FwjnUwDu7ikHOYjUnTRKGgxys1/xOFse0dYsxUFU1pmnIlMQ6hVLylOlsAW1DUUAh0NanjTutSbIMmXizXIfiL1LlLx6hX7F4eiFqng4pLcKazmuunOfDY1cNLejFDqngLBO+i4ZUXeZS7wzdj0+aCDy5tbhG4UTGZHtEYxVqmLG/PeOx3eXxpuLG0W3E8SNeG1zh29mA/WRG1VSM0oRWOHKZkKeKykGbSObH91kuH9PUC5wJWYPg44wdVMPLDLfe8vHATRmSc0L9aWugMQiZMVIKt1yye+sTzON7VNRo22KtQtFilgvS4yOu5gVSJWwPJ1iXkMoho+EEoRTZcItvvfMNhtmA0jhGxYC28c5KKVOckkglkM6SJJZUGpZNxUm54LicY+sVJ4s9Hu9/zt7hXerVAfVin9acoAJfLmLiCk/8xMJLEaj7XKuItSS8BaMQXN24zrXBq9y69Tmb4y3eefddqoNHPGo1yWCKSBRZlrIhd/itt/4jfvOd/yki1SzrEx4e3uHjW3/Ohzd+yO3dj6ndF3e3iPJc0DXGsrd/wp07D3j40kM2phPk1jYI6Tmi8cSbj3iHQNNWVOXCe+e1w2pDoy1N62gah5YJViS0WmEEJFIghUM5SIFGGZzGx946aFqHqVuGgxEb4xF5muJrMTiOT+YY7UtJNk3NIM9pqhqtGza2tlhVDSfLJco36iKRkkT53q1xUiRpgQBa5yManPP5N+PxlEE+QGUZOzs7vtJalrN9/hJV1fLf/nf/Da+/8lM++PXfICtGDKcb/PjHf8Yf/tt/zo3bt9jZucxoOEbKhLqpmc22uHSp4WB3n63NTX7+8UdU5RITONDD42MmkxmbW9tonI9isNZXuBIKqySr1dKHjVnLYrkkzTKGjGnbGmh9tTVn0W1DIiW1cwhnvCaaZmgTUqmtRriEqq0Y6DG7u3s43bC7v8v2bJPhwIeQJcqXGhwWKXme0rQa3bZgfWypkLEKHEiZoKzFYJBKkojCxxsnGVL6+q5FNiBNU9/gUxvfMy/JXjhAv2rxDhVv6ht8rz9fsFsguk6+InC6NoQ+Cuj9CGe7Fjhrp816okfLwQOuCbHAht2DJfeODOlYk4+mzE4OqXZSXqkFWyeHnD/Zo2g0UsxxTctLRcFKZZTacKxbxmlGMkhY7t/g8cM7WFMT+dFYK8BhPa9uHcvlXezmeeSFt1D7D1HHxwjj4+Cd8BmFqhUgUoZS0pTH6OUBQglSAakQJEJ4pSEvGIVFvNaaYpBRZAMWjcG4nKvjbX5+95jhDLaHih/d3kekKSiFS0co4ymNc+c2QToGKmUkMy5tXWDLOJZScM7Am7bFtQ1Gthwd3uKTO3/CwaOfsfvwQ2R9Eu5XBodu7MwR+Vzb02w9/RD72m3kM77+2m8xG424+fkn3PnoBnc+u83f+dbvcP3N99m5epXj/QWHe4852DugrjVZXjCebXB8POft999mZ+siVyaX+ObL30X/nuWnn/4x3//wD1845l5QTxdWq4rdwwMO9nc52N8gTSR5niOFpSgGjEYj6rKkbSrKckXdtmirvZagFFnqwRMpSGQGLkEb/3C0ECjlNQgpDUWeI4Cq0kw3zjHNslBExTIeThnmKVa37C1PqOuG5WJJU/vohP2DBRJBPpyQD0acLEtsq0nTDK0taZJQVxVSCaa5D/caDEdUqxXCaiajEcbBoBgEoEi5cuUyWZajEkWSFcymM9548y1+9KN/zx9//4/58Gcf8u3v/jY3bsy4+dnPuHv/DqPRmHffe59z5y8yGI4QSiGKgvPSV/Z6vHefvBiwWC0ByXA0wjQ1bSh801pLXZc+FjjLSFVKayHL81Cu0fNJJ/MTEpVgjaVsVkgh0Vr7bDIhSGXKYDwK4G098A0GDIZDtIUszUmEwpQtu/U+h3uH7E6nTCYTpBCMhgWTYc6+EL6yXJIAjkz64vOJhFZ4t5K1YK2g1QLjJIgcJyRSZDinsE5ijEWpkDppYikV9Yuj5F+xuOBk9FSIBeEXla6EiQjp2vhyowjPW3eAKwQSD1rOuhBQerrIirUGY9tQX9lijfblOpeG7fEG6XDIgYTVzgblsuHB/oLXd2b8xvAcR3LBQAiMUrTGkasEkSaskpQTfcjRw89o60VYAHtgHzLkIsfosFgpKO/9BDGc4UYTBqsVeQKurUPRKV/C0LNBmsw5MumjfhyW1FoGecqiFQxGIxZ1hTaWJM04PF5xdHjAydKws3mdu3s/YXLpCsl9SaYr7pgxi9GIzHgr7OrGeeo8oTaWc03NxTTna9ubfF4dsxKSc0nORQSPDTiVUyRjBhsTfmfrXc6NDD+89T1++NN/xuNbf4KtjkKr9371th5fHLRh/6fg6698h//kN/9XvHz163zy6Q+QK8W9o9vsDg64fPm6j6F2gtn2Fqu65OGjfWw65PL2eZIiZ6Rrjh89xNU1+UCxPDxEpJIL4jz/2W/+r1845p7fDRivcVVVS13X1OWKcrUAZ8AJstTHi7ZtQ7lYeedMkjMcZeimpa59IXPjrF9hpG+/40Lrl1RIpPAdKYZ54rVQKRmPJiRJhrG+m+8wT0nTjDRNKNsWXWuauubw6AhjNMvVCms0WTFklGW0dY3VLWmWAT70rKxWtG1LLjNEmpIm3lFlnSPPMjY2NtGNobUWbTTbF84x3dxECIVKc1KVsHPhEr/+rd9ECMe9Ozcolwv2H93n0rWcPMu5fOk6r7/5Lm+/93WG4xltqEdsWk1ZVuR5RlVXNE3D5qbvGCysxbQlq7JkvlrRauNrSiQp+XDIfD4nS3JfxlH7SIL5/ISq9MCc5ClSgDGGNEmQUvoC7yGOOEl9eJ2zGtM6jPbx05lISBGMhxOMNZSrYx5Xu1RVTT4qWFYli5UiTSWz8YSqbtCtpUj9+ZJEgjFoLWkTH3daNxqk8U40kSCMwkjQjQd+EdJjjTZIKf+alHZcN2H0YUfrLLnERTBefxYMJ2yIcTAAyvPCUqp1WNE6dgFjIuCGmgxWY4xlaRxIy9K2cGmDVC45XiwY2xOaVcHF2TaXxhm1NdSN5qRxSGFQ4wHN6gH7jz8NXUJiXlvs7uU6Z0+MlhBCkjiHEQ59409Jrn7AarZBu1hQCBCmIVGhb7HWvq+hcN7pG+o8amNoWkHTWnSzxArB3fuPWB4uOFhqTL7B9s4lHlUrjo5KRs7SpCmrJCNLLfX8gNm5ixxsTjkcJOSmZDh3XBCKfyk131+ccCVJ+VpRUNcrPskz7jUGrONrLuWSTPm80izTglde+ru8cfk3+PntP+J/+Hf/R8q9j2PcVqgK5u+986eFD1OR8vVr32SnuMogG3Jp+yr140d8dvRjrl24wutvvU2WJhzevUU6KHDLE+pmSbmsoWnY+Pq7vPb2a7RVQzYcMpgMaVodnH4GvXxxEacXaLoW6eiKduDAaENVrnxXByCRXl13OPK8YDjMcU5QVRUHB/vQtCSp752VJMbnrzsPunkmccb5SndK+vjV4Ziq8XVxhUqwCI6XJamsfY1PazEItPXaW1kuPaDo1qdUWkfdVL4kmwxBPW2LaTUqEYyHo3UmlINBnpHluY+okH5i5FmKUpKmrEAkrBYrRtMNJpvbvPHmO2xubnL/7k3K+QnjyZgHD+6xfe487777a7z06utsbJ3j8OiI+ckhiZLcuX2L1XzOzvlzJFmBk4pUZYwHQ4SztFoxXyyodYNUGSpJSNKEpqoRCBbLOeeHA7oqbOBrPyRg68rH72oL0tdXGA6G5EUetDBJXoQqcYmnGmrdAJqyXCFlQprnDIabOOcdnoe7uxirGRU5w0HO/nyOswJnNIM0I0t8kHszLBhkCSrxpmyrfdEjUs1woEiMQWsQrkGnAt36xQHteWb5q88C9s0hRKx3u7ZGhZMYYbqylObJuCQc2oUiNcp5LV6FBpcdqesnvbV9asGA1eAcA5UjsxytFGMjsWXLu4MhNk8ppOLYtmyJlNQYEpVhEkWTFBysbnL86GN/eCkQmHXd3+CRt8K3+nEiQaUFWTZiMJwynmwzmmxz/tzL5JOL/OTOLXbvfU51sovSmgSDsy1IfDRHIqmOaoo05+TkyDdNPTziaP+YdlVxeLTC5iPSS9eY7ZxDjAvefOVtHjSak9RXk3PaYZOceizZz6FuV2wOcnKjuCcdD1LLaDjg14Y5N/ce8YduxuZ4yraSWNWSS8fxsmJvpFgKx8n+ktdGBdenY959/XeZbFzjn/3z/4rjO38Un3qXPOGC8zK+i+s7r/DyxXcpT+as8kewWPD5T/+cR/cfcv3iK75GyWhCuapYVpp0OuM//l/85yTDCaaqSTNFuVpSTAc4B21j2bhwCd2UCDTDQfHCMfdc0PU1bC1tCHOy1mGMxjlH2zqUyoJZI8mKnDwfMSgmvnnkcsGqWlK3NQUSZS0qsSA0MdoxzzLQAmMURZ4xyIdICXmm0LZB65qqWuCcYpgXvtKYsWgL4+kGq1XJ0fERUioGw4LRdOK9/qnELUGIxGvara8mNByNSfMMa0HG0KkQAF1XZQhjcly+dIVBMUQqxWg0YTCa+OnWNmTZgKsvvcLW9hZtVaJ1y7WXX0XKhPF4RpoPqMoVRSoZXzjPfD7nwvnz5C+9hJKwefcc9x88ROsaowvSNPG9qGQC1pANC1bVijQdMy9XFKnv2eWEdxysFktGowlVWeKXFN8pmUyQZwVZPgCgDVEZiUpCK3EP9EIkDPI0JCloVss5A2dJswyNobUthyfHtM5w+3FJkSuyLCMRgkSmPlY3TZkMhowHGcMiI0vTrhaBjgvqoKYoht751zoSVZPINDjwfYV9mfzq6QUbIhOEwMfeWosVvnEhwuCMDOb2Ot7Tt7SRxOI20lmslQgjT2U+xbqtznh6wVqv6YtYuEWlLEVDPVLoeokxmvfGLzFLJAvjq+Y9Xp6A89RGJRNe+8ZvcP7gArs717zW3NaUdUWWZCRSgZSoxDu6R6Mpw2LMZDRjMNrAicR3HpIJ2joeLZecv/I2q3QLd3zMav8+zXwXvdrnYPce5dEe9WLOqi7BGKr5EpRApwkMBkhVkO5sY/IUO82ppyP0bMoPHv6cerjJZHSZQTZAN7A3nCKmI97LCz7b3edwWHB4aZvXBwWbu3f4YbvgT0TK9NplWFZ873DO29OMb6Yj/ky0zMeKadsiTMXQpNzdmzNXisy1zIav8ju/97/jn/93+6wOPvIc+2lvZufP3BxsszW7zOZsG+EMQ2loG8fl82/wm7/3+1iZsJwvmM8XnBzPSdIU00ouvPQSo8kIpxv29h6QTTaQ+QAlBVYYlsd7HNz+DCETLrz9wXPH3HNB1xdg9sH588WSqi7RekSSSOq6RKkmtHhxFMWQ4WTCeDAL9Rg0WZogpEZJjZUWpNcclPCFbgaFQDDEtYY0GfjBk2WopMC0mjwf4ITAaJ+9VDcGE7LIJuMxi+GQzc0NlBA0rfExsFJhG5/5pFqfYitl4jlk4we6FJpBkeMcFFlBXZZYmYBSbE5nvPzKy8y2tpkfnzCfHyOkJMsLlErRugYNWZJTzAZIsea8jLbo1oeoKZmj2xaJI0lTyrJkNp3w+quvcfvmLerVHOFK5otQ6Ft5+sUYjW5qqmpFU5ZkSYIQsotoraraa/FKgbUMioIkkUwnU4aDEYnKsM7Str5OsHMgnMG1Na2ztML3mBNJxqAYUBSFd5pJ0I0OWTaKebmi0YZl3SJEiTaaqq0ZpL5P3CDPmQwHDLOcNMl8ooRKAtD74u1pmpLlGUVWkKmUJMnIkwRBbAX114BesLF+M75zhvTNGYW0wfFi8E06JQrfAVYJHzrmYu83a31KsFyD7nrSh3KNNjajNMS23rmU5FKQZ2OkGpANFIe6oRA5mypnXi09ly4lTWsQV65y7bX3mb32TWrdMhKCWjc0OjSnVAl1Y7DG+dZYzoJukEnCXlnTOoOSKau6ZNGWLKzg8ckcIzPuakcqh5w0ilRnLBt4cPueH2vDFJcrsguvkKUJS9GQnbvIZPMSmy7n1v2PSHZy5OURr117g3s3PudhWlLtSN64+P9n7s9+LUvT807s9w1r3PMZY86MzKysHGokWaRISmRLpCi1YQ0NNwwbjYZtuG3YF274T/CN4Uuj7b40YBi+aLTltgU3jHY3hW6JokiVqBpYLLIqh4iMOc64z57W+E2++NY5mZS7KwXLcnEBkZlx4mTE2SfWftf7ve/z/J77vF1n/J+e/gCbHvLR/AHfvvdVVq9O+chdcdLlzI8OeSf0/NR1pBb+3b19kmLDn2rFLpf8eprzcrPjJZJf0hPWpcZ5RxIchZBsesNk8R6/8Bv/c/7gP/tfEZolnnhKv9H/hkAiE46mt5AuwqSkkCzPz7k4v+CDb/4Kd95+n7ra0XWW/YMD7ty7h1OK3XLJ84/+mL2DPbyHy9NTsk1NsVhwst7w/LNHPHv0MUrAdLbPb3zJPfelRTeCY1rWqy1V1TCd9jgnaZtoYdVK44NEFRlpmpGkaVyaaInSAvBY22NCTxBRRSB0TiCl7wRaCxJd4oE0TSJ9SHukztjVDUJG2pNpeuq2Jk0SGuvYbTYkiWI2n7NZbzFDJ5HICNJxtaN3FiVSnI+LID/YT4t8RF6WdG1DbyxdbyjKjNlij6998CF7+4es15thPprQdi0hBLIsEKRGiqHj9wqdZQgRu32pY3fdtQ3WGKp6R29MZCG42KXfu3OX3/zN3+RHP/w+ze4K09c4BPlkxrp6jTOx+2ubGmN6BBMSrVAqJm/oRLHZVlgboT3jIo9z7/GE0WSP2WyPUZaSacVmt+HV62dUbYsL12kWgAsENSAIg0erFCkkeZpT9Q2T0YjK9VxWG0xvcM6QJhnWGtabDVJGjWWiNVmSkaqETMeimihFKmUcW+gYaiqUQkgZfy1RSKHw2Bv04c/zCsPWW/g4u4wZboOdnWtVgkD4QfaFABn/fR1wHkQs0Pg/X3Svff0x/TfEMcA1FSuASjyr4Gi2De8/OGSa5XSmp8Oy2mwJw+wbIWmspc4kQXsaBD5kPO97MlmQJJ5uUEUYKbFBsOsMBdArSd1ZlBT0siBYy1oEnjY9F7ambzp2bcMiC/iqw8uOFyefUG9PUff2UT5AEigfPEDv32U8O+R2nrALnmXX0Y1m/PL7H/D45VPO65o/OHvML7z/DW6Zhj9tL9i4NfrOu/z2+D3+xGz46kjy3z9e8GhW8H9YP+Kb0wPuqZIPRM5/dPGcZSb5YxH4q9NjtpcveW48Jz7l1/aO+T3bcKoz7hLVRlOlGEnBae/pHLxx55d58t7f4OUP/y9EG/C1pCyeOt46+ipvHnyVru4Qqsabhh9993uMZ3fou4Bpe+6+8SZyaGjq1RW7yxekZcHV2TN+8sM/pHcpH37nL2OUpr24BCU4vHeXg7v3GE0mmP7LcaVfMtMd9H1dz3K1ZrXeMJ/NKPIMa+PHndmg05xJXqJk3HAHb/HWEpyntz1Vs8Z4hxCCJMkRAdJU4n1KCJokHdP3BuMDzgeC1ZiuH4pMihw4ps56zleXGGcYpdHt1NQdWqdoa1E6YTId03cmLvyEiB0GoFUsntY5xuMRidRYIajaLs5BR2O++c1v881vfQshJMZGA8ZuuyVNUhIladtoCkjzDK107E6VxDiLEhJjeqwxmL7DGhsLDorNZgMCxqokLwq+9rUPuX//Pn/03e/y7NkjLi8ukGlGOZ3RtZYkK1ivV4zKURyBDMANHzy271HE4+5kMiHLMsoip8hH0Wk3GjFfHIM3jBcHZHnB02ef0Zse62PXJmSMGDd9N0hsYDoe4Y1F+5hCezBdYJ1lXVesd2uaviVBMspHdKbHGEvTG6BGEpObo7lFkKAHotwAeR5cRjIM+LswYOv/AqAdgUFadT1qCEPw4TXDOb4HpIvoRUEMQQWJDDIuhUUszOGm040xP7H+Oq6RkCJEA7AfzroicSzyguliSporFvmYJItxTUoqQqbwCJre0VvL1WrD97dn/M7xW1RekHcJvRes+0AqwQVBaxVegE0yTtuWc+uYpAkbYzB9zZW3fNpumY0Lpi2srMd3V3z0+M8IwbLvG2QZKEYLvJeYIuPOvYds8KwOp5jb9/h3736beZ7wk/VLnmzXvJnsYdOC5fYxTjs+3pzzd+++xz892/CDdsufXr7mf3n3XR69fMZHxvKp7fn6bI//UXBc9T1GGZK9Kb8UStauQ4uOozzj37t1zA/0Gi9KvJL8yi7nD9sdrVD81mzGS+lJApTC4NsOoXLe+drf5uWj30dsnhNCRBRE7X3C19/4S7z77q9QpiVpnnH6Ysmdt77BX/m7/w59VzObThnPpnRNR296dJ7R2Y7d+oLTyyU/efwcocfIxScI71hdnXPy8hkXF2ecXV4SgqCpa3773/7v/czb7UsXaQGPN5blcsX5+SWL2QKBHHS5lrZpkb2jGMeIFu/8UHhiEq41gbbpaU2HTjO6bkcYa5JkihQjCCVVbWnbnraP7pO+r/DOYoPHmW3MTvMWLWSM2GkqNiLQNQ1KK8o8Z38+i5IqBOdXFyihYsCld2RJisHQtZ40SVAqag2NdUymYxbzBW+//RW+9vWvIUT8xgmpSNOMvCho247Nek3btiRpSlGUCBG5wkEq+q4lTVKcNbRtF23PvUFqFW23Onbru90Oa3om0wmHB4f89t/4m/z+7/1Dvrv8fYyxJDpDlClNvUNrDUJinaUsS5q2Go6ogBAxfy1AohTTyZS8nDAej5lN55F/qhQ6Sdnbv0XbtZxfnNF03TA/FmjhcQFM35IkmrozeNtHe7OOSxiFQIaAFhLnLV6K+EAZZmYSiR0CF3vX0fmhO/TipsBwbeu8cQbFM9/1PPTnffnBGSmGzXeQUc0gQ1zACATCDRqAYRpyjYb2kijNkrGTEnErF4v2kLkgB16AuKby8flrTqTFzZVgbAAAeN1JREFUdZaxLjia7tEYy6qpqDYbgu/jaExdW5JBXF3xh59+zHcWx9wZjXgdIFEaKwNXTiJ9ICSQSHBdi0xzvpqkfLq84pk0JIXC9A3vFhN+8PwjzpxDJwlZe874SNKdrtl6z/zBV1itLmhkBYs52YO3uJMmfFpYpnlGt1vyw9cXNLbi2AVG3jJdn/HQ9CjjuBNWdK8+Zq/f0aSCI90z2tXM05L744RnXUtrV3ylOOCfuTP+mC1/sLL8+6Pb/P31K75r1/xZ8PxPZ8fcri7pqdGJ45vzCb1PQY7pAkyawGd9w9d1Sj8tkM5xm4fceeev8vIH/2fUkGhNEOyP7/DOw18kKya02ysCObZvmM7nLG4ds1teDLhNyLJkUJwE6qbj048/o2oFd954h48+/ZT/9P/xf2dU5IzTgqPjY66qZzw7eY0Pgr7/cnLezx4vQFyOOM9qs+X07JLFfIrWgixN0TIhTQq8jE93byxOGPq+wzk7WEUzvNes1yuSJHD71puMy4PoWfcCpeK8VhITa9u2Hba84iZhoOs6GIr/ZrvC9NHuO59OmE0mBAJt2yBCYLfZYNoOpeXwEHBkqUTpLMp6lMKGgEZGBkDTM30w5zu/8pewXct6u6Vu22hHlnB2ehrlUE2LCwFnLciYlqqHzX/TtYyKEVJAvavI8oyqbkh0gkzTIWlAMhmPYjElQn5uHR3wlfff5wd//H3W24ogBVpqsjTDZBnOuZhZZmKSr3EWhnGLc4HddkuWJNRNS5JNECKh7zoSG1UiKkCWF+wf3GJXben7AfyDxCFxxiBVcpNSa2zUkAonyfOcO7M9vItBnc4Hmq7FOoMdGAoSPgd8D3SzmHwbENeKl4H2NJhiB++8+Jch4P3/5fpzMeji85FaZAO74euOneuNa22AqAQxxHWHa9auGn6na53S8I/h9/rzoYUBIXs6s6PzHWOVIoPk0leRchckLnh6GxkmAEm1wTx/xn+Y/xH/4/c/ZD8vkMGSjnOmveGFDzzIMn60OufObMGu7/hpdcE3jhYcbq/4UX/Jg+kYKsvVRLC9uuL1iw25GnPLzPjIPsflKUkmefvNN/ikW1LO9jlMEqYukJ1vOPRbnHtNdXWG9R0pil2SoXYVB9IitWSR95ircx7aBpY5x5M1m4szRkFxtc0oZ8e8NT6is3DRN7yXJTwgJXGCPs2ZJI6GnvO2ZWnm/D2z4W5h+V/kJbO2wmnHSJfcHeXYvKe2UHqNQ3Kgxnzjm3+Hlx/9A9zuJQRBpjJ+61t/m1t791i9esrq9TPOTl7T1pZf/2//d+h2O3zfIYcILpWmNyak2dEdvvWbx1xdXfDxn3yPxWKOVBoVNL/zN/5bvPuND/neP/9D/sP//f+WbVUzmS6+9J778pnuIKcxfc/VbsVyvWQ0yljMF2RaI0OOyDRZliJEwFkzGBYsqU4o0hGJGqFljZYFzghw8a24NQ1UFdfxxhKPFIHdboOxPqZKOIPpWnrTY/oO00e/eKKj5XK33ZEVGUpKmq7DWROf3mnGpqrI8pwizwnOY1RPonWUqWmB6XoODg741V//dYoiY921NH3HarXCmp5iNKLr45/rrAchIyrRRHmadRadpYgApu1IByaCDoG6bRiXiq6uYyijlHibIwqJD/GBstlsuXv3Lu9/8HX++fe+R2d6emdw3kXtn4iyl7qq0ErRmj4ef72nNS1SZPTGUDcVeV7S9SNUDeQlgkDnLYJRNEXkBabrWO92cdklMspyirEGawzj0QRVKuq6oW4qjOlBK+ZpyUZucVIis4LaKExXQRgi+1ycV8rr5b6P/dzn47TwBaXVtR12OLnz8+90YVgYi1ho5XC/490Nj+d6fBA/+TqqPr7ACEy5nvY64uBG3HS4nz94hm/Q9fcEEMKQJw2jNKWTgavdltV2Ba5HMKRJS4WQga5r0FoyOnvJRlj+g2rDt+6+yWw6IUfxlfkcsWvYmZRjLfjJZsl+knBfW76/OmGsSz6UY/7z05esjOS+32N9+YiqPqVyV9wq5iTTKZkIPMhG3JYpjSkY15bD7gS33SCvTrkyhqYPLM+XdM4gg+Nl0NTWIsqU0WREMd8nyARdpEhnyF1gtVsxch6uEtTkBWZxn8e6YD+XlGXJYe5xveSW6Cm0ZCYU897icKS6pQyKp9uakgm/Z1Y8yAN/QyjmGGZlRtIKPq47cp1y69ZDDu59m4s/OyHguTW7yzv33qe9vOT08Sf44MnLGXfu3wIs9WaJ7xrSySTWOxFBR6PJmKbtMU2NFLBYHCJJOT074+pyxfLihD/55zs2Fxf88nd+mYvlFWX55ajSn22OGISLMhHoArzs6O2Oql6RphI1mqFVTHTQUhGCj3CUPiY3ZFnGdDrmoFnQ9hVta+m7midPl0zGM4qiBC/wYtgAoxHBMZnkVHXLbrdjW1V0bXejCpDCMylyxqMSrTXOObRS9F1DW9dInSBUXD4oqYebVqBUMji84pB8u93ifODDr32Lhw/fYrfb0nU9puvJBsLXZrWOM2YEVV2TZRlN393kWwUBWqphpODZuQ3leErbbTDGYvoeS1yKjUcj2q6LTAO2tP2MclRy6+iQ3/g3/hqfPvqMs9PXBEGErA/uIhcipS0EPeR3xe5LSRXTCQQIqTDGsF1dIieW8WhM11ZY06IFSKVYTCb0bYO1js1ug/EBKRR5McY6S9U2HO7voZA401G3NUU+QgnJfjnBeke1i2CSLMnobI/3n888r7vDWHWHhdONtjX+/PPa+xel3H7e6V6jBYOPT4QYJSRAMqCyhwrswcnrMcG1jz8MowSIrzembMjr78m/iBe84bf6qGDZvGZ6/yt0UmK0BhzOxw172xu8EMyKnHXbUtYNo5MztlXDy82Kf5BpvnrwgL/37FO+Pjnmh3bLb45u8fvNc1pV8tfyOf9l9YrOpfyqHvN6t6SqWrRRTC1cOsHYW+Ztzd3OI5xhVC0JQSHPT1jtdlR1T3e5Ynl5Sd80+DbmDoZrYTPEZBVAJYrPyoJsVDI6XLB/64jR4TFdluPyjNyn5MbR1Y61C6SFhKIkjA55rnNCEigLzUE2Btkj8Xwj7dnTir3EUAsPsmLT9mxczsoqdiPDu9mYvVyQGIHpFO99/d/k9z75PTJb8+G9r7M/WZDJEvWVdwnWcefdD0nzgvXJCzZnJyRK34weHQy6dE9bbairCiU1e4e3SfMxrXFYF+itw63WrFdrUpWR6oxJMfrSe+5LOl0BUlKOEhaLnMk0ReUBlMG6lt5maJWgQoozPYZr80R8cwuhybOU/b0ZvWvZ7dY0fYPOPI1ZYX1LnhbopECiI6ehd/S9oTcOY+P8r+s7gu0RJDF8UkQveV1XCCGom4qq2tK1PVkZX7SxhjRLcd5jrUcKfyNlciFmj6Vpxu27t0mzlKSLTivTdVRNw66uqHYVpu9RaUIQEeDuupY0zyiygqppSLKMEAJ5nrNZr6K0rekQStI7Q5mleF3gROSKaqVJ8gQRHKOyJE0SyjJDKknTtRRFfvPwCsHT9z0CQe9NFCnZmC82m0xpmxpnLbbv6XVLkiY0zS668bTGe8dut8EHgUWis5K078mznN729H1DEIIiL1EIOuM4WCwwzlDXFU3bxAeVUEyzEUIn1F1N3XeRzBZ1eNg+8nbFdTH9YljUNQg6CGI6yDDb/XNH7Z/fdQMbH+RFkecciWI3hgkhh5y+6OxywUczgvcIKRDxEBT5KsEP3e91kkB0K9yMtYFrsX7sZg1NfcEPXj7D9gbZdWB7lHCkKiHRCu88XWcY6wQVAk1Vceg86/WaD2ZzquUSkWa4vS2NrTgbV6SuoldbRN6x3y4xDmZuRHFxDk3FUdAk6zVdXTHzgdy3ZJcXbHdXvKoazLZjebHEGAc6vs9DNsXlk2ii6Bqs6WPyiY2jP5zFdZ5tb9mutixfn3H5+DmXx4eMDvYo9veZ780Z7x2xqddUEnKrGHWOrPWc9D219MhcQzHjJQk7GchKyaSYkBSB82C5nRn2sxm5tTwVFU+aBhmOmAbYyzWiLLh//2tk83vsN1f8yoe/yWJ+SL1a0VdXBGdw3Q41GSMSydnrl8zm+2RFEf8OtSEtx1GemhYsihHWWIqRYbLYZ//4FpenJ6RZxma5ZNJ2eCTj8RjCly+Hf/YiTQRUCqNJynxesrdXMJmmjBcj5uM5iSgw1mNMT13vSHVKb3uatr4BnSRJSqIT8jyhcwloh/MSpTIgAa8wNnaLddMRvKA3caGWpHFsoAm01ZbgHaZrUVKy87Eb6NsmHoWDQ0jJ3nzOarNBKg1cqxcEbdsgdUKSJFR1TVPXMf1BaYoiYXkWf5/xdDxg9xw2j0/zeNM3kcswLKjatiW4ELWoSTLodaMeuLcGJTW5UAilSXRG37XoRKH09WgksLpaEQi8evWazWaNDw7T91zj/wRiCK+UdG1LoiR93wEOgabIMwg+zllNh7cZejSm65uo8zU9QiryfAJS4kwfrcOJpu5bCBb6jiRJ0UlG2/dsW810MmWz3VHVFcLEhUKUSkl0mhGcpbcWaR3aeQop6XsbD9GSiHLkmtQ/FFfxL/S2fjhJ/UW4buj/wyPBA0S1Qmxh46hBDXpsEQaYTAAXBuSKB2S4Ri8MUjQ/6MTF0Pl//qARQ68vBGA2GLNllN9GuTVBKKzraLsI3JFSkmtNa3rwgUmas6saikSRX62wFx3fmO9Tn17wXpaxyHY86lfczseIZMx4e04qJFqWLM5eUbqeXCSE7Q61vaTpOl41McB0WzeEoON+YHaMSFIyleCzDOsNOIcKgpGNpyHbNrimAmugH4qw9+DijL/a7qi2O/SLV+zdOsK/+QZUHVd5gRwVpHZMMpJse8fGW0QimYSMxNecty3IwGQN+6OWC7lh5Xv8KCEfWS4yS50FFhNJIhxPfM4L0XBbeQ5mM/bvfMjs5Z9SJAndboc1hjTPWZ1uePnJT9HPnrNanvPxn/4pD99+h1Qr8n5EmmUIkZCPZ6TjCX3bIlUCw5jVOkM5Knj+6adsd2vuP7jPHW85ffXy/9OU8V9zfakjLU0ERaGZTDJms5LppGSxWHC8uIWWJXVtqZstfVPdFEAbIMsyonQmJt6OyzEqFdhg6E3AtDmmT2i6hqbZ0HaGtmmG47xHC01QcWsuRcA6i/AelSYgAlUd545aSKSIIXXFaAzEiOgkSQadr4wx5l1HLiVKiGgWCDG77fT8hFcnZyRpgus62t3mJkzyzp17nJ6eRt2ttVgTdcmZ1iTDjHRc5nR9dLwVZQSKuwBlWcbEBRRZnpFnKVVVU2023L59i/V2y3RU0DvD1WqNcyZmvmmH9yZqWKVEOE9vHXVTM8rzm2hv7y2j0ZhEK1IlUBKs7WnqHUpA2xt615OoFDnkv3kCaZbRm55UKlrT0Tk3RNJoSh35wnhDmWU0dRUxm8GTKYWTgr7zUY/rA95EApSxFi0ETgzFZRh9iC+2d4NqAe9RPkJkwl+AZvfP8W5vRg0MzWjseK+XgxH9CNL7oTuOGgUhxE3SQZwwDMoHwcDZ/Zx49flbclA6hADC0aw+Ib9/zGrn4oPQeRIpITi6vsFYh9IpmZRUuyiHzGXCul6TawnLK3bVljxPuERR9hVFVnARUppqjZGSE5HSba5w1rIWArOp2GzXyN6jdI4ZHaOnChMCvYqclCTAWCp2BCbpiJGz7LyjShQ2zVCjKbLrMKYjtA3CdIRmhzDt0OlLhFZY4zl7/RojUprxEaHZsN+37CNoDFwBPlWU5YixFtjeIKRkkShSKciNZdlXSBxZn6K3jk/9M9azEcf2FhPhecyWK7fjQO1hdc6d2++jL15w+fwVfbbj+M13OXr3TW497DFB0qyu2Gx39H3P8tVLDg4OmR4cEoSi7wzlJDZYzjmk0kjAOkO92bG8vODlySu++wff5Re+/W3KVDNfLChG5Zfecz+70yWghCJJFFmeUhQFRVEyGo+YLuaUyZy+g8vlGZdtTV1tMdaj8/JGwxqCIlGKvCiht3RGs9v21DszLFKiwmC33VDXNUJE0leWp2RZRtcLetszHY8i1EVpEB7bx4eCGpYVWZ6Ra4XwkVYWhryuzpjo6gkB2/e0fUuqFUoKmnrLZ48e8eD+ferNlrataeqGi5PXZGlK1zZkSiDSLEKf+5Y8ySjKAmcsx7ePkWmG1BalNHFcHEFAQijyNMFYS1NXGGN4+vgRWZYxX+xxeHTEixevmO0f8IPv/5Cu60jSOBLww3s+EXLoYk2UsXlPnmqyIUrH2p4kKVFJgifCzne7aF6IDy8QWtA1FX1T0zY1WmvKssR6i/WWuu0iCyIvB0nZ8PUrSZJobN/Gds4aggoonVASwFmMHGRlA08DqQhaEpSKjFmGwjsoAsRASJPeo4aAxp/3Fa6Fw9f+fLipwV7G3DP8wGiAuHATkUKFi2OJoES0Dfvrzt7Ff8vh/5HXEJxBWhYFaFyHvIsgcc0lu5f/jOn8HURySH21ZNvssLZDC4ES0Hct3bXLUmjWm0sMoNOUi+UlBkdWO666lhAsTvec9z1115JKyaUX1NUOXGTaonLmh28xKafsjGdnLJlt0cYiQiAJEnRgrQQ2SFAJ++MxeM9hXtC1DWe2iXhX60maHa7e4iYzQlcjup5gu3jkDobgPVfnL+g/zXjw679FKAtWpmez3aKSwFROKKzAGYtUklmRkeqEUiZUpidJU46VYqpT6l1Na1vGoWUhUy5MxjoTHE/GrBPBZ2bL/cUtvv6X/xa3xsf0naeYLZgf3R4Wkw4z32O0t4/pe04ePcJbT5qXyDSLe5q+RxHVR/VmHRfoSlLXW/7g9/4RHz/+jDTL8UMmodKSNPuSksq/hE5XSNBJlDGV+YhRMSFLC9I0pywnFIXGhUBd7dhs1vTWkgxLLK2i116qhGAcUizo2i0yeNJE0XY9dd2w3u1wzjEqihucYVHkFGkW516ivMngFMGx2+0ospxxWZJoSd3UWGsQItC2Fb2xoBKMNVFq1bcoKaKjar1iOh6TaM12s+Xjjz/mzYdv8+b9u1xdXICM0POnT5+g1QnHR4eUkykqSVBCUGYZoyLHplFMv7lcUtc1eZ6TpZrdrsVagzE9fd9zenZKXVUU5YQ7x8d8+PVvoBLN5eUls709bt27x3g2IXiPZIABiRi3o5RivVkNmleHNR2VdygRyHRC4iJ71wZJJiOgPdUJfd+TJAm9MZi+J0lyjI25ZNJo0iwjzwu6rifVLiI5sxItVUwO8HFplyTJoJ0O0QBhLc53WOlZjAqEgpBUBGNwAWoEtZB4pYZqEyNtgNjhOoc0MV4mEQ7pv/wo9q/7CuGLSXyBcB0yyRfkZCGOHqKDb7AJi+vyGTkiQl7rE3x8mAyj7OtX+OdSg2FQplx3x/Hh09anNO0V5eGHZId3kWca5a5ou4a2a3DWoYVCIKi7DS7AqCjxvgfjmOoE5SR50Ixkih44s9OQooMiCMF0Oma8OGS6OGA+nrJbL7moVrR2A87QEnA6/r0VSYZomjgqTDJckvAMi5RwpDXvPPwq+cUVl9WKdbPBpynoHGkNjKMRR7U7XLUm9C04Q/CW6uVzPv3d/5Sv/N1/h+KXfpXt7pL52Usm/RavBbNiRFHEYpdIHd93eUEhQAURSXxKME1ySp0w2m35bLMmWcy5rR7yOtsiksB+krGXHGPrlmbXod5MkVmKxKNtQGYJpsgoJ1Murna8fnnG4vguo4N9kiSLZplhjNRWFW3boHVczk8Xc1arFe/cf5uvf/sbzBYjPvvoJ/zRH36fv/U//J/9zHvuS3W6UinSNGcynjOdHJDnMxQJ3kWcn5SSIi8ZTeYkVxc0/frm//fB41yPMQFnJE1vSZMRbSuxvmO361itKpqmYVyOKLIMY3q8t9R1g+06Egm3D/YpyoLgIgZxmSVcrTc0bct622O7jsmkRKmEpomMT2/jLPaaWRCkIDhom6iptUOg5ng8Jssz3nn/q9y6dcwf/t4/YTabcvzL3+H1q3OePX3CevVnJGlCWZbszSZoKdlsN2x3O9bbXXwTEoswgijjqhtAsrd3yAdf+wZfeecrTKcjLpdLmrbj4OiQN95+yKPPXgyz4Yw8M/Q9dH2PICYL912cV0ulcaYnFxIHWBkwzmGcp2kNWiWM8pQ0jewFREArRWc7nG3xQmF8wNsO4yx5MSbNS3pnUM7RNhVKacZJStv1aAlKJmihIgDGgbKWHIvWgUIF5tMCNUkJ3mGVZmsD503HpnfYa23udbEJHnltXRaeQlzrXX++V7g2a8Cw7ItfUxCDmy5w40zzg/khytL9zZIMP8jnbkYVYRA+xLJ77Vq7Xq+JYbkY8bsx9RaRINKc2eIee/u3OD56SPqNX+enT57QvPyU3cUpbbWOUjQPOk9IkozxeBQTPIQi0QnWRzBVmqQIKeNyW6T4ckqaZHTeEHTB2WrDZ5cXTHEEIVkkBXlnOe8tXiZgDZtRSkhSnEw5KHNuWY/PM+g6TjeX/NNqBU4wUoqDLOO82hLKAhlKEmfo2x1uMkeN58hui2srQl3hu4Z+s+Sj/+v/kXl1xepr3ybs3yLfJSz6mg+c5YOQkPq4/C7ylJHSCKFouqgZ3yvLCNP3cGVaApZFpej1JXY85mA64mpzwTrAIh+zd3RMWhQIGR9EBIfpW7qqYnW15PnzZ5RZzt03H5JMZ6RFEY09w0O27zuEloxmE8QWbh0f86333uer777P4a1bON8PY8DuS++5n110Rex2ppM9JuUeRTIjlQXBSdq6IxU1SRrnUqmOus+maXA+Hn2DMTRNR9MaQpBkacF6vaXtOjYDTMZZw8HeAdbFYzjBk6aKvemMshwxKkcY07Oraq5WS1brNX3X4UxHlmgSJUhHBWU5iokE1mBcYFdVZEUZdbl+iB1XEmsd2+2GIARpHofjXdfz6uUJkzLjjbff4PXL12w3Ow4O9njw5lvsdjuePHrEo0ef8OiTj2mqiqZraQfNrlaRY5ulGbPZnLt37vOL336bt9/6CuP5jO1uw8XylOcv48z6vQ8/4OFb77CrGl6/eskP//h7bDeb+Nq1RlqPVJ6qbrkOTNQ+xPmuiUm9Kk0xLo4UfOLpncN4QUpM/EhTTW87siQlCEGz29JZF+E83iNVOxyLCpquj925jR3rsOJB4BiVOXSgrERYQa4LROopEs/hKGNcZAilaD0sG4vcVjQXK7wdjutySOrwAg2MS83hKGWSK4rk5x/Xg782L0g+B5MPqgPk50qMQa0RfMx5i6i6gVULg5vp81Tbm4IdxA2VLH48xlQFICiFyhcsjt5ib/6A24dvcXj0gLyYIYRmuWv4ynsLXt95H3F1TrJbIrYX7IlAi6CxPbM8YVGOqJqGtq+5O54RkpJlVbNqWtqgSKYH1M7SX56zrLY0YYvfbeldTRV6mmYXl6xaovSIucrJmpqrTYUpSmTouJSCZXDIvmVRlBwfP+BsV1OblrVwFLqkTErMMHYy1kFSQvRAkbsp1eqckJbQNtDV+K7j6j//+4iuwb/3AbWCyhpeXV3ye6cNmba8Oxnz1fGUt0cz9sdTylSRpwrnA11vaHBkSrOQmmAdF5ev2EvvcbefMDv8kNtZz3wyInhJVhTD/e9i3NXlkouLM5qqihFYrme33TGpWqRKIVUEDE1VUdf1sGCTkUbYGr767lvs7ZdcnT3Hestuu6at/1XZC8RwwzItSFWGRBK8wHSena+xHWRFF7WwwpPnI8pyStc1dG2P84Gq6XBB4APsqrgRr3Y7shRmkxJfxE2wM45EChKdMJ8tyPIRCMW6amibmuXVBV29jbPMvh2gKzHjaDzEpjdNBMy0naGqa2SSoqUkVRLr4xbYE9hUFVor9vf2yYuCTx99ymQy4qtf/QpHt28jdMKzJ09ZbdYsl1ccHR7zm//Gb/Dbf/236br+5i9hvV7hvacsRxR5ESPW8xIhJbvNinqz5JOf/gnbpmI6m7M4OCDPcqazPbbbLdtdzYvnz+jqiq6pGI2iWQFiHtquqlFC4UPEXGql6Uw0f/gBwBLB0j1pmmIQdDbQ9vF7z7VT0APB0fctQupI0kKQ6qi2yLIijjGERkrNaDSi7XtECCglyZIMQz/Mly1pIlkUE/ZnJfuLCSpVbDuD2jT0UnJWVfTbdugWh+N7CKRasDcdcXt/wt60YFr8/ItucJFFe5NAKyQEOWzEhsXgF9dfgWGhFgjXzW4czALhRrML16Ph6yVdZFBInZGNDzi4/T53jh5ytP+A6ewuWudEsE3HprNsupZl59g4yTII6nxGX8yQ81t0KdTO0HjBad/TX10itltUUHwqNH3w6E1DXW/pk4Ly6glNqsm1iKze9RrV79h5R/CBo3TKaX1CbQSNUmyDIS0LlMxJZcbdfMzJ2SvatKRTgou+ZY1lNDpgqjxXq0u2ukDlCbM0YbO8wI5GMFHkStBVVzQ2RRyNoGsQ3iLrNW51Bpst4R/9LkUwtB+8RxgXeGPoUuhEyz9vVvzg6pJ3s5K/ee9tHs4O0FpSJAolJaWQeBswtoOQ8At33mJ/fohQGt225JmOhVZqVDrEQw1hr11dgw/cuXOX6a+XtE1LtdmyPL1ghiKdSoIkBgboqPe3fQ8EsumYxKTsqi2nZy9ZXa2o1jsm4/GX3nM/2xwhRMQUqgFU7sEb6J3F9p6u7tG7HUVZglBkacZoNMUH6Ps4rBcyUsfqQRImhGCxKOiNpTcCTaBralIJJPENP5nt0fY9dbWNiRVdQ99FrkLvoihSS0mapBwspnQ2cHm1JBDz07ZVTGDouh7hLMV8FvGPNlColF1V4zwgJOdnp3Rdx3/1X5xRFDnHh0cUZcmDNx9weX7Bi2fPePr0Ux4/+gmp0uztHZCPJiRlyWxvgbERQrPdrliev2az2bCqdrRNjVSSYjRlMpuj84LxZMJus6OqKqzNePnqFReXS8qyiKoKpen7yK5ounaQzSV0Xf05D2BYWgUf53uIyLCt2o689BAsAYW1Bqk0Xg6uKalIVQSYh6DorSFNEpCSxCcUeUFdbVBJhBaVeRHBRT7OKIWQCKnwpsd2LqYgK02SatI0x6JIM0eWGtJED3ZaMwhYYyeYZ5rZdMThwYzDvRHTf4lN77/uy3qPCvKmsb12vQQvhiLMzXBWyOsMLhflcOIL+twvYipvqm5cxAmZUC7ucP/u13n4xje5dfgG4/EBdvjE3lpaF2itZdd1SCnZdpZt07E2lu12hewqzHZDdf6Cz85esTY9frzAJCWHtWGUJGyKDHuxxeUZMtFMp3PK0HNPF7zeNZwuV3Tnr+jrLf2kBBfjl6a37nFvOqaqtygjON1esfGaPhvhk4TnviM9PGCuNInzvNxe0qmc3myYiII5CSvbYZWnag1FMaYTAaMEXiak89v0XYUgQbdbbL0BJaNjL8sJuy3mB99HLMaId94mpI6wvYIGZAvKxTPCy92WeVqyPy7RKEapRqFIRiXj8R6jco9UJwQVk8TL6Rgta9rdhmy8iOMW2+O6Du9B5QWp82RpznQ6ZXV5xcvHr3DqAvKScZoQCGzWW2xb0xP3QqcvXnB+doYPnsuTF3S2ZbvZ8uaDB2TplzOivzSuh+sjVQBC7JqCc/hgwQ5yLttH+VKiyIs8WnWFwwdNiseLHm1bykyQZTmd7Tg97fA20De7CI72Nkb/BIHKMrSPQJum6+j7WID6vif4aCrIE8X+Yo4PsNpckSQJ282Wqqppuw4bAnXbIrKEtm1I0zjvNCagdZQ09QPnYbVakucjXjx/wVsPH7LebEjzjKPjYxCCq6slL548ZVmd89Mf/5BNU9P2lnGWUrWRXJbpIVVYSOaLBbfuPaAcj0mzAikF2/WGLMkYD86w9eqK9XrFxx//BCEciYwR4F3XUzcVOkniLBBH8DG1+BoQI1SKC7GjneQpSZrRtC3bqmI8KhHeRU4DhqIoaY1F6wyhHDgRWRcyLkCViK6rPCvojaNrmzieSFKUFDhnUVrH/b6NAHvbO0xn6NueujWgFMb0OGtx1sZ5urdIL/B4vAAVHEppRmXGZDJiMp5Q5D//CHbnosNPShVj2EOc4zHMcoO8tuwOY4LBsSbCEM7pI086hkFeKyGGzxcwO3rIr/zi3+btB99gf3aAlIreByrrqHuLCJZt08bxhvNUF6+5urqi2a2oTl7y7OmnPHnyKat6Q8gLpvNbJLN9ynxMf7nE5y3n4wXVYp+5dxz7huVqy1YlGH/Orr3iVELv4sPlcFIilOQCgUhSTHXJJ6dPQUqkzllMZzzc22e53mKt4Xx5yi7XCJ1BkXOsUt5KJpybHTvfsLZj0vGYaaJZXZ7TTaaYLGOeJqwuT+jzCcVkj1RCZxyMFwSZEkKHHM1w7Q6xWeN2S/jeDxndmSJkTuVa6AJF7znOct6ZHpAqjSGmM9fWUqYZ42zE/t4DnMzxUvDjT56y7QVFJvlwX5LJhn6zYi+f0PcdTbXDVBU+OKrNjuXpGWmWMplNkEmFJ+rt0zSNOxHTU9c17WYdQxcknJ+d8tnjx/RtTZZKjO/Z7Zb8/h98wmZX8e//r/93P/Oe+1J9g/MRHH49QwleRBG/iUfeVAiEAqUkRVaSaUWbxMC5sigYj6d45zm/eM3maknTtTSNYLeLsxJrOlIVxwplWVCUU7qmZrlc0rQVVR2zzZw1JFoxG4+YTeKPbdNRtxGus97saJqGznSR9KMkwRqCjuxNpRRKB7yzKBEhPq2JLIZEaa6Wl1S7DScnpwghWK2WXF0tKYuCru8oJyOyUYET0J6dcXb1gt3WYY3BE9OR33z4FrO9fdq6pu1ajPfkhWU2jWB3Yw3GGIqyZHm1wjnHZDLm8uwEVRY4D10fSWBuMD10bYfzcRZrvUeKQaY0dLxN3aCTjDzJaNsWqSTjrMASFyq0NRbJfP+AtosjChscXd9F+7ZWscAKSZql9H2P7Rv6viEvSoztadqGohyRpxld36HShKoxnF2tsFjG3YTOOzZNy3pXUTcNwTjsUICutbBhAEcHYt5W1//81Qu4GNgobkA9w4JLhqHQxtdwE/Ek4wghDmav57dyWI5duyniRxezB/zOr/4PWCxuE5qGV80ZTW9Y25amteyWVzw7fUJvAqGtSDx89uwTtrst29Wa3eoS67ooy0sSnEqovEX1LaiEW8WIk67HLS8xr55ymWtOy2lUsfSG+WiCmuzxYr3Edx3UO16OC7yUCJGwGOXcTo+5bNZQLLCJYlmvOHErQkgYTybc9n0MnEwtzhlO8pyLRHOwuIutLtkFMFlGl00pjwsav8MnijYdMXnjbXZNS4chm0+RuwYvMtR4jm9WqL6K9uFkDCrD7y6Y/fAR4jsfUtUO1bYkrudgNKPre9JiRJakyCSjVAllOqJPpvzkpGa8SFi1NZuQIUcpl/WOp68v6LpzMp0wuwN931FfLtmurtBFwdnrlzz904958JV3mR8eMzs8Zv+qJSlHjKZjRuMRroa0KDFtTZKnSK0RWjOZjdn6lvffe5snzz7j+997xLYeTtBfcn2peiEg8C7QNT2VbGhTg3MNbbsj1wkySegaDUSQix4yvkaThOl8n1ExxXQ9fd9RbWvqjWV1VbHbxvkszuKkZlxOKMoxAUG121HtNth+WPC4KNCfTaYc7u+RJgmrbUXddGgladqOummxNpKyAgItFUqAVmrIU4vpDUEIsjSh6wy2N4zLiGkcj0ratuXJk88oipy92ZwuL6irinoX7cZt09AZw/7REUiJ6Tuq7Tbyd73H+OjC2Ww3OBeYTKeY3mGtZ2//kOAds/mCto/R8VeXS8bliEvCTRSSsdH2q4Vm2/UDYQ1uGAcyandTsphkKyV915IVo0hu9QEz8CLMMB6wznFxcUme5bRAEgy9t9RNQ5JmeAeTsmA2CtRSsGviHD0W5YxdHWVLRTmOUS/GsrWW9W7D6eUF4+kElabU1nO5relaM5yO/HAfRYZs1/Zs1xWrUmO6OtLXfs6Xv16ACR/VBz5ESHkIN9Iw+KLkK8SgiWs1WYgPQn+tSQYEijQpePjGr/HjR69w8iWt6fFe0Ww6ntuKXdtzVIzI256z3Zqu3cS5d2/Znp7RCg+ZRvQBkWrKokSmJVNdUG+v2LUrPkticvUszSmbLec7i81rRJKBcLw0VURDypTFbB+33rA9OceUUygVgZb1ZIYqEmbljLtZQv/Tl5g0xecJu2pDlyryN97kltScvPoYrxU2DSyrJYdHR+imZi0lu3HJZHxA9vJjap3QjEeMRgrRrAnFAlsuKIotTQ9oheg2OKUJSUbIM6ROkGVO83KFmX+GnGXczXK0VCzSkvvT/YHhFkedMikR0/s8P9+yXl6Qvj5nrRX19oru/JzJ3iFjeYlqL7h3/y10UZAkGTKJkUa75SWvnz3larXiDaUoJ2PGcorrPOvVdiD8dXS7LbbvyEcjbFdz9fqcs5NXVLsVwRkmszFvf+UdTs93fPL4Ea9OXn/pPfelM10lJF3TsdnswAV0IrC+w4seJR1pAGs7QuPxwVGO5mglGU8mTGdzEpXRKwWXsK0tq6stqyGVocgz6tqRJjnjckzXWepmQ9+1OGfpbQRr4DxlWSCUZtf09JuapmmiVMZH9IgfPJvW+RstndIqRpBLSd/10Z6LQOmELIuRH955xmVJcJ7Nes3p61OObx0x/ua3uH33Li+ePWc2m7FeraiaCuccu101BEOm5GWJkoKr9Zqua6jrKs6SRcV8MY/4yL4nOEs52mO72/LHP/oRSZazvloiBWRZDh5609O3bYyNFz24eMqIptEwxMHE8HLr45vf2BATeNsWIQKbtkMtopNPKU3bGZSSdG2N1BNQGpVIlI+Bidb0aClpesMoizD41EPTVKR5SVmMSNOcpq4G8Iei6wJCKi6XW9pmh1UvSccjnEqpQqD3cYZ7QxsLRC133fH69Rm+rylzPWTS/ZyvEPm5wnsQ/kaG5INHSHVTbEP4fHwQxQtxJinENbMVbgjtWPZmbyDEjN12i1WCi7MtdeJRjcWZnhrL080lD8sxiQ9cXZyz7Wts15AlEtV0qF1Fkyk6GzCbFUm6Y+/2G+zpCaHZ0rRbbG9YZjmb2Yw0KTnMCm6NZ6wvznlxfoLJcygKLnxgfPcOUyFJveLQwyer12zMBlWM2TmP6zX7x3fJTaBZnXOZBqzO6LwijBbcfuNDdr5iZWpMWXBiHPfvPsS1PdsEWgX3vvUdlmev2CjNppiw/9UPOd9scUlGIiTt63NCOkXvHUTjTdtA6yArSUY5YrtitGzIJgm3i4zDyQEyCIw15ElG3dZskoLGKz5+8Rkvg6SVHrnacfv+McqlhPEcR4/qa9K0YO/WbYrxGKU1aZ4jleDV06d89ugx43LCfG9OMYr2X+/ifVrVFYae7dUSETz5pGDdXPH82ROePHtMu1txfLBP19XM5xN+5Ze/w1/7rd/hz3760y+95X5m0VVCIFzAtIamakmUJkMShCFoi5cKtCDICGYxLkpjinJMlqUkAhjMDGcXKzabmqaJbhklQuxivWOvKEi0oKqb6LrpGpx3dNbSG0MykMzqznG1vkSpOF9LVHzjpkOkem9MtGMKgZIiohaNJc2LOAZwFoRE6Wh0MM5irSEvCkzb8dM/+wn7B/vUj3fsLfY5unOMVoLjW0ds1iuyNMcby9nZGdaZSPqynrwYpCTGcrVeY6yhkCN21Q4hNYv9A4oi5/ziAikkr54/G+ZLFVpJyixjW1X0vcWYDhFAyXyIBodrjoFUKs5KZYoSxDGP7VFKYUIfUyysY1ttydI0LoNkQtXsKLKMttqRZCNCMGRZhvMa5z3eGayBVhI5yHiSNKNtdiRDLE+vFdb0CBUXbQSBEoquidlpq02DKEooMnyiCcS/o5udkne0jeOsa9msVmgRcL39/7pW/v/uit9bzyD7kuKGihsnCuKm8MaiGyULAhkTOOQAthlwj0JGjW+qpnzyyScUqeZks2Kaz7h6/pxtIthPR9xxjhe7JT89dyRI9oOlrjb01lB7hzAGnSgyBFkQCKEgwOnqDHSGSlIOJ1PEes2LekOPpclLdk1Fs62Y3b7FncUeqVCI1vAJDVfOkqgkjh9Mw1HTUq62mLFhO97yfDwh6Jy0yDma3sWfrNmpDqcDGwKbUcnh/A7TkydsU41PE150PfeOJrTPP8OqAyoneXM24U92Fb22pIsJY9+xK0aELKXwjrrrKY732VycIbOMwI6sa5iphMl0D9M3LMyUaZKxSHIKnUXbe6o5mOxh8gP+7KrHCU2ZCLwNdH2NX57Hk4o3HKI4nEw4WsyZ375Fluc4awnO0ewqnj55xuuzC37hG3fJyhypJDpNKKcjinHG+fkZk/05aZGivEZ4R9O0XKyvqPKW85Mz9uZjri6WnF1c8g/+i3/Ie+99yF/963/zS++4L2UveO8xvaVve0xpSNAgLdBFNoCOQnxvA850uF3ACUHRdmjZUtU9T56/4vzyCryh7xqatkN5B96QJzFp9uzinF3dUqYDprCq6bqOIlWMR1OEUNi+QcmAsz46nYKn61qUiK4eR3TShGDI0hwRBEmiCN7Su1gEpA4QBqtwiByGWBgcTbvj4sKhVcL52Qkff/oR77z9Nrfu3maxt6CqdoQ8ZzYec7G8JEkLrDc458jzjCIvaDuDsw4lFZPJnNne4iZpuK4rnjz+jLZt2WyWMUBQCiaTCXazputauj4qPGKjG+VM0WIrEUQIe9yiD8s1Ab3tcSqqE4QINNUOIcYIDGk+QoQIzsFE5YJMElxwZFl+MweWSkXrp9KDQSUQHGy2K7IsRwbQSY4zZvjzA3t7x1wsL3HBImUWVRXDEf2my71eLIVIoKs6Q923BNPH2Pif8xW5CIPCQ8R7/iYlQsSlWVQqiEgUCyGiduXn/IUbOPnQ8AqpWC0rlpdnTIqc9XLNKkisljSrllfilOPZgpHQtH2H8z0nPqAnU0ZtQ9LsWAVDkyVordBSc5gUNG3DrtoRkg7ykqWzJOMx5f4huuspjKGyjovjkqbtIEmZCM9+tWZ2cUKdZqSTEt/1vJpOUG/cI0tKbmUT7Gd/ykbskHsjrFacqkD68C2OguP06Q9x1iGyAzaVYPLG2xxfvebV6hVeCUKbcXcx57ndcNFa7j54yMHZlvPCsBl5vr1/jz+qOvp0zFFyRHO6oi9HyNUSrwpEb+hUYNUHxmnO2Gj0tufw9iEKzyxN2B/NKbMUp+a8tAWV32BfPWVUJijjGfkNF589Zq0LmrM1v/Qb32GU5+zdPiYpR/hArE99R1+3bNc7OmOQStGblma3RUiBFwGdQLW8IB9lFHszgg+01YbL7ZKz9hWmdLz7rQ/YvtzR2Yw3Pnif6fd+yicffcR3fuHXvvSe+xK0o8caS9O0tKZj6guEELjQoaRHag/aIURA+RRswHlB3xvausEZz+Vyx9nZKcpbmqamahq6rkP4nkRI5rMRu67j/GpFkWVcbXdsdluauiZTijyb4IWMW3Ub6WM+BIqiZFfXJIJI2PIe52O8dIx5DxhrKPM0xgF6h9YSJQXCO5IsIWQJQkBV7dBKIqWMaQxlwXf/6Lt0XUcInt1uy+27txmVBWmiWWrFrVu3sC4u5kajERcXF0xnM8J2x/HxEd7GZAiZZpy9PsF0lqquuDg74Wp1xdHxMa9PTijy6N32wWP6NqIaZY/p+1hshYDgELiosUUOWXQ+Ihzz/MZy6/zAsnU91W5LmReYrkaomJLhg6K3W8pkHgu6MaRJinf94Kjz9MagpcZ7g/UO28ZuNFiHE5AmGT5E2pmQgtt37nNy9gKvFFZJTPB474a4m8F0EP/SBimrx8d088HB9XO+xLWVQQ68m4DDo4SMqb0h/npARtdIiIaPIIYY9mt0o7i2Cku0yhiV++ALXm2uGM/3OOsMNk+5N5myqWte2x4tFG8uDtmsLzmpVqAEivhw1C7gm5agJcbB6ciTjscUcsQ4KZjkJY+6DbskIIUgHZVMjCU7PaHoWrr9fdLguapbVrMF8v4bjGTCdLvkpK2o92coE2iSgBM96Vfe5ZZM8atLzkSLkzlWS5LxiNvT7+Ct5+zyKZ2WMAq8u3eLqtvQ+h0vas933rhD8/JTWkbcb2a82v0J++oWX7Pv4cySooBynPKto7sstcY5SPb36C0UWlFXDabacpkojtIM3bbMfcabt/fRQjJKFJ3I+NPXV1xWG9abHSPlWRnHw8WIzVVPbY941FpuH01viIIyywCPaXaYusJ0DWki+Po3v8rde3MmZcJ2tQQhGLU1UivapkJIQde3yEqT5hlBK1rfko1H/K1v/U3ePLjHf/If/8d8/OgRDz98j3/z7/5b/P3/6O+xvNh86S33peoFayPf1jmHJ75xhZSoJAJtYsasR+mAkinGeKSIc96maTk9O8ebHu8sm+2Wvutpmypmb5UFrXGcLq8QIdA6S9XUaCBPcoqyxEtF17ZU2w1Sxkyw8XiMD55gDVZL2qYhSAVKE7ouQsiFwF2zTQM3Kva6blFao5IINLfWUlUV8/mC2WTKWX/J+mqFFFFGdPL6lL3FHp98/An379+lbzuuVleU5Yj1JuImdZIync5Ikows6UjTlPF+XC69fP2Kx08ek+mUJM+4Wi1xztI2NVmaIoSkahr6oUMWIdqIIT5ABFEfKpCkOhteUyAIBUNQZVqM0CoZWLYhKhSso6oqstyS5yOCi2oCIQR93ZAWZeRVpDI+zBBYPpdQee+j62rgEPTe0dueznTkWUGelbSmJUsLkmJEaz/PhgreD1CtCDQCYn6YH2agWkfTgPv5L9JE+KL1Yfhqbx4Y15/0uYoBiJz2QRIWht8knpqig02KjKZuQEucD+z6Dtt2NP2OnSqZTReYy9d0tuZlXTGazVg4A6ZhZR3bSRTYp84xals2rqPPc3pAhYBKNYskZ79t2bU9SEu33vGyyEiO90nTgnHbEE7POD++hccgjMMojRyPGXmPN5qQgDc7VokjiJIkVdxZ7LFot1RFhqNls2tZlSMO9keUp4ad2FL4wMuu4Zvf/hrf/+T3SdOSg25Mu97it56r5RMe7iyP/vSP+Sh9wtt3Dnm4mHH74TH3DzaUiWGXHZKPN7iqQ+oMISVZqpHGoGSJyXouWsuHElLZY0LGT897frLcUKYjbu+VJEpy/voF37844+ziFdZJLrI539ybsn39Gu7OSbMEETx9taGtNvRNh9KB/Vsz0tKjvMY7Q1tXdF1LwLM5vyBg8KZjddGSlyVeOublhH/v3/qfoBz8/u/9V5ycLlGh5g9+9//JL/zqX+Hv/Nt/B1mnX3rPfalONxiHCxaBQ4o4w5JakWqBlBIXDL2HRAQSrchkjAt3xlLtWvqmIU8UT0+XmK6jbRtM3yEFJMmc5TqqFBIlsdcR6jpBZ/E4Z01PM8jG8izBi7hEattot7Ndh/MgdYLpWgiOROfRzhrAOjvIrDzWeXZtR5Z48tySZSkkiqZt6LtYhKQUjIqcgIhGh6slf/BP/4DFbMZoNCIrco5u3yY4T9cbdKpYXywZjUqKcoILDq0VIVg60/Pi+XPWV1f0psMFT5ZmKKGoq4oki0qPrqnpugbvYkT3NfnKOVBC3SjwlYpaUu/MYF+V9LZFSo3M44gAEd/owTucCBgjybOAUBLb9aRpRtdWeBFwzg3nYRUL8qDHjn1dnHnjA51Ug8ch0Gy3eGOZjGdkSUZLh0wznO9xYdCvDpCQWI88N5QxERAqGjpQ6i8ET1cEib8BjQ+LMDEE71wX5PhNuTapxe7XDwGU0oNQeKJ5JXgFJDgE5+sVR7NDPtotY4p23XBSZmxtz51yyqraca5h21RMkoS5MaxCj08ykALTdXQIyqxAtT2ilAgFu+qST22HkAnjJGVaWT4rctyoxIUQH9pJwmI+J/SGWib4sMPohLPJHHH/Ifl4xhvW8ejZj8GM0IcKYTxnNiWdH/BmWfD47CeYfIwiQXaB2++8h21rnp79Gbxxm2Bb5iJl3BU8/uiEeT3ie5/9mKwXZLsdSZFxdx92r8858R27t0+489d/g1++9YAXakJQd/nR2ZZeSXj1HO9EBONQokXCWWt5cfKMtnrCmnucj7+OzGbk9NSrM56+fMVmd86VT/GpYJFM+Mo0I929QGdz5rO7ZEVGsIau2dJUK7arHevlFX3fYNotOhmRjxaoJMH0LdVmzW67RgqJtx0ISb3dMCpz3ji8x/rFGeV8ytMXJ4xGY0wf+PFHn9LVNd/5tb/C3bcefOk99yWUMXDBxfeIFqgkzjtUGkHYQgqctzgfj2RBCVI1itq74Nltt2gtuFqtMX0HPgZNeuvIyzFV11O33RDXTnSpqEjmV0LR1xVCSOq2QYWAQw6JwA3GtsOcJhLFrPeYtiZLNGmS0vQG5yxdF1Dhejw3bKcFgCfVCo+mqRsSJcmyjLF1KC25WsYUiOXFGcY6gvOcvHrNweERl6sliYpzvr7vmczm5FnOrq4p84K6bWiNIc0b2q6n6VucjRbaLC2QSUog0HWGQmj6viPYuOgTSg/mk0GCNGAB/RBPHxGSCmd7rB/MCtbgW0i0RukEARHLaO3ABXBYZzFdw3Xwotlt0DplY3pG5RhrHARHwDPKC9xginG2pyCPhgzX4kPAdj0VW9IsJcuL6AKScqit4cb6G2uU+EKQhIREcA01FOHn3+leX/FhcY0Gi8vYoUePulyuxQnX98/1OAFunjDDDHuSLxC+oG9OKQ5T9EXLultykE4R2zXGWS6aLUU+RncOvGe3XWLHU0bTCcnyCtdsqJRmNxujEk0mBAchpXKGpTJ4UyPRJKIkn8+43/ecuxavZdyJaEE1S8mKKW9O9mgePeGxbgndChKJlJbLRHL7K99GBMPp60+pJiNCNqfrFCPh2VdzNuWI1Kw5P28535/yS4clz1cveMdqjpoFvp/zox9+n3p5yfRyy753vH/3Te6//Sbf/PrXefu9D0jThOevnrNZbdj8ySfcutXxW/ff4p+lkuelQ3rPVhV8ayz4oNlR7s/InCb1FunX7DY7XtmOPHdMVuek9Sm/d7aCpGSTzpH5iBzDfjnhOHjmMuVwNmY8G6Mk+L7CdjvqzZqTlycsL5est0vqbc1X3vsGd2YL8vGIau3jvigM8UOBGHAbPJPJguXJS4y3PP6Tx7x49ZqnT18wmRScnazYVBVn50ve+cpP+e3/7r9CBHtMew2kqSDNJEkiECqgEx27OfyQuGsIwpGoFCEFWg3Jvk2D8x5jO/JUct61tG0X0YVJEjPJbpKDQfqoLHAITFXhbI8zJuaFDWDs1hj6pkEpQGpciJbgrmvi+0VFfoAQFu8FQUc+ZwjX2V1xBgYeKQOJTshSTaIko6KkazvSLCFJY16SHSDd1WbNrqrY1E949tkT3n77IcZY5osZIlPY4Lm4OKccj3j28hVdVbHdxiOLIKCkJElSpHOoxCO1pmu6KNiudhjb44e0CCEiUEUIh1TpsEWPoZ9JmgACrVOC6QgEFAFrumjN9Za8GCGGmPTreBnnXJQ+2WhZsLZH5AOexQfAxyw2Z7FJGscUaYp3lmAM3vuhoMbFXRg4xjrNKPMC2VdYZwfp3jAnDTFJQgZi7yyJbFmpYIgW/wtx3dTM8IXC+/mPcP2xm08eVAxB3BRdIa7hNwHbdwS7YzZd8HS75hYJn2Ul67LgzrJiuVlxtb9HkyiOuoBbLTmdTTEyqlOODvfhpKUO8aGHcPRa44qCmR5Ds8YER+c9G9PysfSkWcLd8RFyueVTdlipAInvai604tYbDzm6fMVOeoRydKtTTvMJsum5t7fPgc+od1uyTJL3jt22JRvnfG1vyp8+fYQ/nHAwy5k2Hfd3Eltd8A/Xz/mNh++QPH2OfPaa8bjkmx++z9e/9jUe3LvLvTffwoYO0/ccTSZMkpT3ypxdVVOcPObQB35nNCE7voe4f5cDnbBw32ZcFmgFo8UM2zl++OkT/oPf/X1ef/8f80t35zyVkrZ3pN0OEQzjasXszgMO2xV7wXL/eI833rpHXub4vqWvVjTVlu3qiudPn3C52tJ7y2K8z9GdB+wd3yLNErTU2N5GtkkIeKVw1pBnOYvDY3QqefXkGb0T3D++xyQvqdqavb05T59+xg8//Ywff/aE/82X3G4/u9NVgqzQFKUmLSRJLkhSRZrqCMoe+KJBOJRS5PmIPCkRIcG0PUJ4mralzFNsZzHW4YlgHOscTVvH4z8C4+PxVgdBU23jEikM6DupQSratsFZAyGQyjzOCKWkdy4ub7SKUjPTY7wbgNwZfd/inccNixHro1C/0S1FIRkVOc710Y8tY7y5DZ5UKYwQMZom0VycnfDq5BRjLKNRwWa9YbG/z3gyxvYtddPx+uyM9WrFdrNhtV7H6HZvSdKUUVFig0MPgB/vPU1T0bUttoumCCHjNj0K86/n5u5GqRBCiEGbSQIErLegJN7EmbD0Dikk+XhKkOAIkWWrB12yNaA03kfDgncxmSDVMQcOKWOmnPRxOUmg6zvSsiR4i5Iqaqj7LhafasdkNCbTW7oBlxkG1myQQ5frr2uWABU/jpIgvxz4/K/9CtervjB0t18A1lyPSATczBf+hefEDRN30FMjAk5Kmq5ClyW75TnzfEK2WtOEjkmmyBFU6wu6omCLYj4ak6y39OMEhWbbtoz2DzjqLLtmhUoStgFeuh4dHEfTOUe7lmdUNInECUfrBMLXvHNwyP5aceF2yFQSXMP5znMmt0znGW80gcePH2PmBUH0aAqyFWSHM75x8Ab169d8ZteY6QyVe25VZyTdisPastdPeWQ9d+cP+d6P/iGpg+8//pT26SmLVHHrYEbf1fzoRz/gs0cfs/+nf0JejvjgvQ9o6wbvLKcu6p/TLKHuOpTS7G9WbNYruqLgqhzztW9+i7Y3nP7kOW3d8A8+vWRHTntwxOM28P2rLSHLqHuDXdxGqpIPD4+4V19xT9V87ZvvcXDvFkkiqNeXNNsVTV2x3WxZLpecXm5QacYbd/dYHB2Tj8coKRlNQSnN5mpE3XX03uKDwzUtZy+foNOU84tzmnqNTj0HB3P2xYKXJ68YTSds64rl1fpLb7mfrdNNJcU4pRznFGVKmkdTgU4GWMUwklNBk2YF48mMUTrDWUXbXKGTyAvI0iEqvG4RSPI0parrG6aAszZ6/KWmabc4528E6zJNYqSMjcu8YA1JPiYIHbsv4TFdHV+MkAQXMDIWKZI4t7Q+0Fsbl16D7TfRCV3bo7WiKAps24LSJFrQW0OuNSHP6eqagKKpa7Yqpkd0TcujTz9hf/+AR598zHwxwxjLrq7AxVk0wVPttig1cAu8xw523q43eGtx1tGbFmtcBK9oHee3g6EjCPl5hzoUBe88RVYQAOdiUoYKIc6gnCWEGFQZXXwKgsM5i9A6/j460pmcEti+QxKPo0KIGx2jkpJkUHNIEQ0mto8mChcsSqnILPbxYWeN4XC6oF0Z2r4bImiuG8VrcMzwbynxQhJuytXP9/oXv4r/xoyrwOdAnOsi/EX0IxDlDYq6qSEd49KUuUpZlpIH+phlteZcKw4evs3o/Iw6gaVKcApuTceoiyvOlGWTJzRCkM1y7o1v0VQ7Vr4jhIQgFWsMs8mYeaXpuhV+lKC9oNqs+EnRUiwWPOwyrl495XyWErKAyMZ0iYbphLuTMRvb4Vx0VH6crBH9hP2k4+F8hrv8LoWfcJs73NZ3OT78BueXp/zZ6z/BdTU+SZmuGnYvTrmsDNNCc7g3RuDp+5ZyVEQpY9twen7GRx99xIcffEiWKPqq4d6Dt1itNjRtzeuLJfz4x9y/d5+VlOzvLfjP/m//CR99/CnBW/R0wZPiDTi4w0xknF1esDjcoywnVJsrHuYpD1TgLTaM04a3jvY5ON6jGBXY7RXd5grr+riIzkcsFvucXO6YjKbcf+Mhk8UCvMd2BhGgHI8jjCt4pExZra6o1is+/cmfMJ7FxJf/7Hf/X5y8es2oHKESRdN3XFxd0jQdUv4rAm+uATZFmZPlKWmakaYJMolwlgSGJQTkacGomFBmE/CKatuitEIrD0TZWVM3Ea4cYlH1zuOCxfQmvlGVwxhD07RIKUnTJCbZWov3DkUgyfOYZ+YcSEnftBhjyNIMGyzeQ64UxkSMdm8MhGjPjWzvmLemVI5Smr7tGJUFxnR4E/8cLWVUNqiYxCpE/Brqpo1JFIO6YL1a4a2h2uyoqh1116JUSpolMVE2BJI0xbhox+36jlRp0NHU4W0/JOnGEMRUSaTUNyBqIQXeWZIki0VqyOLqTR8RkjHnITaNLoCWBOcJwdPWDUVREBB0fU8mYhG1Jv5+Slm8dYhE09Q1IUTouXM+LjqLHBUYeAwd1pih0BuuM32ljA8F03XIRDIpxhB87BAGSlcQg/51mJNGudXnc/Wf+yWuy+c1Cfe/8dO+iFZgmFYPza24SYIQSKQOdHWN8R3CGs63DeOkIBNQ24azRPHOfILoe05NhfWBJMt44+iA3fqKXd8QskCgoBuXFOMpe8tzjHdgHU1d8ekoUBxMecNktK9OeT022LLABE/Tb5jsHbJv79OYK9rQkwuL2W74uNpBmfG1Ow+QLy/44XgDSUOaCr659wGjTnKrNpQY1ss1v/vJP+LWeMLb4xnZ7pK9JCc7OeP8o5cQHOMypxzpuF8A6qZh1zYkSpMXedSC1w1/9uMfMRqPuX/7DnXX8MknnxCE4Gq7Y5ynbDdbsjzjBz/8EQ/uPeDO7Qfcun2Xn64bzl9eIVhjVIYvp2iZsh8879w94q3MM9Mee/WKRLQUo4QQDN1uw+bilGq7BgRygKCPxiVpIpmOp8yPDpASvHUE71BDUo0AurZGKEU5GvHP/8k/QQXHx4+ecOfeXSbjCdkbJXmacfvuLYzt+Cff/UPW683NeO1nXV+iXpBopcizjLLIyfM46wwiHiGRChlACkmWjlAyIU0zTE8s0IlGK4HpLav1Jrp9lKQ1Hdb1VF2Fs45EJzhrcA52uwop4uchJU3XDDE2fmDoRueZEIrQG0zfxqTbIbU3DGMJ66JW1NkelSTxxtY6HreJya5SxKNuOxC6vIckSyAI+q5DCoGWApEoetOz7VcxOVdFuVbfN4gAzW4TU3YHx5jt43tTKY2xPdZ04BOkkHSuJ/XXM9Yor7I+nr+vl2dSSqQEpTXGRA1vmhUopQcdboiyLK0Jth8A2o5Ep1jfR6WGNRijSZIEYyxSdCR5jtZZNDogMRicdyADdVORpxkCiTE9QgTKNEVKFReOUuGDR1lF37UgFMb2JFIhCFFHHXoQEq2TaP117ub7LUK4CW+U17PS6yifn/sVJQli4DiG/5rSex3Pcz18uOncv/BrkQugsK4nnc+oVhuK4zvMLk94WbccLQ6ZnL9AqIaXXnJ0eMzi5ROsDLRNw4tJyvTObfzzZzjjWLuK57ZDZDn7RwtmL864SHtMrjHe0ZuacjZnqt6gqJbszJYsU2QkXGxWuKnmYHKXo2XLq/qS13JFKEvSZMI0S2A8Ym+5JvOGkdzjyYvn5LM5v/CVv8H3/vi7nNePUSogtWV/OuH9vMBcLvF1zXe+9jCqi5yj7lq8s9Rdi3OBPM1wMrDebBmPx5RZRlVXLBZzTi6u+OSzl6SpZn9/n7DecufuPUZlSSIlv/KdX6Ecl1wu1yRacGUENsmQaYKeHSAbS5pmvJkHvnE04YgtdnXGs/NXCN+z3Z+xXc3ZeserJ09ZXlygpEQpQdc2XFxe0uwqZPD0XUeza0izlCRN0UlC19Q0bUVdr3HG4pXi4NYRf/iP/zHGGR4/f8x4vMevfedXGE9yVqslP/7JU5w1zGdz8uzLyXk/s+ha62lrh7eQqJw0yUl11OYiVCRGuQBotMgHfWdASkExytBpitIJVd1Q1y3OeXSm4udZN0CgFU3T3GADE6ViVycVpuuRKi7svPegMpyPc0/vfWQ+hICWmqHpQOk0Sr+IHW0IInZ/PhbtEDxKRZh5311rS8PQwUZTBUJi+x4xWGCF8LRt3PwHaUl0ggxuiG+J2lMPNw+H4B1Bxiwrb+0NPN2YnkTGQm+dGxJ/GYp/ZCrgA0olONkjpSDLMqyLelel1fA6xZBhlmG6mEbhgyTXSXwdzg2yrQjEid/DgDcdeTHBBQ9eoUix1pIoRde3WBk12KmKr99rTapTUAlSBJq+R8lonpDD2MQagyQC0bXth8j7mGXJoC++1r2mSpIXCVmRoRLF5ybhn991Pf74/APDVFdcx+3E6xqtIK5HJfDn7MHXS0shJSI4jG0IznDhKuZdzzJTPJOGO2i2Tc2Fllx1G+6WY9zZa15PNLtmzaWveXAwoT+54qqIidheQZt48sWEkfGY0KKSgFSCZVVxUYwYH7zBh7sN7W7DY/MCn6UIXeKF4s7xW5y+XDHyFZMkZ6zGnDYd5Z0Dvjr6Rc6efMbLzrGzj1CnHre4w+3pAUG2vHN4yN1iBrsth1LwYrthu97hTUvXO8aTktm4pO86rtoerRLmszm9MfRdizU9vZIEH1gur/js2Qnz6QzvLcvVir29fartjjcfvMHFyUtePn/KelNjesfte4dUVz1leRt5cA+BRHU78iLj7Vsz8uYM25zy4tOf8Pz5CYf7C7xxVJstTVXz/MUJnz1+TNc2TMYloyJhvd0hhWY8nuKcZ7VcU+QFi6MFzlrqasduu0Wime8v+PSTn7A6O2U+nZKXBT/88Y9B1Lw6fcaTf/YJp2fnGBvf/fPp7F8qgupnFl1nA6tVxdn5juPDjtl8BGnsxIQUMVFURqydlDJyEmSMugghkKYZUmuatoFBXuODQ4m4JQzeY3oz2E4daZYNbqgI8tZJMtB+erI0Q4hIztKoQVUQk36liEXI+4BONc55rPV45+Jy5At4Sq2i4cBah3UuAn06R0DEAgvDGEDQGkumNda2BEAJiRIeqQRSSJx1A/wroIBEQggKR4jWZGcYBpqAQ+i47XbWxjmSdeAdOk3Autghyji3FUHEU0CWIZ1FSoWSSYybV4oQHFop0rTAmhatI29CSIkmROmcTuLXlUUguRi01Dpoeu/xeKyFRGlcmsbSEhwQ/z4FAqlCBG+phLyIhKYA9NaQ5SOsMXRdR67HTLKCre+wLo4qbIhGGSEEUgsmRcZiVnK0P2E6Kvg8we7neH2hW4XPC+71r/25plfw5wvsMCa5+Zi85jP05LrBjDJGUtBlilJ5sDVdFkhCGoM5Q89OGkb7C1RfIbRkXOSsmob8wS3mrUWmEqXharvhVZYymhc87DKyDn5SndIkCqHmaLPj6Ohtll6hd48pVc1+PmGR7LPay3l37y/x6iOD9iMeLzuq8z8G4fnK4jaTYkF7+ZxMtxyO93hrfsCt0Zi7a0EqPRPfg2/IUoXf3+NZ3TMdj2n6lnGRIIlJJ+PckBYFV+sV1a5BSE9WZHRdz2Q84vxyxa6u8MGihWY+3Wc2XXDnzl0SpZjP9+g6QzmaIkTPR599xmszY1e/4mjvHiKf4OYzyr6DzRXebjl99ohHj59weHyPr37tAw7v345pKtZTtT299wStcFqzs57OwZ1bD7jz5tuorKCpO7RKIhCra9luNlS7HXmeR+2uiSdx4zrOnr1CCc96dcY//v0XKClYrjZY61gsFoRg4V/i9Pazxws+4IxluV5zcblmPitIszFJMixZpICgEcTu1FlH5xuEjGi/LMsYj6cYewIEqrqCRIPvca6PIwUfu0utNN6DDQOFVUWEoR+2dSpJomjdWbQS9F2Dkgp8DG20wTIEguO8wfjogrsmc8U3U8xHMtbTdD2JEpFRCxhnb+Zy1yv3EPyASYx1MwwC+kwrfBCgI29YDvpU6QNKxhlfpFcN9XaQq3kbSJIUMzjAnHN4b9F6cPkNBhFk1EfHkWeBTtM4k5ICrTRpVtLbiKlMixIlYlFUwhFC7DbyLCPJcwSBNE3jgo9BneEFSZLRB4+QButsHL04j050dKKpqDBQSsd8szQhluWoGRZtgwg+5kZpT1WtKYqCsU5Z2hrriMqLEBkFeZIwGefc2Rvz5u1DJmX+F2SVFr7w47qIfv6r1z+/Hj0IIW7ufXlTaK/fD5FKJhG47opeTJibwBPdcjsZoYLnY3pmoxFvuUDtep61azZFzvFowqEoeFydsOobRLDcXix4uJE8sSd4e0lQYzrGTG+/RboJ5OtzgjynUIJ72Tv81NeUb97j7UuD2Cxpuj1+sH6Oe/4TsizlO9OHvD65xFEh7AaZJjTNinenD9j6Obf3RizSObfLKSHU7OGYB4evN1jf44Tn1tEeRZ5R1TV93+OMJ88SBJLLqx1pY6KzbJj3r6423L97m/3FIf/k4x8yGmUolbE3O+AXv/VLzA73uHfnmN3mnE8ff8zTJ89ZzI/puhYjU8T+CKVK6m7NfLGHaD1JGt2Xdb1jtV4zGY35+je/zt23H5KmCRenp1ycnXNxccl6s6U3HU0bA2nn5R7vvPch88Nj8mKCKiVax3j7vm3YrtdR0dM2WNOSqoTxaMr7X/2ATz/9mPff3Y/Febuhd5Znz1/w+uw0SkNlgVb/ikVXakE6kmjt6WzNrtpRjFJ0UgyBg5+L3EUgivRdPNJqnZNnGaNyjBBxY++8xRqL6SNm0ROBOlLFbjXObWNwovNDJEoQqEQjJTHjS0iayuCsRaV62IgP0iQlB7OGAx8XdVpqvLWxmASPkvEI6EPsdtXwTXLWDV8HOO/p2wY5GBHofZTzixjvkmVD5LmRmD5EM4eUWGTUNl9LvgggFDpJsV13gwHsjCEZJF8BCM6jlEbrlL7ZkiQFTiVYE8crUdY0SJuCjx25zAghxEJZxgWWsHHsMy5HjMsCJ6NiIdeKYjyibVuCEMhEEUjirNj7QRoVF42m78iTlERphIAiLwk+ILRCCMkiz6PzTEbGhhCCPE0hRBVDnqVI0Q7a4Ph5gUAiYJxq5kXOPM+ZFsWft9b+nK4owRvsyuIL2mFBNELIL+7OPu9mRfSJf6HgStQwckNCqiW3RzmJz5hLxyzP8bUlL3t8opmkC2yzJClbQhKYzPfIt5JC9XRlR1pa9scldZoxrdZIq2CUkqVHPGp6xvOSdyfvs716RJbd4dFyzdadIpTg3f1bLLzk5W6Nt2uyVJIjsfQcz+ZsaotJp9yezHlneshRUuL1URzX9VvO6hPqzTll5xmNJ6Rac7Wrefb6FJBMpzPu3L+PmD6h9y24juAl7753j9PTHcE5RuOcXeXwNnB5ueHTT18xGhcIqbh7fIe//Ku/Rjkumc7H5Jnm1XrD+mrNNz54n9negqpuqXrP5sqwth06nTHPCi5MBT7FC0fdGara8uYbb3Hr/n1Gkym71SVnr17z6PFjXp295MXLl7RNR1lkPLz3kF/+9q/y4J03mOwtUCrBB4eQnq6rWZ6dUVUVOkt5/fo1FyeveOe999m/fYuP/uxH7O1NOL94zeHePg8e3OGzp0+4e+eYYpTz+vSUsshI9L+ieiEvFbN5znwvIysjwtFZH0+gOsZayKDBDzerj7ZbZzw5giIvadOULMtAxJgN03W0XTu4naJFN0mT+N/ISLcaikmiU/COLM/xA5LdGIM1fVy+uXg0987CMLrwInbcPvio8hmWZWmaENyQ4CoFxlo8Hik0TsRZr3dRGK0GAb8QUGQpTR/VFASQMiL/PB4hAlJF0b8PA+pvSGwIPjr0Eq1IlUQkw9N/AGMnOsWYBiFkXEZJQTcAfaSKVmpjopFDiMgGts6S6hwhQEuFVDrKvaTCmgbjHUVRcLC/h1aa1jiCFJRFzrgo4+w5CILWsYQ7gwhZzJ3DgbExjDJJKMoRWZowGY0QUsWoJBQ60ezPJBdXSwhgXFwKahXlgSoIUqlpTD/cEvE1OGvpTUfd1FR1TXxe/kXpdG9UxFxbfT9fjoUbk8SfGyUMxfb651/8b4HA+Z6krfG64K35bbJkTlMG3u8s5fiIi7VjUmq+hqAojnm+8VwVnv3RQ0ZmzSQ/4KeXDVZWvLm4y341Q6uCH6/XtGHDutW4yQFvpw95VfU426KFJZMpfd9yfHhEtZO0ssAJh1Ype/mYw8mYsSnxvqVMJEd5SlsvsfUrmvqMxu8IziC8Zn2uuXx1RZ6l7JqWtu9IkozNtub27YzZwYwfv3oUV4hCkOsZ83e+xvJsiXQ9GZIXL87I2sDh/oJqU/HuO+/wO7/110AK+rbmox98xh/tdmSpJs9zPnv+DPPZZ+x2W5RSNLP7dI3kXKSMCs3+4R1mQVC//oRw8orZaMLDd99msphAcKwuLjh5/ZrVZs22quk7y6gsuH14zHd+8Zf5ytc/YO/4CK11TJgJHtN2rC/OWZ6cEBKFxjGbzxEh8MlPf8zrk+eE4Li83OCCo6q23Dk+4uzkNUmWMx2PsHbBbruN/I0vuX520R0lTGcFe3sls1nOeFYwnU1JkxwfLN7Hba2QEj+Ex7ngo/5UdKRpjlLxTe9cdDCZvo14vAEDGPWlEYVovEVLiXcSJWMXkmQZwcUNvvMxYl0ISZDqRtd6TeOyfWTRWmeQRGBNhE8rEpViQxwhOBejWTzQ9naY+wYSFfACsjzD2FjcS6Uos5y26QAfHwwu/r9CSpAeZyLK8LprJniUjoUz0TryE1SIki3rSFXy+ZuUgB/0t4n0eKJy49okIUX0+CdpRtf3eOex3sYduw8oncTcrbaCINmbzphPxvgAqDgLTtOczlrSJMEGKLIC48E0Gi0dLkRViIr2NIo0JZOKSTkmSVPKYoS1nqpukEqSJYHZdMpqs0FpsMPJwrpoaZ1mI1prbrp9AfSdY7uuOQeE86zWBfrLeUv/2q8b48P1z2+GuNHo8EXFgiTO8qN+OZ7upPh/t3dmvZEdWX7/Rdy4ay5kci2SRdYmaaSRep3u2XqmgYH9MLA9fvcn8nfwgz+A3wwYhgE/jT3T05hBq1vq0a4q1UIWd+Z2M/NuEeGHiJukuntUBhqWGm4egFKVyEpmUfeee+J//ssNmKGdgj2Nsm5m6LJByTXipqa70Wc7eJPFcM44rUGGrMsV6lFFY2bUSkE64H6ywelsThpWzO2CsS7YW9uhupyw0unRD2piJVlJI9Y2t0nnC5K6jxY1WZqwkfZ5vbdNd7JCk0qMmTPIMvY6K1T5FDmdc3p+Sjmb8LSaUlVzjPXUSpyASViLCCV1IQhqS1X4/5/K7SQWxYKN7W3kicKYCg3MbcFcQrGyTjEcIhNBb7CGKCru3T3gh9/9Hqv9Hv3VLu/+7OdUdcPdvT12d/dQkeL9f36P88tLwjAmjGKGV1dM1Yygs4u1FVfTC/a2txmYGqNnNNWcew/2WN/ZIgwV+eUVV2dnjMdD8tkU3WgGawPu3tngj779Ld759lsM1leJ44immlPkY2b5jMnViHk+dckytWJxNaQoZpyev+QX771LVTWs9nvEccKiXHB1OWN3a4uNtXVenp4435UoJLca3bzamP8rr/o4UXQ7Lkiw38vo91YYbGyhUEznE0cJkiCE9Q5X7oQmhKGqZxQLhcQQBIIkjkDrpYeAk7w6TLTdDLvUS3cLhN4IOwwVTa0xWrtmZy2B9z2QgaOaicCxGbTWBKE7Umufx2WMRkiJ9nzbSjcEFkxjiLxbn8AttKI08oqsBmOFo3zpml6vx2iaU1eaSPlECm8G4x4mPrJbWIIgWFoEiiBASekEB4E7djj2hEvrdTeydJO9x5YRgYNtrEBKn3zh+bvCW1Zaa73BSkMSO8e1yjRESjmZsAhQKiBGEgjl2AgaVKwIjHESbu2wXiOgKUrSpEMjHcVPCkOaxO5BWGtKWdPpdEizlKoomCEotabf6zOfz4mCGOONwKezKcbWKCGcH4dPkWgayPUMW9aMhrmLtP6XhAhfazk81z0AWS7WltWiDW0zvfmpX1uqyS8xGyyGMKgIdE53sEYSK9L1DXb7kmw+YiFqsigjSytkPWNkKpIkpZd0WJvXrDQzZmZOkqb0klV2d+6zNp+S6wVxLOinGfu9ddbClLNFjhYVtZ6TBtBhzmZZkDcFo9ERL1+MOKwX1M0CrSvXXK31J0K3v7Bt0/VRSyqTmDKkbmo3JBhvSqUi5kVNt4iJVcq8qhwXG0OcdFBJRiddITAaGZ7w1u4uf/Xnf8LkaohpKmxRcHBnk9pozs9esvb6HxClMYtqjlCStfV1Li/OGI2vQPWQQUZTjikoqJOYZJCRBnP6B9vsHewRxRH1Imd4fsxkfMmiXFBWFTJQxGHIH7z2Gg9ef8Tq+ipBJCiLnMnVOefHJ5weHTMaTQiSlO7KKvN8wXQ65unTxxwdv+TO1j5KBdR1QaAEx2cnzPKck/MLDvZ2ODo+4uj5U5QK6HdSQvXqQeKrxRGBJIoUaZqQphlpJ6Hb7RKJhKbR5OUUa0BK1zyMcFp7AkHTRu8sLGGoWBus8OzFMYEKMLVe8hytcQYsTVMSSOfij5TESUJVFN54ovZQgDebtsJjiI7yZS0+9NB93oUfai/u0oSBwlrt6UAWFUhKbZGBotTaPQxqTdbBJxM7jDZSikprlDEkYYiuKqQApQRVYzzv1C1fmsal5kopsUpgvNl3ICRauinX+pvbChc/0k6zTvarvcuYQJsaK0CpEJdMHyOlYwRIHKSh68bdLMIijPt+MklQns2hgoCqMYSRQsqANPSiBG2QQUgYGMIkofYYdRCGSKWgqUgjhQoV3U5GGMaUVeMggSQj662QdjRyNCafS3StPcTijIaCQGKLnMw42EcbgzAOuy90w2JRujBIj/9/4yXc0AB+L9AyEljCuh7L5UuTbMvgwS/U3BQsvtScBWCkRZmCxs6IbUJqNWt726xV6wyLHKKArYMudyclx4ucwtakccxe2uOgKhkupshQkEUhm2HCfpUyLHLyxRVlccLl+DHDpmZRLSirBXVdYk3tzIs8zGWsxpnzaIzVfqJ1/909xN1J0nov5DYCK84yNtItrg6HGPcKCONOQsJYhA3opwPm1dglm4iAO711QhkhxAw5HrL3+kPefPSQJFLMlOTew4cU8znnl6fEIfSykHkx4YNPn3F5dsp0tmA6HDGfz9yCfHqBjjJqlaFOD5lFgnpvm7uDlI2dHZJuSjGfko9HDC9PqIoZTVNSNy5ZZrAyYGtjg26vAxiK6Yh8mHN2cszzwyMuroZoI1gNU2ID+aJkmk8oq4Ioitnf22d7e4Pj40M+e/wZaZJyNZ7w4eefI6Ql63YYXy0oFwsG2ZpLDH5FfbUMWAVEUUSadOlmKyRRFxUqYpWSJBnzMseYhkC4BZQAamGw0tGqymLGdFoiPVXJGEOkFKWu/FLINx1rEMItzK1xi6LAu2FZbdxUaa079kgJQeCeyk2DDCRBEDnTHCkxjVN/CT9ZaqOdwCFwHq6B8Ms7Iamqyh3b65LGaKraInEQRBgqh9Fax52NE5e2a7DOm8CzCVrWhghcIrAAbGOxShF69Z3yzVUblxRhcIbeLuFXY6X1ajnvvWAsSoVoY1Bh6JZpBo+NupOBsQZpA4rFnCTJ0LUmyAI6SeY5tMJtUm2LSQqapsYaUGkX3dREKqZSNca4SSVJO8ymNVYqZBhT1YY4Cck6MYt5zmQyROs+YRTS6WRLqKaoSzpZl6IusbaHFpJZsSC0AmkFnmbsTgXGYLQF7X5O33y1Bgv4qB0fS38TyJXtjs1eN1X/0TZe8RuoQk45bGlMyejyGbPRMeFJwmh7l27aQ8mQIAq5mAeISpM1NREN1bzg2ekMUTU0pqHRFRflnKd1iaQB6xup0UsZshX+AdbeN8t/e8EQGmvbD+MNoLSfct3Ea4x2XHTdgAwY9O7wxw9+xC/q9/n0sw+IvehlMhnRNCVbWwNS1cEzxwmAlchQTeZ0TMUPvv0Oa2s96rpGSTclf/Dez909HicQhMzqmn/4n/+dPJ/T6fSQSDrdDioKKMoatKNw9nrrrKYZUV2yYhs2+j2yXpdGN0zPLjk7PeZydM50tqCo3J4jEILtzTXiOMLWmkU+ZToacXF2xdHxKUdn59QaojjBCkGjG9bXB3z2yfvMZnPCMCDLEvLxiFk+xrmSGvLpgtPzKcIadrfW6fe7VFVJnufI3m856UZRRK+7ympvgzQZoGS8tGAMPN/VWnNNRRXeUUoKpAqWx5UoVj4lwDqxQACIwNG8tPV6f4HEuuBE4bC1OHHyV2eIoz204HDaAEFjNaZpyNKOwze9uQ3WCQzce1NIQPmFThtdHip3bIqiiNlsBn4ppZQkEC5NWAgDGLS1xGFEEsdO1GAsgZJL2az2sIJaQggWGQREKnTUOG1odIMIHP7dnlmttEtOLtJ6xZ3yNDlxTXezDYYAGUiaRrg4HGNorHcYaxrPGHHyYm1BauffoIRwmHmgPHfWeSsIFRI2LrLHWmd8oxtDtzfANBWGgLJpUGVJ1snodHtMJmNmkxFR1iUIJGnacXzn3D381nubjMcB2sK6XqO5OmGhG3fCMJaWCSuFxUgBr170/j8vd936WHWc2OUaz3W/RLaT7g1IAf9rz4Z5FeXYGo2hpDYlhy/G3tZSezjDQxze3EEIi0I4JZWfvLFgWzmJbR8V/jrCN1huNlvfcJ1UxZ2k/KRr8Tnzts1pxk+5zRKHlzJiZ+M+f/ja91iMDZ9+9gFFWRAEAVHkls26qjE1SBSpTNjK7rMrEx78wS6bKz3y8RV1XRKFiqbK2b9/n0BKvvj0Y6ZFzunLc44OD9EaNja2WN/Y5LPPPqeuS6qqoFgULEpNIFO6vS6DqGavv8vWWo90pU8QKhfA+fKQs9NzRvmEi+GY0XSBsYKNwRrrKx1AM5+OGZ2fMB7nnJ1fcXwxZJz701sUuQXvYkq3k3Hnzg5hmHB2ccoHH33Av/7xXzCeXDEeTckXc4R17oqjSc7GapduFtLv9xAoJpPpK6+5r2y6ve6AXjYgCbuEMkEYRTnXSO3sGIWwCIy/aN2fCaS7CKwxyFAgFIRCEoYBgRRusjOgTe3AeinQ1stthfBG3IIwCAjARYpLAa0cVikaXSNUiK0rJwtuXCClkE56q4VZ4r1S4Ohj1qDCCGtcWrBtNEHkTMTdIrCh0tpNLggiiQu7rBrn84AgiiNEXTv/YCtQPntMSoUKJIFSGGupqooobOWA7paSUtLemcJP9m4CdOmygVeDIUXLGPU4sPUJEu59SWExjeNBG3+ElKIE4YJEK88aSCNnhC2V9LaMLobeIpgXM6IoI+t2EDPX7HXT0JgagUJFIY22BKEkXxRoCyvdDquDdeaznCgKKcuCvNEuWTmKGU2GNMawurbpGnFTM+/0MYucsizRokYqR1+TLk6XpY3XN10ej6dtXsKZybvb4xqjFQIIDMjAT7fC+zM7xsI1xtvixEv/Mre4NXgNtGfW2GX39PePm1Zb1oTxcfCi9VY25joeqG2ywg8+Hj4AP+was5xytW+uLYRgrcV6L2aDk2oba5y61D9z4ihjf3OfwcomnW6HXqdDnueEoWLQ75IlEVEQcnflHjEpu909NlfvsHd3j16/wzzP6fX76LrixfNDhIC9+yFnl1ecXpzywccfM55O6Pf7HNx7wHgy4vGTz8lnY/KZG/iyJCEOLUEIW1nITq/Lw707bO7cIU4TFrOc87NTXrw8ZjiZcnZxxcXViLJuGKys0u3EKCkwdcXV+Rmj0Yh8XjKczClqx+uXgWNNCCH47LPPeXH4BW++8QZ/+ic/4u/+199SF3NOT19ysLdLXQt++fEnpFmOsQXT8YLhaM7W5j2KxRTQxJ3eKy+3r2y6WZQQyxhJAEaia1jkBXXRUJvCJRRYF1Xi9KyOCO+SUt20G8cxumJp+m2M9gY2FukxUBVEfuhxx7c4CJxZt7UoCXUQUOAuJKz2clvrsVt80q+7iQMVoMvaLeJMjfWyYd1odOCgiiiKqIxTgJVFgZKSurF+Gr9ejoRBgFIKbSEIAqpGIY1BCusVXW5zKIS7RY0Q3lNBolTkPH9F6KTILV1MSudXEbD8PcJvwxHopiKKEqRSjgqHU8IZ3RAmmTMvb2rnfSskgZTUXmCidYMxDVjlpNCBRIRuAjfWYEVCbR3TQOiGQMXEkaKqK4yHZuq6IOv0HBuCgDBKqOqGRWXopCGdbg+BRakOo9GY2uNCEsH5xRlVWdHvD0BKZtWcsi4pqwVpGtFJInqdiChWzqM5+ObZC1+abn0tF2bCgjC/QhWz/gR0Hc8ubvy560Xa8tVcE/aTqtP6uObqxDN+WvVexcKzIqxvwsa4waZlRLi3ZT0u677G3vD2td583lqD9lCCe+hqjG2um671UE/bjLn5AFR0gwFmYXny7DPOz4+xFm/0ZGnqmkJaRuMxqyubbKV32draYdDpUs1yzmcTqlrzbDphZ3ODg/v3OT8/5Sc/+XuOT46xQrK3f5/w7ITZbMyz54+pq4LpZO7CfK1FSicvX11do9PpsxalvPngIQd3d8l6KeVizuGL53z4ySecXw0Z5XOuhhPGswXWWDZWhdu/hAFNUzGZTBgOp0zzBYvaooWDTrMso6hL0jRlpd/j/dGUv//Hf2IyGfOHb71NKCVPnn7IcHjJgwfv8Fc//jFHLw/52S/e4/jkjMOzCff2Bdvb+zx/8Zx8/ltOusjWphCMdpSgRmqErWjsnIZm6dJjArmk1zhDHDe5qVAirKXTiVEC5rWPdfFBgNZYZKj81OsaUhC6UDnl+bRB4Enn2mADpznX3jfW4pgQbqJsCe7SQXEqIpASFcY0dUF71RrjDadVQF0WSD+1WFxzjcPQeTpEIYmxVHXjHw4BVenSG4SuCHw0kePwWu/w5Ti0gQowTe0DL6PlA8qtNPyx1DrGgvB3qRQuKEdKx++1HjO01niaEs6+0Wh301uDCkLq2qv76pKqjIiUQgNxmGC0RYaSSEq0dS5uYRi6Bq2DpTS7qipUmFDXzvGt319lNsvRuiZNu8wWOcZaup2MOJQgLHESUVQNVrsjqdU1s9kU4QZ2tte2CKIIMRQI0bC+2mFjrcdqL6Xf6zhRxTdcwp/X26O7m0097tH2XsSyN4tlc2xVbMZ/obzxmtI35+vXaB0gXSy99b9u/8T1uCva6dcTYlrYwDV64Ro17moXxjXZFr5pX1TYazjBNVjPWze++S+bsL7+nH8b1lp63W3+/Fv/is1sk08++YgnTz4lkA5ya3RN1VREcUJRVqRJxGZnjW6SMhpOmJUFoZLM8hnf/953SaKYTz56n5d+Is3SjCRNOXzxlLquXG5iVdDUDVEcoQJJni+wRhCGCWncoZf1eePgHru7W8SdjKYsOXz+lPfee4/HT54yzmdYEbBYlFhjXZRUEmKNoSwKAuHi06fTGXnhoDOhJFkno7fSp6xqXhw9ZzIa8u3vfI9//Nk/8eEnT5DE3Nvf4eJqxNnFBYcn/5v9vQPu37/PD/7oj3j24gW//OBjnh0ds7W9yd7efQ5fPn/lNffVEeze1xYjnVrJGkytsbrB2AKhDDJWzujXyFaPhbSB91110y5Wk2QRYaSwufWek8LzWSPHFlAtRuwoZe0GvvZ4pQBkoNyVoY0n+huUSpZPauX5k0qFICQqsE4eGyjqUjiGBc7X1goQBs//dTxfx+mVnqcYMPe81HbSSeKIRVESRhFlXTloIXQcZYlwk7gIyLpdkiRElyVhpEBEzmy9rpmMhlRNg1JuwjXeAF6qwL1XC0mcIKSksc6TQltLnKRemGEIhFOVVVVN0JQOV24adO0MZ4qqJI09TCGddDpSCXXjZNV17aTCOowpy9LJqf3ko5SkXORk8YAsSf2UBFGUonVN09Qug65paBqN1vV15l0gmc8m1Lqm319BBiFr/TWMrTFmwe7mOns7A7bWVsmyxBn4fON1Y8Kz7dTbIqbWwwjtkd99fYtLC9liwW3jvf77uGWbvf4WfmG8xF2X3/Iamlt+Z9vms4kbXwdL+EH45q9bHLdlIeC+R7toa+lfOMN82358qeF69gKtw3HARm+T777xffbvPGDQ/5gPPnqXxhhEIAmsotYWVEQYxdzZWCNLE8bTGVoY5kWJrSvu7qzz9PFH1BrGoysuRlMCFXP//iMuLs+5urygrEq0cadPrS1WNKg0JIpCVlcGbK5vsdJd5d7+fXburhNlMbVpODs65P33fsF7v/yAy9GYOE6J4oQ4iel0uqz0unSSGFNXnF9ekkSKsqwoypKq0cggQImAKEmpG3fvnB+fM51OuHv3gIf79yiLgjt3tlBZAjJCiIR8NuXzL77gxctDsixlZ2ePH/3ZD/n5z9/ji2dHvPHGa6yt3XnlFSd+F6SYt3Vb31Ttfyf0N4BXmEkfVNkqzgLn0haIa38MKZRLlA4C77cgEZ5f3YpebuxL3c7DL7gcbeP6nvtSQxftzOzdTKSHKmzbjr/8IU3LTmgZCXa5FLNcT7HGXFPBrr9We5y3xXz9T0HEHKy+xvfv/ymr69s8ff6Cf/jJ3zKb54Cgrmu2NzfZW9/kL//8h2xtDLi6uOLkfMzT58fc3dtjNh0yX8zcewwUz1+8YDwrWB0MuLy8oPLRWouiYLEoiVMFImA6zVntZ3TSLvu7d9nZ3uHB/YdsbW0QJQkqjDg/P+bjTz7j/Y8+5emLE7RpGKwMUN7CdG1llb07G/TShLqYU5ZzLBbdOD69kQFRnJF0+vTWt1w8VekCdHsrKwxHVxRlTl2VRFFIUxWkWZemMYzGI+/1LairBePxkLff/janZ5cMRxMe3j/gYG+f//if/vP10/I31O8CqHZbt/U7UO0izYCHrdroHgf/XE/A7svtcqF1jd+2k+hND4ebQ43jodulebtPT6bN7btmI7jkFLuEHK5fxk3WFutYLEsaWDtBeziBmw3X2436hrt8++0rWTclW+HSp6tFw+PPnxIfjji7PEOJiEcH36KsFhwdf8Gjg33++Ftv0u+EXF2ekGZdumnEo3t7TEYjillOJ8uY5FOOTk6ZLRYkcYTVjduVRAkrvZQXR6eUlaGxJYuFgwibRrK9dYe9nV3uHRywubVGEIdo2/D8yRd8+unnPHt5xiSfszpYdU59UhLHCWGgSeOEbpaysdanKhLOLhpmszlNY1DKeeaqMCZbWSdc2War32G7G/DBh+/x7vvv0u12OD4+Ik1Tdu5s8+LFU+eRGwSUlROGdLMOcxuw0l/h6PCQOE2pq4pZXnB1OXnllXbbdG/r97vsTRc5BxO0/c3y5YHlNwnovryCY9n8WnmEo3O1r+a5lf/C4fIawAAtHMQg7fV3sDcmXmONb7pto/UfXE+zZrlEaxdnLRzRvopdKgn9T4GAiFCkRHHMn/7oL4nTDhenV2RRzGcf/ZxObPiLH3ybMBBcnl8wmeTcuRNimpqLixPm8wUgubocMVss6CQrbKzfZZKPuLg6c4vr0B3X9/bvo+IzZvmU8WRCFEZsbtxhc2OT7e1NOt3M7R4awcnRIR9+/AlPjy+YTqaoKCFNHOZblTVJFJJEsWM8xAnWtpRLhfaCK6kUoYrJegNUb4M6W2cehpxeveDlyRFPHj+m280QQvHmm29xdPSM2XwOIub8Yojb1bufe11r4jhiZ2eb6cUEaQMe7T/k4YNHr7zkbpvubf1+lz/S32ye0lhs4BuwNdilicn19LpswOKaaSCWyzSP8dpfG3TBClwEfcv0ufnJX3ljfsG1fG/Xu7JfmWxd83QN9abYwVw325Zp5OdsLSxYt79waIebzoVWFHnF06vnND/5Hzw62Kfb3aO3coer4QU/+sHbBEIzvLgAQtbXN8jSLhcX55ydnhAEEa89vI8QMesbOwzWtzgfjXj3/fcYzQ3fee0uoYJON+L9f/6I1dVV6rqg308dzhoGzlc7jBgOR0RRxGQy5smz5zw/OePl2QXVvGCwvoGMEqyF9cEq3W6PMAiIlNtA5rMF88WM2WLheOzCsSJUlBH3V9FxQqNSzrTAHF5weXnJ7u4eb73+Oo21fPTJB8znM8I4Jgq7xLFzSXTQvCFKjMtFzHOKQrO7eY93/vAd9h/de+Uld9t0b+v3uiz2OnDyZuOzy3/85j/1a59qF2qAbY04b9DPuDmpumopYtd7lRuzrm1TN1pPhPbh4Dm17YRuPWRhWU6xxuD9Ezx8bFsKmTNXcn+19vveUHUYsURZdN3wd3//E5492eFv/vo/EASK3Tsb2HrB8csRm4M1ykazvrXFi+dHfPzp56wP1nj9wQGHpyecnF9xOr6kd7JCt9Pnh9//DgeTnKurcz7/+EPOTg9pjHXLXWOJ04g0TpGBZL4oefL0EBkE6KZhOBpydjXk5dklw/HUKRnFmHURoVWKtYIkTolDhTWa8XRIPh2Tz2bOj0UGTlKvIUwyKhmzaATFvMQKWF/doNtbpciHdLIBizqnk/Q4P71ic3sFGUjW1gZM8wlgKIqSuqqdkKlR7G3c59/823/H7sP7rG5sveKKu226t/V7XtZzdL9y89F+7XK6xFFf2igiazy/1r3WErNd9lCPzS7/Y/vhoYhfwy3c71sTqbbD32zX1jpHPyeSED6eyTfbtuHegB20FRiEM9+/QVmz9uas7bitoVKIRhMIQbGomM2mNNUM3cBoOEMFlmwv4dmnn3N4fM5gbYdu1mH/YI+Tywt++u4vnITXPCYIFYO1De5sbXJ4ckKjDZM8x2hLGIU04trfRWoQKmA0yRnaGViXULIoCy6uxgyvJhgLSZaRZB2iMCaJEpI4uaZNNiXT6YRZPkM3DUmSEUaJ+xmpCC0UtRFc5gVX4zOscPa1EPLXf/PvefDogH/66U955+236fc6PH7yGLLGBW7OZi6kVVuq0pAmXd56+01+/OMf8+bbb7GysUn624ojbuu2/r+vpTnNl5DZpTHRks5lrefeXuOrS/y2bYo3hBKOj9tipXgOOx5aaJVqdkmT/PLE274L57fR8mevG/7155fTs7U3lmaeNnZDhGEEvuFekyd+dVp3Qo/ACW9wQa69bpd5PiYfjdnavs/Rk1MGKzHPXxzx+PEX1FZyT0sePXrIydkpP/3Ze1SNZufOOsWiYFZqnp+ccDW6Ikki5ouCNI5Y768yMZaiNP4ILwit4+7PFwuUirHWZR7qomCazymKkjCJCeOYjc1tdja3Wen2sKZhsVggBNRNQT5fsFgUYKHTCcmyLgTK5S5aqLXlcjLmtGhIuwOeGVjPeiyaKf/tv/4XmkJz9+4eD+7tc3L6kpPTlwiB+x5S4ILIY9584x3+7M9+wL3XDuj0uy4p/f+CBnlLGbut27qt2/oa63cgGfC2buu2buv3p26b7m3d1m3d1tdYt033tm7rtm7ra6zbpntbt3Vbt/U11m3Tva3buq3b+hrrtune1m3d1m19jfV/ALScQt0GCuCLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from PIL import Image\n", + "from torchvision import transforms\n", + "import matplotlib.pyplot as plt\n", + "\n", + "fig, axes = plt.subplots(nrows=2, ncols=2)\n", + "\n", + "for i in range(4):\n", + " img_path = './data/img%d.JPG'%i\n", + " img = Image.open(img_path)\n", + " preprocess = transforms.Compose([\n", + " transforms.Resize(256),\n", + " transforms.CenterCrop(224),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n", + "])\n", + " input_tensor = preprocess(img) \n", + " plt.subplot(2,2,i+1)\n", + " plt.imshow(img)\n", + " plt.axis('off')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of classes in ImageNet: 1000\n" + ] + } + ], + "source": [ + "import json \n", + " \n", + "with open(\"./data/imagenet_class_index.json\") as json_file: \n", + " d = json.load(json_file)\n", + " \n", + "print(\"Number of classes in ImageNet: {}\".format(len(d)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def rn50_preprocess():\n", + " preprocess = transforms.Compose([\n", + " transforms.Resize(256),\n", + " transforms.CenterCrop(224),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n", + " ])\n", + " return preprocess\n", + "\n", + "# decode the results into ([predicted class, description], probability)\n", + "def predict(img_path, model):\n", + " img = Image.open(img_path)\n", + " preprocess = rn50_preprocess()\n", + " input_tensor = preprocess(img)\n", + " input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model\n", + " \n", + " # move the input and model to GPU for speed if available\n", + " if torch.cuda.is_available():\n", + " input_batch = input_batch.to('cuda')\n", + " model.to('cuda')\n", + "\n", + " with torch.no_grad():\n", + " output = model(input_batch)\n", + " # Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes\n", + " sm_output = torch.nn.functional.softmax(output[0], dim=0)\n", + " \n", + " ind = torch.argmax(sm_output)\n", + " return d[str(ind.item())], sm_output[ind] #([predicted class, description], probability)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "./data/img0.JPG - Predicted: ['n02110185', 'Siberian_husky'], Probablility: 0.49295926094055176\n", + "./data/img1.JPG - Predicted: ['n01820546', 'lorikeet'], Probablility: 0.6450406312942505\n", + "./data/img2.JPG - Predicted: ['n02481823', 'chimpanzee'], Probablility: 0.9903154969215393\n", + "./data/img3.JPG - Predicted: ['n01749939', 'green_mamba'], Probablility: 0.35704153776168823\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAD3CAYAAAC+eIeLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebRlWX7fBX5++8x3eO++OebIyDkrS1mTSlUlqSQhW5LnsY0xAmNoMAKaZtGsXtBA08YYGhbdC3qtXjS97MbY2BbY7UHCwpYsW1OVpFLNmVU5DxEZ44s3vzufYe/+Y+99zrkvIjKz1BXpTPx+mS/efeeeYZ89fPf3N+zfFmMMp3Iqp3Iqp/L+iPrHXYBTOZVTOZV/kuQUdE/lVE7lVN5HOQXdUzmVUzmV91FOQfdUTuVUTuV9lFPQPZVTOZVTeR/lFHRP5VRO5VTeR/nQgq6I/KSI/ELrbyMij38X7z8SkUe/W/e7z/3/jIj8lYdw36si8ju/2/c9lVM5le+OfOBBV0R+UER+XUSORGRfRL4oIp82xvxVY8yPP6znGmN6xpg3H9b9T+VUTuWfTAn/cRfgnUREloC/C/xrwF8HYuDzwPwhPjM0xpQP6/6nciqn8k+2fNCZ7pMAxpifNsZUxpipMeYXjDHPi8ifEpEvnDj/94jImyKyKyL/pYjU7yci/5KIvCQiByLy8yJyufWdEZF/Q0ReA15rHXvcff69IvJ1ETkWkesi8mda1z7izv0XRORt9+z/4D2+Xywif1lEhiLybRH53hNlerz1938vIn/OfV4Xkb8rIoeO/f9a+11b1zwjIm+JyJ8QkW+JyO9vfRe5sn7iPZb1VE7lVL4L8kEH3VeBSkT+koj8bhFZeZfz/zDwvcAngT8I/EsAIvIHgX8f+CPABvBrwE+fuPYPAZ8BPnKf+46BPwkMgN8L/Gsi8odOnPODwFPA7wD+IxF55t1fjz8A/I/uvj8L/D/fwzUA/w5wA/suW9h3W1jPLSKfBH4e+DeNMT8N/GXgn2ud8nuA28aYr7/HZ57KqZzKd0E+0KBrjDnGgpkB/jywIyI/KyJbD7jkvzDG7Btj3gb+a+BPuOM/BfxfjTEvOdPBfwZ8vM123ff7xpjpfcrxy8aYF4wx2hjzPBawf/jEaf+xY+LfBL4JfOw9vOIXjDH/izGmAv6H93gNQAGcBS4bYwpjzK+ZxSQan8eC+J80xvxdd+yvYDWBJff3P++eeSqncirvo3ygQRfAAeWfMsZcAD4KnMMC6v3keuvzNXcuwGXg/+HU8UNgHxDg/AOuXRAR+YyI/JKI7IjIERbE10+cdqf1eQL03vHF7n9NKiLvxc7+XwKvA7/gzCn/3onvfwr4dWPML/sDxphbwBeBPyoiA+B3A3/1PTzrVE7lVL6L8oEH3bYYY14G/nss+N5PLrY+XwJuuc/XgX/VGDNo/WTGmF9v3/4dHv3XsMzxojFmGfhvsaD9MGUCdFp/n/EfjDFDY8y/Y4x5FGui+D+IyO9onftTwCUR+a9O3PMvYU0Mfwz4DWPMzYdT9FM5lVN5kHygQVdEnhaRf0dELri/L2JNBr/5gEv+jyKy4s77t4D/yR3/b4H/k4g86+6zLCJ/7DsoSh/YN8bMROT7gH/2t/M+36F8A/hnRSQQkd9Fy5whIr9PRB4XEQGOgArQrWuHwO8CfkhE/vPW8b+DtXf/W1gb76mcyqm8z/KBBl0seHwG+JKIjLFg+y2sI+l+8jPAV7GA9XPA/wfAGPO3gf8C+B9F5Njd43d/B+X414E/KyJD4D/Chq89bPm3gN8PHAI/iQVML08AvwiMgN8A/htjzC+1LzbGHAI/BvxuEflP3LEp8DeBK8DfeqilP5VTOZX7ipwmMf8nS0TkPwKeNMb8c+968qmcyql81+UDvTjiVL67IiKrwP8WG7lwKqdyKv8Y5INuXvhQi4j8PZfD4eTPv/+PoSz/Ctah+PeMMb/6fj//VE7lVKycmhdO5VT+VyQichX4l40xv/gdXvd54C8YY576/+c+p/Lucsp0T+VUTgW3wOaph/mMh5VZ78MmD8Wm+9O/9nUzmUzqv0UEG90ESim01mitF67x54gIxpj6p31clIAISimMBl1pSl2RdnpEYYyhIgxCsqxHmqaEYUgQRERRiFIBogxBAEoBNPcORDBGo3X7eYZACaGAcp99ORfEGDAuaLf5p/naHTLYuC7jzrfnnTi3pXXY5xgQU9/IuBsZY6gMtg40dT0pJSBQVYYqLyjLkqIoECBKEgTQRcl8NmNa5FRG18HJ7xp0bJpzfB206+JHnz7/sOOWT+UhiZwmeXpf5aEw3SAIiKKo/rHgFxAEgQW51vdhGN5zThiGCz/1tRYta8BWShG478MoIkkS0iwlTdPW/QOUEpSCOBAipQiV1D9RIAQBrlxigVYJYSAECvATRmviWBARUIJRgkbQUP8Yh6sPMuHY4/7H3uq9ikhzQXuiwgDagDaYsqKY58ymM/LpjGKeM5/PycvigWW6Xxn9ueImvHY9+PY8lQ+WiEgiIv+1iNxyP/+1iCTuux8RkRsi8u+KyB3gL/pjD7hXnTjJ/f37ROQbboXnr4vIc61zz4nI33SrN98Skf+9O/67sDlC/rjza3zzoVfCB1QeCtNV6sFY3h6w7zbw/SBvztcL3xljEAQlijAICUJI4qQG3CAIUApEQaAsw1ViEAyiPOO12GUUgCCAwp7jvr2nXO1vFrPM3HtefciYBVQ1rcO2DG3gbd3oAVUkIveUTGuDGIMuS3RZUhYFpqoQoJjPHUM2juG+N9AVLHsW5B6wvR8In8oHRv4D4LPAx7G96GeA/xD4P7vvzwCr2CXyChsPf4+4xEl/B/jXjTF/12Wl+++wMeRfwa5w/FkReQqbE+R/ds/6E8AF4BdF5BVjzN8Xkf8MePyf9HDFh8J032kQtoH2JOiKiON9AqIQFVo26xiyIFbb1sahlRAEMSKKIIBYRUQqIAqEKFREgRAqCEUILFm1xFRZoAZrRhAgEAjE1Oc5mEE5MPQk8rfvdrRlF6emS/tGYmj+u/e6e0wRJ+q3bY4pHNgWRUFVljU4amMojaHUFdosPkdoGGvY+lEitr4Q1H3atG02OpUPnPwk8GeNMXeNMTvAf8xiqKAG/i/GmPn9kjw5uV/ipD8N/L+NMV9y6Vb/Eja/9WeBTwMbxpg/a4zJ3SYAfx74Z777r/fhlYcap9u23S7YZlvq8MlBa78TtNaEoaBUYFV7NIoKY3QN1kYbwjggCAOUUiglBMp9rgHBQ6WAsaCutbEMWBwBtTDPyZS0yloO7LPusbe6z++hHuw7LZ5rxPNqT3Ub1ttW5+vzT2oF5t5jxhiqqrS23KpEGzs5afdTWqMHtZFZFu20QRCgWqWsqBbar/28U4b7gZdz2KRPXtoJoAB2jDGzd7nHTwG/0k6chGXG/4KI/JutY7G7dwWcE5tUykuATaV6Kk4eCugaYyjLkqqqmoM1yDRg4oHX2229ucAP7iAIUFEMCKYqAY2pmmcgCqWsacGCrkIFwT3mDWMMWmsMFpjt460JQSms/eE+HNO0yli/hkdqxNpseXfgNWbB0HB/tmzaH1z9+IMnwBhaZL8lXhtABEJFpSt0qTFaOxvzIvIvTAKtOq+fofU9YHvS5HMqH1i5hQXIb7u/2wmg4L0pbT8F/Lsi8l8ZY/5td+w68J8aY/7TkyeLyOeAt4wxTzzgfqfxqTwk80JVNQzJEcwawKBhwO2/m4HtogEkIIxS0rRDHCcEQYQQIGJ/jAgSqNq2KcY51pRyhgErurZjGqdWN/q9Zd0WcB0HRsRYk4JYYCsNVAiV49r3M0O/R5cUGlNzzUWx5oP6v5baXrvaDGgjlBWUFRhzr2pvJxaDEVDKOiRVoGqH3v0iJvxDvOkjDAOiKCQI1Al7uuGkOeGU6X6g5aeB/1BENkRkHZsz5DsN17pf4qQ/D/yU2HSnIiJdsTur9IHfAobOQZeJTdb0URH5tLt2G3hE7rPLyT9J8lBefj63W5h5tbpmiy3ny4PEqsgVIIgKHHhEhGGECkJEFModV2GAclENItZjVmEdRZUxlunVIGsJrf9RgQ2xUq4SbBCC1D/gwry0BblKC5VxDLMuq2ObrXds/yy8F61IsQWR+/w0Fxlj0MaWo6psiJjWNlzMVqmz2WptJzv3XOXNBa2oj/s9xU9QImIdkLH9CcIAUYsmoZM/vr1OF9h8IOXPYR1dzwMvAF9zx74jOZk4yRjzFeBfwe5ycoDN6/yn3LkV8Puwzru3gF3gLwDL7nZ/w/3eE5Gv/Tbe6X8V8lBWpP2lf/gl49VSa0+0rDdQAYFSNbC2VVqv1hpj0BWoMCbr9siyDBGhKAry+ZyqKqkqDaIJwoBO1iNJUsIoduFnIUHowFMp6yjz8bgKAiWoQAhEE4igTIsEAriJosICna4sW7aThYuCEOt4a8Tc18TQBiZE3jVO96QY49ixlhpkfb15m6o4Z1dV6dqk4+u1qiqKwsbrlmV5T9xzXU6nJXQ6HaI4QgTKsmQ+yynLsnmH1judBN0fenzrlPaeyqm8B3koNt04jhecZdr99uo/WECoqqoBRGfT9YM7DBVtQiwiBGHowE8jSkjShDTJiOPYxes6tVggCBRBILj1AvY60c45Zizgcm+IlgG0GIwRp9Kb2vFmjKBbVhCPW0oWw8j8FwvTmXkvQVqL4G3c30pAiy+LRlcaozQS2MgOy2oVItY27s03bXus4MH/RPiXONANmnhm/woqEAJaMbimecsFJ9+7vtepnMqpeHkooBuG1rFVg66z2frjnrm2WZM/X2tNEDjQDG3okjGGOIoQDNoxO1EBSZISx7FbRNGARhgGBD4+l4aVKcdSxYUKmAUnUeO80njQbTF1oxDtLL/KAaLBMmOaKIfmTq3PLmTrfrLopGpK4a9tr58wxmC0pioKSmNQYQgJiITNxKL8u6p6YrNaxKLn7SRjtU5IVU8kPrTOGLnv+YJdIdhetHIqp3Iq7y4PlekC94DugsrNvQ4a/zkMI6IwskZn55XXyttbLeuNosiBbuAWO9jvQxfqJf63w4R2OJRpxQTbopj6NyILS2yNY7s2cMEg2tmGpQn6Mq6cgX2p+4bC3dcL1xJjfCjZvREPAFQGU2l0WZHnOSoMGlu0m7TqZ7XqsrajPyDkq47RDUPHmD2AByeWRredaKa5zynonsqpvGd5SKAb4aDDAonWGGPZKw+I0W2bIxCpmasHNm18ZIEgSjnzgWrMCKoBGdqhUbJ4fx+768HW6Fb4VR1Ma0HW/1gsNlRuJZs41tgAGhjVsFTlzj9hufCBGfXn5qNFWzcNuZpz5XO/rVmhQpcVVVnaz1pTBjZCwS8gARuHbIvQgLASBWJNPGEYWkeZq1tECJQ3VdjJJQyVm3S8w64pr8jiMo5T0D2VU3nv8lBAN4ljgJohGt3YdP1xCR0IO/EkzBgDCgKlUMbYAW4qjClt0JZjaIHLoRAILgLBGlYFgxGDNjZ0jMqDccN4tXNm+SiASpt6IYGjs9YOrU2LHDoA0x59KsQxaxUoZ9qwIWEKaYFUm92eYK6OJmtnOzZaFsANF7OstaYqtXOIFVRV4dg/lEWOKgK8nVWkHYJnIxL88mlbRuUcl82z7Jn270CaUmqvDZycKcQvJ/nwys/8tf/MGBdCWPs23VRSt0HL5ynWuEVTO6ZuA29wsb+kjrSW9j1pnrG4uEbq+7f7h13co2xstTnxDOVNZFZjsxO8H0v2nQJPevydjdcqQSOoOjTTls7WgQudNI2ZTeHb32CMRmq/i72zRp/Q4KQ2vRmgEvtZezKDNbUJBm0EIxoxghZPEtx71Pc0zsSlXSUq/M1t22iaGBzfPxU2kMKWEGw9St3OXjvVKGx92FJbf5AGxDSGPnG1a0RhjEKkwhhbhwa3ysrVR1MO4U/8yT9z30HyUEA3TdPamaOrxryw4NhRUkc1wEnN2yBiHUR1dKs0g8Grw+1A/sZcgW0f8QsfqCMYMKppGu8o0zYrl251Jh9j7P9untF2TjVxvsqbNgKc48vF/7bLfJ/BajuUsxtXup4E3FnuWg+6FWWeUxa5HWTu5SpjF6KIA1MwTkNQdlJQCkyzuk6c4VgJTeHq91zM5+Anqca23DINiZxosw+XeFBp/x04UKAeOga/XrupHatJyYloy7Zj8qQ64+8m2IFrRSGi6+9FVOuZzeAVYxfhBPidR6Uxk4kHDNs0yoFbWNvhVQMOddGFQFp2rLoE7g29Cc2dqx0Qe6euPceFRYogRmFEOxBspg7jYE0hVGLvUgHi+prxjmUjtePa1pfHhJPak7j+Z+o/FytcbJ16Y58obAyS1N27mVgtiHtN1DaxjdfXBhSKhfHgTJoGUFK5OlEYadYEmMVCvaM8FNDt9/sU9fp/TaWr2sRQg64RVK1Ss9AJLHAp7CIIywC1AePicQNlVWOjNablsGsDbx0VIeLiTRvA8eChNXZSMAatrbpeaY3R7eYx9XXGrfLwHUY8QxG3KKO284pvJ/dcz+qNO+aHjWOylY2xrUpDUVR15IG/VhsLuroqURiiMCSIE2t/deuZgyCw9RIYZ8d2URzKz+EeJtzAwiwwXW9CabNayyS82afBZmPc0GhrJx865mvZYFUPxYarWFCoT7OQVI/tBrA8S/UTKQsfHWvz17SA17cBKJtWtF0s1zdsGzUaiPZXGsGIQdWA2AC+iANkcQyVBnBtMRrGJ1iwE2OBygKodidqjPFATAuYwPFAW4665IKRgEIHVECAwpiCUFXuHYzrg25SM6bZuro14dcNsQCk7dpxxxxDrhupriyNabUiBK6fe6BvWtqCsq7bwqBrUNdOFwBrlrNj3U0pxmnVom0PkqaviCeHRi226Ql5SEw3JopCyjImz3PyPLdMrlbrHaE3JyvaFV7a2asMWgm6Uk2FilMHbFJdKvzaYFXbZj2zrhzoKlFWLavtnroB66pC64qyLK05ZIGpNLZbH9Fw0mF1v1As/3zl4oKjKKgjC/x7NXZssTG1eUFRltj8Evb53uIhKMIoJI4j4tjmCLb9JqAoNbPZHEyJNiV5UVDkFYEyZFlMlmUkcUCaBI7lGDRBDbJVzeYaBmcnGA8OfpGL/zGujHZmeVBkxgdZahZnanisu2E7GZE4mi81KfBsThpNxniNyyNua+iLY1YepN1wVDVgW8Zr3OCvAZ5GWfVXqfq7wAKiWMBUrq9ZtdhOsPWTPGs2VmNU2BWKxoBqM0dPWKAmJf54A4Hipm+DFihNzEG1wtuTLfbyPncnCaYsKRBMNWc1mnGxc5dHVw7ohWN7F+Pe1Xgu7DlihTEB1lzgGL6fVuqJzoKk73eNb8FORHWNGQ+KNO/knuLb049ZzxeMscmtdK0luLEgjuOakwagZp6157UmjhN96KQ8pNSOXu22IKS1ppIKcaaGZmb2KkQzNzXRCzYMDMGttiqpqhLbSQOUKGeX0ojGMmKjLSvWps774AFcKYUEbaBrzB66siyyzZgX4lBrUFGtz7TOdSaJZuJ348+WNdC2TtqD09DkjPbPiuKQJI3qemkvl64XfgSKILSd4fh4Sj63tl5Ek+dT7t7d5ehoCEY4HI25evUaly5cJJ/lXH7kEk88eoFzZ1cJVQO0ldFs39nntVdu8ZnPfYQkjVrv6JmfGyRGagcb2M9Ve5B+SETXvxu7pV9BCVh8cIisHMhY5iNuQEk9MI14siU1hHhfrq7HoTcDiANwaY1RCwYWEH1dOqA2xpcQwEXveCJgWZVn1raIjYlIuYnCmEV7o7RQwWFPwzUXbKnNZGSrwtQTxNis8MX9Z3l5tMKtkSYpcjohzHXEKC+YzkO0XmI6T1mWTX7nlUN+8NJ1QpU7e6uH3Ia9WuBVNTOuWXK9jr1V/kYPqO/lk7JKDbjGjUN7rREaguAB3DWDEn8/6nbBZSD09WWJoqqvr6333rzSnh/eoe89FNAV5wEXwIQ2YbnWBqRZDGHPa8DXh4IBRC4huQ0Fs2CqtXarq5wRW6xqJra3OruojTBoe9YXluZW3sZjY29N7SxzAK2sg847nAQL4LqyZgcbFdA4Rvw7iBhClweivVLM3scuXAhDmzPC9xGtvblB6oxo/lobHwu+4xtjmgUQgV1YcmfniOOjMSuDLv0OzGc5s/mUfhJy4Ykr7O8fcri3yzNXLvHx73mK7ds7/JWf/uusbW3yuc//ABfPX+Do6Ji3r10jn8zpdBKe/sgTRFETBVGXoa7M9gTUhNVV79jFPqjSNkc1aqVvWT+AqB1j1p3SNjepepDb+wkOJN2kacSBpPHfO6W/HpSNg8YDr9c27B1UnVrU226hKY9yA7wB+haC2kP+bRrwr0+x5gQ7keqmP9PAGZjarFIDl1EMi4Rv7pzljcOIr94dMR7NSeOQXITIQBYaZqVBzyfMUezlAX/h2+f49l6ff/7ZV+glI2onnANGnFuqAdCAWpv17238hOPMH2LPq80EaJDAV7fD6drI4sDcM+RFzcP1iAWytegu9gDrW0DVWihYDLO+J3GvtLgzTlseDtP1FN45sIIwJDKCyeeUpiCIAgtELiOYZYS+e9hlwXFkoxMQhUFRGbsYICgKKq0bG6ZX57ShLDUUJbpsZkefL3ex8Qxo5zIREKUII1WvaGur/ro0LoFPRdkyLfjY2CCwiwqCenGB1E6qejC2gHUhNG5BjfXfa5dwx87+xjGryEClDPtHU154/lWWVpbYWl1iKVGYqmJezFnp9wiWlxhNpxzs7fDomS2SJKKaTtlYHzAdHfDGzl12bl9l7cwljsdzLm0M+PHf+cNsndmg041JAscz3JRf5961NA3fSGKaPBQfPuOCHWDe1VIrokac99pxVlcHnsXWdr2aJDi7uGOu3gnmuVpNKF0beo7WjhdHlFsZ6SDVUD/HslwP8A4ExNl3jQUZC76+zTyfbUwC7iEO7lsmBNfGVo0XR3kd7Lnx69VqlFBpOB7BK9eOkUgzu/H/5fVvVuTBM+TxY+RGk6qC3796yGz/KgPp8LPppxhLhkkiSgNfuNXncPwUf/pTr7OWHUKrnNb04bUpbFTDQnmtlmsny3ZWwMZu7HSLul3acFrXhLPv+ugEhdT5Wdy0UreTv9KWUdXfN+DdlMNaq50ZomXnvZ88nHy6rSeKwqrDrvPGceTSMSoXiG9trp5DCs0CBx8OpkUIjFCJIVRxzfzaiWm0gSAwFozLyuZncHTFO7fqacmJ8vZen5NBqcVTDHVUg83g5V/KDw5nQlFS24sV1otcn+cH0ILKccKeLfXpbgLyHUCjjA150Qh37g754le+xcH+AT96aYvlbkKAJi+12zkj4OjggN7SEp0o5H/+m3+Lj378Ob7nk9/D29eusb9zF11p3n77NS5f3OUP/PE/zsagz53b1xkMOmyuDwiwTsvah+xt4OBClZz4BSK69b4fJjFQ1Uy+5qBW/ayZkGOsuMkUcyKZu3ey2MFeK+Ziv/OajOBZWTuc0NsBaT1JqBoVyh3x6i3uk2nZdqX+bEldywbvHGYLttr6aTg25jkvDaPFXWPqFUDs7s+4en3MymCFi+fP89iTT/DS85rvu/mzvH7nK7y8f4U0nHAmWOaF628jK5uMXv8GP/LjW/zt6aPoQjCqi6lmvHiY8H//rY/w733mBfrZkPZuMA0t0m4yoJkQ/FuIO1Oox5Bg7JZZ7n19GFxTY8400DpqWqak2sdSX9Hm+/66hunWjLs1jdWTnDSGqwfJw8mniwcQyxzCWn2ObAFFueQzOPUaF0fowEn52Fs7oAOsbUyJoF0FKdMEiGhx8YCVWHtvqNAVeKYLTcVaIHTVK7ZaAzFNONUJ0b5qzeKKL2m/I/WYoPnlzzX1sbZxvTaDnnhke1B7VqQR9oYTvvKtV3nr2tv86Oc/xfpyhzgQirxkMplQacN0ltPrdrj59jW++Eu/zNHxEWmvwxtvvMmv/uoXCBQc7e+xvr7BYH0Fred84Ze/yud+4HOc2dwgTeyiFv9unox7xq6xtmltwNu4lFp8rw+LGOPjbg0BOFuqoXGa+ZAiaYDIMd5m/jbODmsc4ImnaY6des6pHXC785ojuEdYEdevWyYNH/fdMCq1AB7OMtly9NEwVBp2a9mdZ5JOPxFvWhB3ZnOuEYWZl+xuH7L39bd5Jo4Z/dbXmJclb//4J1hLV/g3/uQf4hvf/CJ/+xu7bB9NWZrt8K39fY7evsrjq10u5ncYDJ7lyGTooykEAboSru7Bf/eVR/jXP/cKcThz+Uz8s3ULEM0CKNeAaATLcL2d3DN20/RbF/9bzzD1/aWui1pLqb9t+K3UfzWGHT826n5gbGhrneQbXLneebHQQwFdF0zReFHFECobheArTvk4Wlz8aJsdu38F3LJaB8Cuvo1xzrr6ea6jBvYZlZHGZ1Xf7QSgiXc8eAC/hwjjHt1IOw1ozUb9LOhVFFm4sj1LBtLMjZomZnnBclSzL2/lEnaHM770jdd4/a2rPPnYOVaXUiKlbOxuqZnNZ3Q7y3RTxWQ+ZDIe8q0XnufO3hHZb36VyXzMPJ8yn02ZHB3S6XeRuMs3n3+FGOGxJx+ll2U1CBhnpzZuNZ7Rrt2kyQesXR2qZoq/t/I+wGKkcjhqgcsYUKLrNvS913u3AxE/S7NgIBDHU0XbOFl3zJrXPJi1ekXdb+y/3kzhAbQhWVKTAvCMDdcvGj5W0fRD3NPqYP925zXQ3M1FBegmDMo7gPzkohDUt97m07/8G2TH24x3hkw7He5cOkuxvE6UlRxef4vk7k1+4pFlfu7lHscc8ZM/2GWST/m+9Fn+QXyFTpVTlhVqJeLIJOijGaD4yuEKP/fKJf7AM68jboLTdeihj1LwBW9Gup28qP92CGhruR6fup44qVHIjkM/smqmsNBtPfTatl7QgcQtO8UvugDnwa9r3NOkhSLfRx6aecGDo2drqKbTgLOJus/iQK+pTadYiNRsXdzX9XzVTOw1KzbuYDuGtC2y8LnFMsQ/v/X4hb/l3kqU9kc5seeZvcbIYjGMV+mM7T41s2h5/8XN4KUWxtOCg+MxX/r6tzkaTTm7scJjly/SzzqI2DCz+XyOUgFpJ2I+n3Jz+w6/8qWv0Dn7CB//6AZFWSFaEQcxZx+JqbQi7S4hcUaQ9MjSEBX3bR6HE9VW55aw47MeoO3McVY7+PAtA26YlNiJ14GUz0rnbbh2smkGVIBnn35llwM6F9faVu+9p0VwOTlak5plk1I/C2gcYc7EZFrPNqaZmv0AtwsivNprFrutafDb2w5qYK2BzYGVj7l1DFiMoKqKR37925w52oGNK3Qul3SzNR555mO89enfTZBlxGHIUP3f2H7lBXT0Ga7qCcODO5xZO8ML1UXm04BoSdgKS8ZhzLTImYcasDk9fu76BS5nO3z04i5hqBbKZVcJeRbaYptG1/XVUhHwttxmgmvibhsTkAeltgrndYoWUspC0F2jAbfirS24+tVxCpHShrzhwP0dInoemnnBzz7KNOkV22ZM5d/BiQ+BAcuM/ZntnXQW6rjVCQ3CgnPCn8PJQw3s1wqE76HvdK3c74sTzLxNk9thZfUhY0Or3AHdQvl2ESoU00Lz1vVdvvbNlzg82mc0Ouby5Qs8/fhlNlaWiVSTtBxgMFghL0peff0mv/YbXyPXGWtnLrO3v4sxhq2zZzl/YYNAhNfOnOXu3V22Ll5mOi0ZzXJeePEqj108Q6waG9Z9XgUfU7zwvfbOxQ8X0xU/SH0HExDTrEWyUQPNziRK6mHfSuXpIl+NX07qJybdGuhWtBgQ5QZcYzZohrFlVzUvM+56Y01noXu6t/0CrXpvKcfGu6McdfHB1bTG1UJ3d+FZNR65yWA6YfbVr6GfuEg6nJCsXmZOhXzzV/haMaVYWyPLFLdefp3nb/WZRFuU6SVu6ZJbUcZSLKxWI7qzIVMUUZnTDftIrJijIcqYVPA33nyCx85O6aqRVdU9MNpaO9FqXm/UDQHAM1qonVj2iwWStrDEeKESPAC3jtWTnz9kTlwjuPwC7jkGFUClSijUiWvulYcTvVC7JWxDG4e6UhugmznMv4LC26XkBPNjYTzXMCUNgKrFU+6RBeCoHRSLvNe0T2zj58JzFzv5A6UebHZgayMu6Np7pR2rcc8tdcVwOGc8ybl2a4/Xr93k5s3bGF0ymxwxGPTZWltmZalDpGAynRAnMWVRkRvF3e1dXnv9Kq+/dRMddBiN95gM9xkdHZJ0MgaDLt/3ye9hsNSj1824fn2X5z71PXz7xatce/1t5mVlveJtp3CrwiuDWxsvdXKgepGJY70fVml4q1mYOBvgFQJpbQvlvtTimK1p1HgfmdLE8joO5aMeapD1Swz8b0s4fD82rX6CQFA7jOpCt5isaY+2GnD876bL2snRM3MxC64/FkOcDFW3w8F6l6W3rrPeS4jKHNZ6HD6+iqg3uPObf5+DYcDRKKA89wfohwGd3irl3iFqPsckKSUhA0p6QcktoxkbIe110AQkVMxVyK35gL9z7WP85BNfRihre7PxMcaNHkAz+huGilQ05p6ayrt7nCQDVW3HFWnVkbuumSSdHuOdeWYxUsFGJ/g+Y59RloKOpuieJjZ9Ot3eA/vcw4nTxYfGmKaztjoh0MwmuOqU5ri0vmhXWU0Oa9Wgud878iw/ecoiSzsp5j53aXPj5jlyzzkLN67bXdl9x9z3Bm1DlETINUwmc+7c3uPrz7/GF379a8RZyiwfs7q6zGR0yMHeLiuDJR65dIYsjamKnDIImFclo6MZRkNeloxHQ5b7Xb7348/y2lvX2d/ZZnNrlSwNWVld5WNPP81Tly6iAsWVy5dZXl7nmccvsXP7mMnyIb//n/oUiTKUNJ7w9qTvFTfPctsZ22rH2odQmhCuxdChEKlV//YQ9+DmbZB+8UCFZ7+mtg+LB07Ah5R5YPBhgOLIg+PUNAPCRlEELXObjYBozAztaIMaOp1dzf9XO5J8BxUaUBPjYvpttGyt1QPoElTI9F/7o7z1X/01wvmYzu7b3CgH3PypP8jZYsbjd3bACK+rPj+zu8vwysdJKRknERMTszLcJzAzJkzJg4A7gyeR+Yw87RF0IqIoIUNIUsX1Wcy3957m2dUXajLVjClvhmmbT5p6aVZN0lznR/LCEt1F2tSwYmimL98CFsjbVkXvIwVaIWuyEKsbFB2kmlIN9pin7zPThQZIlZ+x2wiLZ7f2k2qN8uY4NfP34Nu2nS7aYN65LNbI/g6n1Spzc0+R9roYanvs/arSO+G8t7/pHDYdZWWEeaEZT3P2D465s73H17/xMl/60le5u32XMA44e+483Q5UknP35jXSRKFMzmh4QL+XEocKXZRMmXE4Gjr2XLG5ssLZ9RW6WYdQBXz6e57iaPRZ4jRh7+CIKElZW+6QxYZSw3wyY9DPWO1nfPwjT/BjP/AxVpcywDhH0CLja9DXvdMC3QKfHOXDJl6DCozTxqCOQPDxrrZdbX0owWaYc4ZRTyS0NIloPHPS4tN74lT6Jj5AixDiQVoQY8MjT4qqR0ELYtxEV9tf26hQM0T/t4vOWNCwTLPHXw3Q4GNyTc0rxSL4lcuM/sy/yst3d1jeu0Vy8zYaIYgSkotPcXH326xzwBvZPr9YVByLoMOAMrf27j3VITt6k1nvEubuTUoSdH8LmUMWQKJKLneEQRJwbXyFC91t+vHtmpn7d7OLQJxJQQTMSbND3aLUYIhxq/X8+G2MkELrH2/fpZkoFwmd2Moy7ZG9oEIslEGqBA4CcvbvU0YrDw90vfe1Bbie+ftVMRaYG9XL18F9hjx+/murGjU5XoC6+5TlAZ/rZ0ib4zaVKU59aLM7f4ryHlZRCFUdjqOB6azi6GjCzRs7HA/n7B4PuXHrNjvb2xzt7/PiCy+Q65KllWWW1jo8+T3P0e32OTzYg/mUYj5ndHjM1sYaB4f77O/tcO7cJnkUMppMKIxhd/+Q5cESq8t9ulFIGAQIQhrGrPbXqIxm7/Y2/+3/6y/z1FNP8Kf+5B9hPs+ZTXI2zqwxHpWsrXS5dK7ve/V9Q79EhGCBOQhGUa9G+9CKuPSH9YQvdvUjuLSInqB6tug7rdSLFrTC5TqgYaB4jdMCrHL3sU4vRxakWevUaBaqZl5iTvbShgx4wG2sBidULGkW8DSsT7uEOXaciJ9oTMOK/T1rs52xmQ/ClT75yoC7PIroEm00SjT5hXP0v/I1zNqTfEoe4Ve7A+Y6IkojzGTI7HibPOmhki2OpUesDFEakYzeZHmpw6X5ARezfR5bGvM9ZyfIUsDmIzuMjiJu3UzIZ57dNzZqXy4Lhw5cxbJ1+0520lzwFdWg4365PuzpU7O8+d6arkNXpM2Dm6nJ7h7ejrJweG1C1OHyA7veQzIvNGEttF6m/b1fGVLPFl79qutIFjqUMcbF6N7rK29Z296DtGa++tEuEKq1Ht3fN9CqXixQd3ttmMxL5kXJ4dGQ46MJxSxnb2+fL/3mV/n2S69AHKIVrJ05AyLcvPo6o6NDprM5yyurrCQJG2fOcvHKo0gYIKZkcrjH4f4exXxOmoRcv/YWnU7K7Zs3OHf+LJPRmKIs7XJoFPF4RllqJJbGjOOWQRqEJx6/yE/82Od59bXXyUubdOiRSxdAhG+/8Aaf+9wTRKpRrdpTT9vcE0jTSX1IUnPqydn+wyHephq4pbxIY2YAO3jqRTUGHx7TOGeM1Qy8PdZgqEzT55v72Fyx3jxgs35JE6lQd3hnW66JSaPLWS2qpXHURKapdw8e9vu2K60pr2VsJ1qrnixsWJQxTbiWbWuDjT3VQAhGow2MuwkSBIR73+Kp9QGfWM54ex6zPxG0TNCDPuvZTbaOr3F5OeBS/xssJ4d0zymq+HG2zozobb5M1s/p9jWrqz3WemvovOCZZ3+EV15e4vpbFWXpyZsHPxrAbKWBbELxXH0s/NP4kUyrDWuyu9Dvm+ubSasB22ZWxdVTuzYbdbB8Bz/HQ2O65kThTsp7hcj39qxW53s3Xde0zquDxe0xrRVFUTGb5RwcjhgOx1y7ucf+0YSy0mzv75LnBUbDzvYBk9GYu3fuMBrvc3y0izIlx/u3mE6GJFmfy1ceZzI8YuvcJZZ7fUw15cy5LQ6Ph0SxcOXRi2ye2+TG9evcfPsad2/eYvvWDZI4YmVtlfl0ginnHB7ssb+3S5J1ODo6Js9zlpfXmE1LvvrNF/nej3+EpW5KrEBckyqBLI35iR//QX7ohz9LkoQEXUWaJWgUj50/y3LPTo+1ZUtODuWG4Ss3o/vVZyVt+W625vspbhW9mMZEIG4Ze3sgQq2m09LE6oFr/JIFVRPnemAbB/B+ZaK/EGkWVGDqSAUfHWoWBrY7xywaAbzdtk7v0u7MC+qwL7pYFcWB+EmWbAHXq9iVu9xmGbbXV3iN0yjYvbjKxfGM7TzgeDwhjEp+cOvnOffoP+Rsdo0zZ6d0UyEohbIsOHMOkkwoi5sEkSFNQeUGqaAaHVMlAVWpQP8dnnvuUR698jGe/3qf3R1boXZSVE3OhhbE1lOU8e3a0jzq2mrapF4s5amUN92YRQyRVl+o7couHJQTpNATx0oM/+DaP+An+c9PdjjgIYJuXRD8TOVnp9ZsUrPb+yr9DeWv40GpG92bYpqZz31yM7rWQlFqRtMZ+bykyEtGwwnzvGJ//4iy0pRVSVUWTGdzdnYOOTwccefOXaazCW9du2FXdKUB3d4SSZqhkpBu1qHT6zLNZ2T9hH6VEnVX6PRi9ndus7S6RX95jaO9O7z+wpfp9JaZDncxgbA0WOP1l77N8nKf/pl11tZWECrGoyGj42Pm0zFKlwwPjkniiCzL2Nu5Q3IrZTSeEMYp27dvc7B/wMbWlHMXH+HOzh6vv3mVx69cYtBNCN1yZqsN2HyfnSRCKbtZ51I3RlRAqEDpgEq1ljC26r6RRQdODTitDncSpD4cYneHlhosTb0Awi52kJYfoA3ALZdOg8N4G3BLEQbEmRia6324/eJZ0rqwYc7t43aM61acbZvzOU0QDwzNEtW2A8qlZKnNCk35m89tIBGanSF8Se1Is+UYXfkoV29s8WejHyKRX+Tf/tRf4vyFbfoDyKcwnwudDJLUcPUtYTwxVJWhnyrSzJB1IsoyJw2g0Iad3T3SrEOQTxkdvcjSym1+9Mf+Bb7x9TFvvKzRxiYAapxiUi+C8Aktvabhc6+0LeN+IYk74b74okKpF5g1y4kbPbdukLqaDCdJ7atHL/PW/jd4kDxU0PVSJ4nBNKtpWiortOas9gziZjftOp+Pb9a1JcDgvVdahHxe8uabN/jaN17ma994kes371JJRKHnHI0PkLJifXODRx9/lCTNSJKYKp9xeHjErZu3Ac1odEx/aZmPfO9HyHpd4jAkz0vG4wn7O9tMRkeU1QxtKmYzIY0TwjAkDyPOPfIY0+kEZeDi40+xt3OHYjYmShIGa6tMJlN6nQ5plnHlsSuEYcDxwQEHu7vMJlMwEAUR09IwOR4hAnEUs7+9y/7eAYfHx+zu7HC8f8h8XpJ0ugyWexyPxtzd2UPMCsvdDmFLNW5yVLigd1EohMAoar/QQjduq6Ntexq16olnxOLV8IfUcR6i2LSgqvYpNElnnHmgDt+VmuR6huhXfPke3MTc+siCE1AtdVBas4LPgWdNF8T95WK5Fe2sW80Yt+3VSl3or6npCDYq4Z5wUcdsxb9XC3z9zNHw2PoaoLb/Un9rGeHh2vfxVw/WuBL/Vf7oH/4rREsl44nd3zDSmv4SUBq0FrYyiAJFZ6Ax0woZwWQcsrammB3PyCIDERyOClaXFLFoZkd3KNNf4LmPbtHrXOaFbyqqKqwZpQj1O9fv7uqjJml1H7ff1Qmy2lXjzUhSUa4NUZMuMooak83CRHdSWiYn9/dWusbnL3zmPudaeUipHblv+aRVWcKDTQE1ALv3XTirFYeHMRQVHAxn/PKvfolf+kdf5Le+9GWqYsRkOgRTESc91rbOcfbSFS4/+RiPXLlArxez1Fuik2ZU+Zxr129w6fGLjIZjDg+PyDoZq2srdPs9lChu3rxDUc3ZvX2T6XBInKWEUchsOiWMIrQKOHv+ApUIa2fP2hwRpuDCk48xGQ1JQ8X1t95kfHRAmmacuXiJixcvUJYVhwf73H7rTSbjMVGSMlhfJ4hCppMJ49GINE05Pjjk1Ree59KTT5ClGaNwyPjwgOPDI1aWl5nO56AUu/v7VEXByuqKTQWpFpc+NztSyCIiYFrMVR7YvXzbLsSsfggBF6DOHeHB0mtdbqk6Xk31jpkWK6yzH7TIBOJMLy32ILScvdKqVwcEiPWwW3tkc78GFppn2iI1K7Ps5cYNh5aD2VQud0ETMtaArVls2AXwN/itdNpf1+eIZb2+mxQs8T+92mHn+Gf59Mf+BpO54VIMcWAYzSpMJVRT6KQJh8c5aWoQLaxvBexuV4wOIJ9PMbpL3Imobhf0U+gEObvbAZvrS8ynMw6qb7G8ccT51R16P/AcX/5SzDyPkVYOCnGzlrQq2Gr7psaLJgGQbx/qtjPOlm4QiqOcWfcO/e4jhON0cbaDltYndbvoyi6HD+OEsihZDTfZWNl4YNd7aI60Rb2o+fieWJEfAO66hSW6blYWbB7XX/vq63ztpbe4u32LZH2dT/zw5zHasLezSxxFZP2MJAnZ2lpnaXmJ2WREQEo5nzPvZDbbWQgHt3YYDseAIgwEdInSBZPxjKuvv8J4NEWUJsligkgxGR6ye+sWWa9Pd7DCdDhEBxHnLp6n243pRBGz6ZTp8RGvvfBtbr99lV6vx/KFAU8/+yxKCVVVcHR0yP6dW4zGYzYvXGb13Bar5zaZHA85OtinmBV0+33efuN1TGVZRlmVTMdjNkdjJpMpSXYGFQZ0k4yD4yFBlBCFId0sRYJ24nXDfF4QRREqVi48ytXnQpiMU6raHdSf0yghH2pRbusaa4Jx7+aiWBoy0HrZGpCkHnC1CaDWxGThWGM3dDHrtBLYiGYhhMmjsWdhPgDUGIyyBMM7l0WadvJsvLZzSguwaz5XU73G0+7fx7Ry0dLoOn5SsGWhrhvrFAx589o53rz2LQbP/S2mZsC33rhLFWgqBfOxkCWwtizMAg1dw2wMEhl2dg39jZiduwXTqeFgd0S/F9DPFG+/qnj0QkVSClwzrKwuI6OI4EyX8oymX77Ipz52iS99dcMmtBKhvUavnXWsNjU4aScaEve3casEvTMRhHS+RmEOOYhe4vzq91EeVlS68pVQ389P1EZrhq/dhscSzpx5ljt/7W9wbT/l+564/MC+95BWpC2a+/0y4PY49W3/ro4vL64zefZbVpovfu11fu23Xmbr3Aqd7nlu3rpFqQ35fM65y5cIAkWcBFx55AJpEhAHAVEYMp3NCEQYDocA7O/us33zNlob9vYPWFpb5szZs2RJwiyfgyjyeU5/qc/B/j6z6YSjnTsU+ZiwSJhNZ+zv77K2dZZ8OmVzfQBVSV7kzGczxqMRaENRlczzKYPBEqsrK1wf3kCXJWUxp5iNQKDTX+bM1gbD4yOuvW4YHhwxnRlUmHD75nX6gxWiLIUQgjAASsqyAg2RBPSXB4ymM/rdHnlZIip0M7PBaGGSa6p8wnoYkjodWtdhL84u6T7biW2RHCjsYogAg8+z+mFckKbF7yRtwNtwaRjpQgxRrY8LfqNIaMhjvaOu7dCtfm6BzO5UbUdAbWN0pgzrYGtbeT1QO4R0D1k87m9nGstAS1vx/hNj7mWBC9tx+neiASN3Jzxb9HfXjlWLwFyv8a2vX+OFr/5P/Okf3+LS+QzUXa7ejMmrgnwCyz2b/3k8L8m6MDPQq2A+NGTdgrWNgMOiIlszTK5qZnsBkRhe+oLiY892KOMK80pAEA2o9iKyuzF6vUdUDLjSF944bMXstxJRuc2EsGF5zWv6N6mJg9jWaCsBUaAojdAvHkPMbY7SVzlz/iMc3Z6iS91K2WCIJKBDyOzgmKPVHdZXz/Lq28/zP/7tr9FLFOXoNn/sAX3vfbHpUr/sdzg6W3jsgcBIiRHhxs6EL379OssbIUWec/P2VY72j5hNS9bPbRGHARfPn6HbS0njiCQKCYKA4+Mj5vMp++Mxo9GQ6XTK6OiY4fERWdZhfHxEEAj5ygrjyYR+v8cjly8ixlDNZwQYXn/5RabjIaVR9AZr9FfW6A+WMWLodzMCgcpodFGQxjFRFJP1OsymE6bjMdPxkCjaotfr0O1mRGnM9OaIydExWoOKIs5fPEcUCm+99hbl9l1M1uH4eEhUlDz6zGWqsiAKNP1eSj6fcHR8BFozWBnQjROUUlSVYZ4309/RaMpLr11llk/55LNPcPnMWg0GDStyc77vmy2NdMGssDCFfvjEmxbwWava4Yie2XudzbNOzzAdA9Qur4gPOatrUlr12K6nlp2ite7Sc9vF+FzRjTXAWEj3urR3k3kCottLeD04ui2s6mfU0QpCs11Oc4133tWv7/IZNBYJb9wQitEaZvgSerjH+MZPsKvGbF7cBrWLAubK8OaOcHNH6PUhVmACQ1/BYFmY37ATQ68H6XbA5Wd7vPjlMf2eYuOMgddzss0ObArqMMRMYsrtLmosUE55Il5hX4UcYPcFFJcno85bIX5Bta0dV3vuiA3Z89OkbyUlEIaKqigRieiX55ns3+BO/m1WNi+gj2P0VOgnCZ0iZzYZMa+E29N9rpkvI/tPMZ/FXP7ICl1KxlHxwL73kGy67z4gF85oTUn3u7I9Y2kUo3HJz/zsFyiqI9S0A3KEriq2b92k31/j0uWLrC51WFnuYkzJZDLl6GhMVRWMxyO0NoRhQBzHjMdj8nzOdDKkynPy6YR5HHN4cEAQKM6GZ0jSmH6/x/W9XQ62bzE62EOXBatnHmGwvkXS7WBEGAz6hKGgy4Kjg32ODvbZ3b6LChR5WaLLAl0VDI+P2NvbReuSCxfPs7G1yd03rzIbjTg+HhKEMVk34+zF85SlxlQVh/uHqCChN+jT6fdYW10lDQLiKCBJIgpdoZUiL3KMDtGqIso6zPICY6Ayhl/4xV/jL//FnybLMv7AH/w9/Bv/8h+tnRH31LlZNAHKybM8yPw25tIPgtQhXo69WeBxqmodEuS1fmmiZepZSBBpNlhtnDTcE5Dv7YmNccKbMhbZZOPWMk0ubGgxXlpM2iw4uPx5PsOVB1wf2uShvs5WVl+m67hhXwrq6z0lNDXZF+Dmy29STLdJsg6TO5e5c3DA3evP8Pgnf5N0aUaQGKIUpkMo5oLWiijUHGthlEMwVphc6IhiSWviaUm80uPgSNGbFgQCw3FKOu0TzjuMh5revCQol+nImGJ0i+/vXOLrnU1uyx2MsTkVbNIe796saamrdW8qaezszQILgxAwy0t+41d+kSce+ygbFy6Qqgvocc7+5IilrnDhTMbe7Sk3C8GEKUTAaoe3v7BHceerbJ07xw9/9rMcHw8ZzY4f2Pcemk13YYav1YDFobuQTNy8G3dy7EILf+8ffZWbB3ucOb/K0fEx88mEg+09ilnBo598BJNPEB0iJiEvSsqiYm//gOPjYxsRkATEUUgYKjqdlDLvcXx0SD6ZogJBAsVkNCYIArSLeIjSiHI+4/YbLzObF5y98jRnL12hszwgzRKqKmd50Kco5xwezti5s83RwQFVOUcwBCqgs7LO2pmzpJ0uVVGgBKJI8cjjT/DGN7/J6GiHydEhujTEcUa/2yGf5wyPDpnOZkgsrG+e4dLFiwxW+qRxTBzGHB8dIcDS0gClQsIwIo4C4lDodbrsHQypKsPK6hppp8fmmXU+/tzTzpPedEItYONlLJA0G6Y0PFhjVVG/2XWtun7IpAlUaJkTnPPL1KgkjYZWO8L86jzcuJaGKXtXOf7e7j7GO33svYxyMFCDaR2dWwOxZ68+uqRteKC+VwPXHpjbGNw42ppyey5rpLL39iGWNIzbfVFPMt48BaAJmB3sUs5HnN84y/7eiI+sZtx+5RLDZB9z5i2WN4Z0ExgsGYZ7gp4aljYNwyNhVkEeGnShmU5ShqViZAK0itivzvAIAXpWIFXCURWTBiGhjphNKrSaIN0IE/bojPf4VKF5ZXmZ1zm09WP84pLGyVU7LPHQq1t93terS0QvirOPPcrf+bm/Tj9cIkhCokcE3a347FMX0cF5ivIKiN2/LVUZk51rMO5wdTwlS4/oozDRnI9+/BMP7HsPLeGN6xNNUzYa1+K57Y4PNMP8fjfW3LhzzC//+ldY3VwjEMXOnW3KqiDrJ/wzP/m/YX1rg/3dPW7dvsl8PsUARV4ym82YzeaEoUKUYTqZEEcRURQRxREYKKuSJInRukQXOft373K0v894OOLoYJ+bb77EdJ6zee4K6xcuceXpJ+ku9SlmU6oyp9/vEYSK6XhMVVUcHR1RlQVGhKzbJetkdPs9RsMRvW5KmqbEUcTWxXP0N9YZXb3Jzs2b3L1zh7W1JTpZlzTLSLsdNs9tcXw8JU5TOr0+q6urxGFIHEYURcnBwSFJ0mF1aclu0R4GJKGiEwmd9WXysmT9hz/FD33qGXrdjOVehhGrMirjdubA2jrbWd5cEwJ+6yLXtsbtCvwhXQosWHZXp/aqQ4xa9N4ecX25YXu1yi9NwhPTMjvUm6yK4R6zmn+Ojw01jeLuYc2lAHPlaVslThgkWjbdGuDrEppWuJTnz54Btpi1u0e9L5w3MjiGrGkYsGflYRHQl5JJf4nJ8E2CwaNclDnV8+eZfX1O7zM7VMszVJoT7/SJNyaU8wqtQpZWZty4EaK7mmlRsmzWKHZDoklEaQL+0RvL/J4ehBNDIBUzBVJqhAiqDpqQJIP5rCTXwrNGkw96XDcjtFSIW8Rd15Rb7t16MzxAG2nSa+La48rlx1n65OOUL+eM7h4wvD7ikc9kXHr6OW7ceI11eRQxmjhM6csSH33k42TRFs+//GvcvvEiT37KcGHt+1jY8OCEPHSbbt0hFthu83ddPZ451Oct3sUIFIXhZ/+XL1KKIU2Et69eszGx58/xI5//DOfXV5mXOVWec/2G5sat23Q7GfOZ3UUYjN3CXClmZcl8NiMMQ/r9PmmWMjw8BFGoQNjbuYsuS4aH+7xRVUyGI4qiZPPyk1x44mkGK2t0sg69NMEkIVmWEich+wf7zOdz5vmcTrcLGIr51G2vntBfWqbIcyaTqWXSWpMmMZ3+MireJp+M2Nve5vjCGZJYobVmeXWFtNshiI/o9vpEUcry8gAxhigI2Nzaoiwrup0eIkIQBIRBSBgF9n3EkEUhaaRY6cWADdqvEALvpDH4EFEX1YBjXCwyKm8ZMxZwTy58+rCIYDCqzVJxSf+bZZ8Ne6UelO0ohjaL8DkVVKs/ezbqSUibUkij+zdWRxc3Wy8kOmnbaRHpdipGf609T7dMEFZ1NtqtKBNDs/dHA6Kmvod1smkfXiWCcnHJfgNPMYaNXsSB++6WCnnr+CZPpSnrUUk5Wib+WkLV1eggR83W2VGa+NG79DZmzKZH5HlJOSqIxMA0JB7lzPMd9u7OuHo74M5kzp/+5Hmy6QyjI6IggCAgmFUE4Rb58ZQ4LZhUY14axlyOVim7JbeZt9rGSe34tOzXrw5c0B9akSKC4hOPPMuXv/yP6KgpyyshP/R7P8bueAdT2Tpf6q2T6D66LLl2/Q7zac6FNOWJJ3+Cggn1yr8HyEMHXbnnQ/OnX1L6bmYF//uV12/wzW+/xPLGgPFkxO7uHTa3Nvhdv+PznNsYQGUoc0O3k3DhwnkmkwmT8YiwG7N/eEwYRURhzMHuHtPZBBUout0u0omYTWfk8xlxv0fS6RJFCeOjI+aTMZPJhK1LlwiTHo8+/RRrZ8+gjOHM1hqdbgIYtDaMxyNCZXc4XtvapNObUBY54+ExVZGTJAmBUhwdHLK00rNmjMmYIAp59IknuHvtFv3lPqOjPcbHQ7q9DvN5QRjFJGlGb2nA0cGQ6WxGHKQsdzuAYamjUSogyzKyNMMYQxIIsajaAWm3ggmaWnXM1tjtb20baAjFqsJ2Ox67zl6LjVhQLnk6+JVAbouVexK0fPBFxAcbWfVfcNt6O9jULdspeOLQopVeE/cTFd400QJtfwcPwP7SNnD6lVFO1V9YjCIenO2D2st/cWqzAUS7740+YcJrgNSDqs8+ZsFbtxigbuy/bjKoWmYFu6eYQci5cLZD+uIes+4j/Ew+Yhgv8w19zDNxhOqukZkCmSVUSnGQpsyqPeT6MsV2RZSnrC4Z8p6GLKQo5+xpTT9OObfRZXIn5KXhhD//rX3+dxe6hMpQmZhARyAB5aQAAkQbVroFOTmvbFdcWu5QrkfsYJeT+QmlvYJwsVU8CDfAa1+74snNywz+8I9wdPAGK59Yob+6wrU7L7MVPspKdplB2uP6tevs7e5xsPMqQTjikU98nDDpc2fnDWbzA5J4+YF9732IXnDdpGZErUB03g1w7RkGgy7hb/7Nn6escqIYbt66xdbWBn/4D/weLp7dIMQw0wWT+Yx8nhOFIWtrayz1uwCsDPrcun2b27fuIAiVNja2tbdEr9sjCiKOD485s7TEymCZMAiY9Huk3R5rm+ssDQaUeclgbYUoielkKaJgNp2jdcVoPKYsSgIXFxtFEaaTgUlJ0gjRhrzICeIIgIP9A6IoIgxDQqUYz6bEWUrWXyJKEooyZzwaMp6MKcuSs2fPsDJYJno0oSorZtMZ64MBCsN0OqXTzUjTFKWEUAlJ2NogRmgN+Xq8NiagRSSoVROp1a9mBVbggsM9KzYiH0bMpWGqgs881da6/EIHb/trmx0au6/7W+6tV78wwpsiaoTGgqRRjR3XVSS4HSgq8elCfXk8J7PrMw0saIKLJhGnkxgbB2wf3WwOZW25gqFstBfHki35tgCkhZrl2py7xk0KmuBcwJPrHd443uMRFaA7CcPgiFeyMUknQM0iyqqko0viGFQcErLLqDgiTQvSqqQ7EQhmjDszCp0xmV5m6daAT60Kjy2t8829Of/DzTn/4vkAFc2Q0Nhk8pXG5LFT3zM2VAyzI/YjxdZBxnAwZ6Z04+AVv4S3NVs61m/f3lgzkMHuguImzfVLF+l9xFClOaNxRVmMGaTPMN8fc7vc5ebVl5hPb7F64Rz9jScBhTYl66sX2T36KuvRpx7Y897HkDH7iielPQvdA8F1B4ZrV2/zhS/8Ok9+8lkMhq2zF/mxf+rzXD63RSKGfF4wmUyYFwXzfM7du3fp9ftsba4RhwpMxXI/JQ4DDo5GVEeG5ZUVwjghzTpceOwxRpMJgYIin9FdXeHs+bOMhiOMQNbtMJ3M0UaTJTGYijiOyOclx8djZrMpSgUcH9uENH7bdlGCBAFlNSdKYqIkJk1T0szmVoiiiMl4QtbpkPV79FZXWN/cQhTM8xlVVRHHMZsb62ysLtHvLVNWBlNBWRZ0spSUrNm+R6ATxYRCi3V9hxaANiD79kNqzSTwIOBG/ofRrKucrl73P1EOcMACpN9g0Pu4/bvqWvW21zXhSLVJwUl9K3f9okXNmRNqADCuzj0otEaEX1nlmHY7R6x9tk2lXrv6anwx+CQ29kCdjp4GikxjQanLV2ETdePOtaBrzR8Vo+yYtSvnWHlln4vDGc/fHZOcX8MMxqjuLmpaEuYwnwb005hS55BCHCsmxZxkKWI6KRgWhrQDOTPUToiqFAWGgeT86LmYF8cxfy+P+SNZRD47xnQTJIwh1pSlIquESmnms5j50Q7q3DLnu0tcS2btKaVu7wU9wphWe9u6DsVQJEIRj8k7B5TlMSY3HE12iQPDbK+kOH6T3VvXibIx5559liDpuEgfg7hUj2naIS9HD+x77wvoChDUrMGKaQ3qd2K9Bo02hp/7+V8iXu4QpQlZ1uPM1haXz66TBlCWNs2iUgGdtEO3OydJUybjCeNxQrzUo591SMKQ4uI5kmwPpRSdbp+bt28hotg6c5aVlWU6ScJoOGT/8IDpbEoSRywt9xhPRoSqQhdTdrYnhLFi5+5djAkoK02RzxExTCZjtDYEQUCSprW6Fycxog1xHLO6tkKv3yeKQsRoullGf6nPk899lK0Ll9jc2qIoZkRxyNJSn9XBMhfObrDc69DJeigVoithNp0iCFESgTEUxZxup0+cRN8ZyPral6ajmlZrKGOTX2s3Ov0CCoPbrflDyHS1uK3XvfLdkFxq77aLaLCMD+owr+kY6fQa7aA2MdiBrNwBs/Ad1CwLD32OYfpwLW/L9ZpJbWv0YOrPg8a4q2niUj2BsaCp6xiTOmDK/V+rnVSCtev7ZwEYZd9Z7Eo3bTSGCtwqvpKcnccv0T8cc+F4xL7W/Mpvvkm8pbj0IylLW3fpVVPKQjGf9cjSCXk+hEARdRTbVU5noIg07E1CVLBEmqXkg4zxZMp8BBtoPr4Ku5LyrTDj2XxCMT5ArYTk0x7K9DF5TBplrMZjfuH1t+lPdrkSXqZ7fpkjldPE6bXqjkaD8HZ4L4XRzJJtpukBEQoChckVZXVEkg8Y726zvf02Zy6t09160t5BN65GrQVEkURXOBi9/MC+93BB13ci+4f9fJ/4IrP47o04BrB/OOYr33yFp599htFswqpUPPn4JZa7KZiKeVEwK+bWByx2l1xRQhzHJEmCrjRlWTIaHlPMp6yvDuh1+4zGMy5duERRlOTlnLWVZZ648giT8YSd/T22797FYCiKnP3dPQ73DwBBqRAVKdKsSxJnTCZT5kVOp5PR6XbRGuI4JopCVCAkycDtPKDpdFOWl/v0+st2sFUF+TxnsDJg88wZ1tc36fV7TKbWHry01OfyhfNsrK6QJQlKBSgJMaEiCq0jTgkkcQLGkIZhnTj7nmTY7UmvHYR78kv/cUFlfSdk/fChrk0YrqiTZBvtPlNPlJ7hNtVk37OUKSEd7K6xqs6Na79V+KVg/tqaUdZTWavuW4B7v4myuabRXHzbadyiBs9mxeOMKwOWfTWKtF9WYRwQNdidj7YJemuEEqLFmhe0sQ44ceGDHsS0GIY9TfjMBTZffYtPDUtuXrzMN5//Bl1zgex3bJIPvk0UT1DdY8SkJJ0IrScobdCTkNGkDxIQ6YD41kdYmik6cYle0iQ9w+1JwZ1hRNop+et3D/hDnZhPdlaQeQcTAbndjUUZYTkdcOXCGf76nbf4gRu3WNEVcmkJm33M2s11bU7yE4xyVebt2raG4smAWTJjXs4IBPZGVwE4vhkz3n6Nyx/9HqIsc+YWlwPZ1K5QxGgCFWN4nxdHfLfEOHb1q194nuWNM+TFBFPlrAw6pKFBGRuDO8vnzIops3lBpaGqKpRSzsZp1aSq0mhT0s0SOp0+JVCVOwyHk5pJPPXYFZY6KWtLPc5srrKy3GX/4IDpbE4giqXBMkVRMTwecXR0QKACdFkwPDoijBPidJkk7bDUXyIMI0QMvV5GGCqUAqk0SRqRZQmBCtFViRFFVQrnz52hvzxgdXWNIFDM5x2mkwkbq+tsrq7QiWNUEBAEIRibWTQMAw4PDwnDgCSM6CQpWRi3lvK+l0pePPfdLjO4LV987Kr41I4fLvFbrzeWXJf/zpsIxC8zbYdeAQgqVRTVlDjsuSNWmt1FpA4mwBuGfRytA7tmUUQreqBtqqgRsZ2qW1rlabaN9yLGOtN8FISdTJzjDL/CzdTPMM6ebW1SAW9s/zyPn/09TQY/nKbpFoO3t4GvRLN7psPZZ86z8uJVPj58keLZj7J76zrly5c5PpuhoiPi3guwemB3zVAhuqpIspLhXcXK3vexpAMCkzGbHTMdHrM6EHqZIevPGVc5t/Y1RRbzlw9K4miFT8SQySo6jVF0KSdjyqjPTzz2Ce4kMS9Pb/Lk0THpdkh0JrULXupIgsbY0Exnvs2szTiJVxipGxTlhHyuqMo9knBA2lnmzKcex6jIhk568PaZpWsNpkJMyHL2xAP73sMHXWMQ1dJcWl+9+1gVRuM5v/APvsDqhXWO9vcYLK+wsb5GtxOBqSiqAgmEIFBoU3E0HDKdlXSyhHw+ZzY1zI2mjCPiKKGqZlS6QoWhdXbpirs7ezx25Tz9bkY3S4mTmDzPeeKxK0xnZ8nziv39Q8ZFzniaMxpPufH22xwfHTCbTzBiiKKQOI6J44gwCkmTiH6vR6eTApowVPQ7KQBxHKGLgrIoqMqQsqw4s7nBYHWVTtax6lw3Je906Hd7dLMOcRxT2+9EuUxmhixNUEFIGsX0E5tPtzVy71vLCztyuN+1knTCltvwpZrK2a664Ax9Nyb8wZMabEyFjepovUNts25tQOhrRQxKOgz1kIhevbKtXvpb09IG2uz/99lO3IV3NazUfvZhvqAQ49OrC4s2X5wx3d/X5xzwZoTGhCCe6dmdKFEuTLASQ+AmgygYMCqusj16njO952o7ZXP/llHEv5oo9j79GGd2trn45jbZzS/ztXPPEudz9t9OMWXC8Z2neO4zHcbqdTppQJFHTIcZqlTow5wxmvVM23wFKmO0c8x4CZY3YKU3I16ZsX3Q57i/ws+Umlg6PJuswOiYTF/FHNwgYI0gyvmnzz3Jf7MLB+mE4O1dzi+fh8y7gBs22uwdZ98qDALWl9cZrD7J29O3qIoxugo4HL5CHEZopVndOo8prLOsWa5osPbvAKjABK4fVETqfd4N2It1AohLPMx7HJftkwyvv3mDV197hYtmyPaNNyFIefrpR5lMxhS9vmMXGqM1SkGnm9Hpx0ynM44ODynyOd1OSlHMMTpmnpdoycmimH6/T17cIAiEpX7PAmYYkRclKghY6nbp9npgFEtLAw6HQw4OR8wmd0iSDoO1EK1zhkfHZElKlqVkWYcoDOhkCesry6RJgighSyMyF7kgIhT5jPF4TBSGRJHNz9Dr9YjjGLB26jRM6GQZKggRCew6f9MsJQkcmw9VQC9L3dY7LIz99yqGuh/WrWAJj9AOm/fOGr+TxHsl1B88cSyHpp/61C8Ny6ttAPZfl5xGJKEK77acaKa+RzvO1rSuWzAnOMZZm9GlYbt1tISLG7AmkIYRW4z0QG6a8FwxNUDTYtFON3EnLU6sxi2JsJEWMYNkk+3h1+gky2ThRXRtC23sz43zzvaDvJNw9yc+y+bf+WX6xxPC4ze5e/gisnGFu90zJEtrmIM1uuWA0egApTWddJmiKCHRiJ4zzHO6VHQx9NOM4WjC3WMhfSSmszrl/KUDlmZwNEr4xSBjZTrlkclVEIh7fVTQQx9fo5vn/LH1S/zFg21y9ghe3OfsJ9YaItFqFxFFJ0nZXLvM2vJ5ZmXJ9u7b3DK/SiGaw4NtVFWybJ4ilIw4CdG5M8vgJyPB7wxs27Ssd/d4J/fyQ2a6LfXlOx6eBq3hC198nvWNVUxll80e79/lha99nccunaUsC0AoyxIfn6N1RZ5PKIqCIBCMDphOp2RJzHg2YzydshTHlEWJMdDpdAgCy1LDKKLT6VJqTRAEIIZQGYxRLAcRURTSybqMxxO2d+6SBClVFWL0Md1ej5WVFZIkYWNtnX4vY6nbI4sSglBQyjFcrTHGMFeglHJRB4YssyFf4o3zlUYFdhcIn6ykzoWLZfb+u24UEYfN/gS/HSA82UIn96e79+x2S334mK7dKFJj6thlN1A8g/eamQcw8cl+DIaARBkqXRCqmAZ6jQNVzzapmazDVkdADcZt4059ZStLmWmcX3WO21Y0g72Xdh+0s0Q0ra9rO6VjydKYE/ySX/8MX06lhK2Vz7J9529y+/jLXFnpAMs0uo7918Z3q/p9NDDtJXQ+/wmSX3mBrSDiSn+F6XyPL20fc23zSSoVkcZdgnJIaUqmx7v00g7zqaGKI+ZGmFQFYz1noDRLacSyidm7XXF9H/qXFJsXDNnSEbvDHv+wjPln1Qad8i7zHKIkBgPhbM6jy5rfOzjHz6Upb199i86NIUsX7SIlg03iv9xbYWv9ETrJKsOjA25ffZn93auMuoZy9ZjJaISZD7mU/CixWcXMK0yuFxyZdWyvq3NjfLB7gDUxNDHxJ+WhgK5vEMBl/ml5Xb3K0/acycmr7UAfjue8fvUGaTdheLzHdDQipGI6mVBqw2ye2yWXddA++HXiSgyTyQhdVYSB3axxMpszneX0lgVRirKak6QJg8Eyq6srpIlllUnoFhWIQQI7UJRAT/WI44onHn+Mza0tXn/jDfb299lDmIwnbJ2J6KQZy/0uq0tLZElCFIQEoUL5LQMCu9x4jpCmmY0NNMYt3AjtxIHdMULrVoq6Vh2FgSIMQwIR4jAkCRqguNeW2zpgFgduq7XucxxnU287eBrGa0466T6EUmcjaC2EELdJmnd++eWcdkt1n7tV6JsOY46I2KQG2DZIggvFahxotofqZvMXUzdJfcwCmdt8RhrtQhvjcik0m/I0z4Wa0da81CK8T3turzXNJS6fLwa0aJSBLDlLN+oxye+wf/xlVpZ/xL2zsdvKG0MTSNb0G4Nh7/Ima9/zCPG3bxIcT9nqhvz+SPPq7je53fkkR2GGikLKkd1ZZe/gmF4WAR1bRpUy1pq5FOSFoS+wEUf0VZebVwte28/ZuLDCxnKf3b2KX44rfqJYJokPqUq7ZLjQFfHkgE8nq7y0u8/z/S6339ilf6ZDlESsLG2wtXmFgIRyMuTu/uvcuX2VOzeucefOVc796FmqQphPDrkQfz8xK/b9/GTp7fFUjYmhPRa8TV1a5qj7yEM2L7SSbPjN9e4zVu85ZAyI5rW3biOxIemkSNCnygcMD/e5c+c2hweHPHLuLGkUMy9zgiBABQFGa4o8pyxLinyOUgHD0YgwjsnLCm0giVOiOEGPJgwGSwyWepzZWCNLM5I4qkvkDeba7U0lQQgoVgfLZEmMMhX55fM8/cRjDIcj+v0+3V6HzbVVumlC6CaEZoLRragBsYlpgggRKKuKqqzsuSJEccQ8z60H2RpRQRShCFEghKGQBpFtQNf/38l5tmi0OVHdUNsxF49LM4DrphEq49/G7xP74QPgOs9ss5GOM8sI2sXF1pEC9oomrExA1BoTfZ2ebGIT2ugaMP0W7XUYKM36/nqhScusYMTHQHum64DX1Ekc67s096kDleox5mNp/V/1rhj+Herne5Zc1ROOAQKjONf/NK/s/Tx3uYFKX2Q5/mgNryd7R70+zjlV9597hPXhhPjNuxRErJ0/x7O7N9m8/Twvx6tsd1co4oQyz+mlGcfTKTLbZ7W/hEhMHnQYKihUQaVKKhQ9Ea5ky+wVITe+OaO/aQiShGurGdcmV7lk1khChVSGkAmzPCQN7vBHV/s8/1u/yfFal6Ptgu//kR9E6YDJ/l0OdrcZjY64ceNVynJMZ22FK+c+RtE5Yjza4Vz4cRLWLZgaXbeh/aDr33W1Yr0eOH8Lrl0eJA/dkeY3woMmt8h7kcoIhQlZGnTRZoKSjMHmOkFo1e88z5nP58QqqBcizGZTGxo2GnF4eEhRFKgwodSG8XTGPM8Jg5CqqhiPZ+jS0Elizm1tsrK8RJZEJGFIHQivbdo7rSuMcVtseyeHjrl4/qxdATcoyPOc1IF2FNosZvUSTrB2Z2PrIs9zjodDup0OvdUOAPM8J89zW09KEceW6Rpt3w1jFyVEgU1yk4TBwkaITYzndwqA73R+w9rax5phbdDG7oH1YRMj7cnQ2U0lAJpFIO3dGxo2jHv5kMrMKMkJTUjLFWnByFPZGrKk9bdl0K2z64gE3PaJHpTtKS4hjjNJeGCnnvCajGT2mCMLLdJjS2FB3Bsf/IRj2Zk9Y6n7BNz9FY7nQ8Ljr5OtCEn0JFoHGKVJJGRaeo+9wUiFW0RNFSj2Pvs0F2Yl1Z1jyoN9lipN2MnIwpxbB6/xVrjCtkClEnpJTFEZdo+HoKCfLVOkGYUOmZmSzU5AEYZkRtjIIpa6KbtVQS5gOhlvrA+Ib98hxtDpbtjFSpNDdrTiwuAM/+4nPsaf+/pv8fwLb7I8OEevvMvecI+Do10qNWbl3CW6g8dABXzzS69x/fnbPL3ZIXtiy5n0NPW+gJ5+GJdn74RKaOfwJiyP99u80BZdF+jB5zQzaQPOhYa3rt+0oVbOHnp0OEeJkA2WUGFIlmU2ttLZO4MwpNIVQRBQFAXj8Zgg0uRFQVloiqJgZbDCZDIhilOyNGF1sMTacp9eJyONIuuM8gUKLKAbFWKwoBsqRakNkVKUVYVSQh6GVElCmiQEQeAYjrbhaq51qspQ6YqyKJlMp4xHY3qdDuJAHYxl6WVhgbnIASFOEsIgJApC0jAkjiLiIKh35/DSBHw3/z5YxWlMPrUlsIlxOtE2UjtQtHHhYm5etwsGaivjO3WDD5z4JbW2LmwqS+/E8jm3mjhbv0ulj8G15yVByqQa0ZcBdXpG06je7XvUXn/aE6NXUTQiAQ1r9WUxzfPcpI1nyG7psuPY7imehdWbwbf0EL8dT8O2PXgIxm3NpAkk4OzyM7y2+zUyNWRv+JtcXr3Bvu4zHA45O/gddZNr9zxvI0YUZRxy6/PPsvkPv8Zke49JPqbqpsS9VZ6NKjaru9wIEt6qYg5VDxVkpEnMJM+ZVVPy4wlx0ifr9rhbhkwElvpd0rJgkEacjVNGespMx5THI65XR0hZMcgrgmCLcV4SA5PRDldWNvgXr1zkL+2O+Ye/9Os8upXTWxdWLp8j6vSRwIJLWQTs7mpe/s0X+f5/6UcxRmETvZ9wqtYEqlEtGy0EP3PWmuyD5OFuwQ51oZoj95cm8MWW/XhUUpmKbjdjd7cgL6aEYcA8L8hnU/b29ymKiii2CWbQiiAMEVFEUcTS0hLD0Zjx0CYtn88qOt2E0XhE1u2w1MtY6fdZXx3Q73XoxBGRV7Xa5mZpBmMARMqqnHmoKCpNGApRENhcDiI2KUyL1fp7IHYCmhc5ZVUyWB6wub5OFAaUpSGJQuIwoKoqSq0ZTyeUlWapv0QWJ2RRRCeJ7PpzQx1n2ha599BCjdeqcrtJBETXOGLbrPbyesDwJzqblngTg+tw6sHt+kEVI7q1Sc4iKWgzVmmBrP/sIbmjVjjUx/TNkr1H3d5YEFbNQPWmNc81T6YwbZR1qCNza02pvTOwWTBTLPBY8WW0A99f02C1qZOTt62y3oZcORa8tfQcL974BsOwItWam8M3GGvDUvADaN1K5yN+ImmciGAospjt3/m9bP2jLxPezglmBURj8rTHWqJJypKV0U1uBz3eCgYchyvEYUSUpMx1yczM2NmbMVhbowyWmI5hc+McOZquVISBJty/RTovKKSH0UccT27Tl5xKG64fTFk2XaTX4dLFS/ze8Da/cDTk1nGHz37qClHQbChmCsU3fvVFvvxLv8gf+WOfpn/uHNZoZmgWPbRjn937tkMCawrTtApSPbDvPbyNKX1HrY++94FZGri9e8x4NCQIrMMpCOx2HEkcsL9/wHQ6ZV4UZHGMNlCW1qaSJBkaoagqyqoiSRKKwhq+gyAmSWJ6acLG8jIb66t005ROEhMHjfffFn1xpmoDqIiQKojDgDhUlJEmLyoKU1lTQOXHi7V3KaVcLlq7PDjLMjBCFMeIsWw5iiKUUiixtsVOp8Pe/j5ZGpHENu43ENWovidq15axUWTfscZPElNpjW/vE7DounhuG2id1m0dgR8ulgu43SFO1KDzJbgz7FCqO7MbXH5CEiHUKaXsUlGhTNjqM3aC8s+oWWptGG1nvtIuo1lL05Aav2q+Sj3kvQ21cU77c6Qe+M2eZ9q0ILtuW91kmXM/lTUQYIwQRn16aZ8yPGKaz8lLgykDLpx9wqWA8MaLVt20xosxUKYRt3/s06x/5WV6L76BHk0xUYcoVgz6CT1lGAxHDIq73DQ5u50NRmTEYUIoKYHKmc0OKUxFsH6Gnf0h/SRirgtkesTGyjJHK+ukV18gH+YUagnGc4KgYinu89b1bXpLG9ypVhgMLvI7u7f49eGcl756k49+7wVEDNUc9u/c4s6Lv8T3f+95Hnn2MVQY4uOTje8neJOCfc9Gg3Q14J2UiJuEFgx/98gHY0WaL59rt0LDzsGQyfiY/f0dptMJcZygwpBQpSwPBuzcvcvh8TG9TuZsoYLRQllWjCYTSl2RdTqEYcp0OgcjrK9tMOh3OL+5xsbqCt0kIYtD0iBoOrf4bttS3TmBwe6rAFBhQKwC4jBgpi3Ql6VlrB507VJdIQxDlFJ2tZobwFVZ1VujB84RqETRzTKCtTXSyNqZQ2UB1yus+kRZFquzdfDd8LA+tW39a74yJ0/DgbE3Wyqxm0186GSRENj3U45lWlV/QUto14SfgJVNeD9lStfYbHY+YsGqmw1j9lEodrt2q756+5+dKBU21EjcLga2nn0ynIZtefDUiMuvYN+mxX6NB+cmmsFnHDPOMaQ8I8bgt2z3pTXA2mCTm5MjhnNNFgqh6RCoFBskJPW5zYRs3CTWPLuKQnY+81Gmgw7d578NOzvowRIdUURxwmoyp5MHnJEpd+5+m514jd31RznqDIiyLpP5BCMwO9wl6AyYiZDlYzpxyLwoKaUi27rCgIzDckJeGTaVIVAxKysX+ZVvvM7nP/79fGM8J+1u8rlzFa9WR9x44zarm8tEYcX5JOEH//DvoHfmvGsXn7rUT3G1IY16NvRahJtrGm1eWrHb/5jMC9+JCI1qPBkX3N29S6HnJGmG1nukaUgYJOzuHNPr91ldW2dpaUCgAlQQMp/nTOdzRpMJk8kErSEvKjQ2XndrY5OLZ7ZY6mesLHeJExt3G4dhvdbeq9ffkbiKjwJFGCjKIKCMrH22rDSl1nUGMGNClyDDvbMou0W6Cw3LiwKDIQkiBEjjhCiIiFRAYBYeuaAa+2P3KdqDK7s+xw9ue1zV3ayVvrA1KSrPtFAueP6dO9gHV4yryKYmBa8uewMCzl+gm6Q04lxResR2fgcdwCQc0cm7Lh7WOaiMqRODeSBVtbPN24hbJgxc4hp3nY+BVdAAYgS6Moj2U69p3sPZfRt48CkgLe9tDMI20Y+rAfs+3u9iqFMeqiiiE0FZCp04haLb4tvNBNR0DZ9j2etati61wPCZx8nX+6z/ym+iR/sQghqk6DSiE2riICBTEzbMMaPpy+wdCLs646i/yWRpkxlgdIEqQaIIQoWOuszHI4bTEcdpxBnZ5NZ8yN5swmZnAEqzvl7yhVff4MqTn+CrezfYjTSPDAKGPYVEEMYxWu3S27po691UzWTi8/LWfcW/k67HTONjbSJJbL9R+Cxt95MPDOjWIjCc5nTShDRLmE7GhGFAGIbM51NW1teIoojlwQAliqIoKKuSvMwZDo85ODhgXszJ5wUYw6DXY2tzk43VNXqZNdqncUISRqRxTBAsGBVq4F/guicxRZoPzURv57tIKWLAqAAdWueboWG87UUOZVUxnWtUYMPSRAKqqqDUGiWaILA7GPv8Efcz2zRq6nuoWmmU1Vo1cuBqavYsDeiefGdj73ECpt5pZ5IPsDikatlHFyIaaoeYoUlzWCFaYZRBSEhmhklwh7wDuRqQ6KRmPQst5D7avbgq9007J4D73uh61wbjyqDFRyEYhrMJr45f5BPLn6q34XFKbcO+sEM/wO9UrB3MVjXTbiYPP4H6Tq9tuxdzlsI1ljc+ymvXvwWmsDHktM6tHXw0amA7R60vFzZ2db6xyd0f/2FW33qTcn9KrygJ1jZgeEhVaNJORqANiUA8P6Q7v8V4+CaHr6UMVy+Tf+QppmNNECqi7jLTw33yyZSQgmR5iVdv32G51+MgShhVhyQmICZnuafY3b7KpZUBVw/uMq1CLhcRWWQwsxHzlWXqsLDa5+FNZs37NjEhrWN1VTQx1e8UGuvloS2OsGU3da7Od7/CnlVpw3BeUOkcUTAajen1+pRliShFp9thPB5TlCWT6YRqDkejI44nIw6OjupctipQnDt7lkcuXGBtZZUkiohCIQ4j4jCiGyf1slk/y0PDuH2Mpd+uppYFNG6+aOeWMI7FKEC1k2MHwcJtclHMy8o2uvZ2tgBtDIWu7NLf2vTRrqVWcTyQPiBI98HMvRkoBrtbsL+FNnanCKsVeyfJ4pU+yTfSJGT5sInP2uXzGtR1227fE/ZTI9q1acByeplUD9grb3MY7HCGC037g4vzpFHjsdeZelCKA1ZcfgR7TJ0Y2D5oqRNmXB9vk0Tf4NnOJ1r91hsQQEuFqu2QLicwJXYdma7t2A2EeEjW9f0kiNnofxwtcwhfRZQm1N5eaU4MGJ9Y3flE3Dktdxue9eb9JbY/+hy7pWbj5Vc4P9EkYcysyJlVFSquIO0ia2eJgxhZXSftbbBuNGqwziyPeOWFu8xGY1QxIQwjtATkRUnYTVjODN2x5iCIKMOYsrMOh3dJRXG4B1vLq+yOD3j9UPFIGNHlEMk6dv2HeC3EA2cTuVB3DtPYyaWudW9SqJe8vCvgPRzQlaZN2ozqQWWpJxUM47lhe3uP8XiILu3qK1FAELCytMF8NqOT9V0D50wnE4bDY+ZlQSft0Ek7ZElMmmWsrqzQ73RI04RABQQqIlRCmsaE0b30TExLbXfAG9DMaHrR1Pugt2nf8d5ntBA0VIpIBRTSbJ0nqmFABkOoFIHvB9+pLJgRWmWr+5ZHGl13Js9e7XmeBdfNU6u1WhqGHXzHscEfABHD4iaGfuVXk9PLYoZbhu2rygGOQaMIyYJV1nTAvrrNPJgTVzF+g3fLeJoBqVv9vI50WOCrfvuYhjH6mFw/uT47eJrn977OVnqBVbVW82qbdxr8VjtNEsnFKbH9VB/eZs9V9RM9pATEdIMlZvmQNEgcWDepIv15ftKifrK3VDt9ydupDVQimChi+yNPoa7PUbf2ODJDZoM+yUevUCFUQUCZ9qjCECEgMDbHwa039vjFv/e/sDuBz338WZ772NNIWTEdHdPtJATnNkjH18mKiO2jirIICFfOkk9GDNQBe8OCrS4czUteurnL+UGH5Ze2iS8PKJcTmrA6feINXYIcp020NyS183IT50w9/T1YHt4y4Psevf83/luN4e7+iOlswnQ6ZmfnLv3lZUajI0ylGY3G6Kpiub/ExXPn6GUphTKE4wkdlxQmTVK63Yxup0OSJKSxZbZK2eiHNIlIo8h2iwV1mwUW26Tpaw57dmdOlLst90wtjU3gnqsUoAJFoF06bdOoY4ImdOaFk7X6IFZ7X2mrywvXSSucvzEp1AO80XGbEptmWOoWA/4OSvPBEbddt3VyNSDXuCmbPcNgsQXbvBWETA3oFoccR9uscrGGXA9Stgs0cFdvjV6DeuXAvwVYRtfahvKJdICL2SVez97gK9u/xafPfoZVNUCqxhTkQdP+p5vNAmqnGk0fB3wMsjJ2Ax8P2T7cYik9z+7wBcLeMnb5a9Pabi/putS1ul1PI+6tWiYTN2VThYq7S0t050u8mh9TmNe5uLRG4/Tzk56hmGte++abbL/9Fo9dzBgMR8wm1zlz6aPc3lYEErOyNcAMYmZrjyIY1mYFN6/fhVmEyQZUxZhuUpBXIUthSYDh2uGUzU6PrZs52VxTbCTU63x89EmrZm2WNg+sTa/w72rbua2X3l/eP5uur/T7Ya6jcaWpmBW2ybQpKcocIx0MMDo+RoKIIAh48sknefbpp0komEcRmpBKl4RhQpZlJFFIEFrAipXN5G/DzUKyJCa4Xxlo4eN96qtlJACcmd2rGSevuef+i1+2px6rnjQg7w3xgcud62fVxoT24MZ87+BnWVdlqIG+Mj68CBfv65euNoPIhwv53WFx5+gPYfSCTU3ZyguCV/UNKrAOKzfVgts1oekbqgY0MYKIZlldYKd6hSKcEpdpfap4JyWCGI0yhgqXw6CVXaz5XdOn2kRVOUebiJCoiPPZWd4sr/Pzr/8tfvzS72Q9uuT6oudozco16/DxirMPTbM+BH9uM606bm0ElLUkr3Qvc3vvBZJkmZMbZ1qC4CIt6jApz6Jdlbp3aeyhUmsMksRMy4JZecja05u+l+FD90QChnsjXvvqtxgejzgeDkl7HT730Ys89clPgwpJsl16KzFqOaGUAjE2z8q3jl/jxcMXeFz32Ug+yfLSCqbMCY1CFyX9OCcONENjuJtHrB9o1PCQ5NI6RVy25hZffjCmeTc7NrwZZVE8G36QPBTQXYyVb2aDyhXkZNJr3+nKKmA8m6O13ewximKqUqOrinw+ozPI+OhHnuMTzz1HFgdUpSaMU/pLoV21FcUopey+ZMZuToeyoVhJFJPFkU2QU89UTXlPLip4sNjrvQLhJuN6QLa3IXon8UAtIujKOItC49UOVIDyCyHc+fcro4eG+z7jZMmd/dV2IGrvq3+fxs64OPf45NlaGgebjdF9Dy/6QRXXcAv6l4AYhVEV83RGMknARZbUHcYteLDA4fUzQSRkqTrLQXWTTXnUgnRtpbXMtQ3jHuQ9mTZinC3Wlcs5LLVjqC6CDDHwSHaFW/lVjqe1JdUBq42ywMeN+r5jGlAHHD9tg7RpfQM+767B0Ek2CCUkTfosrtDyHZj6DiLidodu0woH5q1FIv4rHXa5U9xm3h/S23rClp8AFFSFYv/mIa99/dsYUyBS0euWfPT7PsHGxUs23NJoNrZWHCmpaqQxGL5y/avc2DtgEt/loil5TH0/vbCD6JLjOWRBRKZK+sWYkfS4Placy3rkrxyRXezBwGucLmxvQet1n/0q0Jrhn1gq/gB5OEy39gK2CtFqnJpC1V5P+2eRV8RJRK/XJc9zm2mrKhkeD1GieO7ZZ/nBz32WpSxDVzmiAsJACKPYbmPjUh0qlyUqcMnF0ygmDqPW2FlE/XvACWir4vfOWk0WqpOV/N7ZZrtaHI/27MYlyalXw72Xm76rXbUxTbSx0idD93kiKuMV3RMPdeOocZC4w01//HBJewZrsxoRKAStxkx6OdlwuR7MNrZatdRM8LTNYEjUMqq8TR5PSaqOA2NTg6XXisQBss3rYep7IC3mLTa1aQPVTZ/shz2UKRn0zpJjwwwrtN/7ojXGoAnyp4799Yal2pxh7B38BGxNLva6QEIur1ymG2YU9T0bQBXnGPQgbVcGOaebWXQueW0NoCoGvPWN14l6Ex575iJexwNhvD/npS+/xp03X6W7HCBxxtaFLa4882nC7rJbjl7S7OCsgdCBpO3Ln7n4KcbVF5jqnJeHV5Gwy1PdH4KZIgqFW/tHZGmXlRjC+YR5lHGjTLmQhBy+OSZdDcgudahk3uozrb7eNkmJCxOrK/2dB+37Huxj/Ox7v8IEQtaxOy9sbW0SxRHD0RHD4ZDv/d7P8MOf+36WuxEihVtya1MchmHgch7YPLNhIMSBopMm9NOMNAwJTCvb0v3KJc3P+yaCZeVQh5IpaQEui9PDO5kW3ot4dru45PXEOWIdhm3GbmpQbl3hA//N4gT1YRFjWuu3xK0cE+8AMmTzVUwxY9w/rGNXgWawLdiilL2fClkNn2ZU3XKREe6cus/bFhX3HJ+G1A7Z1qJeN0gEy36VSySvnHqrtWE52mRrcIlhOeJuecwXr//9hrW6srUdcgY7oXquauOAF+HXO9Xs/l9N257vfZL1aW6/Ny6vrGkWXNh38hWk6kHkOK6vOPzEoosBb//GNVbOVJx7egMVZ4BCVxk33xzyW3//i3z7N78KgeHW/ogzl1d47BMfIcj6aF2htdUMjTE26se4icPY3WO00Ty9/iR/9JnfTb+zzNMXLvFDn/gMW49F7CdzZhIyWO4zmo3YnscEUUpHKiIKbukUJOD62yNuf/MQM3fbvS/kP7bbZeFartFd/DFB3iGO8qGArm6R2VohaVEinwTH1L9tQaLIMoDl5T5Ly8t0uinGVJw9u8XnPvMZsji2JENDZTSBi98NAquSRIEiiyJ6ScxSt0snSQlauyngynTPDy3QhXoNii+7z6blO9tJaV9z32e8g4TOlCCiXM4GNwgdCNR5VqmtYQ+U9/bY+9+l0oZ2NgJv1qiwZgWvMIqBwNiIhUBBGLwHkv0BFPHLOn2r+c0dTeNe7M7WUbpgvnTs+o8miH2GWlODsXd8VmXF/tE+iekwD4Yeb08816qtGM9+3UmthDn2njW/dXXfQKMYw6PpE0yLCVWgeGP3Jr1wqaX6OpNEa4L0kOr3S7MN7AaT37C8Nr15KLU7Ac9VQjwUupW/v7ufsck9vc1TS1uH8vXqHdKuB5kl7nx9l7VHQpYvDhAl6CpgfpxycPWI26++yevX92GY88Zr+3zuhz7Gox97zpIBU7oJqaonALvwo8ImqHEs3dgyneme5fc98bv4/BM/TKgScg45yH6OolNiul021leQasrBHCoUUpaIVOxIRJpEvL494vWv7lKOlhBj45QbJ/PJyQSa0EC4d3umRh6KecGGuVjVqg54tS1Q/9tqhrrgCljqpqQRTJaXOHd2C0zFcrdHGkcYrakcU7COJhvyEyibdCaLIkKl2hoNTiduLB73Ka85cbwdW3zvoLmX2ZkTN37Qtc33jfUpEHGJ3m0daONCmcz96ug9SpvJLnibpe4frRPcNcqFjLGgEitXDm/qEOykidjfWiCMPpSo6wDPOYKcii8Iej5HkhBDQDZZZTLYp1idER51mCdHECXE09jT0tpuMFMpeZqQBjA3+yR0ofbu05gPvBrvIxqccxIXX2tvZ2rTqPioFnSd8nE1XGFQ9NnMtjDJAZd7zzVMx8WZmtazGkXfuGD+xp4NONACvybR3sH+W4Yh11c7PJkLL6XGRWQ0jrMmW1nbLXnvKNBVys43DgmXj+mdW7KLgWYZqfSYjLYxKuRrL7zO0f4Bq2sZ//Qf/wFWL5xzhEfTLIF3A9rYLeJFQtd8utFAXL9eTlYRqdCm5Gh0l+nNCW/O/x6Pb/4YKlmlm2RMj4+5tj/mzGqPFMF0+wznI7r9Lq/cOUSrHbYe2WB5Y4hRpYX2hva6ML3GLWvx931ekVYJLgHzg+HipG0QbAavbhwSmpCttVWiQLG+usKg3ydLYsDUq7OC0G7poJQiC0OyKMBHApwEwYctC/PKd3yt2OxpRVGr8Y2KaRyL8Krob/+lzAM+Q2vSduKTk4Nzevq4xKbU9X2aafRDBry+rqU1MTngVVHIrNrjQA7pJGtEecakc0xnRWOqipkcMQ8hqEIowVQGZWLm5pAwVAync7I0od+rGA0bk4JLKYO0bMIWO8RtFuk0QRpVUVxnbjvS/GLTJ9IrTOSItTAnCXvUnk03Y3vrbQ2MUGtR2jSM1nP39mbk2jTaHwbKQHG1HHHWdLjpIzf8C+Btu1KX2+O/F60zdr81p5Rtth7bIEvWKccxZjbkYHSb6TRHqj3KEr7/Ez2e+Mz3snz+rMslbayKbzS6XsQs7v/AOea9/8PrpwpNxbwYcmf/Grd3r1HOS+JslfVexYVzE+bmLAd7MVEYsZx1ubG7w1oQk5cjm+chiVnZXGV7LpidOatrPbQ6XADXmsDXL+vNRw9GhIcXMuYmG9Ht0eoL24RNeTCxfcvuSaajgF6aEa0FrK2sEAchSvzW3xCGQa2mRUFAEoVwwg55P1Dnvkfc8RNM+J7zpO7LCye2Aes7BV4fJqZEuc4tLi5X2SQkNMrePWFp7bKfxDtzosm9ltmCyFYpqFM2OkZUaUPlR7l7VWWakG9/vZL2YP2wiVv4ob3KSNOYKiBlkxUdM8p3GJZT9EwxDu4Qx0tIGCIuoUslOSaY2f6m5yRaqNIJSRXSvXqVauX7maj2IDUYl9wGQ8vz7cHU21ObrXFsCp6GrfocCSkx09GcLhp0hYh15vi8Dbb3+CWudoNY38a+Fa391pfOlYv6Ibae3Iw7jhM2D+ek3ZBZbJxu2kp/iDeEYZmphHYdXPAY892Svf1f42Off5QkXCWhyywYcfP2NuPxHv2BkKyvkCm49NgZls+eR2u/866L2TWqxg8X14hC2B/doZzB6uoSUdhDUzKc3eXNWy+zt32dTpIS9Zbp9nvk1R7Pnf9hwniFjhzTiTJG8w7jSUyYKGI95pErPYzMmY6nVDrFkBAFM4pgTt1oxtt5/VTme5Uv4/vMdBsMaGZqr6Lao9Qxf02yGecsUJXbkFGIA2ezFUVVzgkCGxJWVZoARRJFZHHYhKCZ5hknS/JOROx+W5LXl7Xurf3YbN/zu0DwlLiJvMLm1o3VAn024NL/tWyAJ6VVMIMzAdCYLeygbkS3bFJ1SLy47iJ260GbN8I+r339guOedpf7sEmzbgtOaCwCWbBCyoDSjJnMdzmorjJUN8jiLkk+Z5pk5GWOLucYIKg0menRUWcIg3X20pgLN/a5cXGVsu3tdg/R9TFvQvDfObaJ0xidKUCZhrN608NKfBYmOaIalboyhun+hM6ai6BwIWT+Gm10nQTf8+sWBNfaVV0b9ZJf4e2+8NSB4aV1aZGcmkIRFIKppui0g4TP0Ome4dqNMXfuvMmzn/oEqoiZzebsHr/NKL/GsNzlzKNnCFWHWy9e5elnBiwPtjA1YxXXTotLbT3YHeVH/IMv/wLlbEa302Fz8xLD8RHlfJ+lXpe1Cyv00ozQCGf6j7NXbFFWOYGx6V6TeEycjFldUpgtgwpSRAoMXbpLvgwlPjubJXseF5q9cOwUJNjUoO8Mqw99N+CT0hS4daz1pViFAaUEE9rtU8SYWr1VDmFDMTXgNuEmv325N0TM1OW1b/JwgEWwziglQoWg/PY8fiXafTT3RWZ7UpWz3dGqsbXGvIDT5sTV3mkjYBfGerCVRuW17KtB2w9ziC7g4mLbfQ+vsQLNoBYlRKbHctSnH11kr3iJidzF5COmOkcRsBxtkeRLJPEK3XADn8eriOFmWLBx65idc30qZWpeCM4WaPxuEQ3Qivuuto86tJyNh8S9BDERgbhl6WJTi84d4VBAVgUcDg/orGWIOFORgWpaogKNiqM6naPVzLXLZubtko1OauvCh0NpyiDgblKxManY7tqsaNXUEMQhBMJgP2CeBYzVE+RFn9s3bnPrxjX2b7/Ox849R1kM2dm7w2h8h8P+NarYUN09otMLOXfmDFsffZRwVmIkZDq+S9ZdAQKaUDcQ0eS64PredX7961+mnE2QEMxkQn7zNTa3eqydWaPXNaQSsJleppOcRSTibLwOpsQDihEfZ20cebPjwe6K4XtHM8ZMO+N/fczXmKopzDvpvQ9nGbBpmq0dWL7QwaG2hXiHhjtk1dYgQJRCadBuCxttDIHrnEkU2Y0f/e3cox4UvvRue4e1v5fWv/XHFot8z/IARnqyiAqXS5fK5VJtU/d7QRIWgbdt7zV1mjlaHvB768UyJqdxOANdbeXz9Wja5pamHbVxoL7wmh8utitYtq+kSSjTLEBxKoyvJA9BErGafIQxI2ZpxkX1KMooZtGUjspIgjOgG44oCFUac3fNsHntmOFGyDSOqVzC/E7Vw5iSsRq3TDQuHMs0be1zG4ieMqu22Vq6ApMcjGJ67W2+/NLbqP4tPvnpzxAcTTg0IWsXHiMKIvAxrVozP9glWFYQ2pSilVRoY9fHKSxztYRHoSsYjQSVloDNEx3GCpGK3aWAJ66NOEx6zEMFkWF2NOHtN49YLQdsfmSLtW6PfHiDt178VeZFSllWvPTS14hSobcacebCWcLjGXe6bzGViuXeWYi6HN4+IjB3uXMw4q1rNwmiDgQh/S5cWXmS1bWzIIp/+KW/z43duySJcPFin+WlFEn6zIodsk5JTynOphfpJ4+hlE2VaoeAQqm4zknsxdR241avdsDSWhzt0le2sEZcX/Gdxxu7329Hmu8+dos9CwgtK0JtG/XrnMU059jGF4yyHnytNZWuQFSdek8JRFFkK8MtGNJQrww7Ofxthb83uLwfdLTtvQt3eZdbepa5MOn4sLnW9X7dUqBco7ryGrFB7yCIburrfs+uodb9Clw9anPvJX5S1Pj8/6oGW+olvVKDtpYGoD0A1bZm50X+0InxQ8l74tuRGn7RQHO6TyQjIshcOBc+RyQZgtCpNAfFDi8e/QafOPcxsmkXKQMwMBvOGI2O2L59yMVtgUdWiY3Qmfd56vacsirZPZdy9VKOUsqGD6qAOAgRFREFMWhNRYjuX2ZW3SQ/Tun11jk+HnNj/zbDY8NLX3qNi1mPw/09jqaaC48/y9LqElm3h6oqjK7orZxB6xI9mhNFfaajEdV8SpoN7AaoVWHbWocgEewecu1wxu3rbzFWIWc2OjzzxBJmSXFjq8O514+4/dgasxDClZSL5zXhtMP3PPoEo9EUvdLh05/9FG/saL79+h0keJXzzzyFMSFIxUb/UdbMFQpdcju8Ta+MMet3KY80XZNy8dIS8zkU84o0Dhjl15nuXSMMU9Y3Y9bOn0cHOZ0sY1ocEalj+mEEwCNrHyMNNjAmwIcBarC+IQKnYbgl3q38JAsLX/DACs3KQ39uY1ZoQMeNbVMhvM8bU2pfOOOA15VbnErnU3I0+8UvlNkZ4e09KtMspQyUsqDrTAyOhCyIzRTmGMJvI4DUsIhn74Bz3/G92veo2gMam/jGtFmSc6RV2tht3M138nxZmCHau9oa49UnN7m1GaufICyaWtDGxSAbmo7mFxYYP4e0ZpYPifjpo9ZrHNP3iplfoefzftlrBNGKM+HTRGR1/UoQcfPObX71jV+kryOejM4Qh1uQF0TjCTe/9Trfeu06FzbOshELF7Y2GO9dJdq8zMq5syT9Jc6uLqPEJuSfTibMZzPysmJ3/4B5PqXI5/TPGF79jVdIumucWT/klTfeth1+tUO4ofiFr77Ihc0UE8a8dvXryHVNURkkTIjDmFAFqCCimNt37qUpgQJt7tIJYH9vn7STcjiZM87/f+z9ebBtS57fhX1+mWvY85nuufN98zxVVVdXVc9qSY1EA7IGwAKDLYnBBgI5cBiMA2MsBwgRmLCMjUMyBIEYhBEESCBhDa2hW2p1V6mruquqq96retOdxzOfs4c1Zab/yMy11znvvvteddWt10Wf34v97tl7TbnWyvzm7/f9DQnohLffuYNdzCimC57+1FPIHcs3fu5tnnnt0wgHDN8ZcGgbzp/JeG7zIvnGE9y+dYPKON799pvI+/cxqyvMdg3P/9RrNDomNohXpoCb8i4HtqTfaHbL+5zrXWZtvMl4tkI926e/usYW+2ib4qTEiWXY26RuDhEMqS0ZTTbAVjjJKBdHJMkQ73gziFPeHxO0MuXh15fBbCEwxPm65dhxLMP6aIkX1WqNrXXZmtqah4/64/J4QsZiurosAReWBZR9nv8HU4SBoA0LWlQAAX8iUctKShGQPqB2duiGaE7Isd+j0dc55kQDojbaDsfuLHiScjjR8Ic96q4S2DpAWqiTlgOIYSbWgbUOYywo5QeNSHs/J1ve/cHhQm2J9kY625fc7fLjgdfHei9fVNxunQtdMVzbxeI7yzC2k8/vB0ZkCbwSzENpTSVp9zkeCeJwjSHV486jdVhjePXcp9CimD+4xb3XLpKpXYZmQLaywXMX1znzQy9iZoa14Tr1wYztwzn76X3O6PPUe1vsvfvr1K6AeoqzFRaLsw35IMdi2F484Io+x8Wn1lDaMJ/d4sXXN0Kh+/P82G//dBuJsCws6QvbOGIWmUWM5fY37vO3/vrXsLakrksuXBjy2o8+z/CZPqPxkKEbIdpbSeef7XHwYIvd+/vc2N+lMCU7swNWZwfc2DvkcH+Hpy+eYbpjyD7T55d/4W9yWMyx97dZ3N3nJ+5Yvv7cDjZ/Bvv1G6g3rmDEtI70/WSPmbkF6gzvHvwqq2oTnSYIwuroEm54CQBtM2b1PgsxFE2BbQ4Y6AGr+iwrcpGsv4LFMbMHPJB3Kew+A0Zem5VljYr2rYs7NupjYSn/NTgYo2UnNhzfSfQIoOtkGbXhY511O2F/mDwmR1p46U5aj78ErVfj6C4IGEGoxbAwGLQNmVBKIcov4OjiTUrCBxZDbG9UsCc0XOloelGt9pf6kAIVHYriQ+PtTv58ArAevquc+O7v3AIimqTXo678yhHOQZaAiF91WFTUyIKW7040OPxrne0UFOp0FLcE2e6ji8Wzo9Yas88IcaVRK2n7movZdzEjSFpK5AdLbAu2fimdKDElNyQRdI8IVocPM/P7RlFK8fzGq3zp7hf51r0pOj3gmdHLPDf4fWTpKoO+ZrFYsHv/Jlv7d+jfuE31pa+w++f+B9bmBYPf9QrJT30BrVZBhaRgUYjA1Z0bHDY1k+E66BTrLIPJpHP1plUnwtTdGfMegn3OkMYlQkPGmQRWX77Ep3/sZbLxCKdisRobLBtPPA3X4dyzZ3HOMts74u67Wwxyx3axz4NpxbUbN1nrzdmpLbcPt1l/aoXLL19CDvbouwtcPXyTnfEbZPkqt3/9Gzy1sUJzaYijIevlvD//FQa9VYq6xM53kcFZer0REPsh4ISe2qSXnsO6GdNkl/umYVNPWB9+GhfSixSwokeIwP7sOsPxRbCCkwQVvBDRmjkW+EzUfQLIuu4o7iY9tOWFQvtc+5yjFry0VL/PoGs7NInEqIrw3QCuLeSB12I5nkIb88L9Awr+XufQATwWRUGTOHp5fuy6bTJG+yCW//enjtxyp66BHGve8fPE9nzYjcYdOu/ow6qMHeMHCR288wwUwiDLWaCoqwqBALYWZ72Do7scfHy9rbMs0gcIxystRg5gmdvfWQEstG3pzOwkj7ZgG8Ziu6+LAO7iYocnrIAfAGmD6TparYjqPBUvx2Obu+6u8H8XKhA44d7urzPDsNkkPLfy93Nu9BMs5nDn7n3K2X2cOWAwTHj25Yv0v/xrVN98n1QL5TPrTJ+9wpm0B0Ez9ae3IJq3p29zObsMcaVaJ5w0h5chmFG3CCxm8A3EmXbtUDPpZ1z+Iz+OrKyGEFjnOd1Q9MYRAcV/iYXdNzfXGa6OwWmKQ6H3jeuUxR53Tc0rn77C+PImw80B2WKX/bXbTOshWjUU77xHubrPbHaf+sEm7tIQ5xRlUdFTY/JkyE6xx1o+wTXzEG/MctB0tEolAybSp+7VDPUIG7PrnODCqhmT5CJGLbDqCO1W2x4dtd54Uok8UhxD+Ofq4g/d8U0n09V1+0jkIjyKubDO3aNy4x8P6LbV8Fzgd0MbfBHRjqUewc03XEJnUaEGqXHxxftOgfKOtdligbUFk8mErAXe1mDvgGiXc1lKt3hLvHarHYYHHU165aTz/OKrkY5mHd/j0vlyLJzquErfniWCF9AmRiQiaJVQ0lA1NakWqC1aa6z28coOFVKHw7OkDWfvFGE53t6WXnGhloIL0BpGaBue1OksMaohAm53ECzpBf978+GT+m9qiZOrZ+Kk7ZLiYkx2F3KPz6ZxoUoRUCqjP1jhyuBTPPPUz1LPEqb727x7/SugFvRHPdbOjEmzc9jgkCv+qd+H+slPURVT7EvPcibv4dNpO6sWiB/IO/N7PJtcaGf0lvRxBGCFXr9HUZTEeFLXeffKWRSK1QdTVvYt154fo3Xqw6KsC30ovu9OXlr0AQQvzKJpSPv32b/2Eofvv8NkeI7Ni3e48rpmfFnQcsDO/lv01GWaFy9wz91isp8w2DqAg336mzlfvXGHlz9zJYwVR1/O0NgjJskAZfc9LbqcEomgFt+DL/yjWOciUi6QvmJZOCjy75rVwXNk9S5GAhB2QVA6CRbxexui18036y4i65bY2mlLnBDonK+j0j1UHk/0gmetI/i3gCvWd6Slc62TjRa7eOtc84BgEGxjWSzm6CRlNOgz6A1wFpqmAaVQaQpOhXo/jiXAuWOJE237jnGRbqmthXfcvguJS1VHAD6mQodBuqy1tAw+apVLXPd72wCItYYcgHV+gsFz140TqrohawxpmqIbR6ohTROUs56m0Ymvt3tCR+fkZYjgLqEQUSybQscT2QXnMPishPAzdyzSgmiaWb8EuHMn6yf/YEgMkfIAKyHdGYi/B2XBtJplnKT88aI0qe6xOtpE56vUJuXBrYTte28j5ojRSHH20hoqPeMPcL46GF6f9IXSX3qG5YsI8dkQ6LBwGIJRJS4dEeNGnFVYGrSKS+w47s53+NbB27y29goDlSE20kqOHimTrR3KxLJzYUITKJJlasQSarxSFLVoR7v6rTiMBXOYUGzdZ31jnb3993j5d2gmgwFmq+baN65y5QuvkCZnQY0p1r/J4B9/gyf2EmyiGT1/njPKL03lxGvhWZqSZWvMp0fc2T3k6XND2gpdjjZGGemOIYdOe5AMw7laOF4CKlCrdZSV4PuSjparWa6bsnyG0J2sjkNwq/CGdi0ZYen+iM8mPR4BcVIeD6fbes86zq9WrevcXDCLYjrsydVqYyrktCrZ3rvP+uoai4XQ72UUxYJe3xclFiMonfgVIhxt5MQxT3T7DJYPo2O9+HJxAXBiETfXxkHHIhahtkNMcW/Rt0NIhEpDSOA63fKOlhNM1CC8GBc/jspY9qcFRwcHbN29zdrqGv08YW11hfFwDHWNspbhZIJxFb1+L/bJD8ytrakYeFtDLO3n/LpTyxfW6VCRx6VNuz6+nTZsr1sK9gdNIkO3rMAnSyBGKGufgGPDcueJStA6J0l7YDXFosaWcGtvj53dd1nM7lGpBzz31Atk2Xk/sTnrAazN4fZmw/JbtByCKRGyxpbv0rJbHjIzh1S5X0ynahzXb73F2pkh66OLYXIQdosZf+2tv8MXs6+yOb7ExmDCRm/MJBtw0cD+muHFzZe5tr0HLmEZqNiWxgnti8AL3WoM0cdo8wHaWX7+K++RZ+/ymR8+w97WXSb317n00hskeh3rIE1G5HrCnn6b4fnLrK29TFHsM8zBuPMtaPXTlEPbcHhvwcGRIzl3khyLtQwAlkqGh1Yb6CFf/NzDRyeCQMDpoEioZRyKsARZ//zFa4SBZrMSq8CdVEggwrujXT8EWEZr+WemOorYB+XxrByhokm+BFIfkbAcpGEsE0lDtVQ1UALGeM4lUTArLe9ff0DRQKIaqsWCW3du8czTz5Box5OXz7O6MvaarixXpvC1ajteyg4qxfrK8Vm5OPpaZcb/v0sVtGZ2aPfyxS1V38iB0pmBlwVVhOgNN0gLvMb5iI/GWmxjmQwHNIspylkSsRzt7WNry9b2nMVsynDYZ9PCpJ8x6IVlvx8ysUZ+T0SW2qiNa5y5dj5YcrfLjmJbDleIUQvgfBTJMY/+ccvtB0W08gVaorJvK0svzdnfKzmaVTy4d0BqS8YrK/QGAyrTsJjtcjidcbS3y+61d9BJyWs/9hkm62PK5B6DXkKaDYNlELUjPzTje4/OFycxmidQBi3gLjUBEeEb975CluTMbQ1Y3rv5ZYrBDQxPssoFjuqC947u8Ve+/bcQBbUrOJjdYLfQ3EwTmqohc8JPXXkFvXmPWlXkrLagFa0YIdQ2oUN7tVo+oIQy2Wc62+bmzQFXr93gh37XjOm0YDV5AnnqRdKkF+5IsE44c+Y17pW/jCR32Cu2SPUBbiH0e59HuIIFBtmQoq55cOMemVKkqh8u3hmghOciEeqCc0siFKsOtdYdk8HR2x3T4ifDpSbmOp+wj4sWcAhdPabi+m3Rvm0pDeeAxN99mKA+TB5P7QVZ8rhR0xTxgcmK5azpkyHUBx4V+Nq4zjlq5xgPRlx+8jlECYPhCoPJKoO1dVZGAzQNk9GQTKKHVjrtoKNlnChBEde9C1/b5yot0XFsBwe4Y/HOHY352G/BudFuW04mXYeT65ISvqIJoHE9P1eeG1/m1acvhWcnHXPFLZ+x82c3sY0fIK9pi2ODQ5wlCdNQ45aTSuss6yZmtANPwmQTOqYJGoQ9fswPmnzj67sUxjHf3WPj7CrD0TqpW3Dj6lXu3b3O1sEew17CmbWMwTCnPxiQ4rj3/l3eufGA82fH/K5/6Hcw2TjHL/zNX2H/zC/w2ad/lnbZdRfffUz8da2J5K2mzuQM7UvwkT1RAxauTC7zrfu/RrnYgZXnyDYOqLVwVO7wc9f+Ku9fu8a+qbAjx7CX0stSymlB2TiSps9L4yt85uIbZOMJs3pG3+Y8KG9wtv9EhzZyrQW0tMQiVWYRDQt3g7ndIZ+/xvrZAZ/73A4bT+8wti+RD1/EQ4kHJX8Ow6B/gUvZc1TJDbRolLpE3dTM5F2UPWAgL1CqmvEiJ5M5Pa1IpB91x9A4H1O7HNl+PNmgySosSLcEfPe4zuANdUUkRKv4poaCNa0zzXXeg1tqEx1lqevYl1ar6fYsE67z4dD6WNOAY3vDr7SAEVTCmCt+HHSXM5tDQFsunelxeeMpJHZaEWwIi9B43jZe5gNaVzsDLs/fXeW3/V26/8pxRA5/2pPn7l6i8+1Dw8w+RCXsnteDYBe03XLiYvl84j0sUxEf1q5O8kM4Pk7y7VQUEKB7zVh7YlmhP6YHh0kl/majNvTBp/CbXf7GX/15RMHZjVXee+cd1jZynn9qg6efW+fVz7xBmudkeQ+UXr5NY1CHv8Sd92/y0z/2O/ipnXVkZxf3xHluj3+SkR4gzgYl14FT7ZpqcSkZX2u666hbRqB4KzBaRR5anlp5jnP7Z6iqHaw4klGOPTxgkI2YDB0bG4aNZoVvu13mjUGM4afMKitnnuLS5dfIdB8nQiM+FDGVHot5yR17jfPDJ4m1cB2Rvz3et5LcUaT3ceURTEccfbthOn3A6sWKtf5LDLKXcNGkd5zo+Ypcf4qBHtMf3KWxNU2yyrQocfaIsvomarpGTsHaIGVhIHN5p+jP8T7lizF59SnqosccRq1CE549QADlsOZxAFppARgxnREb3kfraHNtDPtSDw7RCe3U0FHluo7oD8MAvg+rAbv2AQYJJvdxnFh6jgk8roq45zw/olAYUa2GnOBolwunW6/g4bKMWPgo+ZAdH2LBP/R03Vv9sDbF6IGHHKZZKrUOcKI4Vnn/5Lk7XNOjZTkJunB87Lii/PO2Zgm+x7TygM4RD2xYGsS542nGP0jyUz95kdXJKk1jGUyGbJ7boD8YBb3K0QRtPzqT4uN/8Wd+hKdeuMCP319n/cav44aG327u87Wf/Gn2enlLLUjs59brkTGka2mpxvoK8c25doLsDhkFvLbyw7x3+CZNWlDNt8mGZxGEgRvw8oWXmSSbfBb40s2v8ePDi1xINnEXfV0I5yzKCdgEY3wu1uW1Z/gf3/rLfP75PmeyMx4rXNRSl5XG0oFQZzvYpuGoOqJXPcWl55/kq7/6dZpsRj99mW7N0ejrD8OY6Iqq6+dRi1UGq3fRakZlS7AFVVWQ3d2nHqQcLSryLCNTQ99JI7vA0pxfyok4aYkVgWOPDg611qnmQjPDBIgH25A1sAT5VnloTRWi4zlWmF5SDWE/iS8r0g3uhNPug/LY1kjrmqjt82jjxhTWhTTgh+BS7JyRkvArGTgUFo312m1E3/YCH0ci8MiHfuJ+xygS6dwCtK8hLu2uWGrskQ74qEnAdT50ryNLXlqJf5U6/P1RZxRxH7h+d4HLpUPRtf3F18QN0RlKjp1DKdDa/xtb6yvudTLTrOejf9DkM1/4As+88iIvfOoVLj/9JNlg6EEjaqrWtR86Gr0ozeDiFa5f/xY2FeT8U6jtLS793T+P1yiitggehkwLRjEYLA50G62YoEB4IA7bnG1DKJ8YPs3hYo/7izeRbIVEjxCl6OcDmsSxZ3Z5cvwS/8snfzcXe+eQ888hVmGtr9lrMdhyzvxojjhBi+aVs6/yF7/6c9wttgLGLTU7gLSX0+QLjsopR9MtshIupM8wHk9IewvOrm4g5CE9PGqXge8PdXi9U0MhGKpynfnecyjG5OmAYQIDfYn+yqdx7g329h2JzUjzsT/uGKXm1a5lH+5QZsFqJnwnPtPA/7bLxsfY5i4YhmV9bBvJ4CfIpScnhkX6KjISLWCW7VpeN1zTJbiPgFV5HIsKvnlogzUaBrsKTjE5vsiH4NcIa6GujWIIOSaRBgjnaRdI5INa5EfBbgSWh+33sGewLO/4Yc/nYWcLzGe3H3yH8tClgB5yza4J2GaRfWi7lhNZnAxN0LW7nC6AsRbnVOf8+PAxfB0IZzuA6zzgOif8yKUfRHfaqZzK918ei6b7cCB3y0HOEiQeutDjid+kA2K/2VeejQtYwnHt9buHpIefQH4DJ2/jDk+0NZ7vpLZ8cr+uFaM+WgU/lVM5lY48puQIPLcduckImBLJ53bPtpKVBM7F/7M0863zgcYdNpNPdpR3r/3BCUBJh611D9vjO7nU8r5d96TdFgSOqhuVdnK739A5bdT6RTrBtmGfY5xu+DkE0x9vB+11zW/uefBUTuU3lTwmR1rItorOGAcqiTXGuotcdCmSZSZJ1IQ9BkjHhdSBa/e90B69fPwSkEuy/sPgdMn7LHf/TpTzblseSTS0ji1/PZGHGy3RSoiOjciaRJpHqWU6b/cSSsmHWiHeYvHt7DJgp3Iqp/LR8ljoBZ0sh2KXe2zTCt0StJwLoUldDUoIGVSBi3Q/mMO6y5U+xqt8xHY5NjlZ62svdBVn+yGNPPbOws7dc7ng6HlU9s2pnMqpHJfHoummiVA30Kp5x4KLl9ps2GP5PWplLS/xwXN/t9rtb3Q5n+9E2sgBHuJUC1r9xwXjj+SwY+jXsSDt4/eyjP46TldEz3mXEvGMQ6CBwn1YG2N9pS3LGalk6wT9gzknnsqpfCLyWEA3AeqQWROVWkc3jMnvF3NNvERQPgnHXXHETBB56PaPlpM888c44jv8/YS4ExPLd3LtD+woH9gk+NjeZUHAD2lX5A9kyenGhQm7lZMQH6BjjQfeGDHSUhR2SRF5S0R8UZhTb9qpnMrHkse+GrBSIVhJunrWyZIT0Mb64Y7xk7GMYhtm1rrZf6PDXIhm8keD33cJuHwQcL97WZ6xWyzoo0mG43zzsn7xB8lxEWmdZxKCe0URAnK7/ALHwvhO5VRO5aPlsYKuAMdLWR4vnh1dZDFvuptdfUw6uOAx4jhF8dBjPk77voODliFTJ0z3h/y1dAg+BAodnSfwG5eYkXMMcD/ESFhWQFru2B7/YefvnC4mQXjw9YS7dXEi7V74VE7lVD5KHhvo+tVsxSeZh+SIGNLpaQRvFutY+cN10hc+ZAx3Afd70MLO39/dObuxDCcD2o6tiBG3CydWd/iNiBDX9DoZefBREvxfxHqrPmcoTCouTIOhocuS2p3jY3ZWfJ8fVpTiVE7lVD4gj7fgjXN010NT0ZPuonbb0Ww7fK/7EI0tnB0Q79yJTMPHAOK28MsnxT0KbQaic7FFYdNvYCL5oIMtOi0//PrLg5eacru5G6rWff7tRBfiF+xS4491WM0pn3sqp/Kx5bGCriNqt4FHhePFJdoaj7SDuwsmx+L6owLcxZoIHt+ToN0Pd1pBaNuJveTY3w+D9G4hHzq36jpHPEK6M5B88AG04XiPoAk+TE5GVMQmftR6Z6K8mh7DzJz78JCzUzmVU/mgPBbQ1ccW+FtCjCOUtHOgHa3ueXKQd1eRiGtKxfoXjlB6tgW5CIWPhrCOsvYQeTTgPmwv+ZC/P64cr5n08KZFCyDWp+ropcc53Xbi+c7a0PLBrWFyfLkh6ex3kohuNePvxXx3KqfyW0geS8GbUzmVUzmVU3m4PLbSjqdyKqdyKqfyQTkF3VM5lVM5le+jnILuqZzKqZzK91FOQfdUTuVUTuX7KKegeyqnciq/6UREnhIRJyKPfR3H77ecgu6pnMqpnMr3UU5B91RO5QdA/qeo8f1WlVPQPZVT+QRFRH5IRH5NRI5E5L8RkT8nIv+WiPy0iNwSkX9VRO4B/4mIKBH5P4rIeyKyIyL/tYisd871IyLySyKyLyJfE5Gf7mz7eRH5N0Xk74Zr/TUROfMRbYsm/h8RkZsisici/5yIfE5Evh6u8x909n9WRP5maNu2iPxZEVntbL8mIv9KOHYmIv+xiJwTkb8c2vTXRWTtRDP+KRG5IyJ3ReRf7pzr8yLyy6ENd0XkPxCR7Df8Ir6Pcgq6p3Iqn5AEkPjzwJ8B1oH/L/D7O7ucD78/CfyvgT8K/D7gtwEXgT3g/x3OdQn4H4F/KxzzLwP/rYhsds73vwD+CHAWyMI+H0e+ADwP/EHg/wH8n4CfAV4F/uci8tviLQF/IrTtZeAK8MdOnOsfBv4+4AXg9wB/GfjXgE08Hv1vT+z/28O1fxfwr4rIz4TfDfC/A84APwr8TuBf+Jj388nKckmW08/p5/Tz/fwAPwXcJmSGht9+EQ+cPw1UQK+z7S3gd3a+XwBqfDr/vwr85yfO/1eBPxT+/nngX+9s+xeAv/IR7XsKn/x9qfPbDvAHO9//W+Bf+pDjfx/wa53v14B/4sSxf6rz/Y8Cf+HEtV/qbP93gf/4Q671LwF//pN+px/n8z9JTVdE/rCI/OIjtv9lEflD3882ncqpPEQuArddQI0gNzt/bznnis73J4E/H0zqfTwIG+Bc2PaPxm1h+0/ggTnKvc7fc2D0Mdt5v/P34iHfRwCBKvivROS2iBwC/wVeE/2Oz9WR7vO4jn9miMgLIvKXROReuNa//ZBr/aaU/0mC7keJc+5nnXP/6SfdjlP5LS93gUtyvLbnlc7fJwuj3AR+1jm32vn0nHO3w7b//MS2oXPu33nM99CVfzu0+XXn3AT4J/nua6l2n8cTwJ3w958CvgU8H671r30PrvV9kd+SoHsqp/KbRH4Zr6n+iyKSiMjvBT7/iP3/NPDHReRJABHZDMeA1yp/j4j8bhHRItILzrjLj/UOjssYmAIHgWP+V74H5/w/i8hARF7F89F/rnOtQ2AqIi8B//z34FrfF/mBB10RuSIi/52IbAWvadeb+u8Fj+tVEfnZzu8/LyL/TPj7DweP7p8MZtn7IvJj4febIvKgS0WIyJ8RkT8tIj8XPK6/EAdB2P7vh+MOReQrIvKTnW1/LHic/7Nw7DdF5IfDtj8oItPOpxSRnw/b8nAvN0Tkfrh+v3Pef0hEvhra/0si8sZjetyn8j0U51wF/AHgnwb28ZrhXwLKDznk3wf+B+CvicgR8EW8kwvn3E3g9+I1vi285vuv8P0d4/9X4IeAA7xT77/7HpzzF4B3gb8B/HvOub8Wfv+X8Y7BI+A/YgnGv/nlkyaVv5sPvrTu14A/CQyBHp7H+sN4B8M/G/b55/FmSSxl+fPAPxP+/sNAg59FNd6JcQPvFc7xXtMjYBT2/zPh+0+F7f8+8IudNv2TwAbeufG/x/NovbDtjwEF8A+Ea/0J4IsPua8Jnq/734TvfxI/2NbxM/xfBP5E2PYZ4AF+8GngD+EdFvkn/X5OP7+hPv0l4I980u04/TzGd/xJN+C7arwPFdkCkhO//2Hg3c73AZ5rOh++nwTddzr7vh72Pdf5bQf4dPj7zwD/VWfbCG8iXvmQNu4Bnwp//zHgr3e2vQIsTuyv8NrOnwrfBZgBz56476vh7z8F/JsnzvFt4Ld90u/n9POx+vBvw4eGJWHCXAAXPul2nX4e3+cHPcvlCnDdOdc8ZFvrqXXOzYOv4sO8tSc9qDjnHuVVbT2qzrmpiOzivao3QwD3Px2+O7zW2vWqnvQg90Qk6dzDH8drszFecRM/aXyl428R4gIa3mv9h0Tkj3bOm4Xrn8pvfnkR+K/xltr7wD/inLv7/bq4iPwTwP/nIZuuO+de/X6147eS/KCD7k3giROg9f2Q1qMqIiO82X8n8Lf/B3yg9jedc1ZE9viYXlUR+ceAfxz4nHOuDj9v40H/Vee91CflJvDHnXN//Dd8N6fyiYlz7j8E/sNP8Pp/Fvizn9T1fyvKD7oj7e/hw27+HREZBo/tj38frvsPiMhPhIyifxPPy97Ea6gNgfIQkX8Dr+l+pIjIZ4D/F/D7nHNb8XfnFy77j4A/KSJnw76XROR3h13+I+CfE5EviJehiPyDIjL+Ht3rqZzKqXwP5Qda03XOGRH5PcD/E+/8csB/CfzqY770fwn8X/Dc6q/inWfgM4D+CvA2nof9kxwP7n6U/F5gDfjFDo3wd5xzP4vPNvo3gC+Kz5e/jedy/6pz7ssi8s8C/wE+XXKBz2r629/NDf5WkS/8gSddfN5yYoVNEYeIBtGI1ijRaJ2gVIJSqrO/IE5o13r2XK03bzp+E2sbwC5XxMZirMHPq/76J9sQF2XttKr9bq0lLmtqlYs/IthwnMNhEXFYZ7DOYsXgbIM4iwsf6wzWNv58Dr8C7AkRefhaivFXUX6BUpETi7bK8r6cOCygUKA0olKUSlGiO89T/LXCyZRS7Xk+cG33wQVl/ftSaEnQotF6+WnfM+Jb4QRx4FDtPTvnty2/OxwG77axyxXMO8vJisQ1vv1//82f/NojLdvThSm/QxGRPwPccs796590W07lu5fP//4nXBfoIkBIHPQRcFWCUh4clEqOAaQgCOo4CETg8uvaYwPA4Tzo+n0NxjY4Inh+EPjbNuHbExaB5hi4S1xzG3AWxLCEwyVoWGdDOwy4BusMzhmstVhb+++mhdETbXg0TgS8ROI9yLJt8XRxVXAQ0AF0pTuJxY+LJzr+nDtNOolb/rsgKgEELQmJSkiSpAVcpQKoE4HVN1MCyDoXt6vlSubOhUkxAm73usvJsgVdcfw3//dHg+4PtKZ7Kqfy3YrXZDpgEUSUQpRGKY1I/Fe1Kp0LA9drduG/ruaLeCAIY1RZP6idU1hnwfkzSPg7toHOGYjnPgY8QZ08BrrL76JCG7G4oDDaACgKrwU7BCeCOIVxgmfEFBjjAdz5ti/vx+FCIM3yET0EhMNNOJYKYYSpgIkIDhUtAwtOEawAi1dq40TmOlfxB8f7edg7XLbTeG037N8+z1aLlmXDjh3fBXbbtgLC/OlcmHi6b0r5a2KXZs3HkFPQPZXf0uKI2mO0j0HpBNFB+0K1gCtKgUo8YAXgAnAiHkgiODoCQEgLCAqFcxI0TUGcAwtKaZzjmOYWTfIlSBzXwJcgy1KjhKDRtlMITuK1dWANIvCDjSDaAqkLgGza6y2Bd4l0y2b6K0YQPA6IbnlIB3yXImGi8Q/KA67CWodSLgC/O36CJZHRtu/D3+lxOfnsXJcKIj5D1zl9Z7IJ/6mWNjl+XeeiVr68r4+SU9D9DsU594c/6TacyvdSIhHpQVVpr9USzV2kY/Yqr+GKCodFU5UWiDkGUg4VwUsFw9opBA80DhAb2hB0wi4HGtvXBQyllppud4C7YOr63yJQRdoi+MudtMiowtZoySsBKzbwwG4JJscgbMlzPlTjDP9rWy7L3/wtdjXHuM231wVN0jmLtUFZj9fsaPRxImjphBYkuxroB+mIePyJH9rj3MnDI1sjnoPwz6k7+YTf5eR9PpJZAE5B91R+i0vkGT2Tp1CSIJKgukDX8RKJ8gNdyZJSkIAQTgig7M8GRPYwgIxDnEPjEGsxIogJwOsiZ+ilq+l6wBc/KYiE63haQgUgsPFqgTdehnFboioWuUojDrGhxGALPBonSdDUDRaDw3aY4aUcB68I7p1fOsDb/S1aBjjBRZqmA7r+b99e57ymHkiclm6ArgbugtYa2xGf9hLcvVL7QeongqOnPqQDtO74zcazdZRYfy7bsSQCHXJMS/5wOQXdU/ktLSp4sZWo4NAJnwiyErSpqNIEj3qXx22/Rw14aW968JUlEEWQEWsRqbEC1qrgZDMdrS567f15lRJQKmiJ4drKg3jcj5Z39U49D1XRpFbelHeeCkF5qkPR4JzyHwJ1IirQIZ6u8K44e1yZDPIwrber8baGuyiUC+qrqDhDLcGvQzP4HwRnVcBSOQH6D3uTHzTrW3vjJGfePqvl5NaCf4u/rkNOW6JB4mkl297cMUUbEDk+AT1MHgm6f/pP/98cTqjqit29Ax5sbbN7sIPKFa88/xzPP/kMm5MVEkkxdcP+/j7vXrvGV9/6Nu9cvcnh4ZyyMtTGYIzBOYdpGwc6hIkkSqG1hLlZUCItqb40txQOhXEOYxtsY2iMxVmLtc7/Hh6UDU6K+F4JPJYLToSWyfN9L2gROlA7LjI9uGBSDgcjXnrtddZXVvhtP/FTHMzm9IdDXGNI0xSH5dzGGeZFidiGrZ1tHmxtc/fuXW7fvs6bb71FVVdYpSHVuCTBKId14KzF2WC+OAfW4BqLa2pcYzHOayW+f7qWO9TRdA0zvriutuNnXhs7hniNILp/EBW0Lj/GbeC0vCbk/NOJ3g+xCNrP6s4FXpKwf/ukgr4j8Wii7ays8ud3y72IfdRBvX/vo1WDxygebHWgFRK0JEGzVaCkozd5WkFFMERaj3s35GkZ+rT810trTyPOYa3BiNCIQwzY1tHmKYEIll67DeFO6vij8l5+GwAivIH2nUfgD+qeRKIhaMYSjnGeR7XWIqKDhtkQ35Zz/q2q8O5sSzssxbkOlx1aH/3/oaHtNhGFjU819HkfTuafk7UWUbH/AE5j8PezfBfHrh4vQmuzOBU0UyFGJTgXjg7acwcniZxu3OLiVKE653ax3y75X5FWb4YQnvdda7q2rjFAVVU4Z9GJpjcYsn5mhYsXLnL5wkXOrq7RT/tgLdPpISvjEeNhn+FwwLffuc7WzgGqaqhFBeA1WOvfgLHeS2itQ1tBiyAKEvFOh/i31gqtElASZkSFTSx1U2MaizEW7Tx42fjiw+xmCD5GcRinWmCSqBW0pqWQpAl5r4dzjs2zZzl7/iKT8YSzZ8/zmU99ms3NCyRp5kFHFDrV2Loh04rZfAqS4pzlXNrn4sXLfO6zX2Br6z7feu9t3nv3HW7eu83+bEqjhMY5FmVBU9cg0aiSMAmEbyo8s7Z/+cHjx5NqBybOd5ClP6CFzrYzxuNU1MSCaRfGeAuICu2PlyVAS3BFu9D3JHYv6T7Hdli2s7+gQQsqDFQXgT0QaPZj8F+PXZRCOhpuBFGUwoVnKuJNYwneFA+4EsLHNDqEPCmdLKkA8U64YHgi2BDN4D9itdeanAl90rZOrmg+exDX7Tkhasq0f0cut+t48potftKlAwxEQFRhkFgs2k+sohCx4Tq61bjb6bQ9vzkW2fBhIacmaPd+H9r7ifcoCE55ULTRsRg10EA1SMtP+7vo/tON3FhGVkjLtXZrHSzlUf3NK3iuvaZt+318biclkiF6eYaPg7mPBt26rvzLMw1ZmjEZTxhNVrh4cZMLZ86xsbbB+to6w7SHAKNRn16ekWUpWZozyHt86/3r3L2/zXxeUTUgRjBivSPBeZC0YjDWD1utBKcdWhQJCpSfZRMlaK2xeE3WWYsWqGjQSvnzWa8Z4vBslMN/x4fNKCdY5/Vd/5784Emic0Hg5Rdf5vkXX+bVV1/l4sUrgCLPM5RSHOxPOTqa+XaIIk0StIJpUTJbzGmMoWkM/V5O08CimNEfDvih1z/LKy++zv7BHov5jJtbd/jqt7/Jrfv3mBuvTVhnwvAM5Lzy5p1y3bnVcWyikKDFAsf7hCx/D9tUMNOU+MktHmKUfw8nHTrh8QTQ9Zui88U/yxBvGnqZ6rRuCfjxJCx/jUpZnDA+YRHR3sppQ8MSlNZBQQxhQl3vNyqArUJrHwOqVIgF7cTveu3UD0cXAC46trwB4blXZRPat+tc0MwCqHU5ZZZg7JMiokbcBab4bWn3umjRte/Wg7Qimu4O43QA3E40guhgMdkwufvzKae8xRhN9oe8wmiat9vdCXoABSgfMra0I1gqwAF8rQfQLv968nIRcE80YKl4tcC7jEJYvvuwu6UFXJHlvu3J2r56sgVuub0zrX2UPBJ0q7oGY0A0eZ6R9/v0ej0unjvP5voZJsMxw/6QvNfzJ0s1ScgwEVHoNKXX75H3c+7cfsDR0ZyqbjBGaIDGOs+WuCU9YPA0gou+CxNiD631WknoAKLwGrD1M7RSGmMFTAhAx78zbQWDReEBV4VnF0l2rTRZmrBxZpPnX3qJz332Czzz1LMY21DNFxxN55RV6SkL0SRpQl03NNYxGPRAFOV8zmw+p6lrtE7Z3TFUdcmwlzMcjTCmoaxqmrphPBjy6ede4olzF7l66wbv3LjKezeuczSdYp31L8R52sBnEIUOEn6PJp+TwNe5pTnkAmC7oJVKpFnC+9RASiARRIJO6p+LC5pJDJGJ3Uiwnt+LjiPlEOMwHVPNSdRKlh2ypR6iVhM0Jt/ZfavkY3TQxy1KkuBA8+ApKsGpEOcKHvgU7dOIEQ4+yyntAG+gAVrKIQALMV63nbKW4WRaoY3GucYDUVAYROhwm+7YOI7Opm5CxdKoX4pvrcKJa0+x1DajJhdNct92KzGLDWKCQguAUSGIWrIEiyY2rwtmXQByEYRluXMLomEQWocTizjlKb3Qr6MS0A1Ta/XvDtrHCaG9pkTtXxGTG5yzUfNgqYWE41UE5qXS0XXcLRNDPkxJCPy5e5g+/EF5JOiqNKVuKkQcSTogy/uMBmMmoxHjwZBe3iNJUkgTP5tKnz6w7gzGGox1OCWIVqSJ5vbdBxweTilLgzSCMwZrwRlDZKqdtVgHxgkaS4OA1C0YKFEh/MYPZK1ViPGLnVCwVgVT2xCsjfAyPJXhRLx2kqS88OLzvPziizz/7Iusrm1gGsf29jbOWeazOUXd0NQ1RdPgrKPX64EIxjakOiXPc+q6Zmdnh6axIBqHYzDoUxYl87JiNMi8yWQadg73QaCsKtb6Ez734mucWVnh1995h+n0iHK+CByrRUKEZQguQmHbmNC2Q8fZmtDZo3IQJ5aO1hOfgQhoQkRmOJ/tarhApCwQ5fn1YFbbMNKcP9gfKx3N2i67pgqNs1iUk+BJfni40SclPsssQes00AtJiwuRHGgfn1KgFZJolA4prDolCTG9/lxxYJ8oaxK03aglxmvrRGOdDtaZba0vpdRSS7POc6kPlQC4Ha61m9TgHT/LaXS5xYSdo+MnUERBw42evzhVeKeat2dakIsUhNiHKHidH6IjzC3jEFqjPU5A1qdudPtGG2UQDnAsYffhzyGCtAn7Ly3q6KiTwLl3IyC6QNtaDp345w/KyV/DdWWZVvEoeSTo9vI+GENdl4izaKVQWpHohFQnvrMlOqikDhJQeUJueozGYzbP1BSmoagqalODciSp5uBgTlVUSC3oxlA7aHC+Uzow+NlJrPJaWfC6Ghu0W6WDZiIolQbT3GNEkmTUgQc1ReF1AgeihPF4TJrl9AZD1tbW2Tizyeuvvs7F8xdJdIoxDaYqmM4XWGdZzOfsHxyyWCxAFDpJOEB5H0vQdpIkQ7RmsVhQNw1WvCZweHAAzjKarDAb9llf8ZOVVsLBdEbdOO9AVMKnnn2J5y8/wdfefou33n2Xo8NDrBN0miHirQ0lwtrqKsPRCNc4dna2ME0dhpF/4Z5Iow1lWRr7EUihDcmRkE1jw4DtalPxDyuoQFiJkwDWgeNVrh2bkScW5x001sVZv9VL2n4aKQaJE8InLL4PaUQSTzW0dIjuaDgOEQ+4OvH0g1aaRGt0kqB15v0RwfkW+flu6JR/JxqcQgUiXbRGrO/LThw60BFKL7l6Yy1WAp3wiMfVgtWxMS/+PgKV0Jr9AYSdRKANGq8nr4nRD8uzOAiuMRGLc8EdJ7adm6O4OCl3jw4hYr4deqmXy/LangBRrXUBISwv9LulSkCrPS955eWGJWjb4F+wwVlt/di0tnXgx3ts7zX6MVqNNzrel5ZOy7XFQ+L9Srz5j+7THw261rY52+IcTV1TNzWEeEM/RTfBDLJgHUop8jxnOBwwmQw4c2aNaTmlairAoZXm6HCKLoSyCtEKxnp6wFp/q2FmshacFpxrfJSC0ejEkaVez4qmhtaa8WSVl155nf5gwO07t7lz5y77+3tUpglKW8bm2Yu89tqrPHXlCqPhGCfam/7KUlUF06MZ88WiddLpNCMTYTqbMds9QJylrisGwzH9wZDREBKV46ylqWoWZcW8mAZut0djLVVZsFgsWBn2WV0ZszIakmU51hgSJTTG0s+HfOrFV1kbj3nv1m12draZHR6BTfnhH/4cr7zwEi88+zyzwyN++ct/j1/7+q+yff8OPhwkONG6nSZaUbFThgBvZwkODAfOIc77kqO7Liij/s06h7ESuD4XdCGLEsFq5SmF0NGWOO8QGxw57VDpmHVR83KC/k2g8S6jYyJnGwAg8rl4B5rSylMKavkRnYBOvAYckitsOGnrPFrOYLhAb0UHqFIKF7jhiJa+PQEUIx0WJ7KuyXtsOo2T2lKH7IqKka6tPyNOiJGJ18t3LKFLHQOP5d+xOI//O2rzS7DxloGPgjEBiPwEFhJLYvxyS20Ep2N4D8f5/ghyS8h9+B12dOcI0iHyhraoj239I9adiK5oI2ri+Inarg3PjSXYRnuhbYQsMVgiOD9aHgm6iVYkaUpmBz5yQMCYmvl8RlEW1HVFXlfoEHrinANjfUiXOFwiZHlKf9RjsjpidT6mqBZYa1DaoY80UpToskHX3gnVWEGsifjtX55xGOvQ1qG0IyVBK4cSP6y10jzxzHP89E//Tp568mmeeeY5EMXVa1d5//33uX79OoeHh5w7f44nLl1kZWUdnKUsaw6OZowGfaqqYH405fDwwHPIKAwedGka5osFs/kM09RoEVYmq1jT4KznpLVWWNswmx5QmxqdZp7KsIaqLElEmInnp1Ot0VjSJMWYGgHSLCfP+1z89HmefWqfd66/z727d/i9P/t7+Mxnfoi//bf+On/jr/0VMp3y6gsv4hT8yi8t2D/Y95zssSHo2n5jcWFwhB+cp3BEgbgl39ftfgItP+U7rELHLWFgJPFvG42y0AIbuq94LXrZO30wuQrDsm3jJy6Bg20HUxd8XeBwpQO4nq+V4Chbpgdrlg4n/ITWHYROBRCIwApaFE4SnPL8qgvH+ffk2oEe93fKtA7PMB2097DULrupuf6Xpb62/M07xJynhtqIlTjpBl1dTvCUAUCX6cZeuqnCDoK/IbSv5aZU24ZWuw4fFZ9bvH70H8R7j+d1IVZDheiOeNVW443/hu3OpzUbp3wmoDWer3e2fVahQUQesjO9tO/qAx116Q2mc1P+fx9KAy3lkaBrGl9HO0lSkjQhSTQ4YTqdsre/y6TfI001vdx7YK3xMbNl3bAoC8q6osGitJDnKcNhj/FkQG1rnAKdarJFSjGvKGYVZV2jm4am8XSD9eoSzjkaBwZLErTixjQoEtI85eLlJ/jtP/XTfPmXv8h//9/9eT7/uS/w0z/9M6yvbXLlp55kcXjEjZvXqW3DfLbgzt17lGWJKGHQHzCfz7h3/wFlWTGbz0h0wmA4QquE+WzO/t4O89mCsqwBzwsVZcFADdFa44I2O5sdBQ5cIdbSBG05SRxlVYI4Bv0+Kk1Jsx44R1lZqqKCqqaXZcymU1b6A37ohZfpf+azvPbK6wx7PX7Xz/z9TCar/Nn/4s/wzTd/nc985rNcunKF6XxGU9WYNpB9qXUsg8It0YPsrEOJD9FzEqJH3HIwxs7tldhwjLE4UahI94XRESMoDBHAXRvyFE3IGB4UNW06Bps7QXt+EhI1LUSFmGcVEiNouVWlfaUxUb5soNdqdYihVSE2t0tN0FodrhN2JCHLChupCAdag0uQYEnibPBPgAfQwKnjWodTrJAVUtmW4zx6Q+O9dQjSrid/qYEvQ9NE4sQcwsdavjYw/kFzj0kWy5jUJQA5CXHjYWKWljKIjtjugw/f28peYdqQ4/u0gBceo7e+HDoWx2n3d51/4zNRwU8X/Dwq6LeOjpXloinYTpTxd/+8TgB5DGftHv8dOikeCbpFMfM1RJOEPMtIVEJjGqazKQ92NONBj7yXkeghIg5TW6qmoagr5ouFN8kXc8rax/kmmdAfJQxthhNLliuKRcYsr5gnJfNZQVmWVCIglqYxWCFoTC6Er1msNJgGKoQLZ5/g9dc/zV/9C3+B965dwwjMDg8oy5JPfeZHGA4HJFpxNJ1zcHSEcz4+drFYMBoNSdOMYj4nzTKO5nM8DztCnGZeFuzv7zNfLJiXBVVdkSihlyY4C4PhAGMt5Xzuw7Cc5+UW5cJz0kojOJJkhaw3RAvsbG0xGY9YmUzoDwaM19aYLwqqqmA2m5ImGZaafpby3BNPo5xjf2eX/Z0dXNWwNlnh+rX3+ZUv/iIvvvIaiyee4Oq1q9iqWWqZLeRF7cPHgMaoBQ+mUQuKjpLODO38sdZ6Z4sJIKQJg0lJ0NK8NhLD9ax1WAsmODBjB/eGkG3BWrvAENpPHnV9NTHVgmkcQDELLIaE+ZCyEL0QjlkmQ4TfOnVoXeR1AlC0ScEuuOZcoDBCfK9z/hmKhQ+WUfTXlVCN1ln3AQ1smRl2Qts6gQdx4pWOiRPvS8LkGvvQkiroWEp4MF2eOPQzkZZiiZZDJBsifxwu1mn3Uov3m9yxbd02H7+P4KcRu4w5Xu7Z+ddPFtY2WBGU9W20EJ5zfNftkznGD3/wIfp95MQ9tDPCxzTdHgm6TVMhosm0Ikk0qfIa7bQs2drfZWNlzNrKhGEvRymom4aybrzGWMzZn02ZzmfMFzOKeoGhQmeOfJjgVEaWa/K8IU0yUklIRDETQakKH1QmNLbBmRCdEGbqxlhEDIPhgBeef5G//bf+Flev3yBNErIs5WhR8JWv/ipJ1ufihUsoEXZ2d5mWJSKCMYYLF87Ry3Nm8zmuMWAdw8EABgOsg6OjKUVZUVQ1tW3IEo2rNcZUNI1GAXmSkPX6zGdT6rLGGsNsdkhdVZRNTZ73AEWSZqytb5ClCeNJQrGYc3A0A6Wo6po0y0mzjIEbcTSbs5iWDPKUd99/n36vz+HhAQeH+9y/e48kzVhZW6duGrYePOCJC5fY399nZ3ur5WU/wBeEH10HFKxEMI7a7dJA9NgdgvUDYeU91J6DTMAnDsQygTiMBWMdjTXL8zkVjlvajuJcuPaxxn1iEkEC1eF1g4bbcrcSKQU/2cSMtZZeCE6iNnU3TmkSQk0F2iyU1myPP8VBrPD+LofCT2Cw9LL7wt8qJKS6loWI5jhw7P16cXSdRTHhwLpYTBwiN7zU+D23azFtn/D3RohgoLVyvAXuvJUQ4py16CX4wzLUsIuaHSqhjWYRIZi1tOE3Yedu5mO3c8d+Gs99PIxsqaH6TLoGY/37Q1SIuDl+DJ3rtBNBS2LEz/E2LK/x8eWRoDsYjKjqAuO8Wa210Bhvci6KinmxoClLTF0jSYKxlqbxMamzRcF0MWM6nzErZhTVgsY0OHEkqWWoU0yakKYpiaQoq9uXqxYaXImVGhpBxGAan8Hmc8AViSieeuo57t26yZ179xkNB/T7fbLegN5oxGAwYmdvm9XxhCRLvXbnHE1tOHd+k36es394iFKa+WxBYwwiikQrivkM01Q4Z6ibiulsymK2oCoWPiFCJ/R6vRCOYhARjmZH1E1D1dQsygV1XdMYi04y5vMZDx7c54lLl0jSjM2VFRazGUcHh+g0RfSCwaBP3u+DCDrR1IuCt771FmuTMQfTIw72D1hZ2eDCxacYTNZoqpJMJ6yurrCxvsn86AhjDE3TEKNALLTJRce6hbilJiJ+8PsMIm+eqsAnui4t4MAq2x4XBy3OtVFHzkUHkN/DycnO2f7lB+N31lcfixx3oAUHl4RqYzpBadXus6QRYlHsEPEQIgTiOY757iWa9N37X2aedQdx+54ireN3DRastJp0jDI4HoX9wb8/qC/7XZSL2WrHtTOJE0LnGBeLezs/MXTjuGM7USqArQ7xxcvz+vgj74JtcTdSLuLwSRmdpyAxerxtcWjIia/BERz7aFfjbJ+1xAA1vNUWtfFgmSzVjKDBSzxDJ5Qt3EUsUuCi+dZp2Eka56PkkaC7duYc8/mUopjjrMFan8artAYjWOsfvNcANIl486goPejOFyXzYsF8saCoCsqmoDEloiHLEkgUWlvEpjijiZ5wlfiXpwuhKGuaRlEjNMaEHHHFeDziwrlzvPXNbzAYDhmPxkxWVlld22BldZ180CfRKTuH+2ilKaoK62AyHmPrit29irNnz1IsSg72jxiOBvTSlHsP7mOahl6ecjA94Ohwj6ODfZ8BpxW9PGXc7zGeTBiNx4CQ6ITJeEKqFGVRYOoaaxqsqZlP93CuJk8Sdvd2yaczhsMh4/GIZDxmsZhTTmc0VYEVCVQKGGOZrK5RViWLecFzr7xBbzBiMZvxhLU0tmF6dIRWihdfhMODPQ72dtrUSocEb613pC3JBp8k4eMvQ6eSWHFqOdBj2T+v5YrXwhyoTu66Cu/LikMpUFahorMomKXScfLBcuB/ZyzY4xOJmhXRzBQkRCoofZxGUCHEz2lBkrCShHTBNmqeMfffo2gsVL6sl2U6YO+L3cTiMhDeSzRh3RJMCBHVAq2XH/fBgb4MgVpujyF8YWrxEyvLFFrfTgnx1AFQIwh1Jotjby5q+UqjCJMRUXuUTgRVDDrTwegJxdLFn8PFugWivPbtAikRbzQUZY/pvd46iCRaF/DC+wslLCVo4YTv1taIaIzSECgaCVTmBxVxb3PEqJ1oXURA72aofU813bW1M+T5gKPpPrYuqKrKO7BU6JRJ6jseCh1egLGOsqqYFyVFUbIoS+ZFQVEX1LamcXWItRUkVdhGkeUO21fY0O+yPCPLcrIiJZktWMzLMElJyEzTDAdDFvM5SdZj8/yE9dUzrK2vMRqOWV1b995kU3FwsMfezjZFXbO6ukZjDEfTKc8+9yy2Mezv79Pr5TRVw/W79zDOUC4KGlNz/95dyrKkl2UgiizRDPoDViZrZHmP4WBIY52nB9KM0XBM1huQ7WbMZrPw0nzlpOnsCBGwxrA6WaGfP8FkZZW816OqKvZ2tn1CiXPMZnM0gg6ZUVl/SDlfkGd9Lp4/T20alCjmiwXKNKysrnDzxvvU5YL5fOqrMzlLY+3SeRP0sXYsOq+3iAMbQsgkdGKH14aM8oM+draAvaFjtioYUQdKtIBVbZQCQdvwFEVHRxIh1m39pOW4ArXkbLtroC1pB4WLS/eIj689puW2nHAAMRy45rhiJEuNcklLLHnCmKV1XAc93t4IAG0tBzihOYd9bXfbMoyv1UU7x3Yb2HWAtdpkZ0b2fSFy4HHi0YEbj2AVtNdwIysbz3Lmic8zWZ3AYo/7977F1oN3sfUCIcS34xBM4HZDLPMH7v6kee8CFUP7rmKmptWeolQotFfJsdZ4rbutFNclDkIonvij2jjr1kpZAu/JN9J++2413f5gQJrmKK2ZHu0xmx5RVRUIpGmKDjnq1jka66iNoawr5mXBoihYFCWL+YJFWVA1NRYDSpFIijiFbSzOaRKlSRMhzzK0aBpryHsVWZGR5xmHyYzZbE5SiS+OkyRcuniRbDBivLLGZHWDlbUNViYjsixnPptxsLvDzt4u87IgSRLSLGc6mzIcDnnh+Rcoi4K9gyNGozFVVXDr9i3KomQ2PWA6mwJCnqW8+MKLXrNXQlPWlFVNv99nNBzQyzMk72EdNGVBURQ4N0YUbKwber0ejWvY3dmjriq0FmxtmM6OeLC9RVmVDEcTRqMJdmWN6fQQ5xxVUnH77h3qomA4HJDnPXb3dnCm4fKlK7z4yhusra2xIV4lXRQzfvTHfpKDwwOKYoFooa58THSs/uQ7T6cTBy0iVg9T7aAnaDvRfSJt3YblkPedS7fmmNeGtXI4JUtaLuwsxPC/eM3WEPzIDvrYxYXBFieVlkZYAi1qGa0gca20CDYBeCLgdDHBJyMcBwSIWlh4RtYGE1udAE0/cUY/RowM6Z5fYhUt4iKTy5vySvbyfQGBYvNwFhMa/HHuOFi4CEfBgdaeO4bV+Xv2gBusGpUwGJ9hdfNZzl15ncloFessTTHl9t2b1Fslrw2fYq8Svny/5LOf/l/xhTHsb93g6OAue/t32N67TrHY98lXmWY628E1C1SwyWwn0qHNFDzxMp0Lno2gWahAmbVxPDZSHbF85fGJ1YV/lyUdNSpaIcGq8SUnj4eXfZB2+HB5JOiKaLI8od8MaOqK+XxGY03gunztTWP8iqZiDHVVsyhKZgtvEi/mc+bzBUVTY5xFtCNRGiUJzmmaxs/AgkJpR5YlPmkAR17XZFlGP89J0oQ0U8xnBXVZkyYZg36fqqhY39hk88Jl+r0+ri7YeXCf966+x3Q6xQL9/oDaGESnOGMZjyZs7e6ilaLXy9nb2+XmzZscHR1RFwt0krB54RKf+dQbfO6Hf4hzZ8+jk5T5okBpxcHhIdv3t7h77y7FokQ5Qz9PcZlm45wvAHTmzAa9vMdwOEanCU1dsbe3x/vXbvDWm29y7f33uXX7DvNFyQXRDIdDVlYmNM6yv79Plmesrq5w986MBw/uUS4KsjynaRpuXL/K9vYWn//8jzFZW6dYFBjT8NSlJzh7/gIPtu4zXyxw1gRFNAKvCwATXy6Beojd0bUgGTOqun0oAnDEXiuOBmnB1XusXVQZWo99jK1UMfymPW30iH+yYvGB8zpMUMvqYctYUlEatI9giKUfVdBSVTCvgaWp7yKYmfAcIn3hB7jXltSJj+sAb+R8w2lb0F2mNsQdooYbrrA8JlghJ0MBIeBJyBq0D30F7gPfLJHv1jjxoVgKn42aD8/x7Mu/k2TladY2znE0L9lpStJhn1qV3N1+j+e3b7B4L+Xp517h3fkDfuHbb3L+yad5df1TvHj5R5nOpyRiGaaKSa/PuD9kZ36P9259hV/6pf+EptyLdtpx5aHTSk/RxIxLQbmQLRlmq/iUjA29XXtOvn0nEdSjFaI6foegnEiINF/6SY5B7yN62lIeXfCmqtEhzVfrlCTJyTOf16wQqqpmUZYUZUWSCvOyYL4omC/mTGdzZrM5ZRFiSBWgNZlO0ZLhrIALqr6Aw5JkmjTtoZQ/d56n1CYjyYU0F/Jeynxa4IyPpez3ckTnLKZTTDFnMTvi1u1b3Lxxg7zfZ2VllaauUImmqSvWL11BREiShH7e48GD+9y4dYODgwOyRHPuyhN89vOf44033iARxfbODjv332S8skLVOKqqZDQcMBwMeeONN6iNYbq/jyBkvZzhZAVxjrIoKOYFR3u3QBSj0ZBemvHqSy/w+isvc+36db74xV/m7p073L59E1PXnL9wgZXJhEVRsr+7g9IJo9GYfr/HztYDtrbuY6yjLn04XlEuePHlNxBgsVjQz1LWV9fRKgVbYBrfDWJGU7eTRr9D1JxscJZFcBZ8zVwbdpZO3YRWywqZbeKCUwyHE0Uirs3KipEK2kGEHotDI54Hth8cOt9vaYuhBJNZ6SXgilJ+rbR22fWwDHsHLOmkzLYaY2d5c8BbDa1N2iEzItVAGOTicwmcEyzG1+CwEVwdba3dlqoJv7kloPhXGMzkmD3mlldu63K0gA3LCdC017ItUPmTxnq3LkZt4LX+1Se+wNqTX+DrN3cpd27Cm29jkpxyfZOh1FTb26jrN1H3r3H71i3U177MfZewPd7kwY273N+8xEAaXnz2OYz0Obuyyni8jkszJv2MH3v9OaZH+3zlV/4zkPrD3yORkvDRDF4ZkPbG/UobMfNMgifRF8qKQNsy3iEVWlxMFybsE2KYo64dtRQe9u+Hy6NDxuqSpoG6brCmIUlSer0BxjRYC0ezOTv7B6SiyfM+87LgaOErbs3mM4qiomosTnl+Ms1TsiQDp2gaX1XI14U1vpaI1uR5ihaFThSpTbAk6BzSVJGlCUma0hSWJNWU5YKD6TYiil6eU5Ul9+7fo3GWLIRjNU3NOB9x/uIlxpOJB9wkZfvBfa6+f5WdvW2SLOPVV1/nx3/sx1ldGXOwt8/hwQGzw0MOj2bcvXOTre0tGmPo9TLOn7vI0889T38wpK4bhsMRd+/cJc1z3nrzG9y7cwvlYDTskWYZZ85e4Ny5i0xW10nThEvnzvIP//4/wN/78lf4la/8Ctdv3mQ2n7OxeY7hYECqFPsH+2g0e/s7rK6fYTqdsXXvLnXtTZ3r199nb3+HXq9PnvXo532KaoExlqL2adoK2qD0WHWsBcio7VgXACcAqItpugGRXUgjtc77b0UwEvqv8ynBODy1EAA2BtdHi2vp2AFl/QBpgfwTFmsbCPHIoqR1nCGCa8s1pr7WQoxDjdxlpBPoAqNpwa7lA8O12lAxF9ZIcwSnlY/xVeID+aPlEDOq3LHLuJCBGCqNOYKJ7DrcI+31l5XGlu/AumV7u1RI1JhtBF5iWZzIWQe+Ft/u5OxnOBi+yte/8S6umVPXFlfMyccj5js3STc2efDgPvmioe9A1xXbBzOK8SUm6xOS21cZfvtLLFLF3/xFiz3/LPr8K6w+8QwvbU547dIlNkzDFz77B7l946vc3fpKO2U5jttKXrMPqe7YoKF2gDE63xyALwHraPz9SEKMPZY22sKfK1bg9rZgtBz9hPtQzfZjKLuPXq5HFHU1Z7FYYI1BifNVxZyjrisOjwpff8HCaDDCOMt8sWAxm1PMC+ra4PApsnmW0M9zMpXTNIaaCsTXzZXEA4LSmiTxJgwacq1xokmymN7uOd2pqSjLgqZ0HO7v0dS1D7nqDXy2iihsbVADYTDss7p2hrObmwz7A1bGY959713uPdjiaHoIonj11Vf50S98nqP9HQ73dqnKktu3b7O9/YB7d+9w5/ZNyroEpUmTlJs3b/C1r32FldU1Ns5eJE8zDg4OuXnjXXr9AYdHUw72dhjkGRsb6xgDO1vbjEZDLj/5DJJcQDnL53/4h1Fa88Uv/jIPdnZZVBXra+tMJmPW1lYQcRTlgOnsiM3NTY4OD1ns75Ikil6/TzGbUs7mWOdYW91Ack3VVMSaqzYCaZzDQ5yXRdpaGq2J5JYaMFZa3i9u94H8fvRbGzu38+t8SayCEdb9ctbXGIgaUzCZvW4RLGNxiPsYPfQxi7UN9gRQRoBZhor5+iDdClWRkol1cpe86HKQtnLC8dLWd+1wqa2GGvZVQftqRFoQjAFM3gnGMQ33+BXiPj45py10Hj/CicgE1wGLTtvC1UR8HV3CJOGcQlaeY19f4PaNb5CmjuHlFVSTsbF5iZ5ojootziawdukZ9ncusPflmlo3LK48yeiVn0D/3V+k995XcMqRXn6B4XBCfbjPRvH3+JV7X+f2ky/yjZuXGfVzzmxexEyegQe/6rlk8JPRwzDPeY68fVJxrokaayhAIuKrGToDIqYN/1vCefRxhHrC7dMxCBZxepkJHB2u+Enpo+SRoKsVVM5R1wXW2OA4AERhnaEoaw7UglSnlJWnHabTKdPplKIqsK5Ba0WaiNdy0x5aEkzjSzSi/JI9VkCrDFRYKiUCcAaiffqpsYbGOIqioa78kj15lnN0eEBjLNiGVCcUixm1cayurpJoxWS8ypVLl+inCfP5nL3dfXZ2dphPj6irimeefoYv/PDnyftDnBPef/9dvv3mN7j2/rscHu5R1xXGOp/I0PhYv6PZEaPhCJWk7B28RVlXJFozn0+5ffuGD2vTmrpecHi4z/Xr11FJwmQ85uK1azzxzLM899zzTBrDk1eeZHtnl2+/9Rb37t1jsSiYzddI05SiMjjrmIzX2N/d4vy5syzmM5yx5InPoCvKCusso0GfM6vnfFex0QO8DBRrO6iN4fWhU3YoAz/+Qk9yti0pacWRyLIuQzDWgsYVOpsTlA2RnJ24yRgtpWRZAdZ35eXZPknxSz0ZtK1xrgGX4QIZEu/VO6r8UunLCOXj8azxqbZhZ8d0svhsXRvbHR1YbXQIHWAgPtOQaCCNd9y45XbvQFNYMYGLV76oiyQkSUKSDskGY3rZEOsgz3vUpqGY7VOUM+azXWwzb31/nsMP2YXh3fs7DXfSOmQFVEo5vsID0zBYqfnJl1dZUQ4lu7yTwKJe8OMbYy6OR6yunqdp1vjapQ16kzH63FneO4DpH/j9PPviM/Qs3H32dUpW2L53nfG7X+U8h2h7n+33v8ZWssnN2Uuc3b2GJlYd9FZGTM0JD8zjRksTnHAOtlNOt5Rly/KG1GuNUmnUafF6rm0tn/jc23RrF55LOwV/vP78aE3XLQt91GUBKgHRoWBNQtZTOEmZ1Y7aTMHUHB4dMp1PaZraawg6IUkVvbRHotLlGFchNEWHMB3tTSxxgsGnR2qtkcSHk6RNTppb0jxBp6kv0ZgMvBdZC0fzhV/+RxSIYf9gj838LKuTFayFsqpxjWNvf4ed/T2msykXz1/ghedfoCpL3nvnbR7cu8ebb36Nq++/w+7+AUVZ+dJ6+JeZZim9NMMkCdY45sUCYwx1U5PlPV+DwTTUVU1RlhhjsMYvT2QdZFnG7Xv3uPPgHsZYzp09y3iywhOXLrP14D5Xr+1z7fpVzi3mrK1t+HC0PMOYhtHKGlvbD8iyDJ0mlFURaB7jOeUsB9GkaRJCuxSmXWE2aKiRZ2Bp+kY2TGIHcq7TeaLTwk+MMdS8y15FLVFcyJgSQTtfkD7677wmqLBBA/F9QH5TaLrigtYe664uyYDlygXWBWI6FIiJfC4BKINz5Zj36+T4C1q/DenSrTnv4gCXMFF6g95FHtVBXDKsiaARXoKzDqUzxuMN1tevsLL5LE9feZGsN8GqjFFvSD7oc3V/zooT1oZ95k2FSEV18IBvvvdlrr39RXa2ryK2CpTDclWIeBMRVvxXhettcnMxI1854AuXeryRTdm+P+VoOmVdtugPc9Sg5sHRVaaLV7jF27zxyueoszGzpsfKuKY/3+Xyz/yDDFZGVMWc6XzBbDzmqH+F13fvoY722Ny4wNQYdoeH7N+70WXDu60K7zG07dhkvtweM/u8EzN2/SWNIOJwYnBG8KZ3E8A2vlJFjOpwnVEQ9eG2D3wMeTSna5pQaDkD8fVik1CFLssH9AcZhAD4RXlENTvi6PCQsixwGLROyTLt427THK0TbFWjnM9gsdqC2OCYkDBbK1QTy9GFyv4a0hRSbdE6w9qCg6ND8vURiU7A1hh8icbVlRXu3n+AS3xV/7quqJsGYwzbOzvcvnebsqqZjCasjMfsb9/nxrvfYj6fsr29xa07dziaTjlaLJgVBY11JKJJUkXZNCx0RSKaTGtU4geeVpr5fIFoTbkosLahaSxlU1M3xufUI1RNg3UOc/09qsWUJ594ivX1TdbPX2BlZcxw0Kepa+5tPaCqa0bjiU8IMYaimDMYTdjd2SZNEg7297CmIc96NNaQZZ4/nqysYOqGRbGIfoO2n7bjm2XqJ075ziYEjt0GbsxzVnGpcX9UPI6gzbq241pCTHAYAT60xrVcZTRyxUbNuy2j/YlKzFQEjpv7zk8KKpj1zoUkEJa0g5foCPOEtrPBKRfIFI/D1ltLraZrW9BdnoNj323nmfuQLI04hxGvzY5W1zh79mlefvFH6E2eoDBC1Si2xbB90LBiBdWvePedLS6hcZMe357XNLXlc+M+6eAS60+t8vqLP8OtO1/nl37xv2K2d9VznWEiCiwLCsG0YWTCYTamtAs27SrTIuOv7+/SzEvqBVAbLup17t+9zatPvsziwTWuXHmFa1ev0x+O+VqmaCYr6LMDtmQXe+NN0jvbTK5d57W9B7jKcMMaNvqrpEnGSM15Y9jnK0lCVQSIa7lZogkBsizE462GduMxaRXW46pFmMgcDuOtCrRPCBLnaQfnaQcP2tJOltIieHivH0PZfSTolmVJlqUkSYpOcoyZY43xOelZRm8wRLmEqq4oixmLomI2X9A0DUpBooU0FXpZTprmOOtoGteapQ6LUo5E4w06q9CNCjUEHLGikThFrDrvKwcJYpcxg0lYHLBpagTH2soKDo21UFvLymSFu7dvc/v+PYqyAmdxtqauCt57721m00Pm8zm7O7scHB0xLUqqxjIYTlBKefrCWXIlNNZgrKUSyKyQJLrtqHVZ+sIvxlHVBoswHIzJ84yyqnwIXVGAcxhzl6au2d3bYXV/l8nKBs4Y0lST9vq+JgSW0XCMcZ4uWJ2MWWycoZcmTKcHfjBYx2g4ZDQc4pRldWMVpyA5PPRrvyW+o5iw8gXiaUhjvUlljcWEgjVBnSUG3Sulce2y4KGTBUdb64wRCRCxNMoiwseZP/JcynmqIprT+mNqBo9TXBi0x8YwMXEheLLjFueOtXhpLbAM9+osXhkjGaxz3ilm/SrALtYYAEAvR71bTgBLhsaHkykLovtsXniRK89+njo5SzocsispO7sFWlJu1AW39hf8qLNcy+Dtos96bVmfJPzdpsQ1DS85zTu24eioICVhvrDUG6/yhZ/5F3nzF/9Tblz/EiCtdh2X55Gg5QqKhVmgco2a16idPknZI1caocClDfPZLsmgxzcP7nFu4yI3ncHWB9j9m3xzep+8l3FFRpiZYuvOfQ4SxbcP77Ha3+BOdcBk7Ty3pGS0MuHS+BzaQE80ZXwPrbkcvQTti+tow0ttNAKlF59w5Np76mQShuNirK81viKfBGvPc76dWg8xzleiA647cX64PBJ0Dw+nrK+vorUmy3qYuqZpKhSQJpo8zUBSP3ido6gqqrrB4UgShUpB596JlipNWVUYY30xDfFFa1TiKQZloTGdzh86rHOCtZ4/NC6WaYNe5hMnxqMR09kBifaB2mmacPbceQ6mC9LcZ4rduXubB1tbFGXB0cEBSaoYD/tMpwdM9/d48OABs9mMWVlS1oayrlFKMxqMmM1n9HoZg+EIU1fUZUFTez7Zrx8m6ASM9WFslbWUtackEuVXGnDWYhtDr59hGkPZGOx8gdt+QFFXHM1mnL/QoBKNmRsW80OSNGU6n2ONo9fLydM+i/kRLz77HLOjA5qqAAd5ljEer5D3emSTPlmvz3hDs372PBsrEzbPnqXXyzyeKu8Uck5oqpqiWDCbT5kfTVkUBdYE0xahLCsW0yOqxQJnDGVV+2XkjcUavxSTcc53oFBVyi8p7weCuKiVENYL8xxcEqzCD1Q2+4TEx7weH6zdASrSzdHv7BdHbedHFSMaWGKqc86vzhFqK/saALY9v2pN2GBFdNOdnFdMSDJWzr1KcuHTrAzP8dZRwZXRgNu3H5BkipdHm/z/7t3grsp5Y17zzsV13s4SNq3wQ+M+b+o587THp6XPWi/lel2x3u/xqdVV3trdZrdWPD++yLM/9I/y4P5V5sWDEHKlArXUIRtESGnoNxWGkltb97BFQZpoeqlg6orhMCFLFYPMIHYLffs+OY5MNJ/Z36fXOKxs8y0cJs3AWN44+wSaHvvVnLOSUyWKsZvjZkfsZxNmxV4bK76kFuKk3iVDOo/PHX+f7YQWaLP2IbfnXf4SNWbrTKAfgq9J1JJBiskuTnOyLY+SR4Luzt4evV5Gr597cj7LqE1F3dTkzvr1oMRTBNYYqtqbpkmGj6vNNVmWoBJf2atqaq8pOoOIQbSvMKa1oqlifKDxpoIK63EFlT8Wc6lrQ9M4DoopV84rLl66yI2bDYJD9RS9wZBLFy5zztQ8ODigl2rubj1gf3rI9GiKqSuSpMew12M2O6IoC8qqomwMjbU0zqKcYXXQ58LZM1TlgOt37pOnKVmaIiZjkPfJexl1XdHTCU4UlTHoNKEoFnA0wy4KemI5f+kpzvYVv371fRbTI7IkbSscVUXNgTpEgGJ2CCr1jjvT0JiG4XBC1TTk5OSpcOGJp+llKVcXC3p5jrOg04wLFy6itGZ1MuGlF1/iweEhVVFx5dIVnrx0iSeuXGa8ukqapUGp8svA1HXF9OiI6eE+RQDxuq6pK4N1lv2DHfZ3tpnu73N0dMT+0SFHhz4U0OJAW5JUobUiQTCNpSwryrLCWUeSp+SDIf3+gCRNSfPcrzGnEhpjWExnH9lBH7e0RWRa4A2OkmBVdZ1my4UdodWJWyqBeHQYwFGzDbG01mBt40HURl54mVQRNTdfcN5rTw5hZe0J+hc+y1cPYL5lKbcfsFnMuTpU7JiST/UG/AWleGeU80yVk10Y82A150d7K3yqMPwdVZMNV3lVctYayy/XczbzlGelx9v72xwMMy7XKYuqZLZxnh/6kX+UX/z5Pw2EGHqiRdlGFNO3FSpbJXVC3usztyVNPWdRg1EGMSl1OqQphKquMfM5PRSFbch1yoErGI3GFIfbXBqMybIJTgtaBrx27hl0MqTX61PVe4zSmvvv/hKmLsOz8uGLMRTMBvxtF7I8BrCu83dH25VgMRMLT8ZX0AFgFzXg4K4Lc6ztAG6w/cJxkSz7aH7hkaD7YHuH4SBnQ68hAloJOkkxdYkJPKkS5xeYNA3GWXSqSNOUNFfkfZ9RpkVTW78yhHM1IgZ0hdIOlYD3/TpsqBkQuRKvOdgQ8xyAommom4ZiUVEbQ5olrExWfJtwpKlGKYc1MB6O2Ts4ZH9/n8PDKUU586XdTMbu7jY4S1WW1MaXb0ySFJ3lFDPH5WHCmWabd/fn9BJIsz7i4NyFTdbXz6ATRTE9RJywKEqOpocMJys4EXbUXcp6m42e5Yq7SzNPSI3BaY2RhH4/A2vDMty+etrh0SG9gaczTNPglKIqC/r9Ic6KX6JeCU1dUZQL8nxAkmiSLOWFp5/i/u4+w+GEweoqhb1BPXDkwxGTlRXOnr3A+fNnGQyHy84YAHYxm1HXC4pigbGKxXxBVReIg7IuONzf5f69Oxzs7bO3v8/27h6HR1Mf6pMpBv3E00OBqqgrQ1GU6CxjfeMsGxubTFbWmayuszJZo9cfYi0UZcXR4f5HdtDHLSJLLvfhIUje7PfswiO0mBjJIYJzXqO1oUDTMadZyymeHJ5eG46OyTQdMjn3EpONF/nSdsOorrg/P6IpSqxu+PbGFX58cJE1Z3g3c/zu8SYXj+b8NTVltXBcqYfcODemZsGqLbl4oLhzXnO5P2a8KHAHFc25FWR7h4nJedOVXF6Z4J75LJe//Sr37v46S31PiMVsQOgVM5KxUCOsTtYZakViK7R1TKspkmjyRDHuTbDGF+evXU3dzFgZrFAWeyTW8NqllxglYyqXcHt+h83JJs/rAYfGMBhkNKbg/t13MLOtjmYa3hsRAJfEAMcMjw++Kx92p1ufAyEpZrmntJbP8irxXK4NOYvUkeostNlG7HyMyvyPBN3dvT3WJn3yPGHQ7/mkMqXROkEpsMZX7bGmxtkGUQ6VKtJMkfUSbxZnGThN7epwkxalDaIsaarRKdimCZ06cIbBLLU0JOKXUI/xdQphNBzy/NPPc/HiJe7duct4MGD/sGZlNAKlmRUF86LmcHpEVde+5KKpcQ6SNEUrRVUsUEowpvZ1eBNLfzTGkTAerDDLMiqTYPOc9VHO+uZZtFKsra+xMlmlaQx69QzWWXb3dukNRwxGvuCNmZdYKxxM97ld9Fg0sLJxAZ0oryGKUMynLOYzlAhNVVGWNVnfYeoG1xgqW5EkKdY0LIoZejhmZ98XHlKiGAzHiDOc3TzHt9+/ynB1jb39I5x2aBSFraiaCisCWkgzX0Son3nu0VpLYzJGgx6LoqAqSmpj2dwUmqbGYamKgsWZDVbXVtjf2WFn74Dx/QfsHexhnaHXTxn0UxLtNQJrDE3tQ2xW1s+xvnaOyXiV8eoaa+tnGQ0nJDr1E2dVUpSLj+ygj1siGPp1AE27UGc3ZtYXjvErMVsTLbyOORo4Q2nPZz2VEGN/4+KfLDWwZYy0z4jyyyLVGOfoDzexq8/z3jxhd/82ujS8bR2qMqyuDPj66hmeqxyDseFvrkKvSUnmFV86NyHrJQx1ydqe47adcjGtuZAJbjTm56a7pLszfofOubW6whfv3+d/NspZTBdMJgK7Uw6t4coTn+HenW96TVyWsBZrFiRKMUgyyv6Ag/0tLq2tkYnDlCXrK2MMlnlVYmxFP0lQxuCqiklvTD8ZMl5bIdc5Gs0gH5M4xQsrLzNI+8yKBedXV2hUxd379zjav4kHPRWmgODjIUbHxJC7wLs6HQBQwQlXbVsZrNVWI1UQ45i77K7/LGN0l5ozAadarVqM53aDL+Oj5JGgO50vODqa0ss11gzJkhQFZGlGkiR+XnAGa3wxmyRRGBKS1C/xk2Y9Ep1R136ByVhEwmERLejUp1iaxnhng3eVhtv3//kydz4GMklSJisrrK1kaKeYzWbk/T51WXA2P4tSCb1Bn0VVMV0csKg8BztfzKgWC5T24W4Gy7xsSEPGUb83AJ2xvr6JiGIxn5P2eozHK5zLcgb9QcjIy5iMx0xWV6nD8jooYTAY0RjjnY5pjxThfFkwPdwnTRK/YGHTMJtPwVrSvMeeVhhr0cq/8rKqSeZzX1gl1VBZjLHMywWr2YTFfIb0eijrY5CzNGfY73M4n3I4L0gHE85tDukNelzYPMvBfIakGlPXPNjaZl7U9LKcQZrhnGU06KHTlKIqUeKLO/f7PfqDDKUUdV1i+32q4ZC0l9Dv9cgHA3SWkE/6mLpmMEgZ9zPSxBuixjXYxjDojxivnGM4WmUwnDBZXWM8WqWX91EqwZiGuq7blSk+SYkTkI2ORWsxpgmmf9DtlPLxxjGcC+eB13Xy9DsUoXPLpb99+EK7aaktCzhnQowOwS8CWW+DbOMN3j7QpNbyoCh4bmWVw6bixcMFRwOH2xzzij7DNQ5p7BHPpxs8qRPuJnNW6pon5oY7Z3L+3GwLc7TPP75Y5Vq/4Jvl+5yREcqc5W/M3mIujpm9wi+qEnVvxrMqZTJIGF16hf7oHIv5lncQiUJUik7HrG5cYu3KG8x657m7d5tc3ebocI/VLCPVCWnjsw4nyYA0zwHQMmRl5SzOGnq9PlppFsWcJO9jezmjGsRaEqXonz3HUbnHO+/9HR7cfxvlSq9LHjMNutRPSI2ms8sHzYj2XccwxuPrui1rXnQp9e57g+48Kx0odm2CycfNsHwk6C6KkmKxoFikpKmjSVJSnZFkfdLguLLGYoyvaJUmmkRSksSRZj57Cwe2cSHzwydcOOWClqvb1DwTPOfSWd5ZBJ+D7nz8bZJm9HrCIJ8wHkxQkrC1s0vjYNjLGfYHLBrLdL4A51gsFkyPjljM5/7hKJ/dU1Y1WeIDoZvaoHXCUOekWrOyskY9mVA3DePRGOe8Jq6Ur3s6GI1Roki1wtYVxhqcaRj2eqjEL0m/tr6G3dtDmKAQEq2oqwKVKpSFqqkZDIaYpkY5n2aN1tSm8Rl1SY6rGhrjgelgf5/VtVWcc2xunidLFINej/2DPbb29rCSsLu/j9YpF8+fYWU8ZHM0oUHYvrvNtfdukiQZK5MVJNH0ezlZljAajejlPbRWnD27zvqZNfIsQcSRpgrneqj5jDFjr7kJ1MZgFTRNzSBPWB1mpFp8ndkQ59rrj+gP1xkNxvSHI0ajIfnAL7yZJBrTWOqq7KwF9slKzJyz1gUnYYOYUGvAKR/mppYeau2cr1bVyVqD5VBcpuqeCJdvzeEQWob4Qv0OrAg2P8Ptasydt6+jZwt2LGyMV/m1zPFSOsE+kfFgNeWHjxqONmdsbSSMKCjMEV8arPFzRzdIioJ/pL6AHF5jY36LQbFLZi+SpZY39q9yXq9SD6ak1T2eyFaZjRT7zS0+u/o835A5ryw048Lw4qt/Hzvzbaq6YTheY239MivrT2HTMXMn5KbmAfD+zn0u6R79poG6IktT0mC5q1JIkoxev49DaFJhVjWINIxGm+ikT1NVSJYyGowQJdy4+3XefvsXMPUMrWybwag6tIz/I8bMBjBsJ7fI6XZ49g7Qdv89RkHIiThb1/1juYwTJ5yuECN6lq60j5JHh4wVFWVVorQiSzMQR20qxKStmWSdwZiaRCk/s0mCTg1pmqIkwRjnY00xIAbRFpVAkiWkicYZaUHWgU8BxnlfmvJ3qETIsxysotEJicpI0pRyUWIaQ+2ExlSsrZ+n2j2iaRqm8xl1VVLVfmVepaxfDUAJZVGi+z1IhbTnV+3VOiXPMpSzDPM+ZWooyzmjwQhnDPOy4MqVJ9BKME3JoNcLCQkSCiILtakoKw+ojXVsbz9gMhxSlDWHB3tkWYYkCWVZUheV52tN7Z0USvklb4C6rujnPQ6P9llZWcMpYVEUjPojcKBF0+v1ufPOtziYLZiMJ15bbmr2DqbkeQ9rKw6PpjzY2cE4KKuG29rXrhj2B0xWJgzHI85tnuGZp5/g6ScvMRxmQMgSxFGUBShLkiiyPCPv9ekNBvTLBU2tGPQS+oOMLNU+TduKLwqTpvR6CXkvJc8zklSRpOLTubX4ZcclxTXVR3bQxy0tvRDCuYxpkDo4UoL1JSKIDjVjHRAWOeyWgASWTnUiF0ygEeIwDU66mIDQ8oOCa0bcnQ+oFhX27m1kbcKZJ1/kwnidu2nN5nCDN/UhRe8IJmcwVji4f5u1ZMCLdcKvpN9muPMtekWJdfs8kSg+e3CXenqI6D0WNGzODxgnuxwM77JRl5wdFkwXcy6bipHbQZsjbvXXyes5r7/weX77c69zsCjp6x57R955W5mKo7riG3t3uC815ZOXeO/ar3O0d8QkzRiohJVej0Q5+n2F0hmN9b6gRPnltEbZgCTJOawP2Zndxh015Pua3Z332N6+CtSdiAOWBd0j1xG0y7bil18alaUrrOsI7Wq28d1I+6p8AIq3SJbar+sc7+N0l3WOO9mI0fkZWuH8C//IPvdoTbcsaYxhMJqwtnEW52CxmFM3FVVVIHiNpzEGnaT0EKxY0H7pG2McdeUXmDTWBD5TkaoMrXNEklAw2KE9LPtOGir0K+1wSlC2weBNMC3Kr9XmIM8zXxgnzbBK2DlcsL23T1kWiNJkSY8kKbDW0BgPCMYaVJKi8x7OOV8oXDsmKyvkaY+6aSBNcdaQpSmzw0MG4wnPPHOFPM/JEsW5c5d8tak0YT4vyJIE4ywKD5i379yjl6e8+urrXLv6HnVdcObsOfb2drGNL1k5yPs0TYk1DXO9oGoaD3aNzymvar+q8Gw+Y319gzTP/dpiCkbjEdfu3ODm/QfUjS/hmKQpUy3osMBhlqUU5SI4Cn3MLdaB8e10xjDs99jY3GB1fR1jYb4oPYCmqXd82sZnvTUGJSqsCp2iE40x+AyqdjlrCTVmfS+vyrnPMkwUJGA1PktNaxpjl0sLMf7ITvo4pXVwhVVRjG2QJmi11rUFbsQ5EgdowWiFWG/e+m1hdYmgBcVwuG5Ug3PLQQy06pK1FuP63Jrl3NnfZu4sejiimIx4ulrwrtvnyX3HYn1IvQJnFvsMzD5vYtjdfY8FGVN7ns+qktWtfdzRHGX2mPd7JMWMxDqkZ5mXJUMnZNRs78/IRFDKcVjtsUKPe/MFZ3XObb3Lxc0LFMZwe3ZAL8mZuookSymVZV/BkTUc9B3nzk2YXX+bqtjn3qIBq2lSTTUrWBsMaGZTsrpiPFlDkfuoocEQg+PmvV/n5vUvU5X7y0p44vtUp5Kz12nEYF1ISXbxCeMHQ0jSkZhk7qCNxY30kNfqWrBtHW6tcuza88WlkJYrToTX5aR1nMWT2LgvJ6ijj5CPoBcqKutN6jMbZ9E6YTqfsbe35Qt6FwtqX0OQNOuhE0ttaoytsI1gnKMuGqraUhuDCctyKJ2iraZpNLYJ6xc53RZn8XUFdZi3/GxljCPPBmTSI0979PIe+9OC0Xjs1yFbFOzuH2KtIUkzil1fwFwpRVVWPhLC+SiLvN/3FaPEotOMQRp45UwYjidhsDmUdVx8+ikGwzFVWbI2GbO2vk6v12dne4u14TqJznG2YW9/j/F45ON5Ldy+fZuj6ZQLZy9w+84Nbl2/xnA0Ih8MEYvneulxcLhLmqSBM/Rp05kIi0VDL+/RGL+SxXgwYtTvM5tN+eb929zb3sI5Q6IVi2LO4WHia+iahsOjfaYLX1pT6TSkR/vwnqw3YDqfsdas0R/22dnZod/LGfZT1lfHaBHKqvIhe01DVTdUdYVzzldoGwzIZinUilxrdMzOd74ehzM+A68x1jtylU+mKJsSWRxiERpTeyrFOF45d+5jddTHJW1pRGfBGKDB+OkTrR3S0Wr9wAdL4ov/4BeRFAnFsiGM8Ji7Fa/RIXw7mpFPDxf25322b2+TOMvqeJV0kJNeeIZx03CVIy5deYYvjNbY236fo3KNc3bOXO+S7+7RLw1FtcN6rtkoCkon9BJNYy09nTDs+/T0JE0ZpjnzpiRNEnKl2JnOQgz1nEVl6I9X6CcJ8zxlf2g5JxUm6zEzDdO+o3HCwpU0YnlC9WB3B/XgFqacMRyuAMKiLEjyHOMcqfMZfHVdozKHEcO1W9/k3v23KKb3/HNT8XkFVjYGAbSaaZi8QuU6kfgMvWutLcrUZQZammEJyselQz1EDVY0ueozTiaM8h5FY7lw/kXu7LzHg6M7OJpQVU7aYk/dyy5jgD9aHu1IWxRM5yVWFP3BmOFwxGA0QZRjb2ebxXTqF1/UGWnS81lKtaYpG5qqoa4bqqLx8bXWUlGj07CgX1jwz1loSjC153M9tatprEMa5aMh9ABSQz031MrS66eUtSFLEha2wBlDU9cczqbM5zPmizmmqXHO+TA1AZWGYjrW0e/1GPR6NFVBniY+xripfBKI1pw5u0m/P/RrP2lFUZZcvnKFzc0z5FlOnvYQJ+T9Pju7u7im5syZTfI8x6GYrEFvvML9u7e4+v5VJiurDAYj5sUMU9cYY1Gu8QW0jfHlA7UvN2eNpapKkiz1lENVYoDSGBZVhTUVV2/dZjabkmQpg34flWQ404BtmE5nJFqhsSgc88Uci6B0SGFUmkRrjG3QmSbNUiaTMUopyrqh8eYGGK95aI3f3/i40ySs+JokKYlOSRLlQ8bEQe18PLYpkSRFpwl1XSPFAlvPMfh0WF+8yLBc/OeTFRccwiZE43g+N4QF6ZAg4JSf5CSNRqsv5u1nFu+MCeThw5053YEvrQOvanK2d0r2raHaPM+qsexcWuNidcS3nhxjBSb5gl88LPjm9V9lXQYc6bO81hdW5466bEgEmlqTikaUkPV7zMqSNOuBTilsRZ7nzBZznAipaBZFQaJSrIO6qRDr2D/axvZyju4s0E8k5O+/y6VLl1ibDJgoIVcp++URVw+OeOfuDd5+6xvYw4baalaGGaauWcsGjHpDGleT9MfkgzFJ3udwtsWDd7/NfHYPMK322T6nSJmGAuleobQ+izFotCKhMt6ysjhL68FxPFwraq+2cwHpUECuDTYQFAk5I7PKZrHG5f4FnnjtNV5+8Xeyf7jF3fkNvnHtS7x765scFjvBiokha50JNZQy+Ch5JOgezQv2DqccHs2omobVNCXJUhpzhqZp/NLjxjDIPFdoHX5VXSuY2lKXlrJoqBpDaSwNkNkE0drncgfC3VRga0cqypvBIuC8CVsbA84gLifJhGFvQF01zOdzZoXxYU3FnKosME2JlmCGaEGTIE1NojWJTjGm8QVjRFMWC7JU+0D+MLPqNPFF253nNVWeYWvDM888w+r6Boui5ObNd/jU62+weXbTF9ExDUoJ62vr4Bx37tzkG299ixdeeYPnX3iJ8XDE17/6qx7ckgnOOYr5AuUasCXZygqpTjmYz9ne30enGozCGuPbbB1N05DolLKuyZL4rB1V6cPKMlHU1rK/t4exjqJcICJtrV10gk4TEqX9Eiq2oqpLtnd2WVlfYWdvh+EwZzjI0IkOjqCGRVlRV54+qhvjF8ksFpjGokT7ZVXShEQ7alN7za2xVOUCKz6N2eBrFvhsUheW8wmrM0j6kR30sUsIFxOnvLPQ+HW1HA7tEhwasX7AO+UHuP81wd9UrLkbSwdGkzZwjG2Qfhztts1Maxrh3s1DtqdCmuas6IQzkxHN/oxnJiuwM6MwitzsstXs8XRRsmZrClsjix4XkoQDFbjNfIiuG5R2NNpRuQLKmv1y7qN2GmGQr1NXJaUtSJOEqqn9vYYm9pKECqCYcvPW+9RPptza3oX9HRpbs107eiJcfXCH7TtXYV6xpjI2xmus6CHpIGegEob5ENXvkffHGOvYvvcerpmzun6R1bOXKWtfflRrjcOwKKYYW2ObwkfNNAVWar+UkasCPgaTXxygQ53bLvh2CPVjv4XfXXS4Ld9RDO/KkwGb/fPIjub6N69z4TOXefWpH2djY4OVlQ2uuFf4wku/k/vT+3zr6lf41o1f491b32BRz2lc5a0kCdTHx2AYHr1yxKJiZ/eAu/fus7O/x2Qyod/r0+8NGA1X2e/vU9WHfvXUREPjaJqaqvRZTXVlqSpLUdUUpqFxYJymCZqXT2hzuCYQ2VrIU01V1UiisUqjk9x3DKtYmazRzzJsLywNNNunLArquiJJFKlS1I1BrGHYH2JmCxRC2h9QFoVPFVbQNI2POsCiVUKaJFjTcHBw4F+TUug0RZmG8+cvsraxiSjNe+9+ky/+3b9FphzPPfcyw8kaiKY/HKCTjNvX3uGbb32TX/3qVzmzeZbJcMCZzbO8/sanuHbtOg64f/c2VV3SlCX1YorWmqcuXSHvD7HGcVQWmCz2HwnhagaxjjzLqco5k8mEpio5mk1xtsEYb/o2hHrHQFkWVHVDv2dQicZaXy4zy3tUZeZXoXAO3ffOrl4/Zzo/Ik0SBv0crNf8DqcH1GWNMVAUJaaqyLTCOo3W6pjpbIHGhqKAIjTWp427piHJMlTizfImFH9ROv/oHvqYxdMLUfN0KGURa1qvuXaeD4+rajRCJ3ZIB2eZ+FU0lG4zlzpXaD8+aSLw5NbiKo2TjPHGkMpq9CBjZ2OFB3aLB2uaq/s3kIP7PNu/xOeyPjvJCkVVMEwTanHkKiFPNYWDOlEcHdxhNntAVU5xJmQNgo8zdlAMLjJYf9HHA1eLkJwT6k9bA5VBVMZQa9xsxtb1dzAPblNQ0tgaazWaGjObkh7scznvoXTCxmCMdQmpGjAcjBGtyQbr/PDLn2GQ9VkYx7DXp668s1KpFKcVSgvKWZLEkirDrCo4XEw5WBxhyzmH020e7LzP9t4tyvku5XSH2hyiA18uMXGFE59YeCkCdZdrlVhLwlswGuHy6hNc6T/D9evvszZa5+VXXqHYvc/9uiHpT5BEk2Upq2qTH3vx9/CjL/8DSNowKw+5t3eTt6//Om9e/So3tt6mdB++ukWUR4KuMZbtnUNu3rzLvSfvsToZo9Y3QJTniEZjbz7iHQJVXVAspt473zhsY6gaS1U7qsrRqAQrCXWjMQKJEpQ4tIMUqLTBNfjYWwdV7TBlzaA/ZHU0JE9TfC0Gx8HhEabxpSSrqqSf51RFSdNUrK6vMy8qDmcztF+oi0QpEu3Xbo2DIkl7CFA7H9HgnM+/GY0m9PM+OsvY3Nz0ldaynI2zFyiKmr/4l/57nnv6m7zxQz9C1hsymKzy9a//Gr/0d/46V29cZ3PzIsPBCKUSyqpkZWWdCxcqdrd2WF9b49tvv0WxmGECB7p3cMB4vMLa+gYNzkcxWOsrXInGasV8PvNhY9Yync1Is4wBI+q6BGpfbc1ZmroiUYrSOcQZr4mmGY0JqdS2QVxCURf0mxFbW9u4pmJrZ4uNlTUGfR9ClmhfanDQS8nzlKpuaOoarI8tFRWrwIFSCdpaDAalFYn0fLxxkqGUr+/ay/qkaeoX+GyMXzMvyT6ygz5u8Q4Vb+ob/Fp/vmC3IO1KvhI4XRtCHwU6H3G2XQJn6bRZDvRoOXjANSEW2LC1O+P2viEdNeTDCSuHexSbKU+XwvrhHmcPt+lVDUqOcFXNk70ec52xaAwHTc0ozUj6CbOdqzy4dxNrSiI/GmsFOKzn1a1jNruFXTuLOvcieuce+uAAMT4O3onPKNS1gKQMlKJaHNDMdhEtpAKpCImIVxryHsMwiZdNQ6+f0cv6TCuDcTmXRxt8+9YBgxXYGGi+dmMHSVPQGpcO0cZTGmfOrIFy9HXKUGVcWD/HunHMlHDGwAu2xtUVRtXs713nnZu/wu79b7F1701UeRjuVwWHblyZI/K5tqPZevohrmu3mq/wqWd/jJXhkGvvv8PNt65y870b/MQP/yRPvPA6m5cvc7AzZW/7Abvbu5RlQ5b3GK2scnBwxEuvv8Tm+nkujS/w2ae+QPPTlm+++yW+/OYvfWSf+4h6ujCfF2zt7bK7s8XuzipposjzHCWWXq/PcDikXCyoq4LFYk5Z1zS28VqC1mSpB0+UkKgMXEJj/MNpRNDaaxBKGXp5jgBF0TBZPcMky0IRFctoMGGQp9imZnt2SFlWzKYzqtJHJ+zsTlEI+WBM3h9yOFtg64Y0zWgaS5oklEWB0sIk9+Fe/cGQYj5HbMN4OMQ46Pf6AShSLl26SJbl6ESTZD1WJis8/8KLfO1rf48vfflLvPmtN/ncF36cq1dXuPbet7h15ybD4YhXXn2dM2fP0x8MEa2RXo+zylf2erB9h7zXZzqfAYrBcIipSupQ+Ka2lrJc+FjgLCPVKbWFLM9DuUbPJx0eHZLoBGssi2qOEkXTND6bTIRUpfRHwwDe1gNfv09/MKCxkKU5iWjMomar3GFve4+tyYTxeIwSYTjoMR7k7Ij4ynJJAjgy5YvPJwpq8W4la8FaoW4E4xRIjhOFkgznNNYpjLFoHVInTSylor9zlPweiwtORk+FWBA/qbQlTCSka+PLjSKet24BVwSFBy1nXQgoPV5kxVqDsXWor2yxpvHlOmeGjdEq6WDAroL55iqLWcXdnSnPba7wI4Mz7KspfRGM1tTGkesESRPmScphs8f+vfeoy2mYADtgHzLkIsfosFglLG5/Axms4IZj+vM5eQKuLkPRKV/C0LNBDZlzZMpH/TgsqbX085RpLfSHQ6ZlQWMsSZqxdzBnf2+Xw5lhc+0Jbm1/g/GFSyR3FFlTcNOMmA6HZMZbYZdXz1LmCaWxnKlKzqc5r22s8X5xwFwUZ5Kc8wgPDDid00tG9FfH/OT6K5wZGr56/Yt89Zs/x4Prv4It9sNS793qbR2+OGjD/qvwqac/z+/90X+Mpy5/infe/Qpqrrm9f4Ot/i4XLz7hY6idsLKxzrxccO/+DjYdcHHjLEkvZ/j/Z+7PfmxL0/Q+7PdNa9pT7BjPmJknh6qszBq7u7rZbLGbQ4ukDHMQJAg2BME2LBs2DAv+E3xj+FKQrUvDhuELQaZlC5YNWmpCIlvNbjbJGrq6qqsq5zOfmPe0xm/yxbcispqWKgnTcvUCshIVJzJO7Ii13/V+7/s8v8f1rE9fEfuevFTU19cIIzkRx/xrv/5vfuE99/PTgEkdV9dZ+r6nbxvaZgfRQxRkJulFrR1od01azuicapLhBkvfJ5C5jyE9YWSK34lj9IsREilSIkWV69SFSsl0MkPrDB9Smm+VG4zJMEbTWovrHUPfc71a4b2jbhqCd2RFxSTLsH1PcBaTZUCSnrVdg7WWXGYIYzA6LapCjORZxt7eEjd4bAg47zg4OWS+XCKEQpkcozRHJ3f5pV/5dYSIPH/6KW294/L0BXcf5uRZzr27r/H2l97j3fe/QTVdYEcesbeOtu3I84yu7xiGgeUyJQaLEPC2pWlbtk2DdT4xJbQhryq22y2ZzhPG0SUlwXa7oWtTYda5QQrw3mO0RkqZAO+jjlibJK+LweFtxLukn86ExiCYVjN88LTNmrPunK7ryScFddeyaxTGSBbTGV0/4GygMOnv01qC9zgnsTrpTvvBgfRpiSY0wiu8BDekwi9Ge6x3HinlnxG04+chjEl29LlLTsebYvz5x8aDE2HUOHgAlebCUqrPZUWfaxfw/qbgjkyG4PA+UPsIMlAHC3f3MLJmvdsxDRuGpuDO4oC704w+ePrBsRkiUnjUtGRoXnJ59tGYEnLja7tJ94q3y54btYQQEh0jXkTcp99FP/g6zWIPu9tRCBB+QKsxt9i5lGsoYlr6jpxH5z2DFQw24IaaIATPXpxSX++4qh0+3+Pg6C6nXcNq1TKJgcEYGp2RmUC/vWJxeIer5ZzrUpP7lmobORGK/1w6/uluw31t+GpR0PcNH+YZzwcPIfLVaLgrDZ90jtoUPHr9L/HOvT/HT5/8Ab/7D//3tBcf3Oi2RipYeu23+7Txg0YYvvHwlzkqHlBmFXcPHtCfnfLx6gc8PLnP219+l8xorp89xpQFsd7QDzVt3cMwsPeN93jr3bew3UBWVZSzisG6cenncfUXQ5y+oNMNyMgttIMI3nm6tkmpDoCWqV2PRPK8oKpyYhR0XcfV1SUMFm1SdpbWPvnXYyq6eSaJPibSnZJJv1pN6YbExRVKExCs6xYj+8T4DAGPwIXUvbVtnQqKs8lSGSL90CUkmxxFPdbirUNpwbSafO6EilDmGVmeJ0WFTG+MPDMoJRnaDoSm2TVM5nvMlge886WvsFwuefHsM9rthulsysuXzzk4POa9977J62++zd7+IderFdvNNVpJnj55TLPdcnR8iM4KolQYlTEtK0QMWKfY7nb0bkCqDKU12miGrkcg2NVbjquSWwobJPaDhtB3Sb/rAsjEV6jKirzIxy5MkhcjJU6nUUPvBsDRtg1SakyeU1ZLYkwLz+vzc3xwTIqcqsy53G6JQRC9ozQZmU4i96EqKDON0ukoa12CHmEcVanQ3uMciDjgjMDZ9HDApTmz/MW7gFM4hLjh3X5+GhVR4oW/xVL6f1aXRMTFEVKjYuri1RhweTvUTW/6EH52tOAhOIiRUuXILMcpxdRLQmt5r6wIuaGQinWw7AuD8R6tMrxWDLrgqvmM9ekH6ctLgcB/zv0dN/JBpKifKDTKFGTZhLKaM50dMJkdcHz4BvnsDj98+pjz55/Qbc5RzqHxxGBBktQcWtKtegqTs9msUmjq9YrV5RrbdFyvGkI+wdx9yOLoEDEt+NKjd3k5ODYm0eSiiwSd008llzn0tmFZ/5KALAAAhkZJREFU5uRe8VxGXprApCr5ZpXz2cUpvx8XLKdzDpQkKEsuI+u642KiqEVkc1nz1qTgtfmU997+TWZ7D/mdv/fvsn76Bzc/9VvzRByXlze/i9eOHvHGnfdoN1ua/BR2Oz750R9z+uIVr915lBglkxlt01F3DjNf8Df/jX8dXc3wXY/JFG1TU8xLYgQ7BPZO7uKGFoGjKosvvOd+btFNDNuAHWVOIUS8d8QYsTaiVDYeayRZkZPnE8pilsIj6x1NV9PbngKJCgGlAwjHjdoxzzJwAu8VRZ5R5hVSQp4pXBhwrqfrdsSoqPIikcZ8wAWYzvdompbVeoWUirIqmMxnaetvJLEGIXTqtG2iCVWTKSbPCAHkjXRqFED3XTvKmCL37t6nLCqkUkwmM8rJLL3d7ECWlTx4/RH7B/vYrsU5y8M33kRKzXS6wOQlXdtQGMn05JjtdsvJ8TH566+jJCyfHfLi5Suc6/GuwBidsqikhuDJqoKmazBmyrZtKEzK7IoiLQ6aXc1kMqNrW9IjJSUlkwnyrCDLSwDsqMrQSo9R4qnQC6EpczOaFBxNvaWMAZNlODw2WK43a2z0PDlrKXJFlmVoIdDSJK2uMczKimmZURUZmTG3LAJ380Ate4qiSss/G9GqR0szLvATYV/qX/x4IYzKBCFI2tsQCCIFFyI80cvxuP253jNF2khu4DYyBkKQCC//lPPphtsafRovhJA6fXEDblGGWgz0E4Xra7x3vD99nYWW7Hyi5p3VG4hptNFJzVvf+nMcX51wfvQwdc22p+07Mp2hpQIpUTotuieTOVUxZTZZUE72iEKn5CGpcSFyWtcc33+XxuwT12uayxcM23Ncc8nV+XPa1QX9bkvTt+A93bYGJXBGQ1kiVYE5OsDnhjDP6ecT3GLOd179lL5aMpvco8xK3AAX1Rwxn/B+XvDx+SXXVcH13QPeLguW50/5vt3xT4Rh/vAe1B3/6HrLu/OMXzYTvics26libi3Cd1Te8Oxiy1YpsmhZVG/yF/7i/4y/9/+4pLn6cZqx/+lt5u0+c1kesL+4x3JxgIieSnrsELl3/A6//hd/myA19XbHdrtjs96ijcFbycnrrzOZTYhu4OLiJdlsD5mXKCkIwlOvL7h68jFCak7e/frPved+btFNAOYkzt/uarq+xbkJWkv6vkWpYYx4iRRFRTWbMS0XI4/BkRmNkA4lHUEGkKlzUCKBbspCIKiI1mN0mW6eLEPpAm8deV4ShcC75F7qB48fXWSz6ZRdVbFc7qGEYLA+aWClIgzJ+aRssthKqdMM2acbXQpHWeTECEVW0LctQWpQiuV8wRuP3mCxf8B2vWG7XSOkJMsLlDI414ODTOcUixIpPp95eRdwNknUlMxx1iKJaGNo25bFfMbbb77Fk88e0zdbRGzZ7kbQt0rjF+8dbujpuoahbcm0Rgh5q2jtuj518UpBCJRFgdaS+WxOVU7QKiPEgLWJExwjiOiJtsfGgBUpY07ojLIoKYoiLc0kuMGNLhvFtm0YnKfuLUK0OO/obE9pUk5cmefMqpIqyzE6S0YJpcdCn+DtxhiyPKPICjJl0Doj1xrBTRTUn4HxQrjhN5OSM2QKZxQyjIsXTwrplChSAqwSSToWb7LfQkiWYPl50f38TT/iGsNNGKXnJtY7l5JcCvJsilQlWam4dgOFyFmqnG1Xp1m6lAzWI+4/4OFbX2Px1i/TO8tECHo3MLgxnFJp+sETfEzRWDGAG5Bac9H22OhR0tD0LTvbsguCs80WLzOeuYiRFZtBYVxGPcDLJ8/TvVYZYq7ITh6RGU0tBrLDO8yWd1nGnMcvfow+ypH3Jrz18B2ef/oJr0xLdyR5585D3mpy/o+Pv4fLjvjp3mt868GXWb045af+mld9wd7xEW/HgZ/4nszBv7V/gCk3/EgrdoXkN7KC55sdz5H8ip6xrjQ+eEz0lEKyGSyz5bv80m/+T/n9v/u/JLZXBNIp/Vb/GyNGGo7nd5A+waSkkFydn3NxfsF73/g17r31FZp6R987Dg4PuffgAV4pdldXPP3pH7F/uE8IcHl6Sr5pKJdLXq03PP30Y558/AFKwHxxwG9+wT33hUU3gWM61qstdd0ynw94L+naZGHVShOiRJU5WZZjsiwtTbREaQEEnBuwcSCKpCIQuiCSMfQCrQVGVwQgy0yiD+mA1Dm7pkXIRHuy7UDTNWTG0DrPbrPBGMVib4/NeosdOwkjE0jHN57BO5TI8CEtgsJoPy2LCUVV0Xctg3X0g6WschbLfb763vvsHxyxXm/G+aih6ztijOR5JEqNFGPHHxQ6zxEidftSp+6671qctdTNjsHaxELwqUt/cO8+v/Vbv8UPvv9d2t01dmjwCIrZgnX9Em9T99e1DdYOCGYYrVAqJW9oo9hsa5xL0J5pWaS593TGZLbPYrHPJM/ItWKz2/Di5RPqrsPHmzQLwEeiGhGEMaBVhhSSIiuoh5bZZELtBy7rDXaweG/JTI5zlvVmg5RJY2m0Jjc5mTLkOhVVoxSZlGlsoVOoqVAKIWX6M6OQQhFwt+jDX+QVx623CGl2mTLcRjs7N6oEgQij7AsBMv37JuA8ilSgCX+66N74+lP6b0xjgBsqVgRlAqvoabctX3ntiHle0NuBHsdqsyWOs2+EpHWOJpdEHWgRhJjzdBjIZYkxgX5URVgpcVGw6y0lMChJ0zuUFAyyJDrHWkQetwMXrmFoe3ZdyzKPhLonyJ5nrz6k2Z6iHhygQgQTqV57DX1wn+niiLuFYRcDV31PP1nwq195j0+eP+a8afj9s0/4pa98nTu25UfdBRu/Rt/7Er89fZc/thu+PJH8d0+WfLwo+d+tP+Yb80MeqIr3RMF/cPGUq1zyRyLyl+YnbC+f89QGXoWMP79/wu+6llOdc5+kNporxUQKTodA7+H1e7/KZ+/+NZ5///9MsgHfSMrSqePN4y/zxuGX6ZseoRqCbfnBH36H6eIeQx+x3cD9199Ajg1Ns7pmd/mMrCq5PnvCj7//Bww+4/1v/0tYpekuLkEJjh7c5/D+AyazGXb4YlzpF8x0R31fP3C1WrNab9hbLCiLHOfSx73doLOCWVGhZNpwx+AIzhF9YHADdbvGBo8QAmMKRIQsk4SQEaPGZFOGwWJDxIdIdBrbD2ORyZAjx9S7wPnqEustkyy5ndqmR+sM7RxKG2bzKUNv08JPiNRhAFql4um8ZzqdYKTGCUHd9WkOOpnyjW98i29885sIIbEuGTB22y2ZyTBK0nXJFJAVOVrp1J0qifUOJSTWDjhrsUOPsy4VHBSbzQYETFVFUZZ89avv8/DhQ/7JH/4hT558zOXFBTLLqeYL+s5h8pL1esWkmqQRyAjcCDHghgFFOu7OZjPyPKcqC8pikpx2kwl7yxMIlunykLwoefzkUwY74ELq2oRMEeN26EeJDcynE4J16JBSaA/nS5x3rJua9W5NO3QYJJNiQm8HrHW0gwUaJCm5OZlbBAY9EuVGyPPoMpJxxN/FEVv/ZwDtCIzSqptRQxyDD28Yzuk9IH1CLwpSCCpIZJRpKSxSYY63nW6K+Un113ODhBQxGYDDeNYVxrMsSubLOVmhWBZTTJ7impRUxFwRELSDZ3CO69WG727P+Ksnb1IHQdEbhiBYD5FMgo+CzimCAGdyTruOc+eZZYaNtdih4To4Puq2LKYl8w5WLhD6a376yZ8Qo+MgtMgqUk6WhCCxZc69B4/YEFgdzbF3H/Bv3f8We4Xhx+vnfLZd84bZx2UlV9tP8Nrzweacv33/Xf7R2YbvdVt+dPmS/8X9L/Hx8yf81Do+cgNfW+zzP4ie62HAKovZn/MrsWLte7ToOS5y/u07J3xPrwmiIijJr+0K/qDb0QnFX1kseC4DJkIlLKHrEarg7a/+TZ5//HuIzVNiTIiCpL03fO31P8eXvvRrVFlFVuScPrvi3ptf5y/87X+ToW9YzOdMF3P6tmewA7rI6V3Pbn3B6eUVP/7kKUJPkcsPEcGzuj7n1fMnXFyccXZ5SYyCtmn47X/9v/Nzb7cvXKRFAsE6rq5WnJ9fslwsEchRl+vo2g45eMppimgJPoyFJyXhOhvp2oHO9ugsp+93xKnGmDlSTCBW1I2j6wa6IblPhqEmeIeLAW+3KTstOLSQKWKnrdmISN+2KK2oioKDvUWSVCE4v75ACZUCLoMnNxkWS98FMmNQKmkNrfPM5lOWe0veeusdvvq1ryJE+sEJqciynKIs6bqezXpN13WYLKMsK4RIXOEoFUPfkZkM7yxd1yfb82CRWiXbrU7d+m63w9mB2XzG0eERv/3X/jq/97t/nz+8+j2sdRidI6qMttmhtQYhcd5RVRVtV49HVECIlL8WwSjFfDanqGZMp1MW873EP1UKbTL2D+7Q9R3nF2e0fT/OjwVaBHwEO3QYo2l6S3BDsjfrtIRRCGSMaCHxwRGkSA+UcWYmkbgxcHHwPX0Yu8MgbgsMN7bOW2dQOvPdzEN/0VcYnZFi3HxHmdQMMqYFjEAg/KgBGKchN2joIEnSLJk6KZG2cqloj5kLcuQFiBsqH5+/ZiMdvndMdcnxfJ/WOlZtTb3ZEMOQRmPqxpIM4vqaP/joA769POHeZMLLCEZpnIxce4kMkWjASPB9h8wKvmwyPrq65om0mFJhh5YvlTO+9/SnnHmPNoa8O2d6LOlP12xDYO+1d1itLmhlDcs98tfe5F5m+Kh0zIucfnfF919e0LqaEx+ZBMd8fcYjO6Cs515c0b/4gP1hR5sJjvXAZNewl1U8nBqe9B2dW/FOecg/9mf8EVt+f+X4dyZ3+Y/XL/hDt+ZPYuB/vDjhbn3JQIM2nm/szRhCBnJKH2HWRj4dWr6mM4Z5ifSeuzzi3tt/ieff+z+hxkRrouBgeo+3H/0yeTmj214TKXBDy3xvj+WdE3ZXFyNuE/LcjIqTSNP2fPTBp9Sd4N7rb/PTjz7iP/m//9+YlAXTrOT45ITr+glPXr0kRMEwfDE57+ePFyAtR3xgtdlyenbJcm+O1oI8y9DSkJmSINPTPViHF5Zh6PHejVbRnBA06/UKYyJ377zBtDpMnvUgUCrNayUpsbbrunHLK24TBvq+h7H4b7Yr7JDsvnvzGYvZjEik61pEjOw2G2zXo7QcHwKePJMonSdZj1K4GNHIxABoB+av7fHtX/tzuL5jvd3SdF2yI0s4Oz1Ncqi2w8eIdw5kSkvV4+a/7Tsm5QQpoNnV5EVO3bQYbZBZNiYNSGbTSSqmJMjPneND3vnKV/jeH32X9bYmSoGWmjzLsXmO9z5lltmU5Gu9g3Hc4n1kt92SG0PTdph8hhCGoe8xLqlEVIS8KDk4vMOu3jIMI/gHiUfirUUqc5tSa13SkAovKYqCe4t9gk9BnT5E2r7DeYsbGQoSPgd8j3SzlHwbETeKl5H2NJpiR++8+Och4P3/5fpTMeji85FaYgP78ftOneuta22EqEQxxnXHG9auGr/SjU5p/J/xa/3p0MKIkAO93dGHnqnKkFFyGepEuYsSHwODSwwTAFNvsE+f8O8X/4T/4Vfe56AokdGRTQvmg+VZiLyW5/xgdc69xZLd0POT+oKvHy852l7zg+GS1+ZTqB3XM8H2+pqXzzYUasodu+Cn7im+yDC55K03XufD/opqccCRMcx9JD/fcBS2eP+S+voMF3oyFDuTo3Y1h9IhtWRZDNjrcx65Fq4KTmZrNhdnTKLieptTLU54c3pM7+BiaHk3N7xGhvGCISuYGU/LwHnXcWX3+Dt2w/3S8T8vKhZdjdeeia64PylwxUDjoAoaj+RQTfn6N/4Wz3/69/C75xAFucr5K9/8m9zZf8DqxWNWL59w9uolXeP4jf/2v0a/2xGGHjlGcKksuzUhLY7v8c3fOuH6+oIP/vg7LJd7SKVRUfNX/9p/iy99/X2+80//gH//f/vvsq0bZvPlF95zXzzTHeU0dhi43q24Wl8xmeQs95bkWiNjgcg1eZ4hRMQ7OxoWHJk2lNkEoyZo2aBlibcCfHorbm0Ldc1NvLEkIEVkt9tgXUipEt5i+47BDtihxw7JL250slzutjvyMkdJSdv3eGfT0zvL2dQ1eVFQFgXRB6waMFonmZoW2H7g8PCQX/+N36Asc9Z9Rzv0rFYrnB0oJxP6If293gUQMqESbZKnOe/QeYaIYLuebGQi6BhpupZppeibJoUySklwBaKUhJgeKJvNlvv37/OV977GP/3Od+jtwOAtPvik/RNJ9tLUNVopOjuk428IdLZDipzBWpq2pigq+mGCaoCiQhDpg0MwSaaIosT2PevdLi27RE5VzbHO4qxlOpmhKkXTtDRtjbUDaMVeVrGRW7yUyLyksQrb1xDHyD6f5pXyZrkfUj/3+Tgt/ozS6sYOO57c+cV3ujAujEUqtHK83wn+lsdzMz5In3wTVZ9eYAKm3Ex7PWlwI2473M8fPOMP6OZnAghhKUzLJMvoZeR6t2W1XYEfEIxp0lIhZKTvW7SWTM6esxGOf6/e8M37b7CYzyhQvLO3h9i17GzGiRb8eHPFgTE81I7vrl4x1RXvyyn/6elzVlbyMOyzvvyYujml9tfcKfcw8zm5iLyWT7grM1pbMm0cR/0r/HaDvD7l2lraIXJ1fkXvLTJ6nkdN4xyiypjMJpR7B0Rp0GWG9JbCR1a7FRMf4NqgZs+wy4d8oksOCklVVRwVAT9I7oiBUksWQrE3ODyeTHdUUfF421Ax43ftiteKyF8Tij0siyrHdIIPmp5CZ9y584jDB9/i4k9eEQncWdzn7Qdfobu85PSTDwkxUFQL7j28AziazRWhb8lms1TvRAIdTWZT2m7Atg1SwHJ5hCTj9OyM68sVVxev+ON/umNzccGvfvtXubi6pqq+GFX6880Ro3BRGoEuIciewe2omxVZJlGTBVqlRActFTGGBEcZUnJDnufM51MO2yXdUNN1jqFv+OzxFbPpgrKsIAiCGDfAaET0zGYFddOx2+3Y1jV919+qAqQIzMqC6aRCa433Hq0UQ9/SNQ1SG4RKywcl9XjTCpQyo8MrDcm32y0+RN7/6jd59OhNdrstfT9g+4F8JHxtVus0Y0ZQNw15ntMO/W2+VRSgpRpHCoGd31BN53T9BmsddhhwpKXYdDKh6/vENGBLNyyoJhV3jo/4zb/4l/no4085O31JFCTI+ugu8jFR2mLUY35X6r6UVCmdQICQCmst29UlcuaYTqb0XY2zHVqAVIrlbMbQtTjn2ew22BCRQlGUU5x31F3L0cE+Com3PU3XUBYTlJAcVDNc8NS7BCbJTU7vBkL4fOZ50x2mqjsunG61ren/f157/6yU28873Ru0YAzpiZCihARIRlT2WIEDeHkzJrjx8cdxlADp9aaUDXnzM/ln8YK3/NaQFCybl8wfvkMvJVZrwOND2rB3gyUIwaIsWHcdVdMyeXXGtm55vlnx93LNlw9f4+88+YivzU74vtvyW5M7/F77lE5V/OVij/+8fkHvM35dT3m5u6KuO7RVzB1cesE0OPa6hvt9QHjLpL4iRoU8f8Vqt6NuBvrLFVeXlwxtS+hS7mC8ETZDSlYBlFF8WpXkk4rJ0ZKDO8dMjk7o8wJf5BQho7CevvGsfSQrJZQVcXLEU10QTaQqNYf5FOSAJPD1bGBfK/aNpREBZM2mG9j4gpVT7CaWL+VT9guBsQLbK9792r/C7374u+Su4f0HX+NgtiSXFeqdLxGd596X3icrStavnrE5e4VR+nb06GHUpQe6ekNT1yip2T+6S1ZM6azH+cjgPH61Zr1ak6mcTOfMyskX3nNf0OkKkJJqYlguC2bzDFVEUBbnOwaXo5VBxQxvByw35on05hZCU+QZB/sLBt+x261phxadB1q7woWOIivRpkSiE6dh8AyDZbAe69L8rx96ohsQmBQ+KZKXvGlqhBA0bU1db+m7gbxKL9o6S5Zn+BBwLiBFuJUy+Ziyx7Is5+79u2R5humT08r2PXXbsmtq6l2NHQZUZogiAdx935EVOWVeUrctJs+JMVIUBZv1Kknb2h6hJIO3VHlG0CVeJK6oVhpTGET0TKqKzBiqKkcqSdt3lGVx+/CKMTAMAwLBEGwSKbmUL7aYzenaBu8cbhgYdIfJDG27S248rQnBs9ttCFHgkOi8IhsGirxgcAPD0BKFoCwqFILeeg6XS6y3NE1N27XpQSUU83yC0Iamb2iGPpHZkg4PNyTerrgppj8bFnUDgo6ClA4yznb/1FH7F3fdwsZHeVHiOSei2K1hQsgxpy85u3wMyYwQAkIKRDoEJb5KDGP3e5MkkNwKt2Nt4Easn7pZS9tc8L3nT3CDRfY9uAElPJkyGK0IPtD3lqk2qBhp65ojH1iv17y32KO+ukJkOX5/S+tqzqY1ma8Z1BZR9Bx0V1gPCz+hvDiHtuY4asx6Td/ULEKkCB355QXb3TUv6ha77bm6uMJaDzq9z2M+xxezZKLoW5wdUvKJS6M/vMP3ge3g2K62XL084/KTp1yeHDE53Kc8OGBvf4/p/jGbZk0toXCKSe/Ju8CrYaCRAVloKBc8x7CTkbySzMoZpoycR8fd3HKQLyic47Go+axtkfGYeYT9QiOqkocPv0q+94CD9ppfe/+3WO4d0axWDPU10Vt8v0PNpggjOXv5nMXeAXlZpt+htmTVNMlTs5JlOcFZRzmxzJYHHJzc4fL0FVmes7m6Ytb1BCTT6RTiFy+Hf/4iTURUBpNZxt5exf5+yWyeMV1O2JvuYUSJdQFrB5pmR6YzBjfQds0t6MSYDKMNRWHovQHt8UGiVA4YCArrUrfYtD0xCAabFmomS2MDTaSrt8TgsX2HkpJdSN3A0LXpKBw9Qkr29/ZYbTZIpYEb9YKg61qkNhhjqJuGtmlS+oPSlKXh6ix9nel8OmL3PK5IT/N007eJyzAuqLquI/qYtKjGjHrdpAcenEVJTSEUQmmMzhn6Dm0USt+MRiKr6xWRyIsXL9ls1oToscPADf5PIMbwSknfdRglGYYe8Ag0ZZFDDGnOanuCy9GTKf3QJp2vHRBSURQzkBJvh2QdNppm6CA6GHqMydAmpxsGtp1mPpuz2e6omxph00IhSaUkOsuJ3jE4h3Qe7QOllAyDS4doSUI5ckPqH4ur+Gd62zCepP4sXLf0//GREACSWiG1sGnUoEY9togjTCaCjyNyJQAy3qAXRilaGHXiYuz8P3/QiLHXFwKwG6zdMinuovyaKBTO93R9Au5IKSm0prMDhMgsK9jVLaVRFNcr3EXP1/cOaE4veDfPWeY7Ph5W3C2mCDNluj0nExItK5ZnL6j8QCEMcbtDbS9p+54XbQow3TYtMeq0H1icIExGrgwhz3HBgveoKJi4dBpyXYtva3AWhrEIhwA+zfjr7Y56u0M/e8H+nWPCG69D3XNdlMhJSeammIlkO3g2wSGMZBZzTGg47zqQkdkaDiYdF3LDKgyEiaGYOC5yR5NHljOJEZ7PQsEz0XJXBQ4XCw7uvc/i+Y8ojaHf7XDWkhUFq9MNzz/8CfrJU1ZX53zwox/x6K23ybSiGCZkeY4QhmK6IJvOGLoOqQyMY1bnLdWk5OlHH7HdrXn42kPuBcfpi+f/n6aM/4rrCx1pmRGUpWY2y1ksKuaziuVyycnyDlpWNI2jabcMbX1bAF2EPM9J0pmUeDutpqhM4KJlsBHbFdjB0PYtbbuh6y1d247H+YAWmqjS1lyKiPMOEQIqMyAidZPmjlpIpEghdeVkCqSIaGPMqPOVKca87ymkRAmRzAIxZbednr/ixaszTGbwfU+329yGSd6794DT09Oku3UOZ5MuOdcaM85Ip1VBPyTHW1kloLiPUFVVSlxAkRc5RZ5R1w31ZsPdu3dYb7fMJyWDt1yv1nhvU+ab9oRgk4ZVSoQPDM7TtA2ToriN9g7BMZlMMVqRKYGS4NxA2+xQArrBMvgBozLkmP8WiGR5zmAHMqnobE/v/RhJo6l04gsTLFWe0zZ1wmzGQK4UXgqGPiQ9bogEmwhQ1jm0EHgxFpdx9CF+tr0bVQuEgAoJIhP/DDS7f4p3eztqYGxGU8d7sxxM6EeQIYzdcdIoCCFukw7ShGFUPghGzu7nxKvP35Kj0iFGEJ529SHFwxNWO58ehD5gpITo6YcW6zxKZ+RSUu+SHLKQhnWzptASrq7Z1VuKwnCJohpqyrzkIma09RorJa9ERr+5xjvHWgjspmazXSOHgNIFdnKCnitsjAwqcVJMhKlU7IjMsgkT79gFT20ULstRkzmy77G2J3YtwvbEdoew3djpS4RWOBs4e/kSKzLa6TGx3XAwdBwgaC1cAyFTVNWEqRa4wSKkZGkUmRQU1nE11Eg8+ZCht56PwhPWiwkn7g4zEfiELdd+x6Hax+mCe3e/gr54xuXTFwz5jpM3vsTxl97gzqMBGyXt6prNdscwDFy9eM7h4RHzwyOiUAy9pZqlBst7j1QaCThvaTY7ri4veP7qBX/4+3/IL33rW1SZZm+5pJxUX3jP/fxOl4gSCmMUeZFRliVlWTGZTpgv96jMHkMPl1dnXHYNTb3FuoAuqlsNa4wKoxRFWcHg6K1mtx1odnZcpCSFwW67oWkahEikr7zIyPOcfhAMbmA+nSSoi9IgAm5IDwU1LivyIqfQChESrSyOeV29tcnVEyNuGOiGjkwrlBS0zZZPP/6Y1x4+pNls6bqGtmm5ePWSPMvou5ZcCUSWJ+jz0FGYnLIq8dZxcvcEmeVI7VBKk8bFCQQkhKLIDNY52qbGWsvjTz4mz3P2lvscHR/z7NkLFgeHfO+736fve0yWRgJhfM8bIccu1iYZWwgUmSYfo3ScGzCmQhlDIMHOd7tkXkgPLxBa0Lc1Q9vQtQ1aa6qqwgWHC46m6xMLoqhGSdn4/SuJMRo3dKmdc5aoIkobKiJ4h5WjrGzkaSAVUUuiUokxy1h4R0WAGAlpMgTUGND4i77ijXD4xp8PtzU4yJR7RhgZDZAWbiJRqPBpLBGVSLbhcNPZ+/RvOf438gaCM0rLkgCNm5B3ESW+vWT3/B8z33sbYY5orq/Ytjuc69FCoAQMfUd/47IUmvXmEgvoLOPi6hKLJ288131HjA6vB86HgabvyKTkMgiaegc+MW1RBXtHbzKr5uxsYGcduevQ1iFixEQJOrJWAhclKMPBdAohcFSU9F3LmWsT3tUFTLvDN1v8bEHsG0Q/EF2fjtzREkPg+vwZw0c5r/3GXyFWJSs7sNluUSYylzNKJ/DWIZVkUeZk2lBJQ20HTJZxohRzndHsGjrXMY0dS5lxYXPWueBkNmVtBJ/aLQ+Xd/jav/Q3uDM9YegD5WLJ3vHdcTHpsXv7TPYPsMPAq48/JrhAVlTILE97mmFAkdRHzWadFuhK0jRbfv93/wEffPIpWV4QxkxCpSVZ/gUllX8Ona6QoE2SMVXFhEk5I89KsqygqmaUpcbHSFPv2GzWDM5hxiWWVslrL5UhWo8US/pui4yBzCi6fqBpWta7Hd57JmV5izMsy4Iyy9PcS1S3GZwiena7HWVeMK0qjJY0bYNzFiEiXVczWAfKYJ1NUquhQ0mRHFXrFfPpFKM1282WDz74gDcevcUbD+9zfXEBMkHPHz/+DK1ecXJ8RDWbo4xBCUGV50zKApclMf3m8oqmaSiKgjzT7HYdzlmsHRiGgdOzU5q6pqxm3Ds54f2vfR1lNJeXlyz297nz4AHTxYwYApIRBiRS3I5SivVmNWpePc721MGjRCTXBuMTe9dFSS4ToD3ThmEYMMYwWIsdBowpsC7lkkmryfKcoijp+4FM+4TkzCu0VCk5IKSlnTFm1E7HZIBwDh96nAwsJyVCQTQ10Vp8hAZBIyRBqbHapEgbIHW43iNtipcxwiPDFx/F/pu+YvzZJL5IvAmZ5GfkZDGNHpKDb7QJi5vymTgiQt7oE0J6mIyj7JtX+KdSg2FUptx0x+nh0zWntN011dH75Ef3kWca5a/p+paub/HOo4VCIGj6DT7CpKwIYQDrmWuD8pIiaiYyQ4+c2XnM0FERhWA+nzJdHjFfHrI3nbNbX3FRr+jcBrylI+J1+r2VJke0bRoVmhxvDE9wSAnHWvP2oy9TXFxzWa9YtxtCloEukM7CNBlxVLfD12vi0IG3xOConz/lo9/5T3jnb/+blL/y62x3l+ydPWc2bAlasCgnlGUqdkbq9L4rSkoBKopE4lOCuSmotGGy2/LpZo1Z7nFXPeJlvkWYyIHJ2TcnuKaj3fWoNzJkniEJaBeRucGWOdVszsX1jpfPz1ie3GdyeIAxeTLLjGOkrq7puhat03J+vtxjtVrx9sO3+Nq3vs5iOeHTn/6Yf/IH3+Vv/Pf/Jz/3nvtCna5UiiwrmE33mM8OKYoFCkPwCecnpaQsKiazPcz1Be2wvv3vQwx4P2BtxFtJOzgyM6HrJC707HY9q1VN27ZMqwllnmPtQAiOpmlxfY+RcPfwgLIqiT5hEK9yw/V6Q9t1rLcDru+ZzSqUMrRtYnwGl2axN8yCKAXRQ9cmTa0bAzWn0yl5kfP2V77MnTsn/MHv/kMWizknv/ptXr4458njz1iv/gSTGaqqYn8xQ0vJZrthu9ux3u7Sm5BUhBEkGVfTApL9/SPe++rXeeftd5jPJ1xeXdF2PYfHR7z+1iM+/vTZOBvOKXLLMEA/DAhSsvDQp3m1VBpvBwoh8YCTEes91gfazqKVYVJkZFliLyAiWil61+NdRxAKGyLB9VjvKMopWVExeIvynq6tUUozNRldP6AlKGnQQiUAjAflHAUOrSOliuzNS9QsIwaPU5qti5y3PZvB4260uTfFJgbkjXVZBEpxo3f9xV7xxqwB47IvfU9RjG66yK0zLYzmhyRLD7dLMsIon7sdVcRR+JDK7o1r7Wa9JsblYsLvptRbhEFkBYvlA/YP7nBy/Ijs67/BTz77jPb5R+wuTunqdZKiBdCFwZic6XSSEjyEwmiDCwlMlZkMIWVabouMUM3JTE4fLFGXnK02fHp5wRxPFJKlKSl6x/ngCNKAs2wmGdFkeJlxWBXccYFQ5ND3nG4u+Uf1CrxgohSHec55vSVWJTJWGG8Zuh1+toea7iH7Lb6riU1N6FuGzRU//b/8H9irr1l99VvEgzsUO8NyaHjPO96Lhiyk5XdZZEyURghF2yfN+H5VJZh+gGvbEXEsa8WgL3HTKYfzCdebC9YRlsWU/eMTsrJEyPQgInrs0NHXNavrK54+fUKVF9x/4xFmviAry2TsGR+yw9AjtGSymCG2cOfkhG+++xW+/KWvcHTnDj4M4xiw/8J77ucXXZG6nflsn1m1T2kWZLIkeknX9GSiwWRpLpXppPts2xYf0tE3Wkvb9rSdJUZJnpWs11u6vmczwmS8sxzuH+J8OoYTA1mm2J8vqKoJk2qCtQO7uuF6dcVqvWboe7ztyY3GKEE2KamqSUokcBbrI7u6Ji+rpMsNY+y4kjjn2W43RCHIijQc7/uBF89fMatyXn/rdV4+f8l2s+PwcJ/X3niT3W7HZx9/zMcff8jHH35AW9e0fUc3ana1ShzbPMtZLPa4f+8hv/ytt3jrzXeY7i3Y7jZcXJ3y9HmaWb/7/ns8evNtdnXLyxfP+f4ffYftZpNeu9ZIF5AqUDcdN4GJOsQ037UpqVdlGdankUIwgcF7bBBkpMSPLNMMric3GVEI2t2W3vkE5wkBqbrxWFTS9kPqzl3qWMcVDwLPpCqgB+UkwgkKXSKyQGkCR5OcaZkjlKILcNU65LamvVgR3Hhcl2NSRxBoYFppjiYZs0JRml98XA/hxrwg+RxMPqoOkJ8rMUa1Rgwp5y2h6kZWLYxups9TbW8LdhS3VLL08RRTFYGoFKpYsjx+k/2917h79CZHx69RlAuE0FztWt55d8nLe19BXJ9jdleI7QX7ItIhaN3AojAsqwl129INDfenC6KpuKobVm1HFxVmfkjjHcPlOVf1ljZuCbstg2+o40Db7tKSVUuUnrCnCvK24XpTY8sKGXsupeAqeuTQsSwrTk5e42zX0NiOtfCUuqIyFXYcO1nnwVSQPFAUfk69OidmFXQt9A2h77n+T/9jRN8S3n2PRkHtLC+uL/nd05ZcO740m/Ll6Zy3JgsOpnOqTFFkCh8i/WBp8eRKs5Sa6DwXly/Yzx5wf5ixOHqfu/nA3mxCDJK8LMf736e4q8srLi7OaOs6RWD5gd12x6zukCqDTBGxtHVN0zTjgk0mGmFn+fKX3mT/oOL67CkuOHbbNV3zL8peIIUbVllJpnIkkhgEtg/sQoPrIS/7pIUVgaKYUFVz+r6l7wZ8iNRtj4+CEGFXp414vduRZ7CYVYQybYK99RgpMNqwt1iSFxMQinXd0rUNV9cX9M02zTKHboSupIyj6Rib3rYJMNP1lrppkCZDS0mmJC6kLXAgsqlrtFYc7B9QlCUfffwRs9mEL3/5HY7v3kVow5PPHrParLm6uub46ITf+ou/yW//y79N3w+3v4T1ekUIgaqaUBZlilgvKoSU7DYrms0VH/7kj9m2NfPFHsvDQ4q8YL7YZ7vdst01PHv6hL6p6duaySSZFSDloe3qBiUUISbMpVaa3ibzRxgBLAksPZBlGRZB7yLdkH723DgFAxA9w9AhpE4kLQSZTmqLPC/TGENopNRMJhO6YUDEiFKS3ORYhnG+7MiMZFnOOFhUHCxnqEyx7S1q0zJIyVldM2y7sVscj+8xkmnB/nzC3YMZ+/OSefmLL7rRJxbtbQKtkBDluBEbF4M/u/6KjAu1SLxpdtNgFoi3ml24GQ3fLOkSg0LqnHx6yOHdr3Dv+BHHB68xX9xH64IEtunZ9I5N33HVezZechUFTbFgKBfIvTv0GTTe0gbB6TAwXF8itltUVHwkNEMM6E1L02wZTEl1/Rltpim0SKze9Ro17NgFTwyR42zOafOKxgpapdhGS1aVKFmQyZz7xZRXZy/osopeCS6GjjWOyeSQuQpcry7Z6hJVGBaZYXN1gZtMYKYolKCvr2ldhjieQN8igkM2a/zqDDZb4j/4Hcpo6d57lzgtCdbSZ9CLjn/arvje9SVfyiv++oO3eLQ4RGtJaRRKSiohCS5iXQ/R8Ev33uRg7wihNLrrKHKdCq3UqGyMhxrDXvumgRC5d+8+89+o6NqOerPl6vSCBYpsLomSFBigk97fDQMQyedTjM3Y1VtOz56zul5Rr3fMptMvvOd+vjlCiIQpVCOoPECwMHiHGwJ9M6B3O8qqAqHIs5zJZE6IMAxpWC9koo41oyRMCMFyWTJYx2AFmkjfNmQSMOkNP1vs0w0DTb1NiRV9y9AnrsLgkyhSS0lmMg6Xc3oXuby+IpLy07Z1SmDo+wHhHeXeIuEfXaRUGbu6wQdASM7PTun7nv/iPzujLAtOjo4pq4rX3niNy/MLnj15wuPHH/HJxz8mU5r9/UOKyQxTVSz2l1iXIDTb7Yqr85dsNhtW9Y6ubZBKUk7mzBZ76KJkOpux2+yo6xrncp6/eMHF5RVVVSZVhdIMQ2JXtH03yuYMfd98zgMYl1YxpPkeIjFs666nqAJER0ThnEUqTZCja0oqMpUA5jEqBmfJjAEpMcFQFiVNvUGZBC2qijKBi0KaUQohEVIR7IDrfUpBVhqTabKswKHIck+eWTKjRzutHQWsqRMscs1iPuHocMHR/oT5P8em97/py4WAivK2sb1xvcQgxiLM7XBWyJsMLp/kcOJn9Lk/i6m8rbppESekoVre4+H9r/Ho9W9w5+h1ptND3PiJg3N0PtI5x67vkVKy7R3btmdtHdvtCtnX2O2G+vwZn569YG0HwnSJNRVHjWViDJsyx11s8UWONJr5fI8qDjzQJS93LadXK/rzFwzNlmFWgU/xS/M7D3gwn1I3W5QVnG6v2QTNkE8IxvA09GRHh+wpjfGB59tLelUw2A0zUbKHYeV6nArUnaUsp/QiYpUgSEO2d5ehrxEYdLfFNRtQMjn28oK422K/913Ecop4+y1i5onba2hBdqB8OiM8323ZyyoOphUaxSTTKBRmUjGd7jOp9sm0IaqUJF7Np2jZ0O025NNlGre4Ad/3hACqKMl8IM8K5vM5q8trnn/yAq8uoKiYZoZIZLPe4rqGgbQXOn32jPOzM0IMXL56Ru86tpstb7z2Gnn2xYzoL4zr4eZIFYGYuqboPSE6cKOcyw1JvmQURVkkq67whKjJCAQxoF1HlQvyvKB3PaenPcFFhnaXwNHBpeifKFB5jg4JaNP2PcOQCtAwDMSQTAWFURws9wgRVptrjDFsN1vquqHre1yMNF2HyA1d15Jlad5pbUTrJGkaRs7DanVFUUx49vQZbz56xHqzIStyjk9OQAiur6949tljrupzfvLD77NpG7rBMc0z6i6Ry3I9pgoLyd5yyZ0Hr1FNp2R5iZSC7XpDbnKmozNsvbpmvV7xwQc/RgiPkSkCvO8HmrZGG5NmgXhiSKnFN4AYoTJ8TB3trMgwWU7bdWzrmumkQgSfOA1YyrKisw6tc4Ty4EViXci0AFUiua6KvGSwnr5r03jCZCgp8N6htE77fZcA9m7w2N4ydANNZ0EprB3wzuGdS/P04JBBEAgEASp6lNJMqpzZbMJsOqMsfvER7N4nh5+UKsWwxzTHY5zlRnlj2R3HBKNjTcQxnDMknnQKg7xRQoyfL2Bx/Ihf++W/yVuvfZ2DxSFSKoYQqZ2nGRwiOrZtl8YbPlBfvOT6+pp2t6J+9Zwnjz/is88+YtVsiEXJfO8OZnFAVUwZLq8IRcf5dEm9PGAveE5Cy9Vqy1YZbDhn111zKmHw6eFyNKsQSnKBQJgMW1/y4eljkBKpC5bzBY/2D7hab3HOcn51yq7QCJ1DWXCiMt40M87tjl1oWbsp2XTK3GhWl+f0szk2z9nLDKvLVwzFjHK2Tyahtx6mS6LMiLFHThb4bofYrPG7K/jO95ncmyNkQe076CPlEDjJC96eH5IpjSWlMzfOUWU503zCwf5reFkQpOCHHz5mOwjKXPL+gSSXLcNmxX4xYxh62nqHrWtC9NSbHVenZ2R5xmwxQ5qaQNLbZ1mWdiJ2oGkaus06hS5IOD875dNPPmHoGvJMYsPAbnfF7/3+h2x2Nf/O/+p/83PvuS/UN/iQwOE3M5QYRBLx23TkzYRAKFBKUuYVuVZ0JgXOVWXJdDon+MD5xUs211e0fUfbCna7NCtxtidTaaxQVSVlNadvG66urmi7mrpJ2WbeWYxWLKYTFrP0z7btaboE11lvdrRtS2/7RPpRkugsUSf2plIKpSPBO5RIEJ/OJhaDUZrrq0vq3YZXr04RQrBaXXF9fUVVlvRDTzWbkE9KvIDu7Iyz62fsth5nLYGUjvzGozdZ7B/QNQ1d32FDoCgdi3kCu1tnsdZSVhVX1yu898xmUy7PXqGqEh+gHxIJzI+mh77r8SHNYl0ISDHKlMaOt21atMkpTE7XdUglmeYljrRQoWtwSPYODun6NKJw0dMPfbJva5UKrJBkecYwDLihZRhairLCuoG2aymrCUWW0w89KjPUreXseoXDMe1n9MGzaTvWu5qmbYnW48YCdKOFjSM4OpLytvrhF69ewKfARnEL6hkXXDKOhTa9htuIJ5lGCGkwezO/leNy7MZNkT66XLzGX/31/x7L5V1i2/KiPaMdLGvX0XaO3dU1T04/Y7CR2NWYAJ8++ZDtbst2tWa3usT5PsnyjMErQx0cauhAGe6UE171A/7qEvviMZeF5rSaJxXLYNmbzFCzfZ6trwh9D82O59OSICVCGJaTgrvZCZftGsolziiumhWv/IoYDdPZjLthSIGTmcN7y6ui4MJoDpf3cfUluwg2z+nzOdVJSRt2BKPosgmz199i13b0WPK9OXLXEkSOmu4R2hVqqJN92ExB5YTdBYvvf4z49vvUjUd1HcYPHE4W9MNAVk7ITYY0OZUyVNmEwcz58auG6dKw6ho2MUdOMi6bHY9fXtD35+TasLgHw9DTXF6xXV2jy5Kzl895/KMPeO2dL7F3dMLi6ISD6w5TTZjMp0ymE3wDWVlhuwZTZEitEVozW0zZho6vvPsWnz35lO9+52O2zXiC/oLrC9ULEUHwkb4dqGVLl1m8b+m6HYU2SGPoWw0kkIseM74mM8N874BJOcf2A8PQU28bmo1jdV2z26b5LN7hpWZazSirKRFBvdtR7za4YVzw+CTQX8zmHB3skxnDalvTtD1aSdqup2k7nEukrIhAS4USoJUa89RSekMUgjwz9L3FDZZplTCN00lF13V89tmnlGXB/mKPvihp6ppml+zGXdvSW8vB8TFIiR166u028XdDwIbkwtlsN3gfmc3n2MHjXGD/4IgYPIu9Jd2QouOvL6+YVhMuibdRSNYl268Wmm0/jIQ1uGUcyKTdzchTkq2UDH1HXk4SuTVE7MiLsON4wHnPxcUlRV7QASZahuBo2haT5QQPs6pkMYk0UrBr0xw9FeWcXZNkS2U1TVEv1rF1jvVuw+nlBdP5DJVlNC5wuW3oOzuejsJ4HyWGbN8NbNc1q0pj+ybR137BV7hZgImQ1AchJkh5jLfSMPhZyVdMQRM3arKYHoThRpMMCBSZKXn0+p/nhx+/wMvndHYgBEW76XnqanbdwHE5oegGznZr+m6T5t6DY3t6RicC5BoxRESmqcoKmVXMdUmzvWbXrfjUpOTqRVZQtVvOdw5XNAiTg/A8t3VCQ8qM5eIAv96wfXWOreZQKSId69kCVRoW1YL7uWH4yXNslhEKw67e0GeK4vU3uCM1r158QNAKl0Wu6iuOjo/RbcNaSnbTitn0kPz5BzTa0E4nTCYK0a6J5RJXLSnLLe0AaIXoN3iliSYnFjlSG2RV0D5fYfc+RS5y7ucFWiqWWcXD+cHIcEujTmkqxPwhT8+3rK8uyF6es9aKZntNf37ObP+IqbxEdRc8ePgmuiwxJkeaFGm0u7rk5ZPHXK9WvK4U1WzKVM7xfWC92o6Ev55+t8UNPcVkgusbrl+ec/bqBfVuRfSW2WLKW++8zen5jg8/+ZgXr15+4T33hTNdJSR927PZ7MBHtBG40BPEgJKeLIJzPbENhOipJntoJZnOZswXexiVMygFl7BtHKvrLasxlaEscprGk5mCaTWl7x1Nu2HoO7x3DC6BNfCBqioRSrNrB4ZNQ9u2SSoTEnokjJ5N58Otlk5plSLIpWToh2TPRaC0Ic9T5EfwgWlVEX1gs15z+vKUkzvHTL/xTe7ev8+zJ09ZLBasVyvqtsZ7z25Xj8GQGUVVoaTger2m71uapk6zZFGzt9xL+MhhIHpHNdlnu9vyRz/4ASYvWF9fIQXkeQEBBjswdF2KjRcD+HTKSKbROMbBpPByF9Kb37qYEni7DiEim65HLZOTTylN11uUkvRdg9QzUBplJCqkwERnB7SUtINlkicYfBagbWuyoqIqJ2RZQdvUI/hD0fcRIRWXV1u6dodTz8mmE7zKqGNkCGmGe0sbiyQtd9Pz8uUZYWioCj1m0v2Cr5j4uSIEEOFWhhRiQEh1W2xj/Hx8kMQLaSYpxA2zFW4J7Tj2F68jxILddotTgouzLY0JqNbh7UCD4/HmkkfVFBMi1xfnbIcG17fkRqLaHrWraXNF7yJ2s8JkO/bvvs6+nhHbLW23xQ2Wq7xgs1iQmYqjvOTOdMH64pxn56+wRQFlyUWITO/fYy4kWVAcBfhw9ZKN3aDKKTsf8IPm4OQ+hY20q3Mus4jTOX1QxMmSu6+/zy7UrGyDrUpeWc/D+4/w3cDWQKfgwTe/zdXZCzZKsylnHHz5fc43W7zJMULSvTwnZnP0/mEy3nQtdB7yCjMpENsVk6uWfGa4W+YczQ6RUWCdpTA5TdewMSVtUHzw7FOeR0knA3K14+7DE5TPiNM9PANqaMiykv07dymnU5TWZEWBVIIXjx/z6cefMK1m7O3vUU6S/Tf4dJ/WTY1lYHt9hYiBYlaybq95+uQzPnvyCd1uxcnhAX3fsLc349d+9dv85b/yV/mTn/zkC2+5n1t0lRAIH7Gdpa07jNLkSKKwRO0IUoEWRJnALNYnaUxZTcnzDCOA0cxwdrFis2lo2+SWUSKmLjZ49ssSowV10ybXTd/ig6d3jsFazEgya3rP9foSpdJ8zaj0xs3GSPXB2mTHFAIlRUItWkdWlGkM4B0IidLJ6GC9wzlLUZbYrucnf/JjDg4PaD7Zsb884PjeCVoJTu4cs1mvyLOCYB1nZ2c4bxPpywWKcpSSWMf1eo11llJO2NU7hNQsDw4py4LziwukkLx4+mScL9VoJanynG1dMwwOa3tEBCWLMRocbjgGUqk0K5UZSpDGPG5AKYWNQ0qxcJ5tvSXPsrQMkoa63VHmOV29w+QTYrTkeY4PGh8CwVuchU6SOMgETJbTtTvMGMszaIWzA0KlRRtRoISib1N22mrTIsoKypxgNJH0O7rdKQVP13rO+o7NaoUWET+4/69r5f/vrvSzDYyyLyluqbhpoiBuC28qukmyIJApgUOOYJsR9yhk0vhmas6HH35ImWlebVbMiwXXT5+yNYKDbMI973m2u+In5x6D5CA6mnrD4CxN8Ahr0UaRI8ijQAgFEU5XZ6BzlMk4ms0R6zXPmg0Djrao2LU17bZmcfcO95b7ZEIhOsuHtFx7h1EmjR9sy3HbUa222KllO93ydDoj6oKsLDie3ye8WrNTPV5HNkQ2k4qjvXvMX33GNtOEzPCsH3hwPKN7+ilOHVJ7yRuLGX+8qxm0I1vOmIaeXTkh5hll8DT9QHlywObiDJnnRHbkfctCGWbzfezQsrRz5iZnaQpKnSfbe6Y5nO1ji0P+5HrAC01lBMFF+qEhXJ2nk0qwHKE4ms04Xu6xd/cOeVHgnSN6T7urefzZE16eXfBLX79PXhVIJdGZoZpPKKc55+dnzA72yMoMFTQieNq242J9TV10nL86Y39vyvXFFWcXl/y9/+zv8+677/OX/uW//oV33BeyF0II2MExdAO2shg0SAf0iQ2gkxA/uIi3PX4X8UJQdj1adtTNwGdPX3B+eQ3BMvQtbdejgodgKUxKmj27OGfXdFTZiCmsG/q+p8wU08kcIRRuaFEy4l1ITqcY6PsOJZKrx5OcNDFa8qxARIExihgcg09FQOoIcbQKx8RhSIXB03Y7Li48WhnOz17xwUc/5e233uLO/bss95fU9Y5YFCymUy6uLjFZiQsW7z1FkVMWJV1v8c6jpGI222Oxv7xNGm6ams8++ZSu69hsrlKAoBTMZjPcZk3fd/RDUnikRjfJmZLFViJIEPa0RR+XawIGN+BVUicIEWnrHUJMEViyYoKICZyDTcoFaQw+evK8uJ0DS6WS9VPp0aASiR422xV5XiAjaFPgrR3//sj+/gkXV5f46JAyT6qK8Yh+2+XeLJZiItDVvaUZOqIdUmz8L/hKXIRR4SHSPX+bEiHS0iwpFUQiisWYULvyc/7CLZx8bHiFVKyuaq4uz5iVBeurNasocVrSrjpeiFNOFksmQtMNPT4MvAoRPZsz6VpMu2MVLW1u0FqhpebIlLRdy67eEU0PRcWVd5jplOrgCN0PlNZSO8/FSUXb9WAyZiJwUK9ZXLyiyXKyWUXoB17MZ6jXH5Cbijv5DPfpj9iIHXJ/gtOKUxXJHr3JcfScPv4+3nlEfsimFsxef4uT65e8WL0gKEHscu4v93jqNlx0jvuvPeLwbMt5adlMAt86eMA/qXuGbMqxOaY9XTFUE+TqiqBKxGDpVWQ1RKZZwdRq9Hbg6O4RisAiMxxM9qjyDK/2eO5K6rDBvXjMpDIoG5iEDReffsJal7Rna37lN7/NpCjYv3uCqSaESKpPQ8/QdGzXO3prkUox2I52t0VIQRARbaC+uqCY5JT7C2KIdPWGy+0VZ90LbOX50jffY/t8R+9yXn/vK8y/8xM+/OlP+fYv/fkvvOe+AO0YcNbRth2d7ZmHEiEEPvYoGZA6gPYIEVEhAxfxQTAMlq5p8TZwebXj7OwUFRxt21C3LX3fI8KAEZK9xYRd33N+vaLMc663Oza7LW3TkCtFkc8IQqatukv0sRAjZVmxaxqMIBG2QsCHFC+dYt4j1lmqIktxgMGjtURJgQgekxtibhAC6nqHVhIpZUpjqEr+8J/8IX3fE2Ngt9ty9/5dJlVJZjRXWnHnzh2cT4u5yWTCxcUF88WCuN1xcnJMcCkZQmY5Zy9fYXtH3dRcnL3ienXN8ckJL1+9oiySdzvEgB26hGqUA3YYUrEVAqJH4JPGFjlm0YWEcCyKW8utDyPL1g/Uuy1VUWL7BqFSSkaIisFtqcxeKujWkpmM4IfRURcYrEVLTQgWFzyuS91odB4vIDM5ISbamZCCu/ce8ursGUEpnJLYGAjBj3E3o+kg/dJGKWsgpHTz0cH1C77EjZVBjrybiCeghEypvTH9eUQm10hMho8oxhj2G3SjuLEKS7TKmVQHEEpebK6Z7u1z1ltckfFgNmfTNLx0A1oo3lgesVlf8qpegRIo0sNR+0hoO6KWWA+nk0A2nVLKCVNTMisqPu437ExECkE2qZhZR376irLv6A8OyGLguulYLZbIh68zkYb59opXXU1zsEDZSGsiXgxk73yJOzIjrC45Ex1eFjgtMdMJd+ffJrjA2eVjei1hEvnS/h3qfkMXdjxrAt9+/R7t84/omPCwXfBi98ccqDt81b2Lt1eUJVTTjG8e3+dKa7wHc7DP4KDUiqZusfWWS6M4znJ017EXct64e4AWkolR9CLnRy+vuaw3rDc7Jiqwsp5Hywmb64HGHfNx57h7PL8lCso8BwK23WGbGtu3ZEbwtW98mfsP9phVhu3qCoRg0jVIrejaGiEF/dAha01W5ESt6EJHPp3wN77513nj8AH/0X/4H/LBxx/z6P13+Vf+9r/Kf/wf/B2uLjZfeMt9oXrBucS39d4TSG9cISXKJKBNypgNKB1RMsPagBRpztu2Hadn5wQ7ELxjs90y9ANdW6fsraqks57Tq2tEjHTeUbcNGihMQVlVBKnou456u0HKlAk2nU4JMRCdxWlJ17ZEqUBpYt8nCLkQ+Bu2aeRWxd40HUprlElAc+ccdV2zt7dkMZtzNlyyvl4hRZIRvXp5yv5ynw8/+JCHD+8zdD3Xq2uqasJ6k3CT2mTM5wuMyclNT5ZlTA/Scun5yxd88tkn5DrDFDnXqyu8d3RtQ55lCCGp25Zh7JBFTDZiSA8QQdKHCiSZzsfXFIlCwRhUmZUTtDIjyzYmhYLz1HVNXjiKYkL0SU0ghGBoWrKySryKTKaHGQLH5xKqEEJyXY0cgiF4BjfQ254iLynyis525FmJKSd07vNsqBjCCNVKQCMg5YeFcQaqdTIN+F/8Ik3En7U+jN/t7QPj5pM+VzEAidM+SsLi+EXSqSk52KTIaZsWtMSHyG7ocV1PO+zYqYrFfIm9fEnvGp43NZPFgqW3YFtWzrOdJYF95j2TrmPje4aiYABUjKhMszQFB13HrhtAOvr1judljjk5IMtKpl1LPD3j/OQOAYuwHqs0cjplEgLBaqKBYHesjCeKCpMp7i33WXZb6jLH07HZdayqCYcHE6pTy05sKUPked/yjW99le9++HtkWcVhP6VbbwnbwPXVZzzaOT7+0R/x0+wz3rp3xKPlgruPTnh4uKEyll1+RDHd4OseqXOElOSZRlqLkhU2H7joHO9LyOSAjTk/OR/48dWGKptwd7/CKMn5y2d89+KMs4sXOC+5yPf4xv6c7cuXcH+PLDeIGBjqDV29YWh7lI4c3FmQVQEVNMFbuqam7zsigc35BRFLsD2ri46iqgjSs1fN+Lf/1f8RysPv/e5/wavTK1Rs+P3f+X/yS7/+F/hb//rfQjbZF95zX6jTjdbjo0PgkSLNsKRWZFogpcRHyxDAiIjRilymuHBvHfWuY2hbCqN4fHqF7Xu6rsUOPVKAMXtcrZNKwSiJu4lQ1wadp+OcswPtKBsrckMQaYnUdclu5/oeH0Bqg+07iB6ji2RnjeC8G2VWAecDu64nN4GicOR5BkbRdi1Dn4qQlIJJWRARyehwfcXv/6PfZ7lYMJlMyMuC47t3iT7QDxadKdYXV0wmFWU1w0eP1ooYHb0dePb0Kevrawbb42Mgz3KUUDR1jcmT0qNvG/q+JfgU0X1DvvIelFC3CnylkpY0eDvaVyWD65BSI4s0IkCkN3oMHi8i1kqKPCKUxPUDWZbTdzVBRLz343lYpYI86rFTX5dm3oRIL9XocYi02y3BOmbTBbnJ6eiRWY4PAz6O+tUREpLqUeCWMiYiQiVDB0r9meDpiigJt6DxcREmxuCdm4Kcfig3JrXU/YYxgFIGEIpAMq/EoACDR3C+XnG8OOKnu6uUot20vKpytm7gXjVnVe8417Bta2bGsGctqzgQTA5SYPueHkGVl6huQFQSoWBXX/KR6xHSMDUZ89rxaVngJxU+xvTQNobl3h5xsDTSEOIOqw1nsz3Ew0cU0wWvO8/HT34IdoI+UggbOHMZ2d4hb1Qln5z9GFtMURhkH7n79ru4ruHx2Z/A63eJrmNPZEz7kk9++oq9ZsJ3Pv0h+SDIdztMmXP/AHYvz3kVenZvveLev/yb/Oqd13imZkR1nx+cbRmUhBdPCV4kMA4VWhjOOsezV0/o6s9Y84Dz6deQ+YKCgWZ1xuPnL9jszrkOGSETLM2Md+Y52e4ZOt9jb3GfvMyJztK3W9p6xXa1Y311zTC02G6LNhOKyRJlDHboqDdrdts1UkiC60FImu2GSVXw+tED1s/OqPbmPH72islkih0iP/zpR/RNw7f//F/g/puvfeE99wWUMfDRp/eIFiiT5h0qSyBsIQU+OHxIR7KoBJmaJO1dDOy2W7QWXK/W2KGHkIImg/MU1ZS6H2i6foxrJ7lUVCLzK6EYmhohJE3XomLEI8dE4BbrunFOk4hiLgRs15AbTWYy2sHivaPvIyrejOfG7bQACGRaEdC0TYtRkjzPmTqP0pLrq5QCcXVxhnWe6AOvXrzk8OiYy9UVRqU53zAMzBZ7FHnBrmmoipKma+msJStaun6gHTq8SxbaPCuRJiMS6XtLKTTD0BNdWvQJpUfzyShBGrGAYYynTwhJhXcDLoxmBWcJHRitUdogIGEZnRu5AB7nHbZvuQletLsNWmds7MCkmuKsh+iJBCZFiR9NMd4NlBTJkOE7Qoy4fqBmS5Zn5EWZXEBSjrU13lp/U40SPxMkIcEIbqCGIv7iO92bKz0sbtBgaRk79uhJl8uNOOHm/rkZJ8DtE2acYc+KJSKUDO0p5VGGvuhY91ccZnPEdo31jot2S1lM0b2HENhtr3DTOZP5DHN1jW831EqzW0xRRpMLwWHMqL3lSlmCbZBojKgo9hY8HAbOfUfQMu1EtKBeZOTlnDdm+7Qff8YnuiP2KzASKR2XRnL3nW8houX05UfUswkx36PvFRMROFB7bKoJmV1zft5xfjDnV44qnq6e8bbTHLdLwrDHD77/XZqrS+aXWw6C5yv33+DhW2/wja99jbfefY8sMzx98ZTNasPmjz/kzp2ev/LwTf5xJnlaeWQIbFXJN6eC99od1cGC3Guy4JBhzW6z44XrKQrPbHVO1pzyu2crMBWbbA9ZTCiwHFQzTmJgT2YcLaZMF1OUhDDUuH5Hs1nz6vkrri6vWG+vaLYN77z7de4tlhTTCfU6pH1RHOOHIingNgZmsyVXr55jg+OTP/6EZy9e8vjxM2azkrNXKzZ1zdn5FW+/8xN++9/4F4hgT2mvkSwTZLnEGIFQEW106uYIY+KuJQqPURlCCrQak33bFh8C1vUUmeS87+i6PqELjUmZZLfJwSBDUhZ4BLau8W7AW5vywkYwdmctQ9uiFCA1PiZLcN+36f2iEj9ACEcIgqgTnzPGm+yuNAODgJQRow15pjFKMikr+q4nyw0mS3lJboR015s1u7pm03zGk08/4623HmGtY2+5QOQKFwMXF+dU0wlPnr+gr2u223RkEUSUlBiTIb1HmYDUmr7tk2C73mHdQBjTIoRIQBUhPFJl4xY9hX6azAACrTOi7YlEFBFn+2TNDY6inCDGmPSbeBnvfZI+uWRZcG5AFCOeJUQgpCw273AmS2OKLCN4R7SWEMJYUNPiLo4cY53lVEWJHGqcd6N0b5yTxpQkISOpd5YktqxUMEaL/5m4bmtm/JnC+/k/8eZjt588qhiiuC26QtzAbyJu6Ilux2K+5PF2zR0Mn+YV66rk3lXN1WbF9cE+rVEc9xG/uuJ0McfKpE45PjqAVx1NTA89hGfQGl+WLPQU2jU2evoQ2NiOD2Qgyw33p8fIqy0fscNJBUhC33ChFXdef8Tx5Qt2MiCUp1+dclrMkO3Ag/0DDkNOs9uS55Ji8Oy2Hfm04Kv7c370+GPC0YzDRcG87Xm4k7j6gr+/fspvPnob8/gp8slLptOKb7z/Fb721a/y2oP7PHjjTVzsscPA8WzGzGS8WxXs6oby1ScchchfnczITx4gHt7nUBuW/ltMqxKtYLJc4HrP9z/6jH/vd36Pl9/9L/mV+3s8lpJu8GT9DhEt03rF4t5rHHUr9qPj4ck+r7/5gKIqCEPHUK9o6y3b1TVPH3/G5WrLEBzL6QHH915j/+QOWW7QUuMGl9gmMRKUwjtLkRcsj07QmeTFZ08YvODhyQNmRUXdNezv7/H48ad8/6NP+eGnn/G//oLb7ed3ukqQl5qy0mSlxBQCkymyTCdQ9sgXjcKjlKIoJhSmQkSD7QaECLRdR1VkuN5hnSeQwDjOe9quScd/BDak462OgrbepiVSHNF3UoNUdF2LdxZiJJNFmhFKyeB9Wt5olaRmdsAGPwK5c4ahI/iAHxcjLiShfqs7ylIyKQu8H5IfW6Z4cxcDmVJYIVI0jdFcnL3ixatTrHVMJiWb9YblwQHT2RQ3dDRtz8uzM9arFdvNhtV6naLbg8NkGZOywkWPHgE/IQTatqbvOlyfTBFCpm16EubfzM39rVIhxpiCNo0BIi44UJJg00xYBo8UkmI6J0rwxMSy1aMu2VlQmhCSYSH4lEyQ6ZQDh5QpU06GtJwk0g89WVURg0NJlTTUQ5+KT71jNpmS6y39iMuMI2s2yrHLDTc1S4BKH0dJkF8MfP5v/Io3q744drc/A6y5GZEIuJ0v/DPPiVsm7qinRkS8lLR9ja4qdlfn7BUz8tWaNvbMckWBoF5f0JclWxR7kylmvWWYGhSabdcxOTjkuHfs2hXKGLYRnvsBHT3H8z2Odx1PqGmNxAtP5wUiNLx9eMTBWnHhd8hMEn3L+S5wJrfM93JebyOffPIJdq8kigFNSb6C/GjB1w9fp3n5kk/dGjtfoIrAnfoM0684ahz7w5yPXeD+3iO+84O/T+bhu598RPf4lGWmuHO4YOgbfvCD7/Hpxx9w8KM/pqgmvPfue3RNS/COU5/0z1luaPoepTQHmxWb9Yq+LLmupnz1G9+kGyynP35K17T8vY8u2VHQHR7zSRf57vWWmOc0g8Ut7yJVxftHxzxornmgGr76jXc5fHAHYwTN+pJ2u6JtarabLVdXV5xeblBZzuv391ken1BMpygpmcxBKc3mekLT9wzBEaLHtx1nzz9DZxnnF+e0zRqdBQ4P9zgQS56/esFkPmPb1Fxdr7/wlvv5Ot1MUk4zqmlBWWVkRTIVaDPCKsaRnIqaLC+ZzhZMsgXeKbr2Gm0SLyDPxqjwpkMgKbKMumlumQLeueTxl5q22+J9uBWsy8ykSBmXlnnRWUwxJQqdui8RsH2TXoyQRB+xMhUpTJpbuhAZnEtLr9H2a7Sh7wa0VpRlies6UBqjBYOzFFoTi4K+aYgo2qZhq1J6RN92fPzRhxwcHPLxhx+wt1xgrWPX1ODTLJoYqHdblBq5BSHgRjtvP1iCc3jnGWyHsz6BV7RO89vR0BGF/LxDHYtC8IEyL4mA9ykpQ8WYZlDeEWMKqkwuPgXR471DaJ2+jk50Jq8EbuiRpOOoEOJWx6ikxIxqDimSwcQNyUTho0MplZjFIT3snLUczZd0K0s39GMEzU2jeAOOGf8tJUFI4m25+sVe/+x38V+bcRX5HIhzU4R/Fv0IJHmDomkbyKb4LGNPZVxVktf0CVf1mnOtOHz0FpPzMxoDV8rgFdyZT1EX15wpx6YwtEKQLwoeTO/Q1jtWoSdGQ5SKNZbFbMperen7FWFi0EFQb1b8uOwol0se9TnXLx5zvsiIeUTkU3qjYT7j/mzKxvV4nxyVH5g1YphxYHoe7S3wl39IGWbc5R539X1Ojr7O+eUpf/Lyj/F9QzAZ81XL7tkpl7VlXmqO9qcIAsPQUU3KJGXsWk7Pz/jpT3/K+++9T24UQ93y4LU3Wa02tF3Dy4sr+OEPefjgISspOdhf8nf/r/8RP/3gI2Jw6PmSz8rX4fAeC5FzdnnB8mifqppRb655VGS8piJvsmGatbx5fMDhyT7lpMRtr+k31zg/pEV0MWG5PODV5Y7ZZM7D1x8xWy4hBFxvERGq6TTBuGJAyozV6pp6veKjH/8x00VKfPm7v/P/4tWLl0yqCcoo2qHn4vqStu2R8l8QeHMDsCmrgrzIyLKcLDNIk+AsBsYlBBRZyaScUeUzCIp626G0QqsAJNlZ27QJrhxTUQ0+4KPDDja9UZXHWkvbdkgpyTKTkmydIwSPImKKIuWZeQ9SMrQd1lryLMdFRwhQKIW1CaM9WAsx2XMT2zvlrSlVoJRm6HomVYm1PcGmv0dLmZQNKiWxCpG+h6btUhLFqC5Yr1YEZ6k3O+p6R9N3KJWR5SYlysaIyTKsT3bcfujJlAadTB3BDWOSbgpBzJRESn0LohZSELzDmDwVqTGLa7BDQkimnIfUNPoIWhJ9IMZA17SUZUlE0A8DuUhF1Nn09ZRyBOcRRtM2DTEm6Ln3IS06ywIVGXkMPc7asdBbbjJ9pUwPBdv3SCOZlVOIIXUII6UrilH/Os5Jk9zq87n6L/wSN+XzhoT7X/tpP4tWYJxWj82tuE2CEEikjvRNgw09wlnOty1TU5ILaFzLmVG8vTdDDAOntsaFiMlzXj8+ZLe+Zje0xDwSKemnFeV0zv7VOTZ4cJ62qfloEikP57xuc7oXp7ycWlxVYmOgHTbM9o84cA9p7TVdHCiEw243fFDvoMr56r3XkM8v+P50A6YlywTf2H+PSS+501gqLOurNb/z4T/gznTGW9MF+e6SfVOQvzrj/KfPIXqmVUE10Wm/ADRty65rMUpTlEXSgjctf/LDHzCZTnl49x5N3/Lhhx8SheB6u2NaZGw3W/Ii53vf/wGvPXiNe3df487d+/xk3XL+/BrBGqtyQjVHy4yDGHj7/jFv5oGFDrjrFxjRUU4MMVr63YbNxSn1dg0I5AhBn0wrMiOZT+fsHR8iJQTnicGjxqQaAfRdg1CKajLhn/7Df4iKng8+/ox7D+4zm87IX68ospy79+9gXc8//MM/YL3e3I7Xft71BeoFiVaKIs+pyoKiSLPOKNIREqmQEaSQ5NkEJQ1ZlmMHUoE2Gq0EdnCs1pvk9lGSzvY4P1D3Nd55jDZ4Z/EedrsaKdLnISVt344xNmFk6CbnmRCKOFjs0KWk2zG1N45jCeeTVtS7AWVMurG1TsdtUrKrFOmo242ErhDA5AaiYOh7pBBoKRBGMdiB7bBKybkqybWGoUVEaHeblLI7OsbckN6bSmmsG3C2h2CQQtL7gSzczFiTvMqFdP6+WZ5JKZESlNZYmzS8WV6ilB51uDHJsrQmumEEaHuMznBhSEoNZ7FWY4zBWocUPaYo0DpPRgckFosPHmSkaWuKLEcgsXZAiEiVZUip0sJRKkIMKKcY+g6EwroBIxWCmHTUcQAh0dok66/3tz9vEeNteKO8mZXeRPn8wq8kSRAjxzH+V5Tem3iem+HDbef+M3+WuAAK5weyvQX1akN5co/F5SueNx3HyyNm588QquV5kBwfnbB8/hlORrq25dksY37vLuHpE7z1rH3NU9cj8oKD4yWLZ2dcZAO20NjgGWxDtdhjrl6nrK/Y2S15rsgxXGxW+LnmcHaf46uOF80lL+WKWFVkZsY8NzCdsH+1Jg+Widzns2dPKRZ7/NI7f43v/NEfct58glIRqR0H8xlfKUrs5RWhafj2Vx8ldZH3NH1H8I6m7/A+UmQ5XkbWmy3T6ZQqz6mbmuVyj1cX13z46XOyTHNwcEBcb7l3/wGTqsJIya99+9eophWXV2uMFlxbgTM5MjPoxSGydWRZzhtF5OvHM47Z4lZnPDl/gQgD24MF29Ue2+B58dljri4uUFKilKDvWi4uL2l3NTIGhr6n3bVkeYbJMrQx9G1D29U0zRpvHUEpDu8c8wf/5X+J9ZZPnn7CdLrPn//2rzGdFaxWV/zwx4/xzrK32KPIv5ic93OLrnOBrvEEB0YVZKYg00mbi1CJGOUjoNGiGPWdESkF5SRHZxlKG+qmpWk6vA/oXKXPc36EQCvatr3FBhqlUlcnFbYfkCot7EIIoHJ8SHPPEEJiPsSIlpqx6UDpLEm/SB1tjCJ1fyEV7RgDSiWY+dDfaEvj2MEmUwVC4oYBMVpghQh0Xdr8R+kw2iCjH+NbkvY0wO3DIQZPlCnLKjh3C0+3dsDIVOid92PiL2PxT0wFQkQpg5cDUgryPMf5pHdVWo2vU4wZZjm2T2kUIUoKbdLr8H6UbSUgTvoZRoLtKcoZPgYICkWGcw6jFP3Q4WTSYGcqvf6gNZnOQBmkiLTDgJLJPCHHsYmzFkkComs3jJH3KcuSUV98o3vNlKQoDXmZo4zic5PwL+66GX98/oFxqitu4nbSdYNWEDejEvhT9uCbpaWQEhE91rVEb7nwNXv9wFWueCIt99Bs24YLLbnuN9yvpvizl7ycaXbtmsvQ8NrhjOHVNddlSsQOCjoTKJYzJjZgY4cyEakEV3XNRTlhevg67+82dLsNn9hnhDxD6IogFPdO3uT0+YpJqJmZgqmactr2VPcO+fLklzn77FOe956d+xh1GvDLe9ydHxJlx9tHR9wvF7DbciQFz7YbtusdwXb0g2c6q1hMK4a+57ob0Mqwt9hjsJah73B2YFCSGCJXV9d8+uQVe/MFITiuViv29w+otzveeO11Ll495/nTx6w3DXbw3H1wRH09UFV3kYcPEEhUv6Moc966s6Boz3DtKc8++jFPn77i6GBJsJ56s6WtG54+e8Wnn3xC37XMphWT0rDe7pBCM53O8T6wulpTFiXL4yXeOZp6x267RaLZO1jy0Yc/ZnV2yt58TlGVfP+HPwTR8OL0CZ/94w85PTvHuvTu35sv/rkiqH5u0fUuslrVnJ3vODnqWexNIEudmJAiJYrKhLWTUiZOgkxRFzFGsixHak3btTDKa0L0KJG2hDEE7GBH26kny/PRDZVA3tqYkfYzkGc5QiRylkaNqoKU9CtFKkIhRHSm8T7gXCB4n5YjP4On1CoZDpzzOO8T0Kf3REQqsDCOAQSddeRa41xHBJSQKBGQSiCFxDs/wr8iCjASYlR4YrIme8s40AQ8Qqdtt3cuzZGch+DRmQHnU4co09xWRJFOAXmO9A4pFUqaFDevFDF6tFJkWYmzHVon3oSQEk1M0jlt0veVJyC5GLXUOmqGEAgEnAOjND7LUmmJHki/T4FAqpjAW8pQlInQFIHBWfJigrOWvu8p9JRZXrINPc6nUYWLySgjhEBqwazMWS4qjg9mzCclnyfY/QKvn+lW4fOCe/Nnf6rpFfzpAjuOSW4/Jm/4DAOFbrGTnIkU9LmiUgFcQ59HTMxSMGcc2EnL5GCJGmqElkzL4v/d3pv1WHZd+Z2/PZzxzjFmROScJEVKlFQqSeVSqSzA7YZheOj3/kT9HfqhP4DfDDQaDfST21VywYWSRJYojpnMITJjjrjzGffe/bD3vRGsKpMGBEtCKxYQZCRjuhk8Z521/+s/MC4K0vt3GJYtMpYoDVezKW+SmM4w41GVkFTw8eKEIlIINUQ3c3Z2nnBpFXr+jFwt2Ux7jKJNxhsp72z8OW8+bdC2w7PLisXZByAsb4/26GUjyotXJLpku7vB4+EWdzpdDiaCWFp6tgZbkMQKu7nBy2VNv9ulqEu6WYTEJ51004Y4y7iajFnMC4S0JFlCVdX0uh3OLsbMlwusa9FCM+xvMuiP2N8/IFKK4XCDqmrIO32EqPn0yy85agbMl2/Y2biLSHuY4YC8rmB6hW1nnLx8ytNnz9nevcu33v822/f2fJpKa1mUNbW1OK0wWjNvLZWB/Tv32X/4BJVkFMsKrSJviFWVzKZTFvM5aZp67m7jT+KNqTh9+QYlLJPxKf/5rw5RUnA5ntK2htFohHMt/Hec3r4eXrAO07RcTiacX0wYDjLipEsUhSWLFOA0Aj+dmtZQ2QIhvbVfkiR0u32a9hhwLJYLiDTYGmNqDylYP11qpbEWWhdcWJW3MLRhW6eiyJPWTYtWgroqUFKB9aGNrWsJgeAY29BYr4JbOXP5m8nnIzWtpahqIiW8Ry3QmHaNy61W7s7ZYJPo+6YLBPpEK6wToL3fsAz8VGkdSnqMz7tXhX4b6Gq2dURRTBMUYMYYrG3ROqj8gkAE6fnRHvLM0HHsMSkp0EoTJzl1620q4yxHCd8UlTA456eNNEmI0hSBI45jv+AjsDOsIIoSamcRsqE1rYdejEVH2ivRlGcYKKV9vlkc4duy5wyLskA463OjtGWxmJBlGV0dc9kuaQ2eeeG8R0EaRfS6KfsbXR7ubdPL0z+QVZq78bZqotcfXf15BT0IIdbXvlw32tX94F3JJAJTXVGLHsPG8VyX7EUdlLN8Rs2g0+GxcSxNzctywjRL2e302BYZzxbHjOsC4Vr2RiMeTSXP22Nse4FTXSq69PceE08d6eQMJ8/IlOBu8haf2CX5w7s8uWgQ00uKaoNfTl5hXn1MksT8uP+Io+MLDAtEO0XGEUUx5p3+fWZ2yN5Gh1E8ZC/v49ySDQxDZ7DLKa2tMcJyZ2eDLE1YLJfUdY1pLGkSIZBcXM2Ji8YrywLeP76acu9gj83RNn/92a/odBKUStgYbPHDP/kRg+0N7u7vMp+e8cWzz3jx/BWj4S5VVdLIGLHZQamcZTVhONpAlJYo9urL5XLOeDKh1+ny3e9/l4Mnj4jjiPOTE85Pzzg/v2AynVE3FUXpA2mH+QZvvfsdhtu7pFkPlUu09vH2dVkwm0w8o6csaJuSWEV0O33e+9a3+eKLz3jvnU3fnGdTatPy8tUhR6cnnhoqM7T6LZuu1IK4I9HaUrVL5os5WSdGR1kIHLwmuQuHJ+kbf6TVOiVNEjp5FyH8xt7YlrZpaWpvs2jxhjpS+WnV47Y+ONHYEIniBCrSSInP+BKSYtFg2hYV67ARD9QkJYNYw4D1izotNbZtfTNxFiX9EdA6P+2q8EsyrQmvA4y11GWBDEIEauvp/MLHuyRJiDxvJE3tvJhDSlqk5zavKF84EAodxbRVtbYBrJqGKFC+HOCMRSmN1jF1MSOKMoyKaBsPr3haU6A2OesncpngnPONMvcLLNF62Kebd+jmGUZ6xkKqFVm3Q1mWOCGQkcIReazY2kCN8ovGpq5Io5hIaYSALM1x1iG0QgjJKE298kx6jw0hBGkcg/MshjSJkaIM3GD/eQ5HJKAba4ZZyjBN6WfZV6W1v6fyFLwgVxY3uMMCL4SQN3dn19Os8DrxGw1XogLkhoRYS/Y6KZFNGErDIE2xy5Y0r7GRphePaItLorzERY7ecIN0JslUTZVXxHnLZjdnGSf0FxNkq6ATk8Q7PC1qusOcd3rvMbt6SpLs8/RywsycIJTgnc07jKzk9XyCbScksSRF0lKzOxgyXbY0cZ+93pC3+tvsRDlW73i4rp5xujxmOT0jryydbo9Ya67mS14enQCSfn/A/r17iP5zaluCqXBW8s67dzk5meOModNNmS8MtnVcXEz54os3dLoZQioOdvf5y5/8BXk3pz/skiaaN5Mpk6sJ3/v2eww2RiyWJYvaMr1qmLQVOh4wTDLOmwXYGCsMy6phsWx5+OAxd+7do9PrMx9fcPrmiKfPnvHm9DWHr19TFhV5lvDo7iP+7Ac/4f5bD+htjFAqwjqDkJaqWnJ5espisUAnMUdHR5wfv+Gtd99jc+8On/7mQzY2epydH7G9scn9+/t8+eI5B/u7ZJ2Uo5MT8iwh0r8leyHNFYNhynAjIcm9haNprT+Bah9rIZ0GGy5W62W3prGkCLI0p4xjkiQB4WM2mqqirMqgdvIS3SiO/PtI724VmkmkY7CGJE2xwZK9aRrapvbLN+OP5ta0EKALK/zEbZ31LJ+wLIvjCGdCgqsUNG2LxSKFxgiP9VrjidEqEPiFgCyJKWrPpsCBlN7yz2IRwiGVJ/1bF6z+QmKDs16hF2lFrCQiCk//YIwd6ZimKRBC+mWUFFTB0EcqL6VuGi/kEMJ7A7emJdYpQoCWCqm0p3tJRdsUNNaQZRlbmxtopSkbg5OCPEvpZrnHnp3Aae1buGkQLvG5cxhoWh9GGUVkeYckjuh1OgipfFQSCh1pNgeS86tLcNAYvxTUytMDlRPEUlM0dbgk/N/BtC11U7EsliyWS/zz8g9l0l2ziFlJfa+XY24tkvgKlBCa7erPN98XCIyticolVmc8Hu6RREOK3PFe1ZJ3dzifGHq55n0EWbbLq6nlKrNsdh7RaSb00i0+uSho5YKHowM2FwO0yvj1ZELppkxKjelt8SR+xJtFjWlLtGhJZExdl+xu77CYS0qZYYRBq5iNtMt2r0u3ybG2JI8kO2lMubykXb6hWJ5S2DnONAirmZxpLt5ckSYx86KkrCuiKGE6W7K3lzDYGvDrN0/9ClEIUj1g+Nb7XJ5eIk1NguTw8JSkdGxvjlhMF7zz1lv8q3/5P4EU1OWST3/5JX87n5PEmjRN+fLVS5ovv2Q+n6GUohjcoyokZyKmk2k2t/cZOMHy6HPc8RsGnR6P3nlCb9QDZxifn3N8dMR4OmG2WFJXLZ08Y297lx//8M94+7vfZmN3B621T5hxlqasmJyfcXl8jIsUGsNgOEQ4x+ef/Jqj41c4Z7i4mGKcYbGYsb+7w+nxEVGS0u92aNsR89nM+298Q3190+1E9AcZGxs5g0FKd5DRH/SJoxTrWqz121ohJTaExxlnPf9UVMRxilL+pjfGK5iauvT2eMEG0PNLvRViY1u0lFgjUdJPIVGS4Izf4BvrI9aFkDip1rzWlRtXW3sv2tY0SLxhjTefVkQqpnUeQjDGR7NYoKzbgPs6IuWwApI0oWl9c8+VIk9SyqICrH8wGP+1QkqQFtN4K8PV1IyzKO0bZ6S1909QzlO2WkOsouubFIcN/NtIWiyeubESSUjhNf5RnFDVNdZYWtv6Hbt1KB353K1yAU6y0R8w7HWxDlAeC47jlKptiaOI1kGWZDQWmkKjpcE4zwpRXp5GFsckUtHLu0RxTJ51aFvLYlkglSSJHIN+n/F0itLQhpNFa7yktZ90KNtmPe0LoK4Ms8mSM0AYy3iSob/Zb+l/eK2FD6s/r0FcL3S4yViQeCzf85f96U6KGzDDagoONMqmXWCqFi03SNqG7lafXfUuxdWSSdaAjNiUA5pxTWsXNFpDNuJhusXJYkkW1SxdwcSUHGzsUV9MGXR69FVDoiWDLGZje5dsWZA2fYxoyLOUrazP271dutMBbSaxdskozznoDKjnM+RsycnZCdViyvN6Rl0vsS5QK/ECJuEcIpI0pUA1jroM/z+130kUZcHW7i7yWGNtjQGWrmQpoRxsUl5dIVNBb7SBKGse3L3Pj//kBwz7PfrDLr/4u19SNy13Dw7Y3z9Ax5oPf/0BZxcXRFFCFCdcXV4y0wtUZx/nai5n5xzs7jKyDdYsaOslDx4dsLm3QxRp5heXXJ6eMplcMV/MMK1htDHi7p0tfvi97/L+995jtDkkSWLaekk5n7CYL5hejlnOZz5ZptEUl1eU5YKTszf86oNfUNctw36PJEkpqoLLiwX7OztsbWzy5uTY+67EEXNnMO03G/N/7VWfpJpuxwcJ9ns5/d6A0dYOGs1sOfWUIAlCuOBw5U9oQljqZkFZaCQWpQRpEoMxaw8BL3n1mOhqM+xTL/0tEAUj7CjStI3BGuObnXOo4HsglaeaCeXZDMYYVOSP1CbkcVlrEFJiAt+2Ni3KgW0tcXDrE/iFVpzFQZHVYp3wlC/T0Ov1GM/mNLUh1iGRIpjB+IdJiOwWDqXU2iJQKIWW0gsOlD92ePaET+v1N7L0k33AlhHKwzZOIGVIvgj8XREsK51zwWClJU2841ptW2KtvUxYKLRWJEiU0J6NYEAnGmWtl3Abj/VaAW1ZkaUdWukpflJYsjTxD8LGUMmGTqdDlmfUZckCQWUM/V6f5XJJrBJsMAKfLWZY16CF8H4cIUWibWFuFriqYXw195HW/y0hwu+0PJ7rH4CsF2vrWqENq2Z680P/aKkmv8JscFgiVaPMnO5ogzTRZJtb7Pcl+XJMIRryOCfPamSzYGxr0jSjl3bYWDYM2gULuyTNMnrpkP29h2wsZ8xNQZII+lnOvd4mG1HGaTHHiJrGLMkUdFiyXZXM25Lx+DVvXo05bAqatsCY2jdX58KJ0O8v3KrphqglnUtsFdG0jR8SbDCl0jHLsqFbJiQ6Y1nXnouNJUk76DSnkw1Q1iCjY97b3+df/MU/Y3p5hW1rXFly/842jTWcnb5h4+1vEWcJRb1EaMnG5iYX56eMJ5ege0iV01YTSkqaNCEd5WRqSf/+Lgf3D4iTmKaYc3V2xHRyQVEVVHWNVJokivjWW2/x6O0nDDeHqFhQlXOml2ecHR1z8vqI8XiKSjO6gyHLecFsNuH586e8PnrDnZ17aK1omhKlBUenxyzmc47Pzrl/sMfro9e8fvkcrRX9Tkakv3mQ+HpxhJLEsSbLUrIsJ+ukdLtdYpHStoZ5NcNZkNI3Dyu81h4laFfRO4UjijQbowEvXh2htMI2Zs1zdNYbsLRthZLexR8pSdKUuiyD8UQToIBgNu1EwBA95cs5Quih/7gPPzRB3GWIlMY5E+hADq0klXFIpamM8Q+DxpB3CMnEHqONtaY2Bm0taRRh6hopQGtB3drAO/XLl7b1qblSSpwW2GD2rYTESD/lunBzO+HjR1bTrJf9muAyJjC2wQnQOsIn0ydI6RkBEg9pmKb1N4twCOt/nkxTdGBzaKWoW0sUa6RUZFEQJRiLVBGRskRpShMwahVFSK2hrclijY403U5OFCVUdeshgTQn7w3IOgY5njBfSkxjAsTijYaUkrhyTm497GOsRViP3ZempSgqHwYZ8P/fewk/NEDYC6wYCaxh3YDl8pVJdsXgISzU/BQsvtKcBWClQ9uS1i1IXErmDBsHu2zUm1yVc4gVO/e73J1WHBVzSteQJQkHWY/7dcVVMUNGgjyO2I5S7tUZV+WceXFJVR5zMXnKVdtQ1AVVXdA0Fc423rwowFzWGbw5j8E6EyZa/9/9Q9yfJF3wQl5FYCV5zla2w+XhFdZ/B4T1JyFhHcIp+tmIZT3xySZCcae3SSRjhFggJ1ccvP2Yd588Jo01Cy158Pgx5XLJ2cUJSQS9PGJZTvnosxdcnJ4wWxTMrsYslwu/IJ+dY+KcRufok0MWsaA52OXuKGNrb4+0m1EuZ8wnY64ujqnLBW1b0bQ+WWY0GLGztUW31wEs5WzM/GrO6fERLw9fc355hbGCYZSRWJgXFbP5lKouieOEewf32N3d4ujokM+ffk6WZlxOpvzmiy8Q0pF3O0wuC6qiYJRv+MTgb6ivlwFrRRzHZGmXbj4gjbvoSJPojDTNWVZzrG1Rwi+gBNAIi5OeVlWVC2azChmoStZaYq2pTB2WQqHpOIsQfmHurF8UqeCG5Yz1U6Vz/tgjJSjln8pti1QSpWJvmiMltvXqLxEmS2ONFzgo7+GqRFjeCUld1/7Y3lS01lA3DomHIKJIe4zWee5skvq0XYvz3gSBTbBibQjlE4EF4FqH05ooqO90aK7G+qQIizf09gm/BiddUMsF7wXr0DrCWIuOIr9MswRs1J8MrLNIpyiLJWmaYxqDyhWdNA8cWuE3qW6FSQratsFZ0FkX0zbEOqHWDdb6SSXNOixmDU5qZJRQN5Ykjcg7CcVyznR6hTF9ojii08nXUE3ZVHTyLmVT4VwPIySLsiByAukEgWbsTwXWYo0D439Pv/9aGSwQonZCLP1NIFeudmzuuqmGt1XjFf8EVcgrhx2trRhfvGAxPiI6Thnv7tPNemgZoeKI86VC1Ia8bYhpqZclL04WiLqltS2tqTmvljxvKiQtuNBIrVnLkJ0ID7DVfbP+dxAMYXBu9WaDAZQJU66feK01notuWpCKUe8Of/bop/yq+ZDPPv+IJIheptMxbVuxszMi0x0CcxwFDGJLPV3SsTU/+t77bGz0aJoGLf2U/NEHv/T3eJKCilg0Df/l//m/mM+XdDo9JJJOt4OOFWXVgPEUzl5vk2GWEzcVA9ey1e+R97q0pmV2esHpyREX4zNmi4Ky9nsOJQS72xskSYxrDMV8xmw85vz0ktdHJ7w+PaMxECcpTgha07K5OeLzTz9ksVgSRYo8T5lPxizmE7wrqWU+Kzg5myGcZX9nk36/S11XzOdzZO+3nHTjOKbXHTLsbZGlI7RM1haMKvBdnbPXVFQRHKWkQGq1Pq7EiQ4pAc6LBRQglKd5GRf0/gKJ88GJwmNrSerlr94QxwRoweO0CkHrDLZtybOOxzeDuQ3OCwz8a9NIQIeFziq6PNL+2BTHMYvFAsJSSmuJEj5NWAgLWIxzJFFMmiRe1GAdSsu1bNYEWEGvIQSHVIpYR54aZyytaRHK49+rM6uTbs3JRbqguNOBJieu6W6uxaKQStK2wsfhWEvrgsNY2wbGiJcXGwfSeP8GLYTHzJUO3FnvrSB0RNT6yB7nvPGNaS3d3gjb1lgUVduiq4q8k9Pp9phOJyymY+K8i1KSLOt4vvPcP/w2e9tMJgrjYNNs0F4eU5jWnzCsY8WElcJhpYBvXvT+Dy9/3YZYdbzY5RrP9e8iV5PuDUiB8H5gw3wT5dhZg6WisRWHrybB1tIEOCNAHMHcQQiHRnglVZi8ceBWchK3elSE64jQYLnZbEPD9VIVf5IKk64j5My7VU4zYcpt1zi8lDF7Ww/59ls/oJhYPvv8I8qqRClFHPtls6kbbAMSTSZTdvKH7MuUR9/aZ3vQYz65pGkq4kjT1nPuPXyIkpIvP/uEWTnn5M0Zrw8PMQa2tnbY3Nrm88+/oGkq6rqkLEqKyqBkRrfXZRQ3HPT32dnokQ36qEj7AM43h5yenDGeTzm/mjCeFVgn2BptsDnoAIblbML47JjJZM7p2SVH51dM5uH0Fsd+wVvM6HZy7tzZI4pSTs9P+Ojjj/iff/aXTKaXTMYz5sUS4by74ng6Z2vYpZtH9Ps9BJrpdPaN19zXNt1ed0QvH5FGXSKZIqymWhqk8XaMQjgENly0/muU9BeBsxYZCYSGSEiiSKGk8JOdBWMbD9ZLgXFBbitEMOIWREqhwEeKSwErOazWtKZB6AjX1F4W3PpASiG99NYIu8Z7pcDTx5xFRzHO+rRg1xpU7E3E/SKwpTbGTy4IYokPu6xb7/OAIE5iRNN4/2An0CF7TEqNVhKlNdY56romjlZyQH9LSSlZ3ZkiTPZ+AvTpsiqowZBixRgNOLALCRL+dUnhsK3nQdtwhJSiAuGDROvAGshib4QttQy2jD6G3iFYlgviOCfvdhAL3+xN29LaBoFGxxGtcahIMi9KjINBt8NwtMlyMSeOI6qqZN4an6wcJ4ynV7TWMtzY9o24bVh2+thiTlVVGNEgtaevSR+ny9rG6/ddAY9n1byEN5P3t8c1RisEoCxIFaZbEfyZPWPhGuNd4cRr/zK/uLUEDXRg1rh19wz3j59WV6wJG+Lgxcpb2drreKBVkxVh8AnwAYRh19r1lGtCc11BCM45XPBitniptnXWq0vDMyeJc+5t32M02KbT7dDrdJjP50SRZtTvkqcxsYq4O3hAQsZ+94Dt4R0O7h7Q63dYzuf0+n1MU/Pq5SFCwMHDiNOLS07OT/jok0+YzKb0+33uP3jEZDrm6bMvmC8mzBd+4MvTlCRyqAh28oi9XpfHB3fY3rtDkqUUizlnpye8enPE1XTG6fkl55djqqZlNBjS7SRoKbBNzeXZKePxmPmy4mq6pGw8r18qz5oQQvD551/w6vBL3n3nHf78n/2Uv/p//xNNueTk5A33D/ZpGsHff/IpWT7HupLZpOBqvGRn+wFlMQMMSaf3jZfb1zbdPE5JZIJEgZWYBop5SVO2NLb0CQXOR5V4PasnwvukVD/tJkmCqVmbfltrgoGNQwYMVKs4DD3++JYo5c26nUNLaJSixF9IOBPkti5gt4SkX38TK60wVeMXcbbBBdmwaQ1GeagijmNq6xVgVVmipaRpXZjGr5cjkVJorTEOlFLUrUZaixQuKLr85lAIf4taIYKngkTr2Hv+ishLkVd0MSm9X4Vi/WdE2IYjMG1NHKdIrT0VDq+Es6YlSnNvXt423vtWSJSUNEFgYkyLtS047aXQSiIiP4FbZ3EipXGeaSBMi9IJSaypmxoboJmmKck7Pc+GQBHFKXXTUtSWThbR6fYQOLTuMB5PaAIuJBGcnZ9SVzX9/gikZFEvqZqKqi7IsphOGtPrxMSJ9h7N6vfPXvjKdBtqvTATDoT9B1QxF05A1/Hs4sbXXS/S1t/NN+EwqXqtj2+uXjwTptXgVSwCK8KFJmytH2xWjAj/slzAZf3nuBvevi6YzztnMQFK8A9dg3XtddN1AepZNWNuPgA1XTXCFo5nLz7n7OwI5whGT462aSilYzyZMBxss5PdZWdnj1GnS72Yc7aYUjeGF7Mpe9tb3H/4kLOzE37+87/m6PgIJyQH9x4SnR6zWEx48fIpTV0ymy59mK9zSOnl5cPhBp1On404491Hj7l/d5+8l1EVSw5fveQ3n37K2eUV4/mSy6spk0WBs46tofD7l0jRtjXT6ZSrqxmzeUHROIzw0Gme55RNRZZlDPo9PhzP+Ov/+rdMpxO+/d53iKTk2fPfcHV1waNH7/MvfvYzXr855O9+9QFHx6ccnk55cE+wu3uPl69eMl/+lpMucmVTCNZ4SlArDcLVtG5JS7t26bFKruk13hDHT246kgjn6HQStIBlE2JdQhCgsw4Z6TD1+oakIh8qpwOfVqlAOjcWp7zm3ATfWIdnQviJckVwlx6K0zFKSnSU0DYlq6vW2mA4rRVNVSLD1OLwzTWJIu/pEEek1lE3bXg4KOrKpzcIU6NCNJHn8Lrg8OU5tEorbNuEwMt4/YDyK41wLHWesSDCXSqFD8qR0vN7XcAMnbOBpoS3b7TG3/TOolVE0wR1X1NRVzGx1hggiVKscchIEkuJcd7FLYoi36CNWkuz67pGRylN4x3f+v0hi8UcYxqyrMuimGOdo9vJSSIJwpGkMWXd4ow/kjrTsFjMEH5gZ3djBxXHiCuBEC2bww5bGz2GvYx+r+NFFb/nEuG8vjq6+9k04B6r3otY92axbo4rFZsNnyhvfE8ZmvP191g5QPpYehfeX33F9bgrVtNvIMSsYAPf6IVv1PirXVjfZFfwzeqbCncNJ/gGG3jrNjT/dRM21x8LL8M5R6+7y19891+ynW/z6acf8+zZZyjpIbfWNNRtTZyklFVNlsZsdzbophnjqymLqiTSksV8wZ/+4E9I44RPP/6QN2EizbOcNMs4fPWcpql9bmJd0jYtcRKjlWQ+L3BWEEUpWdKhl/d55/4D9vd3SDo5bVVx+PI5H3zwAU+fPWcyX+CEoigqnHU+SiqNcNZSlSVK+Pj02WzBvPTQmdCSvJPTG/Sp6oZXr18yHV/xve//gP/6d3/Lbz59hiThwb09zi/HnJ6fc3j8n7l3cJ+HDx/yox/+kBevXvH3H33Ci9dH7Oxuc3DwkMM3L7/xmvv6CPbga4uVXq3kLLYxONNiXYnQFplob/Rr5UqPhXQq+K76aRdnSPOYKNa4uQuekyLwWWPPFtArjNhTylYb+CbglQKQSvsrw9hA9Ldona6f1DrwJ7WOQEi0cl4eqzRNJTzDAu9r6wQIS+D/ep6v5/TKwFNULAMvdTXppElMUVZEcUzV1B5aiDxHWSL8JC4UebdLmkaYqiKKNYjYm603DdPxFXXborWfcG0wgJda+dfqIE1ShJS0zntSGOdI0iwIMyxKeFVZXTeotvK4cttiGm84U9YVWRJgCuml07FOaVovq24aLxU2UUJVVV5OHSYfrSVVMSdPRuRpFqYkiOMMYxratvEZdG1L2xqMaa4z75RkuZjSmIZ+f4BUERv9DaxrsLZgf3uTg70ROxtD8jz1Bj6/97ox4bnV1LtCTF2AEVZHfv/5K1xayBUWvGq8138fv2xz1z8iLIzXuOv6R15Dc+uf7Fb5bOLG58EafhCh+ZsVjrtiIeB/xmrRtqJ/4Q3z3ertKw03sBdYORwrtnrb/Mk7f8q9O48Y9T/ho49/QWstQkmU0zTGgY6J4oQ7WxvkWcpktsAIy7KscE3N3b1Nnj/9mMbAZHzJ+XiG0gkPHz7h/OKMy4tzqrrCWH/6NMbhRIvOIuI4YjgYsb25w6A75MG9h+zd3STOExrbcvr6kA8/+BUf/P1HXIwnJElGnKQkaUKn02XQ69JJE2xTc3ZxQRprqqqmrCrq1iCVQgtFnGY0rb93zo7OmM2m3L17n8f3HlCVJXfu7KDzFGSMECnzxYwvvvySV28OyfOMvb0DfvqTH/PLX37Aly9e8847b7GxcecbrzjxhyDFvK3b+n3Vve9H4QYICjMZgipXijPlXdqUuPbHkEL7RGmlgt+CRAR+9Ur0cmNf6nceYcHlaRvX99xXGrpYzczBzUQGqMKt2vFX36RdsRNWjAS3Xoo5rqdYa6+pYNefawLOu8J8w29BJNwfvsWfPvxzhpu7PH/5iv/y8//EYjkHBE3TsLu9zcHmNv/8L37MztaIy/NLjs8mPH95xN2DAxazK5bFwr9GpXn56hWTRclwNOLi4pw6RGsVZUlRVCSZBqGYzeYM+zmdrMu9/bvs7e7x6OFjdna2iNMUHcWcnR3xyaef8+HHn/H81THGtowGI3SwMN0YDDm4s0UvS2nKJVW1xOEwrefTW6mIk5y006e3uePjqSofoNsbDLgaX1JWc5q6Io4j2roky7u0rWU8GQevb0FTF0wmV3znO9/j5PSCq/GUxw/vc//gHv/b//5/XD8t/4n6QwDVbuu2/gBqtUizEGCrVXSPh3+uJ2D/6W690LrGb1eT6E0Ph5tDjeehu7V5e0hPZpXbd81G8Mkpbg05XH8bP1k7nGexrGlgqwk6wAncbLjBbjQ03PXLX30n56dkJ3z6dF20PP3iOcnhmNOLU7SIeXL/u1R1weujL3ly/x5/9t136XciLi+OyfIu3SzmyYMDpuMx5WJOJ8+Zzme8Pj5hURSkSYwzrd+VxCmDXsar1ydUtaV1FUXhIcK2lezu3OFgb58H9++zvbOBSiKMa3n57Es+++wLXrw5ZTpfMhwNvVOflCRJSqQMWZLSzTO2NvrUZcrpectisaRtLVp7z1wdJeSDTaLBLjv9DrtdxUe/+YBffPgLut0OR0evybKMvTu7vHr13HvkKkVVe2FIN++wdIpBf8Drw0OSLKOpaxbzksuL6TdeabdN97b+uMvddJHzMMGqvzm+OrD8UwK6r67gWDe/lTzC07lW3y1wK/8bh8trAAOM8BCDdNc/wd2YeK2zoemuGm1443qatesl2mpxtoIjVt/FrZWE4beAIiYSGXGS8Oc//eckWYfzk0vyOOHzj39JJ7H85Y++R6QEF2fnTKdz7tyJsG3D+fkxy2UBSC4vxiyKgk46YGvzLtP5mPPLU7+4jvxx/eDeQ3RyymI+YzKdEkcx21t32N7aZnd3m04397uHVnD8+pDffPIpz4/OmU1n6DglSz3mW1cNaRyRxolnPCQpzq0olxoTBFdSayKdkPdG6N4WTb7JMoo4uXzFm+PXPHv6lG43RwjNu+++x+vXL1gslyASzs6v8Lt6/3tvGkOSxOzt7TI7nyKd4sm9xzx+9OQbL7nbpntbf9wVjvQ3m6e0DqdCA3YWtzYxuZ5e1w1YXDMNxHqZFjBe948GXXACH0G/Yvrc/OA/eGFhwbV+bde7sn8w2frm6RvqTbGDvW62K6ZRmLONcOD8/sKjHX46F0ZTzmueX76k/fn/zZP79+h2D+gN7nB5dc5Pf/QdlDBcnZ8DEZubW+RZl/PzM05PjlEq5q3HDxEiYXNrj9HmDmfjMb/48APGS8v337pLpKHTjfnw1x8zHA5pmpJ+P/M4a6S8r3YUc3U1Jo5jptMJz1685OXxKW9Oz6mXJaPNLWSc4hxsjoZ0uz0ipYi130DOFwXLYsGiKDyPXXhWhI5zkv4Qk6S0OuPUCOzhORcXF+zvH/De22/TOsfHn37EcrkgShLiqEuSeJdED81b4tT6XMT5nLI07G8/4P1vv8+9Jw++8ZK7bbq39UddDncdOHmz8bn1P/7pr/pHH1ot1AC3MuK8QT/j5qTqa0URu96r3Jh13Sp1Y+WJsHo4BE7takJ3AbJwrKdYawn+CQE+disKmTdX8n+11c+9oeqwYo2ymKblr/7657x4tse//9f/K0pp9u9s4ZqCozdjtkcbVK1hc2eHVy9f88lnX7A52uDtR/c5PDnm+OySk8kFveMB3U6fH//p97k/nXN5ecYXn/yG05NDWuv8ctc6kiwmSzKkkiyLimfPD5FKYdqWq/EVp5dXvDm94Goy80pGMWFTxBid4ZwgTTKSSOOsYTK7Yj6bMF8svB+LVF5SbyBKc2qZULSCclnhBGwOt+j2hpTzKzr5iKKZ00l7nJ1csr07QCrJxsaI2XwKWMqyoqkbL2RqNQdbD/k3//bfsf/4IcOtnW+44m6b7m39kZcLHN2v3XysPnc9XeKpL6soImcDv9Z/rzVmu+6hAZtd/8fVW4Ai/hFu4f+8MpFadfib7do57+jnRRIixDOFZrtquDdgB+MEFuHN929Q1py7OWt7bmukNaI1KCEoi5rFYkZbLzAtjK8WaOXID1JefPYFh0dnjDb26OYd7t0/4PjinL/5xa+8hNc+RUWa0cYWd3a2OTw+pjWW6XyONY4ojmjFtb+LNCC0Yjydc+UW4HxCSVGVnF9OuLqcYh2keU6ad4ijhDROSZP0mjbZVsxmUxbzBaZtSdOcKE7970jHGKFprOBiXnI5OcUJb18LEf/63/8vPHpyn7/9m7/h/e98h36vw9NnTyFvfeDmYuFDWo2jrixZ2uW977zLz372M979znsMtrbJfltxxG3d1v/va21O8xVkdm1MtKZzORe4t9f46hq/XTXFG0IJz8ddYaUEDjsBWlgp1dyaJvnViXf1Krzfxoo/e93wrz++np6du7E0C7SxGyIMKwgN95o88Q+ndS/0UF54gw9y7XW7LOcT5uMJO7sPef3shNEg4eWr1zx9+iWNkzwwkidPHnN8esLf/N0H1K1h784mZVGyqAwvj4+5HF+SpjHLoiRLYjb7Q6bWUVY2HOEFkfPc/WVRoHWCcz7z0JQls/mSsqyI0oQoSdja3mVve5dBt4ezLUVRIAQ0bcl8WVAUJTjodCLyvAtK+9xFB41xXEwnnJQtWXfECwubeY+infF//sf/QFsa7t494NGDexyfvOH45A1C4H+GFPgg8oR333mfn/zkRzx46z6dftcnpf930CBvKWO3dVu3dVu/w/oDSAa8rdu6rdv646nbpntbt3Vbt/U7rNume1u3dVu39Tus26Z7W7d1W7f1O6zbpntbt3Vbt/U7rNume1u3dVu39Tus/w/8NNyo6yc03wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for i in range(4):\n", + " img_path = './data/img%d.JPG'%i\n", + " img = Image.open(img_path)\n", + " \n", + " pred, prob = predict(img_path, resnet50_model)\n", + " print('{} - Predicted: {}, Probablility: {}'.format(img_path, pred, prob))\n", + "\n", + " plt.subplot(2,2,i+1)\n", + " plt.imshow(img);\n", + " plt.axis('off');\n", + " plt.title(pred[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Benchmark utility" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us define a helper function to benchmark a model." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "\n", + "import torch.backends.cudnn as cudnn\n", + "cudnn.benchmark = True\n", + "\n", + "def benchmark(model, input_shape=(1024, 1, 224, 224), dtype='fp32', nwarmup=50, nruns=10000):\n", + " input_data = torch.randn(input_shape)\n", + " input_data = input_data.to(\"cuda\")\n", + " if dtype=='fp16':\n", + " input_data = input_data.half()\n", + " \n", + " print(\"Warm up ...\")\n", + " with torch.no_grad():\n", + " for _ in range(nwarmup):\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " print(\"Start timing ...\")\n", + " timings = []\n", + " with torch.no_grad():\n", + " for i in range(1, nruns+1):\n", + " start_time = time.time()\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " end_time = time.time()\n", + " timings.append(end_time - start_time)\n", + " if i%100==0:\n", + " print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))\n", + "\n", + " print(\"Input shape:\", input_data.size())\n", + " print(\"Output features size:\", features.size())\n", + " print('Average batch time: %.2f ms'%(np.mean(timings)*1000))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 162.87 ms\n", + "Iteration 200/1000, ave batch time 162.92 ms\n", + "Iteration 300/1000, ave batch time 162.92 ms\n", + "Iteration 400/1000, ave batch time 162.93 ms\n", + "Iteration 500/1000, ave batch time 162.93 ms\n", + "Iteration 600/1000, ave batch time 162.93 ms\n", + "Iteration 700/1000, ave batch time 162.93 ms\n", + "Iteration 800/1000, ave batch time 162.94 ms\n", + "Iteration 900/1000, ave batch time 162.94 ms\n", + "Iteration 1000/1000, ave batch time 162.94 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 162.94 ms\n" + ] + } + ], + "source": [ + "# Model benchmark without TRTorch/TensorRT\n", + "model = resnet50_model.eval().to(\"cuda\")\n", + "benchmark(model, input_shape=(128, 3, 224, 224), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 3. Creating TorchScript modules\n", + "\n", + "To compile with TRTorch, the model must first be in **TorchScript**. TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: **Tracing** and **Scripting**. \n", + "\n", + "- Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it sees. \n", + "- Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do. \n", + "\n", + "Tracing is more likely to compile successfully with TRTorch due to simplicity (though both systems are supported). We start with an example of the traced model in TorchScript." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tracing\n", + "\n", + "Tracing follows the path of execution when the module is called and records what happens. This recording is what the TorchScript IR will describe. \n", + "\n", + "To trace an instance of the model, we can call torch.jit.trace with an example input. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model = resnet50_model.eval().to(\"cuda\")\n", + "traced_model = torch.jit.trace(model, [torch.randn((128, 3, 224, 224)).to(\"cuda\")])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can save this model and use it independently of Python." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# This is just an example, and not required for the purposes of this demo\n", + "torch.jit.save(traced_model, \"resnet_50_traced.jit.pt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 162.96 ms\n", + "Iteration 200/1000, ave batch time 162.96 ms\n", + "Iteration 300/1000, ave batch time 162.96 ms\n", + "Iteration 400/1000, ave batch time 162.96 ms\n", + "Iteration 500/1000, ave batch time 162.96 ms\n", + "Iteration 600/1000, ave batch time 162.96 ms\n", + "Iteration 700/1000, ave batch time 162.96 ms\n", + "Iteration 800/1000, ave batch time 162.96 ms\n", + "Iteration 900/1000, ave batch time 162.96 ms\n", + "Iteration 1000/1000, ave batch time 162.96 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 162.96 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input\n", + "benchmark(traced_model, input_shape=(128, 3, 224, 224), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 4. Compiling with TRTorch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT.\n", + "\n", + "As mentioned earlier, we start with an example of TRTorch compilation with the traced model.\n", + "\n", + "Note that we show benchmarking results of two precisions: FP32 (single precision) and FP16 (half precision)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### FP32 (single precision)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# The compiled module will have precision as specified by \"op_precision\".\n", + "# Here, it will have FP16 precision.\n", + "trt_model_fp32 = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(128, 3, 224, 224)],\n", + " \"op_precision\": torch.float32, # Run with FP32\n", + " \"workspace_size\": 1 << 20\n", + "})\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 117.05 ms\n", + "Iteration 200/1000, ave batch time 117.06 ms\n", + "Iteration 300/1000, ave batch time 117.10 ms\n", + "Iteration 400/1000, ave batch time 117.14 ms\n", + "Iteration 500/1000, ave batch time 117.19 ms\n", + "Iteration 600/1000, ave batch time 117.22 ms\n", + "Iteration 700/1000, ave batch time 117.25 ms\n", + "Iteration 800/1000, ave batch time 117.29 ms\n", + "Iteration 900/1000, ave batch time 117.36 ms\n", + "Iteration 1000/1000, ave batch time 117.41 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 117.41 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input\n", + "benchmark(trt_model_fp32, input_shape=(128, 3, 224, 224), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### FP16 (half precision)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# The compiled module will have precision as specified by \"op_precision\".\n", + "# Here, it will have FP16 precision.\n", + "trt_model = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(128, 3, 224, 224)],\n", + " \"op_precision\": torch.half, # Run with FP16\n", + " \"workspace_size\": 1 << 20\n", + "})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, ave batch time 62.79 ms\n", + "Iteration 200/1000, ave batch time 62.78 ms\n", + "Iteration 300/1000, ave batch time 62.79 ms\n", + "Iteration 400/1000, ave batch time 62.78 ms\n", + "Iteration 500/1000, ave batch time 62.78 ms\n", + "Iteration 600/1000, ave batch time 62.78 ms\n", + "Iteration 700/1000, ave batch time 62.79 ms\n", + "Iteration 800/1000, ave batch time 62.79 ms\n", + "Iteration 900/1000, ave batch time 59.37 ms\n", + "Iteration 1000/1000, ave batch time 54.04 ms\n", + "Input shape: torch.Size([128, 3, 224, 224])\n", + "Output features size: torch.Size([128, 1000])\n", + "Average batch time: 54.04 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input\n", + "benchmark(trt_model, input_shape=(128, 3, 224, 224), dtype='fp16', nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 5. Conclusion\n", + "\n", + "In this notebook, we have walked through the complete process of compiling TorchScript models with TRTorch for ResNet-50 model and test the performance impact of the optimization. With TRTorch, we observe a speedup of **1.4X** with FP32, and **3.0X** with FP16.\n", + "\n", + "### What's next\n", + "Now it's time to try TRTorch on your own model. Fill out issues at https://github.com/NVIDIA/TRTorch. Your involvement will help future development of TRTorch.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/v0.3.0/_sources/_notebooks/lenet-getting-started.ipynb.txt b/docs/v0.3.0/_sources/_notebooks/lenet-getting-started.ipynb.txt new file mode 100644 index 0000000000..85b9a206f6 --- /dev/null +++ b/docs/v0.3.0/_sources/_notebooks/lenet-getting-started.ipynb.txt @@ -0,0 +1,589 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright 2019 NVIDIA Corporation. All Rights Reserved.\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "# ==============================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# TRTorch Getting Started - LeNet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "In the practice of developing machine learning models, there are few tools as approachable as PyTorch for developing and experimenting in designing machine learning models. The power of PyTorch comes from its deep integration into Python, its flexibility and its approach to automatic differentiation and execution (eager execution). However, when moving from research into production, the requirements change and we may no longer want that deep Python integration and we want optimization to get the best performance we can on our deployment platform. In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable. TorchScript uses PyTorch's JIT compiler to transform your normal PyTorch code which gets interpreted by the Python interpreter to an intermediate representation (IR) which can have optimizations run on it and at runtime can get interpreted by the PyTorch JIT interpreter. For PyTorch this has opened up a whole new world of possibilities, including deployment in other languages like C++. It also introduces a structured graph based format that we can use to do down to the kernel level optimization of models for inference.\n", + "\n", + "When deploying on NVIDIA GPUs TensorRT, NVIDIA's Deep Learning Optimization SDK and Runtime is able to take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family be it an A100, TITAN V, Jetson Xavier or NVIDIA's Deep Learning Accelerator. TensorRT performs a couple sets of optimizations to achieve this. TensorRT fuses layers and tensors in the model graph, it then uses a large kernel library to select implementations that perform best on the target GPU. TensorRT also has strong support for reduced operating precision execution which allows users to leverage the Tensor Cores on Volta and newer GPUs as well as reducing memory and computation footprints on device.\n", + "\n", + "TRTorch is a compiler that uses TensorRT to optimize TorchScript code, compiling standard TorchScript modules into ones that internally run with TensorRT optimizations. This enables you to continue to remain in the PyTorch ecosystem, using all the great features PyTorch has such as module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning objectives\n", + "\n", + "This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a simple LeNet network. \n", + "\n", + "## Content\n", + "1. [Requirements](#1)\n", + "1. [Creating TorchScript modules](#2)\n", + "1. [Compiling with TRTorch](#3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 1. Requirements\n", + "\n", + "Follow the steps in `notebooks/README` to prepare a Docker container, within which you can run this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 2. Creating TorchScript modules\n", + "\n", + "Here we create two submodules for a feature extractor and a classifier and stitch them together in a single LeNet module. In this case this is overkill but modules give us granular control over our program including where we decide to optimize and where we don't. It is also the unit that the TorchScript compiler operates on. So you can decide to only convert/optimize the feature extractor and leave the classifier in standard PyTorch or you can convert the whole thing. When compiling your module to TorchScript, there are two paths: Tracing and Scripting. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import torch \n", + "from torch import nn\n", + "import torch.nn.functional as F\n", + "\n", + "class LeNetFeatExtractor(nn.Module):\n", + " def __init__(self):\n", + " super(LeNetFeatExtractor, self).__init__()\n", + " self.conv1 = nn.Conv2d(1, 6, 3)\n", + " self.conv2 = nn.Conv2d(6, 16, 3)\n", + "\n", + " def forward(self, x):\n", + " x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))\n", + " x = F.max_pool2d(F.relu(self.conv2(x)), 2)\n", + " return x\n", + "\n", + "class LeNetClassifier(nn.Module):\n", + " def __init__(self):\n", + " super(LeNetClassifier, self).__init__()\n", + " self.fc1 = nn.Linear(16 * 6 * 6, 120)\n", + " self.fc2 = nn.Linear(120, 84)\n", + " self.fc3 = nn.Linear(84, 10)\n", + "\n", + " def forward(self, x):\n", + " x = torch.flatten(x,1)\n", + " x = F.relu(self.fc1(x))\n", + " x = F.relu(self.fc2(x))\n", + " x = self.fc3(x)\n", + " return x\n", + "\n", + "class LeNet(nn.Module):\n", + " def __init__(self):\n", + " super(LeNet, self).__init__()\n", + " self.feat = LeNetFeatExtractor()\n", + " self.classifer = LeNetClassifier()\n", + "\n", + " def forward(self, x):\n", + " x = self.feat(x)\n", + " x = self.classifer(x)\n", + " return x\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us define a helper function to benchmark a model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "\n", + "import torch.backends.cudnn as cudnn\n", + "cudnn.benchmark = True\n", + "\n", + "def benchmark(model, input_shape=(1024, 1, 32, 32), dtype='fp32', nwarmup=50, nruns=10000):\n", + " input_data = torch.randn(input_shape)\n", + " input_data = input_data.to(\"cuda\")\n", + " if dtype=='fp16':\n", + " input_data = input_data.half()\n", + " \n", + " print(\"Warm up ...\")\n", + " with torch.no_grad():\n", + " for _ in range(nwarmup):\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " print(\"Start timing ...\")\n", + " timings = []\n", + " with torch.no_grad():\n", + " for i in range(1, nruns+1):\n", + " start_time = time.time()\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " end_time = time.time()\n", + " timings.append(end_time - start_time)\n", + " if i%1000==0:\n", + " print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))\n", + "\n", + " print(\"Input shape:\", input_data.size())\n", + " print(\"Output features size:\", features.size())\n", + " \n", + " print('Average batch time: %.2f ms'%(np.mean(timings)*1000))\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### PyTorch model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LeNet(\n", + " (feat): LeNetFeatExtractor(\n", + " (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))\n", + " (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))\n", + " )\n", + " (classifer): LeNetClassifier(\n", + " (fc1): Linear(in_features=576, out_features=120, bias=True)\n", + " (fc2): Linear(in_features=120, out_features=84, bias=True)\n", + " (fc3): Linear(in_features=84, out_features=10, bias=True)\n", + " )\n", + ")" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = LeNet()\n", + "model.to(\"cuda\").eval()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.58 ms\n", + "Iteration 2000/10000, ave batch time 0.58 ms\n", + "Iteration 3000/10000, ave batch time 0.58 ms\n", + "Iteration 4000/10000, ave batch time 0.58 ms\n", + "Iteration 5000/10000, ave batch time 0.58 ms\n", + "Iteration 6000/10000, ave batch time 0.58 ms\n", + "Iteration 7000/10000, ave batch time 0.58 ms\n", + "Iteration 8000/10000, ave batch time 0.58 ms\n", + "Iteration 9000/10000, ave batch time 0.58 ms\n", + "Iteration 10000/10000, ave batch time 0.58 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.58 ms\n" + ] + } + ], + "source": [ + "benchmark(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When compiling your module to TorchScript, there are two paths: Tracing and Scripting. \n", + " \n", + "### Tracing\n", + "\n", + "Tracing follows the path of execution when the module is called and records what happens. This recording is what the TorchScript IR will describe. To trace an instance of our LeNet module, we can call torch.jit.trace with an example input. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LeNet(\n", + " original_name=LeNet\n", + " (feat): LeNetFeatExtractor(\n", + " original_name=LeNetFeatExtractor\n", + " (conv1): Conv2d(original_name=Conv2d)\n", + " (conv2): Conv2d(original_name=Conv2d)\n", + " )\n", + " (classifer): LeNetClassifier(\n", + " original_name=LeNetClassifier\n", + " (fc1): Linear(original_name=Linear)\n", + " (fc2): Linear(original_name=Linear)\n", + " (fc3): Linear(original_name=Linear)\n", + " )\n", + ")" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "traced_model = torch.jit.trace(model, torch.empty([1,1,32,32]).to(\"cuda\"))\n", + "traced_model" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.58 ms\n", + "Iteration 2000/10000, ave batch time 0.59 ms\n", + "Iteration 3000/10000, ave batch time 0.59 ms\n", + "Iteration 4000/10000, ave batch time 0.59 ms\n", + "Iteration 5000/10000, ave batch time 0.59 ms\n", + "Iteration 6000/10000, ave batch time 0.59 ms\n", + "Iteration 7000/10000, ave batch time 0.59 ms\n", + "Iteration 8000/10000, ave batch time 0.59 ms\n", + "Iteration 9000/10000, ave batch time 0.59 ms\n", + "Iteration 10000/10000, ave batch time 0.59 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.59 ms\n" + ] + } + ], + "source": [ + "benchmark(traced_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Scripting\n", + "\n", + "Scripting actually inspects your code with a compiler and generates an equivalent TorchScript program. The difference is that since tracing simply follows the execution of your module, it cannot pick up control flow for instance, it will only follow the code path that a particular input triggers. By working from the Python code, the compiler can include these components. We can run the script compiler on our LeNet module by calling torch.jit.script.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model = LeNet().to(\"cuda\").eval()\n", + "script_model = torch.jit.script(model)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RecursiveScriptModule(\n", + " original_name=LeNet\n", + " (feat): RecursiveScriptModule(\n", + " original_name=LeNetFeatExtractor\n", + " (conv1): RecursiveScriptModule(original_name=Conv2d)\n", + " (conv2): RecursiveScriptModule(original_name=Conv2d)\n", + " )\n", + " (classifer): RecursiveScriptModule(\n", + " original_name=LeNetClassifier\n", + " (fc1): RecursiveScriptModule(original_name=Linear)\n", + " (fc2): RecursiveScriptModule(original_name=Linear)\n", + " (fc3): RecursiveScriptModule(original_name=Linear)\n", + " )\n", + ")" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "script_model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.59 ms\n", + "Iteration 2000/10000, ave batch time 0.59 ms\n", + "Iteration 3000/10000, ave batch time 0.59 ms\n", + "Iteration 4000/10000, ave batch time 0.59 ms\n", + "Iteration 5000/10000, ave batch time 0.59 ms\n", + "Iteration 6000/10000, ave batch time 0.59 ms\n", + "Iteration 7000/10000, ave batch time 0.59 ms\n", + "Iteration 8000/10000, ave batch time 0.59 ms\n", + "Iteration 9000/10000, ave batch time 0.59 ms\n", + "Iteration 10000/10000, ave batch time 0.59 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.59 ms\n" + ] + } + ], + "source": [ + "benchmark(script_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## 3. Compiling with TRTorch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TorchScript traced model\n", + "\n", + "First, we compile the TorchScript traced model with TRTorch. Notice the performance impact." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# We use a batch-size of 1024, and half precision\n", + "compile_settings = {\n", + " \"input_shapes\": [\n", + " {\n", + " \"min\" : [1024, 1, 32, 32],\n", + " \"opt\" : [1024, 1, 33, 33],\n", + " \"max\" : [1024, 1, 34, 34],\n", + " }\n", + " ],\n", + " \"op_precision\": torch.half # Run with FP16\n", + "}\n", + "\n", + "trt_ts_module = trtorch.compile(traced_model, compile_settings)\n", + "\n", + "input_data = torch.randn((1024, 1, 32, 32))\n", + "input_data = input_data.half().to(\"cuda\")\n", + "\n", + "input_data = input_data.half()\n", + "result = trt_ts_module(input_data)\n", + "torch.jit.save(trt_ts_module, \"trt_ts_module.ts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.41 ms\n", + "Iteration 2000/10000, ave batch time 0.41 ms\n", + "Iteration 3000/10000, ave batch time 0.41 ms\n", + "Iteration 4000/10000, ave batch time 0.40 ms\n", + "Iteration 5000/10000, ave batch time 0.40 ms\n", + "Iteration 6000/10000, ave batch time 0.40 ms\n", + "Iteration 7000/10000, ave batch time 0.40 ms\n", + "Iteration 8000/10000, ave batch time 0.40 ms\n", + "Iteration 9000/10000, ave batch time 0.40 ms\n", + "Iteration 10000/10000, ave batch time 0.40 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.40 ms\n" + ] + } + ], + "source": [ + "benchmark(trt_ts_module, input_shape=(1024, 1, 32, 32), dtype=\"fp16\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TorchScript script model\n", + "\n", + "Next, we compile the TorchScript script model with TRTorch. Notice the performance impact." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# We use a batch-size of 1024, and half precision\n", + "compile_settings = {\n", + " \"input_shapes\": [\n", + " {\n", + " \"min\" : [1024, 1, 32, 32],\n", + " \"opt\" : [1024, 1, 33, 33],\n", + " \"max\" : [1024, 1, 34, 34],\n", + " }\n", + " ],\n", + " \"op_precision\": torch.half # Run with FP16\n", + "}\n", + "\n", + "trt_script_module = trtorch.compile(script_model, compile_settings)\n", + "\n", + "input_data = torch.randn((1024, 1, 32, 32))\n", + "input_data = input_data.half().to(\"cuda\")\n", + "\n", + "input_data = input_data.half()\n", + "result = trt_script_module(input_data)\n", + "torch.jit.save(trt_script_module, \"trt_script_module.ts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 1000/10000, ave batch time 0.40 ms\n", + "Iteration 2000/10000, ave batch time 0.40 ms\n", + "Iteration 3000/10000, ave batch time 0.40 ms\n", + "Iteration 4000/10000, ave batch time 0.40 ms\n", + "Iteration 5000/10000, ave batch time 0.40 ms\n", + "Iteration 6000/10000, ave batch time 0.40 ms\n", + "Iteration 7000/10000, ave batch time 0.40 ms\n", + "Iteration 8000/10000, ave batch time 0.40 ms\n", + "Iteration 9000/10000, ave batch time 0.40 ms\n", + "Iteration 10000/10000, ave batch time 0.40 ms\n", + "Input shape: torch.Size([1024, 1, 32, 32])\n", + "Output features size: torch.Size([1024, 10])\n", + "Average batch time: 0.40 ms\n" + ] + } + ], + "source": [ + "benchmark(trt_script_module, input_shape=(1024, 1, 32, 32), dtype=\"fp16\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "In this notebook, we have walked through the complete process of compiling TorchScript models with TRTorch and test the performance impact of the optimization.\n", + "\n", + "### What's next\n", + "Now it's time to try TRTorch on your own model. Fill out issues at https://github.com/NVIDIA/TRTorch. Your involvement will help future development of TRTorch.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/v0.3.0/_sources/_notebooks/ssd-object-detection-demo.ipynb.txt b/docs/v0.3.0/_sources/_notebooks/ssd-object-detection-demo.ipynb.txt new file mode 100644 index 0000000000..320d663815 --- /dev/null +++ b/docs/v0.3.0/_sources/_notebooks/ssd-object-detection-demo.ipynb.txt @@ -0,0 +1,754 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright 2020 NVIDIA Corporation. All Rights Reserved.\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "# ==============================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# Object Detection with TRTorch (SSD)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Overview\n", + "\n", + "\n", + "In PyTorch 1.0, TorchScript was introduced as a method to separate your PyTorch model from Python, make it portable and optimizable.\n", + "\n", + "TRTorch is a compiler that uses TensorRT (NVIDIA's Deep Learning Optimization SDK and Runtime) to optimize TorchScript code. It compiles standard TorchScript modules into ones that internally run with TensorRT optimizations.\n", + "\n", + "TensorRT can take models from any major framework and specifically tune them to perform better on specific target hardware in the NVIDIA family, and TRTorch enables us to continue to remain in the PyTorch ecosystem whilst doing so. This allows us to leverage the great features in PyTorch, including module composability, its flexible tensor implementation, data loaders and more. TRTorch is available to use with both PyTorch and LibTorch. \n", + "\n", + "To get more background information on this, we suggest the **lenet-getting-started** notebook as a primer for getting started with TRTorch." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning objectives\n", + "\n", + "This notebook demonstrates the steps for compiling a TorchScript module with TRTorch on a pretrained SSD network, and running it to test the speedup obtained.\n", + "\n", + "## Contents\n", + "1. [Requirements](#1)\n", + "2. [SSD Overview](#2)\n", + "3. [Creating TorchScript modules](#3)\n", + "4. [Compiling with TRTorch](#4)\n", + "5. [Running Inference](#5)\n", + "6. [Measuring Speedup](#6)\n", + "7. [Conclusion](#7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 1. Requirements\n", + "\n", + "Follow the steps in `notebooks/README` to prepare a Docker container, within which you can run this demo notebook.\n", + "\n", + "In addition to that, run the following cell to obtain additional libraries specific to this demo." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "%%capture \n", + "%%bash\n", + "# Known working versions\n", + "pip install numpy==1.19 scipy==1.5.2 Pillow==6.2.0 scikit-image==0.17.2 matplotlib==3.3.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 2. SSD\n", + "\n", + "### Single Shot MultiBox Detector model for object detection\n", + "\n", + "_ | _\n", + "- | -\n", + "![alt](https://pytorch.org/assets/images/ssd_diagram.png) | ![alt](https://pytorch.org/assets/images/ssd.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PyTorch has a model repository called the PyTorch Hub, which is a source for high quality implementations of common models. We can get our SSD model pretrained on [COCO](https://cocodataset.org/#home) from there.\n", + "\n", + "### Model Description\n", + "\n", + "This SSD300 model is based on the\n", + "[SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) paper, which\n", + "describes SSD as “a method for detecting objects in images using a single deep neural network\".\n", + "The input size is fixed to 300x300.\n", + "\n", + "The main difference between this model and the one described in the paper is in the backbone.\n", + "Specifically, the VGG model is obsolete and is replaced by the ResNet-50 model.\n", + "\n", + "From the\n", + "[Speed/accuracy trade-offs for modern convolutional object detectors](https://arxiv.org/abs/1611.10012)\n", + "paper, the following enhancements were made to the backbone:\n", + "* The conv5_x, avgpool, fc and softmax layers were removed from the original classification model.\n", + "* All strides in conv4_x are set to 1x1.\n", + "\n", + "The backbone is followed by 5 additional convolutional layers.\n", + "In addition to the convolutional layers, we attached 6 detection heads:\n", + "* The first detection head is attached to the last conv4_x layer.\n", + "* The other five detection heads are attached to the corresponding 5 additional layers.\n", + "\n", + "Detector heads are similar to the ones referenced in the paper, however,\n", + "they are enhanced by additional BatchNorm layers after each convolution.\n", + "\n", + "More information about this SSD model is available at Nvidia's \"DeepLearningExamples\" Github [here](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub\n" + ] + }, + { + "data": { + "text/plain": [ + "['checkpoint_from_distributed',\n", + " 'nvidia_ncf',\n", + " 'nvidia_ssd',\n", + " 'nvidia_ssd_processing_utils',\n", + " 'nvidia_tacotron2',\n", + " 'nvidia_waveglow',\n", + " 'unwrap_distributed']" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "\n", + "# List of available models in PyTorch Hub from Nvidia/DeepLearningExamples\n", + "torch.hub.list('NVIDIA/DeepLearningExamples:torchhub')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub\n" + ] + } + ], + "source": [ + "# load SSD model pretrained on COCO from Torch Hub\n", + "precision = 'fp32'\n", + "ssd300 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=precision);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Setting `precision=\"fp16\"` will load a checkpoint trained with mixed precision \n", + "into architecture enabling execution on Tensor Cores. Handling mixed precision data requires the Apex library." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sample Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now run inference on the model. This is demonstrated below using sample images from the COCO 2017 Validation set." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading COCO annotations.\n", + "Downloading finished.\n" + ] + } + ], + "source": [ + "# Sample images from the COCO validation set\n", + "uris = [\n", + " 'http://images.cocodataset.org/val2017/000000397133.jpg',\n", + " 'http://images.cocodataset.org/val2017/000000037777.jpg',\n", + " 'http://images.cocodataset.org/val2017/000000252219.jpg'\n", + "]\n", + "\n", + "# For convenient and comprehensive formatting of input and output of the model, load a set of utility methods.\n", + "utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils')\n", + "\n", + "# Format images to comply with the network input\n", + "inputs = [utils.prepare_input(uri) for uri in uris]\n", + "tensor = utils.prepare_tensor(inputs, False)\n", + "\n", + "# The model was trained on COCO dataset, which we need to access in order to\n", + "# translate class IDs into object names. \n", + "classes_to_labels = utils.get_coco_object_dictionary()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Next, we run object detection\n", + "model = ssd300.eval().to(\"cuda\")\n", + "detections_batch = model(tensor)\n", + "\n", + "# By default, raw output from SSD network per input image contains 8732 boxes with \n", + "# localization and class probability distribution. \n", + "# Let’s filter this output to only get reasonable detections (confidence>40%) in a more comprehensive format.\n", + "results_per_input = utils.decode_results(detections_batch)\n", + "best_results_per_input = [utils.pick_best(results, 0.40) for results in results_per_input]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize results" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "import matplotlib.patches as patches\n", + "\n", + "# The utility plots the images and predicted bounding boxes (with confidence scores).\n", + "def plot_results(best_results):\n", + " for image_idx in range(len(best_results)):\n", + " fig, ax = plt.subplots(1)\n", + " # Show original, denormalized image...\n", + " image = inputs[image_idx] / 2 + 0.5\n", + " ax.imshow(image)\n", + " # ...with detections\n", + " bboxes, classes, confidences = best_results[image_idx]\n", + " for idx in range(len(bboxes)):\n", + " left, bot, right, top = bboxes[idx]\n", + " x, y, w, h = [val * 300 for val in [left, bot, right - left, top - bot]]\n", + " rect = patches.Rectangle((x, y), w, h, linewidth=1, edgecolor='r', facecolor='none')\n", + " ax.add_patch(rect)\n", + " ax.text(x, y, \"{} {:.0f}%\".format(classes_to_labels[classes[idx] - 1], confidences[idx]*100), bbox=dict(facecolor='white', alpha=0.5))\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebilWXbWB/728E1nvPONuDFHzpVZWZVVJalKUhnNAkugASwxCRmQBd0W2A02ot3dhkYYqWmwxGhJRmBhLDMJATJIIIRKY81VWTlUZmVGZMxx53PP/A176j/2dyNL6kqreUSZ7Ee5nyci7nDiu+ee8+2113rX+75LhBB4a7213lq/eZf8D/0E3lpvrbfWf9j1VhB4a721fpOvt4LAW+ut9Zt8vRUE3lpvrd/k660g8NZ6a/0mX28FgbfWW+s3+fq8BQEhxG8VQnxGCHFNCPGnP18/56311npr/caW+HzwBIQQCngF+GrgLvBR4PeEED797/2HvbXeWm+t39D6fGUCXwhcCyG8FkJogL8PfMPn6We9td5ab63fwNKfp+ueA+581ud3gS96owcrpUK30wHvSZIElMI5R7VcUmSaJEvxQWCMQcgEHzy2qcizjNoYtEowTU3wFgAhJEIIdJohVUJdLfHO4HwABHmWk2Q5dbXEmebB84jf/dVLnP7VflMgEEpT9PqYqsI0FSF4CKB0SpLnlMs5Smp0ntOUi3jtEJCATjKClNi6hBCAQACsC4QQ4vNWEq2gvezneFbgfcAHH5+PBCEEwgcE8Y9SKj7fAEWuaFygqS2pFMhfE/rDr/ndT3/dEF7/Wvjs10BIgpB4JDrL45cF4D0+BIIP8RoCpBAQAsF7jDE473/1awsIKdBJQpZlKBXfO3l6zfb/qyTBOxevhUf48KsuEoInfNaXhNR47/HeYXz83bNMo6VESIl3DoEg4EGARCCkQop4rfi+i/i7SPHgPQwh/hu/LUDE96KpDY0xWOcRUlEUKd1Mk6h4PRB47wmIB8+vrhryXCFFQEqN8/FFVgoIHqlTnDUQAlLG1+X0TZA6xdYVSxNf1/GsRrY3qxACQXydEwWdTgbec3dUH4UQNn/tvfT5CgK/7hJCfCfwnQBSCi4Nezz12GOMhSBXkhdf/jQz1/AFX/AEurdK7QuysETLFF2sMx7vkivH3uERw9Udbt+6yexkl0SCFBKZJjz1nvfjkTz7S/+Wxgjw0Ol3ufjQk1y48givvfhR5of7qKzApx2apkbaCrOcIoLFI/ECHALtASniDeVh5+pDPPr4U+zd/AyHr30G7xs2HnobR7OS6f4dLlx+gpBn3Hj2ozz2+OMsqoby+A5rZx8iX93i7isfQwmHEgJnGhaNY7EwuCDRScpKJ7CSK3INCEUIgtrConHULt4IgYASCi0daZIgvcDZhjQ4VlLBSk/w1Be+j5euvcr9127TVynDjkLJAFIhgkcqhfEB5wN5qsBZQgAX4m0Ub3yBcx7vBeCRChKtCYlC6IKQ5ORrW6S9LSbLivlygWtqhllC0e+Tr6ziqzlmNsOUJVU1w1RLvI8bUAuB8wErU1Teobu2yrmL51jpdchFRa4gK/pYU5J3V/F1jW1mSMBJhzABZ2uQGt84hBSkWYeyKnn+1dd44b4h05r1QcbD211WtSRkGZsPPYmbj5nef5Vet8vOxct0+z2qxQlSKESSYr1HStlGZI8xnsY6rPcIIQgerHWYquHg4JBPfeLT3DmcIbXi3OUzfPl7LnCm70mlxBpwYoAPc3Q65OjWTXbO95G2ZOPMJYqVdWx5giYglcYIhSQBFRBtFHYhIKRFB8Ht24f81PN7vPjxVxkNEgadlAvn1nnbk09x7SMf4NKw5JHzAuE01yYFf+rH9259rr34+QoC94ALn/X5+fZrD1YI4YeBHwZIlQqIgK6nbBcaJTXn11doVlbR3YKgE+zCMkgFo3JE4izd9TXs8V0kDqU1aIVZ1lR4pFDo1OOswyeSSWXQSDpJAs4jpaJ2jso5vPQgLAJH1unQG+4w2b8LixO8c9jgUG0kD0EyXdRoqZjdeoXbWnDpkSeQQnP/9iuMpyfUi4qVostgY5M7d2/yxJNvp7OyhhufMN/36DzHNSXVcokQoPM+OIf3juGgIE8U/c1L1LVjfPQa3juUlCglUIliWtbMa0gTRTdLKDSUBtY2N1lfHVCO99HSUSSaibP8m+dvMbq5y5meZlgolHBIDyY4IJ5mxscTz9iAROCsxxLiCaQUSkqklJRlg1bxtHTeoaxHuBmumlIuR9TyNdKiR8cnrF5+mPXNDeqqYTw6pshz8vVNnKlY8esEb3CmoZqfMJ0umUyWLMoFxh5hb97lM5++xsbmOk88+RBrhWZLJEgZMGaOJKCzLgQL1iCkQwiFo82glMCaCtuU3DsoOZ541lcSqnlNtZLR21ilX6So6pAkkaxf3UFnGVmmcbZCaU0AnKvxLoCUMUPwHiUg1RLpJcZagnP4EPCJYuvsNl/8W/rcv3OfF1+6wc1rd/ln0zlf8UWP8tSlgowSU49BxwxpfbuDViCdwIcpWbqKdAqHh6BRqoMUEifieyGCRwSDIgHhWEyWDE1JP5WsdzWdYYe3f8ETPPPMk4jDj7OtKx655FkuKiqfvOFm/XwFgY8CjwghrhA3/+8Gfu8bPThLEx555DxrO+t4KZmXlvWswHlJVRnMoiQpOqwO+6ieYDlXLE5OsLUjKzKe//iHyYXjbEdRm4AJHutqRvfvc+6xJ3j6Hc+gpSfVCfNpxebWOY5Ojrj+2m2GmYKlAT+JNzuKrDOkrhdkuSKXAesszjiccyQ6ppRKWQ6uv0AgcPbKE4is4NqLzzKdz9l88u04ISlHR6j+eSyB6WREMVxFdIbcfuVFBIJEajbPXma8fwtfL3G1ozKSnlIUwx6u6oIzNMbF06cyOA/OGSZVzaxU5Fs9VnKYHtyjNgs63R7TpmExmjOZzPDugF6uqdKCAxyJD6TeoTV4axEhtAmmx9gQPxcxlVdIRAhoBcYJAhKlFUHE01GKeBqmQRCcBeOo6xLvBAfjPe6rjP7aOkmekXYvkKeKRipWVlZZ76QIVxHkBYxxnOwd8/IrNzk4WbIwFaYq2b1xm70b9xhsrfHwY1e4eG6DtZ6gIz1Ii5KWJO8TbI2QGb5eEKTAO49SseYZzxu8lzgHVSIwzoFt6Kxus7G1wXw8JjhFIgXWVm1pE0sGPEgCBEcIIm52ABm/ngjwWhK8b7OwQKff5eoTj3P54kVeePFVXrl+h3/7Ky9TlZd45pEhOg8IawlhgZJtaaQVCIU3JTIEBBKvU4JUBB/AB5yIlZEMkqAMygu2B44L+ZJPeYcXgsYEFlXD7vEJ8yahIEWlgY70bC3eGP77vASBEIIVQnwX8K8ABfztEMKLb/R4oSR3pw13xns01uKtxbp442dpyuogJ/eWQ5mw3suQvR71ZEon0wQCuWs4c2kdMxqRLHxMX4Nnvn+b6dYZikEfmiXWw84jD2GF4tarL0FjSDc3kEpzeP8uikAyHrN+bod7d0uCN6RCorREKo2UktWVPtvnLjGdHNKcHHNw+xW896ys7XDx0SepZnM2zl7i7p3XEI1lURlsc8jxwSFPvuOdHI+PWUwO6EqByhLqpmE2n5JIjQqBXm+Fze0L3Hj1RXb3x/gAUkqKTKGTDKk9AyVRLqA6Q1zS4f54Fy0Fcv+AkTxEC4WSAuk9SimETBkvPFPpkUKihEbVggRJJh2JCGghSXFIAVLFGtgjyGRMQRelJUnStoSQbYosYzmDIz5RwAeECAghkbZhvn8fnWgGa1tsra3SSwQ6A2SNCxKPB61Zu7DDe89s0JQNs9mCxXzJwd4R127sMtnf5xPjES8P+2ytr3H1ylmefupxxPIYaZqYqUsQSoFMoJrhTKAxARNi3b5sGgbdAoTCOQvNElfN2rIv0ISARIOAIGIUDKe4eThFbmI9H7xHhFi7iwC5FPGekwHrPM45bDflqfe8jTNnV/nUJ17mZ37+BaaLy7zv6UusZgZnKnxwSJmhbIkk4hJWODwaHzx4h0dwiiSIFqMRXhGAtZ0dHq4bwkdOOKmgqxXTpWP3zoK9CdBJqIxg0Cs4+/Bl4OBz7r/PGyYQQviXwL/8/+WxzgfKqsY0FucDwTs0IEOgWpbsVUu0XnLc6TBe7eJlyVAJtjcGmDwj85L7r76KN44g4lsnlGS2nPDSJz7ExatXyXRC3hmwNJbR3ddYzSSsDEksFGtrzI8OCNUCs5zTNDVN7bDGUYuAoCFIhZSSbiehs3aGZe05md3H+4rZ8tOsbY145Mn3oDbPYoSl2r/LpafejkwK7ty9zvqZHUrrWRzcpp9rXGOZLSZMjCWYBpKUs1s7XH7bO3h1d497d26SCIm1hgZNpzNk59IlXnrpRVIJWksGqwM6nTWWx/coG4tA4BB4amQQBB+RwaWzZEmC1hIl2xMFSRAKbwVSQBICaZAUypMLR6YVeIcoFNY6glRU3hKkIAmiBVkDBJAClBKYEFpQTZAAInis0ljjSeopO5uXcUFSm3i6BRwCSRCBIBwqSSmynHylz5ZQXH3yUd41nbN/+z7Xb9/naDZn//Zdbr12h2c/fZtLl7Z57PwaG50UhEcITd2UFHkXU1umy2N08BRJQZrlKEC1QKNrgcTgA945ghB4GcsfKeQDRDh4FcuiiJDgg2+BwQgOStGCqCIgJWgdSytrBY31nLm4w/r2NrdeuclzL9xgNC35mi95nDMpeCdI0hRTzgnetUCxjNf3JgZIkSKEbAHRWJoEGbEZ1emh8wKLpfQpwUkO54KlXbK7cEjdodRLtocFqrgCfOBz7r//YMDgZ68QAqZ2NMYihIcQ8AiUECgd8W7hLc1yzjxRZB1Bsqo5Kucc7e5zcfMMWXdIM9rHCXABNBLvHfPpCYd3bnPmwkUmJ3ss71wnI9DtFVy8kHN4MqdcLtnaOU+5ewPnSnZv3iDHEyR4b/EIrLHUAQgLvHMUK2t4D87DYlFj7t3noccdaZHwyqdfIusN6RV9dg8OWRwcsvH44xzt7bNYzLh8+REmkwnlvVv4ZtbWh2c59+Q7efn6Ne7fuIYQCkQsYRIlGayuUgcYrKwhg6BIE5LukP2DXWTwJFKx9PHmTuIuJ0k03jus81jbIBBIJRBSIBHIJCGVkkSCRVB7xTxIEqFJnCNBM/WQoNEqoEXAOVAEPA4pBR5JEKJFzaE9SrEEhPCsDvsYBLO6giTFNwKkxXuDEArvQQhPEPGkVUIhVTwXA4Fipc+V4WNceuJh6vmck9GY/b1DXr52j0/e2eWFfs6FnU0uXtziys4mCsdyMcfVjk5nhUFxxObWZabzGaE5QfocKRIEsg1kcb/7EAjBITwxSgqFCAFEzAE8ot38khj8fNsy4fS7MU+QEZ1PJWSJjF0uJXn07VfZPLfJzdfu8s//9ct89fvPc7Wv0UpQhxADMgpP7AZ472J3Qri4J4iZViAGVykkSZJwc8/RuIjvlNazaASmWWC9pXTw0U8nJGmP9Y56w/33pggChICWIFMNHowzseVDe7PKCKQEH5jNZqSppGlyslxST2vmqwvOPnSZ6XyKMiXgQcTWjgDmZclofIIjdg4Cgcm8REjBzs4WewcjZGeF7s5DLHZvwWJKmkpCIhBeohBoJag8OOdppmP6a2fopjlNU2FCIM+7qCRhuZgzPzlhZTig6PUo791hdXUNWzru7++iUfTXtpiUJTJNwTacu/AI5x5/O9dvXmf32ktkWcHwzA7jwz10ktE0NfNlxeHJmPVhD6kyBuubHB/tMzk5oJCaxjiWtcUhSPAUSiISRyY8HQmOmLEHAs4KGiRVvSCTCiUVQUAqBXmWIJTCe4VBsHCQa4F0DSmCTEOeCrSQqADOxbRYCRlblkJhAeM8ioBOFUpnlMsSZy3eB4R37VskCThAIHzcPEophJZ4H09t79uWnBIkgz5bgwFbF85x5bGHOLh/yO7+Mbt39vnQjV2eW1vj0uUtzg4y1roKJzLWVnrsTadUxpCIADLg2+Q+bu6AI7b+cB6PAOFiSdOe9qHFTcLrf8XO5elV2lZsvLNEDLYy4iuJhjSRuCDoZEPWVnsc3jni48/ewz024NLZAhcTKpz3+CAfBNTT18YhERCzOyQKybTyLEdLrJmSotBKstq1rOsFzgayvmS7L3n0nEOYE+4dzd9w+705goAQ5FrjQ4vEOknTNGhEGwVjR5cQsI3l8HiCSnMuFn0ee+QqRT8hKzrc3N/n6O4eiXakWtBRjoWXKJ1S1Q1pkmKFx0tBY+JLe/9ghBJwcPsGFx59krQoEDdfwrsG52OM98LhpUSFgA+Cw/t3ePTMBR5+29Oc3LuFl4L1Cw/hlGS5GNPr5sxOjiibiqpacGn7HONqiW8qNnZ2yDsdlouSxlg6nRW629u89OInON69R9UYusMN+oMhidJYF0hFgx5sc3B/l7wzIEkTDvf2mO3doicEQkdOBGEJQoFSnO3kXMnnDPIEpaA0BhE0IQTmusfNaWBsPKJZsrCWsgmU3rJYSNIsoZMlpDohz1KKlT46SRA+MJ9OGC1LtHBkAjIZyBOBEj5yAkQ8E62HICWjkykqzUiLDk1ZEdoNFzeYQ+EJKOKW8jhnkSGeWkGodjMA7WHgXATTil6Xi492uPDIRSTQ1BW7N/b5zKt3uW4tF67uMJ4uaYLlzm5NYy0X17tIEbBoHLHcCcQ+f/wJ8R7zwSMJ+DazkeKUO/H642K1cPq5aLkG8WvilAsQwwFBBxIEnUQyzCUbvW12dgZcv3aDshpzaS0BL/DBt/dbbP9KZMsx8CAELkhU8IwXluPZgo7Z585r97m6IRkODF/+hODu4YvcXUqKNc3jVwTPvL1Lf6PPq6985g2335siCEgpSdMskoCcI09TtFKYssJ7gfcO5w1KSEDQNCW2ril6l5gvDsHnTO5c55GdIfpkF2898yaefFtrG3Q2Njk4HoHSCDwueLRO6BUdAh4zn5IJw/1bn2Fr5yLJcB1zvI8THtGCaTiPVpF0c3x8xKdf+ARPvP1pzlw6T13W1ELy2kvPsZZKLqym2K0rVMsSX1WERJH7hHNbG2xvruG9ox9q8hxkL2M+nlGODvBNw1a/y+qgQEjJYrEg73RIexvU1rF2ZpNupmByxOj+Tc52JGfXNpiiccDVvKEJUPU26GcZPVshsNReYEkYFpKioymKAnt2jQshwc/3GC8T3HJJ4SY0jaUxhrpusI1kXirGkylohU4TEq0QUiO8pPSx25CEQCoUItgWr1C4EFNYWVc01ZKiUxC8IwQXkfAAUvg2uY6PFUEig6ftyMasO7iWJBOBsdOgIGOZjG/RsrTIufL0FS4+fI6jwyN290+YlwuOjhdk6RClNEFYCCLiIFJhXWgJPO0KHh9AeBn78YCQp2Sq+INFkJHEREzBEafkHOLvIHQMEsG9/r3g28fEEilVgc5WzsbqI4wOR8xsw3oywKdr+PI4kqNOwQZEW3VELGMyWbCYTclszcc/cp2BNjz9ji7r51OeeLLPpRsjKpnTXS/obSQU6z0oOjx29o3lAW+KIACg0wS8RwqojGE4GDD2geV8QfDxJnG4iEoDi8UClaZs5WdIkgThFpSzEy5f3iJM9thc63MSNrm5SChrR5LlGG9RQKo0aaeDUjqCPoMVatdgplOWoxHF+jZhso9EEazCB49rWWWJAmMdR3dv89z8mMHmNrnULJdzpvv76PUB2aBPcnYLuzgml5K6rJAsubgxQGQFxycT5tMTrnQlVlkWUqC85Ewv5/yZLlmhORKBbqHorm0wncxQOqUoOtSzA0b373Img4fP9JitXkYvZqxWhwwLh9Nd9tIBmTkmDRYQVHWgNJ5cS3KAfp80CNKepJmu8VA+YP7pF+lnKdKBcQGkJ2JVgrpx+OBZ1BXjUlAGgVWxrg5KYwI0WuN9ggigEaRKY51FJZ5Exs1+SrjxQcRTvt3sIoiWHQg+uDYogGxrbdWeq1KAVjGDOE3VPbSswkixDB3Nuctn2dhe4VJpePXuiHtjDc0M5RfoNCFgEd4SfIJzntAGAikUhNPNGlP70DY9XqcjxlIzMkAlMrTnvhAtftC2/UQsBwTx/wtoAb3IkBRB0M0k+fl1AoEkSbDlnIBo25s6BjzhHzwH4Sw0J2yt5th71/j6L4PNdz5EbSXpznk6W1sU76kg6yClJrgKXAW2xJv/g1uE/64rhEBjDQkSKRVJIqjLmjNnz3Lvzm2CtQ/QUSEVGliWFYf7I9a3V5G+oVhZZ69yLGxgagVNepaZUVTVEcY7jDUxWktJlucMhwOaJrYi58s5QeU8flZhO326qaccJoyWjpKAcwke8MKjckFhPaYyhKbBTI6prUPLWK+JJEMGQ2d+SGVrts+cofKGdD4m7Q2onGdoFuwBOlU0vgRvuXLxAn1Z44THFivMRxWenK6tMNYymxyzuvIY40ZQrF3kqbWabGULowb0Dz9N7pfMsxXGyVk6Yc5WMiMEifcCIzxBSqZNwNSC5cGC/qUNlo3BipT7+yNmc08yq+MNGCITLoSAkBLbtimFUmRZIAGMi7yJU4pyGimVKOHZHCR0s4TxwlFZy8IsUXVNbRqSJIlpLg4nHvCi403uQ8sVbjePCEgRry8ID07/U/xRBGKAECLSbENE1r0IoBS/8vFXee1wxtnzDxHKkrxISdKUwXCIE5qqsafwEeK0Dy9km+VHYBpoAbr2BwYZA5AQWFqcxcdgZH3AtWxC6zzO2vga4ihSRb+TMMw1whuE1BAUUgWUkIRg8D6WqA4Pwr9OA0YShMdrx3BjleGGYPP9V6Hfxyc9OKlJN98L/fcihgMgIXATql9CLA8JxqEegJj/3+tNEgTiTSVUfBO0lFgXWzFZp4srZ3jncUHEWq2FYA72Drh4+TKz+QGzxRhvS9JOh4fPXaZaLJH1kl63w8l0inAOoTVKStI0pTEGbwzBWFKlQGvmScagP+Sbn5hwNsu5f1CyLMELxcxIDueOeS24Pw48d8e3bR1PZ9ijn+fsTe9TzSbkvT7C1JRVhVhLObxxnUtdAbaiS4kpDb1BH5053KLi5P4drj7zdtY7OWW15MZJyf7+Hc5sbRFcQ54mZLWnXi5YXV+lKx3HbokvFZP6kOq4YmV1hWlYoz44xoRjZi1g5ZE0RuB9wEmPmZQUvZy3X5Z4F2+02XjJUvUpT2qUcOTak8qAEpBITypodQk82KSFCqAg0CCCQPpIeFFKE1BYndIZ5mTlguXMIlshxCkxKW5w8foBKyJbUbTaBCFC5CxI0X4sWl5/7ElG8KxNJdr6QPhIdPLB4b2nKWuCkDRVRVU2dDsRL1k5c57R5JB6ZrHe0zQGYx3GghexQHE+xHvOBawPNLbBeo93gWChcY7aeoy1scXoA9YFbBODo3UutkuVJHhLmigGnYyd9T7vettZHt3KIFikJ76OIomEoADBO4R07Wul4u8O2DynXGpytWS87CKqgAwLrM3Q3ZzQexQp8oi7mAY/SWmmFpYVwdVvuP/eFEEAQpuSCVBtOiQEhUpYXd1gfzHjdS1JiIQKKxhPTii04sV7x0hnEElGr7tC3Thm0xkagW1pwkIKtIzXnc6mBEBLidYapCLNJZWH8uCQf1lXvGvHsTXMeOrhhPOXeqRJhq2m5CsZz79W80f+/G5MVp3jytktjo732RwImtriUThvqJvA8a1bCAyNztC2IVWKg7pC5ClHBMbGgplTzk+wgwvIPKUe30SFgNYKaT1JkpL1Oty9f4dOlrFflfT7Q9K1LhzdYVikzPU66ew+ia2wUpCunMdP7hO8QfuAcR7tJN4GilQyF0u8d+RFF60FWadPb75PL7NocXrqtr3wz4LFXIhgqRAtot6KaKSxkYhjauZ1STnRJP1Be5pJVnodikSitUA+qHfbdz/Ejd9C7pwewIiAEoJEgxLxpG0rgzZVl/GeEZHN50LcsDYIShOofaA2htlshnCOyhiOxzU/+s9+gf2jUYsxSJAyCrKcf9A5kEIQpEBL/SAjCN6jEo3WCbU14GNwctZGCrEUqNCS1Xy81ulKEo0hp65LPvjCh/gdX/0Uj55fj3wYFWBhCcE/aFsaY/E+/mt81KxcyY4JYcbapcsU/R70txGii67PI3tfjJcZp5mDUDuo4VeQFB9GLO5GrOEN1psiCAgpEVLgCHhnCUKiVYI1lieefpobN2+QSoGQAXnK+AqCyhjq5QKjcty8pKcLlnWNbWpOlWfCyEjzVAofYwxCyqgrwONoQRipEAg0it1a8kufPKDjF+S5YGtrTtGVbG4r1s5JPnPX4HBoJUlSwWv379PXgfVBDzef00kDC+OYWkdTzTh3bpWj0ZJzqSbpCA5PlmydGfCugUEOoRCCsZywOEnxAbaHKZ21qyybiBYHG/DFELUMzBdTwGNCQB3c5+nOAjnIuFM1vGd1gakt15p1lr0+XWNYOqiMp7SexgUyIcmHmnppSBNB3dT0Ntcwd0ac7cfTBx/aVploW2On2re2py5bRp2MjxEBSOL20YAKDkUgzEc4KRikkpVBQp6pSMclPFDkRdCvDTMtuw94sLlPhXO+Bdd4AJLFztGpbvI0pYj0XvBB0hhLogVpGpDOU9WOX3r2OtZLdK7xPhBE3OjWWkBGEpHzJEqCFwTp8UrGMkFqvFTULhCCxDlLY2sErXJSaKRMsN4zqyrqpsFZhwwxo9ndP0ao2Er9oR/7MHmRIWTsAAQXs5fQYhJ4/3p54jw2BL72ay4y3T/hzBdfZWdtHXrnCWEDUa0h8w1UCAjh8ChQKeRDEjkg+AGcUpQ/x3pTBAGIp7JzkW3mrAMUk9mcje11UDr2TIPHi8gG8sHjraOqKqSWBKVQicI7z3w+p5ulIAI61chSkKcpXki0iGxCicC5+AZpoVtasEaqgPclTdql1yxwPnC0P0dJwd4dQfrcgpWO5KvPK6yTjLKMhZRMJwvO7vRJZKCrK8rQo5eA0wqpE4KAlX6GEJ6yMQyGQ45WU3b8CWtuj+kywZc1IQRU2me1SNmg5GAUqEiYLxqU1HgtSUNg4I4JpCQdT+UEQSqSJKCVxnV2OGv32V63GO8xVlMayaTyjOeeTjOjGiv86hBcQzUPDJUlVS2BRgl8e9J7B0EqaEEyITyamBects1lEAgRs60ouAukiWRQaESbBZzdWiNJIuoeQjzOYyIREXROe/FtShwzv/AAMJQtCceHU+DtFBSMT0KePk5E7I72VFUiY9Df4Hh6gtACYyy1abCliPX9aSADlGwpugGCjRhIIAYfKQRaaXRIcC6Kupq6pjYG9eBQaQBBWVbULSfC+yhZVlIi8AgXXyOPYDkv20Tq9WAnW7BDikCSRKDSK0mK5/kXDrm6kfPitTlPf0kXyR74+zj7NmSY4UIn4i3SRKCCEpEkhP4AuuaN997nZUf/u64Q60GtE0LbBw7OYwhMp7PIerMWrSXWG7x1kXAqFKPRiLq2FFkaU0mdkKY549mETp4zOj4mE4IL5y6yf3yCVD6eKkGQaI1SCqlOteyaopNzcuQ4oUtHDRgwB+FwDi7urPKFT0ne9a4OQgiyfsIP/2+O7V6H+b2GfmfGS3s5R7NApjXDQiCKHrWHzdU+nY5kPF6SZCnlck7XGbaHE3JRAxaZyVhbBhis5MxKwc7qCefHu2wPFZ86lIzTIU1V0ShPkqYsQ4dzak4VBvzK5CJKCQY9zeV8jg5p3FRO44TgnFDUNsqjj4rAOEvopBnJ7ICdTUmRXSDVCUiBVFEXILWOn8vI5BOnugQZEEqhdIJSGi0VSim8dywWC7IsYbgywCuFlBk6ES0LTj2o+zn1BGg1/dBufnnqJxBQUpIoiZAeLWLG5rwneBHFVCFmDUK0JJ4WSffeYp3FesXJdIyQCu8tzjpK41AhUoO9azc5IvoMEJBSYWIkiJTotjSoXU1jTauXCPEQAYILWO+pjcEa22YgCaHFJpSUSBHZkO2zxPgo3hJSoqQkuPAgGGkh0KmmsQ7jGiRRRTqZ1PTPdvjJH3+Fr3x/ynZzB2EWTA/+BZ3zP4Wsc2Rvi2y4iV3coV4eomRFtp7js+wNt9+bIwgQlXFeaaSWeB9FKsY4bt26TVXXaAJOSqyxEaSSkRZcVkvqpSFLFdYqbDCEECjSjOOjI8rFHJlmDFfXKJ2gXI4Bj9CQ6zQSkrQmywuyPGM4XKXfX+HGp495+PwGvTT29TMFl3Y0z7y3z8qFPuQ5cn2ddx4vuXJ5h8zd5+XdPX7hn5S8cmDZzKGbQZA507ohlZ7UWRY2UHRSZF0zyKErG+oQGWWhTQcX1RI/1djSsBN22ehZVlY0t+c90BkLJdkbjbBzw2DoeeJ8wpf2xhy6NZKVTS4PGlx1jjTvoNMUUASd0tjI6DPAp154lVFZgsjYLAIZcPmRK3R6/QjgiV+DxBPrbk7bebQgn+ABSYi2rC/WBvGm15rgAt7FjRtdRsKD0z+8DvS0/fR43dPS45Qn630AT8vbECBkBABb4lFMo8FFeR/Bx/TZEQVU3TyjnFskOtKTQ2SfBhkPBCkiQce4top3kZsgpcSLSOtVEtRpl0SAdRHhd0TVYgSuIzgYAGMNAVAyAt2n/L94s4eoDPQ+8hDaAMbpy0HbGiRgHSg8wgvqUnBYGYr5kh/+yx/i2x5ZkAnH/qGgWN1ndmjwaeDCBcmd1xpu7cKwDw+9fcBRmb7h3nvTBIH2boqRU8Q3OlOC+7dji9C1qG8UyYD2gUTHIn9xMmWwvQoBbGNobESjB92UzKekSlGVcx5/+5O89KmPg4+dhzTLSHRKXuTkRYesKFhf2+Ds2W1Gt19lfdPS76b44Njc6JKaA7rrK/gsQ67uEFa+gGe+5gl0cobjw0/xj/7m/4vpQrO+tYKfHbXuRp7ESjooKkAkgp3VlP9oR3Jl09MbPsbh8YywTPHe4b1EWUHW6XLmzBrFyNBxt1BZxmC7z3yZM50tWNQNVe14oZZc3OrwxUXgoYvriG6Psqq5f3yfzbVVVKdHCDpeV0WV23Q85vB4gjszJCiYeodcLJEudjwCsW6Nuf1pxX7aC48352kKK0V05AEZHY6IZG+pFFIGEhEorSF4ECHgXdxIvnUh8pHL3HL32z8+tFgB0QCFGJCs99RljfOOoldE3CfEroRQ8WQPzkcatDFR2KECjTPknZQ0S1DTRawgBEROcltitun4Zy8JETdyAS0lvW6KxGMDLBsTvyujpkD4gHAtF1GAtYCQ8VB7cP4LvIttQB98zNKieAKt9esdEO+xTUuSanEZGzy+dHz4uRGbG11uf6Dk+ouar3p3j9JIxkeSy489xM72E/zS/ie4Xx7TaMeFTLK4rtno/P9BJuBbACQRqo3+HgVMTkaxvURb5hCBHyUFiZQsqprpyYTNlW48LaylXC4JviHXkBYphRCUkxPyvGB9fZt6MUEpjUpTkjRnbXUVnaXkecHG6jpXrl7k/COP4czLMXVDIIsM2zhGlSFfJnS1Jx2u01t7GkSX+rXbrKUpptuju3WeGy8sWC0Ezgs6uWQQAsI5lGt453DBWbUEOyCEgqyjEWmKtBCMJ5GB2WTGogyc1YJhCNw79Dx7WDI6GeOdRYSYXi+rwE8+V9MEzTc/nKEFTOfjloijMU0LgLpW+ScVzXKByBP6nT6LpsE4yJOUkGaYFgjwITzoxvjYBkAgCN6gdBI7LgIssm3JRYGSaGv3U+WbUvF5hJaOK4TiVDAnW63Ag3uA14FI2abQklapJ0L0Kmg8K/0uKollnJQJbfTBiwiyCe/p1DlaKObe0DQGaT15L6FINZWNDkFBxJJSqij08e3hIFrarg3xphNCMhx0eej8JrP5jGVVs7nSZTorOTiZE2Q8sLY21xBCUFaWEASz+ZzGOqImKWYWoQ14IsR8x3n3ANuQUSQDeELwsQyI0QokeBnoZgnLkxI6Oa/uOZ79pzUrHY0WKTujLl/4vkf4pZ98ltv3G6rGcuHcgD/1nz3GF7ztHHzvq59z771pgoBtte9Btqzy4KnqhuV83qL3r58WWkQ3nDRJOBrPyZUn7+TUZcV0MmaxKEkTTeNt/FcJcI6Dvbuc2djgWEHR6ZB1Ogx6fVbWVqkbS5amJGmCcXDh0hVmv/jz2CPHtLfFTCx521CwdiYl2dhADh4mdJ5BiB4CwaXH3s0XfcmX8dM/+4sc3b1FkiV0+hn9os+rN++htMMJRWk8HV0RLCxKz9GhoXIJlbEImaIFZEmK8ZbxyR5OB25M+xzNPSfzGQqHVBKtIwPMiBg4fuYly/mtQ568WDC6dY+17S1kkuBD7HloKVAiindXt7Z42CluBA1eoTp9tvtr5K0/Q6vFjmCdkLGNhqOV/GFVrINRccMkSiFQ+EieRyKJ0t6W63dKABK6PYIFQnoCsm0hRvouIWYVriXNnAKDzkfijXcOoROsd5hlQ5ILklQjhYu8wtOA5QMyhCjvDY7GlAwzyfrqEG1qkAZjasrSxFackmRSYk6znhBQSaQ0eaHItOLMSp/X7h2T55IkzQlS8djbzpJcu8ei8vRyieokeOtZKbp08g7z5YL9kwneBspqGcsdpR8EtkhM8vEVkw7vNYhoiCJDQAeBb1XNTggSaSnygpUi4Wg8xgVPNxEInaGLhNW1Hv2uo+gkdPMI1D75jgu871u+Dcrbb7j33jRBINE6RsUQ2VnWWMqyxDr7ADmNqHHbuxaeTq/gcDxhc23IclkBAesctEIULSP7zVqojaU2NTYvWN/aZHtjk26/z9bWNiYETsZTyuWCrNPheDRGFz3GFNw8mnA0WXL7o7f4o1++SlnP0AsDwy2EuE0IGzifY/2CC49e4txzH6czmlOFhsVohuo6uqGt/XxgVlmEbtudroZ6xmF9FucCojGEAIvgsFbjy5q9WjBbtqiy91HhFwJ5oim1imw+ISmN5B/80h7/p/fnvP2JDcTgPMZLjJMY63FSABrhBGSakHeYjGvwGXme0R10YsIqo7WWCKe1KW0LK7AoS7pFhqtqgozmJEKnD9h0WsRAI1Q8ZaMUt5UFn0rjVJvyCyC4WG5IgVAC6QU+OJSMwG3kAwS8N5SzKXfvjZkv5twYg9A53W4XmajPahvyoMtQ14aQDihQ0U4uWK7vl+ysn2VdLpiXNUU/PCAcBdoTGtpuw+u4hVIan6es6m78fdr25uGJY3XjDHld4lxgWTWxOyMSprVBpzkPnctRLXFLidN2awyM3geWtaOTSua1YaVIeSCQaFmQnGZh8RyMoKyCM+t9ytqxfzxlNYtEqE1zj+nLFVviHms7hkKlcHiPn/7+/5H7h29yngBtCyYIiQ8Ba0wMAMa2IM0plhJPHhU8g26Bk5K6Nmyc3WZZezp5ymw8iYzCWHzS+GimGWjlr1KRqZyV9U0CsDSWpo4nQgiBe3t70ZnYOu6LLT5y7TaL+hhrHP/gA4ZLvRMurJWcffc+w3fc5Na9p5gcbnJ0+1kOXr1HYiFBMguBJYJ6NqdX5Fg7QyYFvV6G1AYhA7WX3F4UnNkqOJovIAgSkRDqhtmi4vhkjpYS6aIsWiUqyl6JG6zIUpaVaQlzgpmR/NJoyFc9eRWxVBzOLa6K6axwsdY+fa0Hwz7peMZCNKwkHXpph6Akygs8vgWoIljnvWE5X3Lr1j4ra33qZU3ezTmzs0kIBudO2XwSK0E6YqcAcD6SYHzLACWcsgRPzTla0NFHvMATATu8eN0tuLZMjsfsH4zRItC4Lv/Fd347nV4HlSQtkBkA2YKrgaq2vHp/Ajoly3KUmyPQXN7qxA6UDxhjHiCfpy3J09Ii8gLiHpzUASM1PkRXZKk0ZVNSaM2g32F8cMy0iR2sNE1RUmGcI88yVmTNIBOt2Y1o634Rg4+UnMwNG4OUk1nFej8DQuvQ7JjWUYS0kseOzGnXRKrYsbi9t+Qv/uDfRsx3CVLw+DPvpOg8xM9+6NPcvLvk6bOOqVmipiUv3hi/4fZ7cwQB4ovtfKCuSry1VFWNMxYtYnr4AEj2Aa1Tzmyscv14QjdLGa6s42cLOlqRd3vYuo6lA+2b6QNluaTf61IbQ2c4YP9wj6qsQCUYU9M0DcFayrqJTjhaUIoIqAkvSJXAlp5f/oTgoYHnC6oDPvoJz69cv4NfGnppgs5WoL+KMSkiKIRbUrXPq5OmdNe3GQ6GHC2OWAhH6SW1k+wuIk22aE1Wt3s9Zjfv0dUJxgekgiAkQkYASoZ4omSJpnExXZZCIbXmYy9P+YlfOeEbv2Cbqm6YlYa6BmPBOoG3EUk/HM2xtaHo9ZlXJddHjjNj+0Cn4VsZtQCsa2iqElNWjPehDg1ZZTDL1q5dRCkwwlG5SHVNCQQfgzritI8fcEJzMl8yGHTITwEz8VmGHTIi48JF8NB6x3hZIXTC1uaQTMDuIeR5hneO+bJhf1rR66SsFjoangSwjY8BTMgog0bFQGhMJOSI6G0JEXBuUFSNx1oPUtBLodAx69ImEJKU4EDqBOsthU5Jk4RE6UhBDwqPwFgffQeFRKXRCl/q18si2bYBAxKExAbDSeXpdjKUOiVBBaZl4JWDilRrHj+r6Or4fyF6qQXAestgtUNWJyhj2ZspLq4XqExRWsfh3JGksXS8vJ7Dzepz7r03RRCwzrJYLqnrGoInGIcUkrzXQwSomxrbNCgURa65tLnGrckEUy65+NgTLBclSZrE3n+/ixkdPjCaDABK0hjDvVu3WRuu4Xpd7h1OCN5RNgZrI/fAGxO54gG8iB2GR3aGhHLJZkfy3idWCdrz7B78+L91pLakt57hnWRtNSfPJOvpKrKXIBpDqh1B1EwWNcPtdXRvwOKwouys44sC4QPOjZnPmkhCsY60oxl0Ozy+nmGc5qBsOFlYJmWDShKyENBSUZomtp90QnAGpQRaK1QCP/JPbnLj+X0u5z6aibSOQwBSKoKSLJM+SdHDaosznnJaMm9mgEMIiXGW6bJm2I38Ca01q8Me1sPd21Mu7GSt4EURhEFIwbLxvHTjgK21Fbb7up2bICOJS0bFhxCOjrSoxiBzHakCbW9QteKCyAL0SAmFTLCyIskUmdZRkSiiJbcncDQrmZcW03iGWQ+l42avGsOirtEefF4wPqno5hJP/sDg8xSEnJYx0OYCXPQXZTarsJ2cIhExQ0oSggJvavIsYzgY4r0lTxKi0tEjlEYqFbtCeJRrWlJVi4kQry3b9qt3numyYXJS8rZzfZyX0T8jCOZLR1fpVowUBV2unS9BS01WPnC8P2ITQ97p0Oxd49r+PsN6wldcSRHOMjaK4xLGRvBG600RBJx1TKcz8iyh18lR1rBsLMuqIlGSoiioVMIwV1w4s8at4xkH+ydsb2ygex2mswn94QoGQaoU3nhEEttUIQRoGV67e7tsrK1h8SzKGiU889kcU1VYa2jvQLwTWGlR3nNprcOmTkkzG2m8S0vu4e5tA6rkfL5CkSXM60AoA1W1IM0LQtLBKANCUXuDsw2q6GB1BOmsUPjgMGmCWdaYZhmZdypHr2bMVUpwNZ1E0h0qeknKcR2ZfFoqMJGDP+xpJotIcIlqPo0edrg5hQsDRSGic44L0RxTCIEXihNlsFjwEqUTlgjKQpFUM1LvkF5SV4Yw6CFFEgEzBT40rPYcKUTkWrhIvyVBOMdKpumlkuBUO7TD47whUQlaSErXUONJlH+gAgynTcgAtA7Hnig4cjKKu1SaRkmvUpG8xWn97ukVCUWikCr27CWwKCusdSAM08kJAsey9jQ2kCfylJ4QT+Rg6WWgpIKgCEKQJ4LRsiHXGdY6vLSkSULa6dLpFiSpxgZFYxuEVHQ6HZwBGxxJqvDW8dKrN/g7/9OPgvc8evUif/o//wOkiWY2L/mzP/Aj7B2OWNaGL/8t7+fKN30F+3f2+DP//d/GOscf+j2/k7OXruCs5Y//2e/nr/7f/8908qzFKgBnyHB0vGWznvHplydcf/WId5wpeDRtIvfBC7YLycuHFUfT5nNvPt4kQSBRCmMaEgFliF3VYVGw0hNUTrHSVWysDZnWDZ++dchsPuepy+eZNDWuqajqEjeKRBJLQCbxlMDHmQSnZJJFVbF7cEBndRXnHeVyTlWVBBuppADBOYKPNZsTHh0cWtYEA8Y7lIgGKC6UqBCo5jVZ2sWTUJaWRdXQyTrINMczJwhF5RrKtGB8fIhwBq1zpBBYJXFSYYSOfxqDqSrOyhTaXr2zsZdd5Al+WZMVOU1j2hZqyrBfRKWcE6RpTpamKKUZm4pX54In+yaiz0HGrIB4+ulaxklPBnzj8EiW3YTNSoDQKBnYXikQWJyMdl9SSASCZVWxuq5bsDGAl4jWgXdRNfS9j3W9iLLeQBSIOSXAK/YO5zxyYYD18bmF4NrfV7QnZ2QQ+hBb/fPG45RBJBJhA64d+EGIct/SQD+TMfgT8SPrI/Mwgpqm1eR7nLdYJ2PgaUG6xhisjy5O0d0qdkasDzSuBfOcJbQM0+AjbtUYh29KpJJ0e13K+QJhHJ2sw9wu+St//Qf5nu/+Yzz98AV++Md+gp/+wIf5uq9+P//wp36ei+d3+PN/+o/zoRdv8T3f95f43b/9K/gn//qX+S//s9/L2a0N/ru//nf5vd92gQ998MN8zZd9CWl3EB2HRFTSCgX97R4r29s8tL7J3U/dRCQZD73nMbZ6CiUilfvoYMInPvBJjHBvsPveLEEgS7lw7iyjg+PI9ityjhclWVqwtZpRGcdzt/fY3R+xniY8fHablfU1ysMjfLUkL3LmszK+od6hEk1dV6SJbn3cI/4bgNHRMQ8/HOmozjRxzJMP0VHX+3Y8VfvGBwdppM8KKdvJOzAvA94FOnlguyPwqWZRN2RaMa9qsk4gUVmsldsbau/uASsbfQZFhyTNIo3Vlg8IMgYFUrC2ukq1GCFpqEXA0hJlWplr7aLopduJDrpaJGyudRnPK5I0J00SlNSUwGujhu1MsyIdXhLl2S0It0gSyrkjyRNULmAyhmVO5SWqaXDeYqxBySLaiPuAxBKII7Nox6YhQckITGoHQThSJSl0ipQe431scwmF9bH/LaRCidPpSRIpA7K17Y7kwNhTF1IigmR0YigGPUSWYqslWms6eUYQgU6dcu3afb7ne3+ERx+6zCvXb3Fme5Pf+Y3fhEgS7t69x7/4Fz9F3dR0ux3+5B/7Tp56+Czf9d1/gUeuXuZTL7zMF3/RuzmzvcX//A/+KUIIOp2C//f3/N8QUvDX/87/youfuYaQij/8h76NL/qCd/NTP/OzfOjDH6WqKu7d2+WL3vNO/tAf/E/b0jOlajtbWmve9vYnWF/p8DVf9aX80I/+I779938LvUGf8XzByvoa3r1Gt9tla3ud/qBPWnTQnT46SfHG8MKLn+a//S+/j1SrB6+zaHEUAfTXB5y92kd88h5JXvDEFzzGRupbeXzKK8/dYZC9QBreaPe9SYIA3rO2sUJ/OOTkZEJTlmwNOxwtahrfJ00T7MmM8xsbbA57lMbig4ttF91a/npLY330oAtgjcWIOJNNqTh7TipNVZccHx+Tr60w3t1rN3u8yb11yBCNKE+prJUDLwSJj176zsd6DwKN9+wuSnw9QqcJK/2CzBga25CkOVmSkkjQicSYWHv7nAc3u0PSuEBpHWXjSZOErJNTzqdorQjVqcWVwDhB1ZJe0iRhuLKCl1EItbm5SapnLGwcChL97AVV5bk2ha99ag3vWrmskMwWS3xIqMcNOI8yDi9TclWwffYsipLSGE6OTji7tY5UGuctiXDUVUNZV1y4vEO3l1Bkik4uyRXUZcn+aM7bHr3IxlYfRaC2Au+jMlQIWCwqKu947ImHyVKJ0lGHIMVpqBYPOkG0GczuyZzzF3aovSUJBfdMzep6H4RkNDcEAXfv7/H7f++38o3f9M38zz/29/mlD32YL37fe/ln//x/4zv+4LfTKXI++alP8aM/9uP8pe/5rxGtMerf+mvfx/7RhO/+M3+BH/iLf4b1jXUO949ZLGt+4qf+FUEK/uYPfB837+7zZ/7cX+Bv//BfhRB49dXr/E8/8oNgKn7/d/znfN1//LUMh6skKnZK1laHeO959doNznzBk/z0v/1ldvePsLbmW77xt/Jdf+p7+Kpv/kPMF0v+yHf+QZRS/N7f+R/z3X/uB2gaw7d88zfzU//m3/C7vunrUUryQLD1WcYrSIlA4puGJggypchldG4yQaCs4969PZZB4ZV9w+33pggCp0MsO1lGtrHOfDEnbUpW+xJHYLC6ysU0w1hDN9WE5QIpJJ1OzsrGCs9/+jb9bg9rTNSV+9hIq+om+heSIKXEGYNMNHdv3uDqytupTYMJlmCjECS6zrYKRe9REpwwWHS015aRC+6l4FIHUDWmKrHdPt4aXK1pqoZyOSNdyeh0C2YzTVlF/rlzHqU1QkUufVM11I2hdp66sfR7XULTIJ0j1RoFWFyrbdfRg09qkrxD3u9TVTVSaVbXt3jokbfxwY9+LPIhmqY1tjB85v6S973jHBc2i0iXBtbCKvdvH9DLFVViaGrFOoEkEZCnFMOzPPf8DQ5HAdlzXNoeEqyJDDg0e2Xgom1Yzbt0ix6DAQx6kqNDSDpdhqtd1te7VK7GLz2EbiyxhMNOK7q9LjJXZEWKphXbiJglhCAw7SwT7wNaBqxtaMyC/fsjdrZXmEwWHI8mrK+sMJ4uMY1hZThkdWWDsqx459NP88sf/BCPPPIIe/v7/A//499qOx6Bfr/HKzf38CHwZe9/H3f2pzz1zNv54i/+Qv7i9/8gX/7lX8pXf8VvQUvF9Wuv8XVf9zUY47hw4QLb21vs7R+ipeSd73w64gCl5/zODnfuHjAYrKETRSIV82XJf/Un/gv+2g/9KH/lb1q+5IueQUrJbDLlAx/8JI9cucRf+m//JB/4+Mv8jR/6EX7X1/0Wds5s8Xf/5vdijOef/6sPcXQ04vz5s/zXf/a/x1rLn/gjv5+rl3detysLMSgY47HWtJQCSSBmXQiYTJZ0ez1mlQZmn3P/vSmCgJTx5m7KJXhPpiRBJOTKMq0quv0BDkiamiRN8E0VAS7nOJ5M2VjrYspoclk2Bt+OC3NNTF8ba0iVIksTnDUspxP2b9yIdFdn8SaenME7JAHpXRxX5QWDfsrFiwPyLInzAGUkz1w6m1Ekghf3G37lbuynV2WJXEi6ucJ1++hEURQF5bLCSIupa/I8JygV9RDeUNaGprEE19ArUpxtEIS2TGnl0614p9/vx5ZXlmMbT5bk9FZXqYIk6IRet2B2dIixjsYYnLM4J/jl5+/xu973EFmqY1AJklxkNNUSKRJC5ZgvluxpmDeWjWKTKxevUo33GB/dZaOXcby0vPP9X8/R7hHJnZJP3pgzWsBjD+UMVlK6GnY9pN2UrJujUkVhMqxssBaUhspp7k0r5k6Ajd5+IhFI4dE6lgXORcDT+qjZb2pH03jSoOjlKUkiyFLJsJthrWG2rMG6VtpwSiRr5cl4tre3+L/8se/Cn5qc+sDJaEpjI8twuLHO2TNn+N6/8P/kZ3/mZ/nZn/slfv8f+i7++Y//GFmaMp+XWKnIH2iV4xgSrRQe+WBClPOR+CSEJ+90qRrL2556kh/8gf+OQUfzKx/+JDdu3UVrxb/82V/k2/6TryfNUs6dOcPm5ga3bt9lc/h4tCmzjn/yk/+Cr/vtX89P/+uf41u+4Ws4d3aT7/8f/h7f/+f/q9hZiPQmfAjUjUHLCBp73wKtUuKFZrm0SOlJuxvA3ufef/+H7PJfZwkEmHgiJ1ojhSbr9R+MZpZCkKYpUitcACk0zgWCBKklaT/FuQap2qFNrTFEmiQPetBR6hndb4KUHO/uYZs6mkVqhVQKRCSoCCGiEQQCFWLpEfSD4hcpNStb63TX1+mt9MikQ2OonaEpS+qyxJRxrlyWJKRKkihFU1XYxrSCmTgUxAfAeFIhGPQ7CBlwobWmolWbObDEP1JHwpNOUjr9IVXTcP36q3zkIx9isZhh65q6KqnKJVXVYL3j7sGM0dLQstRZ2HhyOB+o5oHRrMQUEuEq7hzO+NjHPsmlx59keOYi148CH33uNi/emXL7aMb5R97GxnqfxWTMyWTGvPa8cKfiX74w5+9/4CajUrA/jm035wQuKF7Zm/Azz+3yUx/f5eeevcu1/YrdZcKN/YrFMrrmaC1IEk2iFakSpDKgpUc4w/pAkQ/7bO1so7KCLEvJ8pzRtMTYKEQYjyfcvnMbJeDZTz3Hw1eucH5nh+VyycHhcdQ6BDg8OMA7R9PEtuvqyjrjyYIXXniJrc1N/vAf+D2sr61x49Zt3vnOp/nQhz9G01j2d+9zcHDIxfOXIsgoBUUiWyuweH8GAUroOEjHWo6PjxFCYJqGv/X3fpxv/abfRtHvs3Nmi489+yJ5kTOZTNnb2+fiubPxJA+Bj3zyBXqDPhsbG9HspNVilFVNW6m2xikxi65NaEFVQfQqky2XQFLVDV5KeivDN9x/b4pMAGKbUGiN8YIkzyF4VJZj7IjJbEZvZciyKqnKklTArFrifc1iEfC1wyuBbESUcvpW6SYFykct/ClXwDuQ3YTgA0mAfr/PfD5vBXIagaAyLt403iHMElPlZJ2iTbVaay3rqIMnqRasyYZFY1mEBF1J5ouSXr6kM+iTpymJVq0gLzCfz1jrFK3KzSK9JyWQ6gQlRdQCIADZik4UjQ3UzoPMybKCNEshVRyOjmmWC7ypcdZGMA0w5YLauJaVBkejhpdvnbC1do7Gep67s8f9qkT3FapRTCYWKzrMVMJkNmI0GvET//QfsJyVNLWlylcRKuXZj3ycq+cvQ2eVjr7D4njKBz/8KqNZyTNPP83JWLBz+Qz7Zc7uCydcONvn+Vfu8pHnb/DuZ76Y//Q7fh9/52/+FUIzgnSFW7evI6RgtdTULrDWi6rFxjimNSwbzcu3TvjMTLNtBD2dEmzZAq6S6axEEZ2BNzc2+OCHPsI/+vF/xpntTd7/pe8jSTO+4zv+MP/oH/8TlosF3ju+8v3v4/zZbZxzHJ/MqV3DbHLC937fX+b2nbsopfji930Rq/0+3/zbfxvPvfBpvvv/+v8g0Zo/+Sf+OEWRolUbiNMs0tqBRMZ3LSlybNnQzRR/93/5x3z8k89C8HzrN/023vuedxCAP/oHv5X/5nu+n2/9jj9JVRv+wO/+T1hdGUR5tAv8yN/7R3z9N3wzAN/427+av/CX/gbWef7cn/qjpyxiTmcaEKCxETOKtm+KQPSlUFJQGo8NKdvbm2+4935DQUAIcZNYaDjAhhDeI4RYA/4BcBm4CXxLCOHk17kOSZo9oFK64KOi0AsUitHxCcXKKkpqhPBIGbC1YdBJaNKCNIP17S1uv7ZPZh3e+sgCs4ZURlDFWYcmgjaplqRCUjc1RVHQNIYsy2hMzWI2Q6cBVznSUCFs03rTxzl/Me2MNGSpAycmZatTcuwdzmiMs5i6oapKdLeDSAvSIidbzqmtpZ6XuHWPbH9HZx3eOfqDHlIoQhPBTS8giNarLjgUOVlRkBYZeMfR7v2ofHMOZ0z8uOWcx/kNMeOQQWJcwy988jrPPLFNkWp6ugBXY23UBOQpNJVB9DPefqbHS8cTTDlBziq2CLhgOD4pmS8t909G9FfO8NLBB7n62Ns4Pj7mwsULfOt3/hf84x/928wnNzi/c5EP/OzzqPwymxsXWOkdEHQg63fIV1YJsyULZynyDstZTT9XnEwsaVJw/2jMJz+zh+7ucOnCZZ599RVsLbi2V7PZVahgMSFgPfTyjAzBtzaenxCCj33DN71+U1UWqhlkBd/7+37fr77hlpbv+gPfHj/+t78EwM99+Vf96sd89DkAvvKrv/ZXX/PnP8T78z68893wL34GgK/57d8Yd8Bnrv+qS/yOd747Pu50/auPA/A24INf/02/6rH8zCcefPiR3/HNkck0nsAYvv33fBsA5sRxK3KkP3v34F2cxO1Dy5YkBoCIGXiyVDJYW/8cOy+ufx+ZwJeHEI4+6/M/DfxsCOH7hBB/uv38u//3LhCIIg3bVFy+eoUbN24jlcIay6DXZTwes11V4GFjdZPFfIRdVmydO8N4WmMSw96de+SZZkxDXijCMpo2NMGSpDm5UjjTkCgRR3T5aMP9mU9/hnMXd0iSqKATSYqtl0hr2BQzpC2xpomgWtsvD3iECmjhSbOUSbZGWk7YcnNuhhUa5ylNTddZev0OMwRmafBBcvbiDkgorY16GhxKSXq9XlS+2ZiyJy0nPjrfKJIsAymYL2aRVl3XmKaJhJlW+mtt63JLZKVF7n0MDPfHJXf3Jjx8cYUs1MxPDHUe1W9rawPqyuKWDWWhOb+ZEsyCtfMDHn34MQ4Pj/iFD73C2GV84Ed/iNcOpiSm4qFn3kV27RWm5Yxbu7dptOb+vT1m9oMc709RnQlPPXMJmaaMTk545ZUb9Ht9XrvbcOcXf5m06PLU2R76TA8XBD//iT0+/Nx10s4K3/CNX8jX/tav4Obt+1SH1+nQkPfPc/3Va9RNoCyjrr92nh4wVoIf7ERWoREKJxTGOzrdIUIqppMJUjh0iIeECQGfpLz/fV9Ip5syO9gjLTpsbu5Q11NMXbN/NObO7gG91VXWV1bi4BUhCM7gTBxiOjo6wDqH8TFLXOkWdDsdZssSpRO2h4pCi9aLIWZ4BDCmQmvNK6/tM1zrcXa1FztGIXB8NOUT13dJEs2XvvMqnSTKth/76Y+1Q1vadIBYDjQtEC5dnBXhZGizBE+RC7xKGA47b7j/Ph/lwDcAX9Z+/KPEUaj/u0FACrCmQYiEG9dv0tjWeolAliWYyZzJaITWCfO65mA2IW8q1rIM0w3s7U1JZEqQjo1zQw53ZxSdjEwrvBcsTIVzDdPJFJ0mbGxutmQRD9MFu/fu88TbHmdrc43q+oLFPLAmlmwyI1hBXcUNJ6UkyPhGyQDeCIZ5wn2VYsScZlmjkxpqQTWBO9OSynmMbVgdrHDx4nnyPGe6nGGtxxrTsu4kuZb40ND4KAjSOkFrTaIU3gXquqIpDbWpY01rYi0sVcuxN1Fq609dbkMcHx6n7EAi4TM3j3ns3JDBWpf8YIaZW0yQ+NqRe8+j53rMJlUcPba6TiUSRJpy9uw2l7fv8ezz++yOx1gC58+scfvaqxxO5hwfHvL8R57lnU+8h/LmR3jphWc5uj9namo2tjaZzRZ4Rty98Spn1ze4rQXJbM6dl2/C/T6XL59lVAmuPvIEn3zxJjrXVCIg01XW1jfZnd5jtphzZXWFajbGUUTpcUzLuLyywp/4Y9+FQ6JkiHMmWpu2slySZAV5CrmUaJ0xmsyxPs5PPFUgru1cQqcZQecM+wOqxZSj8RK8QAuBNw2ogqZumE4m1E2N1Jr5dI4XUZeRpAmzSuJkVE2qeOnPmiBE+/NOuStQFBlJlrVU6QhsNs4hpCLRGq3kA6HV6Tr99DQfcD60ZiRErYmIeFYwcdIiQjLIijfcf7/RIBCAfy0iLPtDIYQfBrZDCLvt9/eA7V/vIkprut2C2azEeBu924QgUfKBemp8csLa5iaz5YLFyYK8kAz6HQ4qy872Olm/z529+2x2+/QHK7zy0k2qssYaz9qg4PzVC9x49gU6G+tUtiErBoz29ygXJ/hmyYvVkp1HHmNZ1vSrKRfCCCEdtdCYtsSgbVuFVqQiRWD3pCL1cBAyyloyL+fsTmpWOiWbK0O0Tlk7sxVtu5LocGudp3E2eiQQeQNJnkfv48aikhThwoMhn9Z76qqh8WCsjZLS0NJ1Q+tzb1swUQjwHucceZLjgsP5QKYF++M5jbPcuXvAZFRTNTDUmt5GgS0rjpYVj27lNKXGakllDSejMRe2VnnPu56glxWUdcOwV3Dxyhav3b/B/ZtTytrwqU9+DC0kH/jIHarZiJ5KsOM5zz/7AtPpAusVo8mIR64+zPhwxv6NPagbDkeKw9GM2zPHV739nWR5SqI1e3v3uHn/FtYF5kbhZiPu7R9gpcLZuAt0opE6AeLcyNJ6Gi+jkafwIBRFEqhNSSdRDHJNbeKsheg74DHO0u+tk2Z9kiRluYyTrTLXIUlztJboJBKA9g/vUpUVVVmhlKCqGpyz7d6O96nSCp0kDLs9BoM+PqjWKamVZUPs+LTiqDhcq93VradbtMmXZEnSDtB93Sk4VnziwebzRKqyD4EmBJoASQCExtk6eiSoJOJsb7B+o0HgS0MI94QQW8DPCCFe/uxvhhCCOO3b/JolhPhO4DsB+r0u62c3cOwznRi8D2RpQqo1aEWeLZjP5mxsbbOsG1LXsH3+EqPRmKub61QYGKywmM8ASSdLePyRK1R1xXw8ZmW1x3Q2I99coWxqDu/sMhisYZwjqBQvDeXsCDNeZWdtA9uckM4bHODweBtNT1yIFlkQWW3OWjLl2S01TeOZlIZF4zhqBFfWd9jcWMWKBKUVSisSnSCCQ7rIk3c2Glk6CSJpH6c0tmniIIrWusq7gLUG294kvu2AuHZ8tWpbV42x8XA89dCvDd08Q2EjSl1ZfONYz1PSdMHJaMH6YMD+vsN7hW8mPLXRZ+PKFvdOKrrlErwhYOl0cs5sr1B0E+pyQVZknBlkuL37bIWEm7/8K1z/2EcoyxIhNIP1Pg+fX+XFF15lVtdM5TG/fHDIL+sEMz5iUcfnut7rYU3Jnbsjbty6R6fX5WQx4+61z3B44wY7a6sc3tFsbCS88IlPMZlV6KygKpdYD3UTXXQj1ySa0RQ6jWKdEBj2cpalBa1QOkqqbQAho/dgnmVkSqJ1LPOyTpfpyQlra+vR0NZZptMpZlkxmYxxPqC1ZlnWbRCOP/d0SIppDELWNGXFfDEn0VtsrxQoLXHGspjNyJJoJedCPABECA/IQAiJbaL8OknV614aD879llQVQAhJcDCZLDDOcXg04dbtY566sglKxIPDerQSqOSNN/FvKAiEEO61/x4IIX4C+EJgXwhxNoSwK4Q4Cxy8wf/9YeCHAXbObof+cICSGpUesZgtSZBkSYqUgWFvzmK+oDEV3d6AclGSD/scjmeUSjEjRc320P2Mk6M560mK7Wpy1SHPIuI/2d9lcjKhKWuaZcmsNpAX0Q03KXBOIlEkWU6TZ5gRuFTgBZH66sODwRBRAeawxhKMY1EHamNpgqC00Ror0QmLxQKdpuTZgIEWsR71AYQleBs3qg8kmSbtZCgRSLo59WTGsqmpbIMJHoRs/QcFUsgHIKD30dxSehHHdQmBdRYCaKno9ooIOFrLvLYkqebj14/59M197u+PIXju+YYkCAZakqiKcVnTEYq9/SlpkZGuDnAohKiRaaDTyXC2JpiajY0+K8MOvZlhr6opXU1HJ2xurvDe9zzC5tYKB/f2Ge9VLJuGcj6lyBLyJGFUeVbXB7zvi59gtd+n7/a4fvMWk0XFYlmxuibIN9Z51/lzfPjDH2DBkru3DzgaLbj08FW0kpiyeZBCn+6RIGjnU9Fulpb3YQMhiZOvrY/j7JIkwROovY2BEkGeaHyRtRqDOJy1Gk9YLhbRy0JKmqZ+4IN4akX2q+zQW23B0lnu3vF4u8rKoE8qw+sWYiG+l6E9I08HniJ4UOplafJ6lvBgtbY6Iv4faww3746wPgLEz37mBo9cPoOyjqqMPBClc4r081AOCCG6gAwhzNqPvwb4c8A/B74d+L7233/2613Lu6hK666vRcmrCwjfDoCwjkxrtFbMRmOyczsMV1ewlaE36DEZjbl7NOXchW2yXDPo5qys9JnuHTAdnRCkZ311g8tXLnDXw43xHQQOZz1u3uBTTZ52IOlwa++Ik+WSweKEvg/IBnxCdMylnWPvAeuwtqRuPCdzQ9EY5jIjKwas6IaLZ7foD7pga6qjEns0pur2WTl3DqUCwhikj2SZuqoY9Dcoii6+KVGJRiYJpu3jnw7FDCFgrUWp6D0Q2kGap5NzogVbW2kKQa9fcPHieaS1nNnZwQnNwa1rTI5m6CYgRXRsSoXDGodLMp54+mEORiO6awO2+gn3x0vc9pC7JzNWCk2n32VeW0g7GDJ00uWrvvzdfPpTL3Pm3ph8kHPl0Qtsnd8myTO8TLn08BXunbzAzMfNZ2rLmY0Bulvw3ve+jeHaGpW3dIXhhV/+KKPKIlLN4eiEl15+iUtf9pUsfcIHP3anNUXwlMs5f/mv/xCj8YKDkznTsuHH5CnwBt08aSnfnvVeDiHQeBgUKfOyYjyrUUnCYNDh4V95HC1CZDHqFK3icFmlNNdeeon7+/sPRpdrpeKkoXYS0mlf/0E2zylZiQe+AWmiKPKUTpGTFRkrvV6rT4mO2rujkmE/pZcnD1SNN+8ccLKoOLs15Nz6oPU5EVz8yMvceelDD7w1pFSc7B+yf3hMr1tQ1w0vvXCL+Vd+Af3ugKXxWAIpkHc/P0aj28BPtPWJBn4shPDTQoiPAv9QCPGHgVvAt/x6Fzo1ddxc38AQ/dn379xFSsHS1Mymc5QWzGZzevM5WiecjBecvXqGbmfA3ugVlIzqsG4nxxBQWeDsmfWo/HIe0pS1zSE6S9i9dZflsoxvZl1jrSFJEhoBh5MDMuloOhCcYGkhTC0cLSiWtGQNR3A++sJ7R6k6IKAqK85c3CTbHPDa8Zy+M5zZ7LKeSELdcHzjBZbGImWGQ+CURClFpxunyDaNRSpFkiXY4FBCkUqNFZZ+P2d5PMOY8ABj8iGyFwMxGAQvcC7SY/1kyUuvXufymXU6/TXuHxxzf7zkvq3oZorNlUGrvZCcmDl7swXPvrrH+dUO928c0NjA7iwguI+tHDrAeidq+RESj0VIjZSSnYtnOHtunWjK6Zjd28OLSI3uasf7n7nKbF7z2sGU+wsLax2e2VrBVnMOr78CQpC6iuZwl9nCkSjJfDLhf/1rf5X/5Qf+KuOTEyCgEoESnoudwKWsYjI7ppyX/Nm7h/xQP6cyUUbcPzMgTQLCeIp8SDeT7M4dV7ZXeWU8xS3mvO3KNnQ8v+1r38ulnS2Gq2cZrG4DgnJ+wuhgn7/xl1/hleMDKmNIEOgsp26a6AZsLa6lIp9ueFr7cqkgT1MInlIEFlKSp5oiT1HrfR4+t0ZXS5wLHNmGDRacSzNwASsE18a7VLVkuCG5qBxKSxIp+G9u3eIv/kdnH/w8hWD35B5KyWi+I2A+GfPsL36Q/Z7m3v0Rs9pQH+1x7ed+8t9/EAghvAa843N8/Rj4yn+Xa0mpyIoexljyPGMw6DHNc46Pj5gfHXN4dEjRXyEETzWbo7IULwK2CYQcNs6t4J2lqubcunaHtWGfZJhThcDGcIXlckq5WBKcp7/aZzzpM68MuAYRFM45gqsfjD23EmwImAALI0kXlunxArNo2lYPCC9onGGxCFQ+xQZPTUAPO4xGU/b3JrxweES/yHn8wgZXzm6wurPCOpEbMF/MmFUemResbqzQ6XbBW4SME3q8i9oCIRUheLpZyvpKn4PRPG5878FHgMm1UulTFFkrRZZIOkpzdHDAJz74AdIiR0vPvIoMtGEvoaxqzGKJUmDLgF3WFFu96KIUoOMNTdB0uwpRldw5Kel0FJlSdIuUbqpbowyJ0EmrbpOEVvLqnMdZQZIpVtZ73JrXDGTC6rCgW+joVhw8ZeMIWYr30SjDC4dqKtyypEYQgomAoAlcWu2ws71CkiSYVmsA8NSlDT59+xihNefWUlYGBfV0xsIYEt2hsQ0ET5JI3v22c5wZ9Bj7hEFvnaK7QXe4TlZ0CTZAV7JY3GO2qGI5Qfx96rqiru2Dbl9o3auEiAC2s6GdwhSZp3HagMCjqCyYeUWRajLpyNMUZyBPFVliyPKEEG2i4vsJFIkg04pEBWQLDiZE2/1T092lMQihEaoVX3kXCWSJpimnOBJkMCT1G1N13hSMQaU0veGAXr+HGQcccwbra9y5fZ3Z8T7GWnRlULlmuqhIfcAmipu3brGxPqCTdxkdj1iWSw52T+hawVOPPMaomnGwu085X9IddBFFwt7eKNJ1XTtdpvXTi3s7vnEIwdxEyWYuoUgTOnlCmiiEEnFMuQ+kRhFkYDmb0ARBt9tBJhmj0YgrV87gbM10suTF6/d55c4+QaRsrQ24vLOKrRxNY0iE5NatXQ4PJyR5ihIBrTPStYw0yVn6EdXS4KqGtUGCtQWj8awFlkK0tH4gtpH0E01d1UhSHnr7Fe7evgPKkeiacxs9Vh+6yGJe42TFtmgYzY6ZLh1X+h182RKVEs3J8T6mhPGiR9KRiKphZyMjVQnOOw5Gc9ywy2ovj/yG1kw0EDM7QTTFRESRi2ssN3fHCJ3S1dHvQQaPN44be0uEBNXrkdQTjA/U3uM8JMHidUT1O/2Cp5+8yKDbwRioy5qqiuq4px/ZppMIPnrziFnlSCixy4ZjF1hb7dKYOI+glyk2enmcr+BTlkGyun6OvOggPBhvmNcLTiZjdo9GGAcoRV7kCO9RKlKxI7HLEJwDKdBpEr0TRCBVOrJNtaZ2llRKXAAXRFT4GSCNgVYmGVqadpiKhOAwNtqcpaqdS3g6m43XsYN2ZALGBKQWDxiEQsrYzfIpjYvj49Ik+VXW7r92vSmCgBBQZB2Kok85r9hcWyNViu3z55nv7dPznsnkhPVsk9JXKAuL2nBzXNFJUna21vB+hWq5oKsE/U6PwcYKo72Shy9fjMqvVKNsw8a85OB4woqIcl6tBJnwpFLEEdxE8crUQaIFnUzG8dKnjEEfYSdPfFNFcFS2xhjBzHn0/pj5ZEb3oXN8yfuf4e7tY+68/CqFlhzWNYvlksksj/z4IkcgmE9OWE4ncRhmaMnhSpEVBUJnVDZwcDLlol5hc6VL8HBwMqYxUTYKkLStVF9WWGupRGB0coDOE8bTKUcnhpUVz8VHH+dd73qET3zs5+mmJXmqGM09aSqZjhYsZhUqyVhfHeA6hiybE0JCkyiCTGmEIk0VvY7DVAaKDBEaAup1DENEMQtE/odEMCkdi8qytdGL9mWNY76sOVk4FvOaXjfn0oUzZEqhgqEqa3QaSEUCacITqz06uabXy7DCUZmGJo4CAWKguXBmFRECo5MZZBnTOjBXWTvmy5GvrqIns+hj5EElilynZEUex66hCWWNWdY898nnOT4+aQG/gAmBXqdApykewbys0ELiqgoE1NaipEL6aFOu0zQKpIiBNUkSnPGczGvunCzp9Tp4AvPpCflmFx0kS+8wQWCMA9NORmrl31LErRqEamEfgXeWxsXfA6FwMkrTay9xRO8JJAQpQb/Jg4BSijxJKfKCM2fO4IJFyoSzF65y9/mX8a4iJIEwndHbWAERGPRylnsnCFtTHs05e3GbypTU8zHZIGcxniBC4Pb9fR5/9Cr3Dg9RpePpZ97BR+YLZF2xnC8RwaOEJBGQarAuUAaobKCQEi2idLh2HuNF64YbUwePItGOjUwydTWTBo73jlnt99vZhgl5olEC+lurcZKsFyRmESfNNjVSyTZtlNgQQEbSiZJgqobaeEDS7XW4uTvi4mYPnQm2tzY4OBi1oJXHlDXOeWb4dtoPHByMKfKCk9GMREuOzTHXX3qFb/ym30cdMv71v/qHXFpRNKbmMzfGKOuR45LVc9skaZejvRMOZjWj6ZjKKoo8o8gVm6sD0gA7mwM6nYQ06SEIVMZhQ3T2cc6iBDQSpFAczBY4JMNBTtrt8pkb9zg8WDI3FcIG7oYAWlD0ujx87hxX1juxNJAedBxsen13xKJy7B1NWenlNC6WZQCDbo7qCNa6OR994Rrr3QGj6TFCJnjnoiLTBZIk2pwF6dGpotfvRkfrIMi6BRQpz33yOr/8Cz9HkWiMMaRKs5wumE3mcdKR87G/f0rNDZGdKZSm3+9i6oqyqgiBaEHuHEmiUVoxWVa8fHfEoMjo5yn4QLU0HJQ1QmkOThZUxiOEx0pLZWIWeOqZWdU2ZjESnIluQSJ4qmoZZyE6S+Mc87KmthCnGycsmze5sxDAcLVP1kkxZaCsPVon9AcD8jPblNdGJBqqcsnA9zFZl/7KkHJ0wnQ8Z3DmDPZkjsZx6eqjyFSxd7DL+YeuUjaWj3zsBbbOrFDOSkbphOHWBqM7B4Q4ZwonBCaAsYGlBWclTnq8F2ytD7jyyAXSLGt96MMpCI0UgqYxbI6mTCYLqnsTDmcNTgRee+EaF9/+EKP9XVLhEJMx+WDApDHc3j1iY1DQ7Wi0TVFJ9KTXQiMTFY1G6grvJcYYKme4cH6Hg+OU+yczrDMkacbG+hBT1yxKizUOb2tCiPZTwVmm0zlZnqGSBO8sznkmR4fcevVVvuK3fjUvvPoJbj3/CebjJVUZ5y2OTio6w3UqY9gb7zKZzMgE5AQS47E24eb8KA4zGWyycekC22sdtBAsyurBvD0pouo9YLFBcqf8DDrRXLp8nv2J4dXrh6xoxdVuwn1Tk3jP8cwxXViq0vDo41/KlXPriOAQ1nD72m36WrKWC9KtAfPaxHFknQxO4MIjjyCQjEYnmOducmd/QmU8XjR4EhCBeW0ZDvtcfuIRtFLcHi+5ffcGD12+ymClwEeJKrPRCGdqdJ6QNjXb/QLbTbm+O0IlGusi0UcEQZHnKE4dnwXWOSrj4mj3EEikQimBtRZjHUollLVDD4Z0Oxn5omTl0nk+8+pdPv7payyXdWt0I/nF5/a4euks737yYTbWusAn2Hr8GTIdcCZA0uGRA8EnXr0F2lLVnsHGNmcfeYoMMPvP44Nn5+3vZWVjFfj459x7b4og4KwlNAvSoqDoZqytD8lShfMlZ8+eYf/ay5EYQ6BeLEB1KfqrbF99jHLvNutnNqmamlW1Tu0ltio5XExYvHyd4eqQpnEsRjPOXzyHrwz9wYA0T2lMhQuCPJWkqY4trKWlCZ5cJ+hEsNLLWR/mnPrRx5o3nrbOewwWZyrmkzm2arBNoHQGV1fcev4axpSIEMePhXJG2hkQgJu3DkBFTUC3k9DNUrSMAicrgOCYLhyT+ZKiyNl2DTpXXLp8gRvXbrI+7JDojKOy4erDF5gtK26+8hrOONJER7dbqaiXNWmSRCoqgXld8XM/+5M89Z730CsG5POKbRe4H+JhqaRkMpnx0ss3mU0WTBZL+p2cbqpZ1AGlPKmPnYu9l6+TC+g+/RBr/YIkTXBNE8sSH/kNIgi88YzGC5JMMzkes3fzPjo4Gh9AFrzr4TUWszk3j+bsLQzNouSll26ys71GpgVKS7Z21kl05ClkswWLxlN7WF/pw71DmhCNWZ5//lU60rO1uUW2fx8lDUqnpEIyn09Z7eYIqZBakouUal4ynpzQ7xcIGync21vnePLJJ/jExz9BUHBue8h6r481lqNZRa2jh58LYIzBK4lvdRuLpkYKQZ6kJKmiqqqWmewfEH+KXoduImhMw3I24xc++Cnu3znA+UCqFCpJoq9F8Nx67R5HxzPe865HAej0c7IiIdcdRNHnS7/6S0Bp9k7GqKzLM+96ioceukI9m+EQ1I1j56HHeOjS1Tfcf2+KICCEoNAJ62t9AoppVdKYhixNWd1Yo5EprmwIbe93mAbGe3s88e538bHJmLvXb9BdW2E8K/HSkac5ZdmwWBwzmyzwInDt9i7Fap9O0UFIDUmCUxnjuqZqFJtFQX+Yk+uSxcmSTqYY9BKcSAhKPkChEeKz5JygkbFG7uekU4tY1Oys5HQzzeTkOGIOhaSTSpbjCaVVuMahCCQyRLuz2ZJjGdCS6D2fxEnCvX6X9c1VtrfW8S4QmkB3M+fylW36wxV6gzWsu0Gap5wfDllMZsyPD+lKxf+Huj8Psi3Lzvuw3x7OdKecM99Qb6h56Krqrp67QaBBkBQJkUEKRAiyIcEyQ2ESIi3KEf5DpBWyJDscIdlymHbQJoOWaBpyhGQMJECKpISZbKCBBrqrh+quueq9V2/KOe98pj34j73PzaxGFUCLllU63VX1XuZ9+e49Z++11/rWt74vH22wtzfi9r1jBGEisXWeWWn4xrde4a/+lX+HkwcPyGcL/ujekPrBnHtNwwDHd7/1FotlGTbEWsFaEVLo2hlq48h1xihRbG4mMD3hO28IPvvxZ0mURorO0CMoHMvombioAkHq8GDMclky0prd9YwXn7zEE49fZv/WPZxtKRHMqpbJ0SnHxxOuXd7C40h7PdZ3NllWJdtXdvnK66+CVjxyZQO+Gxiczhp8Y+gXCcNRQX2mqJI+xWhIXpxQLuYUwnN2NmN3byMg/0IxOxtzyzSsrW+iVcKNF57mj0/+GO7gHvNpxvbeNolXfOzxq9y7e8Ld6YxGSUpjA2NRJKsJTkno7LQykI2SLEV4aJuKJNHgPNOq4tbBCRmCdnLC8WTGSEmUDm4nFkuiPQmBKyOaOW9/PUw1Ho0n7MkNCuXw9ZS19YI/9sM/QFlVoDJ6RU5PC27ffY/jWUVVt9y+c4snr344e/8jEQSsNWgtWC5rHI6yLHFtQ7Us6RUFWX+N6XTBwlpM4tnV8PBgn+TVNyjLildeP+GlT65RaEnjGk7GE+pJg84TJtWE3tYmk/GUyXzC4mwMSLY2BhSZxJ9MGU9rDsZzKuuiLrxnqCBLFMYGujAdQyyyw3wUykzzhEG/D84xOKsZlpanrm6S9eC2WeBaw9qwz9JI3rg7p9pfoiJJtJf1uLy7yYN37lJ5j7cwXF/n2qOP8OBkzNOPXcNLResN2nrGsxl1tSBJU5xtqRczEu1ZTEsGl4dcv7aDXcu5tDXi4XjJs09eojWOl1+5HW24BVK0TKVgvnid7TxlYjzfmZSs9xSnOsenGdO6JZGSREKCoKc1mYKByEgSRSoEaW9EUSRkPcnk9IyDg1OuX9tDNm2QtvIuzlh4mtawqCq8FbSNoXEWqVN21kccHEx54/YhxlhSpdnMPcvG4X3CYlFFQM1zOl9ydFpyd/+YO0dzDvantMCyCgDkdLoM5CtvEMJS10s8hiIpGA7X2OhljPKURCnu3H6Pnb0NjDVsXdoDKZnPS5rmCFC0UjG6co2xiJ4LEZzfGgyoenNun01pvUUFg8zIGQhzG1orhJc0ccxbak2RJqTZkPl8iRBQz1u+9dpD1vsZtrb08h79Xo9hkeCN5fJoiPQ1k+mMsjEoKVaf871vvoJ4/jnkFU2R5yQ6RWSWNE9pvQVqjg8e8vVvfpssg55WvPfaNzi6sf2h++8jEQQEgtoJNJKqrZkulitFFKEU+aDPSWRj1U1DvTTcvLRF4pZIW7JsLeP5nCev77HwjnZ/n2vPPcasrqjmLSeLJTg4eG+fVKaAQ9c1o15OnmqOewtOJgsOTmdoBOupZKOXUOTBG86jcN4Fjr7vbLMDNpCoBKU13juUlGyuD9jdXaOqZ2SpRKcpTz55na+9dYYTM5T3K0R/sSwZGscCSyYDxpAVGd5LxuMZdx/sszlaA+3Z2NuFu/c4vH+Il4obNx6hyAqklBweHpNIx97uGleeuEJPZszfvIPWKY8+ss23v3MH40N7KWCPksq2GFmQFSlvzWuuFZprOyPI+8xmS6Rvg8qyElgLrffkmaZ1jnldkziwc8mlrSG9XHL71l0eubqLlBrXVkHqKwJmjTFUrSFJU/I85WwsabAsa0ORKLQI8+9LY6lMYLnNqhYpJK1zvPL2fX7rG68znpSUTRvbYR7lBa+/GYw2f/M3vkahUyZnM3b6CrygNYJ0uI4QmmGhkUqS5SmHJxPaxlC1FVVdk6QpbVVhRTACbadTqvmcug3TlU3VYJHIxrE+6PHUzjp3ZgumVd1R+cM7ch7fhrKgc2au2yY4aPmYjdmWRAgaC2c15DojzzQ2yblzOsO1SzbXNiirJUV/C7KaS5c2ObkbpMGKPOfgndskvR6XdlLSPMX5mtZ6FAlKCL769W+RaM3mzga+bVksW6ZV+aH77yMRBKz3nE5nGKeZVXMOHjwMHgLWUdc1iRZkuaaQmtY6bt+/x3g+YpgHwMs7RwLcGS+5vLeGazSn4zmz6YzhsKCpK+azkmpR0i8CqWWUabQSDDLNcGfE1c0BbduSAIMsoUgjv9vbYPsV36sXnSVqMKsUSJx0gWefh37vYFiwtp7jjGM5nVJ7OBlPGWYJy7alMWEK0ZmWh+/dQwfGCQZBbSwm8sad9YhU4IzHt4b+aI3D+w8pMnDeMG9Kbjz+CNPZjMS37AxyEmDaVqzv7rAxHLEzynjh8W1ev33CMsqp4zzSOObLBRu9PCg69TIGWYL1LVoFMxFrW3QkUVghqFqDcYazssbVoFRClmSs9fscHBwxmS4YDAoSo2ldgyR4JzbWUVeW0VrO9kaPh/tgvWLeNORKkStH7RxrhFT4AEGqLHs7PcZnM371n3yDsgq+EAVB5Q0VXISJBK/bJyV2ccR2XyH7wzCYqwTzqmFWlqRK0tY1lUoo6wbrLW3TstYfhUBuZ5TTJtxzFWYMiiJDtIq6bYO+Rd2SmIa1TPFovsOd4yMsoQUXXJMdQkqsCy1BKSVJooPFnfcrUpdOUrxU1HVL27RkIqNaLtEuCOkcHhwyyDKmzZL1jTUmkxJVjMLnPBrz5CN7HN+5Ry8v2NpMwri5azGuoa1qjsdzVNbDKY01DmOaVSfhg66PRBAIgx6Cuqlp64ZUKdY21jmdTbHGkmeatX6OVgm1tUynC+bjMW5YoFTC/smM/eMJj2z1OX54xONPX+Hk6JRECkrTsD0qkE9f5b0379KUFf08IYv+cEiB9IJcSQaZopd0ltw+OFgYQ2jghasbCRdRF9/ZINyZyBRE4IoTNeeuXbvK5LTHycKB8RRaB9pwxBNsZH1BUE23MmgYKq0YDvqkeYbWGmtr9o8O6OWKIu9R1SWTsymZnlMkuwx7ObPJDNsuGKR96tmCQb9H5Vo2ipx/4YdeYuNrb/LW7SPmpcELRz/VbA16XL+5y6Ur29x7/U6YcjOwEJrMtdEenDD6ajwVQdAzFZqmdTTOcDqfsV0X7G5uMZ0u2Fzvs0TgnEapBHyNMZamrnj+xk0+eXObu7cfUhnLrDI8uZ6wlmTcnTQclSWz1mC84LEnruGc5Mu//XVSZ0hlS65TPAID1NYgGkcTo3O5bGgNbPjwTFESjUTJBCc1Uiomi4qqXVI2LUpoTOuoTUMxyBkO9jCNY1kucAgmzYK2abGNQVcBZ0BK0rV1/GxBtawYFH1Ol3Wces1pmybOlwS+h7WGPAs8BWttkJmLo8DG2MCotIbEGXqJopdK1pUmEx4hXJgGrRvAMInTkg+P5qxvrLGX9Tg7m7K9vUOShDaXxDFeLGiEJsPhTZhPECqA7x92fSSCgJQiuNgKz2Q6o64q1iT0i97KSqxINL2iR2lb5lWFqSzeBJVah+Ott25z46ldHhwdUy2WXH70KltXct595zZX97a4dOUSRw/OODsbo7UKjDUpgxQ2IR0NLtfdEIjCKWgbgtQX36PK6jsEXJD3crIkI8tnJD4li6pASis2trc5KU/RMvzcXpqEU995WudoWxOEIQEhPK5pwBku767x9lt36eUJk9mCVCX0c89w1GN6d8LGYESLoJ6X7KyPWCSC6XjJ9cuCUZFxsiwZZuukAvqjNX7o+5/nE8/NqEuD9QQwc5CT9Hu88+4DFmVNIgXOQSE8Wz2J84qqNbQ4Mi0RToZJSilR3iK8o64kxuV8/o/8EG+98Z1A3nFR+DK6ObUGlpXh8Ue2ePzpq3zm7qN8+eW3qUzDul5n2S45XbTcX1oOS8vO3h4b6z1+8Re/xmR8FhozaYGLWYm3jl6qSXsSgYXjKbKug3iHEyjpkdHTwTaG8XSGq1vuHi3ItOHqI9ukOoix7B8c8diN61jjyIs+qpBI25LnILXDaI1XGq8Uo90RWiquDvq0D/YZz+bkiaaVQdDTmJCVKhVMVZx3LMtl9MLwpIlGCEFjDbmQkXkYR4KdRxpLpiW2qWhMTZ4PwppLctyyDsvOZbx6+5D1nUusy4S6dYyyDG9anIdqsUBIjZYS5Txl1SCEorWOD7s+EkFAKYnxjulkynI+RctQY56enmLalnpeoaVktJ6TtBmLsuWsNkxqw/FySqo102XJW2+9h7Ge6eExw0GBGvbZ29nh6OCQ3UvbPPbUHm++ZlksF8zLhn4ezEFkqoNJSFxkwntkZL+Ffm/gZHsZokEQAPVRzFGSKI1KZTAPiUKPzoX0K/DAHUppGtuSaYl3gcClpUR5iVI6TgdKtPa0ZsnR8QJTLRj1+7TLiqynuXPnPptbW/gkpegPoG04vnePrat75IMRDw4f0h/1uHlljy0GPPPxT3Pru18jVRItC7b2UqKKBZJggWadYX//lKXzpDgGiWKQaXAWE0Nia9pwsvnAjEuUJs2CvZvKFE5pMinQXpPpAutqTLTuwrsABuLZ29titmh54ZPPcXg84d7DE756OKecz5g0klJqbjy6w8efeYyvfuW7ZKmitWBaGzZkmJhCyXCPEYpeHgblX7ixy52zJVo2QQPCB11JUo1x4aR86rFrHB0c8fjTj6JFGARbjk+wtaOxNdb56Ig9Zz6ZYpuW1hlUIkCpkK2ahtFan6d7T3D9kSVv337AndMpR3WDwZMkwZQUD6YJAjkiysZLEVykkjRhmEh6UjJvW5QE4QzOB2ajEiCcQ9ua5VwgewVpFqYAi0Iza1vuH59x48pl5rMFw0EP1wq8FMyXJeDQaUaep+E+1DXWftQzAQG2mnNycEzTNuR5SlkvsaahrpbMlgtM2VKfzumlGRujHuNFyXK6RClNIjyphAf3TlCJZno85eb1CkVLka1z7+4J47MpJ6cLmmWJtJaqNtStZZAnSOeQWhIstEXQEiTqtLnoT6dklO2KAg8OQASWX+z/KpkzbQ33jmdc2cyQQiKFZNhLg0CICVlFN4YapKsDDdRbR55JLl/e4WA8o13USKCsSvqjPtZBs2gYN0fYpuVk/wHrl/fAw/jBIbtXr2B6OeV0zrhXYCho6xowOJ/EzkZI77UOQqneeYy1mLpFC0miIEs1aaLC1G5jwpyEVLQ+6BVkOtS6Wmtsa3AtvHd4yO23XkFJh8V2AocYF/7MdF6SJYosy8KmSiXf94de4itfe4W7+xN6ww2evLzF3uVtqqrhN3/7FUzjaG0A2SwOYSATMrYhAyHKOkPThBMuxfHStV3OZlOkdCitkAnYpqVOJblMGM+WnE6XfPPbb/PI7qdDBiagNhatk9DyTTSFz5m2Hi1TTB3k66umQiEZ9AuOT2Ysa8N0OWNuLf1hytIU2KlHRIzCWbuSC5dKkQBr/T6ZgFRChqOW4LUic45MaQTRvzFyLJCKWR08NpQIP7efaYo05d6dY04eXbKdZnhrcdbhvaVcliuVaakUzpo4K/MRzwS89ywXU2xb09QNzhhmZxNs2zKbl0ym85BmuYyz4xnXL61TuWC7rXFkQqESyex0Gkwbjec3X36Nm9d3mU9vMT0+ZWt3izRL0FpgZRJOtbqBfoJOFbIb1IgEABsXvXUeb+NGj10B52NpIIK+W7k0vH73iFdvHUOi2T8c8+zVNW5e3WTQy1hb6zMc5FSnbUCQfVTCIWRBzkf/gSLHqoTp2RTvZETyBXk64O7hEWXToKwhF6ClJkkyytbSzKZs7exy+eoletJwMj3DW0O7rBA+WoipQHAJJp6hBEsk1LVnuaxQAhSgVt4LKliA42hdHK6KQTLViiTXtMpTtQ5tasrlmKQYUbYmGocE4o33nvF8ye7mCKk8IUFSDNb7/OHve5HZsiLRGWtrPcaThp/9x7/FvC7RJDgTwNdOwMMKHwasEkkiJTrO7QNkwqPrGVhDmg/Ie31QAqk15bJkLYHl8Rk97Tl5sM97D47wWMrFgtu332RjYx3hJOmgoNCSxXzCuJzz6v0DSifYHuRk6xqpN1m7tIVYLrHzgql5iFkKbu7tcc8dsGxbqqaNrWWPUpL1tRH9NCFXigSPamsS78KJ7wPtV6qE1sPcCpQDrQWtg8Z5lvMSHWtRKSWpUswWS9669YD1tRHGmUBWalqm8yXeipUeZovHdqfUh1wfiSBgjOX0dBq8AK1Dpym9XsHZyZKjkzPmy5I8SQPy3C44mszBeTKlEMKjEsnu1iacnFHWDV57FtMJhw8UlanBQTmfcWltl6JXsJjP6aWa9WFOr58iI9VWRj6gjIQg4T2NM1jjwqjmhRFSI2BeW96+c8j9u/vUy5ZlZci1QGeSB7caVLbL5m6PK2uKxx9dcjKdI5rgHuMRK4NJ54nsOc1sPIP6fKosK0ZU1RIhHGlW0JoGpOdksmBwORiWGmtomiUba9usFZr5ZMI7tw85PTtYCaF43wZtQimQSpPqgGgnSuKMIcsUWgW/QiNCeeZEKIca69EiTDgoFYZTfGWwIqD8EkldN6xtFrimRrhg7hoQFs9kvuSRS1t4a+JoNFihSHsjdnujoJOI51d+81tMxnOkSEJghNgOjGI8EMaHrSfVeVAIEmEwJkkEa33NpG1QSYJpa7yBfGuT8vCIsjZoBYlMsPOSg7snZBtDRqMhd27fQqePszbcppqd8ODu27z91nu0TdBnPJqcYWyfJz72Ek++9Gn6o3W8N5w+OMC7BmcFHse3X/4G79y6xXsPHzJZLLBJSpplDHsFoyQY0CTWgjNkOPrGc2gtpVC0dUuRSBrnyaSidcFPs3Jh1DrXoew5W9RkWYIH7u0f8Un/FLZtg9K0c6xvrnEwLWmtYL40eBRFP0Oqj3gQ8ISJvKauyPIClGSxnNGYhoOHh6HNIVpmR4f084T5rCJTkuFan7qpEFJirCPNNWVjkN6hcJycjSmKHIHDIXnkkUdYH/U5PTpkvVewvbNNlqaMj4+xxuKlR0QLZ0Hc8asRWbnqDOChbD1f/vq7vHfvCI+gJ+DGQLE/tzTSUTYzDr71KtduXmb7E49w5fI2147GvHv7IFqehZlx4T0KQS9P6EuPr2ucDAYogtAqVDLj9K3joHgMSKUpq4qz4xOcdchE46WjlyryNEMP1zg6foXXvvtNbty4iRcOoYPUtfDBqs1YKNKMPHVxtj9IZyU69LfbOrADQ2epmwwM96RxDh300pFSMOjlTKcljzyaU9U2+MPaQK/Ge07HCz729A2McyipA9eie/LxNh8eTnm4fxpbmG6louyi5TkiZgW4CFg2IVgH0Jyq9YxLSw2YpmbpDBaPaA3TxQxcGbs3Cf1ezWJ+BoMe+w/f4/hwilQJl3ZbhFvw9uuvU7YCJwWPPX6Dlx6/xMFJxebe5dAutS1JmnD5iccQWtG2LYvZnKeF5OpTT/LWd17h5e++xqRc0jY1mVbkSUKhITUenMBbSWsVqfbUXuJEENORMTuwkmBM48N97zKBw8mEtcEQYxyqbVEanDHRxxGuP36TnctXmS8rWmPRWpHkGevDwYfuv49EEOhScI9HasmyCUjo6cmY45PTSHLxQdMvVUgR7K1HW5tMTk5Jlebxxx/l6PQY29wHGwy3Gh/caXpFQi+XsJixtbmLlpJBUdBf30TojIHus6hrJmcTsuqMfnZeFjStpW0NOlFRVShIVb/94JR37h8Hj0SVIJXg8R3NiW2ZVIaycQz9nIPjE2bTddZHAz73qaexrePewzFeOJwzsfYT7Oxu8OlPPMM3vvUG7ijM0ivhOTi8z2C4wXJexcUUiEvlogqTZVqxqOFo/4zZzQnDnuZ0tuThScmNSY2PoJQwgeVoPRHg9DhTkaUJ/VxT16GGTZUgSzTz0mNNAD+lDBoK3oKLdavWGgkUeGzTMJlLdK9gXi0CIOc9jROcnC04OJ7w0idSWu+RpsIhqJxHSxVq5Ezz4MFBqGtjcPRRscdFgLa1Hq06LKXL1MC7AHidlg23TxryXsLQWJQIyj1ta1ksSpbzKdvDAQMVevSmsaRCYWvD4zcusRhPOBKWw/vv0cohVzYTdkdDphgGO1cY7mboxLNYnFJWU3SWkWY5WZaT6IQs0wy318n6PaRwvHd4wvi9O6RKM+wXrGc6zEt4gdYtVVvhFOgsC9ObBD1LI2SweY9u1qmFREpsbCUn1uLrFuMdtglZgTFNkJu3LjhrZQnrWRpwLSkQXuLL+kN330ciCFgXZLNRKfNpyXK5YDKdcffhEVVVo3xA2ZWUAUQEXOs4OzzBty0ih2eeeZHkwS3qcs5sOqepWzySvNdH4qicZH+84GNPfYpi6wrCBZCvsZZaQG2hrm1gwrmQyEovaI2jahoGvaBV5wEjBN9+54CFDW1GZw1HTvDyuMezjz7C67fuUNoaJRWZsoznDcORQ6Ypn/vcszx1NOF03nLrwSE7Wxvs7W4yL2uMhyuP7HJ//wwdlW4lCVVVBw8Cb0m1pGkds6bh8PCEqnJcvbSGxnP/7jHTccPpwT79THIyXXJ8PGFzex2bhA2mhFpViF5KWuPZWF9nf/+U1ghqZdHak+sQ9GaVYdkEc4tECLQTKB1KkFRJMpXQOM8TTz7GyXjM/t19+tR8884Z750tOTmdMls2/Ff/ze+wOcj44vUhaSJ5bwa6P2DYT7l6aZuTo0UELkOOICWBqk3U1dcKoueDaQ0ChdSaOGFLKhXjZc1WEmjorQNnPNPxGYmCXk8zKSuWBsrac6nwPDrKWdu6RH+QwsmE6YOH2LJiZ2cU2otJytHRnF/56nfY27vMD9y4RpamWGMxdYl0hvnkmKzXQ0qFNDaIiaiUS2t9bjvL+nBIP9dsjHqI1rDwMxKh6fmgpFS1IpqTqCA+KwI4kwOZ0jSuCWzPmM2nWcrCWYxxDBONFNA2Lca0K5zJBz18AIQXKCW4++b9D91/H4kgAAT+tfU0dYNpG06Ojzh8uB/IODKQiejINdYz6Pe4dv0qs9kY5SzvvvcWaS9HpzrKtwdwanPnEvePjmhPJ0ih2d6/z8b2FkprMAF5ts5R1w2iWVAUkSIcin+y6BXgHBHsCjX8vK4I+TA4L3FY7s1qBusNrZBkieLKzjqkgIzK8dYhtWLn8iZ7KmVzs8eiqrCmxNQlrk3Jpefy3jr390/wXuKFRScZiQasx3pPayzCG0xr0N6SpgkPYzqdJ4LLazBMHeXhA745XbB+dZcnru+xvtbHJxIZacveKxyWrd11jo+DnLa1UDUt3jqcbbHWUdsO8Q/AoicoGSmvmFlLVmwwnYyZvPkGD/YP2d0qEGc1w8ahNexuDZjVLe1izvS45nDacOu0xnqJFYJLm2sI5TEupLUd+i9lGPEOVgqh7AFonMUYT+UNrsuT8TgRjF49QWAl2JXZQNgxYTDJlSWttTzS6zPo5cwPH5Czi5Keja0Rm7ubgagjMz718ReY/+43mZY1RyeHfOOV1/nBz75ErhVCJuRpiqpDq9SbUL5p0VIk8NxzTyKl5fjolGVtqI0ntZZUaFINRWFpW4tGUggVS15BpiTKWRAOiWa93+dwugwq0gCoaK5iyYssuCnJTpIsrDMfyWhyRbCG8Wz5oXvvoxEEPJgmLLimqTk4POLuW7cQVRM/SPhAzrnw66iUUvQLhLLYuuLs6IArV3YYFAOaoqbyYCrDnffusaxrpHU0taVeLNFbO+RpTqtsSL+SBiksSoUVJ5Bx9FMiJJStoReDgvAepRS7az3G8ypaVXu88dR1zSu37qK8Z5goTF2ysT5iNOzRGoeSERhD4GjY3Byy4YZEKgJVZZiNx3z640+yNhry2lv3uHv7Hmtb27RNoDQbYVhbL7iSr1M2ht5Gznv3jmmbltQHVuJiHHr868OEm88+z5v37/Jbv/F1Xnp0m+1Hb5D2Rkgd3rcUsLE9JO+ntG0ZGHimRfuQLyTSk3qB8VG5iGDpLYwP/P8Gmtkh6WxMu5jjrWUiBVd6grRpkT1ofMXdRcvx0vGt2jAvWxIl6AvPUgiol9ReBhHTuKeF74DIsKKdsbSNIEmDnl4QLnEdz4rTeU2eJ0HD34KTUDeGrSuPcHLvLs4r+sOU1gq2soRHr19D6BHrvT7CGtIiQ2nFyghWJazt7vGlz73Eb3z1G8ws7N/Z5/WNO7z47GMUeYJOUvpaRa2GmM0SdSznM9q0R8UY17QcTxZsZJo0SVg2Na1Pqb0nycIYcqIF0jgKpTDeUyECQzItKIaCejpfbRZjgjr3Wq8I2YM7Z54GEFVGOTIfs1fFWv//vzZk/19f3juqJvgBHD7c597bt6jmy9CDJ3wwpVTUAgwtNWzIHJRK8KqmNQ3WOQa9Hs4YmqKgOZuyLMMp762hrBuWZcViUSKTNERNEzjkdR3EqrwPM/A+HnzWC2wdxmMjRoa0LY9f2+L2/jSYeuJinerwFiyecWWpbcbVy5cxztO0LUpI0jS6JEfdeXQc7BGhLTQcFSjtefGFm2ysF7zy5l3axjLqFwyLlNHGGo/dvMzxwyOOjs84PT7DVOGzz5FMFxYhoKdkWCxvvUaxKLmxqVm3c8SDO7TblxHbO0gcChj0C3YubTKfHpArhzGWsjUhI5JQOLDCxxxdB109YFl7qqpiR0vKseGwrikSj51LHpy2AVgUEudhoAQL7ZmUDWta8cJOnweTklwKchyTFrzqTDXiuDYBwwgkKvBCYlxwnpYiBGQTvRuX1iCSDEkNLix86RWzk1Nm5YKktbzw8Sd45onrzEvP2sYOvV5Gr9dHpSlaR+/HOA3YHwxIs5zdy3uopOCf/vY3WLYNr73xNtdvXGHQD0a23nXnb2hXHhyd8M47d3jrnXeomnbFQG0s1AasN+RZgW+bsJ6NR6iQfepEo3QoeR2KhRPMqpokSci7Tew9UnpqK0KZF7vXHflEifAZbGzRCkBZz/VHdz90/30kgoCzjvHxCffvvsfhvYeYsl7NZ/toviFVhyc7UunIRY2bvIcTlrMlZCINjsNZwmDQo24VaVmSWE+aZZjaU9UNWVbghcA4h3MW09Y0VUW1nDMUPgByeBCBEqxTjYlmHyHaSowXXN0acG17wLuHM5wXq4cdJOol2jn6wz69NCXRaeixSxE2kpAhEMgIgIXwQ5Yn7O5uBf04PI8/cZk8Uzx8eMbes4+zvb1N3TY0ZcXaeo/Xbu1zeLYg0Qovglmm9CFrWjpDi2d875R+Llie5Rgn6J+d4e9O2HspZbiziYuB9dmnr1GdzTiaLOgrxaINg0xCSRQO4xVaa7RtaZ3Fi4RFWSIxTFtogWmrMSUUaXA8KltFIwyp0jipyNNgOZfjOZpXCOHYGwx483SGT8KcRColbdPgfLDi8sYFNSccWjkEEuE8SRqASRkPCu89s6phNJAoBc62yMQznc1pKxMIP1bQ729BT9Dvjej1M/Kih1IKJVW09oY0y8iLAh2f19PPPc3+vQd84/Y96mXJt7/zFpd+4FNINMu6QiqBNZZvfOPbvP7WbZZVibGghKKXJbzwiY+xsVZQjU+Y7u+zXBo2N9ZxTUs5nkcdwZa2bhAqRaUZrQ3BcDJdYO0suHERCZ/O0x/2uXZlG1YWZV00kAjpkRHXEsKDUMj/Dm3I/n9yVVXFd1/+FuVshjU2TGaFzAovAlIvhEIQ2liLGuam4dKmI5ENZ+OaQVIED0MZ0ObWlGRK0SxnYWoulhWeUHu2dYOxhmVVMj47xSxPkYXCtIFgoTSkBLagbW0sSYiiD45eXvC5Fx7BfvMe7x5OcD6mrg6EcVzeGfLYE1cQvQSpFKkM713oEASUiM41qvt8AmSgLONB+qArX6Q588WcK3KDPBNkvQFircd3v/oGBydn+O7hi9BIlzJ8So3AGbDKMa8UD2zLtDRk1rLVkzSvvM7NT79IMepTt4JUaz77fZ/kN37r2+w/OCbJktBRsI5EaoRMsFJQG0ftJY11nDUtQgZxjV5WsGwWJELwaKEZYploaJ0kU9BTlsYF49XjynNgLdZr1qY10oBKJXmWIrzHNUHyzTmP1iKSqwIfIUvUag7DebDhbEAJhfKWxkpqL0mUpAF0qmkFVNYzHAxJkpw+0F/rs7m+iTUtHo9OshDwlEYnKUmSrIaner2CP/Ynfojj//LnuTeZ8e7tO7x28yovPf0EQsB4POW3fvdl3r17PzwDpbh2aZdrl7a5urdFL8+oqoper8dwbZ3y9Ix6XnK6NFidQGtx3pD3CqROAsEp2pwVvRRXe1zEBJamwTjBp565we56H9m5HnWrO+IBsSMcfuOC9uOHXR+JIFDXNctxEKb0kaVX48PYbjfR510QbIj0VyM9JBnzyjKSFYPMI6WiFcGVVwgJKNZH68zqmvk4WFYJH7z9losZTbVgOplQjY+hbhg34fvWGopUsz4agpARnY2qr5F37zysjwb84KceZ+Ot+7y3f0ZtPZmUXN1e44WnH2E4GtCYMCg0NQYtFVYIECnL5ZymbbExI+mISEKEMkHEWYbZZMG0spwtWopFTa8Hs2nFW2/fD5Zk3kZT0zBfH0LLeWCwhIm00nkGesTlR3aZHLyHWS4pT49IBwVKSbyAPFP8oc89zyvfeYd3bz+giaic1gnCBpFLoTJ2Lo949Y1DprULgct58DUSgfWeh0tL1pNsZYFdkWiPMQLvLanwfGJDcVR77pWeZDhCnE4xFkZrQ6bjSVzOIir1BDDV+lDjt8agVMBtpJSIiIIH513NbFFxx09IpOS4lPRiK6Qohty4+ghOpyip2djYRGuFdS1pmqOTNKgFC4nSHc0akGHYTPcHfPGLn+Uf/NI/pTGW73zrVa5f3aOZzPj1L/8WRydjvFAkieTpx5/iE88/Q6JhNhlTN00obZXCpznr124wGU9Qy3dZTlu8DWCzkIoS0D4K3tY1yoVZgja6IC1ay2A44MknH4ly5wHDIO6d2NyOtLfIghXn/gwfdH0kgoD3IZ10MXRZAgruIpEmATItaUwQcewngWarhzscTU6gmpD3PQKFdU1gpPmgCtQsFwyUZHstp8g003tvsjxQeBeYW3hPYcMNs45YdshQ7x6O0Urgs4a7D0/CIpHBXAMJKtXkWvPiM1d45tFLGCsxXjGeN9w6q0mWcHw6AQtOBipnlvfI8wEPHu4zm45pmhrTttFf0F2wnovlhwdnPW8ezMkSRZFlCA/LKpBlVJyyFCKQa4gAHoSWqidIb3knmFvL6PIjwY9v8YB0fIK7tAv5ACXCaZ8PFB/7+JNsXd7h5e/cpddPybRCK8+t/SnPPHGVX/vaa8zLZQjGbYsUsLQOvMR5T20cxmsWxtA6ias8uQ4yYzPjuCzh0Z5gJC2vLyaoNLhEzcoGmaS0ssLG3jmKKMUmkUkSAiZuBaauJjsF5KnGGEkiPYX2NF6xt7bJ7GzKpz/+LLt7exgPRZGTZwXOWZKst5r916oDBcVqQ4UMKyglXblxleuXt3nzvQNms5KvfPl3efjgiGU1A2CQZnzfD3yepx67TluXaKVWFnHHBwe0QqLTnGrZkI82uPbUU5zOX+HuyRkSgVwYpNJI5bAm9Pzr2IUxMQgkmeaHfuCTbPaLztIQG9vZAF44VicKPpTTiJXn4QddH40gANTm3NTROo/15x58WaoRzjCfG5wJEuG1k7z++lvMa0dVORYTy+zd+5SzOXVZU5Yl3lr6acJ6FgxEtFJI24Q2l+9Ap0A9RqsgHmoNjjDqa5qWJNHMrKc9i1JeS8/ds4q97XW2NoaMBim9fkHec5RNy9Fpw50HB4HlpVNOTs+4fHmPxnoWsznrXuIJs+xtEzoWxlpstBPvNj5+leGHXnldU9ae8WyBBHpSBaalDN0SLeXKGy/wnIJevogtTQEsq5Kv/O7XGOWaT+4UbOaaalmy9AotU6oygLSNMRS9lBdfuMLR8RRnE1paRj3J/fsPOD2a4qyJfng+KACFBjVKeHqJ5rRuOKsFE2MpJAwSx24muN5X5FrhvGc9czyO4ZsTy5KUw3uHbG+MwIWyKNhth4+UKB/TXBlagRGF6Ug0xgeeh0SS6mCPphJLVZc8/eR1Pv6xJ0nyDFPWjNbXg2uQlqEdKaKrsAz+Ej6qAnV8exk5y3mvx8dffIa7Byc4u6Tefw/lNUqlPP7oDX7g+z/LaDTCWYMSBTjo9Qc4bxiO1qiaGm9a7h6fMcwSKAqeePoJxl/7FvfPJggv0dqQJBJnW3Ip0UDjWtoIxn7pi5/gsWtb4bT3DudlTPqiU5LrsLSOKBQ/hf+IBwF8ADyCpHs4kW0sB4QQQbZZSBpvqZwJ9eci9HxtCIWMJ0vmk9tIEay7tZQo6TFWUtdxQtC29PKELMpDC6Vp4oTVrGooa4drDMM8Y3OYoQY97k4r9o8WiLFhlKV4KXhwNqG1AZwRZUXjgziEkCI48lzbY3pyRmsdhy5w9qdnZ3jv6e9s0x/0OTjYRyiBTlTwNnQutBvj6LFQ4YE6G1qV3XCTiKq1ToYJxqLXx5o2EIqkCLMBuIiyn/eLw33xzOolqchJi00qodh/913c2gZtL+HEQdXYoHzkWgwyBCLrcQZ6wN2TCaZpwrg1YYPYMAxAkgiS2Mo1UoJ3DJRgpxCsa8WlwpN6z6QJTq9CCBIhGUlIhOXEWE6nM9bzDK3A2HCKtcaFlRx1JwIAGu5H5wTcOg/eIIWlqh1GhnWjneXFZx5jNFxHpxnKWISWNNaQdNoO1pInWbzPnQRbQPt9vH9BL9Hx2NPP8NR33qBfnSHaOXWS8UAO+ENf+gLrwyHeOwSCNM1om4YszzFNw/rWJmfHx5AXjLYCmNiUjq1rV3muNhz/5u8wa9oQ8BC0xmJ9MK5tvUcnKQDPP3GZhMiuleGdibiHugPjfFho1TdYAdcfdH0kgoAnaNh5F6bYpAJhiaKfIri6YGm9RZLihKQyQfNPSRHmsH1IfA2hx2yswNggw5UqAVUQICmFpxKBkitkUHvJehlZnmLrimG2Rp4rhJKclYaHJwtK4/CtYbqoI7dbMluWCJmws7WFVCqg3kUOznJDJ+hEc/d0xlv/zZd569276FTRKwo8isWyAiRZloeI7nw42VbyX4GMI5ABbCSUSlIIhAhaeVU3p76YowhOSkqI8LXYZusWgev6xQ6sd0ybmlfuHGAminzUI5WQa0VtDE4aUGHuXYsQiJbGsTBtGAwiTBf6OGvgvQtDRdKzmSkqYzFCsZ4mLDBo7xlKz0BacIpGeOpGBUk4BRLFVua4X1tSFXwc6kwzTDQKqOMwUmMdwkkaE4KgIuAY3eW8p/SennQMRyMSLPOJ4bmnbvDI5SvkRY+8PwyqzT6Q05IkwbRtsOgSwdZd66DtICNwG/7fZVUKJSXXtnrUZzOapSZJHH/oE59g1C9CRolAKgkimMh4H1L12tT0+32mVcPOzh7z+YxU5aR5wvXHH2Pv1bc4u3c/DG5Zi2katFRsrPV57tGrvPjcDfg//hcIpcIhgcA72Snhx0AV3qt3caTZBXxIQMBtPuT6A4OAEOJvA38KOPTePx+/tgn8v4GbwG3gx7z3ZyKsvP8z8C8CS+B/6r1/+Q8OA5HnLyVhJix62QkRlIOkCoChDwYSVbsIH6wbyo/2XZZAlBBKkmpJrhVFmtIvEvJcURRJGOnMNUmSglKhY+egKhcsp555a/FWMMgzNpOc528q9k9nTOcNc+Oj266lNpbj0zFX9jZwTuDaljxLwrivVnjT8uatO5i2jeacltYY9vcPaK0Jp6WxNE3QtSMOygjE+QOMLUkRGXQQRo8Rwawk1SqOo4oLQ0nd4o2UWx84+FnHr/U+CLjUHi8VCheEVUS4hy5O/+k4nSeUIlWOsoGqteF9KA3W0LmwOBPKmFwq0kRTm+BO7IwlVQpHkAFrEJwuHWtZSFdLG0hVo1QxNpBrQSEVT97Y4fBkHnAGIaOyUwBtIY7fysi3j2u7mzE4awVmXKEVXH3yST727FOkeYZM09CHVwprwmb3zmJMS9ErkFJgWtdVYhf+iTBbLLMdjqQomD1YhqlLY1nf3kBYj1cdXyS8vrMyl1ohrERnGbqqcEKTZDmJDqedkoJPvPA00/kYpyBLUzbXBly7ssOj1/fo9dKOBRwOSRGkzS/s0dD7EkQZ9YsaWGHtmH9OTODvAH8d+KkLX/srwK947/8jIcRfib//d4AfBp6M/3wO+Bvxv3/gJYVAAZ1MdVjsIR0tTUsiNAqB9RZrJakIE29aQy8v6OUZRZ7QzzMSnaCSEJFV5BgEvE8G/nu0EQuaEgFAS1INIrABe3nB3uVttM65dNVhGsOsbnntvUNeeechUjpsC6eTOcZ6zmZzysWSZx5/lHsPT7h6aZeiP+Sddx4G9SEV01jCQE6qkzD9SFTJiZJUIvBjQ0rZGVDG9BTinottK4VH09lchc27Yo2JkIqHPx9OybZj33mPcB4rVRgVtp5ESYxzNK0Nwz8i6ON7CUJYiiIhLxIaW6DEnCTR2DhmGyYsw5Rl42Az8VTS4W0CPnQvhOhUmixOes5aRxV1L4vE4KxAC0GWSK5fWefRR9a5sTfknTvHvPNwiu1YnFGOawWY+vMEuLaGolfwsUd2aMqGBwt49sWX6OUFIg26jU6EoFZVNXmRY6wlyzK0VhH8i2cKcdw7BlDvPHiLdwqUoBIpr51V9BLJxtYW/eEAWhdIZt39JxxqUki8CANh1kOWZzinaKyl1yuoqyXguPb0k3ypnbGoJuhEk2cZidZMzo6ZzRJ05AlMJ3NSrUPZp0XAgqQKytwRC0LEIWwZfRBax8vffu9D994fGAS89/9UCHHze778Z4AfjL/+fwK/TggCfwb4KR9W428LIdaFEJe99w9/v79DCEgAROBeCalItA6RFkhU6PumiSbPNP0iZTjs0ysyilzHnmgA80KN2D1Jf14PCfDCB/QUQag5Irva+zhjrylSFfTrtIJEkKBIk1AyPJ+nvPPeMWXboHQgDTW1YbGo2T+akCT3WRpLcnzEwLRU1RIHsasQgpL1NrAPQ0+IAHEFEpSIGMhFGmi3JMPqUpjGIHAUOokCPsFpyDlCGkpAzK1tY584ntZxQXjRldeSR6/u4LKUKh8gFei2IXHBUlxqhVesNrhHkAjF3tYa1zYX3GpMlKwSeAep8EGV2Tu2EtCiYZEIelqRCBM0EyxspZKhDh2Wd6ctloQah5WeJEvZ3lojcRKtBR9/8hJbo4LfeeeYaVmGtmD3LKNun4unnlcZH3tij+1+htYJz+w8yuM3rqOzLOA1SkUQOJ6iPpRhWZ53ySQ+mrqu0msf1HpWlXek4i6M4NQPOZ61DJ54gkRnNDQEA2O5emo2kq0gkNgm5RKpU1wVnk2SphgTadjKsLa3h3nnGN821MslpbeR2MYq47nz2usrLojslG1kYKGquH50kiCUitmI5GxhaH36ofvvvy0msHdhY+8Dnb3JVeDuhdfdi1/7PUFACPHngT8fPwZGiDg+Kyi0ZmdjwPr6CK0EeaJJUoXWkkSHlE4qVjfCxYeqFQFA8yFN9JFauiqcAkyKjXWTFMFc1BIPTh/EIWzkgivtEATBUe9gLU157toWr9y+j7GwXJbMZjN0liK1YjqZsnflEg8eHrLtU6wPaDbxxOrkvToACkLG45xEeHVO/orJnvOdTLQI6K/vDFAkQeocdNgR5GmKlJKmNZhOq0CEhS4Q+Nbjk/BrRyCTJJki2d5lZ/sqRT+hrGqWZYUx0Xqb8Pe18b75pqapa7Jeyrv/+JskicJbh6ET+pDkiqDYjKOnHKPUM9Ka2kLrHN4GQddMSbRWlDH/GzeCy9e22FjrYb3BesmDoyW3ThoalVHaZcBMpIw22+HYtpEFczQr+errh2z0Uz7/qRd4/pmnSbIkMD6ndQhk1gQMAIFrLWm/iGdF6MxIJVfyYN5HIVri3qdD4SV1VSMI62bYD6QiGYOK1DJoU8SlKHChlSkl3jmc0iyXy6CGrFSYJNcKZSy99R2WgxG2qRDK41zAJpzwq8xwc1gEREAKpIscETpQMGaDtsWbBvC0CNp5hQnH7Ade/9zAoPfeC/H7FBwf/uf+FvC3AKQU3kWijE4S0ixnMMjJc3neDI6tLk9s6TgfBBoJE4YBIyCw8eLQSdMaXAQYw4kfTg8f20HEVlPY+p7aWFKZhCEZF/5uJ114GB6MsOxc3iLdP6Mta7yE08mC9d2MPEuZNyW7NlhTzWbToCtIoAvHRL379Citcc6ez3xHy/OLj9RfoCN3ohr4cNrs7W1ycHyCUAqVBP6CNQbrDMaGVlkAMV2UR/dYG04zZ2FvPcenBa4/ZNDPaGxDVZcgFTrR+A6HEJAKiWkbjk5OSBMdBozSnFGRMF+WFFqSAKVztE5Sk9DTkn5f4H3DBIWTHuFbWjzTBoYipVWSgypoEY4uX+IH/vAnyVPFbF7z2996h69/9wGlDVqCQqQoHeO5DJtDAEkClBUq0ZxOSwbDEVcfe5osL1Bah8xYSYRzWBvAURfXU5ZltG2DivMNnUYCdPmXXPERfMzOlBA0TRORF0F/0As27DIIoiofVH+6/ryJI/ChW6OwraVpWlCB7KSEQKcJzjiSwZBkuIEfPwzPrOvudDU/gNZIH8BRL1XAg+IJF4I2Yd1IsSoJJS1p+uHW5PJDv/P7XwdCiMthbYrLwGH8+n3g2oXXPRK/9vtenXBlJy/eekttHWXdUlYNs0XFbFkxX1bUTRMQadnRgMO/EynItI4U10Cq6aVZZJUpBHp1OhJ70IEr4LAd8CQDqHN/XHNydoyNY6keT9NaXn1rn29/613a2tAaz3g6Z7JYgIB+npH3BjRe0BhDqpP4QFjV684HAwpEaCER+9Fyxfry0Lkei4sIf2z8eB8RccEnPnadjfV+4BcYS9O2tCboA+tOi2u1sB3GQWsc1oYs4IWbO+jNHYYbm9S2ZVk2WKHwSsRNAlEPG+lDxtEr8oDMa83Gep8/8YMv8Pwz11FSYR2hM5PlLKRmTIIZDKlkRomgUhpRFCATajRHXlIJyZmUrN+4yR/60kvoVPHweM7P/dorfOf2KcvWxdaxQqlA5JIxAEil0EmC1OHeJFozWhvwA9//ea5evUyaJnTHcT7ok6YJXnnSTIeMssgwIigSu5VjkFhxLbpW2wpn6coEISKNPDzcYdFDEaTDhHcYa0JGIQJxyvnQ5tU6jLhbG8q+yWRK3bSoJEVnGUJKdJIx3LuG0CnGBFUl4x2tsys+RKDT+zDa4i+GrAgqewiu1HaFbygV6Nofdv23zQT+PvCvA/9R/O8vXPj6/1wI8V8SAMHJH4QHdFcHgLkIITnraRpHG91eWYQ2GAhSJfFakCRRY1DK8EHThKpqaX3oMada4/HUrQmnrFRBsorwYBDBZst5h/BhkCnp5RyfLnks3Y0pnKeuWr7x6n0WJyc8vruOOZ6yqA0CQVlXTKYL6mXDYDTg4cEJ08mCK9vbaCGxUa6MiLxrnQRyjQl2Wl3K3xGjzju7MdETHdh3oR8mBEWh+fhzN/nK774B0Qsvfiugw7LrH8cmket+rufpK+vsXN9jsLOLEoqqbjGouAlCbiR9yEs6cT8hBaP1Ea1pSApLnidsba/xg5d2eObRPR4ejLl1b5/j8RxbOoy1HC0qCucpMMytp59qskzQZhlFPuDS1oCXrmxx9eoWvSzj/vGU/+rLr3BwPMe0sR2LxfsgvXX+GeMB4INyEARM5ZEre9y8cQ2VpkBouco8Je8VYQMrhbEWrRISnWFrtwrSWhM/v4/BOdzvTshUQjwkHE0T3JCQgnSQB5uxUIBjnQ01uQvmIcIHRWetNalOqMqG/qDPeDYNY9EOyrZFJUGXIFvbJN+4jK/OsKYN3RzbaTYGMNT6WCp6E8av3TmiuXpm4nzNpInk4vL53uufpUX4XxBAwG0hxD3g3yds/p8WQvwbwB3gx+LL/xGhPfg2oUX45/6gnx+eYFywEZ1XSlI3QbW1bgK/XkhJqiS9NKOvNaShXksIC7+0ATzLsxRTVtRN4Az0ipyttXWm8zkCybyuadomnswumEoK8ELRIjkel2wXGb1UgVM44NVbZzBbcGNzxLwsqZtIXcVT147jozFV1dAf9jg+OmU6nQdQCIF04GWHYgcARyoRRkgFEXxyEWWH85M/HuUi1vSxRgViNuB59tGrYCW/+41XwRBbfD4WN+HGdD9XI3DKsb25xhc+9QzZpcsR11jircPGU0R0NEXZwZVh8NEiaL2gblpMK9Ai+CcILNcf2eGRq3t8/nPPIIylrlrKqmW+mINKENJTJAlpkpFkBVmiUMpTORvadT5hPKv4hV/+OiezBts2ccjZoAgIe9ce7K7O+KXLkvIs5Quf/SQbm5uoJKOulkgv0GlKohIcDpVmqLom0QqBw9oW5yxShZkBEcHAkJlFifl4Pzq9Q+taqmh0orSiXxR4E/CE0BJsA9AsZBCsMZ7WOuqmRicJVVVS5CnrayOUVkEgRsugrtwYXJox2LtOz49QosMWYnDiy9x8/pkIh/ioUu1wNqoNOw/WYZsWF/UNrHF429J0YowfcP2zdAf+xx/yrT/yAa/1wF/6g37m773ibL0Pp1hjHMsmuLkYGx5KmNsXzOuatFIMdaBlYhxOuPAArMe1zUoHwOBJjSdJE/qDAYlQJFnK6XSGrVssBqzDSYHwgta0SKnpSR9uqjeULufh3UM+98QlqnJOY6pYWIQN04FwVW1oynLVnVBaY30wwRBx4AgCm87aDriTq2jd1X8+bnjfbcgIer6f8SXAKcBy/UqBtNd5486Eu/tHpAo0nlb4oArsgnuylZ7t9RF/9AsfY/PSDst5E5lxKmIpXRDyCOkxsRuwrEveu3fKg+Mx02lJWdVImfBwMudXX36bDNjbGXHzyiZb6wOQiiSTJHnGcKMPBG+Fi3vYeYttQ/tNJhpjHL/1zbeprMK2JhwGdEzJ8Nl9bH91aXs4tcWqf/7U449yaW8nmH/ImLLrhLpuOD4+Ju8VaKlYLhdsbW+FDDOWTz6WonFOFy8U5x4T5xmqFxLTGhprcLYlSbJAgcYH7EVwfvq7c95F2wYmYJZqnDPsH07Z2dkI68E61gZDprMZKI1yoJKM5Rx6WcC+6DpexGxRhPelhURIDTrFp6zmA7pSpYvn3hOncb/8gbvvI8EYJKLQxJrJRi69lKFe7k444zxla5lWDU55ejYlTzR5qlAqimFGpp0kkGIcntl8yWg0QghBXyeBx1+e4LyjRSCtwDlD6z3louGwtVTqmPVZy6xWfO6pyzz3+E3euHWLcrlcKb8KAgkoSRKquqZuDDrRQZKrbmJTIBTYvsMgrMU5ibUuEnO673clQffAxSo9J/arO0GVEBzb4IrUOq7urXPl2iXeuLXJrTv7LOfLwLL04BMoeik3Lu/x0gs32dwYhCzF+MArlx4RWi0436K8xEvNoprz6usHvPLaLcazMowUC4/QmiWS2jjeun1I4lsevP4u3y0S9nY2uXHzEa5c3aafa0SsjWMu09208NmCKR/OeV595y5vvHfKYrFEhNAVg+SqwRvS24iKh2ZFlymF9/7II5cYDIckSYZEolUSRoO1Ik9TyuWSalEilGLTh+fmW4MTnrQoQASXKXGhFOgwnTiXiRPB1quJQiZplkY8JAjfijhcVjfBUdm2JgTziE14F57hsgyW6+WyJMmDdmWaptSuRXqLzjLassD6RegKCLr0j84Ru8OTYqQ6Bw67986F241f/f6Dro9EEPCAcTbWZyHyOUCpME8gujTXOVolqKRESQmmReQSLTVpEoAYvCdTml6S0niLQOKFp59JGi94+GCf0/mCs8kMmWjq1jFdtswWNWfTJYu6xlvJG/sznrgiuNRP+PwPfR6rUwa9Q6ZJhhJV8NrD0xpDolXwl8t7qKrF4kmiHyFCcN478RHH6LgA3dfPF97FcqD7vovbqGMNCiFYTOfsu5rxeE6eKKSe88y1DZ66tsF8PsO0JoBiRcba+pC8yNAyga6tJIL5RdhLDmFjRwLHdDHjH//qt6irmuXpjEJ6BnlGr9fjYD7FNTZgJfMalXikaxk0Ne6g4rv37/Fqf8iLn3yeR67tkuVqdSJ1SzKMQgTco65aXnv3BKVT8HMkEd3uJl/kecovQ3/1/C6J8+V96dIevaIIk3vOI9OgtuuEZLi2jl4umY5n5FoH5yXfYK1Bp2Ejex+CcqKTFZ8iPAMRM9SwmctlibceJTVF0QttaBGciJXW6CRhWZbkeR5AZ2djC1KgEqKFmkdpwXK5YHMQpMC9s6hEBSNXnaCzPq6tQTRxfVzEhrro1EWYwBh1rsvlumOE1RqU4sPDwEcjCHhorbsQzeRqcbqVq1WYHsSHllvXc69NxXLWki0rdkZ90kwhZRg9JdpHTeeOyaziaG5459YdpouSxngsQW2obm1cePGUceE0enhyzI7eZDydYlToOKyNhoijGUJEO2jrkBKatqFsWybTWQRxzsc4pZIRMYYkSQO+kQT+unEGYn/3PBD4FZAT8SCsd+cy3N7z1e/eQWmJ9xJB+N6gOCBJVXAJSlSw4mKGVqcorRBSkChNligSJUhVJDFJGQarssDXf/2dA27dO0JIQeo9a3nKx67v4tOMB98+ZStRLITHuJJyabAIjBOsK0UmLH4x4VtffRnvXuTJZ27gJWihVkNHyGBqInE8OFjy4GROVTeBLUmgCq/OLh82mV/dDxffc9Qfjzdqc32Doh+6ANYG8hcEG7ez+ZzlYs5wbUSW5dE41EacJWwob8/1Kztw0HsQLhK11KrjxpNPPMZ0NkVlOca0JDpblQKJ1kiC6zBCYG1QNWpqEzGAFp1o6qomTbMwEVtVCKXQXuClo1USn2SYNiGhDeCf725HDAYdWzJ2tly3UPx5IOgyhg7b+bDrIxEEINBpu7eulIqecyHSORtcg/MsJUtTMiUptCARUDaer795H+UN3/+Jx8gyxXxZcTxdcjqtWJRBZDRJ01CnCUFZNbQmgCpSeDp+fvdeAmFEkAnBzDv+X7/+2wzyjCeu7qAyjUxCf7ZL46UMp11jLbPZIgQ103Z6DnRJv7WWqqrZ2NrC2XkUpuwiPBcCQYj84Xn61ddDbRrO68Np9f6ILwRMyvizIs0WET/fORtRxkWDSoL1tY9lgXcgHH2dQBwnDso9glnb8s27B7TGUeQZy7qmbCxaqcDFByZOMpkFG3elFNLCw6+/yTtjh0hSFsuSyWxCUy1DD1tKBnnBydmYzfVN2mrC2cRgjEZYi5M2FgZhEUspsDbWw+J75yvAS0FbNmgVno8TQZdfOBe4Df0+/cEarm0DFuCjgIwLZB4X2X2r5MzFduwqXQvjvdtbG8x3jnji8T2WVU2iFMZbUqmCg1YiSaViWdWoJEEgaZuKpq5BSVprg1V5aynWe5i6QSZJ8ElAYHXIIrVS1D7FUSJwq1kBfx4ew7P35xOO3dTjKmCIsP2F41x85QOuj0gQYBXVu83YDWEkSiJ0AA7zVJNpRaIkVV0zt56yDWQSJ+Cr370dXGwjD7yzPNdKhU3oPFXThFMVCEBd+HvkSqc9bDKD56XnnuKZJx/j7//Sr7MoF4wXQcjjdNEQG41YJ5jNF0ghOTg4WrWL5su4Sb0FJ7BWRGUkqKsla2trHB0drbKfDjPwFxbdCiuhW4sybubzDCHihueBgFUGSFfNShkBNB/ANiUVSoaAYuMEo4tISoLH+RYbC/EGwdhIsDaM3lpHUgyQqWOyXOLbMLXY6xVUVYnzIfVU2rNe5ByXnnZSsr//gMl4QtPUrMZfRfiYl/bgS59/kUEiWSwrZsua+w8POR7POZ0twwkcT2QXA1bTlOEkjR0TKTVOnUuBe2VwiaJOGmQlKU+r4KLkIdGhLOratl27WIkQqFfUYhEnMKUIZZS1HN56g+nb36XuDUnWRohHbmJ9i5MalehADtIau1xGT0YfW5OOZjanXJbM5nNGwwHTyYT1jU1s46icJ8+LYPRqgsN1rQvqZkoR8a5ufUaI4byrxoUsdrV+xPnh8fsBAnyEgsCKMBMv5x3CiWBbJUK0W9Y187KidYE/0Fqxmnrz3rFsQ+9eSYlKAvtLRcWdxrXx9PernjwQq+0LaZYQeCTKO965/4BlUzOpSnpJQpJ2yjYRsY2qxMJ7tNLMpjMi5L5i93nB+zay9w4J5Hl2/rX4mQNW0A3+dEEBiHP93T8rTsGq2PbnkaC7hz7QorWWK75D4BAInLVhnkEJ0kTTGIvvbM+0pG01Pmoy2MhqXCt65HnG/mzB9uVrPLOzzZtvv82Dhw9DW1fLOAXaDdzAoJ/z4vNPceed9zg6DGmR1HJ1CgelfMnBwSmvvvEeP/DpZxHCM18syLMMKRYREwvttqAG5ciKHktjz41hgTt3H7K9tct0OqE1GcPRCKxCZwq3qJlN5qxv7SK0joQdSKOIbOjShI6QIBwcjijS4X3I+pynrZYcvvEKO0+8SH9tyO1vfnX1DK21IHUcOQ7ruXGhxLUuSMw5a8E6br17K3AXXFAS0jplfWMjgIyIgC1ojUpzmkqTqU5CZcUeWQVS77ueEhdBgKiaHL7//ozm914fmSAQrtWZFk4oAdN5HQCWbvPGV14kSwoZ5sulDMCideDbhl4WToqzRRlP5SjkiY839bzd1J26QbI98LUfno4ZT2dkqSZLFcv5HIVHduQQBEIq1kdr7B9PKH0giOA847Oglddx0bsNbIxlsVyyseXDwE/L9yDSXVfg/JOe42HnXwPO68Du/RPJrDFb0FqFaTMhaGN5IeL3TWSzKR/KhURLbOvpJUEPP41ZlPOeujYc2AV+VuG85c57d9EqgGFrwyFSKZZlTZqFwCZFYBVOZ1Peu/OAlz7+OEfHZ8wXC1Ln4rw+5JlGIjk4PeXtO/dwAk6Ox0ym84BnyAi4CRHNNYITlb2gmdBlUr/8q/+UK9eu8exTj6HwuDaUeWVVMp5OQQUweTKfkWjF2sZa6F6YQBRTWmPaJpQKMiDvbTS+wQfBl+n+XaTMGV6+QZGAK5eMjw/Z2L2MjTJrYS4sbGRfVkG4pgmGoW1VBxHRo2Pu3LrN8Pln0UnCxsYGIXwGfQwhNSpJ0GlLKTIczQoUljH9X4GsELNoVrMn3RoIV1dAfvj1EQkCAZzq2GkynojGBGcVuHiadu3EODHYIeiycwkicvWDcaYzJuoSaJx3FGlCliYMiow8z0iSjDTV0bTCYmyLcXB8NsY0DYn35FJQljXCGAoJWUSvRcwCpotFIADF9+WBew+OKIpi9X5X6bkPWvlHh8cry+3uM3S4wMWHeI4ThODlLgSH8+LwHCAjrgcZ2W3WSVrbEtWp0LlGCEnZNLFkCkGql2cUWcKzl7dJEsWvf/ctGm8h6h56FweFvKcqF7zynVcZ9Hv8yR/6IlJC3Vpef+c2J+N5IN6IMI1Y9HJMK/nipz/BF774SXKtUdLx7q1bbG+ucfvWPR4ej5nPgpS31glKSYr+gMVywXJRBW3GLLIACRZoIp5unbLQ4cEBP/ezf48/9Sf/OFcvXyHNUkxjKKsli2VFnvcQ3lOWS2SRB9xJa6QNCH6qUzKR0lhD2wQGn/WCNPpDNOWS2d132X76BfJBH9tUZMMRR6+/yvbVa+CgrpdhA6dZ1CtweNqgW9A21E1Nv5fx8Y89xsxpEAmNcSyWJUVRkOok2IrHqC+UwMmExkAv7tRoArVaMx2zs+tAdRlBJy0nEN1k8YdeH40g4H2QkrKxNhcigmbnpyOAiAKTXb0D50BJR67pNpKxQZkWoJemrA/65Jnk0tYGa2sj+sMBWZ5TFD2KvKCq5lR1xXJecv/+A4a9DJNpqkUJ0f89iVZP3oe58lCjhum+RKsVtVMIEcFCEecGwhBSAPvCZq7rOnIGOnspscrYuhOdOAHYLfQuYJyf+6s/ysVfBkDIIoTCNC1aK7Jcr+6p97FMiAIYrXXUdUV/c4NsfQs1P+HG3gZ3jyehn9faKH3mV6QnIQRN29JYwxde/BjHkyn/5CsvMy9rpPIkKsE6mM1nfP3bx1zb2eWzn/kEvf6Ak8N9/tEbtxmur7P/4EE85WNHQ2mqqqIsK/q9fvAdFJKuJJJSoqTG0tJZzQFkWcr+/ft84+VvMX9iQZGl5HkeOPlasb6xTl03JGmC0KEDoJRC5RlV25D5nKIo0NbRVBVtY3DRi8D7lvntW2T5kOHlKySJpnSKbG2bs3feZDGbMhiOMC6IiHgjSXWCEoomCoaapiHLM7Y2N2gXV3BlyWIaqMHFjZtopVdlXiiNFVJqZJrSlhmIOq6BuFZWJYA4lz8LZ9C55gIxMxH/A+AJdMBcALTCZlBSY52JJ1p4mY8L8Hs/0eoDu3Np5Q5Z73ryxrSkwwEei2lK2lLg2wZTlcylwPqg9lM3LaP1NcgSTs7mzE6XJAmkWtA0jgQVNQJkmDC0PlBCVThhpVRhfv1Ciu+ciw+vk0ETtG17ofd7fpBf/DxceJjdZ7qQOMRbcQ4GQpcih4fvfGgN2ZjldItBShHaUbH9hrNIrZlOpnzlu69xJVdkRUaugt6BIngLOBefRfw51ljeePcu/8If+QG++84DlmWNUl0ADO7Rs7MZi+UcX1dcubKFtY7JfM7DkylWpZzO5kHdN2ZxdR0Wu1KKPM9ZLOYrAdagB6BWG+V7cSQvAtby6M1rSOtZliVOCIwx3L97D6006xujYGrbNPg0I8lScq0wbcO8aUKPPtEgBdY0VHVDc3bC8d13SDZ2ybIcHKRpxnD3Cve++Tvsv/smj3/iM2RpgbUL2rpG5QU61ZydTJjO5lhjuXz1CkWRsb13hWwypuj3MN7z8P5drL/MsD9AS7Xq9wsBWoZ15VdIcMRBYsnoIldgtTcQkbwUFky3XsTvEwY+GkEAVuBceMPy3GHVd7nMClNe4V/v762HFN1duFnho4f/1Y3BeYFKMmSaBw57mkbCmScRSfg7RY2hxZeSxhgqY5lYz2auKB1UPohY4kM/3uJoTItKkti/jq0suuGTc1bg+fU9nYAV6Ccu3IzVhzz/L+cZD939uvBHVq2CeDnn0UmysqzWWkbZsNAybEWQPNNa4WQYkX3Ytmibki6rQLqJeYmI78HHFLNbWIdHJyyXFXfvP8R6QyIDDiOEY3dnk8OTYySWibDsH09Z76eUjaFtG/YfPsS0NqjvqO5zhec3m80oy5LzDkk34ORpmvbclm6VLQbU//r1R9hYH2BqQ16kTBcLwGEaS9UY3LCPdZ5yscBZGzQHtEYpTZImKC2pI/9f6JTF8UNuffUrUJdcf/olLDKQeHTKYHsXKRTHt99h9+Yz9PsD0iSlqRY0sg0CIz4wO9c31lFa0BpDmqbkRQ+d52R42kRR1aHsydM8zLPgg4GtkDja98mJnefA8ZCL6aEglKc+ZgTdYXBhgXzg9ZEJAqsJughy+E4gIXx3tfjD5nHvOwEurvz3tRgjhNK4sAjquqFtGppEYlyKdtEJyHs8NmQM1tCalrYxVHUQ6Bh7T7N09BIVcAYbwDQ4794qcZEj323JELykvEgNDuzHDrkF8E7wvti1ynziifC+T3h+vZ9leKEovNCNEAI210ckSlKWFXXT4glqRFqFEW7jPHXbxhpbcVC27ORJmNY0DazGnc8nFcNnsRhjeeedW4xns9XwlxCCflFw89GbHOwfcHZ2ihCSo5NT1kdXUEkRXINtINSIWNxorTGxhHNRgl12c/Wiw1Z8/Lp43zroEPqvf+PbPP74DbbX17DGBvNS55Bba9y9dZfJfMpGf4jxFmENBw/OqJuW6XTGeDJlMp1xejpmNp3SWMNiOmcxPub61Sv8qY+XnJa36Pd6bG1ugkrx67u8+fpbHNhf5pOf/xyDoodHMJ/Pg4dg3mM0DHLlWqU0TYvUCaPROlVTUbUtWaqplwuqZUmWpBRFL2Qmy5LF5IzMLRD9ND7eVRvoHNCOWZ2PeFTntvU+wPgj3x0I+xUtRZzBvohkiPdt+I4xd3Hh+1j3nP+w898LATbaMJ3NloxGPXSWUJkWhESb0BHw3tO0hqo1VHXDoqqYLxYB3BFQOYFrLLlWIcxemDYb9PsYFze+7LKWiyht2PTO2biBbOhrX9j5Fwdj3netwL/fe9u6h9vVid/753p5zuUrl1hfG3F5L7TP7t27z4PDE6y1GCOwtg2zBB3WIDylg4dly0aqGOgU0bZoCS5PWTQmeA7IoKjrCWz/zglHxM8ilaJtWq5eucJ8OsV5WCwX6CRHyCpq7wVLt4uZ0UXSVpLoC5lPuKdJklIUyaqff14GBfbka999jb+bpPzEv/ovMywKdJrQtmGCbrFc8OVf/iecLRb0ipzJ2YTxdErTNEFNSXbP4ZyPIaXCecvh62/z8v/6f4dMJMP+kEuXLtE0NYcPD5kvl/jfeYuf/fu/yPb2Jo9cvcpwNOTylStcubzH2qhPohVtvURFrMBIQ08XzA8XnE0mZHmKTjKsqZmOJ0zGM7zSTB68y3OPbwa+yeqpi3OC0+r+RD3E1WEKK2fi/0F0B+KDl0oiPFhzPjUF5y3O1QLx4v0n7sVUOrwALmyQrg6fLUpOxnO0DnVWm7pAopEeKRTWehZVxWyxZDKeY41DqzD5hRDUMRUVInjWoSReGMplBTK5sJE93ttVr1ZFFZnuMwhAyTAFZ+15IHgfV2GVBVwgfaxKgvPf/56gEa9EaS7t7XLz2vWA1HvI8h5PP/UU49m3ODo+jRTZwBSUQiG9QHmP8xLr4bR2nElLIh05ccIvjvCunG0iAUu8T+EWyhhE01QzGI04PT6iGA3Iix5J1aKVBu9WHZ2Q5jfvuw9JogFJ0zRRUiwAgy4Ol118bci4BDrJeO211/nq73yNP/nH/whHh0eBvyA0GM/jN6/xX//ql6maFoRbBS2tO/nubm05glCqQ9qgYiUBrGA+W/Dm5K2Ygluk9iAk5WLBncWC9+4Ehb1ev89wOGJra51Hb1xlb3uHF156kWGW8PDgiP5gQL/X4+jkhJOTMbPpDNs6VJGwMVrn9mvf4YVHd8gStdoPK5WibtOL92dEInbYfKxAQ4lwQbnuA66PRhAgnJrOhf4vq4jWJYqxArpY37wvR+4qVwC7Oj2Cft95MJFSMZ4uybQmU4pEKHSehYcf/85O9bdIEoaX9uJkosW15zPb03IZBCJjizIsSsB3cw1cKFvC++xS84tgYTcxeJEt+H6B0fcTm+BC2QTnaT8XEob4Wq01vdGQxgdR0o3NLRQwn5zw5BM3ODo6iZmJgOjb0EoRJNiExQsVMwSJs5pGCSw2jkaHh9CBrm0baujVaU5YeE3TUNU1VV0hVEpZttRNHbnw3WzeB5c654HcrYJV9/eFwB6IOB0dVhAKYecFwnl+4e/9Q37zN347rAOpmM9n/OHv/wKfeOkTjEZr/Ppv/hb39w/CunIhifYuYB5cOGCcDVRzKeKsgozGLlH5znu5Kry9DDJm3VpaxJmFg/2H3Lv/gD/0uU8z+8rv8MXv+zRra0PmsyWL+YJMJ2SjnH6vD1KyGE+4/87rPHltxNXdtWg6ca4lsToefFxY8QY6ukwmqAs5d95D+rDDAj4yQSCi1ELi3Hlr8ILI04VfrdZ+3PjxpsdCNaS04bX4UGcmqSZLNIM8R6YJOpFkRc5w0CfPs2Ce4T3LOFOghCLNM4TSATySCUJqjGjRwLJpqdsW4UXUpwvGH92bE1IiXeB7W+fxqnv/kQsvYoimAz9/7zbouhsfhOj47gWeOEMe7tD7yiYl6ec508kMm2fcfGxEW87pFQWboyGDQZ/ZfEE3RLM6/FahN3oYdIyz2E8XccCnwzs62m2WKUTk73Xzjk3b0jQty2UVvmYdTUzNOz3FFSvye3CQ1c92XTANxKFg8b6a5V4t8jgXvQLKjLNMpnP6/T6Hp4dRiUfQGMuLL32cJ598gt/+6u/y21/7BmfT6epQ6cKSiOWK6IKw8yuNgdVz6DZ/l7U5cSGQh9c6Idja3OCL3/cFdFvxT37xl8lGI37wCy+RZUOy3pw15xHWczYdc3x0zIPbb/PMk7s8srvGBcJw+HdkN3ob7+CFAxN8bAl29/McNfb83jXWXR+RICBW7LBuga3qfN+BazEohF2DF2GoKEtzQGCcDSQSFXjuQkjWhwP6g95KaDIREqU1UitO5yWLuiVL9Crlro0NOvxpjifo02MsMs8QrY1mpKBThWgU3ofJd+s9QV4ytCiTJKVtGjqypxSKcxMRIuNY4Jw4r3U4xwUuboSL1/uChbgY4X+vfFRdNxwdHLG2voFD8Oabb7GYjennmv3Do3iCxsW+ylK62CLfd1J3mU3sD65S6HBSW5yz5EUW34Nf/bcqS+ygH0sOMM7gvESpDuTqQkn3d51/iHPKdFcusAqy7y8Pvwc08d0fAKEkJh4q1riVTFddN2zs7vBn/uy/xGe/8Fl+6Zd+hZe//Sp105xzMvArnn7nRnQOTP9+FXZ47zIyFB99/HG+74tfJEkkd99+E2ErvvyLv8zOzhbP3nwEKVxgKlqLkh5fT/nMJ66xMSyik9D7H2ySpNG8NhC5bKQmB9GT8Hd32Zog6EMKcW7S8kHXRyQI+AvP7jwdfl8KIwTSh8Ve5GEuYF0nDHoqnM4SqtZxMl+ybILuYJEpCi0whFHl1jRgFNKmaN2jKVuasqVtoyOQDXx5IWVwqvWCIknxCMqqwlqH8UG0ZL3XY3M9QSlF0e+jtWJaLsmSgl4vpakr1kbrpIlic22Nw6MDtFb0ih4tCe/dfYAUbsUF/4ADnw9aaxexAK3VBwaMAHK2vHnrFo/f9IzMkDu3b3FydIpWEi8ly7oJ47j4KIzRjdZe2HDds+lOlwtg7Xk54Gjqhl6/H/gBBOBWSclyueT+/QfxPYefb01HGxYYf2ETC86HY7w7B7cufKaLLdVuTVy8L847dIxmgfobxrWlVKRJStbvhUPAB12AfCPnicee4IV/+wVe/sbL/OIv/xrvvvceZ+NJ4PlfzDRWz+m8PF2Rt7rAHb83Gg65fOUyzz33HJ944XnOTk85m81olgtkovj8M5f59b/7d7n7iY/zxGM3UG2NM5aDoyO0XDLqb64OQX8hu4Sgk+ilAmlpow6jx6/cqxCErtOFh+i7zfUh10cjCHhBCNgiLsS4GrrcRjik0AhgLUvZGhY4Y7gpFJcTRT/NeZgoHixrlNScLktMa0gQ5MIzWitYzCvq0rC3NWIw7OFxWC+YlQ0PF2XoIlgXW4aBn96Y0C703keJqBCiEin4wmceZdTX9Pp9hE7w1rO3e4n1wXpA/ZVktLnNclmiXM3Na1doG8dwbcDOtRv8g3/0X/POO7eicGRY9B0p5iJAGDCNiP52s+4Ews9oNKArUIMeQthAHbNPCc/6oGA2G1MIw/OP7TEcDDialtx6cIwQLqgkZzn394+o2wbvBVKGe91hJWGA72JaGrIHeaEeL/ICEQUzpJBRt++849G9b+stK0Zk9IgIkJu7UBqFDEXAShX6nC4e0HtPN1Ycl1D8+Q4fukE2DBt1KsE6TUh1shp/dtYxHU9wQ0ea53z6s5/hsSce5f6Dfb758rf5za/8FgfHx3QmqOetXUkgS/kuSQ33yDiyNOPTn3qJz332MwyHA0a9guMHB9RVhXIhqFy/tsuzz17i2s6Qt2+/xT/83a/SWoXQnhefvsHzT18N/hJx+St5ji+FNQGJTLAonDVYfAhYyAucjnMHpS4e/H65y0cjCOCj6m6Mu1HgI9gohVaUQuKV55mtNXqJwtQV26VhVjkOF4ZSCrZ2R+w9soGRkum8wjWGIksYjfrI7Q20VqSJpGoMMumBBD0vuXs0CYsmglk6TWmXFdaFef8wdeoIbyXgB9JLpFD08gSpNd5Jrl/bQViNwpH3+1gJrhK0bsi8atDKsigbrirNk1fX2EofoTYW6ySmCQ/0nfcOWJZl6BoIVtZh51mSX0EKbWvwLs7E++h+EzdMr5fz0tM3ybOMlw8OGI0GyP6QSdkyWZQkqSJLCxIFOhWsr/XIsi3m8znWeba2tjg5O6GqmgiwdtWpW53U1oYuR1m1ZP0EgYstXovyanUah/feoe02LlaBUIGMZI2Pm8y9H/yVgL3QCZFxvBqPlvocGwFwAi8cbVvTNgbjPE1qyPMgGzbqjwKyHl2qhAilwtl0TGsMeZ6jk5Qb169z4/p1/vgf/6O8+dZbfPe7r/Pe3XucjceBgegDjVlKiVaaPM3Z2t7i0ZvX+OTHniXJEwyC2WTO9PSMk+Mj6tagEkmSJTx9+TqZSuldyti5vMWna8vp8YT5eMbjL95ErIbTztvL6iLZTIhQMktQMiGaQBF8vMOvO7nxsLNiafRBqWa8PhpBQECqwghvF1llAAECvuL9StBzgWfjyjaJcdyZLjg6mZAmcGlvm2xtBM7iTc0og6Q3QmaSNE0x1uJUytGi5v7BCfsHb2OdwVtB03atqYBE9+Ji7FLT1ob+vpJJWDzCc/veGS8+t4dxDjM3SJljhUepoG0ANdXCUDaS5bJm0FPsbG5ipeD2u7dpFwt2RgX9UZ+iN2K5aJjXDSfjJcuyPKd9cmFWnLAFgtRVGOQJ+gCCLEko8rR7EVIJ3rhzl7ZuWS4bqqrh6GhMaw3WOByOtq7Bd0IjUFXNCok/OT5BSujnKUqFEdnpfE7TnhNSZJyFaNqSXq+HJ0z5SQc6Dh7hRZQKDyd/OVuSrI1Wm1frhKYxMa2GFZW5Qwv8+XroaMIBp4ujsnFxh4zNrrI2Y93KtMQ6S39QkCbBJdg6RyJFECBRIbsqyxIzC0IzSkt6ec71G9d57PEnUEIwm044Ox3jvCdJU1SaoLVibTBgMFqjyFJMWTKZz6hdmC+x3pNlGdPJmMVyweW9LZ6+nJyD186RZJreMCPNU7S159mF79igIv7/HIQU0odSYcUDIKolRwWqDpvxIlIF3PvJaN9z/XceBJ544on/zfr6+vXf7zU3btwkib6DvA8XuABKxYe9SDT3xzVporFZj2I7wVvHSSMYnyzIigSlMxAaU1umpwtaM+tgu9Dy8TBa34ygCqtaTsQjdiXgyHlKviLyxPzT6IRb+w3q2CBVjvUNTXOKcy1pkgahUxTOBE37s7Hi4PgI4x3z6QTX1igl6ZWaJJthbNhkOivY3bsEnNfB561FvzqFuuzAeb9S3O3u0nw2Yz6dIr0gkaGD4m04fVWeMSwKZos54GJnwKMIfXYhPJkO7TBrA6Ju6xqlFb0oKmLfV6tD3bRhYXa1qQ/3LNhEhLkFh8daQ7lYsrWxSTd/oFVAu8PPErETdl72nDMHReBmxGciuqgR10Xd1JF7Ee6C9z5MPhqDFLCztUmapWGTeE+qEtIsCx4BhFFiROQkaI0iSIV5PFIn9Efr9IbrQViFEGgSpZgvl4ynE2ZCYpqWs9NTTGwTNm2LaUNmOVKSs4MzvMtomyVSanSa4LFoESzNTh6c0BsNyIcFjm5CtoP6w+d0xiJl4KFIznUGpJS4CHx27VM471TYfx5r8n/ea319/frXvva127/fa/7D//A/uCAieTFtuXj+AQi0VDx29RJrG0VI74CqbKjbNtSgWobkKXIOHp5OOBvPY6uH99VxYSJNrXr27yfrRGUirTFti1Yq9ovDKbW70Wdj2CPJNDLp0VhYzOZoBWma0rXJpApMQWM9Rd6nNi31cg62JUtTBqMhxgqOxzPu3L2Hiw7D4sJ7FBGncM6RpumF1PmDkGrP3/7b/w8WixkeT+uIQyYhdZetxWIoW7NK630MJOcpZHjjSga1HSGCEE+iFOu9DCkMUikcCmst92+9S9u0JFoihUf4YINmbRAqcTb4RjhnaEzLd175DvjOnANSFU5oJ8NJHA4vQSIVo80NWtMGi/eYFQXiUHhd2wSacZ7ldLwNMBhrcC6c8P1+j0s7O3hjaTH0+mFeXyXRn0+K4AeoNFmRkWU5vmlRpWa2WHB4eETdVGidkGgdXJmtRfjAQjS2xbYttXEMhiNsbXFti5QC4wxn4wk6Pqvj/UPyIqWuSrZ397DeBvp2ocnWch7cecCG3aIY9cLkprfg5QqTsU2LqQLRybQtbWtJsjQ8NWejJqJfdWQ6anpR9D90/300yoEY6FatKlgFhPOR4S4meo6nU2bVMmaMAbiSUtIaQ2uCeovDYU1I5UMQDKe5FAH9lxGhRog48MLKb65DxDvN+FD/RrKKPG/L6awgyXOETDG0LBdLNtYGeCfDohKhPu6AnvFkTCh6AgEly1Kk0rRVzWQcREhknMLrWnIXlYbAU1X1OSD3AQSQLiQEE5KQNksZPiMyKAkV/QJbl9hu+qhrha3+nrB4nIW6bePJ1gZJ7U5ogyC+kUrNcK3P1s4ut+8/pKoblAxjyisij5Ir16X9gwOaZUmiZJR8M6SpQhEp4QT5bjw89vh1XvzYc2H01zlwEkmY53h4cIxKNPWihV/+FT710gvcuX2H49PpalbDWEOCZntrm9HaOipJybJQ+4t48nd3zLTRLdoKvvPKd7h96w4HR4fM5nOqqsG07cqApGkaWmMwxtLUdcBmvCfrFfz4v/rjPHXjOovpFCcgyTOyJOfs+JCT+Zz5/gG9Xp9emjArH5ImCmyLyjIS73HGsBiP0WkgIWV5ATR4H4JdOZ9x6+4ZB5MSQYPUkl6R4tuaVGt6RZDhV8KRJglahXLPVosP3X4fjSDQEWzEuVJMt5i7k1DCSnp8Ol2GkzuCy0LoUA+KSO30oBAkWUqRZ6RAVS672ayA/lvPORubC+2e8LUVKt0BK+IcZMEL5mXJ1ewqKklxXoAILjRISd7v4YWjWi5IlY5WZ5Y00QQZqxaQBHdMS5qo826Xv9DN6TJBzrOTVbC6WDJ1pcqF67wrJBBCh3TXBx4GUVcQEaS2I9wYsgsXA4FwZGlC0R+ipKaqauqmCerIEWgSzoHwJEqxvbVJqjSlF3Qjv1LIoAOoNVIqijThxvVHWEyn7J+OqdowsGVtoCOHhCWUPJubm3z+81/giZvXwkarG5ypaazh4b0HXNrb4/DwhLQXJLuffvI6z93c4B/+ytc4mczjTQgMwKu726z1+gyGg5W+oGkasDaIokoZaMMIzs4m/MxP/z0eHOyvsIeVq5M7V8RWWiOFxJg23G0haWZzfvXXf53H//X/Cb31UbAVM2ESsKr6FFlG5nOEchhbYRZQOR8MTX0ZwGlAjec8PJ5gTANOkPZSOlb2K6++y62DGQ+XQcVYRN8FYwJgqbUmVRIpHUmiwFuUCM7eH3b99x4EfuzHfuwHx+MxP/ilH+CXf/lXePTRmzz55JOrOv3iRnBe8Oobr3N0eMAf/tKX8Hh0kjJYW8e0DYvplNxaMg/9nW1629vUTc10Nsc5T1OX8YQF8Lz88ss88cQTrI1G56VA+FYsxwKw8n//T/9TfviH/wRXrlwJNa+QWAe/+Ku/zhtvvc2//Zf/LbxzrG1sk2cpKtGcHB2S4JGDBOsFSaZIAWcNB5Mxf+Ev/S/5iX/lR/jXfvzHkBL+3X/v3w/moREA+8mf/EnA84u/+Eu89dZbXLlymR/90R8F7/nmt7/FcrnkC1/44urmfC+1uBuyujhlJ2VQ08kSHU5171etRSUEQoX0WIhQCmWJRklJa0IAU1JQ+tCCw5+zM52MPXqpkM6jCUIX3SCOVsErMksThINEKoSL/Ennzr304rOWAj7zmU/yiedfoGmWuLbBAPNFxVe/8Qpt20Y/PolQQX8AY3h4uMBbT6Y1ldJILcmyhJ2dzVD6JZ13VMBZZHxfq/cp4Tvf+F0e7j/AGHAEPckAuoW2Z9d9wcMFlkcIsB7efPV13r1zh6efeAzriCYrRDKc4ivfuofKErbWB/QyyVqRUiiQsqWXJvFACu8pkSlHt48Y7q1hIm7y1p19JvMW33pa4aLQqkDIKAXXQC0VEMFUFRymuwnQD7r+ew8Cq8t7/tgf+6NIpVZpfwd+dhsS4Xj22ad57tmng724UCAEdV3RNC1DBGuDIb1+jywrOBqPKedzajxtU4cH6M5P+5dffpnd3V1GoxEQEVh/fiR717XmWNmi48OCH/QHK237jt3WtjAYpEzGZ9imRqdpcKNRYeBICMDB3/rPfoqPv/Cx858Z0+Y/9+f+HL1eP5JEHFVV8eDBA/7iX/yL/MIv/DwPHj5ka2OTr3/9ZX7iJ35iJbJ6ngR8ryxZ+KpzJk7JScqK89MLT5podAAuECpKYvkgJ25bg/FBJNOLUKNnWRrbqQ5v4kkkgnmM0holJFpIsiRBaYWWklwKUq1IlSJNE5aLOIbtowGKknSUXwQM+j0+99nPRv/ABDv31MbhVcqVvctMJmOEVMzLmtN46l9/7ElOz2aMZ3OElPR6wZF6fVAwWltHZylKqNBVkLGj7jxOhoAnpGQxPuWrX/1a4Et0eaP3+NirF4QAHfgP5yI2HT8DgtDK/sEBzzz1OCt8y4U0XycZ6doG40XF6eESa1q0N6zlkt2eZphmQflYSnSqkQKqxsBkCVlIBZq2xQlPlngUCodF6zSAT3GbWBedrkyLaSvsBcnyD7r+WQxJ/zbwp4BD7/3z8Wv/AfA/A47iy/5X3vt/FL/3V4F/A7DAX/7Upz71e37mj//4j3//L/3SL31iOBwutre3J+vr6wD8zM/+LM888wwvvvgC//F//H/gU5/8JK+9/jrOWn7iX/txtnd2+N2vvcy9e/f4l/7Mn+anf/qnyfKMe/fuM5vP+JEf/hf59Kc/RS0V/9nf+pu8+cYbrK2vIaXiU5/6FM8//zEgpHff/e6r3L//gJ/5mZ9B64Sf/Mm/wJe//GVef/0N2rbl+vVr/Ok//adXD/Kb3/wmP//zP49zjh/5kR/hE889x9vx5LLGMBmP+ev/1/8bJycnGNPyYz/6Z3j2qSfp9/oIreLQjOMrv/277O5sB6AxIthenj+Grq/eqRS52BptW4OSit/8ylf4/Oc/H8Gx732wAZV3zq80+i+gBAghadvQBrU2AINJEkQ1vPe4ujlnDkZQMpREQVm5lZ1BmA9glZTgDQ/3j/m1X/sKVV1Rm4bKtui2RkSjz0SHsemiyDFScHBwQG1qVKKQiUZ1Bh9CIJTi+3/wS1zZ3QmfvTE0teXB3QecTuc88+RjuGqHWnvefPc+Mg3ipmuba8wmZ3GIBjIl2eglXFofMRisBdOR1pAXOXVTr0BVT/BqFEJw6733ePPWnQjqutWBsHIExuKdDXfdnd/7i+Wb8PDeg4egErxvsI2lS3Z0lrJ76Qr9smE8n4QBq8WC8bKJnowtEo9GoWtL1TQkWiCVC3qPQGMVw15KnmvSrMfb949pDUjl0WlKf1Cwu7nL5tY2bdtgbAMolvMFb7x7/wP3+D9LJvB3gL8O/NT3fP3/5L3/T963BIV4DvgfAR8DrgC/7L3/jYuv+Zmf+ZnLv/Zrv/b8a6+99jfrupYf//jH/8KnPvnJmAGEQZxuMCMvcv7iv/mTfPWrv8Ov/fo/5c/+6J+NvWdW5JnZdMa/+ZN/nuPDI/7Of/6f88yLz/Obv/YrHB0d8pf/F/8Wi/mCv/bX/i+89NJLkVkVVskLz3+Mr371q/yJH/4TXL1yBQ987rOf4wd/8Afx3vNzP/dzvP76GzzzzNMAtG3LX/pLf4nbt2/z83/v7/Gv/OifpSPzOev5m3/zb/Ev/+iP8MLHnuGVV1/lf/+f/DX+/X/3r6CSBuUFCstivuCnf+4X+N/+e3+Vn/35f3ChGxH++amfCrf4M5/+DJ/+zKfJsownn3ySv/k3/gaPPfYYeZ5z7949vvSlL63+XLjOV+FqnFnK2Gm/SNhhBW51DDxjgjDI+SxA+Ek2lhSdBgKE+tj789q9q52WZclyuYw8FolBUBsTwVwZQV9PUi7ZPz6Ob9UjLKymB0Sw6Hrs5g1+6AtfZHk2ZrCxxmSxZG1zg63lknFVkQ9yptWc9cEGjz/iGS+XANx67XVefeNdVKIYJprttZQ84hB5mqKThFWKLOQqu5MxE5PAO+/exrhzVyJWXIXzgBpwAmLvvmPonQOsSivuvvcedV0jhaBsaoIQiiH9/3D350G37eldH/b5DWva4zud+Zw7zz2oW2q1BE0jWRjMYAdsExy5ymBhM6RwpewiVXG5XDGVFCmXq0hiUOwEG1s4cSAKIAzCKgkJkBCae7zdfe/tvvM98zvtcU2/KX/81tp7v+fe2y0i27lkdZ0+733Pntba6/f8nuf7fJ/vV2eMRmNkamhDVBhKEk1b18ybmkTBnlYoBUWmEcFhEZQBhIs7fTZIGOVZF8gDjYXBMGV/f8rhpSsoCQ/uPeStO3cxnTmKUgrZG2h+wPGbcSX+BSHEE9/pcd3xB4G/HkJogLeEEK+3bXsEvNU/4Kd/+qcf/9znPvfq0dGRAfjsZz/7mnPu+3s5sUjyiJH3Yy+9hEBw/fp1vv6Nb2y+jAAdSy7wwgsvEAIcXjpiuVxhreOtN9/iYx/7GAQYDoY8+eST8c3F+6P3dkeAN958k1/8xV/EGENVVVy+fJkXX3wRgE9+8hMIAU8++SRN23azBB0f3lm+8vJXuXPvDgIw1nbSWJ4siaWAsYa/9jf+Nr//d/8gSZd+9srBUgj+7J/997A2sFqt+at/9cc4unTEE088wec//3k+//nPA/C3//bf5od+6If44he/yOuvv86VK1f4wR/8QS4AJ9C1QOmCamSXhR3W2XY45/16BBcHmNh0KjqaQlev7ux+3XM29fEGcokrJQi/CerOus33tpUS27aFZSb52IsvRG5DnhGURKjIzLtx4zpmXXH24IzaWFTdMpkOCESi15vvvs2iabg0HfPdT05pViWrypAkaRzDlYI8zTcbgexmROgBUQRvv3s7koe67Kuvz3u1/37YKmr6xaEdJXnkYsB6MWexWHI4nUSzFbVtbdblitl6He3Cm5pEa3SRkNmGSZ5QaEndttTWYh3kkwSpJFUT18SoKEi1IisK7h3PQWl0kqGSlLwo0FKyd3CIWq7wI7/VZ1R86PFbwQT+HSHEHwV+A/izIYRz4AbwKzuPue29f+qDnvxTP/VT3/PKK698z2KxmAwGg5hydelZf01lB3ZIFYUkIpIbh156iqmUAmfdZgnY/qTpdpkNv327VPpFv9kZien2T/7kT/Kn//SfYjrd4x/+w3/QWVfHYyPaQAeIdeCYlBLRpfb/2V/6i2RpyvHpCavZKTqJHAPhPVpJ3nzrHX7tC1/mv/3x/46yrBBCMBlP+EP/8r/E3t4eJyfnjEYjXnzpRW7fvs0TTzyxuV737t0D4OjoiJ/92Z/lj/7RP8pP/MRPcHp2yuHhYTy7wGZHF92u159Ar5gDuyDiRZmzeM3lJjD2R9R5CLsxlIvsvs6KLWz/UXSR4tEgo5RiMzEYtuWFQJDohOs3biCzlKTIEdYxyIc0ZY1KFK4qOb13QjIescg0hUi5fOUQgPlsAQHyVHHzaERxNKReGc5F0VFsu4xk8/15pFSo7l6xznE+W3YYZUT74zXoNR/6PUR0n7e7V2NK0NmBxddv64bj42OuHB6CiJqTUicEaSjrNavVKt6/QjIaDTm9e87lXJJLh3WexhhaC2mWIBMVZ1y6EewijWVg3RgenC0JKkWEgGktTVXT+NhGttaCgKzICEEw6oxPP+j48Bzh2x//OfA08CngHvAXfrNP/L2/9/e+80u/9EsvfN/3fd9XfviHf/jHXn311QboevUCrRSJjmGrv6i+U99pmpa2bXcQfkCIrk24/e/Hn3icr3/jFXwILJdL3n77bfoBkN4NOIRI6mnbjgdg40UeDIa0TcvXv/6N7vXiXy+//DIAb739DkVRUOT5pk2ntea7Pvld/PiP/w1CgHww5I13buODIB8MSfOMLMv4P/0n/zv+Hz/2f+Wv/N/+Iv+zf/H38a/8oX+R3/d7fzfrsuwyh2hs+sbrb3Dl6tUL1+3nfu7n+KEf+qFNOt+n/aY13ZIXO4FqG7Q2bc5N4r3NEuSGnNWXJdsF25coFwhUFwLKlsgU+Rc7pUgHnD06Btu/vhQRlY+zHLr7k5BkKZcvX0KkcfdDa4q9CelkSDoaspzNaFYL2tUSLRN+9qd/nv/qr/6/AfjK19+gqmveuXfCz33pPeo2YBtLyHKEik6/pjWRyai20mhKK4KzIAV1XbEN9WzOo78JNq3CEC3oemMXIfqtQXQYkePh8QmB2Ep0HZPPekuidPS3MBatE87PTgnWIAi0zmF9FF5FCpI8ujW1jUeLHoSOQ1Gz5ZqqaRGd16R3nsb6jhnoaU2DaVvqsqKtaxaL+fvWYn/8f5UJhBAe7Hyx/wXwk91/3gFu7Tz0ppSy3H3uH/7Df/je3/pbf+trzz///P9yPB6vn3766btCcNBr1kGHmBMHYpRSsTXzyJciuodLIS/YLkvgpZde5I033uAv/sW/xGQy4dq1q6RZtpswA/DpT3+av/t3/y5JkvAn/sS/zfd8z/fwoz/6o4xGI27cuNEFi36hJ/zoj/5f8N7zI3/sj24DUcfO+uM/8sf5r3/sv+Lf+lN/CuccL770Ei+8+DxKRkRcishK8700WadFWNUNy3XJX/gL/+fOh8DzyU9+kueefXbz3q+88go3btxgOp0CcO3aNf7SX/pLXL16lWvXrl1I4d+f3kdarpRbUdSd726DD8BWGn2bMfTdh373ExffY1MWhJ0spP+n7WMufp6eqdkHkK2hyv7elEuXLtG2LXmaIrRCK02SpGglOBiMYNQyLyuklBw/POF0sQAiiq6UpjGOu2drisEArxULGXkAiVIEF3d1H/rUvmv3BkeepJR13WUxXTYkuJjqb67JTpDdaGD090rESmaLBV4IkiRhtVyigGAMw1BxSVY00hHq6D0h00ittkQ7iyQReBFnG4KEtXMk3VyIDR4ZFOfzOPka+pFnrRgMB1TLFVXd0hrbZXUAjrqp+bBDfCeBhO6EnwB+cqc7cC2EcK/7+d8Dvi+E8L8QQnwM+H8CnyUCgz/33d/93f/4C1/4wlsf8tIA/OU/9+f+oz/5HT/FP92xaltGacppWfLZ//K/5J/88T/O1W+TEv3/0/HnfuzH+HPvvPP/64/xocc7QvCJ4SgG784sNYTA7/4Xfjf/6h/6g1RVRZalcQBGSJq2ItGS137+l9FScnx6TvH4Df76j/9NFus1Z7MZB3t7XdbomOQJ//bv/jg+OI7FNW699EkO9vYj3mTjkFSeZYCIo+BSMjs+5T/83/95mrZlI/sG9MGvLyGBDnPpiG0dRkDYBgEhJJ/+vu/j3/jXf5jV2TmL+Yy2Kjk9vkdS3mWcAcHhIIp+hEhOc663WnPdn0DdGF69vSZJFL/w1Tf55z/zDEmaMV/UVK1FpAlZlpHmBZcvXWOxWFBWJav1GrpMxwdPWda89trrXwghfObR7+M30yL8a8APAkdCiNvAfwT8oBDiU8RL8DbwpwBCCF8XQvw48A3AAn9GCPGvfaf3uCcE/4fkYs+9j7jbWixuKkp1FUz3jfieGLP5kuKD/+u/9teoO/Ducz/wA/zljgtAnxrvpMsfct4f+vO1S4c89tgtrHEkiaL1sFyVTIc5Sjo8miwfcD47x1Zr9vanMSrTg2MWgaRq2miwmaW8e+8BJydnsOE1bo9HP+O304sD+L8rxX9SFF2q2DENu9q1vwYR1Y7kl17duS8apOwVnfs/gl696EJ50D+jL/E/4HO+j8kYouFooJPCCrETJ6XgE5/4JNYakiROa8oO1DStQcmUarEkm0wYXzridLnclHLxvWLZIyEKw3gPQuFE/Nm5Th1aqjhBaRrSJMVYx2RS8N6773aTiF1m1F+77np1H3735DbXchsAxCYQeGsjD0LG2ZHGtNjgGSaCVHg8AgUkWkb+Qn9b+1hiJEnA+MB8XrNsSnDxAe8eVyBW6I5PkxsHwuNxnN5/F4BcwHiviHqZUhGExO9Pee211z/wfvnNdAd++AN+/Ve+zeP/PPDn+//+zGc+8x2DQPe8Td0ObFowWsVUtE87e8rsTjbevcDF9PNHfuRHPuSdetAKED0w9sELa9P5CdtJPiGi+wwdNCSB4OxGX0BpjTHtpqaMPWLfO1USCLGOl1EUQkpFa1rSRMc9J0RihxfbOh4hdj7n9jy6T7dzDTc/EUJvOdal9B1Bpp+Q7IMsQiBClNKV9DyDDh3vz79rhfXXbtNR2enWiAvrY6dsuJBSi4v/BvFzBsl4useN61fxrUGlGVhHUFEqA+8J1iGkZH4WfQLu+4bWtrtfaxdQRGQKFinLVY3PNTpReNtSDIfUbUOap7H2TjTOGSSSr3/jG5uuVA8fbq5wd6MJOpnvbR3UBYzucWL7PNF5UDjrQEWehHCeVGtS7TfAokR2g3ABgsfLGJxFkOjg+OI3j1kZu6H91l5gDQQcWiuakKJFgnKC1HiE1Dz55OOsl3NWVUm5XkYc5KNMG+6PXkZairD5Cno9yQ0OGNhOmX3Qwv32G+R3fmy3ysROlN8Ggvi3FFG9NkCcd0g03pioGQhIpWnWa/I8LnrrDdbGelXKXUafxzqL3PFYkAgyCTe04i1jO03+mEH01uI9kn8xGPQLlJ1gtdXOj48XF2/ezfnJDbU11rN9Z0BsXz/spMYXAtJ2QYdNhHoks9o8bgtabj8P9OKrR0dHqODjHIGTWOPQUiG0YrGYUS+XPLj/gCTJWLeG4+VZBPf6t3NxYMnRWdcJ8EKi05QkzQgiiou01qB9EmcIiDX9ulxz58H9HU8L4jw/F8NBvO+2smJ+V22py4R6gDZJ006iLE6iCiJzM0h2YqIACV52WEwQJMg4SUpAK0FpHeuqZLmOA0CLxTICjWwxG9kNaCkZNTTnizn7e1MQAuMlTdtSdJTwDzo+MkFA9xcKNul9rzQLW7Dw4g643WH+aQLAhS9254YXHWodYEPJ7b+w7eLqV5pEJx1A2c+xC4UL4IwleI9WijSLgE6M9t3OLCVlWbGYzZlMRrigYnuKwBjBpyZDbp/MsGyzkPhZ+/PeuRnZ/q5/TGQMXjQ26f8WXDQ4jc4+F/a9eG/2EfiR6717PeJ7+fd9jt3gvPEH6MHDTWbdT3VG78bLlw4IpqYua7LMQPA4CeXScfvd29z51tuU53MSndIqzXQ8ZZzlzOsIeEUQrztPGWcXaiuRSqCTFATUVb1xNE66gSrvPKv1ktlyuQX2uvOOVuPhgg9g2MkAQn95wm5wjy3t0XBIL0GWKNkNAHU9hE64RQo2ZqLbQBOQqnuM9RjrkEr3rODNKHnf9QnQjbdvy5LFYsFsNouv0b/nI74Qu8dHJgiErhfdj8Bufh+2u8bu779TXfzt36wLBJs2V/eaRDOQfhZ7dwfbPZI0iR0Lbzv+f48Oe0KQJFLg7RpJ7FwEH7psIH5Znkh2ao2jaltOz1Zde0pgBZRtg2UjC9Ht/tsFttlF+zq8O59HL1Kvjbe9luHC6Vz0bdyWOwJwnYxWpC/3AWjXmSc+R3ZqS9735ZzfvM8GOAM2zLruYqtO7bifYTycTMA5TF1DW+OtJchA1RiG4yGVFLgsJa8bnDUkgwnjomDRtVY3KqXEgKukIOgMJSRpluGtpayXEALGWrI8j0YfUnM6P6Oq+3kKdr77cMG1Y3esezcj6CNivF1E5ymYYNs2Zkk+EqYSqcg1EOxmalYGEa3DVcdIEBEr8CKyNp2Lbb8+SLgNJhMzB3bu3Rhou8DQm93Qu3o5Puz4Hz0IzGazdz/zmc888e0ec3Jy0sk6f/ixOcn/AQ6B6AQou8osXNzloBsq2aSb23RbSsmtmze6QZ9ocFLWLaaxZFn0NGjWc7QGLxK8c+hoc7QBB1tjqOqW87NzhBCU/Q0oYCDgZ5Xk5bZPNrdnfaFFGv+Kj9gAU/FYLpcXztd3Ckob+OQDALxtnc/WzkrsSHh118F3tFrn4jXrR3H7xEx3WYUVES/xIrIWez9D38kSKRUl5oUArTMODw6iTLsAtETKDGRAOTga73Hp6iVm65K0bbl59Qpl3XB4cMS98xmbS9EFnm15kmyG0LSKQ1Ja67hQOtWhwXDA7HxGWzfb9IbuR79d8O+7hzbXaJtDba5Rdw2dMaRJRhXKzbWRhE3GEnaBlE5Xc2suIvHOYP0HkXm2GYvYyeEe/Wz95rB9zQ8+/kcPAq+//vr/9js9Rgjxx5Ts3Ia6CBw3jdiv7fudj+5c8dgpCfrfXEiVt4dS20mrXkAkpnRxQqx/nvc+OvhqjXd+K3qMYDDI+fznvp9LBwdkRUE+GPHenQcsTldcurxHUghm99+iUCtEuo+ziryQKJGgutdbrle8deeMl1/+ehzy8JIgHCIIDqTkX5pk/PxZyapDu/q0U4Q48psmkTa6XpcgBN67TSDYvV/76yV2bu5vd0NvnhcC/cBRvyHGoBhNSXslpn72QMp4U8og+cN7A15KEv7GbMGDNKEMcVjJiYuWa1HtSCIFjCcTLl27glfRwEQnBUJpRFBYs2QxX/PpT32aN5cV9x7e59LhmOVac+PJm7x97zac98sikniklPgALvRCJQEtI+dEpwlSSuq6jk7NaRLdkW20k9+k1+GDr9XusWuFtiVq9dlUP3LtQXZ4kYyS7oqo49Bl8Bu8JT6/Mz0hfq82wNZ/g62EWthsTRe+x+1nE5v7IWZkH/FRYiHibPfGNEFs41sEQPrHiU0N2l/4R2vmnYwzbq4yUlp7D7v4Zfev1wmWdKBYbJz1G8IuAi63qXQAqVKMc4ySyFiSSmFtFKgggJcpKhnQNiXWCPJsTJIqRKJAweXBEW+8e7+T+O5uNi9AOOrgeEjGJrj1VmZ0JBZCDCYdc1DKC3s8jwbD91/s7rrs1LD9td19vBCRsx93fUccowUpo3Owdz2VVmw6OkHAJQyXmprfe/MmvyYsZwJMY2mD5OF8wbqO8//OdtdTwN7eAaPRlNBrDVgIzqGKhGpdIpVnNMrZu3TAWZqwvHsHqxWHN444nIzgTrf4ujlx3RGxnJAkWsWaPtE4YJTlQCwJpACVao4fPIwjxt0FElJGSTTxwdfy0d9vcY/tUvbBRvu6ju6eJCnWW4ToBFjlRZIbInS4QWevhse67SL23Ssr0ftDbXGe3e9w25aNMy09x+H9+cL2+EgEAboMYGssHFdy6PCBuCj9ByPSQD/TvXk1AUqoze7Qi1XuvlcsAzrJMNi4u27Boa1opWC7vJQgOvT6Ft+WBG87MCiSMoLzSDlgeukm995+lbZac1Yusa2Nkb2J9WD14Jxrw3wzMGWEwJiIGfyTylAHgZMS4TtaLtH7UChF2bQIRKftD8H1t8i2l9/fDLv1a38O72/TvT/l3QYnKPKMLM9YLldAQCswj+SYQYL00KqCepzhvGc0zvBSY7XBAauyYrmONXwPFLrgyPMRTStQhcBIC1KSiITGGLySaMALRZABmUrGRxOSoyFBWS5POy2IAMKHrp8CtjUEOYiLyVhSnWxMZXqXYpUkZEnK8fFJpy0gEFLRtzbjFXMXruFm4+mAkt0Nic1i641roa0qApBlOSWA7DPO+GXI3uZtE5zpsr6AtR6HZDvEtNVf+Q5JysavYksa//DjIxIE4kLuQY0YXbcAmI/FWfe4R5+5y1XfziB4FzatlEePXnNwk2cT06fReIwPntVyvU2txTbDAFA66bjoGSIdxDaQ90gt4zx7u+Lk7rscv7YmOMuwKCikZ1hohBYEGYkdk8cOePz6lNYHFosVd+4cE1Y1l7yivTTgciIw1tI6T9lYjPdYF7UOjfOdc3C8ObVWWN959xEIXnZ1YBfQhLhwI21vCkG/8yDEZmHGDEp2qHOPJ4gOoIoPiKVU/y8gfXx+Ix17Tz3G28uGtlyhBSA0WkImd6vbeCcrlZJnBfNZw2K+oMg9C9Ny9dotgrM0TRnnNLzDyZSTqmUgA08d7KOC5Nr+XvdqEmTc9XWiuu9OETq/SNO2FEUOovOWSBJ0kmKN4eTktLvXYjD1rltlYnubxGRsGzR3R4gfLVOd95zP5vE78w6kRucpIvjOAn7LNvSblnj3HqEL3ELSms5chG0m0gPoPflrt1uxWRHdd7lpd+6Ugx90fGSCAOxsLP0N3KGvG6pKl+bsRuXtn16eetfAoovLu2iu6Hf8/h1jveQDrJareBN4vy0BdpZLCKClIlECgsB7jRSBenHG7O57PFg+JNWBPEk5mBTkSUIxyNEKKmv56ivvMZ+vSRPJwf6E6bggzQtmxwuq2jIMIILjicN9RkfDqKwjIdFElRjbYF3AGo9tLZV1WC+wLlC2hrr1GBvwQrM2jsZ6jLG0zkKQGB+RZh/kxuyl1/PYllxhs2305UZVN5RNE1uh3Wv0169HxON1dHx1XjH+6tfRSQFFipc6imlKvZEg31zPDkm/fu0Iax1NUzIdjrl6cBlcoPGRS2FtQATBpRuXefbpJxhNBojgCWnC0ZXx5u7xIiLhUgraykKekOQDnLU4CcPxCF83OGPIixytFOfnZ5ycn3c+AKHLOON9ttWZvJgPii5L3Wyvm3qUjXbper3GONdJfCUobaOWJLHUktDV/v22vu3MBARBKIyNXSXnXXQg7j/BDvAH2zKA7l53zm2zlvjLTUD4oOMjEgR288ptigV9FNtJXdki0luWob8QCT8IGLwA3LzvXaNhY6wD+4ZfpHtG5DumGT1yrnwg2Jbj229xdvttTh7eJ0klB3tj0rQg+JpiNEApiREglOZsXvLqe6c0TYsMAn1vTpFlTEYpq2VFSGL5UouAznNUVqDwZIqty1Fb472NLTvvMTbiPUpJnAAlA94YvI2pbW1NDBgeGuNYt4baeJrWYlqHsY7WeFrraI3FeIHx0Dgf21M+Wn338LKzW2p27xWw+70IJCcCTrp/NyJmXd57MA3Cb9tUoQsgSiquXJ4yGjrqtadpArZTUZJa0y5rRiHBOYMWCdeffpJaacR4j6IYc9Rk3XfuolclxOnFPEXnGcWgwHrHcDhCCIExEQAUUqGV4vT8mKpto+4APcbh6Ft7vtulP2jetseJ4sLsmJjQjfa2WGMpiiG9ACj9aHcfdUWcCOy7RptOTCdC2zrf2YvHa7577FrSbT7Lzr2/KfH6QPBt6oGPRBDY1J9AX4tvlXE8ott5o/iixnUA3wct9g9Kj+D9YE7oCqvg/VYauw/ofZbQpVuqS4WVlEg8p/fvcPf2G/jVinyQMZ2MyAdjZDFAYPBVy/x8RVmWBCSmaaicZzLKWavoW1e6loFrKReGJE0JImCV5EHbwsNjLnuPCJ6DcY4UinEWyMYZyzUsKsuqrDmd1eh0yGq5wNQ1w2HKpz/xJAmQpApQcVYBhwsRlY7GIA6EwwdP0wUD5xxl2dDWLa1pqYynbTx147BBYYVg2TSsmxgsrI1Zl+98G633CA8+KO6iENbTGE8tLKrzLDBRHTReY+LurrSOitA6UJY133jjPR67eZMrBwcMxgcArO/chvMzJi8+TbZ/QL2sSVWOd4bp1Svxu/Mh0usF6E60RXUzCErrODZe1xhryIqiKxsV7777Xve9dwtmlwuAYO/ggMXZ+aZU8h2OtCFThf6e2ZZaKkAiNYnUqCTFtNFjQoUoxR5kpL9LJBemErtNJgYJT2t9twa27XG/fcNHcKz33+d9WfBBbcTd4yMRBKBP/3dT9fizUlGOOzK3XHQQ3pS6/artNAW8A7nTWdhcnG3rbJNhEPX9N50A+hsgdBwChUSBiOlhqgPTRJC7krde/gJ7w4L8+pWY0ioBWuCqNc40rMsV3sbZ9cZEkcymtWgEwyxBJDCwCYV1rFOQqUB5QdVYlkFxdvuEN0/mpFKTiCgkMSxSLh9MSFNNVUfbc2MN69O7tJWhDnCgc85mDZNCY4MnTyRZqpEijuN67zDB4YKgqaEto0OOlJAVCdNxTougbGpSJbFVw7pxhJCi0hRjBUFmuGCxLmCaliA8rYO6sTTrNU1Zca+qaFuHa0vKIGhcxGqMizp7lFVHvZboLGE8maJFwImW+WrNa29/i7q9yRMovLAMru7jT0tOvvIqpCn6aJ/l3fsML++jdQFEkC90o9g4sEiMC9FlSGuEUtSdFJnqVJ29c3zjtdfYsum62jl0yZ+QfPf3fpZf+tm/T2VNBza/P63uS85tVgRJliKUJMsLmrpGoJEqoTNYZPMmXRYAvf5NvN8kgtZ24iVhp8Td4FTb+zjsvP8myw1hi/Hs3P8fdHx0gkBXYwkpNuAehOghuDEFiUdf24cQ2JuOGY0HPHh4hjF+w6K6mAls0XAhtq/veimzDo2Nj9HIIFCqm+2WgkmumeaK/VHG/mRKnmsGwwF6OMEESV2ucFVJ1TQYGx1xV2uDsVGxxuOiU44XaCFxwlOkCa01KBVlvb0PiDynMSvyfICzjqVvYy23iG3Cb90+I9GKLE2YDjISLckGBanKuXawT56nPDhe8VA4Uq3RSkMiwbcMsoQslSgFaSYgmChyMRh2ElwOpOLKwSVE4gm2wdUOkQ5ZLucYv8Y3HusNMijqFnR2GRckeTFGBqjLNW29Zr1cUa7XnJ+fsViuWdnAeW0orUfqPu2ObbjDwz2UUizmpyRZYDScMhrvMRlfoqoryvWcvXzI9NYR9VnDerUEDxYRy4bqPgCDPGW2Wm1A3NYLXAhMJ1OUVNimoW4a9qZTBALfsRNv373X+RHS1c5b4G08mfDCc8/z+pe+xO3jBzhAPLKYdvGp7hcbrAMRPRKVkljncF0nqv+QXnQdiB5g3CTDAesCTSd2Eucidu7kfgMM26x2C9Ne/Pce8H0kYb5wfGSCQO+SI2TsO/fpPsQb5kJLsItsWsDv/O5PUdy6wi/8vZ/ieBYiGvtIfbQLHsJWn7D/hQii02aPwJiSMMkUe1nCdJAyHOUcDnNGgyhMkg0Gnb+Ywa7WNNWaunEsKkvVeqz1Ha/WIYNjmObkkzF1abC2ZV21+MbidBz6IAiMjW601yZD8mGBdfFGHI2HPDiJzrlN21K3htJYZqs1SqpogT3MuVwMaJ1jNltzeHRAwFM3Db5qmYwEutBM94Y4UzHa22c4GrJaVGSjMUJomtUJrjWsqhWhVAxHGdlIMJ83WCeZHNzElUtW8yXDYUJzeoJZnzEcTVBBobIx1mnQA0g12XiEUxLSBH82I1OaLJPcX0Suv7Ux60pTRdVU3HnwAOsjtVoQeO31V7m8f0hjGlSSIgrH+LlbuIdnOClQgxzXLoH4eoNBztlqBUKQpJrWS6TUSKXJ0pTVekmaD0jSHGtbgvPMz2bM5/MNW9V31nX9anr+Ex/n+pWrPPXsc9x9+DC2EHc7BB+AO/V3qJQC4R2hwzeqqkJqjWvddpCsu+eC2E4nCtFNcxJi+SRUhBIebY3vZLY92Bgx7vje/bRtX158O7btRyIIxBpLRblr1wfKnejK7qKGnj3lA3zrm9/k037OrVywTAKrenuysZTYBo9+TPbCFwkEfOSYK8E4TxgmgsNRxv54QFZkTIoBSgVSLZFJivGOxfGM87LEWEXjPTrLCEmK8hWDTHDpYMS4SJFSkCYpOoXVsqWxltdvL3hw9wSVa6SLzDIJHI0Fzz19nSTPWZcVVSN4cFqTpQnOe/I8Z1gMIETLq6qq8MCqtnz55dfQQiIJrBrDKM/Zn6TcuDJhPILL127ivCARU07PVxgZGI2GtPWCuvEECqaTfcp1tOCeLyumoxQlAloE1rMFuJb9oz1sWTOeDBFKoVVBUy+5/+4DXNCINN10VsaTKcv5EodAKUG6o3YplUAEwYN7D5nNF0z3DyDA+fyUvckI0zjmy1XEhNIhUkBTzhBFQpZm6EShOsIPwDCJ+pOu81QwSJI0iwQdVdAay2g82gDL3ljmizmm22zixtIBlyGg05xbTz5BlmU89sQTFF/4AqumvrgZ7XadNkdsESRpQppo2qpGZ3GiUMkkZgqBiP11sGPfCRO7tnA+RJu4Drfa3NUiMhpDl7UE2JE4ix2HPhMQm/ImvE/qbff4SASBHuH3XUoWzTf6jXq7g8f2VfwSpIgMw2/ePUbXaw5HCfu5o24rXJAoFbGFLUloB2Ogw17oU36YZppLo4JxpplMBuwdDNFSgpcEYUnThLZpqGZLFhbeO12DDdy6dpkr+1NyGkYDqCoVQU0Z0MoBEiUb8JLpJOHOacvx6Rwn1YaVliaaaaZ44tZVLt+8jnSem7dSgvAslpZf/PXXKJSnaT3WeIajEWmRcDAd4oTi+OQU56O89aDIOJ6dc99annvyMi9MpiRScffd2xwcHJLu7XPjuuX0Ycnr91syBXsHI06PT3nltQWHl/a5ceuQZH3OcrZgtD/i6uPXmJ+tWJ8b5suGctUyyhN0GhBUnJ7MOHlYY01AKY3rqM7lsmS9LhmmKcYFvBM7O1j8AlaLNd/4xis89ewttJA89eQzVOsl1tYY0zAdDsizI2wmuf/OOwwme4yntxCrM0IweB09+i5f2+eN+ydxR1QCVEaaxtkN2xqcdQyKgraOUuBN27Kuqp3R9J0ZDWAynXLzyjWC9xwdHTHen1I+qDcbVH/IHe7DZnBKSJRWJKlmWTXILI2W7UmKW/lOVj/SiEMcNLiAhfWfwVjXybxvP5sPYad07XqK7HBlwtZYBUI34h648OKPHB+JIAC7uzLEYZs4drs7NNOheFsghpjavzGrKDS8tJ+iQ8u7qygz5YPYkCqQMhqDiki7lCIwSBXTVHBQpOwNCw72c5RIyAYZSiVoKairNYt1w511Td06GiexHjKtEJmgbmv2UUzGBUon6Dwl0xqdpggfsQY9zHHWo5KMf/zF36CtDChJcGC8Z3884OqlnE98+kXy4ZAQWqT1OO84nEiuHH2Kb3zzLq9+6wGJSpFK0DYtbRPlp3IRODzaB6lYLFc4lWBty3sP1ty8V/P0k1OyoFjOj3lw7w6XD3L2L12mDa6TpIYbN6/xye96jpOTM1bLkstHNzg4dJTzh7z1zbfRMuWxx68iRaytz89nKCV55701791ZkQlBInxsjxnDclljTGxn1s7T2l6MMx6iK16NM3z5Sy/jfMtwOkZnAw6nU5JUUNWCLB1wfDpDFwMm+zewvmR1+oCBErSzGXkeg/yNK4d4+02kFKxWBi9ypJTYzo1HawVCIpMErMWGaJdOv/j6lDmA0IqDo0Omw4LlYs4gL7i0f8Dx8cMoErOTTT5KYY/drejpqJVGyArbtCQ6wfoIkg6SmAVET4ZYD8T2M0SLE0HY0Ia7wNJdO9llGt5vZw+k3PJhJGLznH7dy37tfMjxkQkCu0d/gfuBnzxPY0uqaS6kX7GMEFTe8+6sYq8Y8cLRkIVZMq8VQYRNuhilqgRSBoZKcjBQTPKM8bBgPMjJpONgJFj6nKQYYKqK09M581XLrGpxDrQMeNcikLQu8MyTj3H9+pBBkZAPRmgRCCIwGI3RMsE1BiEdIskQXvGt++cc35tH/oCNgOS1G5fZGyheePFptNaUqzXWGky9xvs2EmwkPP3YFcpS8N7bd7GA9XEy7sblI8b7B9y+f5/1akUqFUJqgk5JNdy9v6LxcDBUTCcFV594jOBaVuuGIk3wXjHMmrhrNg0jLQhZwt179xgPChCKa9ev4gMYC1XbcvJwxptvnrKqA94ZhllCQgAvWZcl82UVW3VZSmk6Kq8imo1s0jo2WUFZ1nz1y6/y2c99D1LAu7ffIc0ypGxpm5Yz0zI1LdnkgGIw4cHJQ+RkgFsbiiTqRl699jhS/DIuBBonESpBEAVgkJKkAyQJcRHrNM5/eL/jJxgRYhSSo6Mj8jSnNCt0kvDME0/xjW++Sgccve+evThEFD0nhXOkUlE1NUoqvAPnZNd9DnjfbVCiS9k7UxQJtAFsuNj+6+7ki52ITqq/xzI2U7HdfwsROQf/THQHenIGbJH9viswKAZRj72Nvuy9aWesyaJb7IMm8MZpxccuD3jxcMBXHlTU0UccQdRsGyVwKc8ZDVL2JhOGe2OUCvjGYddn3DtxDPcH3Ds+5eS0pDWO1rRoImgZ03eNE5APcg73cg7GIxIF+UB3Cq8JobUIFcG4pBjhm9ja/PUvvoZTMeLHLogiuIBMx7x113H7/hmL42Pm6zmsSspgyaXgyUtTxGjAg4czgoDhcMzewR7OO+7dO+ab79xGacHedESqCxItOZwWqKaKjj1B8LW3TrGVoSgeMh4PuXQ44vBwTJEq8pCzaBSpl4xH1zja04yqJfPzJedn8Na7J8yXNbP1inpZYb1nMMopMOQEtPME4VmuStrakGmJCZLW2kixFrGBH9zWzSi6APVuRtBULa++/BrPPfkU0+GY+XKB9w2n52uuXDpkXa2ZDvdpqhYTHGeLFZPhANPEW/jawS1Gec55WRKkjDJdKl5j711s2QkZ5zecBWM5fXgSLcnjsu1vRJwXPPXMs3HwJ03J85xPf/Z7+ZUv/DoPjo/jZOLOIFt/9KVCEKC1IhDngIWzrGdztPXYTvZeiC13qC9ObTdZqIXAEmidYTsZ+kh3rHteP2EbOvr3ZlhoA6L7DWD4YcdHJghsKbrhQnolhODk5JRoo7MdhNno7/c2V8D9ynJt3XB1L+WNUYZbW1IlmKSC/SJlOCwY5gMGwwHFZESRJchgOWmWtNbyzoM19n5JmuYx5XLdhe1kz6SM/WitBDjD+WxNkSVcvbZPmmTkwwlpNqKpaoQImKZmtjgmU4K7D+ecPjzvvOYiEUprhTGO2bzEiwXUDfPZDKsFGkHrAixr2kXNXGjklSmjvSPSXHNyesbDBydILZmMYudib5RRZBl5niCammSQ4kyLKksOgsFkUJk1xyc1x6dnSJ2R5Hn0USgKBlmK1inFaEDZNCzOT2nqlqYscc6jU00xHjLMErRvCG3USDRNw2pVxtFdLbC2R7ZFt+v5mEa7rb/fRt2oL9fwnJ6e861vvsmVo0POl2c4aznY2+fxG0/QlGtQgsq0pFoi0pTGOPKeubiac/PKEedvvBeBuSxHas26XHG0v48LPf8jHuvOj6K3A4/4mUMESIdDnnryKaSMPhgA2SDnc5/9fn7yZ35qR8770dZ13ImFlyidkRdjZqsTggjUqyXpqsQbQZv46B0YIvdgozokoB/VdjbQtm4zCPToWhHbaLoZi9/GiYv4xhYB++DjIxMEenbTtm0aNqmM6EZDN2gsOwmcCN2wC5QWvjkzTPKEFy8PefesYaQ1VycFe1f28V6QFRk6SVFK4FzL2/dOKWdrjsaStXFMhkMC2+GjQOzxqlQzLIpusMOAELx3/4x37z5EfFEzSBRHR1M+9/nv4/qz12mbhuWiolUDzs9m/PwX38E5kE4ABp1oVAAnFNlwzGiyR9iTqKNDzNmc/fMzXJ7ywAea2nD5409z2ra88vZ7SB04nA554elLXL+UMR0X5IMMLz3TyT6pSPF5gXGepqpZnJ2yXlXY2kDd0LjAatnSepCJR/kKsaoplxHv0FlCPkgYqsB0lCKHEXV33uKdQ3qL8BaLYV3WVGXsYHhraYwnCIUPDtGxO5VUuBA4my9B9LfctrUViTmC4B2/8qu/xnd9/ONoBdkg5cr+mGEGQWTUqzV125AMc8bjCbPjB6zMDICzO69yNMyBKNWdZhlJb/yBRMkYjIwxSCFY1SX3Hz6EjSBrx60LgseefJrDvSnONPQENgF87BMf5yvf+BpvvPXWlov/KE8gQvsYYxBSI2wEvPPJCCkV9WKJNUuUDZhgCDKOPicdjRkZ1YOMNVSt23QP+vDlvO9GkLssmF7zYWdqFDbdgECsNvwOQP7o8ZEJAhejah/pujk4D+DpVbb6SKg6gcVeDyDPFLrQfGve8l2DMe3lKUo4skFKmhYkaULZWmanS05nC1bLGhsc48xze27xSBoT205pmmz4Cb5rIZZVG/3jkmieaiwILUiywNwbmrMFP/Uzv8CVlw9J04LBIOHgYMJb9845P68QTYnWmkxSNgAAkeFJREFUCVOhCSKwn+dcPbzEBMVwtYbRgPP5gtnxCfb8hPHhEQf7RywXc+6++S7na8OTzz7OJ16c8uLz17h+/TKHR/tkxRipNFo4dDeTrqTEI7HW0tQV62pNXTWcn5xycnzKnXfuspitUSoHK6Mxh9adEpAA7zrev6Vt6o77b1FBoKXCNDXzssS4QKI1rQ3RHbcTYU20ovUBrTXrxnDndM2yduTF9pbrxUuiiGrUdWgaw9e/+U3+1d/zL/Dw4X1EmpCkCYlpOW+WLCsLzZp28ZDW1Ig8ovN6nDHMomJzUeToJKWqai5fuRbnBLTC1iZqPQZPUze07VatWEiJ9AGU5FOf/i5s3WBM0+3OAolkvLfH7/zc7+DBwwesynKz4C7OuUTMoKpK6qaKjkN1E0siqdBJTq5KtBYxJ+zk0YUQnQdDzHRNWdEa260NNipE205ZBItC56P4/lHwnTKFHbrxBxwfmSDQH7sz27spTM81D11UFqLTkUOgJeSpZm+QkiWSZen41sryxKdf4t2vfYmwOsOUS/LRZc5rx2wxozEWpRVl3TBVkvnMkOoUqWNUzvMUQsBZh3SBQJzW0UqTSsnaGkobkF6Rp5KyrtFdNnJ3eZvgFZkKeFPhgqCuV+RCsI9nYh0TobnUBExdsj5fsGpqmqJg6QOrpkKOhoxefJ5vvnmPpR0zuPIEn/xdL/LUdcHHn2g4OipI8xxnS3xZ0bQNbVnSVGvatkEJRW1jhyQEUElOMS44PJySZxnOSZx7G6kEszPbMSUDzhiMc9i6jdbjCpS3CNsSvCPPhxjrmJcNQmgyHeK0W3cjexdnPaQQaAGzsuWth0uq1kV7uQ1X/mKvvR9Aiguo4Xy9Yu9wj3wwjW0xtSBVGXmqsGGOzjRBpBvtPJWmnCxLIFBkOXiPULFVp7QE0c34S0lbNxhjNkpHYgdJHwyH7E2GrMs1SaJJ0wytE6SQWGe4+dgtbty4wTdff/19HIG+rS0QNHVNW9ckWYZuakxIwHmyNkd0smVKxO4RIUqxEeJ/SyXQYit2s1sMbOTTutWxdVK6qB/x6LGVU3//8ZEKAn3P1ftHU6zI6hNSkKZJlIlSGkzLMIW9QYLUOVkiWa+X2OB5MF+z/NIXsOsFbZ6ydgWXJlcpw5pzXzGeTHnyqSd55StfxtmK0XDC1cMxjYn1rDeG1rQIIZF6K0WNFzgUQQrGe0Xs41rHSCdxYAWBM56AxXiFbwPGWSyBSkqOpWClNPeV5O1QE85OKIZXOXrmeZLhlEGaM0kzpvuHXLp+mU//gSnXL40YjyXOlLz9yhepy2Me3n1IU1W0jaBqHdaY+L6dmYlzcY5CaYGUniRJKFdDRDBkWcxehNK40NK6hkyNEYCSEJxHJQHpLaGxtNYgBQyyjLptWDctQgeCddQm9qJFN9kYGW9Qt4a7M8PdRRtHapVCKMlmHK+fm9/pu29YcwHunxzz9ONPgPMI5bHrOVlaUIuEYPZYrBakylEuVwD8Fz/xD3k4rwgS8mIQAeVBNODQiY6in1rijY2Brm0xnWln6DoGIQT2JhOOxhOGwwIPjIYjYmtIoY3ADIcc7u91USO2A7dH55shomFKvSoZ7e+j6bEMjc8zfK02HQKBxwWHRKC97Ma1Q1StDrDByfzFnb0fbX6UvLR5zCNdtG93fCSCwEXuNR1yuh3q0EKgtOTSwR6PP3ELrTUqBMrzc0w94/r1a6gs5fbd+6xmgdoGsjznfFWS+IAvK0I6oDYtxd4UdX6Ks5ZBmqOD5dwEbh5N+fhzT5AUY9ampZotWC5nWCeoqorGQVXVWNNiPAgraJsaqRMEUap8PBjjEgVtQ7VcxlHgIiPXCYtjS7AeL6EUIIPEKEGmEm48+zH+9H/wH3J4dZ9BohlmgkQ6vK1ZrtaslhWr+Rmz2sSOwO1TlGyi7r2XGOdiDRpi/Y2IY9BIjXSK4Fo8DYmO/gfe1FTGUQwGVHUTXX9EQPgWCRt0n+AJeULiNbY1zNY1PgSsi7V/07hNj9oET4LCCYc1noXV3JmvscHHgR0luzq16/x0323chbflX38f2KbFNnEsWkhBOjjAlZ6wqlksVnzzrXc4f3jCg5MZ/xlwb1YiQ9R7mEzGBBcYjffiTtkJDgoJzlqEjvyP1phNMIpMPsEw8Szf+iLidB8xmKAmh4SqZfDYNey6ZvnwDolZbltwj4B2scsY75nlbM54bx/hAu1iTXJwiEgL2rUnJQY3GYhqwyEQJDgf/QasjYzBXYB8c2zwiC5DfnSRh57/sDNW/M9CJrCJaDIqwUSkNV7iRGtuXjvkxtEBw8GAZDSiqktGaYprxlQuwLxEqIx8MKIODa33mKYhGw9o6opEwOFgyI2PfRdnpycsTx7y67/+67FVpRL2xiOu33qcRA9YV0tWWcHly5dw65rGW0IQrFfn1KZhVVnWpaVsWhrnEVpjnGNR1/g6AkO5UgyylDxLWdUNPZWTELZuvlISJGSp5/GjhKM9TVnWYASns3OMczRtFXu/SpAVOUUx5rwKKF2hhCLVGhUMSZZgnUcoSAcD7Dpy1ZVOsFbiBbSVoWlqDq5f5sZkwtdffY+HD2oyPUIpTQgO56KZpVIakSUIE80sZ1U068R51nWL8wEp1KbdmQtNcB7hFftXrlD4llfvLjZZW1S62e5WwYULN/BWTSqi5NZafBA0RqKySwySA0Je8cqv/jRf+cYbzOrlRs0Ieot5QZpqimLAYDJhOI5gnDEdvbbbfWWA5WIZaeo79bQScDjWDOQauVrgS1jMMoKVzI+/Eh/X1FzNO35BP9Szo+kvEAglqG2LFfE3SZoCAqsETihW5w3e1iQ6kGjB/mQYswEvEJ2MmjMe4WNrur8+/Xm+T29jZ/0Eolzl5n7rH/PPAk+gl63uP28gdLuSYDQquHzpMtdu3eTJZ1/guec/waJa8u6b3+L1N97iza9/lVwFtC0R1jMoMmwQDNKMJE9RSQFJyseef54mUexNJmjTYFxDvS4ptGY0yFmva4bDDHRBMtAQwIoVsrOL3ts/QKQJy7ahXJWcPrjP6ckxrdIEmyDyaHcVbItSGTYEFmVUtc10QmvMxulWSmIrK8/isIj1WKkQSQJ4Di4fUdc15VpTVWsQKhJeBLQ6Z28QSISidW30M5CSIkmRKsE0BlUUse+MphhOCEJRpwa3qjh+aPjGV9/EIRmPhti6wpsSGXwUUvEBbIPTCauqZbZakWiJs46mtYQgCcLHultGbUURAlIXvPDcTabjIV9/9z5Kq013a7NjPnLT9j8/eljnI8goE+Zrw3CUY3zJ+XrFfL2IK7qz7oivLyE49iZ7XL50mWIwQBBHcoOEIFRU3FGaarXg/ulZNATdaTWlScKtwwkZHknU/3OtgSBjHR+3bA7HOVJGhyP6jlV/Xp0qs20srYmA8qZnby2yXTOeZBQqIQTLW3fOKSZjEgItAYXFe8GirLD4DyUm7R67Q3Kxw7ZlFD7KZfig4zdjSHoL+G+AK93l+sshhP9UCHEA/L+AJ4impH8khHAu4tX4T4HfD5TAvxlC+OJ3fJ+dnwSQKcE014yUZu/mNVSANM155tZNvu8zn+arb75NJh1L53j3rdeYTqeUizk5NaGsGQxy8iLWhHjPzavXqb1jeXrC5b0xmauwRrMKgaqpWLYNb7x9h8ngHKElSTFEpQWJTklUtCZPlMYLxUDnDLIxtqoIzlIGTZ6Nuffundhyah3pIKWqSgoJRZajVdUZaMb/ha4GbdoW6y3WObSMqkLeW5yxCBd3R61TlKpYNy06zXj3bs17/pzrR/vkRUKRS9KsYP/yTQbjm5RNgytXlNWK89M57907o16XLMpIl90fZAyLjNa0eNOiNCgkoW4joSfRtE5QVi1Va8jzhGAt69YQgsQHHzkT3cRf8J7KCD7/257jpaeu8K13TtEdGeqC6UVgwxNgN1UNvWKv6IAuqJuWJE05P6s5PJB4LzHGo4La3CcXJTRjujueThiOx6RpHqdRXUuSaHwQyKA6CW/Juqyh82eM+TjkuWY6ynEu4DvVnzjUExF45TxWSAa5opCStY+LrMcThJCdkYikrBpOlwtUlpBojdCSpqpRCKSzoEAKxWiQIpwlYBE+JQiHC5qyMp264/t3/t2fN1llH4TC7tXYBgz5W3QgssCfDSF8UQgxBr4ghPj7wL8J/FwI4T8WQvz7wL8P/G+A3wc82/35PuA/7/7+9ocAiadINKNMsZdLDgcZv/0Hfg9v1g33336LxeKcN99+h4994pw01ZTrktQ6Ll++zGc+9WmSZMQ33n6LX/6HP4v0BsSQxsS2kEo1XnhSrdjf38NWM2ztsFnC+WrFuraM9gvuVTXVakUiJMVgyMHBAYNEc3A0IcsLqrbFNC1pVqAGe6h1y9UrVzlZlOSDlEESVWt0mrA+h8X5KTrVoGMbSvgQ/ec6fTkpJM45jGnx1hGIfP62NVjvN7x2LRIGRWSv6TRnMde8/s4ZwQbyImGU5wzfbsnz+6wbw/HJOfkopw2OvcmYbCi5mjusqcBYTFnHGj1EqXTrfHS/STOqxrAoa5wzKAl1ZTA27jCEEGW8u93ftg6ncl544SZP3zgk7Wp7KXaltLrMbict9WzJLX2ZFOgfHyjrGicck5Hm7u1TLl2fYEyD6XY4yRaNp/s5ENNlYy15nqK1wgewDujowUFAlkeBUd3v5N0tOB1mHI2iW1Fc+w48hB43EFEdWRHYKxJWqwZ2xtxDiCWJDA7XicmEznQlzzKWTYtUCqUUzrVIpYmmuB6CwgaHChC8Y10ZbJSNZTeX3y2f+l9v8bOtlqASckPI6tfXhx2/GVfie8C97uelEOIV4AbwB4Ef7B72V4F/RAwCfxD4b0IMQb8ihNgTQlzrXucDDwEMteDSZMB+ljBOFZePpkzGY575vt/GP/4rP8a1y4eMp2PyQRH95IKgsYGqaalaz8uvvEpoDJevXOWzv+Nz/Pqv/BO8MTgcUias12uCdYzH44jcB0FrfTRzlJJ102KbFcJYCiWYLRc03mGCJ88L3js+Y5AnjMZjmtbg3SnOBvKDS6BS2nZGmqYQHG1d4WxL21TgA/v7e5TWUZZ1XBcbZDnWvqYxtK2jbk1s5YRA2zakaUqSJghKnHNYU5OlGVcO97g2AqU0w8kEjyPYqLyUJpqpLLh6eYRWgsXxCevlGbUxBG+RwYF3KJWgpEKjaNsWqQQ+zVjOSxZlQyoheEG5rnFdS8sTSLWO2jgh0FpHyEa8+NzjsUMDm3r+Qg3a34AfglL33gk9PdYHqJsmKjgvjynSnLtvPSRNJU3T4EVX378PEOvHx+MYcWyhxclR521E3YndjNOz2eY8+tc5HOWkMtBKh6JbXFqCUMRoANYHhBc8fW2P29+81/lFXFycvpOsC0pgquizkA+HLNuGxjRIF+c+fDc6D7GF188TeAGrJipTsaENb9ZjFyy34F9v5htC33LtL3f37zuB7oOOfypMQAjxBPBp4FeBKzsL+z6xXIAYIN7bedrt7ncfGgRSJXjp0oDpsGA8GXKwN2QynaDTHEkgyVIeHp+hB0PSPGc0GlGlDhOicstwOGY4HFGmNddv3uTJy9f44i//GtZZgojuM8ZYzs7OuFrkrFcrjA/UxgKBURENKZbzBcvVmiTLuHz5kDTLSFWCUIpWeNqm4UFdslpXCB/IBwN0nmHKJaNUEsYjZqcnrMuK89kMTeDS/h5aSVSIhJNeCX5X900Ej/CBTKdIrfDek2gdy4W6joIrWgEiAnZC4UL80st1RZ5pvLPYtmW1aDojF2JwqUqEDiSJIrSWQEDr3go70FoDWhEcLE7m1KZlmAjKqqFp2ijLXRsQgVRJhHcIoVhVlvHRJZ557DqJcrEjQRygCsETnIsc+5jR7gBX23ZWBEf7qyC7YAAIyJKUItEM90Z4C43RlIv5zmhtxAT6o097E52QaEWaalw/hbdJiSN/4Xy+YrFab9qT/XMPxwXeWWIKrjY2aVtabySmSam4dWWP9M37WM8muIUQ2asAwXe8hFQjBymiig7LdVmTegcqWpJtlIY6RaPeV6A2dH4SFwOdu9CS9Ei/kxnAhYARP3Us15T8rZUD8XsRYgT8TeDfDSEsLpIkQhA9++M3/3p/EviTAEWiuH7tiOEwj6lr2tXfteX2r/5jrtx8nNtvvBFbPI2lXpeUPt4Eo+GIWb5gNp9jfcvxO+/y/GNP0ApQ3kVbaB9ronVdIYUkyQqUkAwHA5azMwaJQgdPlmXcPztHG8vj1w7QGLx3uNZR147GRVbh3iBn7+CQYjTCmpayqQnOMi5SLk0K1lXJYrGHspZCCoJdkygXwSRPrE99QERCPc4aWtcik7gjRjPNSMNVQuGlI1Gd9bSKuny2EQhrsdaxbgJ1tY7257qII9TBgYvS2oPBkKZe0dgG1zhUliK0xoUQXX6N4ex0Tl2tSJWkqRx13SKUxJgWrSQ+SLSUWOdZGsH1W4/z2PUDhHVomW7aXAJPIrqyZ/NlX/jit/cN27Q2LrRtW2synlCkGZNBgUJx984xp6czTk/PtyIa/mIvPITAe+++y4N793ji8VvkeUGa5TRV3dXagkRIXvv6qxgf4ng5vVq1ZX9c4HwAofBixyEosJGtkyFCkePxgFGeclaajeDnVtgjch0WszmNtSipyScT0nLJoqkRUagMiYjljQudn0AnMeajAKxzvdbBzvXrf+7LgZ4e/Ig5z4Y0tPPZPuz4TQUBIURCDAD/bQjhb3W/ftCn+UKIa8DD7vd3gFs7T7/Z/e7CEUL4y8BfBnjs+mH45/7A5zFWUC4W+KalampqV7JY3mV5JvDCEbygsY53Hpwip2OSNGN/74CzsxOWZcXk6Bpf+vrXmDc1iVTRCTjRNC5ahbdVjbWW6d6E/YMDZicPEEKRphJhHZO9Cc8NBnjbIJO0s6ZStKYhSySmbjjc32M8HTMoEjyGpq0QpsWZCPolOI5SyZWjMXW9IlOapNjHpCtOTle4zpK6T1UFnfBJ6CFRuWmT+RBAho4y2q0UIREBZIh04ESxsdDyPiCFJ0lSkjRDa0i0JFiD9xadJCS9qUsW1XpXiwXz8zN8sCghqKoWG+iEQEFLiaerMW2gCorHnrrBlYNJDFKd81LStXV9iHYZPWa/Md/ssp8LAzfxH+LDfNgAdEIIRqMhB9O9CECmOemw4JtvvM5itY6Zju0Hf7avJxHMFwv+5k/8bV75xjf45Cc+wfd893czmowp8hTjPPWq5fVvvYEPoZtu9AipkcGzN0jZeFxwEXqMkl90yj2BNIFRpjktzRbk7BOZAEjJ8cNjqroiT1N0lrI33ePs9huE4AjouLj7he7jHGDwAe88LduZht3zFBd+vpgFPLK+4rmJeF/0Y/kfdPxmugMC+CvAKyGE/+POP/0d4I8B/3H393+38/t/Rwjx14mA4Pzb4QEAg0HBSy8+Q2UtVVViqgovJXVVYq3l+oMlZ8s1KnhGyZrWVKRNgZeaqoma8aJt+Zf/wO/hZ0YjvvXr/4TrlyecLZvOG16SpSqm2m3Dtau3ePPttzCtRSqFMRWZlsjQcjApSPUQpVKCkGR5jq3XtN6xN84pBgNcEJh6TVbkpBi09CT7Q9arBWa+xFUVXgr2Dg5JBkOGe1MW8hT12luxPx7vqlivdjba3tv4lXZo865tGiLuxBJBuW54cP+MqWyAwHIdFXSnBwdolSGEIE1kXPRSgjG4eo12BpVobBIn3Jq25fx4xmIxI/hIoW2bBrobUSrVtdckIbR4By05Tz11g6P9McFahIgtwNjZUAQEPkiMj2O84pEb+MPAqYsdggjunZ2fIRKNVgqzXvHl3/hVbt+7s6Hlxiz8kaxCxIC4XK34tS9+ia9+/RV+6md/jquXjnjqiSf4+EsfYzjMOT47ZWP02nXhtE4YJAIZumAbuOAavF128T2VCBSJ2mQL/WAbAoSKAbExNQkqzpHkKaFaUC/mSG3Q1iHSODAUI07vIxBLtd71+dGj5wlcYNN+wC4fsdb+ce7btgl/M5nA54B/A3hZCPHl7nf/AXHx/7gQ4t8C3gH+SPdv/z2xPfg6sUX4I9/pDZbLBf/gp/8eWgi+fmfO3fslv/93fJzDK3sErdg/HDCeFIz2Cs7eex3zQFDPj/B1A96wWs25vzjn5V/9Ddy9txlpRaZh7+YRy7VBac1oPAApaI3h9PiE1XKNMQ6PwDtBOlDkWjDKC2QWnWuyJCFXEkYaj6Yt10iVEFTsTPggmUwPaKoaaSvOVktG45zBpX3yYogUUeDDIXBNGxehdUixXRQeqJuapmo6FD2q0iip8baJX6INLE5mvPnGu/z3f+cfMJJzhlczqrIkTxSj8ZAk04S2IqDwMo9TcyJgbYNzFpWkJJ0st2kb7r53D+MbEh2oG0fdRO+8vltAcNEFx7cQMqzI+dTHniJL4zyFRyJlVMVNdXzdWND6zf7Zu+vEtl80NVWb9D1egn7xP9rPfvf2HX71136NwzzlH/3Sr3FntoZg44DNrk7kNj+OwStsCUS1abl/7z4Pj4/50iuv8hN/9+9y7eoVjs9OCd4RRGwROuc52C8oErmDxvdyX50iUteRECJaxmsZyWCC9S52v+luQKCqKlpvqO6/w69//VV+5hd+idE05fd9/zOc3X/AdDzYWOLFv3xswXqB7a2wP4AU9Oii350d6JmXvmMM+a5rIX8rmEAI4Rf58AbD7/qAxwfgz3yn19095vM1f/3vfJHLBwP2buyT70n+3i/+Bo2A/emIwWBMrhO++/mbHB1c5q03X+Pw8Ixm2WD8HjhHlqe8/fUvMR6lXLu6z8tvvsszR0d4mXHzxg1mJw8p0pSz1Zr5ugHryPIMs7Y01nG+cDx2PaeYTAmmZX9vxGQ6ZpQP2T+6wsn5CffvPaBZzkmVwBmFkArTtijX4o3haH+fJM1J8o5M0rRIJNJYLk9yDvZGPFzVKB3ZgkLFLMC2hmA9UgSEjMl0VbacHS/51rfu8IXfeJm33vkWtj7msUO4cfkGEk8+GBJstCoTWuF1Er9UlWCtw7cG7xxaZ1hnoitRbXh4/wFSNKSuYVlaWhc2wyp04JmQ0UG5XguG+3u8cOsyRSYw1scAIALOedJE4b2lSBKqsmExrzEm4KyJN/ZuX5vtot2Aox+yozln+dmf/8eIILrhl/i8rcVHf8N1z40cXpzoeaZykzGErtxCSR48OImDfsQBnSAgWM+lg2H0ImA7rt4z7aJhaK/OE0FXISVZN03ar45Yovc8kMDyfMZP/72f4u03Xud0ucIRsMFx9517TDPdZVzdJKCPpVTfRe0hld0gCVu1rc3g1Q5Zafunjx9dufMdCEMfCcagD/Cpjz/OD/zgxzm6/DizxvC1r9/mwckJb92/y7t37zIUkvPbd3nu+ZtMJ/tYUyOkxZQVKMlwNMT6hunlq+A9T4voQnvz+gHBW7ROSEc5pnLUnZy3aw1YCwiSPKEYDblx8xIHR0fYtqZdzLC1oFqtEVZw6fAIcXTEbH4OyRrhW4rhAUjNaragXs6iK7ExVOUaV1akRU4yKNjPBD/4qWd569oVjh+eUdV1FJIUEi8sv/bLX+Hu7Tmt9ZzO59x97z1mD+9izYzrV3I++fiYo+EVULFmtdaT+YLg40I3xpAMB7imwZfr6BfoHVmaELIM5QUnp2ecPLiPFi2urVmsaxobQVPVoehCiw3YVDUwOLrCC0/fQIsoi+5CdGIKLpAlKQFHmiiUlDw4OaP24H2vcOM33RB6bl/oSS2ya631epLb6bf+b2svavlt75ftfP2Fvjns/L5Pz7e7afBsyogYkOjMZOGJS3td+r/NVGIu4yItOBDNZEOkGutOmbpv1fWv2T8/EGjbli9+5atbAZUgWFUt7y4tv/P6IaZqIhhooyBtCNHtygaLFaoLYR0pSHUj01p0qtlbwHD3uu1mCiHE4NdnNB92fCSCAFKxMp5FlRHO17Tlguefv8zRvoRU87XydRbrltXas3j9lJeuBvbHBd54jAeJZlgM8U1gbzKmmEyYhcAb33iDQqVMDob4XDNIU0ajIbX1rOsVstP6v3npEi89+xhX93Omkz2aJqZl44MbZMMBo8mEG6M9kjRhPBrgkZzPFjy4d4eHd+4R2pq9x26xWh1wejZjdfyQbDRETcakScpiec7i9IS2NVxKJY8/fxlwCJXTekDlmJMvcbf8GnleMMoVn3gsZfDMEVl6BazHuihA4V2sVZWGplxTLWeEEEjSFN86mrLE1A0yWNApCMnyfMG6aSlnM7LQUDctq1UNQaJFf8MHCBIR4iTc2khuPXaDx67sIYTAONfhF7HdmmgFRHBNAvPFCmMFUkuU2Blq6RehAHbMTns2behS4AsjsGLzfxuDUXbKANFDdjtouJSRKtvPI4TtCok9dNEpGxEXo5QS0dXfoyLlcJQC8Zzi4lPdjh+djkWfEvQBIcBenhKbYvH1YykSw8t2MtLvXIv4vPNlQ6olrbPduWzPTXZy6NbHgSIZYhbQM/523aUj6HdRkg/Y8Aj6a7R93gcfH40gIARvn6/hV76IR3Dr+g32rmZcvvIC2fwO5eJV8JajUcblkeJgmrJ3NGFxd85kPKJuWrCWpbc8PJnx9P4+tI5bTzyOcAGcIgo4ZNy6+RgexWg8oi2XZErw1K1L3Lh6SFk2jIqCNIt1dl5MMc7hqpJmtaLEYVaSIi8YKwF7BZcOPh5T5HZN0zRcvdXy5mtfY1hokjTh4e17nN5+h3p5ipaByglMe8hgOOToIGroF8WAwWhCMSqi0QaxLkRFqzGvJEFogrEEKTG2pS0rlmfHuHpNXgxwQNvGEdngPS5JyIZj7t29zXw2g+BJXU1ZNdRNlAUDCCbW2QiJVQHrBU4kPPfMY1w6GIMSeBNnJ6SUtE2DkmrTwdBSslqVGCfQieba1THH95dsGuzBAxfrVejTWtGpHW/r3m1ba3t7bNLz/r/puysfeDN1JYjfLIDd1+8ZdXHxCFSSMBqkFCnb53WrPC6mTh8x9ISc2MuXwHSUogW0PnQgXB+UusJnd2HufIYkSaOlno+albE16HsMmOjbKiJg3FvH9+fi2bz+hWt24X12CUbv/yyPHh+NIBA8h23NzaVmPUp59bW3+YHrT3N4+Ra/6+ZjfOy7nuXtL/0K6wd3eO7WJQ4PRhw/OGU5S3nsxStUVctifsbNazcodMA6wc0bB1BHT3qbJjRv30WGmtO3X+Xw2nWePNDI/QMGB1dAeM7mCw6mBdkgI0GQ6xTXLgnWslyskMUAbyyL2ZosHWHWC8hja2l+5zat9/gkx5qG8XhIuVzz2pe/wuyd1zmYJEwPU4KFs7nh7PSE6ZWbnDTgyoap1aTVKfpMkyYJRTFCJlHEItEKLxTBgAsGYaP4ZF2vMVWJHhaIJI+1o4o2Y85ZnHHcfuNbLMsVzhtSFTierfDeR90D2wKyG3gRUR/Qa4Iq+PTHn2aQKITwGBOBPSWI0lxaobuZASklq+UKZwN12/Cppx8j15J79oTQGWf4zjhDhLjLbY/4vkqJTj9CxrpQxL1YdG3DaBEWwLNR3aHf4eQ2NPTMuQsLQO5mBNtgssunT7TgaJxTJDH9jrMAgr69JjqloDhtKDaZhveB4ThjqBVN67u2YCxDeube5vYO28UaAmjpAUlrA+iAxUUdiDQlSzTOVl3QDXihOm5J3PH9TjDZxIId/tAmQ+qucXfq3/b4SAQBJQXDq/uoPGNWtSykZWY9k/2c5bxi9srLXEs9N7/vE6yqJa+9OUNlj/HSb/8BlqtzBnlBKvaY5AlHk5TQrJiYgFUJtnXkMuETzz9LcJ40TQhS4XyCkZJ6tWZvmiKLIc3ac+nKFJSidTEtlGnC/sGEZHhACBrvG2anp6yRhHXFer1EDycMi9g6rBYrhGl4ePoQc/oOhxOFzhKk96xNw7L27F17krqObbnxeEjbtixLixSaQZ6yKEt0lkXtOREFSnxraa3DdJ3DREmy0YTWGVwQSJ2A1BACq8WS87MFTb1iOtCsGstq3iIEpJ35igmiA58EzkPZOvauXOXjT14jzxLwHuN8d1NG0ZJeF0BLcKZlvaqxzmNs4OPPPsbeMIuj0KoD2ESPs2+Rs55BsKHXdkCWlD0HPpYj8erHGrlfAFvcPi6A3Vt8ix30873x32S/U27Shm0+4fE4a7gyHZBEkkMHGG6VrQJug2N0gwSbXX88zHnscMLZvfNYWvRIf9h2FvpSJh6xQ6JV3w2JBYjzkKd5LK1E7FYIyVaZuK8juk8khIjmqCGegxfbkqC/NrsMwm9HFIKPSBAIQjBrW75w74wlKZ/5bZ/j87/9+zF33yA1C77r6Sm1KXjzjQd89ctv0jrNn/gzP4zPUpbHKw4Hmmw6RXpDtVrgTBTfiLMmEYXXIcO0DavzM+brMnrVBYXKUkZa8eRTT7J/ZY/Vcsne/iVcInEttIsFgpaimJIMBrzytdc4O77PZH9KmqdcGl6J9GGdELSm2as4PTlh8fA2RRoJS/Wypqw9pyuDzfeRVtAsShKtSHSU8fJCIlUAEZBJEr/QEGiqEmMtdd2Q5hnGGWQAFxLWxtPWNeMx7O8dUJkl5w9OOFnO8eWSXHmWVcWq7JyQRDTi7JtooQO51lZy6cYNPv7UjU6+TUZBy07DDgIqTSLtVkVB0KosaS2sS8dLL1zn0v4AfBxF7tN5JcTOTRkp3n2ryhrT1ctx4UcEvF/gMRXWSYc7KLWtcZFRFixcJB/tdiDoftrswF09L6Tc1PdSRuPZVCQ8eXmAJg77hO7Db0A5dpLvjt6t5BavePzKlJfvzzoG83aQp/8TOlyh+5AE4RnkaczWnEelMXAlOgHhCELQOAdiC37upv8beEV2k4EXsoztnr+dbOwD7kdcaFQFSNYwunTES9cO+Z4nRyTnX0MmLQ9nM159+Q3effuY+bpF65Rnn36Sd177CloHVAgkxmFbT2MaTFMjQlQKtkag05ygE87vP2S5XFK3cceVRUHrHO58RZkownuK7P4DxuMRo8kZ6XhKmmYUiaatFrz99hep64o81+wdTtE6IdMpWZ6TJRlaK6TWjA9zRpMxb9x8nLe/dJ/zZaANGpWNUIc5mUpwpt2IehpgkKQopbEuTjzu7x/y1htvg7dY29JvJus68gbyNCHTGpTjYG9IMRmzqtfcf/cu6/kZ3rdkylAZQ+slWstuLr5PIwVSa2zrqJzkpZee5erRhIBHCk0wJjrddKml1tFaTUowdUPdVFgH6yrwiY8/zs2jcRxL7utt48il5nB/SmVclFczDtfJxAPb+bju5t1MvG2ArGhn7kMfBHyHkF+cP9g9dkHCELag2eachYwjwiJqGdoQ+NgzV1BCMl8HpHKx8yDiDq5EXCBKh82i60B6bIjEqL1xhgK8FHHTuUDmCQihUDLpdu2Yf0yGCc45auMYFXS8fr8pO2ofg2H8HJ0qUHeqcTpz22jtz7cPip6wOe/d4yOPCYwnA/7n/9oPcfXSlCRNqRbnvPPN17l9+yFvv/eQujR459EqYzAYsb83oq3ntCHgRbygplmjVYIzMZorrSlGCVmWYaqS07NTVrMlOs0QaYqbtTjrSLIMISXvvXObvMgYjaKm3HBQsH9wSDHIsbYiTeHKlX10mkeLMq1jGitEZ2gRGBUFUkaG2P7VJ/hi/UVEMYhgo1Z4NB6P1gVJlhMCpEmOROGDJEkLzs4WnJwusd2uKaWKGUXb4mzA4fFZGvXqhWIwPcCZlvtvv8Py/IxEWhJhqI3BAUnicU2IJB0R7boRgqa1GDXixWce48blyUYa3FgbBUKIt5jWuuM0gKtbmrrBo1lWFc8+c4urB+PIbvQu2rzBBuBKpCAkXUfFRadp5z0sVxzt7yGICzUGh4BztmsqdsHB+ejk03VFjHH4YDftuIvtsIstRtG5+fZWdr3ZiRB9C9STKs1zV8eMMx2zFQHexV3TWEfjBU0IiE7irFe8iu8RIbvaxAJF66xTS242vX3Ehg7YKTcFNDBMI2U4CEmiRNTL7PgZSnaMy/78iN2gnlLdISZddrUFXekeK4Mg7HRn+onVj3wmUGQJB1nCq194heMHp6zrmrqMfXTjOlTWKaRMePrpZxBpQm0Dw9EeiIBvIyFGEmiaJZNxHvv/vqVpPWVZsyorVusasSxpvKNpo0TWY1ev4wtHKkE5w3oxj6motgg5oBgWDIYHSCSpliidkmRx6hAfCT5KCqyN0txpmoNzPPncC4R8j2o+RwqDkxadCLLBmLo1IBx5npMORmSDITpJaOqKzMNydoYIAddEkU5XRrUk7y2YFpEn6FRz6cpVbn/zde4/vAfOMEwdbV1Su7gKUwnBxt0nSOIC8pK29dRqzG/7rmcpEo0PHkVs/QkESmustaQywYvYflyvZ1RVtPR+88FDPvPdL/H4pTEQOuadBuFim3FTBluU0PimBR+Hmlx3M2ZaobWOpY2Lo8c+eNBR/lx3w1LOBoRScYcTkazUtg1ta3DOkSgBa6JUmN9tD8b32aD1ArTUuNB1I3xgPM7JE3YQ+Chjr6Qg1V0AIU4N+hC1HIOMOJwMDk2gqqOMWOo8KIVSyQWvQh/cpkPivCPTioGOQcELQZIoEunRMipKQYh6iEIhu3INxAVAUIhelIZNMBA9oCrZaCf0ys6wgRQ+8PhIBIHFfMXP//1fxBqLEIGmq5dCkCihsCEgdcLTL7zA5PAwymcpgbM1qJxsOCLULc4bvGuYn0QvPKUEdeNovSMbDFisKpp1E59brvFC8603X+eFZ54lJJJiWLB/dMggk1y+cpnJdEqapQgh0DKOkETXI9fVejvMv26XDQKccVw92ONTn/8dfOGnfxrpHXpwSFZMyUZDkrSgSDW2WsYv0Bm0hNn8jHq9plouOufchrxTppmvVnjnyXTCdP+A8WjC619/hZOHd5HCkEpLU7VUJtIDVAewCakRBLzxiKBZGxhducJnn3sC2ZlX4IgCIl0N77zrJMsEmZKsF6fUVUtrPfdnFS889wRPXJp0e7bfccAN+M6PMZGCo9GIqvZxJFZ6WjR5pwyUIFDeowio4COYJiXeg5Q6LiY8IlhUCMjgQUhyrUiGe3hE1OUXAc7m0fugNRvAscceRLcbSxnPBxt3e6kU08GApJvslKo7F9eXCxGcREIQjkBLnOaW+LDtSuzvDRgoReMNvhs5prNX2yXpCEAqyY3LIya5RAEKR6JS1Ka+D0gf8DZ+Pi/AG9thG6o7n93Mp9vpu52/RzJ616I+gITgPrBE6I+PRBAgBEQw0PHmZdhObcURVcGV69fY29+LNN1EkxcFqc5ojcHNTvBty8nZnNo1DEeDKFJZWwiORMD5+YL12TneRPcfl2acz1aMioLR/ojhuODK4T4HB/sMxkOyvCDLi0jxReNd1JpLdRTOtM7F2XERmXnR8jxQV2WsoxPFP/+Dn6UqLeVszmBvj8FkP9J4VZxDWDpDs15i64aFjRJT1pp4Q3iLc4b1uqGp4r4WnGTvxiFIxevfepVyOSPTHi0cVdXQtBalNR0DgGieEgjOEYRnVmuuPfUkLzx+BUzoaLKS1tcdGBfdlqRSJFKitKeez6kMGB/4jdfu8ImXHue5G0c479Eifktxx+w46qIbgfGedVViXQS9NJJMbm/iw0FGsBYlPEFrXMfmc92O7zuijNSqgyZkh5R7goniK85HzUCArPMa7NNx59xm11RKxp03uAsLJNcC501Mt+1WoBNcN7ApY4vQe7z1sYXRySYKEXGN/YFiXKTUtcfaBt05LPlup+5JTEJKJJLpICPTmiCi+pRUUQNRyC1WYXy3wH2Isyad9ybd++4GgJ7mLPvSgb4cEh0T89vjAfBRCQKAVgIhNMZ5EiVBBmzrCTZw/cYNDi4d4ZuaLEkxpqL1DU5q2qbm/v2HeB8YTUeMZA7OkKVDVDFgXS24/cZ7zGfnCCFoW8/Zck2jMoqs4NPf8yLPv/A4070pg6Jf+ClZlm2II6kWiDTbzHojiAw97/HWRG86HVVurbNRlBLPJM/5I3/on+MXfuVlzo8X6LrGmoqyrsBZ3HpBs1yhtUQnmnpd4k2LCNFtSSuNsxbrPMVwyNPP3mJ+uuTOW28igmE6LDDrOatVg/NxITjrEB6yoqCtG6x1tFYxqzUf/8QL3Lq0Hwk6KtBaj3dtTNlFoDWGJElItURLz2JVUvtAWVX8ytfu8Obxmu//dAab/gIQJBKP9dGcRQYBQcbUVAmMM3F8GgHW0xgDwMlqTesM0gdynZAIEdueWseZDAAlcXIrVR7NQuLcwiCReCc7bf4ooGI3ZiI73AGieo+0USwEiBJfUvD2gxNOZ6dMkoTpIGFSaEaDgmGhGRYJeaYjONg7UXVUbKHkRmjk7skaqwrGQ1gsLc65Ha5/FJQN3UJNtGa2shgXPRulVKju84ouQDrnqV28nk3bbshUWuvunHxHGd4CgIEYwKTc9H3ouyO78wUfuvZ+68v3f4gjoFQ0vpBaRTfg2gGKq9evcvXaTawL6DQlKwakwWPbmnK9YFnHyeuDowlFloLUXY0UqNZr7r51m/nsHCUFddOyaKBqFbeeuMxv/96P8fwLj1MMRpGokWWdnJck6RhtQikS3anfAt51Yg8+4KwlWNe52tRIYnComxpjG6pyCUJxaZqxPDWs5iesFqeY1nB+/wFtbSgm+xEg1BIbPCE4dKYx1pKIDIlCacETt66yns1ZLM5QwaCEoVzU1GVJEFEpN7huhFdKjLOE4GkMtGrIZz7zFFf2R1hjY1psurFUFaWzIodCkyUK6S2rZUlrHeWi4Ze//h5fu3tOkWWY4BDSbwi28dtjk3p6Hxl1DuJnILap8B6URHW3nAserRNaZ6llwIjYEqVT921tryAEWksSpaMcWpISuu9Ah21TbgM6stMu7DgIAY9xLUqoziYtvm5ZG2YrQwixhSqIQO9AK8ZFwihPKTLFdJQzSCSDLCFLFKNck2WKVCtevbeCJMdUC7RUtM7vBIK+fRevkhCCsrFxrsM5FJ2NHhCiJDLegnEhzmn0rk5dZgNsnLpDp7DUA4LxvAGxNTDZrvs+MHzw8ZEIApH8oGmdxztoSs94fJmja7eYFgUgkJliWKSItsESmM/nVOUaay2Z1MjWkI2HOB9ojee9Ow84f3AHXGw/VaVneHQZd7zkj/3Jf51nn77BdKDwQpDK6GefKY/K4k0mu/pUSAlSkyhwpkbIOHsebdKjZl21WkQFoqYmHxQ4Ialaz/HJGaGtkXgev1awnkqqKsc5z+zqZWa15fHnPs7ifMXDd+8zUC3L+++Bs0wGY5AK51u0rZif3GWxXDHIBYVynJ4tsCGQZynOxpQ8KIGWCa1p0EKxdoE2GfOZTz3HMMuxrSUIgbdxGWitNwBTmmjyNCEYy2ptaAMs1yt+5stvc/t4TUJ0dtYenItCojL4DrkWHf3VxjZX97sQJCJ4vHFdhz9sTDCMMwTfMfGIWjtaSggS6z0mxJ45hI3slvQe0VqUlCyaNqbcalP8vI9C29OUNiBdvyMrjYg5Qiw3fK90HFP/ynrqZc3DVU0gchaU6L0vIZWxxMk0lKQIBdbYbtFG+/PI4FTQDUg57/CtI086ebkAQQeC8ljXlT7CYpyhNAbTRiGc2JrdEqac85sORT8TsavptUEgBBv24nc6PhJBIASwPiEtRiTFlCujPYrBEG8tLlFoH0h1YHZ6TL1asVwtUf3cu4tTgfPZKereXfLBgHVtOXl4zChLKF1k47XABMW/+7/+XzFKJfVyjirh4PpjpLkmVRCEj600qZCJjovGxzaV0hohoxeBdy720YUgCEGaZbRtTd221HWJVpIkzSmKhMob2tKiZWAyTBlkCUIqDqYNAkleeLIrN1k/fsS92w94oCRKBvI8Yz07Z33+AO9qAoFxprHlOSetAVSnnRjHlelops4aQLCoFKOjx/jsczdQXc9c6QTXSWnBdmglTROyNMVWS5brEhckJ8cLfv7ld7h9ukYryWSYMcjTTr1IdkM4dDd9DCQ+hKiBF6LPXqZAo2J/X8RxnX4Q5tJ0TMDTGovxISLv3qNk0jEIO5+ArtD1HXnK42lNtBCzzjNIJ9095B/JAETXJuxeQETarwgBJTz7kwFFNsH7QNtajHXUJr6mD/FPP4npXcCEQGti+7QUAkGLB9LUoXUcm1ZKERXu43j1pjPRtVx9CMyWJe+cVDwxycDJyENIIivDW6jrFuviwFisOCR+Z5qyb/ltW4N05xxP84Jy0w5L8rekLPQ/xaGSnKc++dvQgxGJ0jjjaNsWZxtCtcIgOL1/zuzBfaZFzsEoJ8l07D07H3de12IcnXqrZzydsFquOZvVpPmQZ25d4dPf+70091+nXBwzyBx67xLLTKNcINiS68+/RDoY4ZomRmsZ96lI49QokeGFJNg2YgFNvYPABpwgag5WBliilKRIcySSxjQI60nzHLxBqwQhNYGW+cl7GAOnD+8yzFJuPvMM5XrO8XtvUKSwf/Uyy+O7zM8WGK9IsxTX1rEGT3TUpw/x3F0QPJxZnnnuSZ55/AgtFI1xm7l1Z7ubM3i0im69WaIx1ZrFqgGhOZkt+JkvvsnDxTpSukcZaZri8NjNzHvYGKn0dNstq69DDbzv2H0SpSLN1XWtO4nHe0suA4pA2i9YASmaTHk8OtbJvmsTWk/rHRaB76zfdAcMBik2rfTtEE+/KMJmgQgCgzxnlGkSCTpJcKmOCz4QU3KiwaoLkWFpraWyLbWxBBuwLqLtMnjapkQwiGi+77QDhSQIFWnBMg5Jee+72QnFb7xym7dHCVmScXKWMRkmjIc5oyylaj3eBoo0i+eiROx67BCkIg9hS03ukco+6/kg9uBvSVTkf4ojTTPGw30CXdqnQNkS1zSUdcvJ6TH1es3hJGMwTKJij5AIHWhMi3OBQZbTCo8XAZlH/4KyrhnvTblx4wZXJgOu3LjKnd/4WQ5GGuk1vjqmuleiptdpj9/h4PIhxWgCWQauBS/j/HiSRLHSROGM6VJEhVQiotFeUGQZo4FmIQJNE29O5yytaUmznGI0RIdAa0vKpQcp8C4gFCRphpSOx559htM7D3DVnLe+9iWqckY+VJhFydn5Imraa4G1DSrR6BCbQo2P6TYyowwJn/ruJ7l1dS+abxiL1vG6GheV7GWgk1zTaCmo6zXL5ZqA4L0H5/z8l97i/rwi1ZLJqCDP0k2fOgQRFXZkP6raqeviECJsbMmEiLJussMoXIhlRE/tjyl+rF0JEtVlJuBiyi1iuish+oOJmLU7FD5Ea7HWONJOSCUaIkVSz2bhdx2SKEOu8CGQphotNYQ4NGU7K/pYrghccHFmQ4EjOiyrPMORYbyPnzN4Wh9ojaO2ntYYTGPj/FNwGyAwgombyBSDQ3DMypazqkaz4tX7CknEw4pUM85zjFI4H23RZYgSa/2unmUpdKxA77sx6e79Nkwt+rfspyJ3s4L3Hx+JIBAAZxqatiUIR7mc0baO+fycal3hgqXIE5I8xblAberIO5eKsqxIpCJJE1SICr5eCKxzZFIwHOVMJwUi06xWC5r1nNPKcvPGZbQaIGVLO7tPWdfc+eYXmB5dp9g7wtRbkUmdpNSrNZgW6x3GWKrVqiOeSJxrWJcWawxJkpJnOW1bRgaclfhgmRYDFmdnmLYFHXcxGQSpzpCpZFVB3lYMk5Kv/ZPfoA2Go4MCX57x4HhNmmvqyhAcJFkGIXoNOAdKpVgbmJuEj3/yea4e5lFAw0V7bmsiSIgA0d0Uuc66VuWSxTpq+d95cMbP/fobnK1bEiWZjocUWRTO6Il2wfpusUUWokTg8JHwI+LcgZJxF4xNsT5NlzupLHgb24nOx52XTtBDdkCYENt2l/c70KOPz1Pek0pB01Tx9bosZNe9d1ezUMg4witVpEAL0Qu0is6jMDIGUVHyPZWxCxGIYKEzllT0epARiddJLMnIEkpZMVu38Z4REY2Qomf2xdO21uK9QyWxBSs6MNI5R+M9xnh84slkt6iVjixJ7zeZQFU1cRMkBltP3OVjoNuSgnoCUV+u9aPjH3R8JIKA94718pzGtczmS04ezMA70lxRty3jQYrzhrpy6CSmhXVT430gTXOEkqxXyyjiGSQWOF2vuH8842h/D+lr8IJXfuPXkccPuHZpQLs4ZTzJ8H6I0AWXnnkeGwzvvvFNrlw6Y/+J57DzObZpGKiUMBzRVDWubePiEiJaTTtPs2pIdEY+GBAImKrGWo/zgvF0j8F4ymIxQ6UZMk3jhF7TIBKByDPW68BbL79KvbrN+WyGdTXjzNKcL2hbgycg2k6rXkhSJE56vIrc8tOlQY4v8dlPPsHedIDvEGohA8bEKTiBiq7FSsRx4FRTrZasG4OXgTffO+Ufffld5qsanego66b1zgBdQPouiAgQUnVpbxcgVCSrqK4Gj//f6eqLrXhpvzOaOB9LpzS+Eez0Xf0skQgXIqBGnMyjQ/tFR/6xxkLHivBhh2q7s+tFXCGSzryzkR2Z6Y08WgBcn3UIQbIRPoluQJFqzabtt+vqIwmkEgQekaWsymhQC/3jJVJJnG86CbHoLbA3HjPNc1wIXRbSdQNC9FuQAlZlVH2O57SVF5Mq0p83ugsuslW3PAJBnucYE52stNakafrPQCbgPZVpWdYldWMZ7E2o1mvWVQsuYKwh0wIbPKY0ceLKg0BiW4eXEUOwNpJHlo3heN4wnEw5OBizmp/SNhVDd8bhwZBpoUiEo5mfMbo8xmQF6fSIk3fe4s7Zbf7hP/oy/8ofTjl67BZlW1GZGuEDpo2tv7ZuaNsq6vZZj0pShkUR2111g9QZe8Mp49EIpeD0+JjQNkgRMHVDEFAMByTZmNmy5fY773F28gZtvcLTMMwd7bqmbVu8D+g8AevJQoLUgiA8tlWIBOZry+jSTT790mNoEXUNTejMM4yLUuEyBtpMSlQiSBLNer6gbA2udbz67kN+8eV3WJUteZYymQ4o0jTO9/seJPOxWxGItFYNHRTRLU7RkVaiEi84kALhQ3Qwppcc23zr0YU4YnYbbT7ZLzLRDRUpgQoRF/CdKYh1UREqZlNx61O9p0NX/25qY4hz+c7ghEYFT56I6JUo4uh1TN27ll4IW8o/YkMBjkJKkUXY8xGiFZuIeIQWFEVKs6q21N6ul98rGNFRz/fynFS4GDBVBAV1HvkXOI9SivG1A7yQNMZTllX0QziHQaa7a7Gt/ftsqQ9kpiNThRBp1nK3LPmA46MRBIhpjHYebEOzblmWNUEp0rxgXi6ZdnpuSZZgpcIIiTUO0QEv1gqEyEBplpVhPMg5TCy6OmGgakaZ4PJ0SJJqjLPMV4GhGOIXc+qzJacPjzk5W7N37Sm+9w/8TlYqZ7+tmQyGnM/W2KbEBRNFKzsJZyU1QkWW4Go2j45F+ZjhcIjAc356TFNXGFvjXeS2J2nG/uFl9HiPt994l6/+4i9izRwVLIMipa0qluclxrUkSZfmtTGtFwpM62I5IQN3Tj2PP/0ULzx+KVJGXd/6U1Rl22luCAI28uEVJIlgvlzR2Mgy+9pbd/mFl99j3RryPOVob4jWMZ3va81A1LjTWnUindF4s+/BCwIiyA2mE0LUO9BC0Pp+eCnu4H1aq4RAIUB1+nkhts28jzdsLPe69Nt1JYDqVX5it0ELiQu99p7EWIcIis2UnehEU7t03IfAOE/Jkw7H8B4t4+N7Jp7oeu3xXPwm+1DE8qFXgpdSgNSxby+i0MpgALNlGd8/OBBqo8AcnwPjQUIiXcdkVEgCLhAl3Lur01qL8Q4tNSMhKTK9IUUdjLIei41K2Z0qsXW+W/hgvQMX8RvRBTLPRzwTIHjK5Yz7D09ZLNf4IGhbF3cJo7j6+C1mszX1as7Ea5JBipHgcIxGU1wwpFIxOz3HNYYrA8+hbsl1Q5ZLhlmOVBrjPavzitO1JE0Uz1+Og0Bnp3NEnnDj459lsrePcitO790nafa4cv0qk/0hzg4xpqFtWwIe61yU3naWqU5jB8G1mKpiMZthXIOzPd9AotKMbDBgvHeJ0d4lHty5x9d+9ZdYnd8mUY409VSLkqaKO2QqdSSISEjzBG+jF6HQGU1jOG4yXnzpWZ577JDgBK2NlmpCiJgRiY4WHHy05VJxl10uVjTG07aOL77yDr/82j1qYxnkCUfTMYMk7rq2ry27XVop2QlgeAI+8uddJDdFuTEZXY+k7Loekf0WNQhD9PAL2wUhPHQ9RmJK0bXkusWvu9+LEEdtg+gEQkRXCviACwHdAY15mmJsvWmbhW5nEd3jARIJe6MMQsAS++jOG7qmRFeadE/uWpJCSnbFUWXHFJSyUyCSYcPXz7RCdUKwvUuSc3bTNcjzhP1RgSKa2kQh1gg2bkk/kREoQwwgnpj19FyAtA+YiH7cKGonRgQV/j/tvVmwZVl61/f71rD3PsO9N28OlTV0dfXcLXWr1RpabpCQBEKAhAMBfsEPhggTxg8QNg77geGFFx7sMDjsCAcOERAGhEwIgyxCFqARCU3d9DxVV3XNVVlVOd3p3HPO3ntNfvjWPplqugrR0J0Z7lwVGXXz5h323ffstb7v//0HpE4mmuoKrZhLKnBydPRVH7/7YhMYx8Bzz78MYhjGoGy8kGjbhs0YWb3yGt/+Xd9Kcu8gWE9JWiFYibDt+dQnv8iN29dYupGLLTx6uePS3NLQEYxhyI6T05EbR1tul0MefuQRLi9GVuvM8eqUdTjgw3/oP2Xv4DJHt18kDhFrYBMiL718nUeuXKLpVMgzn7U0viHnxDD25JAI/Tnnw5rT0xOMn3Hh8AIpx3oyGeZdRzdbQrsg5sK1p5/iX//sP+b89CbzRUPjIpuVmnT4zjIOI13bUZIn5sx6u8Vi2euWnGwjt3rPD33fd7E36yBnxqQsNOuEGJSEY52DXDeA1uDJnByf02dtSX77iy/z9CnMDi8jq2MuHSzonG4asWj7IKIn7JRDIOqfRSaqAWcBmU4bSuXb1yeqVERalGdRea1MTBfvXMUMFMzTqiXXh2dqESqHpPb1U9shRlSUnTJSEtec5ebR6e/uxXa6+rq9jv+da7uF47Ov+dNfdRZyrhVVrhR2bbUQ9T9Q4Rf19K8g5WTx9AbrvtgElFVZGPqROCSsha7x7C1mFJtBLM9+/hkee/xtfOTH/iTbnEmp4MXz1Ge/yMPvzOTNEQet4y2P7LHvBZ9XNBbGYeToeM3LJwazeIwnLl9k0Xk2QQjREqJj/9JjGOuByKXLD9O6hpRU7puLcLztsSEiORDjSE6BEgZyDIReE4UVvEIBzLHgW8dysc9svgeuIRvPtRee4+lP/BavPPMUY3/OYmYwectmnSnFYr2ekDPfaepyHgljomsa5vOOG7e3xPaA7/3IO1h0llySuhDngjNCDBVDcL7yATQuixQ5WqkRyDBGfuVzL3MrzXnXux/GGMvpjZtsTm9DCWpyWR9gZ6eEHWX1TUabIBUctVh7d2BHPemLSqwNynCztUe3xpB3/BXFDVLK9fsYCramCNXPRVODCzpC3DH/UlKWZNZy/Y8+dpFiHK8enXM+BD1RJ/5+nTR4Z3n86iVM0tgwbxQXKEVVj+pSpBtPzplSRTsGLf2lYgSKB2RSzCSMSqPrjx5i4ub5lrP+jufBNCosJfPIlYssG4sh460yVafqjcrdKAUigGjUmt7OpF2FoCzNQrUdr0W+CNlIlXRPjlB6jycOCfc7JiCgGXhJmM1aZlY16sOwxVNwszmGzFve9R4uHFzh0f0l/RB49pnnCOtjFu6chx+5zOOXO4wk8rhmjJbVZstrtzY8fyuxXF5g3yXi+RGn5xknlkWeM9+/yOEjD2OsKruM0/ixxnv8bI4xBWc8uQT67Tm+LFmfrRhCJsaC6RYsriyBjDeO5WIPfEsKI5vVmlu3T9iuTjl6+QVefv5pTs+OMCaxXCYkBYaxIulSaJtGi8Qxse57inEslx0CvPT6hnb/Eb7vu96Ft0YxhhQpRYU3MYyUpKKjkpP2/9aQQs/ZaqAYw2o78KufvcYJc64+cgWDgm4Hly9TSmJ7dkQURf9dkRrfMfl52t9BRPHi6ziPHZCWq+JTvfJUwehq3yu1n89VxJMokDXzkCKVoq0PekZJYNqGOPXQm6YD6ORgcvhJVO09mYvLGUPKxJQ16VntgPBWONxfYHOoc3Oz652Vaacb2879p+Q6inS6ERR9ECcTT8WDNHthmkiKERpnOVzOiGVLLFrh1H2KxjfMZi22RJp6alPl0WKkkopqSkOpDMj6NiKVOlyq6Whtm0THm6UUvLHKqEyJVPLOy1FB0URJ9/kmkFJm3s1o5zPIibA9o3GWg8PLhBgoY8A44dlPfZQ89DTzPYy1HJ3d4uT1Z8nxlCeuzpktlmxObrPZDKxPtrxyc8UmevYO9+kaQxh7clJOweLiRbrZkqZbIM7xynPPIDkwm7UM6w3OWIy39JtV7RUtxuoL//Chh9m/eBHjNGbs7HzFydEtWt9xPlszjiPnpytOb73OZrPi+PornN26qdiFLzR+IPSJMRQl/VSQawyR9aBpwG3VuscEz94MvONt7+QD731EH8TaO+eiZXWOI+qm1GBtIcdI4wxDv2YzaNzW6WrFL33mNbbNkocvPwxSzTUMNE3D/uFFtqsTbJlEP3bHUadUD0BTBS9yl2uvnU4zfaCNqZuFCN5asilIteQuFHztz00lFO0kQEU3ilKKTh/QlsRVG4Bc8wl0TKez86nCkIIStlzi4YOObcw7mrH3npn3tFYo1akZCqW2JsbUXnx6f51wSB0TAhSmXIRcZ//q1CNk/XmmjatowvZjF/dIIpTKgSglM2sapOTqvpQq+IhWTHX0ODkFWVFiVU6ljidlV9VM/6k82iL1Z3Wi9zfmTI4KvGY00zDndDeH6N9a98UmICLE0GPXA94JXedw1mPyqFZMrdNRUAsvPf0pbOMVDU2Bkxu3uLi/5MaNY1w+5pWbt1itApILbr7HpcOGpm1ovdfSs52B8+QC2/MzCD1n14STW0ekONA5Q8kBY532sM5gxSHG430DRE5uvEy32EPEMg6DymVzIoyJcTvgLPiZJ42BUAZOj66TQqT10EpQiSgZ572+gEphGEO9Po/3ljSOnK4it4aGD3zgvbzrLQ9peZdinYkXZTDW1si4RnvyZPA+M/TnbIZAwnD7ZMUvf/Zl7MFV3nL1ISRpiV3yNBoTZosFYj0mBMUAxOzYZlRsbFLvpQJOqLLh+kssoqlCSiIA0WlCqqIlLfPZmXS62vCnnNUToJbUu7SdnOsplu86qZVpKaInMdbgjSGFiFj1evAuMs9JK4kayCklIKnsvrYxtjoKT/iFovmy248mGvRE073L+LM+TPog1solV12CEgvwQIMKqXLR3t2lMBUziLDjCMiujSo7b0QK+jCjdOhpN1YvwarNcGpkY7wjVibo1JZZa7XbyncqBvkPoQ2LyOPA3weu6uXx46WU/1VE/hrwXwE364f+lVLKz9XP+cvAn0W30v+mlPIv3+x7WAP7ixZTnWku7O/jWse42SIx0h0u2PMd7bwjjgO5CBKFcewpVvjcc6/S+ob9i0va/UOaZsusU6GO8YZZM8N3LW07U5lyDKRhQ6zASnj9VUpjcCZwdnLGOI7M5wu8bxhj1Ihz58iAbxxN0+KNg9YTw4AtlrEfoFj83DJfHDC/+BAvPfkFTo9v4gT29lsKA2Gj6UAxG0JJemKPiRIzi0VLLpn1WU8fMjfTnB/8PR/g8v6ejqfCUMdjBt8oiBpjxEjBeYOkgPeFzXrNapsoxXF6fMa/+OTLXHj0LVy5dFkNTktm2/fKNPOWtmnot1sefvStnN56jTisoVSf/aJz7pQUd9ChgJbyxghJaqWuc67a1+rDEEL8HQw65+ydSC6pJBigammhUn8plSks1VhmMtUQSzHKA3CNZTLXsN7XdqRgRRFyirIEqQ9bJiO5uh+XomO0IohVD8UiRaf5dSRaCvgi1QS0KiALuqGVyUOQOy3ExBCk7nb11Db1BV4MuOqanGtbUfdDUqz3xKAtRNHEJzGWpvGQko4oUbWhgrKFkrIKr/THVTdoZxHnKKG6NVbewX8oMBiB/76U8kkR2QM+ISK/UP/tfyml/M93f7CIfCvwp4D3A48Cvygi7ykq2v6qK1dvuGyNhn2mTOkV5U7Wsl1tkdnkwKaClPPtmjiOLBdz3vOOhY7r4qjZfM5BMjSNpWnnkA3jAKvzUxqvApx2sSCXwnJvSbdYUtLI6dFtTnPBLhb45QF5jKoWLJlUgRbEqfKNTJO1hOtjxBrH8nCJ8S1HN4+4deMWJ8e3sI3hcD5HbOL8eFv76waXM5ms8ejG4meOmAqbMHD9ZODC1Uf54W97D3vzTl+CJWLEqjW5QauJEHGi5B9TXX3Oztb0/Yi1hpdu3ORff+Emi0ffwv6FQ2RKRQasdbhdFhiszlY8/MhjlJK4ee05vBWNx65zf2tlx4ITsWCMbgC1ty/1hBLJGKZwVSHFXLnx00k0nWq2DsmU2SYA1urpbWRnXe6c2z1sxgixTF7+unekSu5RHwMdoBtj1OSU6VSHEvPuZN8l9VqHrRORiT5MmXAGdq2XWH241bSjugCjwFwISbkYBS31jSHXzcfW3j+V2qFPJArR+2Gk6jhkqgf0h0ox39n4Kv0XUQWkiEqtS+UzTJRodbjKO8IQzpDHhHUO5ybr+K9xEyilvAa8Vt9eiciTwGNv8ik/BvyjUsoAPC8izwDfA/zWG32CMQbTOFLfK2BTFAiKORNy5tKFJd6pm4vJEIYBnwp7F5T8c+v4XG+MWEBZcY1vcW1LFuHsfE0omW4x58KFfTrf0M0algcHWGNJYaQ/33L1ocvs7R2QxBBzpN+ODOeGpvPKUPMGYxvl4ld5LElom4blUhWGp8ennNx+DRFYNMLeXBjHkyqUSQzDSN9HXGNwxtN1LWEYiGFgmww3jxNXn3g33/Xtb8dO+38ZgHpq5UQcgvaBxuCdxTkBAuerdS1xLc++fIN/9eR1Lr/13VzYW+K8VRVbzqSYmDXtTmzTb7aEELHOsNjb49h6Sh534STO6akn9SGqcyeYrK7rST8h+3qaqkW4SUoppkzOwpUsZEW9BynVN6CW3xP4hj5QQjXVTImcVb5MNS4pqX6aCNPgrFAfXNHPj9XmXJ895SuYqh601lY6b6ySY4OY2l8XnR5gDa5xavy6Y/9lBQWnGVypXUUuu3Jf6gZQctL/Tx9DqT4BINQwVqicEMOUN+Erk5BpjFomGfadaiaXjHFmN11wjSZF5aIbj3GTTqK82XDg3w8TEJG3Ad8BfBT4XuAviMifBj6OVgvH6Abx23d92iu8+aZRXxTgGjWSzCKYInTOY9uW5aKj5Ey/7enmc2Rh2LMN43Zku+5ZzDswgWC81kUYYgVS+tWA7xou7y9wxrI3mzHfW+KbhklfLiVjmzkYy/7eIevzFelkoGsbLLCceYZcME3H3v4linXcePl5hk3PlcfewcHVxzl6+Sluvfwsm/UKawqXlurXt10HTEmEnAhBfxld6xBvsSkzbEdyTvQjvL6GD37oQ7z7iYuYqH56kUxMGhSaUtCRWcpVRmtoG0tJkbOzDdtapj/54mv82lNHPPLEuznY31e78JIpYyCGAAL78xZvLGenpxydnmBaz2a75flnn4Ex7NSAeshU40yU/JKKglF2ItQgYCySY50mGMSKegtIjSKrD/805ks5QS47equOIMvuoRCj6sBSUs0A8LUSLGqhJnestqeWBfJO3ix3PYDYSu3dVSGCdTrOKDlX+3ZF6I0Y5TUYwbqqS4hp96DHUlscpG5C04i0CnmMbkR3j/5klxOg+yZFJlqPtld1/CcoiDdZvutJr5uc1FxHdYamXgPKE6gjzFwt26VUwNFqbkOKkRTf2HL8jdGCr1gisgT+CfAXSylnwN8C3gl8CK0U/sbv9mvVr/fnROTjIvLx7RhwIizmc5x1zOcLZvtLlnsLDvZbMpltH8lZe/J515Ki4fRky3YzksaMNzqz7gOEbEglsT5fYa2wmHVIpsZogeSExAg50/c92+2Ab2Ys9g8UsbWe2WLBcn9Jt2jJudC5htY0OGPIY2AcC36xxPiGs1df4fjGNfrVMY3N7HcgcSAOPaVkdUwSoZ21zOYt3bxBclb2YQycjyO3+5bv/vC388F3PowraoGVKZUkk9RgJap9tXGGpvU0rVJez9ZrhgxShCefvcYvPXmLR554G4eH+5QS6+go0282SCm0XseIJ2en3Do+AXHsHRzw6ivXuH3zpp5kRstfAzpeyoX6TOvftdauoF19RQr1QboLcS93tO13G2bmWPUIldEnRqpUIe+QcCsFN6HgVvRhFrDe1tNWcQp16602ZhVld1ZP2Ym7ZI3QeEfb6B9bAVHnnVaYxqjNedEph/WOUk1kY4jEnBRDQqqpin5/0IdQrcpre1Uf5DKp/4puGqaOAi2TrkFbk8mvMFdOsmZKauXrDDW2TKXOpoKTxWib4kwFCLUD0GsSvc+2JhTlnO/8nr7K+l1VAiLi0Q3gH5ZS/qn+fsv1u/79bwM/W/96DXj8rk9/S33f71illB8Hfhzg6sVlWRxe2Jls+qbBW2E+bxljZtE6ZvPCbDbH5IKbd0jjMasVaQzElNhsBk7Pe0YRQsi0RpjPPNbDGAe6dsasU8FIjIGSI9k4xSGWezqHHXvy+hwHxLYhjlmDRown1Xn4+uw2p7dv0ebE+VHk+tkR6+MbpFiYzwpdmwlDZDVq2m9OgW7W4Y0lVtuomCIlw1jgZDWybQ75oT/4HRzO54yVa25NRyKqxC3eebHhRM1AW0sJPSfHZ7rp5cTHn3yJ33z+nHe8/1uZGdVaNG3LrPEY6+iHAYA49Ny6fYoVwTcNXduSxpEXn3mWq4cLGq8vrlS3ImM8MSXcZHs9lfwy0VmnimoC8/TFbUot5ck46/VnmJDuYjV6SoAsZEFpufVMd2byJrCkkmuUnKLlKSacd+oZaI36C0a1K7HW4r2pzEM9L3NO9bTUqsU7pzP3FNUQRWorUWt2Zx3WWlKqjkF1ShRrlL3Jd0aJuVSZbjHkEOvmqb06tddXNyZRNyYxaqKbFeMxIphcq6ypekD3WOMcUrJOEqhOTqkChPbOuFa7AyHHijQarXxKUozEUl2b32D9bqYDAvwd4MlSyt+86/2PVLwA4E8An69v/zPgJ0Xkb6LA4LuBj73Z97DWcjBf1qSZoGyqpsP6hrm3jKEnh5HcD+xfepiL73wvz3/+0+xfWLLdBo5ubxmShdmcNguLuYESSamw6bc4v2DbR6wdkX5ktmhZLBZYY/HOAqlalA+cnW4pGA4vXcA2gaEXYo5sNz3bzS2Wyz0a33Lr6DaUnr5PxBQ5WDi82RJHiAHmXaslo4EcMpuqey9GkfQ+Rl4/K1y6+gR/+CMfZGalGo1qeehMwmSIOSJZnWmN1ZPLNY40bjk/3ZKzJQwDH3vyRT7x2sD7v+2DzLqGECLOKF6RSyZs1+SQGJJaehlxRBG1cRtHXnj+RWaNoWkdxtTytbAbLenhnImTtDdnyFJp9Wk3Vsu1n/eimvkoFQcomoa8iwYz7MhHVC6AegzW17G1O8NMb1zddDSoxFuLM6qpn7j5UolF2o5UDKKCapqizG4+l+5qA9htNnVzQh2KUkoKBmdlTuaYdc+qYGgdsmL1R9Oph4FJRKVfS+v86XOQvLs/OgrQ+1eqRwEiOwcmRJCcSFlPfvULLBhLnRDpwRCTYhyquHRaKWS1d8NUCbazb1ry/24qge8F/gvgcyLy6fq+vwL85yLyIX2p8ALwXwOUUr4gIj8FfBGdLPz5N5sMQNVeW4BC01qsddimpZvNiOPAOA7k2i70255rT32J8/MNxjY085a90nDghNZbYh/IuXB8usbZwqzraFpHM2so1rC3t491MISBnNT7T0T/TlHU2nczzs7PWJ2cIsUQ+hoVbYV+WHN6+1jttLeae3jpoMGZwnajp/SiE2JRznssBlLCuJoiExR9vnYC7/rgB/jQu56g8YacKjSdNQcwFzXvKBSM05MZq8KnGHrOz87JWXv9X//Mc3zuZuBbPvhBrly+wthvETbklNlue+2/RQg545qGmWtw3QxvDEc3b7Bar9jba3ns8CGVHsfEGEJNHNZfnTNOy3VjGWJi1kxjrqnXLpq2I4K1niIB2zTYXIhByTExxp3XXQFKKjtga2LmqW3RFGNeZ4UTIFmZepMLkZpsKpCHVd5DmUA4I1q55MopqFXErjuv3AVrtMTWB1PqEVyR+lIDWOt0QibadMUckqgbNaWo81RtYxS71D5+wk90tJqVzlxfZ9ZNasayy3vMGSVXkassutGNylStdBFM0ZFmKgVrIiKa2iRGcYA4cUdqYaDX/saP+u9mOvDrTHOd37l+7k0+568Df/3f9bWnZUTY6xw5a+SybTypRMbzc0JKzGZ7OKvEmDElGM9ZLhvtt0NA5habBd92xKYlpYj1lq6xOioSh3UWkxP9NrA6O2G+17K/v0/OiXFIJCwpjbSN5dbN16sLr3B8dorFcPXhQ5rWcnp8xpgDNgwsWseyg/V6yzYELHo9RQyhovTtvEGcpfGe7abnpWtHnJQl3/8DH+Ltj1xSOmop2vdXM9AcIqFm8Jn62vStxVlhszlnuxkZM6zWG37lk8/y3Mrw3g+8n73FnM1mRb/e6mipGqYKTiO/tr0apgpYidy+fUzI+n0evbjkvW+dMwyRsY9sxsAYC+OYGcZEPwQigmtnDDETU9FefHK0qf2yCBVMLAzjwBiDPjyAiN2h1MonsvWU1p8zU41G6slVuOMyNLUR04Ouyr0adjL1vqVo5p8O8hQVn5h4U4jJRD4qVIaignI5F51iMLETJ8BNH2SpoGGa6MgiOH2tq7uTTNh/UppuqTLfuhSfFGwdP05MRT0ATZVPVy7CNEGoLYCSiFQwlWsVoRVPbXdSUvJTThRSvRb0DgrYMlm3ffV1XzAGUy68duOM1qo4o/UNs0uPYBuHG85pnMN4gy22gmOJmCAUQUrCG0M7b7HW0YogpaF0TXXiFQVQfMHYjtU2kp1j6DNn+Uy/Tkgs9zqcCOena3CGtpthCnQzT7foWHZLrr92jfPjW0hOzGeGzvWsV4H1NuCdI1ntRZ0x6mMnhtnMMWtaxhD50mtnjO1F/tgPfBeXDhfK85aCiXqCOBH1Kyg6x88VQfedwztR34L1loTh7GzFL338WZ7dWD784e/k8GCPZjZjdbqqLDS1+gox0nVzxtCDsVjnCUPP+TDqSe2cph6VyCEDrim4hYN2TrENm6GoBfeQCLHQNp7GWopkSpW5TqfnxMnPRQ0zSskY5ytIOP229Q1nnVqUWS3rc7qziezMfeq9LCWTSkXojZbzqZQqwZ1aFsFg70LuK4VHtN0UYxhj3XArqFeq+WdGK6qYp2qg9vBGakWm2n6qN8I0gTBWiLHmGFYOASnfNSplhynoxlt/HgMiZuf3kHIkxlSxu0qQkqoYnCoP/VDlbphqzpKrxXkVbYFQkiiZqE5Ncq725m/y/N0Xm0ABjvsA58f052fsL/a4Ei3N3pJCT9M2xCFQkhJRinP0Y48xliyFVBIpRAzav0nJbIYBvCUbw7yd0cwM4jzHJ9fxJhLGge22kF3HwcEFZssFq5PbYITLFw45OLxIQl1awuaMm9de5uzoFuTIhbmhjFvON5liLK4TnLH41tE2FoMGnQgNw5hZrzY889IRB48+we/7nvcwb2ekpGUcMVPF9VU1ljFOA1RMEXzX0DbC9nzNpo8ULP1mw//z609xXBZ8z4e+hUcuXSJS2K42jNuAcV3ljic61BF3NWQOH7rKsmnZnJ8x3LpFCmOdVwvDMHK2SggJGwPzWcdiseBgPufC3GPFg/GMIeBygzOinhlkLePFQUkVkNOSv/GeGDOuouEyKfvQE90YocSkvBC4i96q40Vbg2RyzrvwF8m5jhBrdVFlyKnkyheovXN9Lej3Um7EFIZaikaomVqBxJQq2al6ATjLRACSXLCiwKukgveukpkyUpTMpEKiUkFLbZ2Kk9quFbyzdf5fNxDRyY+1Vk/3rM5A5S4vQKU3K7tT9PnGOEsjpmoC9J4p0alWC5WuveNyTFrMndLzq6/7YhOIIXHrhZc432xo5i2rPHIUX+eJx65ycHHBeZ+xtgXvGPtT/BgwRRj7rfZOY+TsbGBvb4E0AhYWewuaZkYuhf29js3Zis3pMZ0rrMcEpsHIyEFnsWHD9njLomtoLx7StC22Ck9WJwMvv3SNfjimbTJWCjJu2GxGsunwRhTHKIUcA/1kPSMW4xznZytePhp56G3v5Pd9+D1Yq22MymyTqtFyIiUNnqQ+XDYJTddgTKZfbVj3kSyWmydH/OxvPMV5e4nv+vYPcNC2DFFnd+I8iz09Ybebnlwsi72LzJdLHlnM2Xdw+/rrWjZWVVzoB31gmjl7ly7jLeRxQxy3nG0H2qgKNNdoyEbCI8uGNAaGIDTW0nqDlVTReKPkH2Nw1uNz2GUNTPJaAOd1nJZypb0CztgdgcfW0ZeetCqUskVHY1n0wZ3GXrmoYk/NTsqu309M4pxCVIodVsAYtyMwjVF9B8tuBAc5Rkp9mPxuBCcUoxuSN16nJ6XU1GzBiQbSZqvjuZgS3jsaqjiotgY5JqyrgSKV7zD9vMZ5bWuYLNJ0o5oAVGUWJnVDqmNfnWtUs9aiLRp1gyQLyenHlniftwPjMNAPA13XsBnUt/+tBzPm4ynzskAeeoSYlRV28/ptDh06b2/Uq370hdQkTnOhW4889NAB8/09QNhue/XrL5ksHUYysw59cRmz698We0tmixm2bdUkdL3h+u1bnN2+SR7P2W8sTY6cnm/YjJkiDif1lBqNqtKsrfHUlpQLJ6s1n31+xR/4fd/Du972CF4MJqstuvb8jlSKAmYYcFN/m2lnLaZkNquezVgwzrE6O+X//tUvcHPw/MB3vIelaxC/oE+RC5eusNhfcHL7NmM/MNtrMAgXDi5w6dJFjk9P+dLnn2LYbHAz9chPKSnwVwqbIXL9bKCxjsZ2ZDpmy4Y+DfhWKBacqyy/HLh184w+ZForPHx5n4MLizoP5y5uQC3JS4F6r3fdarVbm3r9qUqwQDYGco0sp3LiK0UWpzCelQJRRTYJ9HTMKoM2hWrvPbFPtQppbLUwz2WX8TctK6bm/enXyQjWO7zotaaS7wirmGbx6j048RtAdqM7x12bXlGzD20/TMUGlMiTrU41lEMhOmYsyk9ANCbOGLO73gkfUCzpjsRaudO6GVYF9Q5TytUB6o3WfbEJdK3l3e+8zLoP3HzthIcuNLi05vh0JBTHYbNg1jRsQ+SwhVAyYTsw72Z03tBYcJ2Dkpl3hqbOxa13+KYlZmj3LjP0gVsvPanpuHlERMdQ0jZgDMMQKGNkGEbCZsPRrRt4GzFli03CJoxY37DXGMaUMVlf3G3bgLFV8abhm7dPt1xfOf7Yj34/jz9yEUE951MRcow40dDOMUaMcepvb1SZZ10DRWnAY1DCySuv3uSnfuXzrOweH/rQe9m/eBlrLVcuXyElOLx0hZQj19cv0TSO1dmGppsThsCrr77GGAPGGdbjFpcs6816N9YrKSFeHZ5iGemNISXDyflI6Aedrng94ZwTUr/i5LTHt5ZmvyMV5ainGDFlkueWStIxeOurO5A+oKD8eC27YfLby0WlsKUSlaQoCUdj6iu5JumDbzFEUx/YSl4qU+4AE7qv/363PVqpPX6uP7vzllL0AdxRcZmmHvVriiBYMAo6qr5ZMygwynTMRWoWYtk9rHfMVxU0tNZWt6SiJiAV07BVQp1zIkshp8rFqKhwgd8BVCqhSnGFkieuxcTqVExF283d3EZVsW+w7otNQERobMO6P+PRiw1hjPSp4aGLcw6veGblNiYYbE7Mu8LRCOttJpbIehB822IICEIUr/NrY7ChYFGeeDy9xWZ1qrumbWjnvmYO2nq6AKWwPTnlxqvXiHGNby1eBENkOxpyMdVJFxazGaYUnEkqCXYNsQZi3D7ZcHtY8gd/6Nu4uJyxc4SrLDKMIsdhHHCuwRhLKQELNG1LCoHV+fkulPP5l17jH//qlzh3cz707e9l0S4I40A0hk2/JfSBg4MDhhAx1nLzxuucn/dcuXqV9RrWQ8+lw8OKgmdM4zR1aNTk2zEElsYTgkqwFbRy9CHWTcvQZ8FKIYxnSAh6yIutCD5Mp2CeSDQiOOfJOZBj0Bcppeo7UNGTKA+f+hBouVsfxpxonKsagDv0YiumxpGphXmqYJ4gSj6aCDklU6oG2uymAKJEDUpNl4LGWGXqiSHlWElPWt5HCsZXmfNO1afwYwxJLdOK/o/aMmBqCV/KHYsvfZUTc8Z6izVeK4L61CY01SglBRONKPaRxGByHb1CnXhMExPVBHhviSXdmXIITE4vEwVZpdz3OSYgCON2jYuJkKGZzXn7Ox9l2VgFgmLUSQCCnS0wQ8+eKzi2DNsR6DDtDONbxmpZlQeDhB7jPC4VcugxRljMZgCEcSSIgjc2C1YyR6++yurslEKk6wytA5ML0Xf41qg2Pmm0dhwHCtDHgHMD7XxOGhKffWbF4WOP88O//51cWCxIccTmagoZtRyMSQNMjLc4I/oxxuC7jjSObM7XpCA4J3z5hdf5iV/8PFssH/7Qu5j5hpD1BZPGgZs3brC3UFCzGPXTtxi8a7CuJcSB2Pc7xNs7x3a7rZ792lt754k5EqPDiar2xqhBGs5ZnNV5/aZXKbQQmXdtNRCFs7HQnGw4WLZMMLYUSwwj20F19N7WPrw+EsZV1R6T9FerACZHYYQxJxwGV5OKJnMNKdNGkfHWavVQmXHq0lPpu/WUNSJ1xFxz6nLGOt1QSgGpMnGxXs1ScyKXhEmVxuwM3itWEcbEmCIlajQdlSGo16PgIJP+wUoNaGEXAOKsR7J6DBQx6g6V1WyEQs0/rIrImLTaKdXZWn329Zpl4mYozVmpwVPFwA48DWFUo5f/EJ7AN2KVrOCXGMfli/s8+sgFDIYxaqtDFVE439HNFhwmWK9O2KxXOOMpY49vPV07I5SaETcmckh4vyQMAYkBMagRp0iVgBqMb9ms15xcf4VhdYY4Acl0xlDGQmodbdYXk100DKGQspajYQikYhgDnNw44eaZ5R0feB/f8/53QJ09W2fVByIEpcCmTBxD5axbtQJzlqb1hHHD+fmWWIRQEl/83Ev8g3/1eTap8ND+jBeefZFH3/ooBxevAKpPD+NA7OYcnayZ780ZRi2nm67DIJydnjPfn3NycptSIqVEtptN9SJ0OOeJKZJESCKQgs6VRZRbYCwihXHYsDlfIykxnzkaZzDOkZsZQ/YcrXr6OHDpwj4mw2YzsB2Cynqrh6BMnmDcaWMVkVPyi50YdEWvTVV/6tjM7sTWa4sV6TeVJ6+cgKo1qCO5mLSn1ulE0nSqyi3QlGGqIEqR9FInCrtgkzrmk1IgRqzYOj1oEHMnuETzEKSSidiRznR6qqNMKwZx2n7msSoSDaQYd5iFPgyFUNsVh/b/UnGIWAFg5A5egjV1462kI5lSkBXzappGsxx33IF/e90fm0ApYDyPv/UqFy7vY0pCxOtOKQlnOrrFgjEmzk83DJtTxmFETIedeWbLJWFIpD6SSVgndKao/U1eEfuREgLGewgjOUc1Z/Adx7duc3r9OvPW4eceG3rlxLctmYDJ4FqLaRwhjJAyXpS81XUtWztwdGvNa+eO3/t7vosnHrtcQSA9FWJMClR5pzPklPDe63y6mmw2XhiGDev1lpwFyZGPfvppfvo3v8wmC5cO9wk5cd5vufHa6yzme4xWHWWs9wxjT9tCjg5SxHuPDQlJG5bzOalEYoicr1acr87ptwNN21Eb8qpx0JFXEUMSq71yLoQQGceB9XpFykVJS86AMTTzJZ1rMHHLuj9l2DYcLlvWfc8nn36VbtGyP7NqqCmiD3IlrRiFQlX9ZqT6AljIqfrx66lvpdqHUdl2Rqsqb51uGqUGwcZUixDBTu3d9POlGjCadYKSsn6sKXpkusoHEDUooNTRXwxBNxQsGXVgFWEXvY6AITNZEpWsQmNbj+tSsQ5XmRul4g6l4hcGPQBSrnTinJX4o+IAfThSoRiNgNeRZSU/CYhxWukYIWap1580iSurlkLE4L2//0eExlre8/534STifKfz/zBgXYNpG4w4tn2qjMGgp4OzdN1MrbhyJOeI4Gg7j3FegZ46CrPeEYCctkjWNCMQbt2+zvnREQ6DKYkWoTSetpvhvJpDWGPJ44AJPZ3xROex3rFa95Rx4NbRyHG6wA/+4Lfx+MMHOmvWluwO68saYlLVoopC1HfPWTUJHbY9234gF8cwbvjNTz3HT//6lwjW89DhHt46tqXgvGez6Tm5dZMLzmvpmzNG9OTa9iO+aVivTyAGtpIZh8R63NI2MzbrjQJJRlWICuTpqRRKxouhOKvCE6Pz/hRGzk7PIAfaxrFoFcNoZwvmTYfENdv+nOs3z/mNJ68zc09yPgZO+sw79maKZteSOVVyC4AXBeWEQjb1exYtva3YHTPQVhwjwa4qcTtOj4JwKepDYcWqI9FkKyaKoGdTcY5pAlHty2INTHEUtUsTIUmugJ1gW6+vxQzemMoH1EqkkGvbIRWXK7swFS1dwWTNYgxoRSDZYEomlwgTKF0NTchT5qL273bq7SuACXXSgVZUxui9o2IlQsVUJpLWTi9h77gSv8G6LzYB7z2NgT4mJBZMCuQSWXatsvjOzyhFefniDWn0tA66WUvGULbnYDKnmxX7Y0t3YUG2LeMwkLY92WucuDVgncdieOmV1zg92+IkMe8ybecZg6iMeabATRhH8hixrSrI1KgUJGiS8me/fBOz9wj/2Y99WJVa1fUF7thCe+cI46i5cL4KYUrGO493wna9YX2+Rbxh3K75lX/zFD/z0eco1nH5YL5jxXnrsMYQQuDo5JQLVx8FhFgDK3MaMVYnHLeOjvFWWGKr70fVldeTfta1GCukWJSmK5bJT7DkiPX6vXIsnJ8cU3LAO8ts3tIYQ9t2zJcLtVwfBq7fOuWXP/sq1056MIZ5a+mM0ZFoLWVDLrXc1t+5VIPSRCYnFePEFJX1V5taW4ragRvLZILkai8cS6KYO1wAMYJFMZFSe+McNSQ1o9yAtvEQo7YF1hFjpPHqLhRTJI3qIyCNxxbBlMI4xmqeUpOQjFRps8atqnFJUlahVc+DlGLlBWjIiXEWjPIPKEoEovIPJKlx6i5V2GjrAPoziNU2RScP1VRk0lVQx5BFR5xFyg6kJGurlDE7NeQbrftiE9Co58Ssm7E6OSYOgabxOCy+y7sI8DFsd/l6kgtx2ILvEOeYNZV/nSJnZ7cppaHveySOuLnHNC04z/rohPXJGZvNFiGyXHRYa9kOwuJgzmzW4ayjH/ram6ImHq6QjKV4w/lm5FNP3ea9H/hWvvvb3qFU0ixkSaroqibx1qp8OBfwvtGduxTabgYktps1/RAw3iDjyM/9xuf4l598EVzLlYv7eOeIIRHioJyCXM1JjTCOAxhDP0SwDXEMLJO+SA4vXqLETIwJUCBzNpsR4z5hDEhJGNOQ80im0DSePGRwHieGXGDYRM43G5I1NHjm84bGWJquZbm3h8sQwprtZs0Xnj/i+jrUXhRyiKS2JaSkoJZVRF/JQPV3biwha6hIiEkj1HKhGH3x20pNVvltBQPR6Yp1BpOro3E9wanjwVSdg0pUx2SsOiPJxPX3loIlj2OVRFcGohhwjpIijBoOqv6JmnAtRU9WKWApdSSaqT6ilIKmVBvlikg1SVVDEKmsaoGkpCgVP+mQZVL6FJScpPyGRKq6gYkUZSbEr0yGJYUxRRrnVWMyRSDUsWJMiVwipnIR3mjdF5uAGGi8sDpfEcOodl5W6MeeMKrff87qsuu7GVkM0YArYEvAt57SD8TtllR0V85mZNsPeBFIDXMxrG6dcnJ8hJHC3rLB2AVeMtl2LGcdzmt5OYZQy7tCyiM2J5KzGOu4fuOcp1/t+d7v/17e+8TDlbddxRz19J/ENDGpZLXxfkdlbRdzTE6s1z3DqIyx1ck5/+RXPsOvfelVvG94+Oohs0bL7t4FtttEihGPoZu1DH3PMGzpFnNCUKfZzdCzt7fPdtsrVmCKujJHQwlbTk9OaJsG5x3DemB/3xNGS8HQOI/rOoxvIEZA2G4GxiFAjnQzdUC2vmG+uIAzljBu6ddbPvfM63zpxkbtrKzsEGwrgjiHd47WVlecnJE8gYNJQ0Sj5ieAMuSs3PH8SzFikV0Zr4h7DTApRU/imjlgpEZ+IdoaFuXp+66tjr+lVjtlN1lI6AZFUf5CEWGi1BQjO/bh5MhslGNNzpqLMEYNfiFXi3TRCYBYWyPoZGfyacWoQMqpcjGTNOlJlP/grEGaOjaNmVRzFyaPRFvHrxPb0FtLpuAnE1GpEfG56i+qLXzjXXV4vs+BQbWZ0uhrLwa7c1SF7B2l8eqlbh22bSqJxDGGkTxs2azPUTm10ifbZsa8m9EslCkV+y03XrlOGEZ1oCmZ1jaMJTMgzBpDyAO5Vx831cgrCEUUiteE3mdfPuJomPH7f/h7ecdbrhDGXA0nYbJ7nhJuU0qqkW/8TjratpYQB9abwBgjgnB6dspP/Pwn+NiXb9DNZzz20CW6Th2MVGKrZJ4xRJy39P3AZrtRirMRusM9tv0WZ7XsM2qPsLP/ciLsH14kpsym70kxM8ZEPwzEGGi7lpQyi8WSMWxpjdCv12yHDaRE54WusVjn2Du4QNt4chgYtuc89dINPvvymWIwISKi/gxFCuIN88WMzlty0OojpYSTyTZM8wynHACl8ZrqpqRcA980uyBX3SS0Z9YHRB9eMXdGaiWp285UAXjnsHXkllIhlazxZylhjLIBnTHEOKifY040Xg1kTKMOxsN5r1W6URJaPwx1o48KzjmLydMoUTcAyVkFVFkpwVJfc4LiOga1KRdTcDV4hahhJ9Y5stwhMxUjuwlJAayzO+m1ZAWWxxBUOzFtWtURyhirG48otvVG677YBHJOnJ+cVXKJ9jWp32CtB6+nlZ7LhpQtxqlGX+vsBucMMWba2ZxEhhwIMeG7joLn7PYpWar8NCaWy5ZYpbbOWQraRuj4SE987zTQSaymGH/5xWO2/iH+8A99G5cuLmtcl85pJauI6c6opv7CrabCWGvpmoaSBrbrDSEJpUSOT1f81C99ht966gbtvOXRq5eYN467o6ZFwHrDXjunhMjZ+TnFWvqQGXOgmze0tsF5JftcODzg7KwgJWKNJ6aAbT0nN492VtViVBATY6Et0M5mWO9IMbEeek43W3JKzLwwXyg+stw7YDZrYRwgBV6/ecynXjjiPGU6bxFjsc5OY34ODy+wmLXVwamQ68htZypSpbalgLcNYoSQpjBSHSuWnCqSr8i3lDrqoyBZJwepMgi19NbDQxF9qe1JqScuVKUypX6PnHRjstQDB6PWYrUlyRndnOohmoJaqtdiQiueyiEQKTjvdIOqZitBNFjHGbVIa73dTWJcJT3Fqp0wzqkMuujfpZrCGivVQajKh5GpO6hpUxWFrrFupoKYu2opK9A6maZ8tXVfbALT7q7KQIPbbhGxzA4OGONI186hSRhnmO9fZEyR7dkpy4MDoqjnXMp6AzqxbIOQQub0+m0uXX0U5zxWMr4EEmoZbp3XB7NkSorkFCqIBSWrmMNYx+npKc+9Gjh4yzv50f/kfVjjoVhiGuvgJ6sjEKo2K1Vd5r1HKjDYeENKG1Zna0K1iXzt2m1+4hc+xWdfPKGdNbz10at03mp6rxE9kZJqw5eu5fjklOOzU4x1dL5hb39/pya7sDfD+4ZhHDg9PiZTOF+d0/oWY2Bv37HtBy5fvsx8PmcYevphxHuLty2HFy4QtxsyllU/kmKhNXCw12IElst9DuZLyhgYt2tO1+d84pkbnCrOhbGauxirN8HDh3s8fuWAEiNJUBp0ztrSVYGVZOXij2UqyQtt1+xEO3EcoRgaqwEtsegozjkNoilFqnAoEYKShXxjsM5hUVAwFYixkJ0i6baxlWlTSETEZTyQY7UGzfqgN60mWJci2Ebp6HHUFs87rz13VlajESGmoBVSBSLxqmR1qdBYB0VbFdM4cip3bMIRTLHqe2mq5n8aATqjm3QNSrF1AlSkbqJZ9RwJfb1ITNoei6laB50CiVVrMXcXR+Mr1/2xCYjBtHOWjb5YxCacaTC+ZdbM8dVZx7ZzjG8w/Zbcbomp195urAwqEdbbNaH65dvcs7rxDHNfFNLPMPQZ13aK1EvCty390OuLlIrcWoNbzDk7PeczLw184Nvfz4fe98RO266BHzqKmfTpyt7SntMIlBRpGo/3hnHsWa+3jEVfjC++8ho/8c8/xedfOabtGi5fuogRoR8jKWUdxXmLKZHz1YbT0zXn242eSEXLWiPCfLFkHAL9MFKs01FcnQv3TaCZzWis4eb1G6w3G9zJETGMOGeZzTq8b7h0eEjXOm4dXefm5hiJA04KB/t7eAOunTHfO1CEOW5YbdZ84snXee0sKoXaNly5eIA1cOnCHA+0YrDUOLMCVqbRmtnlD1inp6+rsebsQLCElYJtPSEqm9RUEGzq0RX1BjJY26jyMSdMpclOc/eYdEpj0YPSTCdv3aStseQQFWi2CuyqSYgq9bLVsabJd8prUCZnjFFtzwRc01J/BKToAaSHS6LYuqlbS+hHxKnPxM5I1llKURPdXNQXUHI1GK0UayMqXa7YaGUWVi+HPJmY6BSlOBU5zarbkLomv5m52H2yCYjR0VyhVCWXkjls9W0bQyQhmOpUo+aSgdhvCP0G5zzGFoYxMW42zBuLddDYSNM5YigMSeijwVlRDlEZKaFoy1HVbWIsRgpd2/Ha60d84bkjfuAHv4e3X72s/PNcyPGOw33SWRTWWTV7SLUXLAXfNlhnGIae9WYgiSGnzIvPv8z/+fOf5tmb53SzhseuXtY+OilGsLdcgBRu3rjNanWuUtekCHbXtMoxz4lNv+XC4UX6fmTbrwlxwBqL846mdfitxomnmDlbnbOYdYRBU4etMSzmCx65eoW5s6xW58TNKWboMSZx6WBJ6/Vr7R0cIiWS44btZs1TL97mqdfXIAWxlscfusITDx2QStr1/yVp8KeUDBmiAUS5Ca4qiISyI/8UFEhsvEPEYo0Qh4BvdR6exoQt2rbFSpgxzuJE03/GEqull246GEtIiSyqUbB1rJbCqGadjdu1asV6sqSqG9ApQUw6AZgyF7OIsiNztVjPjqZrq7OPovlWhFRToUvMWpkaZXVGIETtzRunwJ06i8A4RlIda4YhkGPGecU0TKr8iAKx/iyT4KveRKVke68iKqsnf9N4xn5Uo9i78gzeaN0Xm0AcI5uTI7pZh9h9bLuoTraGbrFPiCPjdkUYBoRMGgbi9hxyII0juRdCDozDyMHejOXSKVkiG8YxMY4W4wVjQqVoZkxJkLIGjppJIgo4zxefv8bg9vkTf/T7uXS4pMQqVZ1YZTntlGvWmJ1M01irdFQnNFbYbs7Z1kBQSYHPfuFZ/uEvfo7TIfGWR67Qea9ilHHUyOucWZ+tCFErglyLDOt0Jp1rT+0ypJi4fevmLk5sSJnFcg9rHTFmhr7HzjtCyeztLyi5MA46ajzcO+SRq1dofMOw3XB04wUaW0gELh3uM+8afOPZ29unJRPHc8Zhwwsvn/CpF44I1QL7yuEFHjlc0JoaelHB0Fx7aqXKVKyl/i1XMwwxlhD1lCQVilO9gK0+gNZ5QKovIcQQaX1TufmmJkJlcgh4UQWmuJaYdbrR1pGYqSQfI4LY5o7noHKWKSVVJaGoipQCzpGkVgEooTiBYlG1+guD6gusc/rvlQ1K9TRIZIxrdNOqLMaQAps+KkkLr5WP5N0kwhjBOCU15QKxUpFrj8oU2T5xCZyzjIMSosQoECrWkEuka3wVfsW6Id3nwCAl05/fJm497vQE3ygJQ6wnrGeENCApQlZRRoqDOrGOEVMy3bzhQrevXgFeQznO+x5wWN9hQiLngJRIyZP1sxAFMAo4qief4YVrJ6zlAj/yA9/B/mKuPaSZKgC9wVPklmrWc52B6zU33mJcYrPeMvSJLJkUIp9/6nn+/s9/ltubyMXDBcTIph80eUbAWU9Jii+oes0qM65AnSZrPl11ow3DwCYnbNNUYpKiXqvzFZ3vKgNNy0aDGqnOlnMWyyUHyz2MGLbrc45ffQkJA0Jhf3/JwutGtlzuMfdCCRtSHLl9tOG3n79JX5S4tLe/4N2PPYQDpdRWjsYk1qGIIt5MouLKsKu+twp8WgX9HCT0IRIE6xU3UclYVQI2yr03tmocxqScfSt0rgPApUKUQqhCpJx1EzDAri/Qbq9Sf8FbgZRJxZCyPqzWGmLStqP1atISYlIKuAr1KUWtwqXKx6XK+HI9mVsRVUcK6vI8jmpfZizGuMqZMCSqMSsaqlJC2ukAJl5EquxJI0ap5xSi0arHNxpfR81dsGIQEkmSxr+j+EWcqoevsu6LTcA6ONjzmGJIeVBDBWoMdb/G1ZGRaz3GGVw3x3Z7tPMLzJuGvL7F6vgMCGo/VnRn9k6dZFQx5hjHQFaxuNJ3q9otJ5VrfvG5Iy4++i7+5Pe9X119UIQ+jOpVmHKqsVVaNk4lljVatvrG4EisVxs2fQWg+pHf+PRT/OSvPs16O3J44QAnerLlSkG1RjRhuCj11InbzcbDMBCy8sH1LL0rlso1zOZ7jMOoxp/tDIcgTYfrEvsHF/Bdy3a9Zk80i+HihQtsh4Hrr19jdeMlupzIaWBv5jhYznBGmC8PmM9aXBwZYuLmyZaPPX2T8yHhncU0hm9560PMvENsJkyJykZL+pSS2opVzfzO27P26aDy7iQwxkRrLQ6DpEgxljgmndJUybWpNF2p9lmERBlH7blRMpBBGMpIEWXzidEgkcY31TQ2q4CqUsFT0gfEWB0rC7bSzXWUYI3Sd0PsFWswatbqrFHiVohk0SxC77VVUNK/I9/lYJxC1H7de2bitFqqDtdilDtCycoMpVAap4dAVsMQKVCc2VWdWUkDVb2oDM/GNbvWK4UITu9brvyDkCpg+QbrvtgESi6EMdG2hlnraZqWpvXVeryhaWe0szl7y30Wy32Kg+3ZGf3xMcevXmOz3SDF0s6U/rqTbFZGWD8OzFpP21liRHuuOmbKSQ0evvDClife+0F+8Pe+t4o7Kq1150tXdkkuxlqm3Dl1l1ErLcPI6nxNP+hJtN1s+djnnuMnf/kLbKNwYX/OzOnXLkpyx4itGvZI66jVhhqnTGYa00iq5AxOzTeMbXDtnKaZcfHSI5i2UTcbA9vzU64czLl0eEl75v0Fr7/+OqvjE1575ZqeGGWLz4FcBvZmnoNlh3GGbrHHfLGH5JEQNpydr/j00zd46binOH2o3vbYVWbekMqICYUSdWZurBJTJEOqkm5jhLZrSCEyjlFFQmgl4LzFO0McenUYtlNgiGUMkVyg9VprYJSJmKvGIGXV97dNQxaUQWktTfVnHIYenKUPA43zGk1ufI37EijK5DRidwrFxqumgMry01FqIaSERTcARCgpajsJVQquFYIxgvWNugtV9yIpqjxMKWCcYHeYiOj31kF09SisDzuGXHMFBB0XGjTMJYpWTYKhhEypXgymCCklskgVENV5qBW6xpHv900gZ+HoNOFcYdYZ5q1hb5bxTURC1DSOHBiGU+KpYSTRr0diXxhjJhUlgLihGjB4s2N6GaBtHN5ZJNld+pCRFkok5sKnn1/xHR/+IN/xvrfpiWDK5IylvyC9SP1T563qAKS7s8ZEjWzO1oRgMNYy9Cf8648/zU//2tNsQ+HisqNzk0lJ2VlYUwpjKeRsqqutgkQpZaV95uqqU7n3CkzBpUsXuXT1IWwRDg8uYFx1kRHDeUrI3NHt73Pzldc4WZ1wdnLCydER/dDTefDhFDMOLPZalssWaw3dbMne3gVMChrS2vd8+doZzx9tMF7Lyocu7XNl2aoYKJUa0qF9tal+iYasL6xaGYSgGgNMo9ZhoNVeDfYQ7xVvKVT6cNqd/rGqItmZhQ7KJWg82YjatGUIuUBJ1cKsUFKmab22T0kVgOrkLNVtSA+LWJF11UqoPFfFSRkT1U7cGI/v2uqMXBRIjPWhRariUQljJifNMCwZSdrHaxrTZEuuB0cpen98dTGeBE5xCJSYMFbTpqukQ/kXSTfaVDfcRCIbzcMglTrdyJCq5kA0gCeXgm3vc9owaEqtc1nNJ1CCgxMwJlIkkLIQxVZBp0Nswi/AJEPZjNQxMoLaSzeiwdcCxE77KWc99IGYQGTg+q01L9wu/IEf/r28620P63VUx9lcZ//ak6VqBlnjsgSsKztyTCYynPdsS6GYyLbf8DM//1n+5SefJyAczjrtnWMkZN00LFJjvnTDjpUEYyY0sNbPgr4tbnLw0ZNk3K4pcQSxrFbHCgo6Txy3iC2cX7/J9edfZL3d6Fix2pu3NtPmgbk3GDfj4t6MmXM433Fw4SK2JEoZ6PsVT798zMe+fIsRPRkfeugKTzxyGRND3SD1tLJWPe9FdCJQqv1VyYW+7zXpyTdK967iGKVZJx332ULjPIVqvqnPkI7pitpsp6ov2FFkkz5YJhXl7xTtm0NUcLJtXMVFImEMkIpKoLOooYsRfKPofUHZd8kq1TtTFYWleg06TxpH/cWb6rPQeMYYtT2qv5VUFZ3qgGw0nMQUuqZV0xBDBXw1JERs5QZMY2YjlXU45TeIJgtnjXoPeuMwqHQ6i/785KyGNxUgTCmRYg2VrazDaYP7auv+2ASM9vtOcnVFSWTTEABrPWKqbNZZXNNWJLXsQCPbGGIYSSGTSmVaNWomSh2JFVN0NrxRX/YXXlvz2rrjj/zoh3nbWy7XQ978jg0gxbjTeKtfHLtd31vBOUuMI5vNQE4Zm+D0bM0v/Prn+H8//jyxFPb35hiTGFNW8pBV2mdCy1pb7ahcBf9Ub15ddBI73OHOrFz7veOTE9pFh8Oy3FuwGVac3jylOKXNxqg4Rj+OtN7ivdCZTElbbB7AGy4cLOl8oy7FFw4Vmxi2xGHLjeMNn3n2Nqugsu2DxR7ve/wqDZHSOIiZQsSJ4MSrMlL0XqecwbrqxBSJNYDE2ZqdBzvCTT+O+vfQ03adPkSilGKgnoZZ+2AJjLH+DtC8CFOltZILJJ35IwXX+AquCb6zhFHThENSVWCxRuPeROp4WO+3c44QdaJhRSc+k7/hFKGeSg38MIa2a8k5KmYjpjIap4RiIVf/wlLY0XlJOkkpSYNTqWPlHBT49cahRUaVBxdVKqrHou4XOp3SyjAVHSOn+j2y6Map7Wp1T7rfR4QGwRvta1QtJhOxS/ubpCW+GKUMN8aSG0/OkTFPtE+vYI61VdZpGKMmvSpKXBDbEo42fOHpW+TlQ/zJP/4Rruw3VIwIyDXvTu2eJCftG2t6jSQN1XDW1ZHPlvVmJGY9NYZ+4Cd/7hP8xpdeJZLZm89oqKhxqWk56M6tlWHZvWAm/vm0LJBFR3G5xJ2braCkl2XX0lrDZgiwWiMCQUaWTUfbWFJq2Gx7SuoZopBzoM3nChRluLy3oGscxhkOLlym9R4XenIMnJ0P/PrnXua11UCksNfOeOLxhyDFytyDEgKYQklVelwTolzj6WoLkELEVveiCVOZ2KtWHNZLLV8hVfsvV5H3GPVAkJR0E7EQ0IcEI5p/IG4XMWajGsroAMKqP2OVB4sxKjLLyjfIOencvxTGHbCn6T5SklqMFaUXx2rSkUvCNR7jq7uQaHTeGEc19nCOHDPUh7PU9sBXHkrKCWN9NQlV5mOOWsFmMq4yHXVD0pG0BromYtDcBYx6U2gKkoqEUigMsUayGYFqrmKlAknG0czaGsvy1dd9sQkUIMQaRZ1rz1SLeT+b6S/HN9hmpsCYdzjXKrNrHCgMWK9zdWPVAcgUS+siKVb/yZh5+bVbfPrJYy49+nZ+5Ie/EyeGVDxKTqqATdEeL1VjSVd7xZJz/WUrYyyPI8M2kBKUNHL9xhE/9S8+xm89dQtjYd55FS+FTNt4jOjJMpX5RnQUpcBQIYuhGI0klwkHEN0JrTEV7Ck7w8hh0JJ8MdP7cnp6TBwDq1AY3ai+CzExWywo40g+P8OmgVwKhwcd3azBWMdstsds1lCiMjDXmzUf/9IrvHIygik0ruN9j7+FPe9rcg7KmLyL5ioxQ6Ou/SVpUlGMcSfT3VmBObd7Kbr6c+VQdv+mZqS6adv6sIUYd/hMY33tlNQhSESBvJLUGKQYnZ3vHIyykoSk0pKlGLJBMyU6rw93dXpShkDl52dDjvp1M0JyBm9cjfrO6rvYuQruwTAGIqlq/60Co1nIxVZOSVDQs25ypl4jTkjjiPc6bZBSMMZppaDbQG0P78pBTFmzLesrti+xei5olWHNFGjqiDkhtdJM93slsBPiVOGEbxy+83QzRzPvlC7aNJhuptxwa3Bex2hUNlhJUeOzjU4FhEwuqmiLmy2/+W9e4fljww/94Ed49zuuYkVRdmdqsmulZuaS6wZQqaRxIgLpKMpZyzD0DNvCiG4fN26c8BM/+wk+9eItsNC1TsMpcibkjC+VuILOxlPR4BEvtp6M2h5oTVMBMqlxUlAZjRN9Vn32iwj7lx+m5MB8sSSlQmx6fXhyoE0bjGiJfrI6Yog9CVh2LfuzFmcd7d4eXbuE0CNpy2az5TPP3OBz187AGJwxvO3xhzloVH/vrACakqz++JlUT2cr+vElRSU/VXqu+umbnaNQqkiXcUJOkKxKZwlp1/JQFHUXUwgZbOOVCyFG/QhKoQ+KRyCqCVDGQSbXXl7NUiDX1wdSKvBqaZymDE+V2NhvqhmMtnrOefo41t+7q2QynfG7WqKPMSG50Dqv7sH1IUtq6UwhgmStYkpSanEdAxp0k8yiG0oRg/eaoal6COUGTG7KqXoG+sarNL5PUG0GlrOOMIxgNXIuTvbiGcUravjI3bmIX7nui01AjDCbO1pv6bzgvVEjCKM0UiNKExUrGKd24gnBuAaPqSO7BOOINQ5TMiWN3Hp9xTMvHHNr47jyzvfxX77vHVXZVllpxhCr1HIKrtRTTh1qU3XkVSaWzlyHfmQ76AvAmMSr117n//jpj/L0tVOKFC2xjc53jRgSGu5hpebLlzoj3vEMphpEPedKLnd60KzgWsrqzKO/ecUHymZF2x8TtgPl/DbtZkVnCm4AL5mYI9633D46Yuy3UAqdsxzuz1Q7MJ+zv7+nmMfQk8aBF18+4RPP3SYC3lseffgKb7myTwojXjQmTY07dCRINcv0pop6SAxDTw5RNQHOVFcgfcWWrIg5qOGFET3ZUsqor3/ZEXtSGFUPUntjSqWRZ8WBdLqQdiy7gqb1KqEzT5wk9dybRrtU4LmUCgCqe1AII6BYDVZDR1wujNWS3rm6CaAbV07aYpSUCMWqS5AKRmocWlZWoAizWUuKaTca1XYzEULCNo5idBOM1VBFRCc8IdfXmGjga+OVBZuzOlSpGYkhx8Cs84y5UIp6M6qxq+Y1JnTzk/zGI0J5M07xN2p9t0j5+L2+iAfrG7ZuNo7/7iPv1tbHqvxWVYBeJd2lKvZsM5kRUxKIU5Asp0ysG4Wp2npnaoZBne/npL4EofocKH044ZuWEEdM1uw+7bkH1ZCIAdERXxgiIapbcdM0tZLIysiTQsqaGiXiiDlX27RUpxNeKcVIxSh0pJST0qbTBDw6HV2DIcVQBUsFctHwVNEWq7FC45yy/oyGsaSS8G2DEf2ZYyykkCtFWYVFobpaWecwRfiZ3/7SJ0op3/2Vv4/7ohJ4/dKMv/HH3ocTnQB4W9iftcyXLc28w3Wexne03ayWdgZbzRnGcUO/3vDq87d4+pUt/sI+Dz98mZl3LJZLlvOWnJRBaJ3TNFwpOxLOxMePMd4x8cgFi4Jc1nlsjmyGLdtB8wJTTjz//DV+/J9+lOdunJBKoWkcnfdMEdC+utSUegKLlIqkm92YRxAdjdb5cagfbytuEHNmrIGVUTlzCPp1H710wA9893uwXYv0gwaopIl/IGzWa45PT9QXj8yFgz1mrcd7x/7Fh5g3Qgkjud9w82jFL3/6RZ45XiPGMOsWfOe3PMFcdJ4fqs9+SEEdg7LaZrnGa9sUA62vmL0R4jDgRGW9xmtvajCEcSCN444NmXIhjQrMWVHbMCmiD2h9qHW06xBviTXzQePK9OTM9cQsAiEEbOM0cKaab2jJokesaVpySLvfuxEdnWqLqcxRfdC0cPfOkw2kcSA7HTHHlGi8xeZSWYW1SChKcXYGStGHdhryh6J5mSVnfLUWyyXj7BSaYrCooUgaIzmOmFwQh2oGEEIYVU9TpyGdU8o6GWIedwYmWkFWjoxTINJas2trv9q6LyoBEbkJrIFb9/pa7lqXeXA9b7but+uB+++a7rfreaKUcuUr33lfbAIAIvLxr1aq3Kv14HrefN1v1wP33zXdb9fzRuvN3QYerAfrwfr//XqwCTxYD9Y3+bqfNoEfv9cX8BXrwfW8+brfrgfuv2u6367nq677BhN4sB6sB+verPupEniwHqwH6x6se74JiMgfEZGnROQZEflL9+gaXhCRz4nIp0Xk4/V9F0XkF0Tky/X/h1/na/i7InJDRD5/1/u+6jWIrv+t3rPPish3foOu56+JyLV6nz4tIj9617/95Xo9T4nIH/46XM/jIvIrIvJFEfmCiPy39f335B69yfXcs3v0Na8p2fVe/EHFcs8C7wAa4DPAt96D63gBuPwV7/ufgL9U3/5LwP/4db6G7we+E/j8v+sagB8F/jnKhPkI8NFv0PX8NeB/+Cof+631d9cCb6+/U/sf+XoeAb6zvr0HPF2/7z25R29yPffsHn2tf+51JfA9wDOllOdKKSPwj4Afu8fXNK0fA/5effvvAX/86/nNSim/Bhz9Lq/hx4C/X3T9NnBBRB75BlzPG60fA/5RKWUopTwPPIP+bv9jXs9rpZRP1rdXwJPAY9yje/Qm1/NG6+t+j77Wda83gceAl+/6+yu8+Y38eq0C/LyIfEJE/lx939VSymv17deBq/fgut7oGu7lffsLtbz+u3e1SN/Q6xGRtwHfAXyU++AefcX1wH1wj/591r3eBO6X9X2llO8EfgT48yLy/Xf/Y9F67p6OUe6HawD+FvBO4EPAa8Df+EZfgIgsgX8C/MVSytnd/3Yv7tFXuZ57fo/+fde93gSuAY/f9fe31Pd9Q1cp5Vr9/w3gp9Ey7fpUPtb/3/hGX9ebXMM9uW+llOullFQ04/tvc6ec/YZcj4h49IH7h6WUf1rffc/u0Ve7nnt9j76Wda83gX8DvFtE3i4iDfCngH/2jbwAEVmIyN70NvCHgM/X6/gz9cP+DPAz38jrquuNruGfAX+6IuAfAU7vKom/busreuo/gd6n6Xr+lIi0IvJ24N3Ax/4jf28B/g7wZCnlb971T/fkHr3R9dzLe/Q1r3uNTKIo7tMoWvpX78H3fweK2n4G+MJ0DcAl4JeALwO/CFz8Ol/H/4WWjwHtF//sG10Dinj/7/WefQ747m/Q9fyD+v0+i76oH7nr4/9qvZ6ngB/5OlzP96Gl/meBT9c/P3qv7tGbXM89u0df658HjMEH68H6Jl/3uh14sB6sB+serwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2TrwebwIP1YH2Tr/8PtQF6RFb9vn8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebRsS3rQB/6+iNg7M890hzfVe1WarQmVJIYGLzdNI1vgBhojY4wWMjOyqxmEbZahkaBpaDA2bsQMclNgDJgWCLfN2JjBFjTGQIMN9LKYVKJUwxvvu/M952Tm3hHx9R9fxB4y85x7Xw2Lq8WLu87NzD3Ejh0R3zyJqvJ+e7+93/7Fbe6f9wDeb++399s/3/Y+Eni/vd/+BW/vI4H32/vtX/D2PhJ4v73f/gVv7yOB99v77V/w9j4SeL+93/4Fb583JCAiP0lE/qmI/ICIfPvn6znvt/fb++2za/L58BMQEQ98P/ATgdeBvwt8i6r+o8/5w95v77f322fVPl+cwI8BfkBVP66qHfAngG/6PD3r/fZ+e799Fi18nvr9IPDpye/XgX/5qotv3Lihr7zy8s5Ruf4Jsv9T905f0cczdX3NRXunpgf0WXr4nDT5LB4gdXQH5hHUPmXnPWR+uUiZcxVEBOcDzvnZwJRD86CoZlTzcIWIR0Qm9+zMqWZyTqQYyTmC6rxzcWX9hwP2e3djTN9Uh9EcumB/1O+RadbZN+Gq2XiWZdR5h7Mn7J87/Jzv//5/eldVX9o9/vlCAk9tIvIR4CMAL7/8Er/n9/4OBuARwZiUcdcNG0R1+C6TzSYiVNFGRCbXDFfM7pleU9vu/bK768vczp9f/2aX7I3PRjBu7el7zB9Q7z28kLvvcF2z8zpMoxy4dz4fihfFYX8igjjBOcGLIGLv4EQQyXgvIEJScL5ldXyD5eqU0CzANVTwEhRE7bcqaGSzecT5xX1S39M0x5ycvEi7PC6YpcyUKiJK7jfEzTkXTx7w+NFdYr9GYrLpcoJ6j7oGlYDiyAgZQcWhCIogqgWIxT5Vysi04BMFlQHQD4nJqjocVznMRM+u0RFI7UlyEJPUvSY4mOzjQ/3t9V2O7R7f25eq/IRv/PGfPDTmzxcSeAP4gsnvD5Vj00F9FPgowFd8xZfrLpBO2yGA3T12GKiMpgkjcF/V3+55u3cHvHfvqcRIbAPt4gzKwh8C1SlSm/4e30fK43TyfefxsyFNF//qdtU8TftU6nuNB6Zb185nUHDiUFVS6tluLxEnKJmmLXMsGTTPN6cmUr9luz6n6zaslkpenUFeIt4Xomn35dSzvXjE5ZMHbC4ekbZrRFPp25HFkfEoDrQQjvKnZVnqfNb3GziAAeKnv+dAuNtEhKvPXnFP+f8qpkS1IstcENFhJLB7bB/w59fU8T6tfb6QwN8FvlxEvgQD/p8F/DvX3bBP1cfv07+c8+w4HN7Y9diUoZ1et3uPVFw9O1bQQIWIOdRNgH4P+ssgyvM/A7Z95ARkxhUc4h5sWPtI8rpW338+J/bGqoqKFMBRcqZwQFqouiDOnptzHoA99Rs6sXlzIvjgESfGBaiguQKoZ7E45vT0NrHfsFiesFwsrR8tVDMboug3F5w/vMfm/BEpbnBaBxPIEozSq6DZIeJs3FB5GQqumk7XgBAGRMFIoJ9VUX6llPGMrYL9iGErpzAnbNdxJHvn9t7h2Tbe5wUJqGoUkW8D/hLggT+kqv/wunsOblo5fH6Xkk9FgeuueVrbpdkq41KbaLDPCVw1xuEC3elzAnzXj20QHLhuMSug7vEtAyWop+q2O/xsGxdQqFKGgYV2oqgUBCiUzVoRgDORQUA1k/qOziCN0DaEpsH5gOBBAqhD1ROCcLxy5GWPDy3ONShCTglNPbHf0q0vWF8+oVtfkHOyuVRX2PxAxpErsOMANwB4ZbFHeXkUByp3NV0mQwj5ynl+lnYV0B5qc1IzciTvhYIf7PSKx1/X3+dNJ6CqfwH4C8908S5rbwdnHMB46fRlJkC6Q+GvYvkP98MVlJwdWNyF+mv6Y6Q40zfbEzkmLN1VLL9df+gtan9y7f0ihVuAccMxMjd1PJUqVsSVy7253CyCAbtTNINTQT1I1jIWEwtyiqQYCV1DaBt8WBDCEudckXsdEPB+iZcGVIhdImui77d023O6bk23WdNvN5AigkNcS+XMVHyR/W2GZYIQ6jsIkAddwHxOptTSOKAJZX4P7TqW/KprGZ4yl7OqfuIqXdWztMP76nqE8s9NMbjbqhJOddRM78r8e/fIePdnyhYLskusJ+eM6g2SwHvk6/cfvX//HCnsSt6VfR6RzyHFaH3vXWml/t7d3gNeK4hjpJbTJ8lwwEC8agIEso0hF3FLnT1MXKYwE8YV5J6u90jYEnxH8BGR1lh+iSA9aEYjxD7T9x1d3BDjmpQjWv6cyKDwE/GoyogA6n4pCkCdKvxgggB2iEel/sNb22dFmu9NhtO9X3uag52folJ1k2XOJmLBFDEc4C6m6z87N8Xqe+O5uj0XSECG/w5RaBl3MrCPqUf5biauX6MveGZWa9bfdRceRkDDcOVZttSh9yoM/FNuFpli/p1edUAfe08aEAdUvebYZ8EgAwLRihJHXqIq2eqGllx18eAUVBPqesg9UXqEDmgL4EaUjpx6chI0QUoJ1Z6skWpNwJUe1ZNzUf6pI0kF8ymyGoF6pPZzA+BU6TuemO6hUVR4do5c6gBs3HMCb4d3cHy1RlCfN9xzPeGbHt9DDuw+19TST3uN5wIJwA5Wk3Hgs3V6CldUOYjdfg9aAqb/a5mwHUXheMXh8doAK5SN14/4SmfvMjCBOyz+YS1/vaZShn2l5iH9wth0/vVKUWOy9QolUUwn4KquYRjoCGjT4YoWMaGKDIBp6zOK+QNkTahGNG8QdSARtCPnaApDdaXPPHlW5T+ME1A8WiwAmVyJueELKrjL8F5T8C/o1Fj/Yb7mfM+cc3i2Ns7/yI3uXVPXe4ZC65zWNR2p+CGT4DOMZPI54Wxk9/x+e26QAOLKXpvh7TkwCkydHEe2tu7TKcDJpIddlLI/IW42ieX/K4BnYNIne0lEh+vn876L33fxlFyJAKbnR+31nPLXzT7zaahIrfIAcpWhcmyjTXtkSzMF2dVzMsF5mm1mC4lLBSE5J2QBkgwWBpXqHBRN+aYOIY+UvFD3AYhzZemrHd8Av1LMLFrunmPTYQ1gOK+TFdhj2odNVRd66sdxxfxcuYWudjmaoxoOL/PTKNy0VSvKDgGYij5TjkefsvbPCRKYLIDMpuvAlTLZqIxrWRGBskPRp309hTE6CMTz84ODkO6cHhRzMrv+6XLAVYu/r+zbl1engDC7deRurup9R99SEUtFBfMxyBzJap3XXXbTFIbihJRLX1kmxKnwGKoMeniZAOewrBXo621VJBjHpiiZqTa/Iqs5RdZhB4xsl5bnTvu7DgirVWHkMGTn/LyPfTa9zhQD5d/jCXYUesO9M0CvnOtUlzHjPcfrhtd7OnJ5TpDAfFPOW53yyeafAHqdys/IpDJ59mCamT16KiOOk3ntk6YmnhmFn1Icdr5fNa4R8Mf32+nnqm6EItfbj93LdnUlo25gumkmosAA9vWXww2bvj6vMPO5bnmj3jKhohOpndEuLgNwaBEmBnPexIuvvu5EGWHvVdZnBIz6bdw58y+TV4IdOKlcxXSOdP8m9inx4TblMMa+dnfTnLvb7WJEvlPR7Mo9NV1DqXNz9V57bpDAobY7ccPxK02GV597qpXgkN5Axs/3Iivua+pl2NT7x3ap+25fc2yvOrLgV3Km2OW7yr7h1FU6hQHpjIjHEMO+MCFlQw40tjxslG3TQNXrOk595jJMxl+BtY5lingnVK9S9+keZ75PRs7BbsnDTeM1+23OFcGEyFyx8E/zU9kd4f4KvwdiUGegrLtcYc6aCn27vMh17flAAnIAmHexc9nQu96EU+XJ03wDrh3ClffJcP692Wunvw7bakWu6+8w1zBFIlMpd88KMmMUDtnKdQ+77VLEAZEdoIiC2vGJJn3fMXYEzPmZXUq94x8vjPdV9l3LO1Qfhsn949bfd7mdH7vK0rKPTg+56u7+vgpRHHReK+8w/C6TogPy1Cvu3ZnzCggHts5VO1jr865ozwcSmAD1bpuCgR649jpnos/KPHigPeu9+15f1yOYZ3jytPen0o4pZbff+4zjtC+KADnXP8j8pj0EqCbu13edWUImq1a6yYyiySjsz5GW2cqNC5gKDaqgubA26OgaXLpM1AgRLQzDLlBeHzE/avfr9YeQyfBGw6Rcp72vLtDT+ZohXRmPz8SdyZ4VEXPUmiKpAQiuRliz/nUc8VXt+UACT4EFLahs1EZfD5C7PvFXXVsXfzTDMbv+ac5KT2tzkWA+tme7f6Sh+xzAfh9X+ZKPP2Q+KJ1faKdkql8rpux9zbfIPnWZ/p6C3S4nLsPwJxSaiuirE1C9twI2IxJh6uU3ua72Xa7THXlIhuOHgHcErKsQQDlQcNH+/FdLio4HDgLte2pa797nCq/dR3kC/E959POBBDggDszOzY/sUv9npfhXX3PY0Wj32qf7++/es09hDvV19f1P4yTeY5uw1vvPKJcwbrjBCnPgXTWPqqY9JS2Qpnt2+rmLTvZgbAqA88/x+sph7PDFFVlUmXln2E+f8+sprA6K1mvae1UgPcvYDuKQirivJgZXSA177blBAjBuvh2Yv/r6CcX/bNj83T7H7zaQXfb+2cUC2UMEh55ziGPYXb5RDzK94rqcBHNl1JX7tzII9a7qzjp5fD5E9WZy9PQ7ZmGYclYchosRuY/X64xDKGLJ8Dl7+RnLXR2V6rnrnGSu9vevPhlXs/hznqjui/n71XFpFYEmSs4qMn0mnOX8JZ7pkB3X6/1EngskIEyA4ilzswuIg8JKMtXc9NkihM+Eq7imt+HbVBd36Pa5SUpm9xx8nLB/LSOfPttsB4GwXjtyHHrg2nG/TuSEyfOrGLGHuIYxHHrHEeB3ubpdu/gMS03efQZIStGeT26rlob9V78CCA8rUOfi5eQ9dYpo52PZJ8N2YPz/6U0PYH5LkHKo/2kMxbw9bas+F0hgF3CvHHOl+IWCjJtcxvNPmWADwpFCX+96e1Uf+xzBTNS+kpIMVzN9y2HvHmD/DyMLdgjohHLO/5vfN2zCKcu/xzPPCe5eX/WJc2o/127vXH2FZn3XunPgTScfU7OrzqewchS7z9nt7Zo1PjRblXLr0P1kbgY8uBOuXPCE1Jvmgu1MSTtv0+t2dFTT/TD7doijmfdsMCJcBxbPCRKAqkoa4eAA9Z0e36ME+y96FbWe6hiuY/GvUwzucwvzc9dtuM+J6PIs8ulw7ezpc1oxo7o7yGki0B/EK1dwM9cO5SDSnT9XBwDafd7EMjLVQlYAnHSwDwqHxjJh5fcumQDZ9PTOXGoZyoBMVSd3TjisiZb/ChIxG9f4KRyc/2ckWsZlX/lQ4DlCAs9myrsqU49Oz15z//XPfNZrp1Tsc9F3vX7K/Y0bdBdIrU0p7Og8NAXw3edPAfoQvzSeHyjvQWRx7aHxfQ70PN63iwh2r9g16Sm7774fljX2fbUCd1/EOqAWmPQ1fs8zubpwkXCANd91DKpxle8tYcke0dFdfcT+u44nyggHerl/77Q9H0hADgNZ+THB8ExY3cOpwj4zz8Cxn6cOdTK293Lfs4xnd2iVEjxd4VyRYGUPx2N2fOeZQ//XJZyYAN17fb9dIn0FxzCKT3blOJaDpHnvfoa+R4Sy6zw2moF30VJdw70hX/2s4T4ZHm3elCPi3X2Dz3xnTJvsdXbtmuwwxU9bv+cDCewtUjkq42RD3VC7lG7E0O9Ve3/V897LtdcD0rO3a+XVA5A0E40OKLT223QXjUDw3nwWnr3plT/KaHZ0B/aM6/iHvQ4ml+3Lxk/zI9lvIwI1xmpOlK5EBHoY3GXCcVUrzmfka7Kzvw9xOlME+Jn4tjwXSMDklqsX7b2w3e+FE3ivAHwIyXymi/te265D0/XXHgLwyWZ9iqJo/15m1PVz0Q7pBt5TRp8i9x9ai0MiwHtrBzTsV/V1JSvxdIT2LH4LM7HnKdcLMiLF9/DazwUSgM8Ec5c2kRV2N8R7fWalTu91n3+uAOPp7apNMFFFXTUHqgPgjHL/ZzaE6+TLZ22HkOe+JeKpnTwTIE3FhWuvHMSTQ6zLpLuh16cTrkNP3XPQ0qvn4zqF89X+DpNxPsN7Px9IQMC5Z6uIdpV9d1ek+MxFgvdy7eeOC7hqvO+ZDf8ciieH+vlcIICr+38PuoBJe/r7PiOHceVlE6WryEBodYIKpnqbz6XCeO5XoTNx4Hrz6tPHUtvzgQSu0Ak8462Wrmr38Hvo72nmv4OP/Sz1D8/SnsWH4elKw/J+OxziM1HGA1TneWnGNDyrrP10Fd1BxeGAFEbl30wjpVWEuW6Qk3uuUJAewjxPm/urxLWnXXeoPRdIYFcn8F617leB4edDQfi5dlN+Wtv1WDvk6npIMXawL6h1QJ7p+t1xfC7b54SLOqADuJpTfJb+dr4Mv4v4JHMBYNdZbO850/srGnkPAP004D/EFeyLGj9EkAAcFgee5YU+VwjgWRVfVysir5vs6ynRlBZMlc1D3sBKmD4LTX6lXLt7deYFt3PuKQcPciCH5+N6Sje/7nD9hL1nFhbosCw9f/ZU4bjLXtcxD8cPJuw4pPyb+wNI4RgOKjyHZxch4hCVL2uzNy+TBdPJPYeQwS4i+CFlHUBkLPCoEznrgJZzD0hVOZwx4dBiHqYSOrl+vrB10Q7cNZlskavAZBzJtefHnT2wn7VfUcHq8lkfWZmk6Hx6bYbhpQ78sOu1zOHuiA90swNc0+OHTKb18p1QphlfPEe+pcTYFbL5/us9C9XbTw93iHswwJVrlUIy+3ZYLTj1TajPn46l3rsjWNSBTP4Y8kRO9bg1AYtq/X7gjQfuYBd9HG7PBxIARhZMhl+763GQhXxPbOVhZFHhTlUnst6ACmb3HaIiFVnsPWoy/hHF7Fw2AcDazbA9dMIIaM2eO+TgBYWcr6Ass+fuAtBsSzEggukd75FTv44C7W3EK9jc0fPxWZ5/xbN0nnthHMG+uHmwXfNcHe7d9XHYz1g0HcPh9ZkcH0k8dTk4dA6bnbrm8+IrhzkzKodw9Ws9P0hgVxxwtvN5z7vx2vZ0Vv+Qqfo6R6ax5+tdM6975vy7vbOIlflyQExWnitrJoul3FYdN2R9tSG+fgpvs6fp/JtO5neCx65SlM6BfJyoqQgwUP8JR3Ndu07bf728r3vXjtdNrxm5qmk/FXnP+tTDXMrh5+zKUFe96+E9MZP7C9DvsvX1/PR3nnACda11p9+5uDC59or2WSEBEfkE8ARIQFTV/42I3Aa+B/hi4BPAN6vqg2foa+dIwXBPkdHfm0nssGw63F/W8io2b3rP4d73SH+9o3ay9+xp/yIye76oGkuoPX23IaVIdlj+/3K91MSjshtBOaE4B8SVg8RS9wFqNrZx4OWWQ5u/bsxD3NF7R5PvRet9WK9jY9yd60PXjojx8PMOI7urOZJdReL03BwJFMDNT0cCMzQ+iHMjAVJVcs57eoPr2ueCE/hXVfXu5Pe3A/+Dqv4WEfn28vtXP62TQ2y2tcNUqV47ArA+BWHsb4a950727WfsvHT4DvYAYqefCmgG0LbATkFK0Y6UO1TTsPa5UBBXcvTbvew8R8ANdYTsPYueoSod59vUXQ2kMvei0wOUfopMR3fa3ZnQCXqa9MfIbj+zeHfFtdcpBuv5g0rnA+u6qzzcHfm1Y70C6e1R/AknUAF4fh0wAXIAlTycc5UBVEU1Wx+lSGytu3DdOD8f4sA3Ad9Qvv8R4K/xFCQwpTRT4D+kfjnEolE33AGKN3mK9Snzydy9Yh8w9tt74z5q5648f38D1WPOlSo8AoghgZpwzzmoClAr7lU2i/pxvAdeXgtVHgl9UYABIm5QwdpfqhOwL1LUeanSxyGEMxFPdsBw79KDYxV26h5MbpkC4bDu+RmsOXWey266RnN+cG+9h3YVgannrqTwBQnsUvA5Sz+h7IVI1L+s8/50ikhm4sPh9tkiAQX+shhk/X5V/Sjwiqq+Vc6/DbzyLB0dkrGvSqg5v87+N+C5KqV0bfnKyRiQEE995BUb5LqbCtU9YF7cRShVtzAS2qIfcAUHaEawynzZKeQJtblupYv5q24NKdfXEl/jn85FhMkrjByHFCo3AZo66gHA6zk3ZPyZIqvdkRoc6IBwDs3TeLEWpDq/5lCrCGCkF09d3Gfq92mtAuR07PXYFNhn4sABREFRQs7OFV2ZaqaKJuM1eaIs1tm9V7XPFgn871T1DRF5GfgrIvJPdiZC5QqXKhH5CPARgFdfe+0AEjjETB5olQmo919505SV08nn9Il26FnXfSYjXn/lBKh3+xhPiAhZ8zBarf+p4gsAlm2BongpCT3rBpmOYgDawgnIyHKPsj8oVhtwZ6Rjq4BZ/xMZwmeVSThwvXxIFVznOCO4CZcwCgRTXFP/8uTE9QBYSqbuANpU2TGgnkk3V4kb1UQ4Rcq7uoNnElPKfA2AnMd12QX0kXIXDcqeODDOzngulzXT8n18/6leIedM1mzroWZRuKp9VkhAVd8on3dE5E8BPwZ4R0ReVdW3RORV4M4V934U+CjA13z4w1p2qwG0QqVZMhyfasQn7T0g6lHsuwIB7LLCM4rGOJ699rS0ZnmGqMaNNrKpw2ajmp+qMOT2hiLlPaQQxJwVHbwHSi8FOaCgIiQo1FOwqkBuTO1dlIpyqNhrZaeHuZ+w9hO2afiqBSUWSlQhUEolosqJzN6pimgz/m+c9z3gGxRuuwhAJtyQDv1Vinho6aZAXxWd++w4k37d7B1mws+AACbjnsj0FTnknIfzA9CXGw9zAxNKj6I5zbmIMmbNVRTIpJxImmfKxqvaZ4wEROQYcKr6pHz/14HfCPxZ4OcDv6V8/pln6m/4r3wOeQDHk58hZzYZs6duiB1Inzy8buI5lZ73894GomXs+3qPcv4Qcptio8rvUejboF8wU6pUAWGH6ao9FFo80ucqZmil6pP31IFRQIrzjlHy6YDtwSMOGHiMoY8BjIciJvW3jm7LFGSvk9UoyH5KTXebiDmXWXh1MfftTujQX8ZySs4BfuzL3lRr0VNGXDJd/1FxWByapuBflwmYegVWwKzvfIgLyDmP85XnnEB9bpXpraJzMg5gJlbYuYoEck5mTp4goet41c+GE3gF+FNlUgPw3ar6F0Xk7wJ/UkS+Ffgk8M1P68g83/zkiBZ8WwVhxp2JXkv9r8Z4I4YxgJyyXKXfK+7YO74HsPv3TlHLnoltGGvtr2L5/ecPehHRCbAW8NapZ+UEiVXqUaDUjXeUzTARAYbb8gjKMl5tSMczFSGMG5CRguu0owraAy83IBY9sHYzkeDAHOy3+u55xC9VTJrqdeq7KiCOURk6PsG4iOn6OIzSFwK0U+i01l+s4x0HWwFfBk5gRADF23MKrDPAHq8zWb4iAZsrVSWnqcJvRAIG8BNlYrEMjIik6sA+T4pBVf048PUHjt8DvvE9dTahkpND1t9woLKhu2d2qN+1VPoQVa/fRmXKcOmBiavEYcwZs9tPoTjK5L0Ou/ce1FTL+CETKjsjxJMLZXj4/uauADnvrx7Ps16rLcaI/riZx/moiEBACtXU6Vj2ZmRnvNP/xyt2V1G19jRvAwofbqqIYCoCyIx6V8lFCoIbgL50NBMFtFqOMoM1Ywep1IFOZprplFYkNgJ5ZhDJrtQHGPuetcj7M/Oeaf5zGhFA1mTeo1U/kNXuLZM3VzgWEfEpyPW58RicKr2mxRqudsAp17xHEeHZOIURE18z4vJ/HsY/ew6jV9qVDiWHxseUA6Bs8F3AqjtRjKBrmbmKeOql9RUOvnPhCJjoWsQhrgK5Y9jDZUOBH4CwgssM2I0sj2LJZNhXjWB3zkZKv3NyT59SxzWeV81l7DUYiJGBhGnvUPqp36eIdBdJz31WqtgwLaE+XdsCdFVDXyhyHtj/OQXPhXpTEcAEgZhyb7yncgEysPmjQlgzg1K5jmEYy3VsAM8REoC6QDV5g5vi2etvesY2kwmH/TOfpEH5NTLHB/sYTU41qcRhYN/bQDoqsypjefAt1bbbgBRknJ9K1Uwc0LE2nsynQypAXDNJo+xrz7NqQw6RjIixxjPkAhPdw0iFdfir36pl4sCL7fyqwwdmTkaHNPNzk9v4nlOgmJpeZ08rFHFPQVvvn3ARsz5mQFRRtE7gTCuDBEoB+KLBz8WrI49/KeURyPMUCUwQwMTpZxQdUpmfCtx1EgrHUC0RA1dj5+UpiOD5QQI7bNYuM1mPz24YKNGzpXOeL+hBx9Yr74MdJLJzbvr7kDfaQFHZ5Qh2WPnZ5y4iEobCrFS3YZ2xrlPWeLfffc371NOwUtZKHYf/JpYMM8sJgtMSyDRo9hmpkk7Xpp6vnNP1MRYDZd6Zv4MeftOZ0n1kPmXPd81+hxC22d2fLVdERQLVBMcEGZsuMA9/OadrkYDmOQKYIoJhTQbgLwijvm8tvDVg4boGeRABldEicag9P0iAnW27U89uigB2qbXKLjiXrbbHb+reBhv7223TzTEC3nC8aJwrhTzk9ThSpkpxr4g3n/LYRW4dQEsmgLUjGcnsfmZkfYRhmU3slC/Zb1OgVSovLbhy2JDAlCeRyf+1OIhK9UrUgZOYcjFXz/Tk2AGAPjzeXaQ6QQiDeDI+aRB99shMPeaGPmZ6nGHd7VoRKeKSzmT4qdZ/qrzbRQSDOJATmqvdvyKBIutPn1kWNGs2V/KJuDHndqooWcZUkcI1iPf5QQIVgLT+B0wnYbKQu9h69wWvwuMDMt25cF9ppzu/7RluyHkwsn7V9FejIA/L/1O//kPcjGmWZ7iostJTClcXfJBl8yAqTJHM2LVMchXoQI2HR4wC8oQ3mF5Zx5cm464KxRGQZv9PkFB9dBoUleXMrnyx23Zw+lViwQyQJ+85HNfxzUY4Mla5Iu0BWYpiCpbRFfmQnmdEptWTzzTwuQJ0QQpV088EEaSCCKZIwjiBhEz0M/X62bMrwE8/K/qavOeEBDBknhgQw+H2/CCBAbhhKmsCxRQ0xdc6bAJD+FeCvf0/7evQVXtURthFBnZv3QSVyzArgDvAARzq/2qxbGfXFwo2dfOtQFPl7KotmC/6pItBHp9gq8kDpI5LJr+FMXJxgnStrxG5CIKKZ8RU8+fa/CVERo1E5QQmeOdZZmLW5qw7HBIDD66bkwGBVoRVrQGjVCEYAnDXyM+jHmCk3FqQQKX2IydATsN1hgTmJr2B8uc8od4wdQceqHnFqqpofe8dajYf95SLuBoBwHOFBGCXpo/7UAebsIjb2dDjxtmV3UVk7i65V79uQmUmlKlupD2WcEKRqZS9UoZKWQaAv3riR+6idjMRbwo0TgWeihydjKytVkBV5ldOxuBq11UOH6hYnY8d5FnECVc33VT8KOKZTvw29oqFTCB8KlgM7POEQhcsNHA1Mz+naVdlXFfN5i7SODTvOY0McRXd9jsS21vXUMzRrKc7mvwR0KcUnpysP51o+SdUfOQkpsq7EfgHRFPhwrANSB7eHcT0AvORDn+DheIaPPDcIIHdxRtZzAlGmxCegRJWln6yY6fyuZMxA4sWlmvsesohzCdq5C5HKjoF8F2JcvrsOcW6evalOuAMI9DZ6xpeqmG/Aw1jOuoDQ5ht8soqVkpv11cV4fzWqmUf30Fm0Lk3vglnNF5RlZbTw5VrGYFgys5PQqZ2kN/hNiLP3f0wv7EeGxJxDE88wOqrUt2qD63ZAIxVFt+J/d/VBeSUKFpDG4FW//0K/BOAHxDAdL9U4K1kQMf3zXXTj8DOMHvjnOukj+ffOjBhWcZ9OuF9h4tmpMk2zADTc9CQCfUYnV+mwMmwUXVYrKnqb44RpvfP5c9xPNN2tYmpPEWnMnolfVrcZhVXefIyDwNgYT5tKqND0mzeZhthCviTOZJy3YF9MRUjZN7V+Jo6QUaH4sOmA9NKQeeOPTPdxWSww88d/F+/jVtFCzKrg6wOMxOCoFrCrqvSrsTeD+LAlA5U6j5f5xnVro81e9yAFA8jg2LTL0A66Ahgfx+pWRQGyr0z9/uospCMHZgZ5hYYnDxEB87hqvZ8IAHAYsMZdq1NnQzUclzY8pnrFUVfXUmDjBNkc1IDcObYcGq/r5YEKfePipYJRaUsfoESzSUoyI0UdKDWewqsOfWyZ7qB5U6VQ3HlncoYpuKAIYKRKlRuxMbpJqOcUMcJwZDpHFLp0+Ticn0NIhoVmeVTa3BP3aSCR4tIUEeqQ0cqo8ytORsXK25QoOZpNpzhKSMAzMSdAVinIhPsKZAHaqlDbzlnQ6z1nXdfGgbAr4S1Un2UeVRfuViLWW+gsFMEQLm/IonpQ3a/6/BAdDp/eyO0Vld3RuGHOdQZjbQbxj6vq4/wnCCBsiV1pFCZ6iw0yseufBvknCE6D0IhUVpMalEn2G/GUcyJdgnFmU0YogPyGUa4g3XzsKhXqyWnCGDO6UwMjiN5KpBadnhNvFv1AAUoqrZ/Els4Ul6Z76/pso/M9w7xnb3VBFkN3MKMr6fqTqqIonmOeMZ+8rBpq8JMnMPjoQRyVYCdbFVbqrJcWgB9ChqVfRadovf6WYFypM5pIlNP14E69+WYqiJZjbjo2OssSKcC7AQJyKTfcV53xJ6Ku/YmfiL/SxruH9Zphjjms2v35oGQDG3gGnVcyFmv++25QAK2rnlYTBE3m1SjwCbROyf2N6ECWSBWtkcUFciSQVwxt4gl56wsdF2VYQ/MsfAuuBi1My+6uqVGB5o9SWCvVQo6BNGo4IsW2lCVIyNkMmi0b0VcsOjAhiwCrrCTGZxkhA4/eY/6XloGNbKzppRLkxlXUXKJz9q1aozWGJn1O+OMitnPlmoeXAMlKxLVtUghRTQ7UihrWddhxnG4wjFMx17XiBH5l8NZR66oruAea16PTRDI2KeOdvyKBCbPnfYzPJD5+RGQOXBMbd1EJm4vddNNXmww5amtW6UDNeS4vJ3NqSv0atyD4gqxlGnE53jMe4f30wC9eXsukMB0YqU6x1ATLZQtLI6cE7E3jatz9nKgFlThwPnCnrsKUJmMmbMUtQ053fC6sxaTNlOu7ciOTO6pVGImP+92Vq+T2q8YwRmUfUXOVzHf/QxOFS+GPLxWWzLgaoSeK0gujQyEHS3OOrZxRMqzkPK8kXW3eR3HOtcBzFyjDmrUZ/4JzAWoiiR0orwyL7mppWCXfyhikbo6ucynvVBqJusxQeS5nh84xQkS2PmDUU7PqWroJ+s3QSBT9mqk3MPCjo8biIaO10zjptlFpVTyMKSUr6RdZ++vg0ZAqp9GmT7nCmdWlOHOObxzOO/G395dW+vz+UACFctTqIqYfVW8sY0i0PVbHj18xPriHO8dxyfHLBYLUuzZdBuyRoIXfONomobQeLwPiA+INIgKDj+nBEw3yOGNPhvkwWM1NHlOTfdbZdcN07tJhL/Z5hUvCafZ+IIc0a4nbda47YZWLQV5ViEVG72xfc6ej5nsqk3f6ItRBpXiilKotVSlKlVxtTtumQDzde80IoKq9JsqIoeYhgEgsmm2fZ2rydwM+gYdkqhWCj7XZRigy3CeoS+1KJqBmo/puUfzXdIC+ANHoUOKNpk9d9Ix9dIJ5jmAGOYAPqEww2RMzhcJdBAxhkjHOl2FKA4IZxRpzdnJFa7Yl0+j9t57nHNM3cGf5gb9fCABlJzjZLAWEaYD1lcePrjPJz7+cc6fPObFF1/g9OSLWDaeh+dPeHT/HttuTew2bLZrUo40jWe5WnF24wa3b73E8dEpTXuEijM5D+z7wIVc5Zo6BwKdLGhtuz4C0+P1WfXVqh1CC6cimnCieMmgHRK3SNyyfXifB++8zb0775Bjz+nJCadnZ7QnJzTtCgkt4jxJwsAhq1QuoQKlkNQ2TI08mwqRVeyquhV7wUMU/4q5Kc8YA5im2n0bVDXyOExsE9GCfMpsakGM4wTbWgzBMBNiOgFci7mZA+2gkNM58NfjKddovlHZN0QbVqCd5mzca1NPSp3dN6AA2UEE5KJf2tHQVwXlwFno4HQ26DbKSg3RqM7ESAP4QAgB7/2ECB2IBXmG9lwgAQVyrhKryfyg5mtRJ7fIQG3bcOPGGWenJxytjsh9xJXNHbsNTx4/4PGTRzx+/JCH797lXfcG927c5vatF3n5tQ9xcnqGOG971hUHHPMWZVquai6PTijAcN7GOizQTGTYaVUFUTG8AJrwkvEkJEecRoiXdJcP2Ty+x6O3X+fO65/izU9+gvXFOSfHR9y4eZOz2y+wunmLoxu3WBzdguVNmnaJ874gNUcaymlJ8fRXcCMQCZX11SGTT9UbyGwT72+k4beTHXyxw94PSUeKyCF5Zk2cCht5EndfuYJBHLhKPteCKJTymeeUf/CvryG7Os/rn6sn5OS9ss5eAfbFwskLMqKuCXLY2wOG9HY3SP026A3Law+P8A7v/Iydr1TfuD9Xvs9Wa+BqhyPPgAieCySAKilFoFIdwYkbWDDvhJOjY77ggx9CHHzxF30ht2/dogktL9x8kb7vrY9+w5MnD3n06D4PHtzl0aOHXDx5wqN793l49yGbrucLvvCLODk5RXwwJONsQnVYiWFQsw04fEo1Kcp0r1LFgt0220Q5D+y6o6cl4XNP3pwT10+4eHiHx3ffYnv+kHT5iHZzj6P+AeniPv1F4u23Mu+EgDtasjp7geMbH2B164Oc3bzF0ckp7dEJYXmMCwvjFHxgjHvXwaIxOClJpclTp+yRzR3XY9/fYUCH9ZbCsk7Z3VFhVxCB1qgDm6vCI+FkrKNQFX1TZxxgSJ5hyrJqrjS9w9RTT6neeRlNo/w/FfsGKj4wQJWVOgQwMpqAJ9mU2J2x8p+U/wc3YJnP5yA+MqHwIlBYemPlQYoyz5djrnrKDntuOj9T1n98ztNFXGvPBRIwTqDoyV2xDFQlVsn91jYtL730EidHR7xw+wWWywXiPM1iybLMjGrP2Ys3eVU/xHZzwfnjR9y/e4+P/dOPcf/eA7puQ7fdEBcLMylKcSn1jKh4RyzY/16dUso43dWuprvRffZIowxOI7m7oDt/xOW7r/PwzptsHt5DckcjiSU9y1UDZ0uOek/stmw3W2JWuvNHPHx4h3t8AmmOWR4dc3RyxsmtFzm7/QqrG7c5OrvF4uiU0K4IbYMED86sEIhDxZMwFJHKPI//8rDZZu+xs2bji+4cmIh1RdgeDpcMBQPeEAFx5g+SRScy/ZhkY+puWzPuGmtTEYEOefUGhVq2dF1DANWIrWfDHpDd5D109oYTEq11D1RCoOP5UWAfEQC6QxhGoK/yvPemxHMDtTcF3m5AWp2/ai84DNtTBfvwVk/lBp4LJFAXDUqMmhqVcmKFNTQrCUux3W07njx+YqLBajVQGpwg+CJbeZaNZ3F0zMmNW0QVjt5+h9ViyWq1tOfkPGjacwKdpa+Ggpqo3wrfORnyvhfWbsz6cG2lGiKYU5SS+w2P7r7Nk3c+zeadT5LXFzQaWS4CjQ8EcbhGiIuWzmVUe1YNhLYlSuLJOhLzFnIkPXnM+eN3uLj7BveOzgirUxbHN1ienLE6ucnxDfu+PDmjXR0TmgX4BnFmsxdcGXuJoiubeuDQGSnmYBmVifw7kelH+DcEYFn7xDxdtVI/u8QJQxi4UTpz7KkSkwFaGvRDeWLOMyfPirSZyPlltrMiMzFj5ESG8Q9reT2QTEWQuqKjjD+n8MM6T8RE55iw8jJR6hmLX7M5jftnOrxxEab7qKKfKRey26aI6jqG4PlAAmCKQSgT7VBJZtdnDGRNKEkj8XEioZzkTNMucCEMnnsiHs2JjDfnlAW88MoH8O0SyeCd2UuTCuQSTTDY/4vuYSac6SBLq1qUGWI6DFu0oqnfAfyqFBy/YyKOKo7EZnPJ25/6QR6++QPc0A3Hred4uaRZNPYeSXE9ZgZ1SoyRRQicHS1wbeZ42ZNzxuGIGdbbyDY9Zn3+hM1j4YJAFoc0K8LqhPb4Bsc3XuTk7AVWpzdYHp0Sjo5oj05wy1MkLPBNa5WOHIwRdZWREUZIdnMvRBWymlhVOZ1KXzOCR4qHoAGU04IjpLLzVYwolF2K2FWYLKu3VLPvpIHKVx/6mrqr9jKsQh38IAbtAnSl2ToghkNKtQE4hyNlfMMBhyuKOxkUd25Q2IkwyPUzEWB8wHzc5flThmrKbVTFYSVa5qyxO9YyRg6hh3l7LpCAakZjX+zorixGsu8TOdMIqSN1a9KjxLbfcnR0xHK5IoRACB7ELAsx9vTdls16zWbT41xDFiWVPMbD/igUb661kmHmBkCuk1wpZF2AnbYbyahVlsSZCFEVZCkRL5+QNxcsbiw5OT1i2bZkrAqxV1Dn0AAER5aA8y2LlWexjBytGjQ7xDuSKttNpI/KtkusNz0xdsSkdN0TNus7nN/1PJYFEo4IyxMWR6csTk9MdLj1ARY3XuTk1gssjleEhcc3ASctiCNPFI2VsDoV880SwxoOzxgElMnaU02Y1UnKptCVFOjVZ1JMK14oVi734IreBUXVFQSs418NylF2TIqVHI8fg75/h93XnQunxHeUhRjeSgrgS8nFWNn6uaLOTcx0dU/oPuCzw4EMLMo4Jt3ZktW0mzTT9z2qSgjBqlMVHdr0CaJaxi87Z+btuUACAJqijbMmuiyiAOXF68uoehzCtt/QP+nYbi9ZtgsWTYMPjRXgVKXve7bbLd12OyZstCdRd0POU7fOuiXm4cCDCUjVagUqQyKIupmuEgOGdyv/jRl3hOAcyzagq5bjVUMIHhUhaXGZFpMLs1eyV5xv8D7gJdGEHlVBU8C3C3CONoCqkKKy3gh9n0hZiUnZRmXbK33s6dMF/XrN9vIulw/gvl8iy5u0Jy9wevsVjs9ucHx6zNntG6xOTgnLY0JYQQhQ9AgZU9yKGf7KDjWsmgEcZDxgcn2WIR0rY/RgRQMyMNdSEIJxHuahCQ7vR1FlkKuHdcijz8COeW+q/R/XQsaTwKgLKmcncDjI7oU/986A33sZWHuzZMlsD0xFnumxq9sIvrvX7YayiwgpZ1JKVGegwXNwhlOmnMoPFZ3AUHG3yJo1IUVhGytCcGomvaxKEtCU6DcbLp0b2DGT8xMpJwoytI1WNlhVupirsuylGagYN+dMjJEUIzkrPniaEAxJFVGiaqUP5h2YvJ9zIxWt1KtpGnS5oPEO7yYLLg7nFOcF78EHCI19Nza9PjOVP4/3GXGOpnVIUGLE2GV15KzErJADOTdsu8zFdssmRdbxnPWTB2yfvEn/7id5HFa07ZLV6Qnt2QnL05ssTm+yOLnB8vQmzdExbrEkNEvENSjOXG5d5QqsNFoWX4Dbkb0fRIgpBzCWJ8MA3jkbs5SMujhMT1xt/75Mj5iDVYn6k6I8zJJG+blqzislL/+N+SgKAipxF1IA2U0Ud0bVi5gjMpHpq6zvDq77XKaft7mib3Kv7COAsa+qpxqfk3MpUgsDcUImJtRhnoeeDg+I5wUJDK1AiYJKqoJjWT8ZUHuOZt8WJyTNZKDXccKYUHNzmy0UQjwIgxJyCLecsEsVCcSc2W46NtsNMUZUlSY0tG1jfthiSh0fnmUKM9XdsyqGMiDeI94V5kcQ53BZcUEIUdEc0dQj2pPzBmWBiGfMPJVBNwwKPfWIeFrJBK9ksWhFFyCliAca16DquVg7NtGzjcr5JnO52dB1me7yEX0WNu8KuW1xyyP80Sn+6ITF6Q2WZ7c4vnmbs1svcXx6i8XRCd4v7B1cMIQrmKZ/kJ0L51AiRetsVwuQUhdvFLdsLQoH4HxhEgVNgsvJ/OVdxhXvv+oUOxbjLP74eYoIivIYk6PFjWXdXZXlXVmHyt5PAH0GpEMxlpEATL9fJSruepaOiH+46MDPQukn52qcgGWCnyslK+GrLOjYx+H2nCEBGNxYYSKXSeESINUwGDEYTuW8qznzGRVZg41bjbPIaprvPMzHGPgizpQrOSW2KdF3PduuI6c8OmqgpNiTUwQE5wNN2w4U4pDHoBbzoImZGeeKi7ATnDd2LnhXWE41jkDBSbJ3lYRzCdXOIva0hZzNhtw4fFNmS6JFWZZCFaVgMUksX71IKhrpDieOE1EWnZJUWLUNj53yYLshxcxq2eIXnj5Hun5NevyQ7klgfbcBt8AvTlgc3+Toxm1Obr7I0ektTk5OOT67QXN0zHK5JHoBH+g1E3Myd90JNZ3K5YoO4QI4ihGmrDmCSCi+8B4kkWNEvSFzj0K2gLHBvFlEg1rBeWQPMKSEwwdX5GlfqLzfAWCZUPS6riPXsEvqdxHAfD/sa+f3FMl1nx+AiFmfCM4FFgs/IK4xZlyGj3nk8A8BcUBkjKa1Ni7cuAZFji9XuLJJUBBvysCcq3wPVZcwUB6pyqmp7tqucc5Zkohib459b5TTOYIvm0PmzFXV0ApjktFx7NN3Kxi7+o6rIjnh0RIkRLUhjdRBi5cZCYiIU4IXnNQow2ievs4RXENOJoE7caSaQKK+d1aUSC5ZC6KCEw+ScaHDSWDlF/Sd8MRlmtBz88aS47MFKSldTHQp0XUdXQfdBvon97i8/w6X7xzxYHnMYnXC0dEJR6dnHN28xerWbVY3TYTwYQE54MSRHSWgyzi8QVnoZFjnmSWiptrOpn/AmTUEb2njnM+DiKUZnDMOwFjlIn7lwhUMcKyI83jX0LSG3KlEgxrYNFnNGXAfXua5JWHcH6P+w5SKu23YN3IYTGWCAOzTrvc+GD+zIyZMc7kMgfczJHa4PRdIAHaRQIXkKRMzpR0TOW/IimkzMExKcSkd1gFBJTCwn7vcgoxypJlz2uHp1YMtl4UdBIfh/l0MPqE+w7bSUv7PzuWidLT3NiOoujAoukxUiaARJ5EQLGeCEImpsxlSR/CBlCz5vPPG6iZJQ/9Swnb7mEgegoPgknnpkRFJKMnMqS7gfCQsM6sTsShGBSctsVO2l4nYObbryMPtlsvYky4u6C/vcvEo0N1f8uTOCbI8plmdsji7yerWy9x8+UsIR2dGzXP1tnTFPGsI1pYwUayDZPNzNh3QsGZFo6DgveIVQw7JgUSbRc1Fj6BjQpHKHuNmgOxk3DdodVCbt7lSbyQek401517FuM5DCKOy8aMSWgsCKLqK6X5j+gid7bnBkaj8NwhDVZFdRE5HfVYe+j7UnhskMJeExgkaVOvljWWa5GKYz8rujXb5gdFUWzRVJUukYmZg3Bwy6bMsiHdu6H/IIqRFpq8IpyqJShcjVp5P+BgJxqgcZB7lplOMVcKpcy09RQZJgKcGw4Cikom5IxVZO4tYHgVnuelTlYtRqt5t8OMvQJeTkqOQc9mEmhDtcAQaZxSsbUFbR996NAW6raO9zKx7RxfN6qB5i243pP6S7ePAE2lIzZJbr34xxycvEpanRf8hZOdQZ3GUyOjsUydQxWzuxhlU7sjmzzkQdaYG8VIVEGXO0oA8KAjC3M9Hd2Wl2iQYch4Ufq7MfV27CRs+rOekpxmUT9jwYWMWcaKwZFqAfYTcAqxlkw/Gzcklg56kZtnFlJR1zsaWCn4Y+xTGfFN5CiMH2lORgIj8IeCnAndU9cPl2G3ge4AvBj4BfLOqPhCbmd8F/BTgEvgFqvr3nvYM2Ge1qtljD4ENMzTeOFWyDEs4CHQjRyC7GHHUQI24RmQIxKnsV9mlA/oYMXAJIhmCcHaaMnApOt1cw24x99gUwfkxwMbcXyMpx8E+btdGMw2qgibUCYls+k4R8JGsCXWxFKlMZtIqiC2IyZEmOqg5IeVYxmnv60VZOGUpFtIMCdFk4/eAC3gvHHvPMgkpO1JypD7S9ZnLbk3ulV4Di6Xj7NhzerTANQ3qm5HtrqIBBugOMeBWGQLssoIkHQBCCjQpvgQ+OlwRtbJmE5dIhWtIhSEupkq0hHAXRSAmYkjJy0AJuZ6LA5MVl/mRAcCGJS1AryOiYQbYlXTI+D4Dl1F5nbKPx/IWVKIghegwoKTRdG7vqCOnMcyMFG7w6lwC8GycwB8Gfi/wRyfHvh34H1T1t4jIt5ffvxr4ycCXl79/GfjPy+e1bfpq9cAh5mV6XZ4cGzL21GMzOK/Tz6xIw3AzhSGsmEK1+ABktLCPQ513YSxAMnRY0kpPOI/5oKtzUV1qQwL1maqJlCJNUiQUJU/u0LwF7REyQcA7C4jJ6izBUE1HVZVmDkQS0Ns5Ne5BxKivU6VxUgDDxmpUtfAkSkECEMQRgJRrXwnFEE5UAQn4RUMgGGufHRohRWGxhVUP530m+y0Sn7A9f0AIp/jlEaFtBsBVb8CSNJX5MSo+TaEm3lZdVUqtvaLEDQGvpgwuRmELy87eEGcBBKRmTShrZFlnMLOfxVMIpvdJVaaecXSumKjH9RS0uJzVyw2YvQi1DHrVO+Wy6uZXUfF/jcA0jsfeQEcxYargExlyaNaAqRqYVU2tSUdthjEM1qPLOtG3fBZlyFT1r4vIF+8c/ibgG8r3PwL8NQwJfBPwR9VI898WkZsi8qqqvvW05+yWH90l+IX0Dms05tSvZ0e2ag/OJ1rbSvFnSGM4V4A41/TQuZSXH32w85BAU8GFAkBVQVWRQfF3FUYWt4xjyF1YfSNyROMWCRGXMkldAf4NTjq8ZlxWBm2GUtKsZfAlT0A2xFX9JgSl8ZXFV6Qk4XCYwizD4MabtRgwxYF4shplj1FIDlwQokJK5nyk2aEaIXfFfOZxLuBajy/uxq1Ak2EdL9i882k+tfawep32+ITT01Pao1Pa1an5HLSNZYJyDiQYF6ZKytkQjDPOzHItFkAp5mHNdk6kwRUvwkDJ1ExBJlqJRrb1LCZLFWepvwrFMcCckJbKqTHGBNrh4s48ETHqNnQFwWeRgQoPol1lbN3IJQw3ip0fBdIJwZtys0aWDNFMTLAhx+JObaXLU+rZ9lty35O6nu36ksvzc65qn6lO4JUJYL8NvFK+fxD49OS618uxPSQgIh8BPgLwgVde3pGxyjWzbzJgACkTVmVtqRO+kxTzUG8VVcwQRRU9dLytFK0pgJ0H7kKqD7uaqYmCFJBaAWLSye7zZUI/Sk05i2fuBmqq2QMRoUc0luSXHnJ5S7V0YbZxbMxaIu9kgmREzJnXRIlc0q8V7zccmgwRpCwG3Cqomlw85tusbts2GZKpaRzN5p9rlaGyDqo0mBk0OtimxOWTxMWTnry4S7tc8aRZgFviF8esTm9wfOsmy7Mz2uNjfHuMuCXBt5aD0VVgdaTJ8ngvSEFwijMFphNwFI9GJWlGU42T1Hni2DInUw5uLhNOdozkHUJCJedlmxVwrUBcT1WlscxZfSrXqlV5qMM/23e2RhbWVTjUNNYeFCxupS8WrJx6creh327Ybi7YbC/ZbC7YrC9JXUfuO+J2S7/dHtiT1j5rxaCqqlyXz/jq+z4KfBTgh33VV9T5m0C+TEj9+GnYeoINygJWRDB8XltOamwyfd7kd7UWGCtaPAxt4KYxB2qARv1v3CxT1+Od9y4bxhVKJbXAZMpkccW8lRDJJvdnR0qemKqLqreAm2wbW6i7rwanGFcw7rnCeoopEs0z0xm3kyBFpe8SKRobbfH4kax+0NS3IRCco+8TsS+zXFjQpGNef3tepnEZ58Xk+bQhdpFu+5i8bsAtQRZkPE8k4FdHLE5PWZyesTp9keXxLZYnZyxWxzTLFa5ZkCWQxBEL91LdeHHVVg4uB5wKsXX0g4hhbJMoBNHh/QRnCV0kzUXHyU6Y7oNB1Cu5J3BCdiPhsVWZ6JCoBKqKX0LNvmzWDR34RcufU9ZaFbLtB0kZ7SOx64ldx3a7Zbu+pN9u2GwuOT9/zHa7JsaO3Pfk2JNzX9Y3IdnMxt4XEe8aUPhMkcA7lc0XkVeBO+X4G8AXTK77UDn29LajbZ1q1Kc8gerczFNPTwN2rvbammL+A4+dAO/8fp18zFk5GRBApfKjtFYroBlXWpHV9JVntLYMTQt+q3Kwo+uE7VbxCw/q0WxA6IrXWw2hHTYrOxF1JRmGaiKZLICmykUU6VlMWWieeAklEkQI3pyZMqBOUZdLxidT0CUV+sKZmP9Dwgt4B8ELy9aTRIhEGpdpNNP1F8QMzrW4dEG/ecDlPc+jxSnt6oxlcTxanZzRHp3SLE/wi2PaxRESGjR7Q8yFra/Zk9QFtDHWP2lnsnMsCs5SdrzGQjksmeuYmrt6lY4Kt8FFeLLY6hxa9Aoj5SpTjCFB0dEGUbuvSB8M0FPq0ZSIORH7Dbnb0BWK3q3X9Os13eUl3eWafruh77akfotm0xOJmCm0cRZjYXoHQZwhO/OmLAhTd/f5vH2mSODPAj8f+C3l889Mjn+biPwJTCH46Fn0ATZ7o0p01KxON3cBbDe9aaS0soMIrnkQVzMu+5GB1mcBtIHVNju/bRIDTMQNVEMnyKIKIU6lirOF8ywKRVffyxF8dVhx5iCjFnHXdZnNVlk2wXrMlmvBDdFrjOZEnTihUESUwR3PKu5qPZ9ApDH/ACc4B16EtgljFls3mkCN4lVey1NTk3ux97dNalwECC6YOOJjj8vQupaFM05B1eFIbPtzHj3asEnQnpyQliv68xXbhycslkcWBn10A786ZXF8k9XJGb5ZIe4I8cFcrEuwmXiK738g52XRn3RoVERDWT9ffBMCuAacjVVNQqOGikMJzimcW90bdq8vYpkOlkrzTkygsYhKikYlp0jOkRgj/WZD7LfEfsvm8oLNZk3Xbem3a1K3JvZrcurRFNE+obHH5UxAaBwsCvB7UZqmJBUVK3mmaiKfALl41VpGIlM+XscTP4uJ8I8D3wC8KCKvA78eA/4/KSLfCnwS+OZy+V/AzIM/gJkIf+HT+i9PGSlXlZnQAZin7NmBW+2++l13OYARgVR2nmFhyxUTrWz1AtS9aZvIfVN6Pph5dlh/oZiLGFKlVQWj/ZlM6kSqwyDe1U0KThPZB1yJFYhRSdmRk8P5UDzhKjtssxdjGjbmoASV4jZNwUA1xDV7cu8R30C0iXNecd7iIVywsOecEn1fqAwWtORcYW7FtN7ON4BDezELRo5AwHnTS7ii+HLOEZqAk4hFBwZUEzl2OHW0GtHuMTk+ZnN+l42YWZHmmHBk4sLi+AahPaFdnhGahnbR0i6WqA9ocLgQaL1HW4dkR9eXwDGkIIVqNWgQ18wpuhj3ZmtSLQ8y6lsK0nNEe89YZPIc0b4ndVtiv6Hfruk3W+J2Q1cS4PabNZv1mm67MWSZ4iDjhyC4EgwWPDTe4j3Eq1llc0JTj5OSlwDj2HxVcvpCOCYE0pXYlhqTIu6zqDugqt9yxalvPHCtAr/saX0efA5QIGd6gHq4Yuc9Kj8oWuqF+8BLZVepLqvza/a4h0k3BzmLATlNkNeeDmCCaCZJN03+y4Os4EvQihuoTTag1soJ2VBShpQg15yVQwWcyr1YnsaUegh+MGVWylYfWWXVJJ6oQtSGpJmkyT7JJBUyHocj5QgRGi8l3mpEYCKOxruSwVloQhiUVjnnIUYjF/2DWVyE4ENhty32QZyj9YHjZYMPgnOJzXZrCCJHLi82XF485sH9+6hb0i5OuHnzBY6Oj0zmbRYkJ9B42qMTmqMTJJiOwMuosVDEQrKdQ5yZN8VZiLBRD0eMCbLivRDEolE1RVxxTIp9R95uSZtL+vWazeU5lxfnbC/X9OsL+n5Dt1mT49YUp8XrU9Q8UVuxwjmhNW1BSrlEi45RoxYolUyxqdlENEk45wlNjXGogC1Vi1s4txoLUbMW1c/nvvjIbhvl7go71nY9u6F6/V3H7gxC3vBTBj3C3qU7eoWpC6diyjgtWngpMfVzTkB31A4jqzLos8rFoqWIiviiIILqOScazWGoOuqIDO8qomYiJJKzFVbJ1WvFpF1Qy2YkVB96G4bFSQlddmyicHGeUBWS+hJfIER19MkX5xtHA6bzyOY7UfULlFx/zhUZ2Duyd0QnJYmn2eAtGnLUdUiRLcQLJMENSTWF4JTGmRjinEOdJ4jQS8N5n3j33h228S3iy/e5devM+vOeSElpHpb4xQoNCwgLi3D0LT60NM0S35gI4LzHU5SyfUEUWdE+k3KkPzdlW+o7Ut+VJDWRuNmQ1hfk9QVpuyFWeT1FVHtqGvlgOMliPoY9pwMxcsW7LziPeCn+SnkIKsvOAt2yCkEcvphwk3MmBrmGJM7WQ3Ox6EjhTMfCI+Kq/uJqpcBzgwRq7E818w00tprBChtvgSEHgHfybe44NJ7R6rVT5fUJlT9kopznCdDS9+iUWSe7aoVVpx6Jk+dOx1NHqOaEI5gcXv0Uck44TSg9SkQlExpHaP1QYankXUFzoo9xnCfKWLTkW0hF76CWHUgrdyGZLisPHmfeer1jtWo4PlqheHCehKPLRZ4UJThnZdycTFJ0KUpGc4+TnpwdKfXG3vpA19taGvKwuahOL04wF+LgkD6Ds9/mPm9h10GU4EBcxjWe7M1l+t1uzebJEziFxWkixUifzEOyT7BNkCSwTso6QswBH1YslkccHZ9xcnLG6viIs7Mz8vGKrJFuu6brO+K2p1tvuDw/Z7u+JPZbSD0iSoqJ7eaSgCk3Q7ZCMUJGnNA6wXm17MBCQWjgxQ1KXPMFEJvjEgDmm6ZskkQmDqy79x71xRwtgeQ8XVaSgg+tHSumXXEBHxrz8chmupai47EsenbfVe25QQLmeENhbWpq7iodjGCU99huGFiGXeorFZ3UVoBaYTQ/7rcpN7AXHkxZyAHWR51A7VspQKrjNXNepXglTkJdleIunHPJpTB6ePngaRfNoFMwL8DGxqIWIm06FEvEOfjdZy1BS0bpleonYP4BF+vIg4cdKUFoFrggFqEnnnWvdNueNiiLxQJ8BokmV5eMTL4EAWWNxF7puy2NeItSxBSpVvnJ5sA7wYuFUZsu0QKYqlu0wYfJtpqweTBhCJGGJnhWrSctAieLzI1FT/Y9fYxkVbpeWavSqZnV1utI7GDdw8MEKp7l8pjlasnpjVOOj1ek3LPZXJJih/aR1EVy7MyHQzONE1ZHS46agM8XBIFWhCYUEU4AJ4WTKYVASq1MJ2LuCNkUjz60SGjIOFIG17RI0xC7ZHJ/jubg5Rqcb3Hesgh1GWJWNjHSK3i/xPnGxC3nCe2SxfIIce2QXck5SMU0ISL4UWGw154LJCDO0bYrauQXxQWUatopChTVaptl9B4rYDlld3YY/4kPkRsgU/eungPpbHxTfcSEYxlMSDtqBvu9g2RmeMCoKEXBY+6+1QKRJzJOYeNKcovtdsuFCHmhhcI6JEgxm+pQDtsSZ0BOYt9doRrFzdLRINJydCzcvJ1ZLj2+UVLuixnQc3HZceftJ5ydLDg7u0m7ME7HPCUVtC9xCea1qL5yCuY2KzhQj6h5sTtnEYzelZwJzvQfwWkprprxwVsWJQF1GaeWlNSsppkGz7IN9MtAEyKiF3h6mz/naPH4rKxTZKMbViTapqEDtinSdYluc876fub83cDR8QrnzUbvHbTO0QJtMBGEnAjOsZCOIImFN67LIwQX8CGgxdvR+RYnjSF2jylZnSuOXuYJGZYrfLtkE018k3ZBcp5eLDS8umf7psU3S7IEuhjpukhWiAHUO2R5RFgurcyeOELT0DQLKNWoBnd2scA3J0VxeEV7LpAACC40hsG0uv5GakaeCjxKVUzpUPOe4nhRTlY1HdOoNINhGYBLq4Ju8vyxjQhlF1HU7Lf1Oil54nVgkXeuLwhiYMXEW+RfkdchG4svUF3xDDUEVL25gGpDkpawzGy3PRebSNfD+YUSvEKjJlOXZB3eOUuBhqLa0jTBFF5aNPW+RQkIwumxhw8YYlSFi0tjR713hMbZZg4O5wLeBXC5vIsr5rKMd96AQhO9enI0fQJqASySq9Jah6mpZkebw/r+incW39C6gHqP5ExQxbtMUiswE1NPl7YklCwZR2+6FfVITjSYNaDRyFKUJJazoWkcUcyU2keFvGWRlUXbELyjaZSFt3DtReOt7mNv+8hJT3AlxLxyYW6Jesu52EtAdIGnxfnA4jiQZEuXFU9LcC3N8ojlyYk5Pa23VvchLIhiXFnwLcFRTM/erCLicZpoo+lXVs6RnUNCwDftIPoZbtdhHS06VSB1oMa9paHC1357TpDAGBBUdgQ1lbdSZEWqBp0B6CwU1LS2Vd43bblhVasrV503IMVYEjTW50zbRJbXUfyYXjfoFwczoztoWRB2xQgdtf1a/PjVYuVFxezqRXRJ4sg5oOrYRHjSt1zkBc470iKTUyQpuBJdnIpSS8S8D0FxEu39UZpQUodjhVrbheUrFBFy9LSuJSdLXEkUxCtB4IWbRxy1gcYLwUVIpVxazsayE4wzwJvsHsytuFOPeje476omMua4MqBWYRBLqh07k9HU4UJRmrm+UEYQ7REiSkPUrUVXiqVSc6UcmscXfUMmOCEILBpPzA51lh8yFLGjd0JKHQunHC8CwTsWLSwDBCcsmgAJore08RnBh1CyF3n63LDpHBtAlkua5RnKksYvOT46ZXlrxVoviN0W9UtcsyC1SzbtwuIwFgnvF+ADbfFxaMQhmKuzbS8TtYKlTbI8kcnczFPXETcbYizp12NPjh05bo3ASfEIjVvzRE1K7LsrYe+5QQLTAham2aqabh3k7l0rXmXTKXZg0RLdZVoz8DrI3VJEjdz3iAghuCGdOBxWDMKucpA5J1BtxwN2mJ4f760ea8bVRHPpVGPnY/J0tIh4kmtZq6NLHpWGPhwRTyDxkM1mjcoZTiMSIz4nC1dQCxoxW7bpFExZ1qGa8NHGpCnj2OKlowke72Uo+lnrAKCgfaK/vGQRVpytAo6M9BtQb3UTU8KRyc7CiFUtyAg1z8DkPNlB7xJJE1HVzJauaLFTIouathuHlo1t3PfWgoJIKGsU83sQjca9SMK73sxp1UyG6RGceJSMy4JJBw5fApJEMuIt6Uo1p+bcIU5omgYvSts4Vq25FweBmCwGAldKuUlgm7ZsY8+jdeRR35PaI1548SVuvfQaog3BLXCLFXHlEX+DRsyLMTmPEtgks0C4hbdYBsuqguRESlv6uC2WhhJVqZlcdEcxRrquI1bno64j9WVxGX0WnKjpJooJFMxJarrXd9tzggSqVnvgm8uurEEesi9jT+4d47mYKOGKCk9q8oqSXzBnK+hR7z4A/FPz4KHkEfOv5dn1npmCcn6pISnLEddHeHKZCVs4XiwQvyTJEf1iia6WNIsjgnO89OIX8vjhXR49uE+/fkzu1pA6cuxxKSGpG/UnKOSMywkXu+KtZo4mGs2bL+VoGzzLkHDVo4RgNuWUe86fXND3W9oQLJBFlGXb0nib4xAc2QtRzbYtJXw2qRBxxRcyFpHMciOgzih7BHXOFGClUIxoNo5AI0OpdYmlAE0GesA8E70zjzlXzI9mojTPPtOdFK5LzEuTImq4+tXJ4A1pDlBQbagO00cIJSIvZZIDdcZ1xCycbyP3LjOP1LM4OaV98QtYvfRBNCo+Gze30USfhIgU3wyBFIldNMDNinZGDIjG3cW8Zdtt2fYbYopV32jrRxoQghSuT1PGXCM8vmmQZolzS4KzY65ZgV8iYUEIDSEE4C8fhKDnAgmIVPlZZsdKkUAGyx4wQpiJAWVlGXy1S1CPuKJMzKlqloaCEbt/sCvT1zHMEcSV3sizi2pfRWGpWvzzTVmnIiRpuPe45+NvPCLEC774S17j5OxlwvFt2uUN2sUxYbEsnoGJ48f3OX5wn0cP3uH+3beI63NCimjsCTmWsh/VE7EAX7JU6VpClTVtcbnYvmMyzzhNSMk/lAuljrHhos9c9BGRvuRBFIJLpt0v+Q69x8yHjadpjGPLYu/e90rfWTLUIObhVkNdVSnBR0XRWLIkVc7OgwG7hBLKaUAAHi+eQMLh8K7BS4tzpZSJFHJQahFUMU6yhRgbosozG7r3vpSOz+RknBEiRRNlHEtMxoVYYtKl9eNMNGmWJxwd32S5OiF1kfP7D3n08D45K31ScinQ4qIBraZkzkc5W6BQtsAxFSV6pS8IGg+L1cJcg8XiMLx3NI2naQygvXOE4GmbhjZ4nA/4JtAEO+7CEg0rsm8R7wnVFHmgPRdIAPYBzrD7VBE4YvWqAKn6A6nRXTqKDpYdTM1OGmPhDarCbl9TuivbX+U3UD0ahX1EUk6QcybFccONWYUCCSXmxJ1HHZ+484SlRL7k676Y41e/jObkBXJYEkJTGQwccLK8xeLmayxvvUpanHHv7TfotpdI7IuCU4cEJdWJx3wWzIedmEsWYiX3xkXYNZY1yLlMFLXcBrkj0ZPSFtFIzv2Qs4AELil01VZesvm4ZMFHHixlmQUZnZwsTHHotmZ5KI49NXNTdeNV7DcERAJeVnjvUMzbDucRv8CxtLWVhHctISxKpefqG1LCh6tDghiiqmnVUk4Wgiw61AI0bk9LElbFo+RYzK5eBnHLIvIaQoBFEBZZWHrHkW84CQ0xRu4/vss7n/wBYhTa9pSmOWbhA6iFP/u2Qdqm1IcI+GB1CF0IZF/iGJzHBUe7agnBlLwVsMV7QjC3biluwU48wQnlJcckLGIiTBYLZzaz7eH23CCB2ioLbpRhypbrVBFA5QgGsz+UajGjVp6CBAYgHGC1JGnYAfTqb1/j9uvpWeJHnV8/PmscV9d1bNYbQmhYLlcTByeTg2N2bLPQa0MTGtzRbdzqRfLiFtkFcnCW0qsoecQtaZtjzgpmd+0xFw/vodsNbuI+nCulzxHNFm+OKpqKpjsqyXXk0GPpt3SIHHRSQTEjRLz2SO6R1Bt3kTIalT6ZzmHb9XiNpoEm2f5NRuHI1vdCl2Zqcwtz/3CNxSo4V5KYYOZG56w2JAFoQVpLEOo8qh4XvJVblyXiEkKPdw3OtQgRcZBUoVb3TSXAypvWwPmCKHMRTYrymMHRy9YnaaavCrgqCpZ8EcE7VBraRlmExCIpSwcr7zluGrq0ZuU7Fqw5ao945bUPcHzjJXzbWrzEItCulrhgsSFh2eCbBhcs87GTFu8WeN+Ag5wj226DUMubmR8JYkQvU4iZCqnYX7IUZIAzxTOKy7GErD/3JkJruyx5dYQxLfRAhIslAGr9NVNv5cG0NygT6/ch4ea+N+G0aCjj3cy7mnAJM52DDBcO2YU0s1mvefDgEcvliqZpbQOVZKWot6w5CKFZEBaCOk/Cm8jgA7mEGKtzKGZuEwlIC6e3PoC4hvvNkhy3+Pr8HIn9lpyMyqfU08ctqY9oTKQ+kmNP7DtSCXrJqSeVOPucEiSzpDgJBFlZJJzrTZnZCpJNzpYEuetMmbW9JPYbk1uTBcYEMietY6sNMSnJt7ZCzkMwimeVeBUJgPcQLagH15DxlkhETDHnnMe1K1xcIL7DyRYvDc6ZKVQK1+dQM2nGPEPYQ/IZ0RJ4NVp3vA+Wl5FMQpCsxGy6DFeIgndCEzwQaLpEExwtYlYI72i8JwdPc9SwPGq5eeMlvvQrv4r2xovkVcvi9IjlYkm7WFh6Ne/wi9YQQAgEH2jExJvGLwDl/Mlj3n77bS4uLkrBVUoRXLV8BlXklBJ5qjULlmV7Ek1Q9EUWMHU13D03SKACmXm8VRNS2aCYk4qTkrZpcPjJAyXWbIohlSIVVKuBMMiqiR0kUzbHjLpP/q9f9/QFg9FiKgoURSRuKF82BhUZNXE5kukJbGjylkCPl2Ax+DlCTiU6L2Iuc0XxBUXv4Wn8guOjG2yOz9luLsxppWQFTrknVRGh5C6MfY/2EZcVjR197EqqsETOZntPOdvvmIbAFacZTf0Q967R6hbkZGg0hZbcrEjtCVkTQsblDpc7JG1RyawFXOqQsEAkW63I0OK81ZO0KmmW2kx9+S3OCoskY+eTRJzzxW/AnKJc4yzS0Xmjjs4XCcAIRudyma/ihOQtTDMDJFMye+fweLxzpjjFRJNelaEadrKQZ984Fm1D41ZsOsW3ERVHcoHoPX0owVUBWC5wJ8f4k2Oas5ucvPwiL7z2MsfHJzQ+lNBj00cU/2nLJOQFLxSAtt8PHj7kcr02BaJQXEnUTLXmUsmQfRjAedOfFLEwOas3ISqIe+6tAzutQPIBkIUJVqvmuTHkeKTMVWk4SBAy6WOGFUcF3nVKwr02mAdr59XNOJv9VvPAxpm2sBj2JSGuwyoKJYTGTGtigGyoKplm3LIJmobZWaCNYMqhtl0SY2/KriA0LhDwRB8G7sZn8CHBQvGqaIy0qZ9Qlh4oZqisA3egKaIpknPhGvpopr2o5JSJfaIrzy7hgeN37ZEcwSW23RZlTRBzNorek12LBguYcYBuOlsVJyWPoLG04sbQ3yzOahuKB+8Ii4bF0THt6piUIuKbwhonZNvTpUtw55B7LCrTRJ5UlH3OqdUt8FqiDGu9A1tLy9VgJmWpiNg1LFfHXGwzzbrHlToP8yS3BaiDyf5hteT05i1eeOElVsulxRFkHUTWwqPYzi1ih+nBKNWR3ITQ6LjvmXK5JZ5DKHqgStPsex7yVVy9lZ8LJHAI5mpZ6pEdL8453pU01BO5X2vyjJKZrUD6kOFlNOYf5Iqu8hE41EwHIeMzBh+GUdzw3tG2Vmm45vgDy8qjJLKLxGSlu51r6fyCrjH9QACT812mZgZOamnBgzeFZ5DAarVgu720fqrsqmIJQhAQhwaPC0pKFgBDKTriKMxCNqcizdHYaWc2/Zx6+n5LiltCRWBqGu4U01D+LWkmJkvKqknJfTQEoNFs/t2a3F+S8xqJl6QmkRoh+R4fSrot34Gz0uY+BCQ0hNDgsynjVJwBVViBWhm0xWLBrZe+gJdefoGUFFVPcA0OZb0+p314j0ePLtlszlHd4gvHQ45YRiI1XQJ9cdyyLEoeX/wLSvbhpPRRUCxq7+j4mKNNIoQNPmXT0LtatFTwahYM54MpQJ3HNS0htDQuWPIRGdOMmWAyUjSD9TzsK1c9UskDN4nWpKRjTcUqhlKIyOAnX6xmxhT/EFEM7kf0CdXfX4Qhk445WhcxoGLhKgKUvHsGQHVCJ8pBrhWPhudfazLUURMx9DhJINK2DYtFiw8yKjLEIdJayGcOaBacOoIESxFWgmtaNcVOUnNRFQWHsXcO8GRc0xN8RCRWpbBtnpSLr71xJOISNWw3k0CKXR9XFKbeRCdfEpI68Nqw7bbcv/+At954g5wSbWM1F2/eOOPm2Y2yMQ2xpuLwgoplX89mUejTxgJi0gZJG3x/SZs3kDfEeIGjp3FWScjxGBFP2x7TNAtCaG0enOkXmmaJDyeo8yzbS3CBF1/6EC+/+iopQk5Wjs2jnJ8/RHNgsXjb9Bw5l/qRNfuOK+HgUG0TwUEjjmASpYV3O2PTjRiZnL1aHrFYWC1Hq0dZQ8Ft/3nAay1l7qjl1sY9M8iqjHqJCSLYkUun4qYxDvVeV/afDGJv3ZMybPBqNjVOQfLVu/65QQJTalzZoJmXU2HVhmo9wOCzn3V42UEGmIoGu4L/0Of147lKLNjNOTAcL8qmEBpTAhWWThXIxtKaXmqBqMdnISi0Aq0klpJYZlNj9gqkWDL6RlQss0zwIK5nuUqc3ViStTUPhNiRNms0mlttLuRa1UJ5fSoWkZLH1umoExlfw8xViuJcw5PzjsePH5s+xgmvvNJzdPoCp6vTorDFlIfFu9P2YUZyD3kBORdvxmi6gf4S7c7RzWM0bxCXLasODxGFpj0lNAt8aFnIAoqs3i6PCM0xvnEcHa1JSVksT2gXZ0Rnc9t4j1MTVZpwhKdo20OPbjdWFDVTkoOUPVRdzdV4uJrcpYC9UXN1JIwqL5ZLmnZhMfp1d6kOyKbBEcRNAkBlVGiX7Thak8ZrdvehTBHAZDtXWB9FUAaiV02iQ58TLnXQGVzRngskMMrW9ff8+7RUV029DFjWXbuqXj3ttVAoqDL/lbL+iD5nssnTxASzWbvZojjnaNvFkCjDOT9obVVdyb9njjouR9ocaVNkEbcs4po2O7IaldfcI9ohvkN8xPlgSSgaePGFI1586QPgTiFFcndBf/GAzZP7bC8fE7sNKUX6LtL1ikTMDFfGmpIWXYONv10sObtxk5ThIkZeuXnG4mu+govLNV3X0cdI27altkAc6+EVG3umBHVJLoU3zB8ADShHZJdQOUL8ESGsCPEcrz1+kxG3QoAQTgnNEte0NCGS+y1ZYLE6ITQrQus4Pjrn4qLDuRWwBLT4IjiESPCmMKTY0b1vUEo+BRxF8U/SEpZemE0RLQVobc+4op9Izrgd8RCaQGhMZHB+EjdS9owPniaEkodBil6jOLtNFVmMFgqlqq/qMduLg/mZcc2qKXqqh2L4336PNQ1lD66uas8FEqjtKnfduYdf5bAqu1PEgwzTya2xBkrllHRP93AQJRzgzK4Y7KCe2R17CAHvLaAlFy4FV+oE0qOyxUnPqlGOlw6XntCdv41siq87CXzC+WTht96UjM4vLENv8LTHN/GL22R3WuIJFqQ1bI8j/WUmbqDfXrK57NhsEjEKMZn5K2UlSqaLidhnpPGsFrd44aYjdsmKjOZzXjhO3D5qyNpa0VMRvF8jcYs642pyypgJ05fJLvqDmmgFMbEDR/YeJCBuabb7uAZvCT8VUNeaT4G0OL8oXEvGNSskLGi8o2kX6GUckCqD67LpXtQlsqSSr2CSZosSQyCOGmKLM+cap1JEoqJ3Qop5cFzTuubV5TjnXEy9BnjmCGU5FOtzpdSzLMs/wm0VB8r38pRRUhi2YYmX0SkiUGrMxGyjSsFmOMZeivn7KQLwc4EEKlt/SDs/TdgxevwxfAomA1t8+j4CmV4/xbT1uE5+T+7YOVS1tnUFq5trGW+u4okeeH7VHZRNKj1IT+OVkyPH7ZuBRh6xvVwb2+mhDQm3SBbW6luTT31jmz0ExLd4b1mCxQdckQ5dA7KAJhUPOIEj5+iXQkpCHxN9NJfWGGHdKZs+Ii7T+gu0v49PypG7ILtzy2oUzB4fUyKpWv5AVbw/IuPM1RUB5wzJaCYqaAVspXgVehxWT6FmVc4ZkhOyx/z8nSdJi8Ns6camZ0MOEix/ng/gIGmizyaXmzOjotrR5S2JjizmDi3O4wbAsNyLiWxONRUyCwDnbA5DTiwnn+lMLLN0BnCuHBNiNDNryRJm3VTALy3nPFhiqugwhriXZK2qRY9Xc0ra3skzIqTjn4B5e1YgqB9FXB6uq+IzIPswMW3PBRIAmzDnzMZ+lcxthKay9aMSZEwhPhG+KAihHp3AdV2Q6j48B9ndyRqP1Lr3A+qQCvjzO/aRmbn1ItkKgIi527aNcnwMy5CJEmnEsXCJxm9wIbJoPIsQcaGBkHHtEa71SGuU0bzDRsOouIyTSM5btLsgri/IKZaCO1pMfxaw40VZeMtYmzWiXeTiwcZ87VPPcRstaUiA4GupNSXGhA+B1WmLl4bYQwQLKMpKzEIXlW2CmBLbbSTlROoTLkYWXlmK+Rtsc0+01KY2S84QgYQWdYJrXOEsPCIB5xvzIxDY9B3rboMXY+tdTsTccdmtibknaW8Vy61aqyU5LYplHQCmZhq24xmtOmej7M5bDQNKPUPnzeGJUsh0XPFBiVvpTIwR+s7yEvaR2HjAdAfCKCLkoqQVtYIx5gfj2G629H0/KqGHrFFuEFVELN5Bqo0Qg4Vxv7sRH1zD2j43SADmlHQKSFOnm+nvrAy16KvL7xSkh2Mzpetoi0Xnycfq+X2ZoAC+DMLG8H1y4yB+TH8bpsjD/VK0OznHIQqspphuJdFIsgQWJT9/8K5QQME1HrdYQLtEw4LsmmFD1wQDYsY7Uuroukv67dbY/pTpozkx1ZoJo+Y6k1TZbK2kl3MWam0p/0zx6opXoXZbLruOzYPAwjc4dUgTyM7hw4KYIEjDsl0RVdmSSEno+p7cdzjJxNizPn/Ck0cP2F5e0KdMGxoLQVYLiKq+76KKSihyPcW/Qdl2Wy63l6YsdYBGYu7YxC1RIIkni4XsWgo0NW7EBSAyJpap5jhfsjyXMmw547yaIbFER/biUWfmP8tjMDoWuVKbwpyXhJQSvrhYxxiJvbf1KZ6Itn/N/JdFimpiTGhj056HzWQWHymOP35wpqvLP+xaKaJC6ZMBlp5zJCDCRNFkg64RXvPrJpJQQQa5akcnHMBO73Y9oxJm0BdWVqrMj8rkIDvfFYrOeH/w5fxwuzJDJQJGwRBELKuPZguH9RLwUkqAabJAGlkgsbF8CM6bvKoBEZOZ8UtUFihNeXSGUvgCUgHihia0xG0k9Ymup5QR9yZHV/1K0ZKpWt0B8WaIrGmUNEdLjhF7+u2ay/MnvP3Wm9x/6y5NUpbeI40jorSrY867zPL0Jl/4BV+GD0tSFsgQYqTvtkSETdfxzrvvcufOHatulBObrLzx7h1Syrx4+2U+8MoHMO9LNR8rqj99Iqsn4+iS+YDWjL4xQdRApw1dbukztE5AFqjrMLOdrcMQvSiWBsyFErlYkICJNAHzuXP06omuQUNjfgslr2CtCD0orTEPTAS8DzRN+WvDoOOoprusUqI1bBxeDMhVhbZt8DU1uyt3ZqP0VfxXpcSljNzwdH9OFY7XlSd/LpDAlJ2ecgKHzHRVZLCIvsrWwT4S0FFnUEq+DkLEtZhxCr5jk4EBlFGc0P2nDt3OurcYgIwzk1/2xRMtoLmxP40khOQa8yNIgkYTIcQLklpM0+5HNpZSLJMIOUJh9y3dt8e5Jd5BExZD7kbUYgRcYTEt1NoXlVJJa5Y9GSG4TN8rm/NI2q6J2wvSdktc93QPHqNdT7toWB4tLCb+ckvfRUJMhBdewzeGAJyA5AT91rT3IXC8WHC8XJIU1pstMSvnl2suLy8JIfDSSy/gXYOq1UsUoOsSm03G+SWhPcKFlWWpbgJoYvuk5+GDS+7decSTJ+aMlSQRk0UAZjEATxNu0ghQ9eA1ZJtSZtt1SM5E9abfcK15JjpL+wWu+BKYr0VWNQWkekjmuGWqErHaCM4cx4o2pOyj8V/dJXVcVezUmoxGaoxESUmeRx2Vk5nHCpQSbTI97p5zJFDbNJU1+J3jc07gsKKjvnIeFCKD+KDG2jpzxrNLy7yM5cIP6QTqqYnqdiZePMN7lcw0lnfP49WivzKemD2xC1Y8wytbCaDewnazFZJ0GTQ5I3Wpg3yJ+GDoTwNON5C25N4SVjo8vQZUiybemaXBVW6j/lFjFWwzxSSGgJw5MEWNXDzqeXj3MWlzAXHDwilBWs6OWhY+cbJwnJwsWfeJPgdIAZ8DqesJoehCABeEFst4c+QXNC+8zHGz4MGjc+6s77M6OuIDr7xMSh2r1aKENStkqyokOLxr8b4lO/MTWKzOiALiPZJ6cn7C3Tt3uXfnDpcXa7yH1J2j3Xkp4GGl1y2ppzNkWQmEWoi34FhvO+7df4wLS2iPkKZBKQVPkxKzyeABj1cTMDVY8JNkh8++KBfdkMOCYYvt6K+EIb9CFU/NtJhL5eFUHMIcDgshHsQ4cSW5q3kKWg4NV7JyFXdrwEkYyMWh9lwggZndsygxasrNXU4g57wX+bcbUFRZf9AhoKi6+lbMW0uBlo6Y6FYot9b/xuNSta3jWMVJSelm3IlOFls1D0omy/tvWXx8Tkb5nRUh12yUPQtsHebGmxSXzKFIkpD7iO86pF3jWimchELyaFyTN09I20u0jyYZZEfO3pRzvSXXtFJV5tSTErahU/G+LHNi2u9gWYITnG/gweOOvNkSNJIbK5Lq2xZHD8HRa7YoyLDCJ6XrhDfefUi72IL3NMsF4kFjpPFbGunYbCxPnouJRoUWR6PCsl3gEOJ6Y9YPKZV2koXctosFmhI+NPi2LeKTKeZWR8e88tJtFnRsLx4iAouTU7rLnq7fsI1gNR69ZQFOHs2+COCgohasJo7QLMnSkJIrXpYlU5EqlhFNoVc0mj4lO0sJ10hLyGYuTWX/DVmNTC4c9E41J86AhweFtyVAqRGh3pnYl837C9VUxAFzQ0+yJbJFNeLVI9ogNBau7Roa5yD9EOAEpt5Qo4PQ0+6ZehAWRFIVJTIJJy06gCwWqJOdG2KzKfKZDNfpAP9a+6MqEGXQvKqWgJdJ5KJ9DujHFEdqY8mFO3GU4iIaS0EPilhhiCBhZrY+Z1ysGmDwWcF3uEWHiwGCybhEJW0uiOtz4uaStF6jXU+/2bLpEpebyHrTkzOWqQjLDZhUSbkUwZCSYAML5xVpyCVdWJIF2S2J0pNTRnoTZzQcW7qt1HN+kekzHJ2sCCcLztdbLs97mt6QxcIvLGKvJMDsU8f5xTmX6zWahXZpqbrv37+LSqJxgUXbWrRdCLTtimZ5Qrs6M0Vp40k50vU90TWGxKOVPrtxcoTvTnkzmI3+xtkxa7dlvRbSZTQdBR7JAbI3DisYZ4BATBHnW07PbrLthfN1tBJuGbxWWR76LtGtt6zP14TLS7rYsd70BLFALocbnKhmTGtVyAqzPWXnGLhMV5GHWFSt6TCSBV75TNTIevuEJ5eP2cSHbPoL+rTGZUeQJSEcIU3LYnHCzeOXOFqcXQlHz1KQ9A8BPxW4o6ofLsd+A/DvAe+Wy36Nqv6Fcu47gG/FYkz+fVX9S097BuzqBcp8TKwCh++pYsLoJXWIQR/6kRE4qZaDyk1UCj4Rrio4I1K84KqFoLJbFMqhBtCaBwxd7jQ7MQDRNO9ZzQyXLXsvpVjEYPEQocfjCiUWTWiCFpA+4rdbXNPg2YBENGJIYHtBt9nQbzbkPhJ7S5CRxaHO2EEVR0zR2FnxJiNLKXDqAyJmisviS4WxhuboJscvZOLmApc7GpfZXJxzsTGsl9LGMh5r4CIo2sB5H+iDJ0Rn9QDzlsWi5YUbp5wcL+nXG9JaIVimwFVrzjZ9ttBlcYGu63EitDmzxXG6OuLG6ZKjW2dI09IuW/q+p5NMTBntLskXT7i4f4+LB/dogiercrle03VKHwNdhMuLSzbrLSF41uqJlxv8NtOsjaMwT8IecUu6COsus5QFOakhzhTZdBvO1xviu3fp/vH3Ed48QiSx7BM3WFjUomQ0W1KXNFUzFWpfEcGOxotaRMeJEELJuF10YFkt+Qs+sl7f41Nv/zPeeOdTXHQP6NKaPm6MMKinCQuW7YLj5Q2+8NWv4Yte+9qrQO+ZOIE/DPxe4I/uHP8dqvqd0wMi8sOAnwV8DfAa8N+LyFeo5b9+tlYnaXboemeH/S5GxcxsfFrwrlZnn4kddeIVtu9iPJoVa9YjlBLcU73LDOujzDCJJYvMViBUsynwitOIFm7EbN9FdMERNeOyJfgwJ/+SUSZEpOvJ222RY51F8m63pO2WtLUMtKlPFt2HQCnfnRPFwUXIGiwkOEHOJgIgAVc8+jImazrnWZw03GxWOMksG0svfv/uHdZ9Qs7OaDXSrTsgsImZyy6zxrFZZ+LFhsvtY954+x28d/yIr/1hfO1XfSX3Hj3m/t0nBOcIPlh14eXCNnvqkWXD5eNH9NstwSXaBLFZw8UFoY2ElOgePQK/JLqWPkUa7SFmLvvENirt6oRt13GxuURTawpX3xNdJnrBNS2xaemScU4+lrV1HudbhEDEoY1Hw4qLPnP38QWPN1s6VeMAndLnjrQVGm/rrpTIUSn6l5wmXG31F6m7atyXo6rAiIK5n7clQWjdmtXrUeniBY8v7vDgyev07pIurtmmjZU1U4FtZpMcXbrJzcsXiPlLr4SXZ6lK/NdF5Iufdl1p3wT8CVXdAj8oIj8A/Bjgbz3j/deN49rzc5fj4a7ZOUkZrxAqkBcZQKbXFYyr5bdirFj1cBOhmGkEr4oz9TWuIBa7vyIi8xjzCGgujjpWuLLWBSgZQ1CE7/kLf52LzhxECnOOk2ypv6qWOVgxTbwbiUpOpJTIKZa8ANVcJaSsRZNsyKjiqcHCggyVbMcEFfYnNc8jhTJ5K5y6Xq85f3QJar4OZOMiumilwFK2sllJoe+FB92KjLL9xGM+cfkJ4vqCD796m2axtI3etKyOjkEyfdxyfLTkPL3O+eZd+s2G0GUeRuHuJoL3RUvfgl/S03C52bAKsJIevXhIvnxMzpGuz1yslSANznu6sCAdtWjoSd7Rtw0pLfDO3IktcM2SdGaKMlIc2ix4Eh1vPrrgfNPjFituvHCbs+NbvPiBV2nOVgSn8OQSfbTGIoiKB2vOpGR/DgNgKXuvbmmt8iQF4Zf9E0IghDCslaUIK4lT+jVdfEKSC6TpUMxBype6DX1/QSeZRpTII7Ksr4Sdz0Yn8G0i8vOA/xn4j1T1AfBB4G9Prnm9HNtrIvIR4CMAr776aj1mMvSUfXqGtpfsszStwFgUj3mz4fLRA1JT0lLVLMVTUaDYzwdxobQaxjzIZwpynEjNiq6ryT119pc1W9pqtWAnVGnYsHl0n9RvCd6V2H8A4XLT8x3f8avmSMCSbeGdpfoOjeXcszxzOhQOyUMmWy3OLiaKVCVWzlag1MqE65DizIJswlDGWqUqCAXng/2VzLxm6nJcnD/hnTc/zXZ9jpcSVx8aUsp0MdJH06Bncay3kbfeeZeYM1/yxV/El3/pl/Bbf+t38uH/7f/eCnf6AEjJhpuJsaNpHA86R95k1uk+AJsoXG4jSSN9WrPdZi7WibfvP+GdO3c5ah23Vg0r6Vm4ZGm/FseotCyDuVzTBOTkBl7BNx4JgYaE95Y+zIqHWsUlXINvFjSLEv5N5kGnaFhy69UP8soHG24enXHjhdu4VYDc8eSNt3n86MLEAGxeUs5st1saodQntKQiqlqQ7bSydTEJKnRdVwrKTsVeGUTf7XbNdvuElC9IvV0XfGsVknzCayLnLTE/IeYnJN1eCT+fKRL4z4HfhBGJ3wT8NuAXvZcOVPWjwEcBPvzhDw/wVvSme9dfBeT7h0cMMtTOA3KK3HvnbV7/wR8YAEycKeNEq5bfjYkclIFd98ETSq47y+hrNuEbt19ge7nBhQVKBcY8mIRytmMxKwlBcyLomu7xHTbn56WmXfFtLxR4FCfGiAMtykGtWmmxVNUpJ2Pxy3NNdjS2MasVs7TqxBZiW681lYWAWLUgihXGxI/RqYriQWeyaslz6OxTJVhSTjKNiGEdJ5YUlIxPpuU2hxpflHwNvmlZrI549Yu+tHBZ5u0gxlIgZLrNJSyO0HZF9AtzpAkN2izNyanPSEpcdk94+92HvH3vEa2DRwvPSQvHS29BXNvAcrXkxmJFaDyLoxXNogWxFN7GamdbhzYQXCUKHt8sWK6OOT45oes71utLlIg4pWkDq2bBUViWPWFZlXK0RCyqpsCTUma8hvPaRyU6hdss+qXBVX5ClKZZhQoaQIoL9HazJnYbizJNCUfAZ29m1RBpnJWJz5rY9hv6+DlGAqr6Tv0uIn8A+PPl5xvAF0wu/VA59t6fMX/eexgbM8o+9d93YlVwyYmUraSUYBRTsm3E7IzaKUY9jUMOJKw0WNZcMLknxg1dt4YYERH63lxEXfHvzjkTUyKW3IGaElk29N2luQ2rmaeGtFrAVGAsQsygb8hZrOpQtAi2lBJ9SqRY/lIChOBNY97HOCCKvusLW0lRAPpBt6FZSZqsrJsWd1gn5bdZ0MSCBcsmNdGgbVrQnuCNQxHBvPsEeowL8VgOnJwz3XrN5fkFKUa6bmvpuXBoiYFADCnmsnbOVy5FrehmsLqKmhPJawlrzoPcnMTRi+MyQRMa+k3ipEm0FN9KseKdztm7qPd4aQjOcvo7Xymu6Sl8G/CNKWl9G9AEoXE0i5a2ac3DEPOqJHaWkzF25FzSvjlomsCiXdAu2lI0RUcdkio18s90TiZGOIS+7weCJG5MrGOOSZZIViTSNrZ2KZeqyOiQ+iw5c0RLEfr4Oa5FKCKvqupb5edPB76vfP+zwHeLyG/HFINfDvydz+QZtR2KHRjHceVdjNxAlf+FsxfO+NL2SwmCZW6d5HAbApOkJDmVEVe7wibHFMkplsSenuXRGac3boNvLUY95YIEivhRZfVs1BhNBL3kwfY+OUeQyoIbbzLEkVXxkMl7S7E0JPtLKZmsmWv6MC1aejOBiwh9ivS12EiqKapqbceqEC26Aorpqlg9UCFKqZI7zFEu3ojKom1p/CmqHWimaayakOujOfCoWshyr7Quk7Xn0f13+TSJB/fe5d03P8HZzZs07ZLsAmHRkqPdm7oLgkROlw3+dGliQzDqrubXSMiOdHbEF772IqujJTmZ4rIWVLlx8wVcuyxFQ5SkPTH3qDQW9+8dyyaw8IHGOdog4CKWo9+Kq7RB8S6xaCA4Mym64CB4gg/GJWkpy0YErNhLSr0FZWke5tk5P65wySZda0Qy7NbiC6xzHZdlrarZteyYI+F9IrjevDGxrFIW56FIEpDG3Ms1XGtufxYT4R8HvgF4UUReB3498A0i8sMLtH0C+D+VAf9DEfmTwD/Cgst+2bNaBqbsECX66VAikEOuxEP+NfYRg6n9Cjg1geXJiS14SWNes+ZUDe7UY0s147ygJbDl4cMLzi+ekGPm7OiMo5u3OLl5hm+PyiTLEFacS3UdpQBtNlY3bx/x5O7rpD6hrVhxzMK+Q41sM4eQobYihXIljHMoDlMmbhiCycky/GjOxFKBNhUuYXCu0onyFEukaUXDTBzJxVryl7/3e/kVv/rb+a//2P+Tr/var+Ov/62/wW/7nb+Dvu9ZtC3f8St/BT/iwz+M5JRf/B/+Wt5+5w4/+2f+NH7Wv/WT0Zz5Td/5Xfxb/8d/na/4si8hBmgCxCj03Zp3332bRw8f8PjhPW7eOMWXRKCrtqHrs2XcbRtOj5dIPOGogSEuXixdexArFxbahsXxER9Yd6Rk4kzfbRCFW7df4uTGLR6fP+LiyX3Wm0sEU7a1TcOy8RwtFrTO48m0oeSv9JSS34G29axWAasZWdPGG0HwrjgAS7a0YhkkllgX56jlpnNR1NbdOHzodHdWDrasddENjBbvGg1b93LxGVALSEJLcdsSS2J1N8uuL8FX1/HSz2Id+JYDh/+La67/zcBvflq/O/cYViwjtWop+eB1MCKCUelXJm3QJsrQj5ntFLAKtTEqOVvVHSs7VdxyCxKwkFBfgDjhUXoiF+mCd7d3eefhXR6++4DbixssVqe8/CGHtAuLtpMRcbmyshZYYvV1EglkQXYO7ZXcClsv9F7QvrqD+nlUWUVWWSwPf8H2WpSAmi23X9UZpFQ1CZCyQq5yvZbxYPNFMv8GLbYJMc3/xfqSP/bHv4ev+5oPWxRNVm7duMHv/67v4kMf/AD/7GM/wLf8/F/AX/tzf4r/6W/9HX70j/x6PvILvoVv+dZfzs/5Wf8m3/dPPkZOma/68i+1zVmUrHgrPhpTout7LjabQaRJKdHHnr6PrBYLJBnlXSxagizJKVlCUSB3xTU2eMRlTpqW5bIlZeiSst20oMJiueJ4dcR6s+HJec/lekvYGPe1Wi45WbU4PK41YatTKToaVxB2T4zCdqsT+1G2ZK7q0KxsPagoiz7S9snKjWkpyioey51eiFbOw472M0qVi9vvBEFQohNdXatIDQseEYGBiNOAywK0iC6o7vaWSNUqb7kgSLha0/7ceAzClPLvewteFVBU75t+7t5XLQ4xJrZdR09EsMy7Fthh4oEFhbiiAHKDOezexT0erB9w3m95+Pgh7957h0f9Xb74C758MElmmY4fqo4vV0RASVdVsXSB1VrMkwmVrnkQAD76R76b7/lTfw6Ab/kZ38S/+3N/Fv/J7/guXn35BX7ez/wmssLv/AP/JavVkl/4s34Gf/C7v4e/+Ff/R/q+51/7cf8K3/YLfjZvvH2HX/yrfwM/8sM/jH/wD/8xL7/4Ir/rN/9fWSyWdQaLdlT5PR/9/Xzrz/u5/Jf/1R/Dtlzma776q8ALOUW+4l/6UjabLU+ePCKlnvOLS/o+ArBYrvh9f/CP86u+7VvZdj0C9DGO7FmxgmTNrNdrHj16TGg3XG43vPn2HVB46cUXOFktuVivSX2P5ky33dL3FjEY+0wXM5sU6XIGyTgJFirdJ7adIZOYoUuZd+/d41Ovv87F5QUheN6+8y6Ccrpa8torL/DKCze4cXLEsm1wCUIyfQnAdrst0a0l41ARFT1G6aO3ZDZ9jiz7yLZPbFOmLfoNQ/4jwq5EwjsrRW/wXgqJiCGQOlXVauNDGBS/OWdcKIFxzrxNtSBZ5xw4tZwREhHJJXdBpPVC467ONny1Q/E/x1ap1dOvm5vkatvlFCwXoIXX+tAMGlsfAu2ipW1b2nZhCpxmQbOwhJJN0+K958HDh3z84z/IJz/5Sd555y0ePnrAZnvJWC02j7bcQ1YMRs/BigBcLY5aMvcOZuLBRqr8r//wH/En//Sf589/9x/kz333f8F3/7/+NN/3T76fb/rJP4E//1f+aqEIkf/3//DX+Ck/4cfxN/7O3+WTb7zB9/yB38Z/81/+Lv7x93+Mv/d9/ys+CJ96401+9r/9U/lz/9Xv5+zshO/9n/4WTRMIjSn1QnD80499P++88w7f8ON+bNHTWSGLnK0WQU6JP//f/Xd8zVd9JajytV/9lXzq02/wzb/gl/ILfvY381f+6t/ka7/mq3n11dfoYypK0VI9ytVqUeaXoBkuLi65/+ABb7zxJv/kn/4TPv6DH+f111/n3XffpY89Wc3SYgqyMdpOcYR2xcnZLW7cfIFbL7zECy+8SNO0rDcbHj56xN3793j9zTd4+523uffgAY+eXCB+wWbb8/bb7/Dxj/8g3//9H+P1199kvV7jnCN4C98NTbCS5aWUuflomJ+Gq381MVHlEVSJCgkxBiobs++wKkUxZS7XG2LMBRlQEp1IQToV+Vgot/eNmfycuXEjY40D8+1yVivRC+oS6ju0WZObJ+RwjoQNzkW8QOsaPD8ECpI+iwXgENBXzqFcAYVdMg1sYYEtDabZUF2J4KsymfPmzltKl4MrRSUEcmSxWLJaLLm4OOfe+UMenT8hbntu3TpBSfRxi/Sd3bebWmoS8mwAb99TTRZRlZCDKGOmJmMRM3/3f/n7/B/+tR/HatmCeH7ST/gG/r//8z/gF/2cn8nd+w94+907vHvvPjdOT/jAK7f5w3/iv+Vv/t2/z8/4Rf8BCKwvN3zyzTd57bWX+dCrH+CHffWXA44Pf/VX8NadO/jGTH8UJPSf/e7fw3/6G38d3udBCVVqiQPKD/zAP+M//a2/nf/i9/x2k6+d4z/79d/O6Y0zMsLP+8gv56O/57fyW3/nd/HJT32an/SNP54f9fVfM3A2ToyNFsTKf+XM5fqST3/6U3zqk5+ibVvOH5/zwQ+8zBd86CWOV0taB2nRsl53dF1PSh3OwfHZLW69/ArL1REhBKP++nHefOsd7j94UCr8eLquBxFu3rzFV37lV9H3Gz79yR/k4vEDuj7y5Pyc9XaLOGca/OBLglg37C8RGRx3REpIuQhRTBwIKeFdh/NWADRmq/OQu8Tmcs35+TkxPmKz2XDj7Iycj2lLleCqnEUqt2G7MCcL8solY7SIJUPJgukummAl6/BkUSCCrFGfQDrUJUQ9jkAbjvH++Eq4+iGDBK5m+Qt9GexdOqSIMo+/PJWi7Fh1/bUOS0LImrzREIRi5aKcC9y6cYsvfO1DxDcV8YHcRZqwsLx7yUI+K4U/xJnYyBx46LuOvusH+4V5ByQG7VDxJKyGQcubH1Fnd1glIs+/8ZO+kb/01/4Wd+7e5af95G9keXSMbxq+7d/7Ofycn/nTcIWKAXz6jbdYLhec3bwBCEfHR1xcrjm9cWrOJ+J4cn7Oxz7+CX7+R345AO++e5df8it/FX/4//F7+fqv/1reunOHX/If/Ef8nu/8LXzhB1/j8cMHQ6ls5zx/5Lv/JD/9m/4N/pe//32cnp7xG3/t/5lv+5W/hq/96q80xWUefTY0Z7abDdvNlidPnvDJT3ySt956E+8Cb77+Jnfeusmi/RF88Yc+YAlaS4WjrBbuG5PVcbxx80WOTk5AlYvLS07PbtK0Cx4+fETKCcSSkvR95LXXbvF1X/e1pJxYLRe8+/YbeCKrZQHsYo48ZHHaTXRbN8+Q5sucTuhRNqkn9B39tqO/XHP37be5+85bvPnmmzRNw6uvvcbNGze4cXY6VEW27MXGfTTB8it2XcfFxTkx9ravq/hQ/BictAgrNK/IeUMNgx38ONSRo8fLMSHcAjm5EraeKyRwmMqP2Hh67XhcB7MKWjXmuXi4+eLyWxWy5bvZbPCVcteEDaXK0VCzUo3Nu3V2k6/+iq9mm5Ub3ZZls2R9/4JFe0zbLAjtwjC/6rDZR+19KplpIZJI6zWb7cZciDHXYqtTr9RMvbVK0I/5EV/Pr/i1v4mf/W//G/h2yV/63v8Pv/93fycnZzf4d775Z/DLf+X/hbsPHvAX/5s/yu0XXuKn/qSfyH/8W383v/Dn/TucnZzw5jt3CKHhxs3beB+4efsFEFgeHZEUbt6+NXACN27d4tPf//eGpM0/5d/8Fv6TX/dr+BE/4uu5//gxP/9bfwn/t1/37fzYf+VHc++dO6gF8eKc8ODRY/77v/Y3+KN/4KP8le/9Xry35KSbzZZt143h38X6MjjFAGSlCYGXX3yJ4+Mz3r3zDo8fPebdd97l1ZdusQjLUtZtRCCVOoZmQWgWnF+c8+jxuSVgbZdsOiuB5pwvvh4WjXjr9m3ECXfvvM3m8jFOE61XnAvmj+DdxKFnzHM5JpS1YDEpJlQV83EwZaDQHK84vnmDZtGSug1pc8F2fcGde3f42Mc+xnK54v67b3Lzxk1efe01lsvloBR3Pphbtq/VjxLb7bZwThSuNlldwl5oOWXpX+Q8rsn5HMugbBykZrOikFoWxy9ytHwFzUdXwt5zgwSmLpJTFn9KUQ8iieEY5JR48uQJDx884Pj4mJu3bpltOZcMOtXW6j3irFwYoiVME1CHamLINaDmxtH6htOjM1554VX84yc8fvSExw8vcSwIfjnIkrtjq4VJLYutEnOkzwurHUBhK4vmWKuDfxVbgJ/4yTt85Mu+nF/4c34pAL/4R/5Ifvzf/gfwt/8BPxq4+PSbfMHREf/Sn/5ewAI3PvHya/zEH/tTADhpW/7YT//pLJ1D7j9k9V3fDUD7N/8eXdex+n1/7Mr18G+8zeq//fOc/O2/x+/863+dj3/sB/jO7/j1fOd3/HoA/vLP/bm8fGws5q/4i3+R//irvoov/a//W35+jPy0v/iX+ch//d/wbT/qR/HT/9lbe32//vZdftX//fdxfusGf+iXfyu3b9/mhZdf5gOvfJB33nobcodIYrvZIie1tLshcpPTc7GweRDP+YVVgU4qXKw7+qylglPD6Y1jQgg0TWvvfLSyhCkxkroNfmVxBb6p7L5xXFNxYFjP4sxjRKUQkGradZ7VzRt88OiU7FekfsP68T1wQis9H3rlNs45GiKpu+D80V26dVtEgOI6XJyCVDFOBi0lzgqdq1yHj6zCDV658UVIH9j0j0EstZyS6PLWirC0p9y++SWcHr9E3/0QsQ4AByn+oRoEFVGIUGykSoqR8ydPuHv3XVLqOTpe4cMRilXCqTUAalLJqtgxLEsxM/rCBFg0uPkNORq/4AMfeI07Dz7G/+/v/1Mu7l/yo374tjDuY8LK3XGHYNTIxuiQtDCWzy5kyJevaRhHbeFyzU/4jm/jhz94wOrkjC/4ki/j4Y2bg7z+t77tWxHgcmI1+dZf9q38u1IprimhxMHf+XX/IZdlTL/03/+FoMrlaIguzFTxXkT4M7/sF+FUeYzwy3/pt/JtAlZdKHHv7bf5wXfe4FNeOT69xbf99J9CouX7IoDwu37Gz+TJo7vcffdt/nS/4fGTc7o+FmuI8D9+8GW+6xf+TH7pb/hOFs0Sp7BaWJkzFE6OWt5561NmWRh3A2OQUyly4my8223Htos8uVxz5849NtsE4rl5epMv//IvI2Vz4FpvtrTLlYkJCBeXlyzCUREFPL7UjhyeM+wJ0+U4GAL9HQHBCpuIZLIP+NWScORI2QiP9BvUwarJHL14ZlS/KDn79SO6SzXdRRFBq1XCCEgs/gWGBLJmWxvVwQ3hyN3gpVPHpn9s5dwazK9FM5qFxh2xPHqBkByb9eMrYe65QQI2GSPrP8TkT0SBmo58rwmYF5Zw48YZTeM5OjpitVpaIkuB1IOm4hvgCotVlDJDolGFWjByVCcqHkfjFtw8XnDj6D6nq9v0IbDdWIKOpiQKrW1u6jSTYFbTr2XMfh9jKqKKIjkXpw+G8VUdRoyJvo80JSAnS3UxLeEnOiKOwfWkAnTJj9/3W0SExbItJtDBHM3kwwyCymCtqCnydaiBZ+ILhTLHGE2+3/Y8vrgEt8Q5Z3JsVpxv6C8v6PvO8jyKDI4sqbixJjUrQk5WYKVpAovFguADMaYheMk5R0qmvJWS+9/YaE/bLPA+8Nbbd3jz7TtsO+X05Jhbt1/iA69+kNsv3OTevbs8fnKOD4H1ZkPfW1KSXABTpBRzFYrbd4nn0FK/oMyPUK7XgNMGcKgkpK2epeCSw2fLpaCSyK66mmPJblyJEwFEzOsTHUPSVa2AirqqOLZkJxmKZcuRYkaisH0cOX+y5uTGitXpEu8bFu0KLw2aFNkG+s1jsm6uhL3nBglUe/s8W9D+NdPvA6AVhwtBODo64ujoiBAsLXOKJW7f3O2K3FR2eInso/RSvmCpu8tRBdThaQkIp8szbp/dRrYNy8UKwZNrQM4OJZ9Y+4CSqzibmJA0Dy6qaJ48z7z/qrqiugeb4tEy0SIOrammyoOk9DO4qpZ3efTwIW+9/RZNE3jtg69xdFS0xDqOt/BUjLNZkFFVdlJY4VI6re/7UpCzJ8eO2F2wuezxC8tSvNmsCS5aiLJzJQrPQmEzkGLm4tJCW2Pu6VOii9D3Fn+/3Wwm9Scwpa0MqlKLgCyTKwinp6ec3bjg4uKci4tLo+zBE5qGbdexXC1p2sAnPvUJPv26485bb/Hw/kNy11s8hgtk9ZaQtCr9SkoxLUCoIpibt3GGXj0ue+MYnCMFIYeChD24qHi1YivZlSSvFH2T5JI23IOYe3W1LlnIenUzBykuxjkUIcR5BE+flI1CvOy4fLhhGRrak5aGJUs5pvEtSMKpo4+wjp+fUOLPacs5Ul9yGv03bYfs8OaIY9vX4t2tDJQvmtdatlzUzIBaMreOm6hIeQZNRTtcMwnZJsjFtAVwvFpytFqwPepoW49zFpFmvvkjMpmJLI5B2++q9aIkHxXM/puqc1EN8imvn/cQgAXY5GiuxeYuaPNSC2MK5gqdU+b+vTt88hP/jMVywdHRwsZhaghrUgKWlSG7Uq5zrYPTMjlHRC01Wt915LRFZEvsz1GXWS4C27QBCayWCyv+mQI+NEwladRY8fWmA2DTb7ncdoSlcH7Z8/Zb75C2a4SeF2/fYNv39hcTm76nS4nsFCSTco9qz+pkwemNE0LrODpeEFqPSuTJ+UN+8JMdT87NbfjevQd020TqOwKwaI4I7RFIy6ZXMp2FRntXyspXEcn8HPAm1gWBBlfCqAVc0fBLY+tflIceDBHaRi3p3SbWBixzds1F4ZIRg5wrYrAaBeIq4rc1V1UaF8g+2GefOH94ztnZCYtmhWjCS8IHe27Okc3lgyth77lBAsAItCN/O6Os9Rr7zAzllYodW8WRxBJBmO7aNksuiMKyvCRcrvoE8wuojF4Re8miZKkZfwIqvpSiEhZHx9y8eZuHDy6tDNWUr6YOWwZkYAcqxFUuBLKFwRgS8J7o0yAqjMwiJou6ar5yltuu64ixK3KjBaqYHR6Cc+YpnjM5J7xzvPziC/jgSbHj4vxRcct2RZ71pbLPYIMq32WowyAiBNdYUos+l9JbCWELuqH1LT4EFuLNbq2w7TKb9Tmb7doAoCAbY3steSfAervh/sNHvPn2I15//R3u3n2H4CJf/mVfyDYm7j58ZO/VLDhenHDsGvqkNEdn5ATbrWXkRZVXP/AqX/e1X0PXdVip8wXOQfCexeltXnnxQ+Qs9Nstoun/T92/xdy2bfl90K/13scYc87vtm577eu5VLmOq8rl2AQJgmIeQOEF82DxEsFDICTCPCSCSHkg+AkpiggSMfFTpEKRwFKiEMlBRMgSMkiIBMVGsWWcKpfjOlXnui/r+t3mZYzRL42H1vuY81t771PHqjysjK2117e+eR9z9NZb+7d/+//pvHJ1vmK1vgQ6E1+hLKIozWxVxOYKUqqMQacEMp4CEpeOgWusQgQn3oRSiyw6gw5fp1BluX9NdajfGiLm3BSjWcmHzsrkUqq1fLVNL7mgrnB2dY5/23N3ONC9vadbrXAdeC31+3W4Dob1tzMG36sgcLqgbAa7pbvH9L/t/C19Pr1YbW3Xx7uKI9DS3eNz035uO3eFX+0RNsNQ1HZnEdOpt53SIX6FhBXXd3vuDzMFX4NQe6W6mE4zGcV2C9VlQjAr5AJNsDQ7oes8/9t/4y+D2pjsp/+f/5Tf+1u/yt1uz/r8kucff4breuY5LjuCzRbYk3bO0YXOQNKcHigOLf1tbSWO1BrT0/XDkSCl9XwsAZIjQaZE5vHA7u6WcfcGJyPr9YZ+dYb4Na7boHhSytzd3/HyxVdM81ifMtjzFYdo5u3b1/b95EQXPG93d+y2B3JJrC5XPP/oY84urwhO6YKnH9aEsALpmJOCG8gTTERySpQZPrh6jnzXE+cZ7wJDv2K1Guj6DsRxfn5JKbC7vyNOBxyJoYNV7wwOzjVjkaqFEBxBvDkO+Y7Oh6PmBHUAWBp21Gp+qTMCDip2UeoUYDN5eZDNVg6Ek4x31h7OdY5CvNA5hyuVXUip9vSOnGFKBfUBuhXzIXJ9N3L+eCYMAZwnEKozUqbvV3zb8Z4EgYe1PlDJD7aoygn4teAAbZimgWBwHNXUNo1oh+2WBkSdFhOtnm7/aj1yVaEUMSaWFisU6xfqw8CwviQWx1xMmFKqWw8tm3gnM1i0AhQbFilVH0CL0XFTRhX+/H/7n2TeT1AyfQf/vX/3r/Fv/oX/Jr//45/z8a/+Cn/uv/Pn6TZXbHcHtCRKiTY9qLbo10PP+WZNSTP73T05V6KJzjgyKY7M40iaM3E2Su+wWvPRp5+x2pxbWVL71iIenM3vi3N0Aml/y4//89/lH/7u32O6fc2TS8dHH1/y6NmnbB5/iF89IRXHNCd+93f+Pn/z7T/kEHdsLq+Q4NjdJzQ5Nps1834PwJPLC37lO59yvrkgZnuti4sVn3z6GRcXG0LdZQWPlmB+hxmGviPQmbx3KXTacbW6QDeJ1GW88wz9wLDqGYYe5zyr9YZSCkMpTE5J8x7iyLTfcz/vLZhUwHXoO4Z+IHQmf+a7ATes8aFDOuP0W0chVLDV3rt4mx7UCuELNpFo/JNS7cUs0yjFbNzTPKPzlhJHKJbhiTg6H8hadTBxpJRJ84TTGXHBcIE541cX9FGY88R2HxlWSs5CEKHvgg2f5f+C9QT+iz5sjdduQNFlUTWwUGsQeCAjdtpKXLIHFoBwEfLUo9LPkZd/DDZiN9RsokJPRZBstlDeQcDaUlp32o8+fMZ3v/cZl1cXjVu7gFhaG9pHBRlOAEI1bEFb/Z+tXx2N3daAPlXMDwDDLgke6QIZpfeOYdWj2RYFajqCKSfEQVQYY+Z+jJV/n5AScSWSpn0NApGUsqXJqxXeg3N5qVddzaKMYW11qM3Ye6YUeX1zTUiAvyTmge0+MslNlUEXNCtXm57f+vVfwwmsz85R17HbRTR5NuszHj15BP+Xv8Gnzz9k1a3YT5mEIxUb6nry6Annm57gIM3RRqaLp5RMkObfkCAWdJ7QacLFiS5nSBFHoqSZaRKyt1T7FiGlxHTYM+7v2G9vmMdbctyBzniBnBM5zQQxXMCHntANuNDjujW+7/H9gOt7u63vcb5DfEfoV3S9lUaht9v6/oxhtaHr1/jQQ7C24pwLqepAJj+RnDLN1jHqfc96tWZYrVDK0gmapolJAjllgu/MMs4rz7sNT55GpmlrWUIJxOhIajZ9IfRMOX7r+nsvgoAtGrcIezRRjoX/WxesETgMJDseFXKS4139yU7cQKl3rZypzjFUayj7NwiZThy9A0i4MqMm7ktyHu8Gnq7hT/3ad/jog0cEORnVPb6lCuIcf9Hoy+1dOYyNOJfMqioZEQQZOnzu8BVHuHz2lI/Ec/HkEeqtBRV8VbRxVc66qhPlnIi5eheg1Uev6hBOiTwV0pjIc3zQ0swpUqJn2KwQrBWnFSeJc2Q8HGzikkI/2II4jI7bXUACnJXMKkX6TbShJO959vgJ58PGuh+1dWZlbk/XDawr0ejy7BJXqiCq90zZIuTKC4O45bvUUkjzTBpnUipkuSPtXttI72FkOkwc9gfGcaLkUkUWjX8RU0IbE5RMyTNx3nPY3TDubnAcuLoYuFj3lDyRNeIUZFKYm025I9ORfaj26GZO2rwNXeiQMJhbkjdANIQVw+aC1eaCfljT9QO+H4x6js02BN9ZlaQjnSa8h4DQF6VL1VVIbLMaugEuKn5Ts48iwViLBUqKdm35CvYmcL4DLwzpPWcM2pJ/B0xbbmGpo5aWESfMvPafLByulhcst9tCPyIDYDscJ7+V9pyqeE2svZiCLJE4jyQtdKUj6ciZKt9/tuHZRUcnCaX/Iz6fLj81IoqrtjQK+N5SyHU/sFqb3ZVTi9zPP/kYf3aJnD3CdQHx5hxMsLLCaSElI5OM08h+zqQczaI7zZRsaH6eJtI8kcaZeNjjUPLQ8/L1K27ubjg/P+OTzz7h0aPHTOPENM3EVHjz5g0vX70yMU7vmMcDYT0wjWvuJmF6O7OZ9pxNnn5vYqh93+FzICfr+BQy/dp2SHGK1PIKoEQDMb1kOgcBNVX2w8Q07shptDmDeWZ/GM23MEUDyoo5Jac5UlIhp4zqiU04Ss4z0zzRDYMFMCdknRHZkdiR2eL0wMoVrvpECFO9BrS2SE1wFRViPlQlacM2VB1zqn1+F1DXQSsH8CRMF3HuV4TQm12a78AFMkZ77oeV/T54+lVH33ckcUTXVd8BxXlXgWHrFEjw4D3qvA0RiTMgEtNDcGrzIK7vIVhbdtWtv/X6fC+CwLvHKXjyLhX3wb9rqtTIHKjWcsBubbvxAh80fkBbfQ0oa69bf0VJBDK9KE4SvTuQyTjXk0UZUM66wFVf6CSRnRp1ewlSXz+O76tWMg18c+CCQ51n8CugrzqCJgwZVhv8lCnBo8EsvTyCKx40EmMkxpFcZsZpz+u3b9nut+x3e+I8k2Iiptk493EmjRMB2PQ9wZtw6m57xzwdePr4inJ2Rpondvd33N7e8er1a7a7HeJgnicOhwPjPDGcXxDEsz+M7G4n7idP6Ga8dwxDj8ZiGYRzrDYDjz94xKb3UD32Ug1yX33xkt3+GpjovdkslGh1spRMjiM5z6QUmeJE0nzSDXHVyMV8HaQzIlEIbWy2WNCYb9l0F5xtTGbrkPekfE+ne5AJL5G1i2yc0ruIFwtGDivfglcQR6zS4aogLuB9R0qFVArOFwpxyTxLEVQDpQTK6BlWaxvIFKMYJxUbFx57U5ZyHaXvmYPpLnoXTMIM6qZRvQ29g85RnFCcLNJ04m0UuROPb8YyzqO+h2os823HexEEWi39bXMCrc4+vQ2Ou3wFFSyFPf7zWIc/TAKO/fwTjGCpx6lTa8yIFJwrOGYC0XTjg8eJ0qmyDpngMB5BtT0zUos+eD2p/7c25emIMdQ827oZ3oEaT6LRh0w80zog6hwudAze09Gh2frOu3Fit91xc3PL5z//nBcvXnB3d0eKaRFLDZ2pAKfxwLrr0Isrnj665INnT6Hq4a/6gTxHyJlV1+GvLtise9MGKJnDNHJ9c8vN7Q1pTsR5Zh6VUhxk24GcCFGtLSfrMxBH7gL+7JLHHz63sWjtCGo703p9wcsXP+Pm+nPWUliJoeHU2t9RcC7TkfCaoIp4gKPvVtUirKrwqJV3IcgyzDUzInlPYKAjMcXEfNgy77eUeUJywovSi3UCSIb/tHacteQU58F35gacK5mr66R6PlYcRbWO9cpyvylGxlTYOIxCrrp0ZbyPiIxVhyDgSkeehJQLNksQrJzCshHTo1SKUwsCYnJ0SM0KnEeLENR8KWaBbMMyoO95EICThf3uzr+0ACqR90E5cLK6jZD1TkCphUHF+xrAqO3f9r+T56nW1TTyjo35tnpeNOIYcaIEvzaVl/o+GyqwAJkPyg+hTTuqNs3/euuCczrasxQ4Ie40LwDTLyw5Iz7Q9ytUO3IIXD6KKB23d3uCG7g8e0zv1kzzRIyRw3yw3dPZ57u9vWd7e088jIz7kdB5UprZ3m8J3lDv1XrN5dU5jx4/WQRBfNdTVLm7u+Nud8Nh3JOyo/MbvFuRJjM49cFxdt5xfnEOIhzmiTB0nF9dcHV5Qe9X+Gwl1G/+1p8mz9fcv/oRadxRnCc4wQt03tF5MXzEJcSZk/LdYQt0rEJHKhBzgmKtyYLiV2sLyKVAjkjOSM7kaWLcHdjd3HLYb3Fq4pwueLz0qPaMKROcoqEGZoFCwUv1e1BFxEBUmuMwCZU6p1EvNlevC+fBl0IIhaH3VfK9MAyC95misVLKE7hETIUpR+tEObdMtgY1qfSUTDWo64L9O6uVVs4bLpHNONV3gc4LiVw3vW9f6u9NEGgL5CGC/7DL/xDZb7/jaO0kx+obGlJ4+hp2Uhc67EmK3koBAYpzJHHAbH6BIhRCFSBNOC14WVUvPx60Bb+Oa9T3gqulSPsYUv+zCTIbFKngpJWcJ5+v3ksVTYlZPQ5T3+1XA88/2vDsA+WTT7/Pb/zGP8Y8Tex2O7bbLbe3t7x49RWvXr3gsLvHS2Bih1PYR+Xzl2/ZnFmtfEjXdMHSUOfvubjb8/xDuHx0xbBasT67ZHN2zpNniTlPJE3gOtBAnoU0W9ocOs+wMrckdVInKCunQYQxCzrXqVEnDJ2jI1LS3hyG8Fb7Fk/oevpOTEhDTJ/QpYOpDpVcdVhMo/BuuwexkqDvejtvGVwRNGYSU/VqjEi2nrtr0m7ZnN+nVIhSKhAolUYsBBUCldarNjSWsrWEc8MhxNFEQIsaNbyogLdNwOzDC6ET+sH69ylaEKAESsqkaiNnAdvemw/V76JYpyZ4U0dWVUgRVY8TR9CMc6Zr6Il4sfc558Qcv6VO5X0KAvAwPYeTXZq6g+sR6DuJC1qWDtuDp2kAoejxj4nnl2O9ULEHU/a17LwIlSMQ8TqRPWQ6DI/L9EWZ67yALtNmLYAd3wNwXNhQQaX2shUgrGOkbSAGwIlWTXrLYkIVC/VFF6GTOZucs0MRMb/Bs8uBi8tHKLZjpBgZxwO3tzdcX7/h7uaaeRxxxT7vPI/EOLI5W9F3gX7ouDg7J6XEYT8iAv1mw/riEWfn56zWa0I/mP1aMYZjEexiHcSERIvpJ8xZKTFSKOYGXYScC6GSkEodEMyieK90kih+NgDMWUaRE4gv1nLzStFMzhOQcK7HCyZv7hxZM1NMOBfIyQIPmilzQmNkPhysuzBPaJnREqveY6J3NlqumkmpWsQVj6/WbxaCC97X3b5uTCnkCvAKXk2avWE94rzZSGKLVzSaKnEndH2gHwK5KLFEUrTXK1ntdUXIxQKb+ICorwrSUtuPwZyRYyKmhA9UFmJepPMcmaGCtFl7punrwr3teL+CwMnxgI7bFutJb99S9Xcotsd4scSPxfddHwaO06c95g+6PNCykMIiryUYUoxNwknJLMXKO2hgK1lO38vJKxwzATniBcufambZ3mybcHNqoFnnO1brtTkNK1D5arlSoUudWRDvWfc9ZxcXPHn6jO/l71NSXs7DeDjw5u0r7u9vWa0Cw9Ax9B2bzdre20lgs9rYmJRzMjwjFZsByJrJOVkbMtlkXs7Z2HHNZNULXT/YZ3GBzg9kZ58vDIH1emA9dKQUcChFE/vDwUDPtMaHC/Cmg7gsMgHkqEEYusDmbFNRe2WeZ0qajRcxTabOJEpMiXE6kHO0YWBnab/5BdSR7krqMZIGNUvNSGoJpwUYExq178yLEJqLktc60usWH8KSM8H19F139HX0go+dKSirtSK7EOhFmKaRKR4FUcyEpMmceeZ5IuZ8zD9VSTGTq06GFyVG6IJnvTqn+wUr/b0JAu8Cgd/Eya93BI4iE/WXnLYEH5QLbam2511uP0kGTh5ni6jU9EJr5OdBsNFqNuHbtu4sbbPuwMm7WjKbh6CnHbJkEIZuLanDEQcBxJtDcGkKSTWzcJXJZ+63x4GrpmTURE28VJdcBB/6mkk4+vWG9fkZh8OWUmZY9BPaFEUlXOVCzNZZWCYaKy89N5zl9FOJufmE3t63AgTohwFUSHPB+0Bn9kGkHO0UumA9c02MuwP32ztKLgx9V0VgDHQUArkIkJniTCpCUpNd773tmNNhS8oZjZE0j8au1EgsGcQAvdVqIIjQCQSxuZJSlK6r6bQ3vYlmvAIOLe3MVHxGi02FaiGhxIoJuFy/NzUXJhGb+tuNM7nUoSMx05mcFC+BEHpCv7IhozpB6UMAT+12WGpfSiHGqp7lAn1nQ2w5KzFFgjdb8q4LoJlpTjjfhHK++Xgvg8Dpv9+9Hd6pv0/HSuvFuSyiE8/nI8BI3dVb16HNcB9riFKXucHUdp+qNUSjJRsZxVpIKg8Xgr3fk/fdgkB9zVJOPltjGrasRpp3nd3svV9m29sCLbmg0kghxzLCOCT+RM9PqmtRZbOLkGqG45wQuhWDwuFwT0ojuaRqamokrUJZpidTTpYViCz8+XAirOqrcWmMsyEdlUNftICzwaYUM+PhwCwR7+zSe/3mLdc3N8SU8QolJRMS3azx3nN1dUHfd5QSOaSZ/TgxTnMlRjm0km4yNsmZY6zn2IbFRCKhA+erc1HwuCbqmwuSTd6tZRVdZ+PBoaL5ruo3eB8QjC+gUBdjNAWgugDBREJEpVacxjMIwTT/9vuJOM10wTPNeRElRQKaZxCHq90jEej7Dryrk7XG/msCuiGYME7wAaWw3x9Mll2hL+B9R0kwzRlxCef+S6A2/HVFoYfB4KFqT9Opa4GjHMlGD8DEthLtd8vzfm1XPh7WgbBMwBxn7DltHBisRCgVpCkPnmuhNS8lxTdlMqfZykk2Iw/+dXI+jtLkp/MQ7VzYw2RpT1p67Bd8QoGilXenUlVsC5oymidiHDmMIzlPNmpd3YucM20AF8TIKtqbCUgpJpPlOwRvbsil0IWOEIIBWzmTsdZdoTAfZm5vbtjvD7x9c8N+P+HE808Bd/dbUlZEbLdzAkNv48jeObrOcTjsmONIjDMxzhRtwzlqwRCpC9z09S0IWFYWZzMHDX0wZWlv32Ep5tNYxDKbUjI51YDVNcNSFu8e70zDH/E43wMO35licsozOtp3GiotuGTM47EUckz0IeCwFmPJMOXKKXAekUSi2NBQaEuyloeuSrTX6yWE5kfgF7NXLbmqZXlUIaWWLSgpFlSNSfhtx3sSBN6tqY8p9LvZQSll2T1LTaVtMbq6k1KR2PocPHyu0wChqlU8kmWXBj0ufsw6jGLobusFWw1xHHleMIqT2YYH+Obpz+hCj34YJISHgaPyBLIhzV5t9ylaFsTashpZ7mtZSX2mFv9EjDpKG1O2Oli1kKIgJdlQjCu4qrfonKfve1QzMVq6vlqtSCmy3e7I2eSsORFTnavh6W63YxxHxnFkjpFpnhinA1oM8Q6+Z7Nas96Y+u1HH3/Koey4//kfsN++hjxT8sxR6NNVncZW/4e6CK1zcKoTaRoSrjoaVRv2YOy9Ltj9gm827glKRvTIGi3Fan3vHARBK/gpQCqpnpuOICDS4b0Ywy8r4jIqnhAGSnFMo2EMooV5ngChH1YEKh1EbVgr5lJpzYBLaLTCs9mVqwg+dHRdX41XzcNgjunB5phSIie7/qPLHCTaqHlmCXjfdrwnQeDrx8NFpCd/68lmfnIn0br4T1P/Wtsvqb4u910CTL3YLAWu0mItm1gAA3s+4wq0ScWyvLxU0PA0KMgSL/TB+2yB7DQAnA4aNTZh+10ppjQkrlR1n+PTaX0tTnAIOz0tGB0JSva+6qRbvV/JUoNfHVKpu47gKglGGQ+JaZqIs4mm3t/vKlag1RnIbh9H26mbHJj3ntVqxZPHz+j6QNd5VkNvEuU+4IONtl5ePmJ1eMbV42dsX/yYabdDJC2GI652CwRn1FvxjNOMamYYnE3JaSTmaGakApDMfDTbgFbK2RZCimzW3obCjp3BWg5KxRwamcvcj41r46tgiwIZTTO52GcV3+Fcou+kioY4pgSqpjhUSrRJwZKJCULfL7bopUA5jLjOsoqkSkaXahMMC5oPI9MYOTs/x/mj8W1RU9Xuuo4QBkTMrSilQtGpamh68rcnAcAvZ0j6HeCvAh/W8/XbqvpXROQJ8H8Gvo+Zkv7TqnotdvX9FeDPA3vgn1XVv/NHvQ48xAVOqoPltq8/gCX1XnZ2qNnBMRzY300rCBZArr3mslBOAMn6eKfWs285xdJNUHvOd7OYbzsaoNfq1ZNb2rtaUvuvfUhpi/1YSkhdtKfWVQ0wfefE2XPUaUeq/sAisaaJNE/kPKHBnIFyUnLek1Nmu9tyd3trEtjzzDxNhpEI1dUp0Pc9l5eXhBBYr9esViv63vwIuq6n6wImh5YRNSJWw0FTTISu54MPPuLmZ+eknUl79X1H1wVcqK20qHhnikWlHGXMSzEXYtFo9vIClIjmefE7KKpoEeY50oeC73z9/O16O+FraK6B16ZGnXfmIKTF6ntf5T+0IGqBQSTjHXRByBne3m/Z7mY2F+f4YCy/OU6UhGEN0lm5gtAFb5lY8Lic0DonkLNSCsRUmLd7tvstzgfW6zM7p/1g33gFpVWLNZWcZcJWldbs1FW7+m85fplMIAH/sqr+HRG5AP62iPwN4J8F/p+q+q+LyL8C/CvA/xL472KW5D8A/gng36p//8Kj7Y6naXvb+RrF9nhb3cE43s8tO3H7uzx4ruW5UZpYSQsapQWNIx53XDwc5xLQ48Qip+/1j4gD9tQW4bU8zASWbL6+l2WXbqtEqUo8RyHW4wPtDqU8xFSWt38SzMwLzz3MZIqRVXbbOw77rQ3pbPfstge29ztSzoQ6N991Hev1mufPnnN+cW5mocF+33Xdkr43l56H78OyMbNIz0TNxGT32e0PHF694vMvv+JwGFmtVoSQ8cEb8OlkYVgWMNr0sLYWWZzRogydDVLViSpQswlvgdo5Rx86+uBZDyDFtBTs+zQU33ABe8MGA5naj6/y8KamJHS+ysUrqBQ0z6gr5JqxldIT48z+cKBbrejq0FLRvLR0i2amKVUgcsWwXpncZcKCgfM4p+QMPjimOXN3uyWlgvPehFyGAe9NqWie5iXbo17f7dot1bTWuz9Gd0BVvwS+rD/fi8jvAZ9iMvf/rXq3/xPw/8KCwF8A/qra1fo3ReSRiHxcn+dbXqT975jrHi92o222RV4/2rLWjxv3Kfh3Mtt/8hJFsOh9YgMmaG3XVOKNaiUW1UBS+cjSSgZXA1MGly1TyJJtp64c/2N+cOQytEXZPoEsP0O1S6rBxVLB9t6deFxlqrWFf/q49gmPQeXdTKJlGcV24uWkKuP+wB/+wR/w5Zc/I6UJ74yPv16teHz1hPVmzdnmjPV6beCg81V7z9VJQGtbUY507lJbZkUzmjMla7XlmtA02m3iKhBoUlrzHLl+84qSJ/reE7yVdlJB2pwL45iJOXNx+YSLq6ds7264u32DaOTyrGMIAq7URpixAUWUdql4J6YU5PTYbq0krNZdaaAvWEclRbWhQDXAzezq6gZUEqXOi2gFio0CrJyfdXR9MAk1NcTeOU/fOfrg8VLbi/iaspdaAhRzEwuWl6hUELcYH0CrW1QpCS32HQgsorRS27/VFb2eu0zJ0HffPun6j4QJiMj3gX8c+FvAhycL+yusXAALED87edjP6+++PQiAnXg93b05zZSPW2ar0zlJ6WnklrbTVkts6mKsbXiVk50dO2lSIz9SW2+lLHbaFvErJ0FaeVHfW2ldCes2PexJLBIptA5CaelnNRqRluJzFCQ97t6w1PnaAtrx8yzIv5xmPpw81/LPr5Oh2v2ArIWLy0uG1a/S946h7/G+o/N9dRGSavbhlgt9eQ92EiqqnuxPJcbknMklG7BWbMhF1AaAxBlXX6pLrvk/FLRMiESMkXMUOGmvvT8c2O4L3XDG06fPyHni7s6+Z8FKLBFFNCxpPbVVh1jQM15Pw3aWk7nQsqUJ0FLqkJAjzSCd3c+8QXJ1m7LvMGfjjBgOY0ByF4wGnuv3LWqo/mo1sFqtkJKIubYyc7FBrxpcRDHdOQQpS/hfMuGcItOUTBMhBMMhFoVpb99soYrBNJyrzq58y/FLBwEROQf+GvAvqerdOy09lV/0Kt/8fH8R+IsAH3304YPpOq2LEqiLrabtrVar9Q7NokmN5FPdmK3/K+Yl33rypdbRTistt1aBaFkUfdvtUok/3jkTJXUmzmFosUmVFc2QDbVGjdkFcDwLR5CyaLLWGhadixaWvv9JPb8InXDcndqib7VtPd+cEpGOz3Fc5O3/evL0p7HAnH0HPvrkU1SbVbuawOUS+Iwr0DKnQuu/m5xZKUaJtQBQa+ly0tJd6huruX0dDiriKe3zOVASMKNMoFOdBdEaCDucU3yA0AsuCN0qcM4Z93drBl/oXKakcdkVJYvJrmUM+RMgtZKiYj+uXgfFFp5DrTsiNixWcibjiGQEG77qgomfxBSrM5Cz8iZbJuikZqkoUhwUsVGieo349prauCJiYpMpQwNsa7fFyGcB50JdxM4o7SVRsiDB6D+9D1V52rYeKU145xSvckug+KbjlwoCYrnbXwP+HVX9D+qvX7Q0X0Q+Bl7W338OfOfk4Z/V3z04VPW3gd8G+M3f/A3NOfMgCzi50JtARLPqarV9A0Kcq+abRZborg/+2PlwqUCaDUwphZRtasRaSok8z+SYiHFEruCDpx7n1aSmnS5ij6c7/CmGcFxwyxa8yJY1GXCpFttOmuW2r+2g4wDRaRBYAMEHeAnH2+RkZS/vpkqstXfUTgtUFaR2m5FNYrK03fdm8VWaN0ILzDUAlSrikUtBc8XVT8ouEePat58FKGrKzx5Pp4JHSeJs56PF+lLBvdbNaRKnChrpfODqcs3Zecew8szTDtXEahXonMmJIdmyuWJZiL3vFlSP772cALug9XtSSo0Wvk4GLszIOoIraoHBvhsjcWnN3loqb5BCqUVkRylVpamqJZVSmOeZHGczD3E9mrPZiwXMxr1mXC2tp25kVtuDwyYr10O/ZG4JXca9G76VK1kKZ8Bj09j8puOX6Q4I8G8Dv6eqf/nkpv8Q+B8D/3r9+/968vt/UUT+PQwQvP2FeAAtzamMtBoRtX1RWg066v2aGYOh4lrTOLuwDRyRZeFwsmg0Zw43d4y3r0AL0xyJ8ww5kZPVpXmeKSkx55H+u5d879EztGs+RLbrFTFMoahD1ObwtaZqbeHT0ti20zfgor6vxaCTlvLWz7AQjU6/gHYuWjr+9VLpGBhOlWxPn0gf/LSUQzVdzTGR0gwE4+vPaaEIf61EW16vnmdpwyuyKDy3ssYBiE0FejJei+kDyFHHcPHfy8Xiq/jaEjwt6TKr4MlAmne8eWXj3Kix9IpaTzxjIG/KmSJqkmL1K8Hp4qRUv03bMwzhq3P+1bvixAlZxNkwkBNjVFY+gvPeFhotY7JPXLSKtdpcGXPKJkZbfTCaa9OpUlbKVlqk1jXSmtJjgS3nQorZRqVbqVgVS4valKtzrXS1gGfciozzRsnWPyZP4M8B/wzwn4nI362/+0vY4v/3ReSfB34C/NP1tr+OtQd/iLUI/yd/1Au0Bo0Cwfkqk1yOKsO2hdXFwILOsyDztrNlbewqV1PrKueshThP/OTHP+bFT35okbgaPXgx0lHJJgluHLeJj54oKV3YTiKhlgClpq6KloYEYAu0ah23NP/00zlx5ptXUehc+9fLjnVSZXPy0R78u5xkNRzvfnq/r5/XereTtPy0LBDnlvRzmiamcTQwKSW7DmtQhiPg2LoA7oRILS0Q12DXygEDV43a61CkDuS4BrDVt2S7tu102jK6mpaL2LCWr3v6HDO399YDvzhf1cdbNqcK4tTcnQwKJeWM94J4b1mKq3RvavBGqky4ojhcMPAzV5q0DT0ZCFeSLUgRZ7t9Dfzi7DumBGtEZ8NBCs4CBy34VG0Cb0FE1RFz3bWrq7VzdTy5lloNHDRXIqN0l0KVnTfQ+rRz1Mhli2CvKiWlJfP6puOX6Q78x+0S+objn/qG+yvwL/xRz/vu0QQpoaKk5j+9zAa0NLrV2g1kK4Cvpg8LPlD70VIf3+Q6DmnmftyT5xnFUleT7Kz9drW3EPoO35nLcMMHnAjaRCRaIKoRuIgcS9g2nw7U7978CqTtbidp/5JK22dytMzga2d1+WkhFp2mtN90vJNUPHzKBa1YalhEyJW374Kz8qCy1o5uSu09tLHsY2A4BoEGQhnewkmmZsmO1FjUcIsjftHeV9Ea1vVo0140W0YhJnjalpkNKNQ6/NhHqfuDpdK+zlgUrbMCTcZcanmktYWKWH0pDrw35oA3ynUpCuLxwRb9HG0zWD4bR2l8AzNrwKsZwaJ43b5EtZ0/ZaU4B6XZq9mcitbZg1oT0NVZgaKmUjynXGX3BanGrQ2XAbuuvPc1+4jf0DU6Hu8JY/BY/7dLTSqDr8ZsjlN69XaUpivQrMZytvnsMtoOtl6tcDUbKJqJFFIIuGCa7sHb7Lb3oV54wsX5hqvLgQ8+XNOFABVCdOLAC06N/GFAoCyrq10KJx/pBC9orEW7GNrM97JAjmDCg3Py8BQdn7BWOksw+ub24IOQWR9vC7fhBS2RWgBH0WpAYk67yzAT1FHiej+tg07fkglA7Wi41k8/Wm8L9XlP3mlpGZgaWNbE1Xx9/7b71cwuGR7hvBhtWZpkm7XwDNRs05zt/Tn7jNnOoWvqzifnstQgcAx4snDzwcREvXOErgMKc5xt1/aG4itC1kJW0/yz17dSQmrZUEqh1TipZMMbpA1btcy24ka+ngHncS7iO19LkMQ8ZzQf32fLqpq3QBv7btmjaSu875Lj9ZJoUeyIAbSUUOqueZzNTimRUmSOk9ly5cxhToxzJKbEZrPhs08/5XwzULLNuF8+ekwu36PvggErQ2+DL76renyJs7MzLjc9j1cHQtjj/EwRwbkOJ4qrwcm5DjOVaCmItMnjk+T+ZCxY2kWnNbOogJPYoE77fJaVfB3JPQ0JRbUm4yflwdcesETLZXTkQYjRFlBlCVjeu6W8aiagp/MQp0Nctbfy4B2eVBr1M1u6ehKKlnZsg/7aLlzazl1ba2B4D0VJ2YKDyaovCQaaTdMvF6VkbIFVr0bDB6T2+G1wp5mjtt690ko0K1kaq8PUg2WRsM+lpuxe8aGm2GqKPh6/yL8V5EQ4xoEPZE1kbXkXlUqszDHaYpfuONrTanvv8c5jOY/xDUTq+68DSxTDWrruKLC/lGHijnTz2nqcp/c+CGjt47qlBChqY6HzPLHf75mmyQZSxpF5npkmk55OKaGoecuHAd/1NmXlHGmOjALUmfVPPv0Ozz94bggwhvC2C7mkUqexBCFWhNbThY4sznCB2nbUKkC51ADVuPNoctyAtJOOwclsQbvFLsKygFKydEa+/TQBRyKTum8oHU4OefDXg0V7RMjfechJhvJuEICTC+3k+R7yHE5eTFvwa7MY9QbVZfy67cLNTq3N6COtpWatMjNuDbUCaYpMdcS7TU3V4NIQ9lw3/zpaRuMAmGsTaKktZOw9pOqO3HwvkhZICeMhGOrvssM7TPWXI07Tnsc4Ci27s8+ZW5ZTC9NS7djJ0WJhE45xxy6RlSvVCLeUKmZDZX7aaLZhC+54XTwI2PY7O3/eOmvfcrwXQUCLMu73Jop5OLA/7JgOB3KamaeRu7s7YoxLGu296et1XcdmvWJYDXR9z7A5Y705J3RdncMXNCc7ic6xWm2gHxYaPXqcSnQBSq0XQ6la815JZFytNU1Ew5FVUGejoSyp8dFcpC0QrSWG8s5KFVjk0k9KnmOV3PCPk3P07kLT053224/jjNw7bcMaBJb3LJUwgzTA4wSfeOf9v4NOHkuSd4NKCwD5wZnR475YR2vbecjkqqXXOcsFtCUNWuf5URDz2HP4SheWJcaoClqaI7UnowS1nr04Kimn1AqtaQPYPENKhVwXuH0/aZkd8HVBplSQIHjXLd9aCyIt/VetMGbjQmhr8R0Dr2W1CXXgfKiS4q3eO/b9ixowCCwB0jusNPGmM6E51yziKEwpYvdZguX7jglM08g//Ae/xxwjKUVytujbBY93jovzM7ousFrZcErXmUmDr4ozUnXezNyhkiuqfBVNkQozZmikoJZeee+hJrcaLAMJmnFdR5TMpI4eX7cspWRz3kVWNLsTqcCgkY3qH45Lz+EriNP6zHUxyDEjWOAF4cQSjeVZTn/Dyb++Rj/m4c7dFvtCkVM4ko1sZFrq6wnHnf/hYNIRC3j3Pdm/HgYFhAWBt2TJyDRW74thD7R2WK3fK25TyDQqN1g9m2ufr7TavepFWhhowesEkNP2jdo0ZC7mA0DFItq4cVZQNRdlp94EUbX6MKpaGVGzF+88WmJF2k09qWh1gFpSLvNvLJimoqsAqlexoaOS7JRj3JbcaBEtiJZyDCpqwjFJLcOcS6aX6m2C1CDgUddKHzv3pV7b1oGpivZmzfyNaw/ekyCQcyLNB/qu4+Likr7v6EOwCFxbO67+3LKB42Zue4pNTxW0RAsMauBPqbbVWgz5ruqPgF28rgF8GE9fVEyd1gmzOHoJdM686C2xc2TtQHq7yCgGFILtrNrch9vWZFuZIdw1a6gItDh3nO6DZQc+PR4MPunDFL5W6MfffT3hWPaqVqbUeAOU5bYjpUaXHOTrAcCCnJ489/F1TjOM9jInAafOXxRtBKLKt6AtVnv1Ntdhcwm2EErO5GQuPAW3CJlq4/s3ApYab94WmZF+sjbdifoz4FpGVQoNB8hqVPHszOPBvora+cHYop237ytXVyfpbaJQVIjZPrTUDlIpasNFWMByxRNcQHUmpUznTGMwFyUnyxCcr4BtMdpS3cpJBYoT/GBuQlmTaRO62gnxjuKqPoJWG/QawItkfKif41vBo/ckCAx9z/e+95lNoPma1tSLX6ACKKf1Tq2+5Hj5tv6805aKV/pGA7PEod7XFNiOdmJca/1VwC6onRb1gnrT6PNSQIq5vix6gGUJAlqHF0QLbWpuQfBby3BxkjHwqoFhUDMCLe90C9qee6w9vz61eLor23k5/jkClctvpJUpXws3ds6kpSIPL5rT51mIUS10nL7fFmzqoywAlCNir2JO7k1IFbEhHz3BKepOr9pIL6C+1PZYshpbINXsJomSxZSLVYzpoVqnA1HMG8WRPSafpsKMI6ojAocidJhaUVElZlsYXgQwVx/LMK3+LmrPEcSuk6SWvbg69FTUdnBp70EsCFlzoNb3zluy42woTYyvXlN+25CaKnYfOlZnG5IKaZpPTnQbJ7fSwkBmeVBGeOdQb23CbzveiyDgvOfs3BxpjDVITcVOKkmRZVrqmH6Z+KSvgpZNIRepxg00UY1cM+VQd4vWgrIV0TgI6uwRTZK70WB95dXjIKFAxmiqGSMxybJYy8OVZYtcG2jU6kTbLXIxwslSFlTSUQtqx+do//+mmvv09++UAe+UBksQPbn3kk28+2qnGcc31JNLx7FlVfrwPtICdPtiTt7PUgK1d1GgCboILFowlv4XypJJFVI2Ka4ikDAKc1TbrZ3afEDSRC6OnE0N2YntpsmZY28qhbEIY4axKFNxDHSU7AlZCaIEcXQUVsFVUw9PJwIuIBotu8it9WgL13vFiU1rugLF2fWRgMOU8NJkwBQvCk5xwc5PdrlqQdprV+ZBLWFboCx0PuAaa7VkSqz8gFxqaduy47qhoC3CfuvxXgQB6sI6tjg8VBrksqNJQ8KP6dqR8VF/W3chwwRqfdwWuZRK7DFOtdPjxX2k/AZETcVVo6JZEe3IrlQyk6+KL4qXTHCFZjfxcD9umUtFkOUEgFv+b1+zawulgQHvdAiOC8l+XrKB+r6/Ce9ZBnjaa0nbuIVqlEMTTTwVSbW63dL3U2Dy+L3I8rNiBUUrMd7NCKS2TBGhMTjtuVoScCwzzFw0L5WR4fBiqjzFZuid81AcudjQTiGZwKiU6hOBDevgyZpIRY54QhFQb8rE2TGmwKEoYxEm9Wg34FYXxN5RSiZpwVOYNTHlxDgJfRJWPtD7QCcdmpRYZc1yhlKcZQx1ktAyVV/PT2GaE53LrIfaGvZYIMiZpmNpg0jQuR5fSyJViPPM3c2O1dk555sBdLa2acoEb21JxNlgWvve1DYcFbe0Jr/teE+CABXktoUjjTpMI7a02vhkV2oBoB31Im+sO6h16TsnxTcSBiepdQ0UVLQf8eToSaWQNJCkGDBUIyxiE3GuytZWNgONzOScoxQHUqpkl9Qx1kovre/RMAHLDN6dwXxQY9Oyv4fy4r+wPXjyTO3O0gLCUkK1565A4VIv2Ot/XahEjwFziVJfzxxOX/adH7/2y5apldzcF2srDKnDd/X70mMAtO8gmerxUto44wQUj2pHLkrKVlPH5JgnQZIwR0fUnlkds+soboVfbfDnV7iuM4kyNbUiLYmUJ1JJ7Euho9CVgldhlayD4VBKCWhJrMQs7VMxsM6pp2hawqlJrXcEl/GiNSOw8jblAsTl8wq+Cp1YSTSNI6v1OV4MCUwV1HVd205qMDj5erSSpHLlWXzb8V4EAREx2+0lCDgWyzA59keXhVEv1nZR69LPXm7k4b5M1RIUjv5xsLSKasrUJgOTOtCeUWGisyCBgBSSGDqM61BpRBGqzJNH6i7qETRVBNxbe8qp0HWhDqk4lnkIvmGhnCDxDRg8HeRpnfqvLb56Ph9SeXnQAhRx4ME7X1l6umQVx3X/LQHg9L0tgOXxPu21CqeBoRVLenzMyfOmXMiqeAUqbVYacl4Xvy3qcsSJEOMTIFAcFEfJHTk7coaYlSk7DilZfV48vuuIqSOLkF2HHzYM60u69Tn9ZoN4c02mBhmnBUqyjkBOJJ2YSUieOWjGxWxswJLQIgxZ6J1Atj5+oCPqbII11SMghA7vEloq918N5CwnJaOKozhPKW4piR5sgBg7VlyBuQ16yZLttTNetAGP+RfuGO9FEEDMGKPVzhUxsduWthcgJ6owcmwNutOFzUnWgICrQcBpxetOqlF3JNtoGzwXh+oKDVdkErnvmBltV5dEdMkylW7AdWusqKv02lp2KLbAXDDzjtxKglLw4happ2MmUpfISZ19mvKXeqFoPVdLBdGQx5Nd+8F5YEmQls9rjHiTyApVv2+hQLf3cPIM3wYqHwPCu+XJw8CkJ4t/KRtOMAH7rtoQlYFcBeHIaLTXKLlQks0KOPWIBnIOqAopQcIzlZ45wjgr+zkTCZTVGnUriuvA96zWK3wXoOvw/Ypu2OBChwuNmdcmVXtM2cjMTEvKlLKxa61kNBtj1cRLsol85GS8lJwICu6QSdG6S0KHyx43OYbQshoxFqo370t1CRCy9DRyVHGOxiK1IG3roeRMcQWXaxPa2bppWXOT0LPhuMy3fI3A+xIEAGshlZpOH3f5luzZT4Lztf+6BAEqF6DujFAZdXqsawXbzYvVfOXkhB4BrHoCi5g6jXg7kUMHMpPKBGkilhkfAtIPyHCGC8Oi8++cM2GKmra7yjIsOVHUdO1TahNvrc4Gw7AbswDa7m8/vptXn+6up38/DACnDxFdYgeI9ZCNbShLu/WbN4qTtP/0+b52N3knECxVliEmYvMXLQtoC6B9vhYSlo/ntGZObtH2U7VMyiGVSdAZup+UXRRmhbkUxgSpBFLojUEa1vRhTQgr+mFlVPG+w3Vu0XOAgshUM7a6oZy0F4tAdoCuaNM9mksFj62edznZJGCySb+YIyXPID1I5oAwx8whFYbOVZkyR/BmG2/XY4cDwzFyC/ZqVm9Vp0Dr6+WczHsg+AXLyTTNi3ZtG0mmieZ82/HeBIFl4EJqfdcIK64BbMfjwcXeYkT90Kc1tz3vSQrd+sl1ZzqmzbYAbVyz7kiuI2lmosN3G9AJlZFY9kQRegaCG3C+N8OJNnfPMYU9trxsFyyqVahDj6Gt3n7stL/bcjtJvbWZnignWfjJDvHw/Njzs7QdtXUi6sXVas5fYpk/uK2Rm5a76sNHao08p+m/6PFzLQkMsLQCWPJ/W4Bi2Z5ials2p29szTkr+2y73RSVfYIZiCpE38PQI91A169Z9Sv6MJg1V+jpOof3huR7p3hJdcgsoXW4yUg/Nk9grVwjiKl4TD6cOs9gGauWYh2EcAyGuXobCBEp0Uxf5pFUErPalKxqREqmS4XeZTqEIMX8BEvBOavlkypJDAcolXW4CItKC1Z1hFqP14CrY9Al5Tr1+M3HexIEDCc3i6ua6i/pbfu5pYv2iJZGLvepAJx3fgkaTWDhCCVUgO4BIFb51YB4RXwhFzEXlyxIUnzf0/uAkx4tgaSmIe+SMGCecSKYzFaMyxfUTDpzSuR2sQs2eSayjDrbRzsJWu/UzKc75UmusGQ9y4z/NyDA3wTu5aq+c6ocdOw0HDOvb/6maCjLsZlxAsMoR+bDg+iw3O8kQMEyKq5qMm9GtLJTVUSIxWS3sxZSCRyysIvKfp8gBLIEknSo71C/IQwrwmpNt9qwWq1YBU+n0ORavS8EJ+YopAlRQ9idM46HYD4BVPNUlYFMj+Jr/a5EdUxJMchHEO1a7KoeB8X8CEKPiFqJIA43ZDyZkqOJh2qi5EjUmVkP+BxxOeKlELzU2YnCISmxSO14nACn2rQGqtqTYq/jTrM8a0fHhk99w/FeBAFbnP64SBsN2LkHO3q7r0Jj2lgpUKnDjX/dPrydlCpoWbEDV330lMpGy7kOf9S0zjvjA1SRiwzEqngTnEMGhytm+52KTaf5JdOo6Vd1smnKPVYOmBtNq+ubDJTRjDECDdgor/1UP3d5sLgaeLek3wuWcGzfnR52imp5pe3+mVRMeeboi2i3HzsH3wQ6nqTwYhfiMThZduCWnL4sJZ3TEwxEsFJreYORkifaKLloyzaEot52/aTEAglhdD0xdKgES7VdjzqHhJ6+39BtevrNhm5Y0XWBjkwohc4dg5v3xdpzlbHlnCd4j2gETTgX7YO4zijiOoB6K/XIBEwhKYmglRii4ojOzk1agraauEcR8zDoHCI9mmvmSDHV4jKjpWeOI04ijmzZasqQM/PkyNqTNRBLG2f35KU0cktWZ63s9t1UabJMzVq++Xg/goDIIoksJ+mqOOMLNAuqBr5R9IgHNJ6AM12Apo7rnK9tvFCpx6Fq6FsQMDWdA+M0mrFkTjTGXicQgiMlKy+iWFAQBC99jfCJLB0xJkKeKy/OALbmP+elQE5ISUYAEYevqWaqgJJTJRRQV79QccDRO+7YEjzy/FtmdEy/dTlHp8eDbL1y1IsoSCHlSG7y60rl4rOs81P5s286bOdzLLpICqLJ3mPLAGo669XosCpq3PrimaMx396++Sk311+ahVbxKBEQYvZMGe5GZRthLp7sOqTrDafxAz4YqOe9Y+g7ztZrusHRBWcjv64QtBBqUIqqdN7XXb+aqwaHl47gVogmw0pcBjdZqy8ZWOekaktotMAigRLU7MEzddxcSGINPq2LErVhtCK1xPEO13UoVZVZC8KarBtympGc8cV0E/M0kTWivicE4ZA7yjbjVQiuI5ZAzh2+EdZKrJTrKoxSSwXNIN9eDbwfQQDhmMLULCBXqNwyZalW3JVS7I8inc47fOfrAg+0q7gLPavV2txkRZYZhLaAUkqMY0foOsbxQIwzcJR3QodFtirnbGl+ldL23tFV88372xu0FPrV2qJzMr39lic75yHUbEXBBb/MqmetQI4c24DwUNOvdQoKp787SbPhwcL9+viv1rn62rYTQMqSAbVgsjzRSTnyTdnF8b0Zo821f9fSoJxgEIZ91FxBTKp7v7vj7f2Wu7s7AP7wR3/Iq6++sguVgayeHB1lFsZUOCRPlo4SBny/JvQrEEfXD6zWZ6zXZ6z6gaHrGIYOcZmSIpAoqnRiCsdaYPCDDYqpw/KKShrLMx0B70wwxJUJ7wrFOaJ3TDmb6agURDrrsjghlULQYyYUgrOUHUfGeEDqPII9JrfA7SyDsMDpanDv8GFlgikVM3DrQkiZPM+IZvYlczePaMr0QRjUsyrKKhQ6oBMbSiq50Ls6J6FNV+vbS7z3IggIR7KNVG59c92xFN+Gh0JVevHVqsn5ZrbgKkpaRRdSxvuwBAEb0DBH2mY31vc1O+g6vPOM04Emp42WyrSU+u6sJ51VmVMi12kwzYlxt2Peb7l49JhhfYYXz+CcpX9VjSfnZIuk2Ogo9U8bSaqJ4XI+lDaaWls8FfB50Kt/53j396qNV96wBx6Cgou2YXvF+pc8pCl9E8Bqh6F1S/3fOB3iqjquvU5KkcP+nt39Dbc3N2y3OwpCPxhN/PlHn3L/89/n+voluawYU2FKpXIwHPTWygthwPcrhmHNalhxtuno+0BwgSA9fdfR93WUN7g6Tiw4zbhik5z4npQMfHRqsnSugBAZ3J7VoKxXic0qs+48Ip5Mx24OvL7NvN0XigwUySQdKSqoeKR6C/qus42rgngxFaZZSVmqH2CbO7Ul6SoulEtlPBasvHAdEvrj6Hyuwq+1+0BJTCUy5ch2znTTRO9gEKWTQh+ETYE+OCiFlEHlPZ8iRITVZmMDRHXRh66j71d0fY93YanlTWLcVbJN26lYUP4myGglqjesIbQWTKngVx23rKaXgmUKVhrMi+tLqXJNIp7gDdjz3pNiJBbrB+dpT9zdMx8OnF1csjm/ZFifmXOu84sCsqqSSHVuvjQtEgsEmpe2YgMHlqVYF98pqcd+rQ/AxPb3aSbQdPPcMm9fE/UTYJQHz803bhjfFGDQdi5L9QmoyH3MpFw4HGZubm+5vn3L/fYWLZFV33H16DFPnjzj6tFjAFaPnnGg5+2h2NivrEhSVad9IHQ9w3rNer1hc3bOZnPGaujpu0yQjKjJmXvn8M64++KpTMwAEnj8+CnOeV6+fkts7sJSMxkprHu4uNzz/IM7nlxFzteOAfDFM84jY/6A54/O+eErx+ut41AyOTiG/pyzzQXDasWwshZkCAHBqNAxZw5T5jAmxsPINB6Yp4kUE3GeiTFa5lSFZQRqV6KqGVEIPuCr76DVc1iHKEdKMrXsGEdySUxlhhxxKdEloatdBl90GXb6puO9CAI+BJ48fUbX94j3i3Js6Hr6fmVcfm0zADU9PW2J0QKB0YJDCJSsi0prCHWMt9gcd9uVW0ocQiCEDqZxeUzJuui/W4rszNSxq7tortr8cwQtjHlLmmbSOHHxKDGszw2pdh7UkTGikFv2zjZYTk0HbUEaanzsaKDHxXrKHPyjjgXsa8BhzWsq/vfgaGDrkZJdU9yToHL6vMcgU3ELhDQn9tPM9e09t3f3vH5zzTTN+K7j6sljnn/whCeXF6y6YOexGmROKuxVGOvcBmqLufMdq2Fgs1lzeXHB+dkZm82KruvrrHzEU92iNFlQyrpQfq1bBJePr/iNP/PrSOfp/uAP+OKrLxh3CaceUsa5yGqlPPtg5tNPbzk/u7cJwlnpciAkj5vv8avP2D/7kKlALhvWzx7x+MlHPH3yIecX50Y5dsHA4JyX7zHXdmKaZ3bbLfvtPYfdjtubG+7v7xj3VoqmbHiKq6PINvegtYNgIHnnO4K3bFd9QIPRplNcUbKZ4qiqZSFqnQifJrwm/C8Qn3k/goD3nF1e1labEGMixbS0/nw4ilwe6bDt4lSOjWe7j6vST7lJUVeUVtUUhooWYjRDy1b3pxSZp2gOR0rtF2vtVdu8gBPouh5VyCkzzRM5mSOtUyUeDtxW597zy0dsLi7phzVVLW8ZTzVBTEPplVJHom33b9ZV7fM2l59Thl0ptZVWS71Givo6iKfH/7cGQJPienD/FphqsOEkUNTW49dZgSa/vT8ceHt9w/X1Dbv9SEoZ8Z7Li3Mef/cpV48esz5fE7zi0owvGZ9t0QIMarWsU0cnSueUVRc4P1tztlkz9B2dJMJ4h8StqWo4QSWTNNvTqA3JWKcjVwWATDd0PHl+wZOPzvErj998gt+MvHlxg0uedJjQ/YGzM+XZU+F8Y3P/QrDuQEoMbk/STJ4LZwIfPn7O4/OPOf/sT7A+f0ToznBdT8F4CporLu+sG+SAXqBfK5uLR2jO5BTZ7+7Zbe/Zb7dst3fs7m/Y77ZM06F6Exg/ItXyVTXjc16MdrIUUh20Mhyto8gKfLANsrYgKdEYj79g43gvgoCIGNnCCc47ugoQLu2r4wZ1THeXlk/dHcsJKypb/zTGSIzVNKQcCRaGG8zk0vzs7cIehhXDMNgOn8zP3tL0itqXRBfsS5iYLQUuhhN0wYJMnkbSNDEdDuy2W84vrlifneNDhw9C5zx96AjOLbZVWiyFFZWaFh4X8/K+W8vuBBswMtJyEr92Xo+tv/q4osu49Cll+Xh2T871El/1gYptKYXD4cDd3T1v377lzdtr5inS9z0Xl5c8fvyYx48fc355hpNAjIWcImWe8Hli5aDzJvcFMNzfs54SV65j0wVWwbHuOzqv+HhA5j1FE3PJzNl8xbyvVtuVc1/UTE9jtIURNRLTxPp8xae/+pxuFenOEh8MHUmfcXHWkw+F8Trx9oufMawil5tLhvCUED4Et0LzBLyF/DmD7Igl4yZ4dH5O99Ej/KOnRDxJhZy06kw48w9sSkLYWLEZiha8dLgu4EPP5bDi8skztGTmec+0v2V7d8Pu7o7d/T33d3fs9ntiTJUDUPCqOCJeHNkLsyqxKASbs5lVyBVTE2dDSCKDSfL/l2KAyB8hExe8ARpxoqjiQyUB1XbhUheV6n5bMjkfXXOa0urRILMSKdTV1N/T9QNr7wmdW/gDoUowpZQYDwcO+13lh9uCsSliNZxBpLr09sy7iRQjXoCSKcykeWa/3XLYbXn89BnnF48QejTb7uDEFJU054pYS631arrdiD9yLAG0ZjwNtTeDCWl9wofQorS+fwsclrZTjHp65F1Aw0iEI/0Cad56Zik+TRP39/e8fvWK6+trpjnhQ8fm/JxPPn3Mk8ePuTg3fUcRYZ5Hxnmk5GJgVRlZ5QMhHpjHA/vdAYCXv/d3WW+v+bhz9MEo414TZbSWrbE7I6JaKbkJguB8V0lhUnUZTKswSzbgNmdSgPFwA3pL7wIlJJ4+coSy5nAzUmTFRT7jcrhh5WY6Ocf3z9BwTspb8jjjS48vOzr2+Oktwkt0/5Z4uCe7gewgBwzd91YSuCKV9FTIpn6AVkEUzXkheAHgHG694Xw9sLl6TEmROB64v7m2kuH2ht39PXGe0dhIRtYS7IKrugWeWCrfRCzgFM0VA3JVnfo9LwfgCD7lKpqIqtVJKRGCSSipqlkxlVwXd6pKMan2ZRsvvQ4hi6/DRXaxBL+i7we6riOEJltmOENbXIKl/O1LmueJHKOBSUCOs429qtL1HXJ+CSkzHu6rKkyyBRkjWSFOExoj82Hk7OKc+bA3B6QYKbNDY4JciOOeMe7J4hnO1seN/US5tqF6S0mkVK2CYwuofhIW0g/2mIVPISdSYHK0bjt+B7V0Kso0z+wPI7v9npvbW968fs1+t6Prez54/jEfPP+Iq8ePGfrOWoU5EafRhD/ijOaCR/EaKYc7dvevObx9yfbNS7a3twC8/dHfZ5j3nLtUuzs230FOFTJpgaDgigUrX5TOlPVAwWxJKhhHxklGQsGJksZbdP8GXfWUnOhK4TyAlhmIPH66wZe3SHpr11I+Q92aVDsqngBZkRjxaSLNb5lef0HiMX79CLdWvDhC6MzHwgWcepxaxhVLJonW2ZGZnGcDnSlLqQfVCJeAH3qGfkO/ueDqyXP293fcXb9hd3fHYbetqtszmmy60Z+oMncigAHakUJSU2G0TeA9pw0rlf5Yd3G7OI8Iak7J6qCcLTDAsvMJVL81qd0F6xz4+oWY+KS1rBzdQhoKNa1fGHgAldEnAv2wst0+BKZxJE1jBSzrZBnQdR2dWNZSKMzjwYJYqfJiRUlxZBsz03ZHfHRFKUYC0WTWU+N2x/Xrl9zc7LjdTgznl3z0nc8Ifd8+pmUyckKZrsGuql3RAgM1CW1/moZPY1AeD6m3Hu9r2v22eMfxwG67Y3e343a7Y4wJ8Z7zqyd8+p3vcXV5ycXFY0K/IqPMaYY449KE5Einib7MxNE6Jzc3b9i+/pLD25fE7R3lsDMTUSDMW3xJRugpSqplXRALztZqDKba4GLlwKQqXuoq648aLAtBIsOQWZ3B+txzEW6Y3/whLjnGeU+ZPJIvWE2eMk0ImZhnRr23+nkCdQdKLMh0QHLLKsHngpv3TLevuBl/zEFXDJcfsnn6Mf3mgvVZYbM5w3dDTclNgETAFr4PFO0oJVW5/EguYroFJ5/fHAc6+nVP359xfvHIsqftPbvdlrvtHffbe8bDgRwNmHaLlmapakqmkCRSB7He9wGikgvb7c5aJzFVHMDAupwy8zgtbMAQ/EIR9t6mqI5MwFOijDvJAixVTDO0dp2Bf8cd1PZNVxFWGyQJXb9kJRQjoWgddHFtV/WeYbPBB8fu/o77uxvmMeFSwavhS3GeGO9vmba3KJlxd1+BxJEXP/+cl1+9YrebGOfC048+5YPnzxb56VIM20g51nNzxARsFKq1Co0l1mjEbbN3NQC0SbOWJ9g5MVB0u9tzd3vL/e0N9/c3TNOIqLDya87Wl3zw0RWbywvOL84ZgqH4OSvzNJJyRDTZws8jOt6T9rfMdy/Z375lf/OW6f6a/c1b0n6Hy7kKYdZLr6TqoFvbqMWUgoZVVT7KnkqzQCXi3YHNBs7PAqveU3Jgt1d2h4jPkfNL+OTTC55/1HF2CWdXCT/9HuVtQqaReSeQHnHmPqHza8YUGOfAtC2s77Z0HWRGcB4vI1OCNHrmXWbeJgKJPk707Pn5V19yl38OZ4/Bd5xfPObDTz/l+YefsL54RBg2uH5lPhVVw9A5A64N8PaGTWUoRerQkVmT+WL2ZJ6A689YdWv6zQUXaeZqGrnf3nLYba1svb/hsNsRx5GiliF516RkzW+zDdZ90/HLuBJ/B/irwIf10vptVf0rIvK/Bv6nwKt617+kqn+9PuZ/BfzzGPX+f66q//df9Bo5Z3bbbb3AqTuwYz2skZWdnBA6VqsVfd8tJApXjR2PO/qSQy8goaGpVE87WSjCOadaErSBozrW21ZQbdf0XYegBAdOMyWPBsaozRYkFPWOsNpw5o2osru7Zd7uiOOMK2oU0DJT8sQ0j0y7HVQV3bubWwpiaTAOTSMljqT6naU0c9hvOYyJGKc6wkqV2oZjb8B47dJKISf1Z2VxR2q1qAiuwN3bG37y059YjT9N5JwZVgPnj5/y+NETLtYXhK5Hu4DrPYIyTXtcSricCSURNEIaKYd79revmW5ecLh9RdreQhwhjoQ5siqJHIK5CCWtqDcG9hUqLmKIOD5V6W9MR0EUlYl+mHj2vOM739nw/IOezSCUObC/E27vDhzmA1dPOz759JyrZ4Uw7HFhRNMtRBii4ielzBOBCO6M0A+cnT1ldL1loX6DC+e4YWVTwBKJtzfcpLdMh0zWM6ZcKH3i/EIY97fc79+SVcjzFXe3X/CTH33CxdPvs3n0AcP5hvVmMLAziHVJnCLSmP91Q6lsVivObPlGLcSsUG3FnXh8d8Zm2NBtzknTSIoTh/s7bq5fc/fmNYftliSTZci1TSnoH7tFmIB/WVX/johcAH9bRP5Gve1/r6r/u9M7i8ifAv4HwG8BnwD/DxH5k/oLDNJFYLVaLbt7CGEB6gRhHEdKgeA7hmG12GUdx01rLfsA7T4GhWb8YDMF9u+UI2U2klDXdVY6IC1TpnG/tQpI2LRbbr2IOrBhFllW1hXwjuH8At91HEJg+/aaaX+oj8+4Ushptm6AuroLmlKRqrHkcp7JZUaq4nGaD6Q4klNZPA2knPwsy74O2ohHllqWJs+ddVH09d7hQ4eUQokTaRo526x59uwpoetYb84YVuvKpLTyYswTKc8EMl2ZGXKmmyfyeM9he83u5jW7m9dMt69hvEfiHlcKvgpyaIEgHgmdAWU5QrFyoKRs36Fxv6piL1YuVdFBL4l+GPnoU8+v/+YTPv0kcHY24fIOJk8+6xivMlMqhPWe1WZidQ7SjyZjXry1/UQInSPlPXE6MKWO+XBOOPuA8/NPYL0hnF3Sr57iV1fIEMBlwvYaffaG/e3MYTux2wqzE67O1sh+z2o8sNlsONsMXN8Jr292fL6/Jn+phFXHxdWKR5drzjdrVqtAHyB44yh4F02gtILSAtXdyliqhULORhLKtVwwk1OP69as+4EQekLX03WBm7dv2G/v0RQhJ1MVKor8cazJVfVL4Mv6872I/B7w6S94yF8A/j1VnYAficgPgf868J982wO89zx69Ggximw+bN5ZEEAD02Q96JIh+LAs1KVOppIytf4ejmIjS/Fbx0g7jxfzg0sxIRQIZpDRREdSmpnnmZwjOUXyPDPPI3OcydGUYXMutqNV0K2oteDCamDNFarKbclMKaKqdJppSHwjALU5qFz15qdp4nDYMbSpwjLTdTatWOoXK1rMrrtZVlV57qKREkfzZ0wzOVXgNGXIlrk45/Eh4H3HZuj4jR/8CnNOiLfWVVHj1hfFApdTepdwEulLoksHyvUNt1/9nN31Cw53b5j296RpRNNEh6nqhhqsSink7EgaKi22TW8atlNSqXW+qUkHUcCbj14BJOP8nqvLiR/82mN+8IOO9XqHxls0jXgNiOsZvDKmEU2FTm30t3ih82c4HUhxRtxM6BK+zEgpzEmY7w6kgyc8WlNWV2zOHuOvPqLbPINuRdJEd/YBl4/3dIcD5cUr/MstGznj0eOe893MqxdvWXd7ri4mzlbnrNZnfHnT8fo+creN3N0euN1MXF1mzs561oNj1Rd6PxP8SNcroQ84J2hlS3pfZz+ruIq1amsZ6Kt3RQWKcR3rswujUARv8zC7LTpPSMn2PVQXo286/pEwARH5PvCPA38L+HPAvygi/yPgP8WyhWssQPzNk4f9nF8cNBAx7T3nQq25pW3zgNB1HaUUazuNE6pS5ZWP0NYyWadHMKwZVTfJL1Nk1womCpIK8zQxHnYLUp5Sql2HuCgCaTYn3NbqKU38Qqy+0/rYZiiWVQ0ruLjgQmyM9HB/xzTOkPLS+6VoJZlk+4KDEEthnEZcVaX1Ac7P1qAj93fXHHb3nK0vqsW2PUcskTmOzGkkxpGULXiZCEmp718pqZBTqcQRAR8YNitrjQp0LlCKGXiYf09B00TKe+bDLbdvXhJfvGT66jXjzUvydA9phJJMcEeLyX1rNsTeCTkr45yJtUUpJZvhZ730xHUcM9XWDpXFqMT7RDdkHj8LfPrdgfXZPco1pcp3SxF0TjApeVeYA/RPLwhhTR48ZXUJw0DSN+juCwYmK2ectddCiszjW3bRxofXV0/wjzPOJ1QMn4oq7FPhi9efc/3qS5y75PnHz1itCru9stn0dFogbfEEHl9dkcLEPkfytifPgV0uSM7M+8S+U87XMISIdyM+zPgefGfdqtA5us78NC3Tc0unq5RG1LJ2aStzRRzdsOLy0ROc99w5Ie4E4ozmTPgFK/2XDgIicg78NeBfUtU7Efm3gH+1rsJ/Ffg3gH/uH+H5/iLwFwE+++wzzEceKE1/raaEqosXm3Oe1HbVrq8IP8bsq3LLDepbgkJprZhCLrOhsjESo+308zwvDK2iSimp6hiWE1KNLhRZQY144cQAl3oCklhToFQ+QRGbcR/Or7jynn4Y2L6Gw31izIVZtU7ZCa4b6FYd3WbN+aPHiA91oYALgfPzc7p+xTyNvPjyC7qw5vziiglBNZJLJOZIKrGKXibI0T43xj3INRAYkFEzmaLs798Q1gPDekXYXNDR49UbMDXfs7+/5vbNl7x5+XN2r1/i7rf4w4RLI1Yptm5JoxJ7FG/nQ23UOGmiCYekNo9Rgc/QNZ1H84E0dqKnCwNIBjfj+8L5Vcf5FUgYUZ3R4EFXMBckJFwQfBCUTJwKIQ84dw6rT9BuQxpB56/ochWCzT2r5IkJpjixP8xMxTNcXXDx+Bw/OIoOUIR5t+PNq6948eUPCSSePnvC5sxzc3vDeChshqfcvXnN6kIQmZnjz3n23DNqh6YL9juhzBNj9pRJiEFIO2UVMsEncHvEZ7rBETroB6EfAn1XR+Or3Z6TgEgwnLoYTThjm0GodPpuGFiXc3KcOFBIeygxGYflW45fKgiISIcFgH9HVf8DAFV9cXL7/wH4v9V/fg585+Thn9XfPThU9beB3wb4s3/2z+gcJyPGlDZB5xaSjkhli7pASlL11bMRM5ztH3Yd2S6tRSnRjCriHKuLTSamiTiPy78tMDTJJmrm0SSu6vz7kmwc2XSudSCqwYnlGXm5m2LzEIiJZq7OL1mvN3TejC+y70mhpxs8m/WGq0ePOL98RL85w3WBrvO4Ttg9fcQ/97/43/wyX9F/KY/bIRA6R6MQm6iMdX6cDOAL6g74UHAhIiEiPtdzj1l99RnpEy57Ohx+TMTpQLc/0F1e4FmjbkPXrUku1K9W0Bwoc8Di5cTu/sD9/jWbRy85PH1qzx/W7KfMm9evub1+w7PzS549u2BYn3G3e8mPf/RDXPF89OxDXuzecLl2nF12vPzqZ1x9dMZv/uD7nAXHFz8bub0bSVPiMCUm6YhO2cuMYw9sEX+wxb9xrNaO1crT9YG+76xd7JzV/r5bWuM2DZqN5yJt4xK6bmBzdonkwqhC8TMl/jEciMS21H8b+D1V/csnv/+44gUA/33gd+rP/yHw74rIX8aAwR8A/99f9BqlFPb7PaUoXZsk5EgRdovxCITsmecJJZNLXKJiqfz/GGNN6TMppWWnN5AvoprrheZqqpxret8yiJMuel3VWp2CqK0WG06pNtIYCl+avRTmfkSdOTDar6H13cUl62nk8nDAn59xcXbOo6srzi/OCf3adOyAYejohsDf/D/+m+1cm8BFFkJYE/yAq3JspYqDtI7H4nKs1i0oTaASgZzxKRNyRlImpplcIsUZ3fbq2WM++/BDZL/nJ3/vd3jxD3/I4fYtpAOaJ1Qz5GLOWa7q8BXb3W0mwdPsxnJlM5ac7fuq5iJy+scBJKR5OTaSU0UJnRNKMIvwuTgyHsLKLnbNxo6TBBJRZkSU3sM87onbDeF+Rt0OQsJPe4iKmx1Scck4Qy6BnAuH/cTbeaT8+AWyWrO6vWGmY0wB35/zyce/xodPNhRG9oc9r37+E774yU/59Ds/oF9foq5nzMqHTy7ZbL8kx1d8/NFnnIcNZ27i9394y6vdaAKhbsPsBMkHStpR8g6RHaFT+jWszzzxPNCvHKH3DKsNw7Ci+JnonGE6dYpWRCArpVqgNSvyvt+Q14k4J1IspD8OMIjV/v8M8J+JyN+tv/tLwP9QRP4r2FL5MfA/A1DV3xWRfx/4+1i++C/8os5AfQw559r281W1t7a56u1NYDOXTIxGIlqortl4/ikb0Jfrwm41/iLK2HjctU6npqjNEccGdUpNba2tqKfbu4J6W1DagkR9XFusHqtnFTWpsPpEKuCGFaurRzx3QkmRoe9ZDwPDZo0PQ5WyMlUjEV2Uf7w3CyxVA0yNLWlOOUWjgYoLe/LYHllmJsAk12tdat0JW0iimd4JV1cXfPjZc54/vWJ6EwmyJ7Bl7UecRpJG6+EHOFUKLnoEnNr3VCqS3YBeQ7urfXutn5qmoEiVxKqh1yzHHLmYFl+RSOgdvh/QsDKRDhVMoiPZ6aVQSsJlYw6mvZK+2oPecsYKGRz+cI0bFTcVZC6UPJq7lAqHWbjdOl7eJ17Ft7walcuPH3P14XMeP/uMp8++w9MnH7HqM9N0Rxy37G+uOVt1PP/wOetzkzWj95w9uuLp/gPGFOl9ZPUoMX2Qub9T9rsDd/fCPBcIAVdm+4wpI0VJ48R8SKQR4iiszjyrTU+JiRJnY6g6o9W3deJdtWkXWcil0jCCfo3vJ3SMFiy/5fhlugP/MUsi/OD467/gMf8a8K/9Uc99egjQBU/nvS2g6kqTcyZFY1jFlJgrbTLFVOf9S1WybS2746JfOPZLC6EFAcBXPEHbIm73UQq5inA0RaNjH9tSsLK851YxtNdz1HbfCc/fYoGpIF12j7l8dIWWbC27ECzaSDCyUmnjsAXvOtqcVMqZkgrzHEmxLAGsqRI1NmVDgQVAhZzNm08EvGZctddO84E479Ayc/7sil/97jM++/VP8Jp4u4usN5nHF44xwbwzJV4NgviOBFT524WKjJoUl1aPxVzKEmibNHetoGp2ZAFXtRi+4urnVyEX84Aw7b2Js6fw+MMVw4X5BWi+MAacjMAOlS24yUCyUvBz4PY6Erd39HSEixGXdrh9gr2DnaKjdXkO0fH24Hl78Ly8L9zf7lndZ/7k6hG/8lu/wq/9+p/m/OyZYR3lwDyNvH29p+TIn/qNH/CrP/gu97sD/dqzWvVcrC757Pmv8NOf/5Tx9prHj3rONweef1DY7WCad+z3UMqqdp4mpKQFpFYdOWxnxI90g3L5eMPV48dMq4Fu8HRDjwuVFRsCfdcTXFe1MZunRHXw9h3D5oxpmknze25IiirzuGd37xi9CXGkXEk9qYp6pmPK21h8pbabmgpQk/TWBhLWGqJp9Alt8Vi/td1+OoJ7yiJcUEa3bF/LWK/mSjCiips078P6ebRSh52TJWNAxDjmJ/x9FUudrf1TCN7VcVZL4nPKxGRAZo4F1FOSfe6iBbInqzn4RK2didYVqDJVHqXTgsSRMu457O+J+3vG+Zq+B3/xCYM+ocsXaJoJ3LHZFHYrUGcDOShIdnUXFlBvmIlILc0sULfBLuMx1Oa/fVAb1KpBVaSA+GOWVk1ccgHxyS7s0qPYInr8pBBWB1Qucf4TA8jSPepfon4Ev0ectRW70qH3wvVbY949+b7Q9zMyR5jWlANMux37Q+b2MHIzBcaQkEfK2bDiV3/wJ/iz/7V/gu//iT/N2cUTnEQKd0zbO96+eMnb17f060d8+p3vcnnWsb97RcgTfV4zaOCqO8dP8NWPf8zq+5lOHVJm1qsz1qveVI9KZ45KpYq/aM1eY6ZMM6XsmZiY7++Yd3suri5Zn6/pVp3J6XXGntUukLseFwLemwS+E9PfUKe4EOiHgXm//9bl914EAdXCfnfHPFqrrvGf28Vs9fxRAadhBaWYK43oQ1qkNK6A2LJsC8J0S9vwzUmGAMvPLQa0GrWBLyfvtgaC5likSwReXl+OAWixRqdKm5U6Ay6W0GYF7wI+1GEnLVCsrJnjTJytrjPUX9FcR1eBrEYzzXVCLZY6eVd7w65kfIlIipRxT7y/IW1viPs7yCPiR4bLgX4e0NvPya9rX3q6ZRUKrlekE0Jvk4GahVLndoqz1N2MQLViFs3URenqZ9da/Beo+I2dDCeWzhYp1YLLlIlUFHGREApSeoRLNl1k1Quqe+AC3BqRDdabuaddxpoKkgJEQaLn7kXi5mbL99Tz7GOhL4l8WJPue26uJ15tM18dCm8ipG7g6UcrPvn+x/zmb/0pvvu9TzlfD0gcSekNh+3Puf7yFa++2JLmwkd/4rs8evYE8kjZ35G2W5JbkcapKgUXvvzZF3ReOD97TjzMaOo4X18Q3Dk5XZLCxOQTcZ7Is1RDEszhuDhKhjgfeD3u2N3d8PjZU84vz+jXPaVzaOfRzpOHAd/1+M6UlZ3rDZ+pMdh3HaHvvnX9vRdBAJQ4jcx6TMmVk1qz1t/mrZYX6msjyhg4R12TbZqwPpc03RzgZNHbTbKk0st8PWCUYZATQLK11lt6j+qRznCSdQCLCIeqVsGQ9n5MXLDUGl4qWzHUJm7KiXmeSPNkAGe02YkcLSNqI9Jq1QpJDBfQOqLapKV6LfS5wDgTt1sO22vi4Q7mHS5PSIkEX1g5pY8FtrfE65dMFx4fOtL9HskzfXD0Q4eshKnqHsRSmKv8mhFWGlNTKgUbRIVQo2mqJR3iTHG3BnHvrVRBnCnwigVSmxtJQLKWmAYkbSiTkPY7vL/DuWvylGEccbkgRSAFmICDR6Ix7Lb3Ey++2FEuAvSFq5Vj3iq768zLr+DLW/j5Ht76Af/snE+ePuJP/uA7fOeTFZera/w8mTbE/gU3b37MVz/5gusb4ezZx3z2yRnrELl/fcubL19xd31D73u2uzcgnt32wOefX7MfhefPB262nu02o6Uj+BWdW0M3MITENM3MvuBL5aXERJ4NZJUC835iv98xHg48/eAJT54+QYdACY48BEIp+JRxuZBDwYeM8x2oaVZ4B0MdSPum470IAqpGHz3djY/quywLqpTjlCEV4ffiMM55XnbtUpV5Fl1CkSpDVRfjyU69pPhtMq/2q4sepcxasDhpHdRA1Rb+11V5j1JdDdw0RF2lmo65QN+bmGTKBnaOo8mfl3TEQnLOlGhlUCzJ2IqV8JMlg0YkJ0JRgmZcmnHzTLzfEm/vGe/umMc7nEQ6rwweei90wZsm7hyZ93v2N3dsNyu6YeCwH4mHkeAcXdeRfGM5Wp2fs/nbOSrijxK8A9fRuBnN2CTmVM0zu/r5qfqQ1YSzGF7gvcPTYXZsM02dxyPEyXO4DciHBdfNFH1FjAdyivR6hydCBklCiWZHfsiJ2Ceefm/F0+/0rB7NdD1o8cgB2AXmfeZmSrycI5tV5sOccTqi0wvm8hUkpcwjabqGw2s6vWfTDZx3Z+j2p9xvL3n7YuJnP/qcm7fXnF2suN2/YZqUL1685eWryM1+x/Zwy1TOKMVTik3IogfQTIozOVpr3PtAGHqyTqS5Xv+CjSaj7Ld7Ssq44njywVNKLqQU8akQevAJykoJFDwJVzxFLUc96nV8/XgvggCqVdarjfJaWvq1xQ+VKWg025KSpdbLzH3LGo4LciH7WEIO9flbcGitQTuOgB66NKwWoE/r81v5Iabx7o+a/0uw4BgE7HcWP0zwBJwPDDU9m6eZOE1G9Z3nuvCVNMdFey6mSElxkT8vOdU5/ULQGckJ5pk0HZDpwHw4EG/vyNstLkUGZ0QsjxDEEZwNEBUteOeIY+Hu+oALNwzrFXGemfcjZU5oUlLMzCmTatruXAAyFCMJOWfyaZq1gqcN56jswOoDYfqOUkErjxchpViDQW274nA+ELyabap6DjvHm68yH32yob+MFN2hjGQ3EdniOSCaiAizC2yB+xC5+rWBX/nTT3j2HaVfgcszqyuhfxToPziHr1a8+eGeL3488+bulrevEodrR7py5H5nbkAl0zHSDyOrDwKHQyD7La9+9Dtc3wy8+BL+4A+/YDtvWT065+dfveH2NvEPfv8Vf/CTLY8+OEOdIwwbvFuDBmu16khJM2neEec9eT4geULyTEpz9cuUaiJr5y1rYR4zr756i5eOqydXuF6IYyJFxadE0YhiALi4zijly3zNNx/vRxDAxlptl8d2T22ECDvaTHwb8nEiFQTU6nrT2nq1HbXsyi1dbYPnVDCLBbRyWFpvw4F1EdeF29qDWo6i4ApL/1DrkMeCksMDO7CWleQ6aOR9T98HQIlxsm7HOJLSbABozMxzYp7s3yXNpDjXuQEzLBEsdexzIsQ9eRqZdlvi7t4u3JyQaSLkGXHVVUnEeAjimIuQ5omikUF7ZBRkm8DvWa/NaVenSBwT435iTsnOXF2kvmomtgk1KhiY8zELU0CcJ1TdfefCkoG1+QVXnaNyMpAQ3DKHr1Kt27JjOnS8/OLAhx8FhjAQ/D0hX8O8xycb204RpjywJ/BmisTzwqe/8ZgP/qTQn+0RZ8o8bsisNw637uFiQ7xYsQv3/IMf7Yg7Ry8Tq5Dp3TVeIx7MlMQnulVipXCIE7dbz90Xwo//85mvvjoQe6F7MTK7t7x8eeB3/+EbfvTTOz4qTxguOp6unlDy2gBlnRGdDLD1JqA7Y16CuQLix+vIPC6CLW1rD4+ZNy/eIup49uFTkGLdMikUSRQy/VDqxKKR1t4thU+P9yIIqKo5vchx7v2BlHjdbVr97uoCPFnmi+GlLqm+PHh+aHKftpM3gG55hsoHaG2/02c4KhW199PwAiFX5L+8kwGcinOCjT0H3+O9pczTdGAeJ8sC5skCwjwTYyZOpkSU4mziGynhSsblbFLTWoG+/Z4y3huGMI1ojlXHUJAOivckhVjPjfXtnYlkFF+bFj0hB9wMbCfmcSK4OpMwmuCrLU7jtEt21hrMbZLSRFTMd7GVdAZ8+hAqANgh4pfrsEC1RIfge6BQVeLxTnB+sMEsrd0X7Xn95p4f/nCiGx7z7GpDn/b4KSFTJm9huu/Y79bc7R13uwMX31/z7JMVMozkTlDpcfTADqcz3RrO88Bnn2z407NjnpSPn/V8+EHH+fmM14hLikTriKhTm/rzDp896lY8Wa0ZUHb3Ow7eM38+8eX1Kz7/4p4//Okdb7eF3c9ekeQL/szq+6z7Di+OlEZTAgakJBxayzNHLg68sylTNZykGeKkXKwEFCVPM9evXtMFz6MPn+CD5xD3xmGprFntIQQ1Cvs3Nfnr8d4EgVKMFNMWz6k66nFHrrsOLc3H0nZtJQBUix2Wdl17Do7Pcbr8v/5mWFKQRgJqPIJjNnJ83zZWTB0u0gdlwOkHCKHD+56sVPGUaMpJ81yZjjPzNBKnmTRF8nhA54iUhC+ZUDIyT+TpQJlH8mFL3u8I0x6ycce9d3RismkET9Ji46RVY1HFk/DWugzBZti7gEogJ2XcT0TJ9MHT+WAOzZXfINn88VTUdBWqmadWDKapQon4BVCVaoel1YrLSQNMK14Qc+1v+4rJZIqA4CkM9lV4TxFlngI/+2KmXyXKJwOP3RVhKpRx5rAVdrcdd7c9r28KO1G+c3HGujcre/VPyDpQwozoV5AP9tk1MWjhk6s1u8/2PP0o8OQMepdAPOJXqBo/wGi5GS+ZTjNDCTzZ9Dx/Fuh+suPlXeJ1PDASefVm5HpfmHDs9wf0i1c8fvaKX/vec7wUXJrwEpGidVR9xmF8CRMN7SjeukEOwan1+B1iHpnVP6NMkdcvXhGGgcvHFwTpiWmmYPfXDLnLOB+WWY1vOt6LIADH+v+42K3FxxHbB2rbqd5XT7KBRqpZfqcPqyCFygz8+m1H/OD4Xr7Jz91EQNtjqhqMaM0GOOkCsACTwELsQBx5jswx1uGliTjPTIeROY7E6UAcJ3SaYZ5wKeJKwqcIcUIPexj3hHnCpxktkeCMMurEVY07V9uP1WsBv6gELyjH0iY1tqVGpThFSrK4miB5Kx9svLjgxRZ600QkpcVuzSGG8DtvpViVOXMuQJUmz2oZnPOCuABaSCUiWfG+4isazSuRgeJWVUDU2qAiHfF+oPxhZHsbuFqtkHhuqs47uL913L2NvLkduXwGv7W+gD4iqw5WH9G5D2z8mEN1mC14jYQ4ckbm00eZq8tALwnIEFaoXqHdgKZtLVfuadZrLkV6N/H8+TnPnl/wwzdv+Or6wK54DhFm58i+UJxwP0/85POf8Z3Pfo3QOXxIkPaGDSAUEpoSiqlfh76aoGZry0oBst2mYnwL8RYQ8px4++oN4oT11Rm5go2RiA27Cs7lE6Pbrx/vRRA4BdVau66Zgx4B+KPyT9HTceEG5OnxrwdZRG3p1ZKiHQ+YhEsJ0h5blojR9v1joChLplAwZaFid6T91SjQNhnp6QdzI5piYqypf4yROM1M48h4OBCnA/O4o8wTzAmm0cjtJeJTxKeZkEZcmXE5kjURXaE4ELWFr0XJMSHqzV69+Re49jma8VnVnasmrAlL77PTqnIcMEquEaJQW6glK1lTxSaqoWflsFNnBhSzzDZtBjW2Z6maj6HmYE4q50OqurEJZeAUdWackbIz/T1HlUnviNFxeA0vrz2591xvHa/eHLjdRsbJUw4FR+RPnq/5J7uex/2BzheG/gLvnoL05Pgz0NdImZCs6HQgxI5zCoM4tOxQl9BuheoZzl1CWaEEXJ5xbjSSVJ6h3LNaeZ49X+N/2LEdC3sNTArZZYrPZElEnXh1/Yqbu7eEy0fGXkx7k1orDm3WldTr3plmhvi68SSg+lz6AGiq5q5VdGe356svXvCBPGd1MZBJ5FQQElpGxLn3PwioVp58XU1uCQosKbZUIkAuRwDR+8bkq6Ddsohbuw+acam1Cf0SbB4ShWpwyTUlc87AlJqiOhy+8gGKKklZXGYp5hIrte1lYcAT/ApwtQxYMZXIrozM5YDGERn3+HFP2O2Q+zt0v0PGPTKZM61LVgZ4zbg0mUkmCe8KbhAkezTDWMy8VbJxKJwPRuYplv4XBVJZaLslW5dBnTfLLoWUK5DqqeVWRMRKAuc86oRpTuRougGdN0PNVAJF6u7vjB+Qa3uQGgxmbJaiGHkRKc15sSGvxvsPwUDBrFYX5zodZyJSHUogamScErHA6ITb+Zwv9zMvr2/ZjQUIDKFwdki8uT/w/VlZzQU33kLn0LxF4kzKSvSZg1dmMZ/AMRqVeIodXR7QKYA/GB7gC/Sltvg6JIH0CY0zkkbOfM+msyAYXU/2DtU9DqWoQ30mlh3bwyuuNg7mkZAjLmdcBldnTYSCiJVdHrUhIbo6mp6MZRl8pZYrASXU6zGNO66/+oInPGM4XzGmSCabSjf23r7teD+CAOYS3CYGi7iK+NfblwWrtS1oZB4tztyLl1Fg3lncFRB0Qt0OYSH2PCwWVJVGOmzyTqU+tym/VaCviTvUjoFAFTn1yy7ofLDa2Hm6zoJBzgVSROME04iMB2S7o9zeEl+9JO33lHnCqdI5Ry8Or7ZAUp4pmshizjpQKKJYM8hAO0XNz6Ol49rk1BottbZKS66r0SjGzlekPpj4Ss0h7VQV+17MCFNrq7NKtWcDn7I6ilrg9s6jrtQWmCABQhUqQQ2ITCWTc1yENr2zTK1oQZMnt5+14LxUHMHVIG+2cXOMjHkChMdnF6Ce17cH7sfMnCP395Evf37H/CtrrvqE05cQbslpC9M9OhdS9Kh6inoOc+BmWwgh8OxwzuqQcV1E3C2wxaWekgtRA+ozvi+4VUD3xbwJckcvDkquVGoT9zSM1JvuvxRKnsh5JlAl73JZ8Bqc4kTxUtWmTiYrnbMMy1VwVQEpptwktTsmJZMOB7Y3N/juCaETYoqY46p1Gb7teC+CgNWmGef9slaL1h2+1dilWiloWVSFteq2S20RquWhD0C5NkloOnay1MxwLAna8FEjClnGr0guNTupwy4AwYAvp8UCQXDQN9DL1lDoTBHZe48TSHm26H844MeZfBjZvnrN7Zdfsnv7lrjfojkSxBaGOEfW2l6kWpXVC2GufgttXqBoV0et1cpWtUWE1Nl8sawlm7YXXlgUmys8YDJqCbrgCGIW6iVnphyJKde5SruQtCL2ruvw3gJxabMP1rwk28ldAoyoUWBBbdfLdpFbWWBpS8vWKLKQkJwY0SWr8ULSGBkPE1M0PQhHYSWOZ5uedb/h5qDc7265H2/4+78/8Ru/+piLdcc67/DuFq8JjRPloDB2pNGzOzhudgOfv1TKXc/zX3nM2eWePr2hkxnSCik9LheGGpQ1J3wG5kI8JNKYTDEYBU3G3/CVE+Is0Jyt1niUeToAHrJ1fCRnRE2ZWsxAgGaSa2C0XdtOxKh/YhuaFMWVghSlwzwZNM/s7u/xQ+Dy6eWiM+ma2823HO9HEKD6t1W7ptK25AXA00YfwPta24tdeHaiahoux4Ut0misstB0NZuMcyMKta7EaTAQMVksQY38UqocmW35pjekNnCM96h3ZCdLx8KyiAJlJgSjz5Y44g5b5O01u9cv2b15y/2Ll4xvr8mHA5JmG+0NDkogO0eCOoRUQArB2/sq6igSWqQkZ7WIr0qordOSc00lbROQkkxrDl2k2Q1bMfZhKpnsBOksg6Gi1naxCcEFVJx58mU7X0k61PVGec6QXKahKGA7Yq5U4CKg3oJPcKbjKFW6PaeJHMsCCps8dh2sxPQLKJUqHQs6ZzQlPJngaulRImf+kuHRI549e0zK93xxe8t/8jsj/WrDp08iGw8Bj0uQJ0cahe3B83bf8QcvhP/fjwqz23Px3QMXzwaebMCXEckKqbPAlQ+gByQl3OTJY2KcAvdjZjdlw2Ak46WWTC5QpKPrNjx78gTnHPM8WrM6F9NhVAtmLTe17go1mOvS+bJ9zk6MQ3BOccW6NqpKJx71PZojh92e1fkaCQ4tqfJf3vsgYBipLTiHuFYv6nIb1Ok12ix/6w/WJ2g/nvDT22JvA0hZE6W4EyCyZQBWSzSasasijkUyKmVpOyrmPaiNL1BJR4u8uRp91sw0hL4Iabtld33N7u1bdl+9ZP/2DWm3R7db/DThkrnJ5JJsoowCoTPdwtqHVzXFWe8sJTTEiIrOW429iKAUxWGppaNUZWKb2hGhmnrYaDIlLb/zYpp7uSRz+qHNrTsyNgOQUqmIvZoZaDD3HZyrNleCOm+KQGrUayq/wjth6PuqO1i1AnJcTGNo1O1iys4L0CqyMOY6F0wH0WN8BzXlZleAfEBzYH1xzuWzD1mtnvDFm1f87d+9Z/+Z8MHGs3aOoFCyYzfCl9eOH30l/M5PJ/7+V4mJwtk/eMPz717QfaxcUBjKiE+g0VH0QNJMGWHcCttD4O3O8fM3mTe7QnahCra6mtEBsub87BEX51egEOeZXOrCc44g9lltDqXyWmt3jBYsaWzViknX7ACxgausuWa5gSDGTJ3Hif5sOJLZHpS/D4/3Jggsc/C1ltIqFWa/q4M43puIVzmq54ia1p+ItaIQlsXcug3NUFO1jRnX1zzRHbDedp3Ddr6O6QLO0l+VWs8WEG/qLQ4lFFmitUdYCYSiuJyIt2959eIr3nz5gnm7pRwOMM14VXpn/d5Yd00VS+EzmSa02QaQvAtL5yNXUKiUTC5mZNp3ZolNtbfuQqizEjZNiM37LewJUXvPoo34VBdYXYxNIUnFJvtSTExzYorJ1IQwpSNqt0CrEKYPAd/1iHgL22L3RRTnMeabmOt0Tg6Kg5yJUYhpoqRYhU6OgjIizliH4uh9YNWvkJSYcqzoiIGLoRTIE+U28/b+jrNHa9zTS372wjNuJ54MMJAZgpWWb7aRn7wu/P7PI3/wxcTbQyAVx/Q7r+kvt3T/jQt+9cklKe/oy4xTxyHBFAfSzrO98/zstvC7XxX+3ucHXuwh+wHpVuA9rgv0Q8/Qn/Po/BHr4YyczJxVSmHwHa6rLV1nJZzZkeea5GUjEplhBA3s1hrkC/p3/QAAGXhJREFUq5+rBQ05ZsFN+SpNiTCYy3epj/u2470IAmodKot2xVLC5qpqRx03zW0ASE86CKYh0ILjaarf0n3jYFfllbrzW+plz+6c1BpZzQegmjkWbNcvota+EluAThxeDJkNReiwAaicjAR0v71nf3fL/v6OcbcjjxPkCCniXNU0IFM6QILJdRcQKcYIzKkCQc5KjpqZSMU9jFdO/ZwGwjXBU4cQnLBoJ5CX4Jer6GoIHQ4DMi2mKuocQle9GWsJVSpLrdQyBKvtixZStlS2aaaHyoMwSrC1RMV3NVhnQ70r2cqUdAuaqFmF1DaZBVLv3FLatLYwVQpOqv5kkY4snlQcqcyIQi/Z8IcCh5tbdneJr3rh1aMzHp+vuFgJJd5w2B94s5v48l758k55y8C+68i58Pl14j/6WwfC3PNf/fWB7zxbc7F2eA3s94HtAaZ7ePFi5He+2PO3fzLx0xs4SAfdBr86p1v1rDcrNpsNm+GctQ+kbJmnlEJQw3qMEXjco0123kpR0Yf2861VSzF6sWUBLV3yaPWbMFEbyDGhc0Z6X7tv73kQQAQJZnbRdR1d6Ex33Tm74KqyUK5y4A3xd06sM1AyTguhCwsx5nSoZ9Ef0PwgNdKGwLau4IJMy0I8bMHCpt/U9PUwD4GQ1UZ2p5lpfzBL6ZtrDrstZZrM2rwO/LS0PVWxkSKK+vrFe6tlTDPQUu5Fcr2q7FCoO6LU51Lb6aUsttMeoyf7Ch5Zi8WbvkJuQdGi7QKO1s+XM0wx151JSDkvJUAqlkuIhGqTVchqGY+IBdEFcG2Vmri6Rxug6Sviq2qlQedMPDOLo8RCxKTkm9aDiCcEqe/TU6IFsJRTrW+NR5ClRzpTFAoUJMcKNipThu0U2G4zX4UD6x6cV5xfM7uOKRRkI3gR3OQo80yOwos3yv/7bx344vORf+w31nz28ZqhX3N947i7i9y9Hfnp5zv+8M3Mz7eBUQb8akW/uqLbXDBsNpydnbNen7H2HTpNTOOB3mstA7BuT1YjD/smLd6k66nKSRX01iZoV/GBrCCldoXq7Mty3rGOA1BSwXfBVLS/PQa8H0HAO8ejJ08ZVgN931XzkSPY1ii243hgd9gzx5E8JwO61GrazjcEupzwC6r6T8sMgNYOrHSjBXuwmfeyCIgaR2BRwMAXoROHy2qobkqU0Rx7x9s7dts942FvElG1rpWqEaglVlnzpmxU/QuKzeg3YVLb6bPViVRgkLxwx73YuTItxSqa6qxuR20QRXydWnSGYeCsdPGSoU7xKY4UM1OMFGWxWptzMrZaoY43Z+sOFPChrziFgUxOfH1PFYNAlxFh24mM2FKo2Zg3YpdW7MIubqmWakovztSAa+bgmu+kgPMd6grdOOGjuT51BVJRkmA2aWRICclzZY820pODAjEqacrGvQ8Z7RKzKl4D591A5zw5DPjsGAhMZeTHL7bs58hPXkycn3vu9sr27sDtzYHXd4XrODD3G8JqTZCevusZes+wWtGt/v/tnUuMZclRhr+IzHNu9fTM+IGNPRgLbOSNV2BZyAvLS8DeGHZe4QUSG5BgwcLIG29BggUSQgJhySCEN4DwBomHkFhhMMhPLD8AS/gBBiN3T3dV3XNOZrD4I28Vo+kGj6f7ltQ3pFJX3a6qG5UnMzLijz8inqHOT2s/Jmjaugyg9udVE1jrnmPInO6D97ERJszKrIMHo0EOTT+Xd0NyWEZIqewO28DYTAblwRnCm2EE6jTx2te9XnnjUg5hwWDxzVlvX3c7qJWynzQpeF1Ur94b22YU11AJjRUrmdfmwEHgAK+MsCJpyNmmTB5BEUgWmSbM3+F0aI1+ubBcXLDcu89yriKe9fxCJKaIQ8ffEce1vrHmGGk/uHpclSOHgEh3RPYJjVsbvIVSjJKmXo08N/q6h9aoxXATugzZXamr8XSxKZurqIrQq0PUbMGmOXcahBmsBuT47CU57K03HbLWst998iayLt0xak1vTK6GMhnZ5AQ0GKRYxva5IUtxDWrNCg4ZAad4uUYC04QklZMLM6mzmm4ufSUuV3xruhErrMkDcXes9AylZkrAjkV2HBmo7YATrUrn9cIUDYtCRMVNBiXMuLeecfGtha/fW6nTt1XjsTSWNbhohUsmVgrRnZ015r5nahVbF/p+YWVRKbBpcK51DYQhNG5dIV3O2yCfQR7oK2MhNqWlJzUa6lxh4+NnZPg9VH7de8gQ5OX3sk0gelTipbB76ulMveVm91FLoFi4mDN75bYX6nxGnc5Z9pcsl5e0bCu+Xxd678x14tatM+pIk10zAMNLGHTaqy4BXQu76d+KMRl4V4XjdnnB+d077O/cZT0/Z7u8FJc+U2YHhHcAmi5MYUmyjRBFo5acTEvRrDlTfz7tf4GAxbSh56nmCLKVbVlpTeOsLTbmyZlqUb49/6ZDmKN2R4cD71lcxJhoE1CsElS2TezBHsHSO7EKbBych66GgCpciYGlODXj9uIhai9B3xYZrzJlWDKaWZT0YqBk7t/ILkmJfVQvRBG3YJpUc781eTvVc0Dt2ayvLVjaIjalGRowjgZ0TKrPa1Go0anW8ZBRajHhPeg4jUoNYyXYemPrjbXtxUdoK4sVeldqtN1b6eyBwYQ0NoxmG8HCVJy5GLNtlKVgZQd2QW9Oq5WpyIOzsCvP1ZzJYCKJmtqo+ZGYWCZJSlH87/QrIGvgYOkxH0heIYMbOVJ9ULnbd9ly/JHLcJWUbsvXDpd2HGLMUipT3dEHYNWCOuki6nlTrcsF5+cX7Pd7bt+6xW6eDo1Ixu8bSIyOflesjxBz3za8dyaMXQQsC+3+ffZ37nDvW99iuX9fAF9mFA4hRX4tTCJj/R7i9aM0ziiFcnfGfToQX1ALKA+jbxvFZTB6azlLQahyLaIkDxpwAcjYsEVkn79suEpc21gJmI65CYQMkSuP3Ppo3nKtACvU/3DgB2lZyLekIANDuqKqpNxUejGIP0UpwOJjKFw/TE4e6d7Rar66a5ZedbZFU4sss0EWnd1U8DijRnDegLodvI9t4AhTFYsxKcrFHevyldwVsmxdfAxwwgVET0bW7IsBualGSs/HCsGceJKcnpbxNx5M3pjcqSEMx7dFVO8wanNqdWoZHqUxoXLvabjxIUaqyuiVFGxkUxUyUxVaX8vPoR+A1gOfhBFqCjzsjDobbj4moOc8+P/S1q4utquv0YYaWAER6cqr844VDWPcto27z9/l/vN3eeWzz/CKZ59NV4lDi/CIDlvPW1kTfksEhc5swS2MHUGY2mgFjX00elfTDXPFb8rvZjw3BoM2zRsMjFIqVpPhkDdX8XJAvt2MUifcTLfhgRfQ2UfPUt0cTe0lU0aebiVC9fN26Nt2mFo7+PviTZBlwXFonrJ1gUWNRJkLMoJJKoq4qrsYLdu0Sdu4rA6dlwcrVZhAyYeVDQLiWkoyn2/krSVCkgZsFqoakxCwrkqVudZKwGOmcovTa2U5m6jFaG1jtypLU7xSy0T3QumNdTNic3qorNp89KsoImMdBrkmwObDrZ6ZA3qNq3LyqHQyw5G8E6wKZylKkYrND942pvUSj0bpRu2FeZ5JQqCMjpvCudDzUPipNnmyPGqXVzIU9cEFyVoLmU8ZDsbP+EggqHoxqsht+/3K5fZdzB14XHJoPQ35l3RGOU5CeALM3ZPZdiawwwQkbTmbzbM55ra/4N7zd7m8/zwWjWeeflqVWQFEw/sGIRCuZIfe2YyzUjmrzs6M2oJeC2e3dpxtt4mLS/r+kn3vmdLLOBzLfm8b6zZYdeA+ZRGO2HjRVIBTSwKPVrRhXfeADr8GgkBkbYIlg65Qi8tIoI4xsotFLmzvbOFEmQjzAyA3kPIIbQIrRQcpRnclHS4fTUNNpKdOywSFrHFxMo2a8Sg9vbdkKnbUz25yAZ2ZCrUmg7sNjAUxGg9cj6brdtRrbFtnWQWilqrTMXLp9I2IFU0tahhNTMjoTLhYldWxWpjCWdzZrGtm47aJS3HAZK7SPzJQfkhHCgdS/BJ+vXfkiOeVy7c0Ah1XoVBCnx4bvt7HWpWBj6p+iVOleh7q0IyK0fvSox2a3ageQL/NHGEoia0MDznscF/KI80UcHgOc50myryjY9y5c4/7y+UDz96NMAKRgBrpJOrB9KyHT1Q/c/lmeoBenclmrv0A5yQ9GJimylwrz9/5Nl//6sr3Pfd6ds++YjDgmXND1t6YeqNG58yNp0plTvAKM8KdeZqZnjLWZ1YuL/e0ZiyXi8ZnV8C7Bm9kHru6+vCZi8xvgYaq9E7PgapuzlQ0TGO5vMhbT0yzlq6+AfQuhH7b6JE1CddaeDfTbd5CNFUvygtH66x9zXx+P3gexUvOA9Bh1zlI2rZpnYsnezB3WU3A1szYNt2++pVJ5yafi8fhttONlYNaTA0yRr/xPkqRkwuQFvMQujQr2Yo8e+WFuPHWFW6YbdRo1K2xbGqa0hGibu7Ubvr+pothtGTzLuNlXUU3Ra7nQFLkJeWNq+Alsys+shqeQF1WtXYNZHXKgcWn7bipca63wx7qbcNqMjPR/o4WozRFhz1rVnRRjFPeD0AyXC2XyG0FwtR6PhSiqLu1oTmdE2vvnF9ccL7fP/D83RgjsK0rYxHdxiWflttMm450N7O3XXWHaSZuGZgmr1jPW2m/Mk87zuYz7n77DjXglT5x69ZMoTPZcP1hNzm1d3YmHMDXJUEwA3emaWaywrre5t69cy7PN5acrLZtG1tONapemCeV1rZE1nuEjEHm99umrjxzraLzdo2YKtMkBHlQlqOrxVTm2/frwroqHPKiIh0x94SFmIlXsXaFEhrX1mgxjJK8c084qW0aR4ald2CjdFXuKl4oMTbdiKG6OAjmuF2/IRG/Y3emUIX07CJvNZMOnWDbVhkfRl1GApu9iHLsKr2VJ9NobSHWgMmpljoQFA+K6zkGSWNuXGvNpVoU601eTMbaFoXw9D4IeU+jd4SNUFFpuZJEqAH2RsgguEv/Tk9vTbiS5TzA3hvCl5syJCHPcpd7zhJ1dcuyLHd5CJmK8tSFxIssi+TCRmpbz1tGS8Bm752GuCLhYDX3IEGdz5hueu1A9M7lxaXcUheSWk0cOIMDK61Hz1wohxhTDDVjdyb+uqWb1fcrvSw8dXab5d452+WC7S85O6vsKuzyPWaHyTosDVtX+uWinV8LVouGamx6GL1vahIyVfa1ciBvuGFeDod45OnVSFMThYqhhpq103KmgGK5zu5s1vdgGVJoxoCjsl0rFa+zWnL1HPdFEGasoSq/aZooNhh+yQ40w21K7kAXaQnlklu2Aysl7zxzfW6jdFomoyUw2Vo/pKGK+1W5q6lQSyPkxu/Vs6mWPQNNdQ/q2ZNxbahMWTerwMqOGqFsbTl4L33rNOsawZ0HpXhhN0/qmQC4NdXUYxiqSzCcOSf1rK2x5ZAWMcv1d65dlPMBPY2eEJGhyvj7OjkjwUeZrx2yMUJeQpWPCTyr/kUhkXunemO2Sh2IYv6se6VOGr1XcwivHFAb1z2B0becKDXi4yxNb9GuWsflOWkRqvmYJ5rBsmkGwUPGDtwMI9AjuNxfaLMkShxeaD48gmtNO6ypZBYOltIJuW2lEHWGOtGzr1othfrsK3h6N/GqXeXZaszFqah2e8YpXcy4uFwIMTpw16Sf/bKyLA2zwrquQDDPE0/dOqP1hncRiXqCg4cOyKXqBi7ZqDKpvqU6FoVtv+g2KOo/aJ3k6O9ZtgXzghdN+QkzfNpB73nIVTfQCbZMPbopP65iJssusyNozNssYwizLMgaDVcSUSqmoSDj5h95aAZKz3BRs0y5qNaiTiql7q3RVrUQL9MYlKlwpG2aLWkJhLXeWTPFWqvjnsh2ltiWNKCUovLm7JirIZzKFMGo91hZxXEWr0AFHnipyRdJTn5vOMZcE2RsRhmj1MbBLHrP3tqh/LpCTlySYYgEpDXYVQVvg38Z6b6XdFqLB5N1qum9RyAvw8ghdeoDsc7wMUaoMohlIZpxQgIibTW13VdsZ7gJJ7JS8CpsaOuDOn/D+wlEdNq6F0e+Vw248DFxVgenZJcbH5iAX0PcCYiNYOWsNJ6qwe0zZ9kq5ewWt7/3WW5PlWf6ytxXKi5gKoGwtWtU91XxkBpXKIcsyzpunbOzmbN5R3u6c35xzt37dzlfehYscdUeLXOzbeNwi5aMCkrJEVJbz3Sn4tptTS+AzCCUqlsoOo0EoKzTzGim3nvDG9m2NWNUst+fDnYbIQkohjSloYqLjVdGnUDTeHK6o771utFbxvEjfu9pFBpK65VSqSVbv2VOrRhye1Ffgj7AvlAadUsiEjhe1GKcvJ13E7jt8lYVk24AgmadqVYVTFEp3piKs18L+2XDbD0YRUyuO96Zqlz8JWR03ByvyTLNWYARSdfNLMQWZPFViB1ZPHkX7YqWjmUxmVLFLaENz7kKXpQe9th0WcTVsxFNWLhAI/KSU0CsDI7WufeWMX+WFWfGR2lVhb5bGoLeOz5VfJo0DNaFHSldfMPDAbl922GKbfdEak289ImSOWstPMWx3pncObPA+wLbJX27oG3n9HZO90vsVnBWJ26Vgm8rtu5h1ZNSU47sy9qhFrXTioBtXVlaI4pTp5ky7WSZS+XWpuHZbWlA4/zCM4bWgy3pPvYI9vv9wZWepilZcHqQJXL2XtckZXEdQlbc5AmtGY93pUXopvbRFEu6cBB9DKrgCumvSX0em6m1DEs0sWngLjU567EuAFc89cg6gxiHYJRNR4KJmn1bPQFDgJwdWU2HoIcOfW8KUbZ1JVALsSUNnQ5XBa8HQG6X4Ulbt9Sz0GiUMjGVHNvuQFOBzYGEVGCu6tHvtWbKVjGzp8EJFGrK0dHhVkOUJkzJM9MTwWSVXnRwNDhFXay2dWNrniltO8xa1ATrbDhTSg5SyVDBemIYI8sysAfxAwayP0JIApWQc0AedBaUjsrjPPCzIEiWauRwnsyQ+DTRz0UYG6PuXkxuhhFg4E76Qzy6ACKHGKmU6Oq6ikaXk/nTCfXga8t9+sXzcHFO2V9yKzbmKbg1Q42NvuyJaCyrNuBGZ40R+1W8FqIkly1z7WWq+DRrrpvJId7YRM0s6hU/zxNbZJHN4DggV62t2bff9HCmqQKdLdYcIqpYdR1GIPPkPTzZdJs2VoZCnc6aI9vT7gipjnHzpXuf5KHcM4cZgJ0x9FI3vBfH88BfPQhxBMTSHEjzKOzRHycgq6Q3Ydfc4yYDTU6TuhZSHNqzd5G8wizbImTcG2SIZsmg64wqrt56gpuKmoWrKfVpyFt002h784pXPS+FHC1TpE0A5VTz4GffRc/sho9mrVmT5lfNOd2Fl0TkHYLRXXhAJ8Mby6rTniVTISp0dVfHJld1ZymjvkLPwxJf6bQDnyIi+QIjeTKeTWYgrvfIHEDmoBuNQTO1KkU4QkT3q4G5LxT7XxvgSGJm/wncB/7r2Lpck9dw0udhctP0gZun003T5wci4rUvfPFGGAEAM/tERLz92HoMOenzcLlp+sDN0+mm6fMgeUiB4UlOcpInQU5G4CQnecLlJhmB3z62Ai+Qkz4Pl5umD9w8nW6aPi8qNwYTOMlJTnIcuUmewElOcpIjyNGNgJn9hJl9wcy+bGYfOJIOXzGzz5jZJ83sE/naq83sL8zsS/nvqx6xDh82s2+a2WevvfaiOpjkN3LNPm1mb3tM+nzIzL6W6/RJM3vPtf/75dTnC2b2449Anzea2V+b2T+Z2efM7Bfy9aOs0UP0OdoavWS5Pub7cX+gxjj/DLwZmIFPAW89gh5fAV7zgtd+FfhAfv4B4FcesQ7vAt4GfPb/0gF4D/BniD7yDuDjj0mfDwG/9CLf+9Z8djvgTflMy8usz3PA2/LzZ4Av5vseZY0eos/R1uilfhzbE/hR4MsR8S8RsQAfBd57ZJ2GvBf4SH7+EeAnH+WbRcTfAP/9/9ThvcDvheRvgVea2XOPQZ8HyXuBj0bEPiL+FfgyerYvpz7fiIh/zM+fBz4PvIEjrdFD9HmQPPI1eqlybCPwBuDfrn39VR6+kI9KAvhzM/sHM/vZfO11EfGN/PzfgdcdQa8H6XDMdfv5dK8/fC1Eeqz6mNkPAj8CfJwbsEYv0AduwBp9J3JsI3BT5J0R8Tbg3cDPmdm7rv9nyJ87ahrlJugA/BbwQ8APA98Afu1xK2BmTwN/BPxiRNy9/n/HWKMX0efoa/SdyrGNwNeAN177+vvztccqEfG1/PebwJ8gN+0/hvuY/37zcev1EB2Osm4R8R8R0ULlb7/DlTv7WPQxswkduD+IiD/Ol4+2Ri+mz7HX6KXIsY3A3wNvMbM3mdkMvA/42ONUwMxum9kz43Pgx4DPph7vz297P/Cnj1OvlAfp8DHgpxMBfwdw55pL/MjkBTH1T6F1Gvq8z8x2ZvYm4C3A373M723A7wKfj4hfv/ZfR1mjB+lzzDV6yXJsZBKhuF9EaOkHj/D+b0ao7aeAzw0dgO8B/gr4EvCXwKsfsR5/iNzHFcWLP/MgHRDi/Zu5Zp8B3v6Y9Pn9fL9Po0393LXv/2Dq8wXg3Y9An3ciV//TwCfz4z3HWqOH6HO0NXqpHyfG4ElO8oTLscOBk5zkJEeWkxE4yUmecDkZgZOc5AmXkxE4yUmecDkZgZOc5AmXkxE4yUmecDkZgZOc5AmXkxE4yUmecPkfz25I1zq1uRMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d7glyVnY/Xurqvukm++duZNnZ6M2r7TalbTKQghJlgAhkoQJBpNMDgZhnAEb+CzbfCYYbAuQDUhEAyYjFFZardJqtUGbd3ZmJ4ebT+hQVd8fVd2nz50ZScAne/2w9Tz3nnM6VFdX1ZuTeO95tj3bnm1/d5v6Pz2AZ9uz7dn2f7Y9iwSebc+2v+PtWSTwbHu2/R1vzyKBZ9uz7e94exYJPNuebX/H27NI4Nn2bPs73j5vSEBEXisij4jI4yLyts/Xc55tz7Zn29+uyefDT0BENPAo8IXAMeBjwFu895/+//1hz7Zn27Ptb9U+X5zA7cDj3vsnvfc58C7gSz5Pz3q2PduebX+LZj5P/e4Fnm78Pga84FIXS9L2tHqfp6F8Ls3TNpq5qQ5ZXmKdo2UUaatNr9smTVMAsrxgfXWNUTagcDAsBVwJaQsQoMFVfd49MZv9S+NYHEf1tT73OTTnQKtt9zT7/mxNJm/5XNtFu65f4OL9Vfdc8ty2tfCN/up+P9M7Nd7be7AZOIc2CaIUvppjPMYkgGC9Q4mgBARPWTqUt0x1urQ7bdI0ochLTm8MKJwjAXYvzNHrtljd2OT0+hCvJl+9I575qS69Xo80TRCE0pYcPXqcwWh04QTGfZcYTafTptvt0et1KW3JkSefPOe937H9TT9fSOCzNhH5FuBbAGj14JY3bNtvf10g8pe4d/smngRWAZR3tBPDwlwPKQ2djuKKpRa333ozz7vpBvbv34eI4omjR/mj3/1jnjr8KY72LfeeU8hoBb/3IJ4EsIAC58G78FdvlkuPWSSMsRLNRAQkbDRx/sI+ZPyuHh+vF8SC+BJnOiAgYsE5BI/zFqUS8ArvHV58c6/hvUP6I5iZBklBHF4gSHbgva03WJjB8MzxmCSekfqnb67FdoTkGd/vq3es/hp9qnGfk9fXnYz7bh6PayDeQVGAtXhl4nXb+qtahf8k9KmsxyuPLzI4fxg92qS3tIukO4VzFmyB4JlbWMJrw7C0pMBUokkpOL06oJdtcseNN3LjTTdy8OA+njp6nP/45/dxKhvQzUv+0Zd/Ea956fP5L7/3J/yXD34aq8f7AC1cpQve+srnc+utz2fPniUSk7KxvsZ3fs+/4CP3349XdrzXvAdnUR72Lc9z43VXc8vzX8BNN9/I2sZ5/uFXf/URLtI+X0jgOLC/8XtfPFY37/0vAb8EINNLHmlIJhNr4y6kqtUOk+bCq8a9F4O6i1E38DicMqwXlo2zGygMrJZomeLFRuGti4+UCKwCzqPEI+IxrRSnhNJLHIMCcSAqDMO5C8dTb74I/BIRk0iAhWrzewnvT/g6HrVsmyNAFEuJ4uU37mVrq8Sh2ByN2BwWDPKSkbWMCk/uPdYrvBOc81gRXJxDj0e0B0oEVQMD1k+gzjDear4b1DqOfwIRTABnE2lcbD4utkQXAdh63Rvnqvn2Yb5QEraOhLXz0hjvtvmfeGb1ziKg3ASCqd7CjTFnfauPfTvvsR6cqPo53jm894yyDGcrpKgoUGwNR4ho+oXGK42P603cE1prXLzfOxe79GFfVmOtke+YE0zTlLTVotNpI0rCel6ifb6QwMeAq0TkEAH4vxp462e8o5p4mISZJsWYuH775mhMxATS2MYqb+/Ka7AGlMIpQaxDkYIkgMNqHRfXhd6do7QlRgTxnlQbcqVQTvAoPCoCcAR+pccb86Iv3fwqAbZqQJqg1ZH6brs9UlvRntlE8aIr51lbG7K0ayeCR7xHUFhRFIWnPxzRj8hhbXPEer+gPyoYlSWjdUPWnSIrhAxH4R3egcUxco7CCyUNCi8Shy0N4hrXYQLvhfcQabyLB4nv46u5qubgAgRXfW7bHzXANs+rQP0FvApcmY/P9k1EXr2HxHEwZhAaHY7H79zENR4fWP+6L19TcOccXhOBVrDOUpYlZVFSWhv2iIBH0d/aIitzlE7jOAKSCuMNhMbH/kUE52x4lqiA+CoC4psTAUopRASlAgKz1nKp9nlBAt77UkS+E/gzQAPv8N4/+BlvuhgCCCe2bYoLoHjb8UgVtp+e2C2Nhwigy/g1bJQSi6XESQ1jADjn8c7jbYE4jfgUL0KBpmaHJe4sF//w1FTTh0XdPuqwSVVjE1YscQUk296v2UOkth6FRZP5FkkrYWt9hNEGUYLWgogj1YbOzCw752ZRKjwTEaxzWBs2aeGFLLcMbUlZepxX5IUl9yWb/YxB4VlZ2+T4yiZrecHqKMdJii99QH4KUIJPXJhRleC9Dux5fFvfRNxOISQgDu8s4j1aPM67sNGVxntQCvBuDLiVyOQ9NY2uKG9NDOIxFddCdDw3OZXjLVKtYVxvBeLj/QKgcB6sc+i4nzyBo/Li8N7iRaNwOB9XXQlaKRKlSZIE5wMwild4ZcmHGbkrmZvqghPEVPs0LLwQxLAgKQmCx5YlzlWEpUHcKnbRe0pbRrpqEG3Q+n8/J4D3/o+BP/6cb2hS+wlCri6E+8kbP8djlzrvx5umokZeBSLjQTXkdJEAbCBoLGjFyHQAFYC4uRkrFrVi8wkyak3NK7FeZKyfquBExtd4RSURNLif+G8bx6OUkCiNSU2Q8aM8rVQciwqIxiE4VwFW4BTSpE2axGd4H4EyfC3LMlAWJWijUFrRFRiUOcMsx6iErVHBubU+K/2C1c0RqyPHZn9AVlhK5xngGOHJLZTWBWSKYAXyssD6MnAEXrCiAunABjBTSVwdFRSXNdX1cX/oMOyo/wj6FBckM68azKFcnKv0FVcj9RwFKJYGexD3gVKIUmBtEKMkaIIcPnI0CiVhfKIE7TWiAjegqr2sFF4Uzjv6WwO0KK7au4zymnJCxA37QGuFUuG9nXM1ZQpX1azjeN9FPZFSGqUUiUmCauUS7f+YYnCyjdmgMSA2TlXtkgq2z3CdbD94MV5zku2eHNL4eu+DxOYREhXoQCmB/fSiGnJn469GAgRgvmA825mVCLA14fSTY2pyRr7RgxK01hhjQGucLSGywUqFjVghsopVbE6BFx/Z88ipeI2ID8Q9TWo52HuFLWCoPJ6UbqcDDuYTz2yvx7Wpod/fZHp6ijwvKJ2jtBZbQlY6RoVlmJfY0lE42Mota4OM/mDIYJiz1i9YHeZs5ZastOTOg5Q4EZySoGZROuLJMF6vfJxmIWCPoBisp0kE0Rp/UUiQep09ESHHuQnTHQE3inR1nw0dQaUPCLdKQFASnqucx2iDTgKoWRcJQUROg1FBWVgO7VxAiYp6FB82i1KBy4vP10oQFX4HPU4UCZgUNwVIEoPSChOtGdZdSiR9xiABGlRu+w6/kH377H01f/htyKPBnte/x1gngEKUYRlTaakQgnd4HMqkCNBJYERY8LEY4htYmYrkNsh6PFdTfl9TIypZrzk+1eQmGu8XkYZ4j1egtEIbg7eCiMF735ANx59KqVrGrDqqZNu44+JmjkP1oAibWyEURYlqJZFTCjK9irgqzwrSVps88zgnaDGkSYpPYEopTERGSkBrjY+sK0BZWLKiZFha8qKkKBzD0jLKLIPCsZmXbA5zNrOCYfzbyixbJYycMPIlzlo8kdOIAOMrk96ldEs+IoooqweOoFq7CiGM90fNicT51SroSlREAD6KfQ6PiWuptCZNU7QxiIcWCiOK4TBjlI3YuTiLMYYRRQD0OF4PKNEoEbTSuEgkPcTrKsLTkPkFkjQNnIAOHMdnMlk/85AAjAGi2ZovcYGp6CL3j09EIKuuuQgncAHnIHhfYXSPxyLe4HGUeGxh8BLYTmM0XieMsTKM+c+KylQ/I6W6AL9VLIJANMnRHKrfNsbtYyUogrQIqTHghFx5vHhSLzitUaIj6w8iCiHItU4kcDcRxxhRYB2lgKpYTQ21gkQ8Skcx23sK6yLCsOHTeVwRdR8NvKV1eC+lwoYWpSI7PWZnlRbaStNuEbmWi4mCAZFprTBK4aP+oHSercGI/iBjZXWDM+vrHN0c8MFHNxkKoMK7XnzNpZ7mSrlIFKHEl5EzU4jSOPGYCiEINdA762uTYrUugsZ5h0oM1nqwDuc9olNeceUUd1xxLVcd2M/mygp7dy+x1E0ZFkHxp52KBucS8YLDYhGMruYvcgiVyOIr64iN4/VoJRijEA/uf7di8K/dpP43IQlc/JpLAP7EtZfC+BVrvY2lbiAHiZh2vAkDRfQqAFDhPP1RHqwJ0mXkdA24lebZE02EiohExo+t3kUau9tvv2CCG9r2/aIcbTioIoAUBowIOHAiaEBhkcSEveIgUSmFdygFxjoUilx5CvFBieRdUERFWVqJgA6abyUaEYVSvuY2UBLOKdWYizGQTByrgTBwW9s5k2oea7Ns43j1+s56htaG3pTHKM3C9DQznQ67FuY4sLHO9Qgfe/xuRg68lahniEAu1Zxun0e58LNSzDHmCH0cSy1ueXfBvhMRtDFY6wJ8GoMyGpzj8MkNWltDjj/2NNddfRWH9i8zkxrIPA4XdUyRG/Phs8hLtE7xXoHXkxuKxphrxnI8h59Jkn5mIAEiG+zH6o6LXlO3BkBc9PLtByvgucgNFyAMiSK2XKCrFC8UoihFk0pg2ZxO6s3iJWLlWjcwwU+PKbrf9pZNClVRovqpftzPZ2hC0EJrHVhGXTpIDEVZgAQtvxQW8YI2Gp94WhjKsgStcEAqgT0Pw1XRxq4QVNRq+7FYVA9dIlsvvP8v/4I8y8ZzVktFEaFedNrDmoz9fLZxgdsQ5sQKXgQnRnEc5yxbWcniynlmvAumwtrxSLb3tH1Q484rb8E0KClNvokU/bCG0QSYnh/SaXglJgrAM1MEj8GjjzzAxtkTPPTxHmtbm8yc2WDkHY/YjNPaM1g/ztEj99I58xT7B1kDBgR0wd0f3OCxhz5Bp91ldm6GN3zpm0Eqi1LcHxUhEVBeSJIEpRVKB33QZ4oReoYgAbgklYMxe1/J0TWwwEWxwHaZekKxdjFTSb0Dxxs3Ho40LGquwYqhdNARMBI03ShV8ZKNMTSAWSpgjo9y22W06j41+W7V9b7x6tUun7g3AKdRGqMNznuSlub4Pfdx9Hf/mJ5YJE0xM9Oo2SmSqR5qfoFdz72ZdMci4i0giBaGZ1YYnDgHDlqLU/SWl6CtMZKglaKM5invAoXXWkddCZR5wT/+oR8GPM75CUVkmJIxdzB2vqLeoBfbqBOcwIUnJ67zUXlXOdasbY348GNnGLmisdKV2CZcoFCLysFm3+I9vhgim+cQHGaqh1LB5OmdRSlFu9vFugopKFId1nhUOKZcwd7lnSzu2Mnc7BSnV9b4xOHzDDz0ii12qIwD+w9yxZUHuO6ep3i6PyKqDvHAPpNz/YHd7Nq9i26nx0/95E8E8VSiI1MUp4QgEYgo8GXwYYiil6+sCpdozywkQAMCK5n6AsrwGSjiRc5JtCU3XW0v2E4TEF9R9XCPNNgqH7GvuBxUmxAb1UFEj537hEj5K+9BPwb46BQjFxmnr/5P4JIxMhibHxsmocbNVuvoYavRyoNRqMKhjh8nG/bDrd6AWATHKOkwOnKMK7/5a0l1QrmxyVN/9h42PnYf5clzlM6RLPSYPnCAHV/6Wk4MBqydWyFNFUli6EzNsrgwx9LyDkRBWbrILqsaGJuALhXFr5B9DWuViFAt+6TocNFWi3ax53qaokItIlIH0XIQWeSJyW2KX+N7BcZ+DA29zhghj++feLcgG8Q+BBe52woIVYXFox5EnAWb4ykZ9DO6nW5NvJokoRiNGG71GfYHFP0R+SgjH+Zj5jAiSR9sv9E5LezdSiRwNnqAXqI9c5DAdna9ySJ/TvePqUUTRHyzL6noeoM9qp9Lg/VUE8d8tKVLVBblZYHQItGKInqyiAcvLm4mmfT8qxBB/JsYEx7xFZJhGxezbR4uyQd7vGiM1hgdPB1FAdYi3qK9x3dSzO495MMBZmWVJB+x+d47Kd70WmyS8ugv/hr5Pfeh3Ai8p6XBn15ldHaN0Qtu4mOPPsqH33cXRvvg90OHdtuwuGOeN77pjdx0y02Ragdcp3S0RlT6iiiXildx/qMfQ5PiRjm7yRHUyKA615yabVPhI6BV1h3HWBk4nvPmvhr3ViHZCfQa9GsoHXws4ovXYmvoLSKkyusxrlPll6CVjhRZAZq2SZhTQxaUR6yj00qxZYFz0Ou28f1hY48Ea0/aSmm1W0x3e+hEsb65RjYqUGKwUjb2d9ifojUmMeN38YEzu1R7BiGB5q4ee9jVVPqz3tdY7AtahTZdzVyE+xqYvt69gbWXqEmvWccaaQTnFC1j2a/uq2J70bUJKbQG+19RsfqZNKijjJ9Rv0xNI8cc0nYqGRffaI3WwatNxIItUc6igNZVl3HrT/1LNk+e5vH/9x3Y+x/ElgM2H32E4dEzZJ/4FMaOcEaTXn0589deji0twyPnQ4xBkZEXOaOsABG0GlHkmo31Vf7rL/w3XvfG12HiWmmtIlfQYPkJ7PKnH/g0K+dXmJqe4prrrmFqejpyauM5bt5XvV9TKThxvLEHJs5LsF5IbXJtUP5tLP/4WHNuw2+BwPpXVpD6bDjv8Fjvo7OeulCkiXNirUWUIytyRKfk1tKOmn5w5IWl106pvEfrvSeCMgrRCmU02iTMzc+iDNFc2IyJaHKZQVTTOpgJPxMp/XzlE/hbtIsMt/aTrsO8LvLXvL6JGaWezHE/1W0VAqhk8eqTetP5KG+H7oKipXSBuBsBXDC9NKUM3wT46rNB9cYUqTG2OvgoaN5l+5grWVb0BX8iGiGYCCVuIiUCzgWPR6VwrQSv2szs209nz04S0SivcDZncPc9JK4AJcy/6Hauedt3ceAtX81lX/c1XPuj38XO255b00klnptuuoFXvvqVLCzMobSnP1jhT/7X/6Lf30JHPwQBNjY2+I1f+7U4J2GOhsMhZ8+e5eyZM7jS4fHRhblakgDwf/6nf8oXv/51fOPXfR0C/OPv+17e9MY38M5f+WV+9mf+Ix++665aX1Df17i/Yu9Xzp7m537420HgxOHH+JN3/sK2LVPtkbAua2dP8fM/9C31GklkB8Q7Pnn3h9hcXUGJYKJJVksw2xnRfPBP/4if/sHv5sd/8Hv4n7/+TkSEJx97jO/+R9/K1731K/jSN7yeD3zgTlas4amVDX7sX/xzvv/7f4CPfexussLSa7d410//UzZWzte6CfGeMsvZXNtgY22Lrc0+6ytrIYag3sPj/e8jsRAH2GC5cc4FBfEl2jODExCpqSgTFJSLU71LaTo/o+6gWvmGYs1feN7jUd4HNk50vZmiPx2IkHmFwtNSDrElVeSXMElxJC6Sr1gxqXQEDdfBpqIvIosx1y8NObJCIA0uovEaCoXSBqUE5QQtCkqLDu5ltEzK1vmTPPKz/4P8wQdJXIGZn8WWjuHx40FkmJ9l55tez/TMDpwEbzedKlqtTgRYh9aaW265hS/96jdx4umTvP2n3s6xp08w6A85dvRYsItHJLSxusq7f+PX+Zqv/VqcD9S0sjKE0OYwTlvPT2S/gd/97d/mX/3YT3Drbc/n7NmzPHD//fzpX/3VBaxe06wYxI1xX67hXyEIew9dzZ7Lr2GsTZ/kBqVCCBWjX8VzeIsS4d6P3MXBK6+ktbwrjNWFfTLV6fDwfffy8Cc/wb/8mZ8n0YqVc2cRPHv3H+A//KefZ3nXbrJRny99w+v54V/4bT511/t5ySu/gC+441be/u9/hrd+/Tdxz4ffz95DVzOzuBS4UYQiL7DW0Wq3mZqZotfrsnN5GdOaBjkz3ldYquhV8WCMJklNFAUsZfFMRwLABGR+JqUQfPbzn/U5Mv7abJUiKKh14iVq4k5EUxDcOxMDvrQ1chizgpfQa9S/1Xgzb+dI6+tkEkFccIPf9p3g147E0FHBl64Op8VZDv+XXyO/+2OIFEgrZfmNX0C2MsT4MjgTTc+xcPXVgYNA8CqwnDb6+iME1hfIC8fy7t3cdvttHHv691ACw8GQsigZDkYcfeoo//7tP83RI0d4w2tfy0te+jJe8cqX85M/8W9QSrGycp4XveiFfOs3fRNnzpymKAr+/td9PW9685fzi7/4C9xzzyf45//0R3jlq76AD33wg5w5fZo3v/GN/Og/++f8zm//Fi9/xSt5zetey/333ce//fEfZzgYkKQpv/zO/0631yMg9Kjgje3wQ5/irj/6Hb7mh/81/fU1fufnforN1fPsu+o6nnzgHr7lx38eUHjn+IP/8naOPfJppheWeMt3fD+P3vNxThw5wq/9wn/CJCnf9oP/hKTdAqUoXcmf/f7v8tIv+nuMhkOcVszOzpI5RavVAoJ2fjTMagWz1gnD0RZZXuBFsTkc8e7//sv8ve/4V1G/HBCSabVI22200TEWBKyzQdehBNHBnyAQC1eLujqaBrMsw9oOeZFzqfYMQgKx1RrSilVv2JBrjctn0BHU/TQo7aXOUXXVBNpA83Wk2M1NBIBSZATnDSMgyk0qq5SEyDO4UD5sIgOhRjoherE6fxHxZswcgh+H7Y77DICptIxZRE+IOfcO8YIZOVjuABYtCrW4yK5XvpSn//BuRPnAOpoWPkkhH0YlmMe5uBauQkwuuAmLIhtlXHnlleAsog3OWs6dOccjDz3KxsYmr3jFqzl65Ajf/C3fyb59eyjtiCNHnuI7vvN7uPzyQxw7eoIvfPXfY+/+PVx3/TW8+U1votvZwUte/lo+evdH+KG3vY1rr7uB13zh/bztbd/Pr737N5mamuZ3fvu3Iwfg+YHv+R7+/f/7n7jp5lsY9vuYxAQrifchoUodPadrzlk5y/t+99c4dP0tvORLvprHP/UxPvm+P0XEIzjOnzrGm7/rR3jTN/8A7/qZf82nP/4hbn7ONXxs/wFe99Vfw559B1AuuEobbVBKc+bkCZ546EH+9HfeRZqkvO5L38yBa2+kqzyPPPRpvvc7/xGnT5/in/yrH0drww0veRV/+DP/kns+9H6+8hu+nXf/2jv5ki/7ckynwyCaNAM8q1q8qUONI4cjVOJhvLhhuVAx6Cgvcvr9/v8lJsJt1D3Apo8ybtzmlW/rX6evi4kFFxxrKO7ih9aKEBoa/cErsVFpRjZE1hlJqVxxKyXU2PLgL4IEmJRFq3et2P5aDxDfswpFbloFtkeNVZ+VAim6kfoIBCpSRLW4wNXf/LXcf+/jDI8eoVzdYu2Bx2gd2IX1JoTvDjYoz5wjmZuueAuC+2/cdCLbHICEdqcNSrB4rLM8+sjDrK1v0EpTrr3+GtqdNt6XHHnqKdJUcfnlVzA3v4hSgnMFf/XeP+PRRx5Ga8P58+fITYaZnWIwyjl8eg3bPcGxtQ3ywnLXR+5n965lsrzg1JkVfuPX/4B2p8fefZfxyMNPUJYFV151OUUZIvY8RMWox4iNmh/PVJrw9KMP8pbv++doPNfcchud3lRIFINnfucu9lx2CO9L9h68jI0zp+C66wLlNQbTaYcMPoAV0BIQ/ijP+N4f+7ecOPwk7/iZt/Mj//7nwVuuvf4G3vmu32L13Fl+6B//AF/7ozfS6Xb49h94G1fsnOWxMxn/4+d+ml/65Xfybd/9fWxsrnPHG76K/c+5oZYGqcSdWmka1tw390tEGEoHvZLWQZzN85wkSS4JLs8cxWCtxLsQGfjt13GRv+b9QtAxqIZSrVasNa9X4xloKIe80qQaLBqND9FdEDaBEoSE0nk64kjweBUUcz4CiW8igIqlr98tjsUx/l55GVYLXMmrtbwbML6XuOOa7xoVjiKCJOGa4EauEFeET8JvbErvhTdjjKEc5mx+9D6Wb3oOqtUBEdprfU5/8l6woDA4FcxajujzXiFlrSMrqjl79jzOBXfioihYW1tDBDqdFjt27iBJEqampvDA8WNPk6QJlRbjwU8/yBNPPM73fN8P8o5f/VX2H7iMrc0R7VYHL4GzmZ7qsjA3Q5ImPOfma5lfXgzejd0Oew7tI0lT1rICl7ag3ePJk6s8cWyVx46eYXV9kxntMUrYP50wq0tS8Uz7IRrHjIyYZcis7yPAlN1iym6RakU3X6WbrdJyOb7MG4FE4X/gGSrOTJhdWOTG21+ABy678ipEFJsbG3HbBQ39ZYeuoNPpcvrpw0Fuj0v/P9/93/mqr/kH/NEf/h5XXX8Lb/rOf8L7fvtXQooa71Ax7sJVyWmqfawaRKMK6MAjXkUXck2310YrwRWXjh14BiEBLuSCL1AKxn9Na0Gt4b9Up42+m0gCqNGLisCkgikGpUgkZgpy4xDSChmVaLIix4jHVDJZAzClAs7qzvpcY9wTC9jkAGRiaJUEVFmlfWO8zfBgEdDaIAJGNBaNdxYdX1v1Eow27PiClyN795JSsvqJT2DXzzJz+42gFEW+xcrv/DFrDz2ESh0dLTgc5WAYA4QANFolJKJJ0Hz0Ix8NZiglpGlCq9UGD9oopufmGPT7JCZQoWFWRE/CsO36/SHtdpv5+Xn6wy0OP/E4q+dWePC+B8iGGefOrvHpRx7nkScOk40yPnXvQ9x3/yOsrq7z9PHTFE5z9sxp7vrgh1hZ3+Ds+XOsrq2wNdxkkA9RrmQ65h9g1EeKEd6WDDc3uOzyK/j4+99DsbXGAx/5EIP+Ftlgk6y/FbJHbW1RbK1h8yzoQ5Sm1e4wGg3HO8v7GuFf//zbefzBB/AIZ06cxJYlvZlZzp09g/eeVtrizJlTPH3kMAvLu4KFATh27ATnzp3lOc+5kTwb0UoMoCjzDJcXlUTMRKxJtQeaFqQ4Ki/jOAznHGma4Jyj/L9KJ3CB+veCL9uuuQj2qGZu4rIxpb9Qoth2v/cYpbZhyDFQ2yTFuUrTrSb7rnUIQmMFL3xGs99GbICvxgrBitC8dwKBSdNpLmiqdaAAeI+lpHAluVi0hOi9Qhw7rrqalVe+jPX/8Vv4keXJd/we+77mjQyePIk/fZTi6NM88s9/hj2vfTGyvMTquU12vOxWnIQkGQrN8WMnuPej9/ChD32Y++79FNZZULCwtES32yUb5TjnedGdd/KKxUV+7p//CK+78kreevXVnMhG/LNiAKcHZN0WD9uSt//wD3DN4iIv3ruHt6yf4hVn2vxJ1ufNTz3I8/NVnlpb44/KnB84/ggA926t8frTR/jywz1e9MVv5Lv+0//DsCzpGMNfft3XMRWzQ69rw09YTVkUHHnsSVZPn6HIMtbPneGOl76M3/71/8HHPnQn+w9cxtT0DD4vyKL8PBoMEA+2jBmPxPHcF97B7//qO0jSlO/8p/8KZUyguKK441Wv5l3/+ef4dz/8/SRJwtf8o+9Gi+LRRx7hF/7j22m322hj+O4f+lHas/Nkww2Uc/zyr/wKr/rKbwJt+LI3fRlf8VVvYe1dv8yrvvIfgNIhs7F3gRiJ1EjH+UoUaJiYoziKCEVRoCTEEOS5YjAYXGL/PRORwHbK3lTc1ccuSfrH93pP9KPcBqRNmn4RBOIDA52oGG7XCCmusa5JcYVFdzyaKtvvuMvK87v2Amwo8gWCi2f1rhNjrtj/pqVBJodZI4VtkxTNmlVeOWNS9r7kBXR3zrJxZoV09z5SlZBlOUtfeAcn//Kv8OdWKY4dAdFc8b3fyKf/wztonTmDyIBTf/LnaN9hx1e8gcWrLsNbH3VtljvvfD8f+chH2drs470jSQ27d+/i4MGDTM3MsLq6xnCY0xoM+KFf/y0+8cCDJK2Ek0bx1i99M79lEnyMvPza21+MMQlpmlLmOSeLjHdrxXe88KU86eFxV+Kt5Udf+WreBVhrefm1N9DXmv86ylDXXMdPfMM3cfzECTqdNg8f3BcoeWl50R/+IfO7DvIdP/A2Oonmuptv5oqrrkRwzPW6fM/3fR+zs7M8+vCjnDp9ErPnSub3af7Rv7s9SGkK7viqA7B5DrEF193yXG544R1x9wSNv4ru2kobvvY7vxfnLS2lsN5TOOHFL3s5b37zV7C8exeddpuTKxt87NhGEK08/OA/+Wfct2oYFSXLu5d5+y+9i3tOnAcV9p6rOL1aHImco9KIClGhSCVeBvdhQUjTlFYrBQRjzCWt6vBMRALNJtsgCLgQIVzy5vFHEwH4xrlLPFOJRxui/brmx4EQrkvaRRUJBmEuUWwx7rb28a/0mBWlb3IgjXFMSjwXyEMNzqJ6h/pBjauCeJDqoJsoxWGkzfzll7PjumvRrRSPp8wyWl6RLu/mxb/0dkar64zyIULK3J5lnvf//Cgn3nMn+RNPw9YamA67v+Ql+JFj1549HFpbw9qCQdYnG5YY0yJJNdffcDlf8dVv5YFPfpJDhy5j5fwKW5uB8rzvA3fSnp9juLZJsVW5xPpoqg+iloq5BAMRi4k6TIjO1CqkM/NRDq8Ckpx1mDSIHkeOnsBaRzYccdifY/++XSzNtwGwywchTVHFJmmahEQjRcbZkyf5uZ/5jyAEyv0Pvw1pT+HRRPVuzHFoYbCJG41QonBFHtOuBUOebrVwZRnMsZHzc1oHvwhJ4zup2nuvRthaYZQJwIwwyHK8h04rQYngUFFdpC60JnuPd5UY0FASS0h9ZhJDmqYoYxARWmmLtN265JZ/5iKBCzT4XMLcd5H7aueabRTXb0coF3IBwQrgMIkiRoHH231cUMErQ+GFjla0vDDOJiwTZprxI6QeV+0iK2P2vwouCVYemRjPZxwv1DoBD6RaIWiQHDvyPPbwU5Rlh7IoaJsSaxLaqaHdNkjb0Gq1SOZ6tE0bby2zi8vMvOVN5JlFygxTGMrpFG2Fr/iqL2OYvSE4rxQjhtmArY0hrXaH/ZcfYKY3y/33fIIdO3dw6/Ofy72fvBfO9snKHJOXpIlhdtciidYhBTchJ5/1Pnhdukq+Du/l4jXOWVxZ4H2QccPxOD1ufC14lBiGowFZWTBz05Vxfh1etxhmI4qtYQCq2Z1M5yXf+m3fhk67zM7N09fTjCR4CDa3mVcCEnIAIBIzN7k63kMZjWgdTnsfMgcJFGWJq6h3rdEfr6HE2IkicqqZc7jC0m0naKk8VSLqi0RMqi3hPXU0pGqymTHBjFGkSYJOQq7JJEko/68wEW5vTWDZ7oYbLuACoGj+rLzQKqVb1WfUTE9c36TQErzvkoqFkia1jpyJUjijSbRmmIeNIpWMVtszZNx39dyLWD8gSh3RxDPhOVlZB+qAksY46u4DFyAltJPgi574BNPRXHvzVRQ2Z+XMGisn19l1YJFWCr7wlFaT99fI+4ZNRojLyUsoyoJeCZte43VGyyU4EdqJUCaKJO0w3Zliaq7NZZcZtHIRUMK8iFIs797FK+ZfAe/+Ta648nJOnFlB6YROt1OHZnnvgrHTE5JoeF1n6qnmaqI8StNxyo+tL15CFuiyKCkLy8YgY6s/IM9tXH5N2epg0y6lzRHRiBGS1iraaNLeNNLp4tpTCKDciJYv6WrBJylZWTKUEpckoA1iEtDBUlIF+ohSkArifG3BUaKwUZQUUZMx/RLTqymhcGH/9POQlryVBC/KYsKrtLF9q30gjEUBKjP6+PqyLKO5MOyp4XB4wb6r2jMHCdRycvNY/LedOjap68S11ZcIjNsZh4txF9svIaaINklMe109a9y9V5qRc4grKWgRojmqBW5q65qsmlCnrrZucmwCkybMyfHWgFGPYzvyCztCiye3Bd4JkpR4pXGl4b77n+R5t17HAw8c4WWveB7elhw+cpwn7jtKt7XAdbctMzu/hG4Zzp/cZOmyGej3WdixyGZfU/ohtu84d34N7Q2j1S0On1pjtHIq5A/szjDT1qye2WTt1Dpp20AS2HEtSUjcG1NvpzGvYJoEy4vOPSYNCUeDh7PUFE0ayyg1cqyku7C5nQ/cQ54UtMUzsJWIUQGEqlOXCyXJYI2usvR27qDOBOVhwWZYP8J7i81zbFkwv3MRn2hOuoJRNesSXbKdi+JMSDlerYjzHmKkpIsZiysPzjj8uDccWilyp0HBsBCKvKSbaoxSSM3xNIKWZDwG37QOVBSisk4pwSRJnVfSOluX0rtYe4YgAWmY1Bqt5vsuIgZcTDKo4E48dfmqapIuiQAaz45MglIeHcODm+g3mNvC5Fs0ylmmjXC29uIb5wuYpNzVZogJL5WaGH8d1VibexqIzPlJTgJh7NxUXR+udUVG4UoSEayFYOL0JGmb3XuXeOTRR0GViFKcObXF7a9+Dgf2X8YH338P8zsXkXLIEw8d4ejjhuluyo23zjAaDDl29AT5YMTeQ7tY2DlPuW+OqT2bnD1quezyA+hpITVdPvTRv+LHfuzHmZrrkqQpV77/Pbznzo+ytrnBdKdFt90FCV6MO7td2qmmk7SQ0YDjWyPSVsJaVuJwKD25NUOijeC8ZIxBiWKU5RitKW2JR3DWsbqxCWL48HVXcOgv/4JfveJ+fJnTtiN8fx3KgrSV0ul2o9wcgEVJrB+Ax5aW0XBEd2YKhWJ1dYWNrS0kTVFpSDBbJYZRWmPSNCynC0ihpYTcQ+GFOUp2LC6ytLREYgyn19Z55GyGzlZYTh39ZJazhUKXjof/fAmdGu5+aoVBEfbSkgw4sDjL/MICU70eM7PzgQup1x1o6A0UxL3rUCpBxODcpeMG4JmCBKq97ZsHmuxf81qZZA0bzVfnmyx/Q61eYdFwhW8ghybQVpUFgnxfM/gSHTejbb6M2L5lTHDQgToZZ933xOCaYoJMjr+KMKwdi2JiiKqEWROZiLqwb0Kiz06ahE1sDd4b8mEfoWTvvkV+/93v5XnPfw5bWwM0jiuu2MGTD5/hiYdOs//QPLYsEdNi76Fl+ptbnF/rUyQa18mZXe5x9JGMe+89yqtesxDk9xIy7fCdBJxjqme4+jkv5rnP2c3GIOM5N+zmde98B++56QvZKjW7d+xg345FWtqyKJq/f+VepvojZq9Z5uSjx2m3u/Snu7zrwac4kZVIO0GpkCZcaR1NccLc3DRFniNe6A8HGKXoDwYMS4crHGcff5wkmeWNX/kVfPl/+6/8m5d9I4vnDzOXneeJJx5nkOek7Rbd3hRJ2kGnKSZJSbRBGYMxhmyUMxxZUl/gFWxmjvXco9sdOlPzMdtQgSsLWt0p2jPTIaV3WSKSstwWNkvNViksuQ1ueN4LuPm5tzAz1eXDjxzmQ3evMn3ubvYtKR5oX8XT/TZqa4M7XnYzN91yJR/65Q9xZDVD4VmWI7zotuu56bnPZe/u3SStFqvnTgWUqHRImlLvKRXmy8QQYhFS06J0gahdqj0zkABwAWA0NeDbAf6iYgCMC/Y1KwJd+AxfXzuWOStfdCHIcyZ6aQlSB88EJBIofeEDizoiCeWuKha/HpubfC4E0+B2hAaBVa0QSRVFOaEH2abDqEWhinsI1yVx4Z1ylEXISGNtSZq2uOm5l5PlI9afsggZUlrato1KhqweLzlz4hRTSU7pWrSnd7IrWef8iS209pAr5uZb7NqzgEJjjKI9nTA7mCXVBjGOPKQnpmyVUFpyCc4p7SQJ5jANPYHLF+ZZGFiS+RaD0jK7MIUphenlLtm5nOt3L3Hy2DGMT4OBVxSuKDGpwZiAAFtJK7xXy+BtQa/XYbTep7QOUQZtTO0c0x5scYgtNjbXKIoCD2hj4no4bFmC90gSKkuVhWJjYxMRIWm3KAvLKM8nnHNCjpiwd6oMy+P1cQghZ2MlBiHR208JHg3aY5xFUBQ2mHTFwMrmiFY7ZcqkIKOxUpAYX+IstrSB0DTEhZowxNT2WkKSmep+7/3/BaHEUFPoqvkmtZ+gfNvl4caX5ndiLPilyk9fTLYOU40RRStJa8UP0Wg0lug0pQQ3zVxipVuRYObyAt4GLmLMhNDMsBuF3PB4NeZEakTgqorG2xSFNKwQjfF7QvVio6p8fxqVaJYP7saVOaWA9oLgKD21tr3MPY4RttRYa1Glp7SGUnKSVspwMEKLRXlHknZwfsgjnz5CnjtSmzMi5dEHjtIzQq7aHNo3g5GUdsdQrIVN53yo1tQWxZRx/L0rl5idgiIHq6FwBWo6wbV6lKlCDUekCGgdMzU55mdn6PbarK9v4J0jaYUU7z4LGYpKW+Js9TyPKFXXUVDZFqvnzzMa5rhomtPGxECvMKdlGdPIJcEyYMucpNWisDnWE+v4RQISkXMI7Gm64lYB52HfWgIHoyWKLqMRMj8TdB5YjCvRpk3hIyvfMqz2c5JEM9fqIHoTV9qxWAsx3sIG56wwiAkRUolgihHdXgvRBqMDZ5OXBORxifbMQQI02fltB7fD6oQSMQKbrzTKgXJWEVe+SvLZlDeaFgdfCwP145RAYkys8hIisupUWKIQDJ6AaUl0HIOKm6TSEm+n5nHAdW27xmfkIHyVNFKFmodBDRCuC5mKZGwpqByYGHdtqvoCCFpb8jJAWukHWFKEUP/OqBk8ObrngATxaVCwmRJvBW01VhzOC84O6SQ9LAVJ0sYknrTVwqRgdIrzObawFENLuTZkMBxwfsNz8rETAJw8twI6RSWKtMjQp7bIBxnnS3B5Tm/nbhgaymNnyZZmsX2NkS6ZK0Epdi3vZH1ljb6zFHmJs0OybMjC4iLrmwMSk1CUWZxPR2k9Smk6vWkAMjvizLGnmZrq1AFAKgbWWGdDDTEEK4KKsRFFkaNTg8VTxorAIcW6jhKjH2eOkEDJbRn3TrWBRONFkShI05TpmRmqEHKRko5SJK02+SjyDlpzbm2NbDhkpp3WYqWuql17h/VColVDRxxFAgn7QgabLLZg5+x0DQ9KSZ0V+VLtb4UEROQpYJMwlaX3/vkisgC8G7gMeAr4Su/96mfpaSwHb9MLVOzQBR501PgRCMUgtUpx6G21OuIkVohiPPg4mY3033HijATzTVXF1jlHCDONAoN4vArJIhMdOIFmkU2vgGhZEJgIRxZhfG19TxPTVTHhuiG6VFxRrDgT2c7INlDpQUSFCgNB0jFopXDKoWw6Fne8AsnQSlE4Qs5/QnbaYKYLrLFETsYnHUQ82mucK8gz8E4ohgA5zpWxfLZHz3aYW+gwt8+D2glAp6dgWMmns6RTO5i+pc3gXJ98bZ2nz5ym7UvS+d3o85vYtYwrZ9r05tuc6QvDbMji4iJbW2t0ul2GgxFZljPMz9BOTXTfBqMTimKIqJBqO+RaBJXOoEKMIyiFMiaIb0ohJhY7ReMhFmC1uKIE58nyoq6pEJZAYlRmKOxR1/NwHhUinjClwnpCeLUTtA+l2IajUbAq2BKMptzcwLlZcheeL9JlKy/opm1muoCk0Q0gZF5S2uFF433IcIwB0Y19NFhn2WzRTVr084JUa1pJQpmNWD13njL//MYOvNJ7f67x+23Ae7z3Pykib4u/f/iz9lJXUoEahCdi57dT1aZsr8CogAC2XTPRPpOJsMKuImg9LpHVLIpRs+zeUXpFEVTwNfJoPKi2OHikxjd1H74B3NX1zb/tlpKKmZnAfppKp1FTp23Kn2bhD+LYq2AjBJSXoKyXoH1XjfsqwFYxIEU1gpWctSitcZEtDZ5wLiLMys06jDUbWaAEHL20IN2pYZBTnh7SW5qlNz9LtrKOX2rTm/LsbcPzllpMOcX7Tm3x5PqArSKj1UrpDwvSRLNn127Or60z1e0xHG7iPOR5JYOH6kR1xqFeyo6lJbIyjzUJDSZJMUqDjgjeBc7Q+SBOuLhXvPO4uor0uKRb8N13E9JdxQVURKstBboY0Xcjzp49S9pqsbC4QH9rnbnBCXptwRhNIQnGO7zWbFlLkWXsmOlgrIvl00IxG0dCIgGRhTU1KJXixZEM1tnJkKVdixw5co4ss5w/f56nHn8CjWOQjciz/70BRF8CvCJ+/1XgfXwuSCBSuCanXmcHjhVZx5vrInoBr7dR/+a5bdciDeoal7C6ToJsVZXNat5W256VxoqhKEdoby8UV5wbH5Mx8oDI7EjjRQVq5V+091/YmlyQjMfdxCGEKMLx+eh110Bizd7EC4lKsD4PAUYSCld68RRlAFqPi9156mQvIvVGNMZgTNQnqKq+QDC1KRXmzzsVPIIlxShha31Iq+WRbkLqc/LNdQb9Pq3C4RLDlZnw8U8dYe/Bg/Sdp93ucOr0efbuWmSY9+m224yyEbNzs1A6er0epijJ8gHO+VBzwYSoRoDEetIk5IDAaFSShDRsEXkqpWOi0EBMnI2c2DbucZy7MM5Bg2OtkYEn4mahlffpDYfM7Zxna3Odxx8f0Do5w8qZE9w4PM05l5OaWb7k6mWGJeR+xOJmyeag5Lrds3zhgZR2K8E+bUKaOx/EC6UEZVKed/XlHBzM4X0BqyfoyDwPPHGEvTsWec6VB1man0OnQayzztHufP7chj3w5yLigV/03v8SsOy9PxnPnwKWP2svNSBEBVrNJVczXRWUrK6XSco7oTeIsnIzyKiuBHSR0W8fBwqtqamqr1JJN2yxqBBLbl3JLAWhEHaFRdzE+1SAW6kU62KTNUBX16nxfTXlnxhYY64qibRKcx3eV08YReQCBNDMRGut595P3s+efTuwhWNjZYPLrtrP8ePnOXD5LnCa0pXYIsdZ6HZbAWy0J2mbkJ1Iqci06FpuDvPlYoptAvvqHZ4CXyRkW54sKygGQ1rdGVb6GS2l8QXYZI25/R2uVDMMipJzG0M2C0vaThlV2v5Om9FwgB9ZlMDsbA+PkCYBmJ2zGDMu0dXOB4SqvB7RCUonaDWuy6hUeM+KE62nXldIO+hnvEjgEqoCJ3Ex6n1Co2aBB13mTJPjXE7LGHSaUGQjTj/1OD0/opN2mV/ayZtfdQvioaDPwx99hPXVPjceWGJX9zpaUym/9z+PhHyMvgxl5ZzHGMWXv/Y2EjNiOMgZjkasra3w5BP/ja3TxzhlChJ1iNZUB52kzC322Nxc51Ltb4sEXuK9Py4iO4G/EJGHmye99z4iiAuaiHwL8C0AdGajZh2iD+0EgEz40yMNIKh+1w9swEtT7t4GVTVyqdKKT+ocpK4TENC7j/y7I+AT5woETeFKdjOkhWOIqpV2Y2chYZz+KbKVNScCkx6CFSmpuIKGJaDxUX+vxab4TKdJUmIZsmCmohpL9ewGUlVimZluc9+njnDd9XtQHaHwI048tcKRx57C4bjsir2cPH6GcuS57Jo9DDcz8rxg32WHWNrRZTTKY4ispt1K6+dpreu0Xs6XKOuxecmuxS7pZbvJW8DaBqe9kC52eeLBw2yZTXbKPPnqJtnAs3pZi3NHB1AqdEvj8oJu2mFzfYNur8Pm+ohWJ+H82iZT0z2KIsficM6SJKamAWm5EZWAgJiAuIhmORUmU4lgofYBCWKDQlxA/hI5HGlYanz0VKxEhJo5c6HUG+0pMjTaaLI8w9sSZ0uGhWXTK/b2hMH6GX7/D/8I43KGZQaFZ++eBbZWhT/5rT9F2paNjT7mwCEyPLmzdJSitJZP3n0Xo+E6oywjy3IGwxF5nlOI4ujx0ywt7yVRCUkdSXhpUfhvhQS898fj5xkR+T3gduC0iOz23p8Ukd3AmUvc+0vALwHI/J4x9FZsp5KgXKvk5Ap4qiZqUtEHk6JCBLyxNNCUCypbLxH2xjb9+hhVMEvYAGPOPSAEq1JGTqHyPknPkaHABWuEr8qMVWbA7RAs43eVaNut76ke6S9xz0RfYyTivSMxSciC1Cjwub30V3isCmaw1HDHS2/EuxKlDdPTM1x17TJediEOlnYtsLCwg2yUs//QEscOn2Hl3AYnnz7BJ+8+T2+2zeVXH+DyKw/ifYlWekIHAVEkUT4ECVnFuZMnmCkKjp/PWJ5Kefy+wxy4chczRpEORvRUD1kwHHniFF5p2kkCqVDaQAUTk9Jpd9nY6JOVwUtwlK1RFBZvQ9x9mqb1vEg2CtWXPaBVSNjpfS06We9Ah2POU+V6QkThiJWWA19FZa2pxbu4paq94ZXC4EAcK9IlF8Pc1ha790xx9bU3kIqjtbiPDz/8BFIc58hI84GnhxS+xKPYK5bnbWX0Zke886TDdBS3dkLkYQuCT4Z4ysLyqXvv58TTTzAYbmGdJy8tWZ5TupJOu8NgNGJzY4v19S0GgyFPPXmCS7W/MRIQkR6gvPeb8ftrgH8N/AHw9cBPxs/f/xx6o97cTbuoLXDKRE4gUv8ogI3rxvkLkQFAZVnwsSrQmBMOyGFCM199DSx2pVyq+IfKZD+ui+fBO3KnMEmC9zGIRgnR5sQ4tVkDuTUfKeMY8XGJManH5ieVI0wCf7y2WSdBOVKTxBqBEQBk/LldLCisYWPDcvL0k+xY6LCxOsBmlvnFHr6lWZiew+OYnp+JzNmIy685yMErS0wiuDIgucFwAFLW7D9RETou0RW+G6M5uVZw1S7DWleYm56lyLa47qrrWH36BGvOc24w4rnXXM6scRw/dgLjgqVF6YR+f5Mdiwusrq2ztblF2tLYSn/ihcQk0YwKqUnqZK+qyBA8ZQRUYxKkgVR9FGFCtaSACBJj4torRBuQPPgdXJqYMtYvKdBCblN8t0c3FXbsWGbH4g7mZ7qctFPIk2dJ9Tp9abHWnqfUYdydfI2VlTNcfc1lFFN72Wxrhv4xnDKhhHysz6CUsLJ6juNPH2amm4QYDOdY6nTQukWhNDt37eTQlYe47rrnsL6+zvlTT19y6H8bTmAZ+L242Ab4de/9n4rIx4DfFJFvAo4AX/lZe5IYUy7UkVFiXR2AUcldzoaCjxUlj7dSZVup9TVCCPCowieVivIqEaNbXO1OEgpL4IPZDy+Y6KpqfcVCV2JD6E6L4FyJ956RbXIXVQ644O4qsT9vy8AeV2KCqxifhhhSxxP4+pl1qzGY1PJ+JYUKVTCJkBjN9uq/F69GG0xm0zMzXHX9PkZbBaLXOHXyPE8/dYarbjhIMm/CMCvOyBm81midgBK0DrqPnjEx/VYEulh4pEJwrtKqG4PpAVlJd3aGjY1VUCk+zzm9NeLg8iI7Wh3KPOf4yU1WizIgOaVJvdDrdkBZut02WVYwPTPF6toWKhZJzYscV1q8h1aS1GvRLR1WPKWrskjHfSY1PRgr+qK+ptVqBZdlW46dtRrvJErwlXmwBn4BXxCyTkYltzI4pUlNC+UhSVKUsZh8g6RrWLPglQ7r4R0jEu67515uvuFqlnsJTzloeYlWBx10KzboWc6fPUN/0MdZgwLSRLHVL3BO2HngCkQ0qWnTTrps6S3ysrzIPgjtb4wEvPdPAjdf5Ph54Av+2v05V8teeB8S7ba7iPN1/XrVyLPurYsYHZBov43AHBw4dKhJXyEDG0JXOxqUsfTzMuyEGJLtXQmBmSN1YaGdtbXKrxIDBIfGkYvg8gKbF5QP3IXuLeOnF8LGVsFk6bUmlCkRSBJQGmViYgsVYdv5KHtG6uQr1tOPOYQKMURc4GtKW1F6QDm0CaJAEHXGIs6FjiICKqfTc3hbMr+zy8xCm6WlDtOzM1hCRhvnHGVmabWERCeIEpJUoq9BYKVLD1XCD1UDhK+tnE6FtXTAmf46xszStYJud7AkaC0szM5wfn1I5h0H2y3u31hHdIq1JUnLkEXRZX1jQLfdoSgGuFJR5CU2FkSpIhC9V6RGV2ibzignMz4g9DhZSqla5FMiOBtzGUTxyjkXqvqKB9GIA6urDFIBAYu4kBNAqmw+oAjsunaCFRfmiZSiGOFdifeCt4J1nrZJ2CLFiw3zpw1F7uhM9ZieMuyfa3FkZRjF00BwhBJcG8EzOzVHtjAPUpVHi5mfvEKlQU8TCJnFOcfKufOXhL1nhsegCD5Jxhu93uBV4gmpeLmxK4EER49KiK+KeYoLFYSCbKyx2telnhEh9zb4+Xe7+DI4GQVnHkNEs9EtNbQq06CL3mTBkcjhtYqWQE/ryMeZ2nMFG7u/iFyC+clFIHYepCjwoyzao0GIdeNNUIbaVOGTWFYMAe0j8Q/IQVyMHojHQr45NY4lihxOkgTFV/BlnxQFfMOPwDnHxtqID/zVJzGqTdJKeMFLruOBe55ifkGztppz6+3XMxr2eerwcWamF8jznK31EfML05RW0HgOXX2Axd0zaONC+HI1aW7sn6BUSCJCadlq9cinuhSP38/QzJG0ujz26Dqt2R6q1+PgrOZInvP0ZhZSpOkWaZoyzHKGwyz4/keP6uFoGGqEOqlTMXofsiKnaVqXjyl9ibfBd1+UicNrEBDGSFKJMHKOVpqSaEVaCqU2BIuPGnMMnsm5jQccvg4m84TQaWMStNakaSt4LHpQZY4xCaUYypq7A6sT3PQS7c4Uu2bb+POD8XMIOhEkcA1OBG0SlNg6VHmU5QxHOUgQUxOTIBFOmkRhe3tmIIEJOR+IFX589AM3McVUWRZ1EQWpqI9WeGfjteA1wd87iu61/B+1uU4MPm3jyxJFI1+AD0DoXYkWAWdjXYHIUse04y0VvMCceDLrKJVwaHqKPDGs5cEt1cVMNEIUZ0yKTwSv44apHFKI7LYXJAMRG8ShkQulq92Y+vgqF4FIrEQmUeSIeoQsmKKMMdjSTlShrVJyVchARLGwOMMXvf4FDIcZ1qXML0xzy/OvJhuO2LXb0h+MmJ6eYedOz+x8h3Zb8/hDx9nc6COJJnEpa6sb7Ny7gHVZPcdAKHxR6wRiXL0YBsUW9x87z0t27cDYHue2Npk7tBcpMlrDTcpslgdPnUGblNFoi/mZGbIiR2mFLYKMnqQtkqRFu51Q2gJf+npPVIin3W7X6R20KihtVPpVtv6Kk5LxTqoIj8eHaEKlMUlCkbRjzoIAaMFjML5XbdYmJhlxSCxdV8kctrQYnWCtiynEIXUlXqcUDiCaK0VhVcK5UUluYe+ONhwe65GCaRlQwd15ZXWdp46dAm9DbIP3tLsddi7vQps0JDVxwd/D2pInnjh8SfB7ZiABAK0iRh8rbSRu+jKgeURrfBkWzMuYpQvu1YEbkGCmrllmH+W/yDbEDRntviSADRxAdB+pIq9GWUar1WGC5cbTUkLLWZR1lFmJ97CSlQxGJV6r+DwVnWyCV5mt5PT6/aIPufdhrCoEOtX6DCPgdEgsYcdUvXJdrYqhVKFq4iyJJyTsqJBkveHHSsHKeQhK0hacOVlw5TUH2dhYw4hn974FrM0pc0jaYSMt7OgikuC94nm3zyLKMswsYjVJR8eN1nSsilSroYvQOsxt7ixnhiP8zCFMv8/UzCzHjpxgeecic0s7uPPpUzw9KDFiaScttDakaYssLyiKoHwcDkfMzc3SH2xi0oTCWZyN1aYjIWmlKVLVhxSHLe2EtaTmWHy07jeOeR+QWKVzKVXUjRAQW7WVfOQMg9v1WK9QWxGq5Cje0+50gjXCOcQ5VJlR+DaFk1AUllDpyopmYBWjUU4vqexiY32QRPflSDcConMeiTqIMi+jo1b4rbXGY3HWUj7jA4gqEUBVKrjmi1cLEpksk1SrMAYGPb7HB/f58H37cyI30Ez+A8ETqz4nhrX+gNOnLYcOzmDFRoNFtC1TUOQj3GhIQY6I0M9LtmzUNEtwofXK1RzEOC985VJCJBQSx9oYcM3fV6mqxtyANB2XKvnAebwymJYP+e5cwITV5rkQAQAYNlZWeO+fvZezJ/bz6KfPMhpZvuwtr+H4ydN84iOf5kV3XM99nzpKUYzYt383L3/1rTz44GE21jbp9nrs2TtNq+iwcn6N+aUlelMJ3gWbu/NjxIV2QZ+QJqRlSj8v2Bh5tLLMzLbg6IjpuQ4Dr3hyMEKcJ9eO6XYPrRWjYc5glIXAKAkqzaIssNZTxpJozpWAp7SKAqHbSmuupCSlIMfhYiLWQFVxLsjoFTMf51cDyoTAHO0KrA6UWgGuIio+cCU+ukpLPI9KEKliP0JyUWtLTp0+y+5dB2LcgqUnDnSHPKZUq/a914qNbMS58yvMtoVEqlyMgQuw1pHWVaZ8nfewFkd8TI9eEQrC3nLO0+vOXBL8nhlIAGqTTsSlNTfg4zHqYwEBmJbGlmVjw0kTd9SbgKoXVclz0ed7W4avis1GCaf7JcMsAG+llPQRiAbWkUuCzwvsaMgoHzLTmyYzSUgaWWuKq8GoiWFMvnTj3ZDGBWNEQdNcGMfom/4Q0aSaKIeJZkpVeVjGViXorGMLvEXFYhq33X47p06+h+zsKidPnueh+49y+PFT9LqWp544zfT0LMVyj/OnNjh25CmOPrnO1nDIvj1CZ2qOkycHLO/Zw1u/4dXkuat1L2OVJiRpgk4TTKfNujjuPHIY0xJ2pl3WtKGXWfJEkxmDESHxlizPUNGu3+t1GY1GQeZ2NpQCj1GeWVngbBl0RzZg0XZrUidQWjd2Ba9Ew3p0cd6r/eYqw7MP1hBlQmCWBHt9MCdebDljXgFN491d4ERsgejod2JLklZCqRIyBPSY5fdoNnMXMiY5RyvVqKxyp6+wz9h9PlifxhR+ZnaGpNUOzk4x67BznizPeeOXvYm7P/geLtaeIUig2uj1zwsBJLL+1TXOVcAQN3ZTA15r0hvHqqidGjjr2q/4iBG8BFHAqWlMAoW12DKIEBpAFKVKKaSDStowytDWBfOCDhxFDQRNauhcreMIrdqMMjHE8e6qOAiYnBQ3eX2N+IS2STFagVZBm+2rRJuVZUXVugGvNAuLO/jKv/9a2lOzfOEbXk1pRywu7uSa6y7j5tt3ctm+a3j66HmeevI4o9GIhcV5VlY3ac0UtGenaXUdrVaXra1zLBUerRO8GwaFldZj3U0cr0XoFwXWl2xkJSbRaLeOU4aPf/qxmmPxSqGdxxnFMCtCTH7865gkZMixllaa4kXTbnewpWVzawvPCgCtNK3ZX5FgVgt5UBuBRRERqKq4B2DjOlUVk0QrtA+cg6uDtYKgsd30WqHwimCEmGJPmiQM+n3yIg/Zh4oysO5o8kqMqnh88Wx4xdNPH2Px8kO0jOCzYD73MZir0lFNz8ywc9cyWoV8B977APQEy1hIy25ZX1vDaM21113HpdozAwmIgDGRxYEoXBH+NagrElZTQrlsUWMgmAB6kZiaK373jefUVFTG3VaP9B4RT9Lq0UoLtAhajbPQ4ADTRs0tofwm/rQmHxVIYnASbX6Rm5gY96USm1BdMgHZYwXpBCLzVL7tk05IgBem01BkoiCYvZoRhVVEZNWctyAKk84wKnPa09M41yMvHWmnx403vxBbeK69aY5bbn8OoiAbFfzD7/hqnDeMshKjCkwCd7xyk4XFObIsm1BAVm7PCkVR5Gxs9Gm1EhKdUCqFIUTAIUBiKKxHe4dzoMSQWQvekfWHdDudqNF3KOeiDz9R8+0i2+1wNijY2u2k1kmICserreJibH1gFoMyz/uo/YeYISoAsibEHNRJYqq1qahx5EorAoLzaFE479DeQ1nixLK4sEi30609E5X2OEywermAoVTkXkcq5ey5NfLeMby1IWNd3LbDfp/p6RSjDfsO7KPTEfpbG8FVutVifmGRAwcuY6s/YKo3w9ZWH2MSFpcWg+flJdozAwlUwK9COuia5Zng1iZTNo85A6H2wa/EgCD4AREhE80rqIZJpyFuVFQ3KnumlGJxYRHxGnyVkCFsmIQEp9uge4z6GXk+xEjI8z6q2eBJtr4G8eqdVHRBRC5AANXd9fvWJKY6qyaQl0QN0Xw7OFKpyrmptgRc2L+S4DxV9RdKjVeKM48tfRyerlN3g6IoAUqM8QgtnPMsLi0SZxZRYzOkUWHT+YFnqPucP38eT0mrldJpt6Edq+b6EMdvi0iFW8FcmnhNUVosPrj7ioGyRKuYBaipPMbjyhKlC7QYdKIofXCOyfMsrn20CihqpV4FrHW6MOsJoWExdsCn5J0plPPYyrsz6myEaAmo9sZ45ULgr7doLM6HnASJ0WFKHSAFpWhsUYArEC0hHZjAQLf4xCOPc3PHkZXzQXmsAFwwP0qBEo3WUtOPdrvF/I6d7Ni5j/nZBa65+hCjoSMfDVg9WzA7O8WRk1VM34XtmYEEquYqpQpB5tHjSD5fVQPaziI3BbTAj9VYfswEjNnucXVzaYgdoQMvCl+WvPr6g8wkWfBdkCxkcPUGr+HF1y8zO9XiT963wif7G6xsJAzWVtAL+1FGgVeB7WtKJzSeCWOEdalWjXtigzXvpyHbhk083euiiDoMbAN5VY8cUzClwnXWjkWGppltzEVUwCONz2puo7utauqvGyONLr0vvu0m3veB93Fu/Rjrp0/WTl+eFt4LSofox6BGCVmLVDQFomOKLq3Qokh0ML26mPAl0YreVA+lDNloSD7KmO21mJ2aIo8OciME78raghD2hotKXKl1BwpFQRnLeodcCr7VpqoFIT74ZThnox1pnHLOOYvyQhnL3lkE2+2i1RRiNzFJK7DszuHLHIMONQmiC3OVRQqlGCUJ51uzlKSMXBiX8QpblCStFCFwPUmi6HTaTE932bFjB/NLO8hzS2eqg9GGxx++j8HWBptr67zoZS/mA3feecnt9sxCAoAw5gK8d4g2YwtB5Snix4qcMXQ3j1UYQcbyuUxu4gqIgr1djam0T3j6+FGOPHQ/r/mSV+FLHe8NwLJyfhXpn2b/VMa9dsT62T6j0YDU2mCxExXZ/ybwNmLT68MTGGiS09mOIeQixyqEGFnvNAk18XwN/GNxYJwXTyZ0ExUyqDiGZrThRb0Ma0RQcQ1jv/swxPE9Pubf+/Zv+2ouv2wv/+Mdv8ZgdQPnPN1ulxe//AWUTrBlydr6Cp1Oi0cf/TRnzxzGeUtiUnCKxaXdTM8s4JRnPdtEUAxGA5y3rK6cpbQZShTt1iy7l3fxRa99Nbt3LnD47CoAealBF/TQZKsb2HSAJAbRGiMKlYayX95ajA/pxJy1WBGKtBsCi5QOah/vghnbV/sNVMwybGPiWrEKjcag8EYwaIwJMnrhSspiRMu0GPrgiOQaNSuCA6vmfLrIVGcGY1K8NUgSdCHKEy1UIWXZ7NwcU9NTdKemSVotzq+cZtAf8Uh/g82186yvnOeygwc5e/Y0hw4d4v3v5aLtmYME4qTWOQF9nGxrY2hnrNBaFo3Mvnos21UbsMGS+xgaWnEItcbcjxFEDZzxuNfCncc2uaoY4lSBFY3H45RDCnj0VMY77zlP/9RZnDOs5yNSn5K2epNj2aY4qtiSporiku0i8D6eI2lkHqrEBcfc7HRQNFdiz0Qnk08MCTdcQ7blIkC/ffjjHmtlmh+7dDc5iMD5hNDiMlO86I5b2H9gJyKOLCtQorj6mqvwXuGsJ8v6nDp2hrf/1CdYPf108KyThESnfNd3fDNXX3ctpS8Dmy4a8Y57PnYfP/sz7yAvtlCiuP62a/j+7/92pnYsYbAB+IFUTbFw5U5mTcq5M2d4/KFHgrxvEjAJ7ekeSZKytbVF2uqQlwWDlkFMygiNzYpokVCUtqCMvh7aCEaETpLQMQkjgnjqxZJnGcaVeJujxaEl6GV0YvBYlAqA7Z0Oqc1EQlJVJSQlFKrHfKfLTgyveu4LWZjrgla0263AjXjP/PwipQ3Rn9bD5tYWs7NTrK6s85GPfYxDB/dy6Jqruf6Gazl96gwH9+295No+Y5CAVDI+QeFDI1OwiATAj0ojbyolh6+x8tjzL5Zvqm3/gXWrKWRkZStEg4eWV3QTgzYeox22mEbmljCSIPEZ3oVU3pJoOqZDOXsA/bp/SNnuUXjNqiShiKQI4jxiFGJ9qAKEj0BpIz1VIXVUdOWsHEuI9uvgD1ClIbdhkFWJskohpVQoSgnhfXSgRDoJdfKqc8GqFLTaNj7PuTKqUUIcgASSVgdM6cocRuUqrYIycUK7Dg6HdTo8Wgjly0XFirsh+69XlrTV4dDllyMS5WIJgCQKvIHTJzf46X/773j00U/jygKVaPCW3Bb84i/8Ct/87d/K0vIsRqcxm5Hihhuv5Uf+6ffR7c2wvrrOzl0LTC8toURResswZh9e7TvM6pBBF3rT83S7XdbPn6fMCrRWDLM+/eg0VLKBTloMbUiyysJ+0hz8YAPfmcFtDCgHQ6QscVrDVI/NJCXfHCIeTKroTk0xGA3IuqDSFFuGF7Z4OiKUZVgvKylOTExlFjgr7TzTfp1r9RZXzu3n37xsgauv208x6mO14ehDx1k6sMT73/tRrjx4OZcd3MPa2ibrW5uhYItAu9Nix/IuLrv8Sm68/jr27t3LzuVdnD75DI8dMKKYV91AASqFGYHNFdERBoLs1BSTpUoCWWUDBry10X4YulAiaBX+jIAWRUsZOhpmWwk7Z6e4Ys8sO2ZKVDGkGJScW1/j8FMbISjYe6z3Qd4WuG5vj3+670bKrKSf55ztb3Hs2HlObI44laesjRTeeqwG62xAAs7igTKGqor3MRVWfFVcNDsBMXEqCM6HAqMqVhyqlJiekLhCRU7GacedDz7JZTMdZme7dBLopgmpMRit0N4xM90GDdqoYPWwIROuTyC3tpa3A44Jcq8F0GEDQ9BsSxTLSgxaiPJsCP5SPgRDeTRWeUa793DHLZc2TVXtRcBXNQ80ndse/wT8wLf8tffUi4ETvRmuv/FKsq0VZhfnMUZRFEPmN3eFOIK4mVylYLYgRsd18hR5n/7mBoMkxbQUZm4GPdUNCkoESRJaM9Ok3R7OOhLl6HWmyJTHm4ToOE5ZlgxHI6Z6LcqywLuCUZ0FOCpExKPtiD2nHuaGqREf+MBp9l59K9fesI8Tx1c4eW6FsnA88ORjjIYbPPngCW59wTWcHQ64+0MfZP+hA8zNzXPkyDGWdiyze/9BFnftxRLqMBx56slLztUzAglcvnOGX/zu19CsN4eA0lGZ5XwN5FVct3dVtGCQa6t7KzY1iMvB1dLE/AA6IoX4BaMgNSEv/pmz65xf3+DEqVOUWcZCkqBLT16MOHfuHHPzMygRZjotlpZm6LU6pIkmy7YYnl8lz4e0FvdiSVg73yeZnqMoQpRd7qC0JYXzFM5F3wMoCktuLXkJeekYFQVFUTDKLRaw1pMXltIKRenIi4IszynsiBJhVAi5V+QW8sLyG5/cRNgMrqnSCKTyllaqSfB0tCLB0xJHV4REPKUrmeoYkk5K2jK00oTpbotuN2FuKmGmp+m0DZ1OiyRVmFShXUZbC75QOFEYoyl9KOFlixD1d88f/zkBbQTEg3e1vb3K7lOWlo/d/Ql+6id/mmG+HjIbeoe10URX5CQ6DRmKtMbFXJKm1WJqbomlnfuYnV8mSVvoJCHppKGMnFhKl7EoMEgc2daAc/0BhWqh59uI1tH8F0LDa4uSd6Q26J5cPgQ3AJOQqlhkxiQx519FGBSSGHwCzsdkpq0WPkkRUWilsdbjrCfPRihb0FYwdFVW7LFuqDBtHtl5M6c2T3DNQ3dz9GzGc2+6nMeOHubUyTMs7NrF+ZXjPHjP/excTPilX/wVjh0/RYHl4MHLWZhZ5O6TH+WyK66m1enRm55j5ex5lJR86lP3XhL+nhFIQPC0KcZURRTOQjkqgFgWTCSUWI4a7UoOdSEhIFW6J+99qERT6QudI2SYruRVi3UF3bRHt92j0IZMHFnhmGq3uHzfPnriOXf2HIVyHDtxkqceWuHm2y6n00nRypCYdmD1tCLPWqyUlt07Fuh12hTDEadOPc5zLn8Baasb/M21QrSOoekeoxSmpgBjLkYiyIiTWI8vVkeulYqObDQi6/eZnp4maU+FkGSfh4i6zJGXikER/Mi9deR5QV7kZGXOqFQU1pCXwnpWslmU9EvHILfkeUlWOMrCMxrmPD3MyM943NESX5QUJTjJcVIiGpYkodcu6XaFpO3YOaMx7Q5KK6YTx/TSNFp5WgaMKnHOEFB4ZYUQSutIkpQ9e3dz03XP5+z58wyLER6LcznZKMcg7Nm9kyLPKKwnKwoKV2BFcKSMBn3K0ZM4axnmJbl15IXH5RbKnNHqObwu6fW6SKcV0U+laxVK52NCmOiFq1QIv7UWZwusSdFKUCqJocoe6zxGAndaOhvyS3gfXJqLAqcU1ntMSOOMlvBU6xw6MbR6LdZyBWmUoyLX631J3kk43znAJ8ThXY/3feu/4blXLfKN3/wWdszPo9vXM9pa53/97p/y9MljeArmFhcxMZCudCVlkdPShpPHjrG8c5kzZ1YYDkeXhL9nBBI4d26Vd/zK7walnrNY6xHRGBNdPUMuaEwrje6vmsFwSKfTqVl9531kj4MNVykVFCeVjKoU2WiER1MWQpJolAlUbd/BZa64Yi+ddsrGxoD1wYCisLjSMdPpkXnP/Pw0WV4E0V07Wq0QUGKV5/DDh/noseOMhnko2lGO+MgDj9DuzgXzohiSRDHVSWgpQUyCSRJwIYGF1SH2OxQ9CSGoTgSUodudQpRHx0jnxLRBJ3Q664iFLAdlDNNTXYzRJKbaWMGs5r3DEcJrp3oJXiBtt9A+MESJMcG0maqQkcc6sCWSBAru8Vhrg4edF5xTOA+lK3AFIRlpGTa9jclStHhclZS/LhTjUMoHr8bIoemIqXcuznHtTx8iG+UMsoy8LMiLgtGgxPmCXXuWAteUleS5pSgs1pXk2YDchnh8Zz3ZqMBaR38w4MknTnLkqXWK0ZAsG1DmBVt5wdZoELz+84LCeVrz0wwSTS4e2zLoFJxKsVIg555GVs5iveC8jeJQQNVFYUPBT6/IbYF1Yb2sEUwuuF6CVxqtWpTKsr5+lv5GieCZ3r3E+bNddBryTZQ25r8oFOQWl2iGO2/ApLDn7D1cdfk+Zqe6zC/Mgta87BUv5QPv+wDtFaHwBmdD7YfShehRLTAabLBjxwKd7tj6c6n2jEAC8wszfMlXvgzvPanREHPVGa3q6rQiEZMqwWhDnmUkMQfB+AUnbeFl0MLE9NeelZVVlHhmpqdwzmPLkuGwYGN1yPmzK3jvyUY5hRvSbXfIs5LpmSmuvmaZNFWMMs/m1pDB4YxUG/AOay1JZ4b5vSmboxEb2YhRBlmpsIMARrkbkllP5hTWqVAl1tnAtnsQa9EV4ywecWXMXASJSF0IxDoLKngnFjrBJJ7EBjOKbrVItCbRMQuw0mg83paoal7LICol7RZp2sJ4SIBOkgbHHQHTbZFOdUF5jNYkyoQEFSqYutIkZLLRRoeQW6eQ1JMoVacdT5IkBODo4CSjVbDJKx/UnIkxeKOxKmT6EeWYnpthxntsnqF1SAYqiUG3TPAKVAl4VYt4lXNTeGaIrrNlCLgRHXIP2iwojL1zeBv0LpaS0juwUFhhZB3DLKfICh4+cZb/9eEHObe5To8hx4ucrKMYFQVeWpRRea0TDUYx3esyN9XFek9ZhjgBrQxJC563tIurd+9mabSLqVaXfFNz8vwmG/1ZkoWd3MwepGMwCqYSj8q3WO6lzHY1x86v8PjRw5x+4gwHe4qlPYu0u22GLmehN8vSjiXaaYtDB/fz5LHj6FhVKViiK1EL5uZnSVtJQLyfwSb1jEACIoI2LcCTpGmYVGtRJsEoXSfoSHTYEM6BSdv1/ZXnVIgqDADjvI8IJPp7O8f8/ALWBkcRlMe020y3HLOLc7EPAacwxnP48RM88fjjaK1pt1uYJAVG9HotFndMRWAIyOfAVcu4MoS0ltaitWFjY5Nup0O7lVISUphJVGxaKiW/x1vP1mAQkk5EpZu3ISfCsCixsc/SlmR5ySCzZBT8ygdO8MhWFiiTKZAsFv6svAyjWkpcNCpIyE8QXnSIYgvtHNqWiLfBW69CuEpICUpUjQQVSkRSRoWy112foYbnkO5uXAdSSy3uaKXpSopWYJQPiMk7VGkRZ8PcKdBKkyQGoxzGOcSXlOWIdmrotrqI0ehWG2N6aB25B5OijaHdbqG10Gp30UlCkWd0khSJeQBaaSukYDcmJEB1Dq09RgWxRCmCdyRBd9LWcNOBeQ4t3sTm1job6+t8stvnQx9Z59hggE0c+XCIKy3Ke7Qx5B42RRiOMhJjaIvGJ5or9u3ia151Cy+6+Qp0S0hMinfBsuMcKOMovAkiAEFc2Nrc4oEHH0ISw5mZjCtIuOfEGTodzfRsl63NLWbEoKZDMpG8zJmaavOcq6/g+MnzaDUu0S4CnVZKt9Wi0+rEffZMDyUGTMz+qmJRz7IEqkQOIthI8YXgm10ntpRGZt+KK6h8DqIN3FoLImilYwXBOgwkAmMw3vtK2+5dBUKEpJ0aYRyjHIpKGpyXyqMTROOkxBMo0lRvCusseemiH1m4N1gaYsCSFxyKtN0NyU2VjoriMP4eYYN4iGmiLNZ5Ul3yO3efB53hvY62hWharfwQpPIpiMhNwKsqw1KwwIh3YHMosoA401agtmi81hO0I6glqkQpniQf0jv1JJuXXY4tW0ipkOqZgLjKru8DZcKjrA2JXHAoF5N8UGK8DendXEkioNwITYYqt1BlhpJWWNuyRNsC40pSCbkbjVIhIW2WkyqFFkuahBTbWmlM2kFpgy8sKkkxS7vp9nowXCdJDNY6jDEh54E2ZEWGszmbm+sM+hucXt8gL0a0evN4ZRgNBmRZTkqIQ8jyktEox0qOJAlTaYsjj5zgQ/MfZP3UUWZmZknSDl6g027TMgZBoVNFq9tFmZAYZzjMyQuYne4yOzPH0uIOFpZmsYUl1YpHHjtMW88w+4oFUhx33LCXUyePssE8eTHpWiICtiy564N38oIX3YEtS6z9POQY/P+ziQgmSWoHFy3QbaV1MIqzNgYBjiPTat+gKmzWU/vDR2dXiPKsc2GhKx0MVQEJzzYf+wrRBH2EeB02caRwlfLRqIpihsFIxLRS6yWqvqpkIg6JFY2UD2NWOspq3jdSdUe/9aoAKVDE+HAhJKAY5lkwx+kqWaojFKajkTylqXAKY6xcfav5wduIKyUoVnXQAVB7Z/pYkYht5sn4Sh4KLyAGbzoBwUhAbFF9P7G+Icy2gVYk/qvciMsyrGO0Ioh1iMvwdojuzuJVWpf6rpR6RAcy8Ii1SMyw45zFZ0PMicP4xUPY4QDjc+wgww9T5rVi88EnccM+fpSTFBZjHSbRtHqadKqFmASruwwTRWlbtJxF9zrM9BaCctA6dKfL9Nws8+nOgLiHA9IkxZqMO++9lwc+9TGmVJeF5R3MzMxih33OnT1NT6Wc8ZpC95ie7jI/1WL3jnn27dsFHRhaRZII0wuz9FfWQRKWphIK36bVNYy2CvI8xFUcfvwxrr3huXTaHZwNGad1otEmZXk5VHO2aJBnPCcgUatfBpZUGtFoyDZAJS6CpZk152L59QGMMWN33IuIRU132corTmI+ucm+fe06LMgF5yvPuao5N5n2qjneibGGDsbP3/Y+FQchACqk1m4lmsQ0HaoisFdANEEXGHsx1u86ptg+Bl9JVQMhZmUeA3wD41bvV92rTZ2QJZyWMYauqucymSS1bnVF5uCo4+vySQR/heoaY7AYQrbSYGqr3Mqkisip3t1G13IESTswvYBMLeJa0xRax0hEzYrzyHUvC66++OgHAaqw4IvgsGQ9XnkWt9bQo1MMsyGS+4C0IrPJgiHXfUZ2K5R+F8G3CtpoTndnGWUb3LLY5dqbn8MVV11BMRryV3/xXh54+CgP7byRrfkdwXw7cPSeduxeW2HnRx9Bki4bPcWm3cO1yqKcY/HgAXbv2g8Co7zgoceOsLJ2il17ryQTR9rrMOqvcvnuaTpao02La2+8CW0MRmuuv+ZaHn7woQsBgGcIEqiAq05XzRhIqkKYASn4+vj2tr3YRui3GfbJBYikas2w2xohUFUjrnP0jBFGY0PXwBqDcJrPrJDA9kKh2+/d/n37Nc0xGWNopyYU2GC4/er4MQ41llo8kDq7ce11WFHjKPqMIxurPupBVLMznjMIIoM2kUtrIIAqm1LtvSlUIeB1NypGflYZj5Suf4MKwZLeIGLGtnRpjKXyEq25u2rfxLrBLnAElDH6zsWgJxVSyysLIaVbQHZKBJsaIIV2iBfwKazdt066tUlneZlR6clHQ7y1oeKSDsrqza0tfOmYSYNZ9PTps2xd+Xy6tCjIGeUlWZHTnurRPXQ1j/QXWB8ovPTwCgoNWyKcHoI51ofd09juAmq2zXL/DDjLdHuaqdQE34Mk5fxWyahsc/NzX8D6YJUzx44y0zXMTbVotULxFes9LaPAWfbu2X3R/QXPECTgPTExoh3vywh0VVaccQvx30qNw2HrDPwNShd8BsImbPq3WxcqCQeLQaQ40YMv1LCLA5CYdFJVAUQXIo+qz+0AXB1rBuhsL3Da5D4+J/99HxymFIKICzUGYoqrAAQyRp71HFbASU11EannN5BTG77XiEomAGvi+kYTBCcqCDABisYIIB7zbEectQzXwCdRcFOAtXUwTYWIam7EuwYyquakOX8ScvhHMQcveDFBtnSRS9BJmCcfFKVKqqShUdejZOzCLYLOi1A3oDeNShPSbot0uhuTwFqcCO3pHtJqRTdqRUd72juW2JIEp7uodI1u2qGbpLRNBzrz5F2PH60gtgxjVrGEncQU7Uqjcx+CnbKMvAiiUimaVARRBqt7rGQD/uzOj3BozzSPP/AACNx22+3c8cLbGeYWm5ec29zir95zF1cceIYjgbIoOHfqNPNLc3z4rk9xYP9u9l+2H8Tz6fsfZ/feJaZneyTKsHJuC+8Kpudm8DiKzJK0haSVhCKZOLwqUbTx5CS6S15uBWcPF6Ruo8CVmsKNSJOULM8QrUINOxsAP2QDt1gfcr4H81RUJDqHwuClBEmggYQqnYBjkku4mCgA4018Ka6g0kOE49FjUitaOlI8CcUrap1AuHJMdeM2n2yVychVnVIlZa30GRPAX0sYFVsR3GqD7cARMjVXAB/OV7UJApD7kECkIYYEij/mOoTxe9bDrgKlmifquZJxjUpP47r4TPGkeHLlwIaMS742N1dJOqkRV4ijcFS5KZwAKgVC4RRtDCgdE9WO56Aoq3vAW4sVhUFRqBaJ+Jj4NmQ8FvEoJ4gr8Gi8UXg/JlwCML2I6mf0+qfo5mdJ/JCk1SZRIYZDvEaJItl5kNbsHFmZsbq2ESIUc0ueh/iXJx59jMcfe4K11RXOnjpBOdzgUu0ZgQTyvOD40+fY2NzgA3/xAAcuf4xv+tZv5OFHnuIPfvtDXHfzfr74za+m0/b86f/8BOfOn+T1X/Yyzpw8x7vf+Xu86GXP56u+/o3gNR+5+wGyYcaH7ryH1ZURo2HJl7/1eTz+yAo7l+cYjEI224WFDtffch333XOYm2+9nNOn1vHes2dXl/7GgM2tPolqY4jVeON+M9pgyz4kJmS0abg0Gx1dZ6P8b8x4ercjgWa7lLhQ3afr7Lcx+7BInTJxzAtHoNuesix0Ej8bgVMVUCsVk5OqcR+15WUst4/7GN+HTsL9qnKBrYYTTLpVtr4aSpvvPoFsBG/duG+qW2IchZ9EZL4CRF/hJD85zoqTBBAXEKUO+hORmAi1EpkqpAwgul5LiNWTvEPpkDe6jIjLxwxCSkekoKK+QQKRQQsubSG2oCzgU/c9QI7mBbfdgqRJUG8rMx5DrW0t8O15khy8Pc3M2Udpz7XwtsApIfeOtghWgW+1yUdrGGBtWHLwsqtoYzl14jj33nM/s4u7uOb65/DEY0d46P5Pc3D/3CX32DMCCZRFzvljK2ytO17+yuew5+AORvmQ/tYWWXaWra1ecOG0cOTIw5w5dYZ2+2WUec611+zjec+7ik5HKHLHsL/JO//bb7K4wzAaJOw/sJ/FxSn+y1/+Jr2phBe86LmcP73BHz/8KHv2XcG+PUvc9cG7mJ5u8+gjT/GFX/QiPnr3fdx863OYXdhB4YtIjUuKouTB+57g4Qee5Opr9/Mlb345eeGoMiErpUDrYJH4HFj8Sykzm22cq9CPgUHqLR4lgWozB5k4nKiArwLeJo9fnY+52aksA5oquaqrWG3GXTQVmMFKmoCqKgBX4kV4RsikLI1HbqPq0vheAa/SjeCviGgiZ9GYtMnfzT6a8ybB12L7/RP6pBphjN+tHmr1Hs6hEqJrukRdhMTszXHocW28JxpAA5JytsB0FTfceB3X33Q9iQmA7xBE6RhA1pgjnyLkFPkqxWMf4sjWBlfM7keSNkLwMtbOoh1MF30WRpucP7fChk5Y2dikWDlN1yQU1vPWb/gGejOz3Py8G3ny0XuZ6aRcql2aBP1vbM45PvaJu9mxs8fdH76HJ584SWlL8pFF0+L40fNYWyLi2bXnEAcu28/HP3QfD376cVZWLfff/xR33flYSFjR6TIz3UGpkm43YXlPj/m5HVx34wG01lx91ZXkheOOl99OpzvH8vJu8rxESQYObrr5ep5z/ZW86KW3kmU5zhcEqHO1PuutX/MKrrv2EN4X0V25snlLXXTjYsrL7dr/7ZaAi7WLcg8TxDzqArwi8vXbEEJF2evdHln3ivJH4FcKJHprxrDlMXKpnhs3e13j0eCVHgNOo0BKLUJUwFz9NXMxRuo9mTZOje+pP6vv0ng/GvdsO1bNkcQScBW0et9QjPLZ+yC4oOt4TsX3k5p4x2QsseKSgjr1WXCAM2iT0Ol1ayuVSGMekG3Pdriyj3/iAfypYxSjUdBXxIImRps6uciCGzBn+5hiSJblrOdCkc4hJmX/ZQfodNvkI0u31+HAgQO0Ws/wHINzC/P8wL/8dtKky1U33IhgUNrx3OdfyfXXHwBlUSiGmefvf+OrsM5T2hG2LOlv2pAHIO0hquSam67gbT/2HZw7u8rGxpDRYMTs3Bxv+dov48nHz3Lo6qtpTc1yw41X8eADT/DeP7+br/77X0x/uMnM/Am2+pb5hUWi9I1C4XyJdyaUqRpl/MLP/gmves1NXHHt/gigBd7HkF+xKKNwpcJTUGUWVlLJfYHqOQ+iylBkpKLqMrZIwBiReG/j90ClUyWheo0IiMVPFP8Yy8UTMvgFeCYiCQV4M/YJALy/EKAqDqQiqt4JNlpuQnWkKgI0ApmqtpaKz3ZMcgEVJG0DSCVN5UZoOloamgrGGmE0X7kyV4aDTtx4Lprix1jJMQH41bCqXxKVpjomjq3Ww7lQ1zK8s6stI+ItggYf9Q9lgdEa5U2IDSDkplAumESbfhjiHIz6cPIxZOUwfrhBMrsMqiSUuxesy0M+DQWz0ykbWZvprRabmQZJKVyBmmqRTrURhHa7jUlazM4tkvfXtm+Aun1WJCAi7wDeAJzx3t8Qjy0A7wYuA54CvtJ7vyph9/4M8HpgAHyD9/6ez/aMsij5xIefYOXcWabmDN6nHLp8mlPHh5w8sUU2ypibm6YoB9xw0zUcuHIPn7rrMFOdFvMLSzzx2GHm5qbpr82we88yx8/mlLnm4P597Ny1gFZdur0Rt71wGedL9h1cxiQpN950Bc97/pVYb8kL4dbbno/RBTc/70rOnFlFKxP8/Al1B7VRXHvDZVx1zU5uuPFalHi6HUVRGpSGYiQo3SWVHK08WVbU0+xjrftARBOQElumgMPoWLFIZIKDuNByIDUclFUR00ofUN80sXpVRxdBAtX5MbUNvcnkvRPy+NiRySOISsJp1ZDJq+fBGMi36yYrQJzou8mm+wtww0S/NeA3gLvqQ1QsgCKN15dt79VAApNvO/Ec78o6aCgUKFUTlXx8vHYyi1OFnIK7e/DWi8lcosjg67UjcCZlAfkQWT0NK6fxS7vg0FXYA1dSlGdIrcYpX1sTPJ5Op0UraY1zSBnotBw7Z7ukOkQ8zi/N4b3FJEnIsXiJ9rlwAr8C/CzwzsaxtwHv8d7/pIi8Lf7+YeB1wFXx7wXAL8TPz9jyrORX//NvcuiKJaZmZsnzgk/cpem2W7z0Vc/jwQePcv3Ny/znf/9nvP6LX4iShA/+5f3s2dtiZr7L4SdO8UWvvYP3/vldPO8Fl/Fbv/4B9u3dzfL+Frv3Xs0VV+/l5//D72F0waHLl/nTP34vX/v1b2SwtcbpM+v0pha48/0f5/obruLAoZ1sbm5y5PCQm2/fEUpx+8qkGDJEf/zux2gl06ycP0+eFdxy8yGefOIMN9xykKceX2FpaYHNrQ3mF6cpSk+3V+KsoEyB1q1gv/YWoxSFC3K3dxeaCrf7NdS6L6UorcPXCUhiawJ7TR0bLHrdmko7woWqquS7DUCalLIpyiiJ4dE6aNJrittABBVXUI8nXFNdHtJ0VyebnzCWVH1ECgG4xibHsVKxqXus3q56nghj0WIs8IdxbMdDjSaVstI5lOhx7UjGhVXGYlqlD6AuKeZRIfCrsgzF+zwS1h9VF2qVfATDDcg3AAv7rkYvH6RYWKI8uQ4meJKORhm9tI0SIU0MvZZi52Kb1XXFpplmsWO4es8CvbQV/VbKet9kWXbhS8b2WZGA9/4DInLZtsNfArwifv9V4H0EJPAlwDt92M13i8iciOz23l863zFhIZb3LNHt7eXG5+7hxLHT/Nkf3ccVV86CL5ifn2Vmbgmlp1mc38HaxiZYxczUHBurZ3nysWP41ypW17e48/2fRqkUpSyL83sZ9Yesn93ii99wBx/+4AOsr55ldmaWPN/ive+9i2ykeMEdN7M4N82bvuwF/NufeCe9qQ5v/qo3cvrMavQ1CMvnrOfBB56knbb5nXf/CUpK7r7rPr7+G1/PH//hh7nt9ut59NOneckrruG3f+fP+Ppv+gqeOnwCjeKxR06wc3kZj+X4ydO8+ctfwG//xnt5zetfx6tefzN56diuR2iaD5umQkSFvApNGToqo2qzgTA+VsnT22XhBqLwNS9csfYNu3wllmyj5koZrGhC/EZ9Ymzai9dtf6ivrqvO18DZVPJto/qqcbc07q/6qK6r56miui4WC20iOBWHVWGPi7JJiC2piowGLmycp7ICLgHGleXVmDuI99T4V8B7h/iQ50Ccxpc5FAU+HyI+uIEn7R5uaTfSnUfrlFQUBYDXJN00PtuhcMx3WnTNDMdzy6Zt4d0IW+Qx+aqQ6iSYDkt7gZ9Ks/1NdQLLDcA+BSzH73uBpxvXHYvHLkACIvItwLcA7Ni5i7d+4xczGmqWd/WYnVtgaWkPvV6L3swMBzqLKN3m5tuuIitL8NBuw9ZmxsKOfSzt3KA/2OLAgX1Yt0WazpANhpw6fZ6njxxn7dwhzp07T+lyuuk8r//ia3nu8w7yl3/xYa64eg+lhdX1nJNntuj1pkmSEfsP7ODUqXVwwT9AiOnCvGfP3h0cO3qSsgw54NudFp3uLEmrxxVXXY5qhTwG2JJssMWpoxt84Re9iLWNTe764KfYv3c/Tzz2FPd+8uO85JW3IzGcFhfLYF+UF25wkOJwhYuAIZEfuBg5ayoEYYL0STzvJNrwq2sq5BN/1LqFcHr+sfcyIzmqyBFX4DYejdWjmpzF36RdSgTwDaSw/RmT3M1kXw7Jhvj+44wVpDJ5+QWiU3NuBClGkGR0yxLfL+k6GesmvEevjdBbZny/92gFHQfT/btg97Uh7iXqejQe60ukLPBawBZgi6APEEHSNkpa+LSLT1t4JViVYLxGVAg+C5m2oChC8pT1rZLcaxCP1UJmiSKbi3k5HaNsRPn5DCDy3nsR+Wuvvvf+l4BfArj2+uv9wUO7USokrljaOU/7hZZsAGlHsDbU1/uKt9xKWXjStMd3/fBX4klBGV7zuhciJuG5t2vEGXK7TjFyGANZVtLuGAaDEVobPJp2NySF/qF/9o9JUo8rheffvsLy7mm+9we/kbIckqQ9tPE4F3L9ISFN2cEDu3jfn3+aF95xI2urOb3eDnq9Gb7r+7+KdrfNf/p3f8j1t17P1c+5kbWNIe32NMN8wOYgY3ahzb4DO3ni0ae47Y6Xc/V1N2ASE5SDcYHrlGo1V91gwSWwkt57hkWkSjHV1QTLXyu/qu9NQKoWgMY1RDmjonLuwj5i3zNS8A3f/Y/R2RDxBa4zExHQJNdwsfYZ0UR0mLkQxhsiy8S7NMbffKlaD2GRwRa+N4VIJepsv6cSX7b1U1kDRpvw9KeZ6bVwSYKNLLx3IVjMtEKIefVIwZMooXCe//jL72KLmHg16ltUdIoy1gc9SuQ0vFKg2iijcaMt3NEjpN0z6HYLbTfwSRl0uIVGklhdSmlOrW3w5MmTrJplfLfHxiDj+DrskhbKJMGj01pG2ZCizC+5Ln9TJHC6YvNFZDdwJh4/DuxvXLcvHvuMTWvNXe89zH2fuh/R59i35yoOXraDez7xKF/zD76Id/zCezlwqMuxpzaYnnXcfMt1fOKjj3Hwit1kw4zNlQHX3HKA2158I5/6+GM89ODj3HTjNTx95CjawPNuv4YnHl5lZj6EKBd5QZ4PufraK5iZmwdfUlrF1tYqO3YsoXWPRx8+gUmok3t4HyIR9x9Y4l/+1Fdy/swW0zM9er2Xcu7cJq1OD0Tx9p//NopixIvuuJ3SZRidMBj0Ee0xus0L73geW/0NlnZOceCKg3Q7neABZjSjfIRzqmZnq9YMUBIRNMJm6REaBTQuQALNVlHq+B0QCW6qoqviF/5CmGq2i9jh8XKhTN0UISS6BFfixGfbCH/bFhFbg6bXcvilb9gmdjTPRgcgpSRUJPZjYabCoX6ir20YLP4MCVsCFyHOQ2ljRKWPTlcaTII3CXZuGZSQlx4phrhcgQVnS8QE067DM8xLNgYj8tLjlEKVFjsc4ObbGITg2uBRxtButWmlLS7V/qZI4A+Arwd+Mn7+fuP4d4rIuwgKwfXPpg+o5uuaGxf4jV//CNausDif8vu/cx9XXrOHxx96jJtuXOZ1b7ydH/mBX+Xw4Uf50i9+Cf/t5x9ldfUEWT/h/OoxbDLktjtu4OyJFbKtIX/we7/LcMPjGLGw0OKxh05y6vQZZmZ65JnlNW+4kTTtIJIwGvZ5/19+nI9/5CH271/k1luv48//4n284jU3UycMEKIyLuHpIyf51//kXdx620G6rSXu+dQn+c7vewsHLl/m6OFzvP8vPsHC0gKvfv3N9Puen/137+FLv/w2/vzP3suXvvkO7r/vCWZmW3ibMjVtmZpe4/CTT/PSV74gRgVH01NtIpzM74/zbFlCIk4fKidNTObEp78AKUhFAX1M2e4cvuHdSM19hKsv5vNQgcMYJKT5xMZVn3XpL1AJXLJ9Bi5j3FsA+loD4OUCi+P26yfGsk2BWr+hH3Mpl9IiVAjPoyJnUGU9cmN/Eh2rPYnUzlkoHRCBMmA6eFWiTRs6XZw9jkdRuhKRYJ4snWVzOKAoHa50kHgoC9pimW230VqCeVSi16MIq+dXLjlrn4uJ8DcISsAlETkG/AsC8P+miHwT/H/U/XecZMd13o1/q+qGTtOTZzbnCGCRA0lkEAQzwSRSlKickyVZsiVZlkzRluxX0UpU9kuRFkWKosScSTGBRAaIvAA2p9nJMx1vqKrfH1W3u2d3Qep97def/d0PsDPTffv2DVWnznnOc57DMeAtfvdP4tKDz+NShD/w7Y5f3NYt27Zw6eVXMFK3jIyNou0yp0+scOkBwyOPPksnyehmXcYnN/H4kycZGovYf+kOHrjvFPWxOoFyveFXW03azQWUjEnSBdJUE8cxey/bzNfueZBbbrmWM8sNPvXRr3H7K0rs2r+dxkoHZWt8z/feySMPPcsH3/8Jkrzpr9+Lf1qLlCGtRodPfuabvOglO4mDhHvvvZ83vPllnDkzw5bt0+RJwtmZozgdAsuh559D5yf5xldzWsuar335a5w6NYuixs6dG/nkh59jbDKgUqty60tv8OWuoleVOJibBhferGRtUmNcPr9Ip/VG5Qu5vf1ZVuQGkLj+e8aX5lrhEPsLjnAxeDSK4qAee9CfQ8+JGZxMg+nD8558/981X3DBPwbX+LUHWQtLWO77+Ae57yN/x+LZ0/y7v/sCleExt6u1fPovf5vnHryHMC7x+p9/J+t37QcLj3z+o3z1A38NwM3f+SNc9ZKbydOMP/u9P2ZpaYkXv/QuXnT7nQjgn/72f3Djy17Btj17z8kW9K/ImAztW8JbaxHKdYQWVrsGvCrwRC1nDKzrHgNSYEyKDSS5dMVKgXVhn7aGPMudbJzvdmVsjjA5qNjpHgZO3xChsCZB5zml0gszBv812YG3vcBbL73Avhb4qW93zHM3YyCM4N/8wtuxOkFrye0vu5WAMqqkGJ1cz/hYjZ179jA8Bt1Oxhu+4y60SbjrNVtYtz6i27JYEzK9cZTGyhAve83tnD1zlk47IQgiNm4e4/aXvZjrbjjA17/8LKvLgk9/9GFeE9XZvn2S1CzziY8eZ+feKq+++3a+es+XESJ0aLMzAxiTMz+3zMRUxAMPPUdoElQkeO6Z42zaMcLxY7PkucNjnn/uBAvzK6hA0mkLVpdbRGFAoARWC44cOcKVV24lDCXGpLRbgigM6WRdhDAY08cG+oVIUKvVqIROO9F48p0wfvIWFXA+PFhTiHRuGq6g6mK9/r3orV5r04fn7l8g40XzlMHvGNjOySy8kCEwOuvpSLr9Bn654Ao+iGusdcZ7b1vB5v1XsOfA1bz7P//bNZ95/sGvsXj6OD/zVx/l1MHH+cSf/iY//Af/k05jhS///V/wo3/494DkL3/2rew7cAXHn36SHXv2cNvdb+JP3vmfeNEdL+X0saMYa9i0fUf/jM4NwYTDCIIg6GtjWCeLI6xxZCLZp2qjCpYmgMJKCwQu5PI9KgwGhZN9CwR0uh1QPvkoJTookQtHSS6Fvr2asWRpRrlUvtDNBC4SxuDyYov5mQaPPPQcL77xMpQSzM+12LWvypnTK+y/fCuYEus2u6aOCMHu/RIpA4zVWKNdnh3Li2+6nBffeCVSWrbu2sKgAMjr33oXQVBieuMUSWeFI8832bBxmFKlzJu/6w7yTBCXIqQV7Lt8C08/fQIoRERcWml0os7V125j/1XbGa5V0RhWF5q0WjA/02Lbzjqvet1tnDnVRMoSu/ds5o5X3MCu3Rt54rHnOXDldjZsOYu+ycFpL7l9P9VqiZmZOdIsQ8nIYxAOzXUtw4pr0GR5h1y5Vt4u/41nnnkSi4Cizc+aKTII9hXOgyk+ICjERMSa0AL/3b2jDGzO6V48e5r/+Ws/zoZdl3Dm0NNMbtnJG37hNwnLFU4/9ySf/cvfIe22qdRHufvn38nQ2CTv/uUfYt2OvRx/8hEuu/UVDE+u48t//xdIqYgrVX7gt/9v8jThE3/6m5x+7imkUrz8h3+R7VdcxyOf+wgH7/syWdJlaeYE+158By/7gZ/rnau3ZKzfuQ9xgcq5Z+77Mpff8VqEEGzadzndVoPG4hxHH3uQHVe9iPLQMALBjqtezHOP3EclUGRpivEiptbC5z78IV7/PT903sS31tUN9DAIjyFYPM9E+GcgpPcCggFadEGt9u9b48FEXFGTcPoAkXSVslGo0BhUFCFsACrEqhCNRShFGISuI7eFbpKSZRe5slCatfjgez/PwvIJypFlaWGJz33mEX7xV9/O7/5ff82v/eefYXQyQJgA1xK76xYW49uMyQhshtE54FRujTUEUYDWIFWGyRVh5KSpK+US1XKV9bdAkjq9gmp5ElvtOJVcKRgZH8eaUyA0xuqeTFmlFhKGE+zdW3Ydgqxi85achfklhmojhJFkeHiISy+P0cZ99vZXXIPOJTv3baPbzdi6cxu5zRAiAm0JQ4MSEa1u6vUTnMs7qEtgvNhGGEZ004xUg/XgUm+V76H4F1hCewPWGw4cSKUQ5D1DIHr7nXuEQn+x8DDUwEcWTh7l7p97J5svvZKP/P6v88AnPsCLXv92PvVn/5Xv/PU/ojo8yhNf/jRffM8fc/fPvRMAnWV+1bX82U++mbe/813UJ6bpNtzEvf/jHwAh+Ml3/SNzJ47w3l/7CX7mrz4CAmaOHOTH/uj9BFHEn/zI67n+tW9jeGKaF0QjeqQiS2NhluHJdb3rq09M01iYda9PrOt9ZHhimsbiHAeuuZKnH32QP/qN/8gtr3oNzzz6MBu2bGN4bKz3LYP3yljjVvfeV4v+IylCO6Cgk/eMgCx+954Bxf6FtJtAqsChHSYnjkKsNoRhCDaAIECZiDCMESrwna8chpSk+Tm40drtojAC1khmzh7l6mt28sD9j/PMM8+zPL/Kx/7p88ycWqXZaDE+NYQhR+IaN2IFtpADta5fX6CUS+kZz+f24iOuuMZ341ECaQWZTsnaTuMfIRAyRckYr5CBkgHarCXwiKIgRTYJVAkrM4SRGEImpyadkrE1CBGSG7eSWysxuTuXdjtDSUmWWXKjsDZ1YI8OcMVI2qd/+jUETqHIlRG7SgZJmmpXgVawCHt8e9ubqGu3Pk7QDxFcPb5WArrFJO+ThoqB51YlBo7rwgUJnhkH9cl1bLn0SiyCy+94Nfd99H3suvYmZo8+z3t/9Uf9M9bURid6p3LprS/v/b75kiv5yB/8OpfcdBf7b3wpWMuJpx7h+te+DQtMbN7OyNR6Fk4eByvYfsUNlKp1ACa37GBl9szABB4IX/6fIJTn7GoBjEGpgO//qZ+hYwQ61/z17/wW3/vTP8/H//69rC4tcf1td3Dg2uvd5wQIK/v04CLlCi4roDxr0BqXlSmYjELgpVj7xlp4JS2remclrALpCpMqcYkgkARhGWEco9HmmqzbJZKOyalCJzybZV3fqPbC20VhBKRS3PayF/PYI89x421Xse+SPTz60CFue+lVzJxdolQqI1BIGWJN7j1br+qDy78a4fvoFU0xcTp/1mjvGhusVS50EE6JVlsnDCFwZBvZc+T6qsVGO2+j2EQhyCFAoLCi6M9XWH3lz6soOPEKvcLzz6UrHpIFtdTH5UK4KV4kuM6tIwC8YKozAk5JCNd4VEGPEPOC20Dsbgs033o1HfqT3RsXBgbomo8XuMDA76K31BW7OkR8autOfugP/m7gHPpoe1Qq9+L31/zMr3Hy6cd47oGv8Jc/+zbvIZx32r0tCPsVcUK6XHhvPw8MuuLoPtm3OPeh8SlW5mZ6n1+dP8vQ+BRDE1Mce/whCixidf4s24qY31/nN774Oa668WaOHXmeUrnM3d/z/fz5b72zZwTWZBIGYijjyUVFdscycH99jUMPUB24YOP1C0SxoAnVI3EVrfkCFSFM0SXakOuc3LjCJ+uPkaZdAvvCtQMXRSnx1NQYL33FjfzcL38PL7rpSl752pv55Xd8F1dcezm/9ps/w/pNEy5WtTmItZqBxdaT8/K5aSlchxvXAsqX+voJ7x7E2m1Qi3BN+a7ggt/3r92cKIgaEE7tH39NK2/WiosMaia6fRVKBYClneje51yn30FXXgwc8dyTgUKKrb+y63Mm2sCx+k7Deccx1joSFZaV2TMcf/pRAB7/0ifZfOlVTGzaQWtliRP+dZ1nzB57vn8w6yeAhcXTJ9i07wC3v/0nqQ6Psjo3w5ZLr+axL30SECycPMbK7Azjm7Z9qzvdM+DFKSsxwBDwv+y94VYe++LHsdZy4pnHiKs1hsYn2XXNSzj08NfpNFfpNFY5/PDX2XXg6t4i0263eOrRh7nqJTeTpqlfvQVZmq45h97mnTJjPMNQij5aYOmXbysHDopCY3Fwkz7YKwRr8Z2dvEcqhET5Zj1YyPMMPRCyFUfLsuz/E9rw/9bN9aVLELYEQiN8wJlrQVTy41U4LXUhVW+ySK/NVmw9xd/BwpXivYEJ5b6zbwh6smADf/f+WgOOD6zO5+xfHLP4e3ASD5YHM/Be//otBZA3eE79moHiWBLIaXQzL1xhURYCm5MJr8pbnPN5TDix1jZYDxYaV/bSrxu4QDxh+4dwP3z5sHHPYXzTNh742Pv56B/8OpNbdnLdq9+KCkPe8qu/z6f+/L+StJoYrbnh9W9nauuu/kH9/frc3/w+i6ePY61l+5XXM71jLxObd/CJP/0v/NlPvAmpFHf//Dt9A5hvtzkjeN/H3s/X/um9NJaX+LOf/g52X3sTd//sf2LPdTfz/INf449++LWEcYm7f/43ACgPjXDL236Mv/pZlwy75bt/nHK1hlheRUrJ5z/8Ie547euRUrLnsgPc+8XP8Tu//G+56WWvWHOL3O9+dbcQeL0FM8CIFEK6NN6ApsAa7YYiUyOV90Zz13PCalfMZF0VqaWQWJAURjCSasBpE94TSLHhxY4JWMvqUpdy2ZKmGcZI4rImUIokySiXnIsdxzGdbkYYCay2CGm9SK2L7a3xve4QWOsqtVzTHdeU1GjXKstiMNr1bDP++6VQvdZWQG/ltoV7TDERYXC1LTyLF5IOK44FhadtfSy/1ogMsgTPnfzue9wAyo1A6oSaSghlzo4wYX2oOZhUOaFrGOvqzb/95oyKFba3Cq1RMRo0BBe6LG8Uf/DJL/H5pMVjt1wLt1zr3nv0E/393vTatZ+790O8442vhqWDcP9BAN5x181r93ngwwD8lxuvghuvcq8lJ+H+kzAMXLMP7v8n99lX3QHdE3B/v2RlOa7wx6/9Tl780leia+Ne28D0VshX/9R/6F2Du7Nuhb76rjdw9cvf4C5YWJg95rE7yeu++/sAR9uOwpgf+YVfISqVkEWTlgFvsRgjQuDSn9aBymEgemKx1msU9HCX88IuQAqfPRS9hUkifN/BwqezFJhCKQyIlCJAOcAQgc5z8jzHqItcVETnKb/7zveyY9cGGqs57e4iO7bvYnRiiMcefoYDV2ynXq+zY+8Yzz+3yC23XsnHP/ovTEyUOXmyzcteeT1f+dIz3Hzrbh74xiHi2HDgiu2cncnYsKVOEOYcObTA3t3rOT0zS1iOKYUVgsBSrtfQWiOFaxkeBDEI0wfm6FtoV5FWrJQ+XpOWC1HSztcC8PXk7oVzPIFi4vWxgEEPQji/EiklqRGM2Ta31E5yHMn3TczS7NSZEk0+2CmTGvdI11Jl156f9SuNW318W7YihVi4Xfb8zw1+XvisRD3tMlcZ5h0vfnPvfQnsibtMhQnPdWPKVqKFYTYP2V5us5gGVERGPbA8147pEDIZpHS0oKoMS7lT7W3mATm+gu/baQwUKy2Wd9z/YTxvz00TUeA6g8a7Hz64iaSx1vWXFCLwvSIzhBAEPnbqPU9r1z7yNXwFO2BcIDMgrPat3Jx1Dor9xLm4y7n3v18aJv33CGvIcpcFAwUmdcYCSSlSRLHqLTZOBwHyNIOLXVmo0+1w062XMFyfZnbxJAuz8ORjhwnCFjffciVPPfkUUlk+9cmz7Nm/j9tuO8AXPvNVVNjm9DHYs3uKj/7Tp9m8NeLP/+TvCaMGv/QrP83/fM/H+a63v4InHzvOwWef5bbbL+MLn/06173oKh5/9CQLi2d4y3ffzRVX7aU+VveNODyAIvoPvmDuuQl6br3e+WEBMLC/vcD7fZdbDGAcxSAd9EaM19xzw1sTx4pZEbO/1CLIJHUR8O5WlctDQagTEuUKkvpfIfo/B09ZiJ7arpCFDNdAOHCh+T/o6fhag20jI/zUn3+kr+JjLdLC9jgjsDlXlLpYFaANBM2YXXHCWWnAaLaVcg53Y0JruLa2wum2YrgEy10LMuSQrdLqsRnPtUsDk3+NBzZoFNZGMoNIkDuW6zqwWWVsrSTMJgFDgWEms9SDgHaYcBLQynlGBU+gOGLP7Hi8CfAVfMIt8tKFmcKHqUY7+rARcK7Q6bl4gPDXYK2L6bXWSOUWBNdNS3ocIO/px6rAKRjJQv3YA99pmgIvTBa6KIBBpQIe++ZBjp84zvjEFFPTm0DElKtlmq02QVSiNjzE6ZkZVCDRBsqVKs1WCzAcOzLD6AgcP3yMxfmTzJw5zOyZOcIwY+b0aZ765jFG6nVOn5xl7uwKQ9Uqp04ssji3xOljM9z/9acIAun027zlDXzRh2vtXYw12W/4M4ADfKtQYBDcu/B2/vuDhkNK1xnIyVMVK7ZmpiW4rNSlY2NSKxgOEwQB0irPfx+M7UVfn0/2B54w1qeOBleiFzjPCw3SNboBg++6/g4tLIkJmOmEnEpKWDLOdAUHGzHH2wFPLQuS1BKalAjNZJjTSQ0dQhIdMiJyitimL4cu1n7ZANg6+HrPBNjeAxs40f7/EokSGafaMB61QVrKQjMmWuRp6u69Vg59pxAOOd8pKbwr9622d3xjC2DP/a6NJbcD97x33wevb+AtWXReLmTo/OLk5EvAWpQXQC1Sk0JKp1DtU5Tn9+5Yu10UnkC5XOKmW17Evks3oY0hSwWT60YYnwx5+rHT3HLnLuIw5sAVl+Ml3LjzFS8mKl3PiUMtqvUSN7z4KqJY8obvuJNWa4Uka7N79z7m55rccOM+Pvv5LyKCzYSliLmFBqVqwPDoerQ21EeHem6cLWSpBBSFHx6jdV7AQNOTwlW/UNLgQupAxb+D+5+beSgwTSEGQgprETLoiWROSsmKKjERr5CLCi+KmigRokXsGm7YFLwbfa4t6J0fAosGazxIfwED8IIXV5yvv8YBV703Ga0kJeJYGlIXOQbDkokJVhapNefpJBln8oSSDAnjgGe7AdMjNayQtKxgVHgvqafNKM+beINb0eBE9Px023utuK9rPBzhnqrw+Oi6CixkIYm1VEXAiSwko+hjIQYjCc41RD2jPQD+4W2Cks4TMNYQ9MDewmNg4KDn338h1UAXrL4nIgQOA7PWaU164N9Y6xcM6Rv2uvGi89xjZBfeLgojkGWavZdsZnJ6vdPsV13CqMrUujLTk5up1gOE1XTb4wQl1yT09rtegpQ53Fq0KzfEpZg804SBi4u67YwgBBVovuP7bgMBeaZRKuJN39UkzxIgBBliNQhCJ/ogCga99VqW/Ye3FmBfC+RdaDU/FwCEwnDYNfv2jm/tmvfAAZvW5iihiOOAMwQ8m4+wPg95ZqHOzqE5vpxMkgqL1d0+Y20wJOifhDMq+I473jvoEaH6FmjN/v5Ee68VEwhwrq9PMFgfQqXWcjqLWTUhU6FBCsPC6lkWlubRxglwGmuxSRehY1ZsmVZ3keroGCMRBAI0ZQQCI4vQpXdD1m4Dk32NU+OsAmtncGEVnMenbYCQAUeaAW1hGQ8zyirnRKpIresgHAgXKrkOy+d//bkRipBFSOXEYvrUdXo4hbuv/cYlawyLKBAXZ3y6SRetNWmaIALXYqwwau0kw0Y+TJGOGSGV1zDwx8my/z8wAiePz/Abv/onvPN3fpaxsXGiOOZ3f/PD/PpvvYy/+Ytv8KM/fT2PPHiaI4ePU62WeMNbbiMMFda6i5QqQCon7GmxaIfGICOBxmLy2OkCoJEywuSGqFQlKtVQXotNa4uUKUJpXLch0esdUKzGBT7gNvFtvOe+J1Ds/+22wdChKB92x/CvW8i7Kc8nZZ7vjvH04ijWSr68tIEAjZGeibb2qAOuJn3X0zi03ArXPKTv2r/ARfnrWLUh7/7D30Z0m6AizLPf4N0PHumtfgWJ6TNhRsMImiZgXCSUdIfZM2cIbA5GYKRr4FFcZxiEru9kpUq1VgdpOJOWSazqMe/W3sdBd2rtL/bpr/Kee55CdZtkleEB5eOBzw84SZMypW1CUmBT0KEawmxXkS0cp9U1DI/VWe46PoA1pqcnFkahx1MKz9u5FVqENOpbXM9o0ye1FbeokDCnyBBcCBsosgHCUcWLsVC8nec5YLEDhM4sy7AIr1/gjttutTEmp935X9AY/D+xWasplxQKXH8BAtJ0FYmg210mFCEnj8/zutfdytzsrHeFNNa6ooxioilVtPi2vsuVS/shjScRBc5wWIGUoK1BW4sUIeD6GggT9VaRQUAQHC+8MAJFGmgQyPvWZKJ/nTFwXAeAPrfAGMd+FNb1NJyOMm6vz/KYmeR0XkKQYmzQ66MXWMjlwCjHD7bCGAh6EoKFZl/f033h8xNCsLz/LpYllOaOkFRHecfn3s9vvOXV7tyVwOSO3nrKShAdtKxw3FjCww8yunoUG1iGghIiqFEtVxkernL89HGMUqiwSj4yzcENt6IDSSJc6zirrKfj9s6kf08dFN5/2Vre8en/yX996c8RzR2ntfESbFx1q26vz6C7TiEMgRYsB4auDcisYVVoYgGLJkfc91FiZhnfuJ2l2SWsteg0A+3CwtrwECqK0Nb2jIDVGd2gxvLOlzIx/zxCCL8yF+68M369E+6tJBcOxyx4pqlz8/FZo+J3wLFijaTdapNrXHfpoojML175C0MCFwcwWK3VuOKKK3n0oac59PwpsswShg3+6l3/yMLCKf7ot9+Hydv8yR98hKOHzyD8xDcYr4qDTwhJ3wBCooRACKdH6FjZEmEdo1ApF2MqESJFMeki5zKJvPdgCj23njE4bwKfE8MNAHxrQgNje7H+hdz9C322LyLi4kqpLCoSiBA2lcv81PhzvLx6gtAacqFIrcIIV02oC+ahEOf8L3sDzuI8AIlLO/WD+vMuq38/em8LMANZEu+NW/+axaBliqGM1IaKbBJ350hps3fLTrZu2c5dd93OTTddx8T4KJVyBZNaQp0RrS4R56tgjUMBrEQQ0qNu9ya97X/5OffR33SMwNfVezr24LV570LLgFUjSI0hsAHtwLAqFFpDF0kgrWtAanWBgLimtjDQRbsf6lGMEh9iSf8TUTBEbQ/sFXLQMBeGoH8tRU5CFt6GkF6iDHJjEML6IjUv8KINQkiCsAC1i8+eA0Ses10UnsD6DeO8/fvvZHYuI6pIwgD+w3/6ERAJ1uQ0V7pMTo1z7MQMO3ZtRyBQMiIs5SSdnDAokaMxue8lZyMsiRs8uNXOufYGJQKs9fGodfRPYwVKBEgiFy8L91CNMb52wPasuJSFVJRDX6UHeC7EC4AilPATzyPM52YKzqcrn+PyWkcwKX5mpsHfzW7jATGBkSGGHKGMy2vY0A+sc1B/OfC7tYDGCIXKDQL/2QGE+5wTdP/3vBSB1BrEQIMRa337b2/IiLDCIGzKxvknyRonWEos3aSFDGK63ZSzZ07TbrUoKhpbScpoOea67Cjt8jpmo3EOZXUyY/pqyGLgnIqTLZSUhei9Zj0LUkjjwkABek0NiCPuGOMzEEIyLDU3lbpsKM3z4GzMkujQoci2KHd4aV16Httz2VUx4azACIW01rVDtxZrMvKijsRKV5EqFFYKbM7auVl4bQXw4C/H5NqFvQXoZ8AoiZvegYvslHJVoYGnmft7IZSnN/+vSI7/n9hWVzr8ws+8m+FJya/+xvdx4tgsH/7gA1xx9WYeefAwb/+BW1hcmufwcytcciDH2pBGY5mvfOQJXnzLXk4dOkq5ati8cwegEbKDsIo0sagwJwgissQSxQqE6woUSoHWCqVCLBmWBCkqaKPRue9fiaHb6fTiOrAYDUk3IahJsq4giDVKOnbWubyA/qpfTLzzN2MMWl9YEnpNxR99L6GdaO4cP0vesZxYqZGFYAtugNud/h8XKiwSPeUZg0KIF/AVXyAz4AyKR83Pe9N/p1c9KjdPEBw7SGP2DLnRPPHss5QrdZ4/fpRASpQSCCVQEtCGioqpiw7bpyLSrkTlhgxesB/JWqyjb8SKehG88ez1/fP79suvpQMdpSBWGXWVUTGCzaU2ad6moyAX2nubfiHwIYXw3ymEINd5D/AtMIDe47P+XIxxQqWB6o+LF9iczevLnBeLjwXwbFapFFZrChUDhEV5ULiXbdIaZSEx2Qt+10VhBIQQbNpW4aUvv55yucYD9z7CsUMnydKznDmzwhc+HfPk48d4+umTBHGLO++6ga/+y5O87z3/xNj4a7n/y8doJR1++t9tpFIpYXTI/V9/jA9+4GOsmx7nsst38MEP/As/9lPfy4tu3ke5onjPX3+KI4cOMz01weLCEtXaFD/8k68gy+HTH7uHjRuHvCtWjC+JkILjR0/x4L1Pcs11u/niZx/jTd95M9Mbxr8lQFhQky3nZwVeiGewBmcQRbjrXjubS+5dHmV3PfOiIxH9ZhyDR7lAtOcnQy9FJSTnDYM1E8rPPmFdEYz1K2juezS6D/hB2C9BNiJHdNpsap2lrBu0hEYISXWo4vgYwlG+g7CvpjNShZGqIFlaJOlanmtUyHTq0p7nXkux6Pc8AP93YSx7/QYsAlVQ7vrXN3A/CzuZaklqMy4fTnliNiMPJDJTBNagReZCE5+mtQMTXhcenn9WRYm11oY8zbDaYHLHGsSCDp0ugF1jKQauSxSBp8el/HeKHp7h2afC9X6QSjkxESl6BKUiDEiTBG0s3e4LewIXBSaQdHMq5Sk2bJlE24wdOzZTicuUIkWn0QYTEMcxUVCh1ezS7Sas21Bn/foJnnn8NJdfeQnXvuhalArIM4s2YK3h+WefY2bmOJdcsofJqXGuuWET1jqQ8OzpVb74hc+TdJqYLKTZnHUVWVbw3MEZTp6Yo7G66hrl2qJTLkxOD3PvVw+yNL9Mt91iaW5xzcS+ECmocFx7jn4vJdgXDVmbf+wbBlfDgItrhVMaWh/BncOznMpjMgyCc9M/Yu3/g+ck/PGtBetXuHPpq8WOhcrNYMxa/KvznnfiTrm/6rpFyXkb7azDmROn6CYJUblMqVSiFIbUyhHDQxXqwzWq1QqVcpVtY8NsKCna3ZxDTcuqzkCofi38AMfepTYHOPe90Mf9kNb3C2QwxBq4HryYR+8zDkNYzGIeWonYUukg89xPPIUsVKCF6P0s2H+2eKbFoXwrdKV85afta0NYYzAeoxBrntPaZ1cYUymlO0Zh5+wgpqD8LZc9508phfRVq9bQYw+a7CL3BMYna7z6DdcwNlZHErJu4xivuftmbJizafsCl12xmXaeMj65gf37txJFZUqVYbQJ2bX3UoyxxMR8+INfY9O2Ibbv2E1UinjdG15OmmmGx+rc9tIbOXpolcOHjvCW774SnUv27LmE2lCd6160j7PzsySJZHyixL592ylVNGfnT7tsQtEizFqiSFIuh5w+uUy1HrrY0G/nhgODW/9xu4qxwdXfKQk5IxCEjqsAUBSjCAHGCs9mFHyzUebv5q7itKqihcBqeb45H4yfB4GhYnVHuvgWnLiF+8L+T6sZBBIHB6qwnv/uXU/nphaBbHHMEFkWLFfWUR7fiG0lRN1lRNomMJZAp8Q6Is4r5NpyyZYNbJuwdGyVpN3k8TxCC4W20hvi3sn3T7VYSXuuvuldQqgzp+otQ6zQWCvPuQyPc/RCJ0kqJDo0XDlheN/cCEJGKGvJcusEYKVy6hBCuLi/OA9v9IQAozVGOX6B62WJ0zUIAqzOERa0VNAjP4m+BzdgaC0C4ZuOgCuIKzQqijEmRYhAY6wiwCJV2OOIGOvAcK0NQRhgLvYUYZ5ZSuWAbz54igNXbmV5eYnLrp1ChTGnT9fYtmM9+w7sBGPQmSs7vvSKTbzr//4ljOmSpwEuVbiDo4eWGR4aYt21w1x5zV606VCKq9xyx37SbkiWRSSp4C3fdRet1vWUyxHlasTkxhGCKCLN4cDVWyiVFItLqxitXToSjTGaUycXufG2S9h/yVa++uU269avW+O6n28EBAr3UA1u5ZCCHhPMGMvCcoeRkYhQiX6nGDVoVDxO7L2FVGQcyetk0mJliCOjv0Bcf6EwRfQnUc8lHdxvjdvifdhiH399mTYItXb49GJWwBqNlorGyG7aV9aRzRXqj3yaenMGqTRRqjBtw+ZtW2g125STButL67h3tsFz47tYCTZjbYowKRYvudUDOyW9fOGa8xQ9x0AKl/5FFq3BBvd1L7gmxrZnRBILT7SG+cMTJY7lBp2XmIhTByx7b63I8AD9ZqCiIID1OxRTKAxL6cHqPqYglBqY+HLNOa19RoOaEvTanoPDC4oKRiGE0xmw1oVaymcevOdRG6pyZnXhwuODi8QIzM8tc/9XD2Flk/bqAp/42KOU4pxrbjjAN77xKG/7nldy9Q2XonOBIMFYDVrRydoI4XjEAtc5eNPWKYTMCFQJrS2hVGBChkdH0BpGJ0rkGWzZMYGxVYSIyHXOhBhFCEGmc3bu2Uq71UAqSZYZrzHo0i9T64bZddM2atUaW7ZvolwW3kX0K+AAr6Ao/9RFEQzFPOobCmMMgQoIgwibZ/6z/WPBgBqNdVkOk3h3XgtA0xP8+1dttv+vxVORca51b8Iz8JNzwoTCgCmkGGAm4g1KAWBIBw6aeAgbVZH1lPzkE5RaM0yXaig0i6tNNo3WGd24iU6rS9LuEAnLSzaP8sX5Jl0Vk4ZlkBkyN1hUD1853/Nx51kAfgLdi9tdjC37Bq/AOIqT9xNNC1gRZZazMlqfwgrJhBBkebHirzXwBZ23CAWKSkXrRUMt9IA6bbRLqyo3SZ2BCM6vRhzwyopxpLXrOqW1a2JrrAMCVRj0IZvinGQ/jJRCIrRGGk2WXOThABhOnT7I2ZkG6zeM8aJbdvKJj3yDfd0Wb33b7Zw8vsiLbza00szfJFdiCSHGSIo+8kIqL9sVOi12ibuZKsNohRDu88YarHVZgh7aa10uWAYCa6UfK5a4FGK00ye0RhAEISKAVCeUKg5DGAT4esaA/mqv6a8czmn2NE9hUUqQtrssZRlj465LzBqG3MCvhVFpZppcSUyhefBCXsALbbY33ZHGeIWgwaVywE3uudrFOYBQEq37Q6/A5uyg8bMWKwxWOhJWPV9kghbLeUqUwlxjhcnaGJVKnUVhefjYUTbk4wSVOjfEbd70igmaWnFi2XKyZTnRzDix2uVYy9ARCjtQXCQ8Mm59my/AcRakn6RSYc3A9RS3wVoGq/mEFBhPvSWQCJsjhUD7+9OPjPqGg95dcFRzJdz5CCxG2B7lGN99Git8o5EBZudghqN/p/1/omcECqNTqAsFQdC/HuG0C5SUKJ9JMMLlvXKtGTzyudtFYQTiOGDbtm1IcYo9e7fz4H3Pc/U1u6nXq9xzz0Fe+vKrSTMNyoCNgNw/t74b7Oae+72XGgL6QI6ll+vtTQEQ3sW0eNfKOOQa4eI2gbPmUgqsMV7qU3jPw4l/Ygcpvn1jYKyHfwbC8R4FGTeI0lQzv9QCq0hzw/T02hQPgl51s/GuaJYrCj1pIwzCqn7K68KQRH/znoZDzC3KGIzwq5mUFNoG7qVBUK3QxgOrJLnur8YChULjolbXGk1iscoQm4Tp7gwbF54jp8NprTnRWAVrWWo3+Pyj32Rk3TiV6RGWuhlToxFhHDMcaEYj2DsWM1SrEQYxR5dbPHS8wT8/1+Xxlcx/Y4DEr5QyxJquu1e5cHMtjDwe0Ndy6A2YXuxgsdJRcI10VErpoXypQkB7/Vn37CT9IjCL9dlQixUaZcCIwHmoQhEH0rUPM9Z9jwEbxQgR9HGN856RP7ZvORZI2esNYZBoDJ1Uu74CmUVUZC9sUAKUDBweYA3dJOXhhx+lUn7hqX5RGIHR8WFe+ooX0026DA0Ncc2LLiUuBWBjmo0FxsbXozPhCzOMZ/mtVd45t4Dn3K0/+fsT7EJpuSKudfXaRY7W14P7qsJ+ZyDRMycFuag4TvHQBsOE3vcW6D+SVsPSaFpUkFEeGvXGB/ohgTsXa4Rj9gmJLsp/xcDkPHc0iQv8sQZJd8c3PTGRApEuzpC+IzDgZONzAkIFA96xwEiF1KnDKJBEKmdHPsOB5BR13WU5WaA1FLM6NkSSdEHD1NgI9WoFrOLs3AqTk5PUx8apDNUQwiARdDodlpdXWT81zUQl5nWXD3HdNstbPvAITSXAKJfK0xros28C65h0vUtHrLWPRdg1eJ+kt7gC3IKSI1Xg6k7WcCnswFgZCN+EQApJXaeMLh0kXTnJQWvg8FGGRiaZrMdIkxIGAR3rG7gUZ9UfSP3nbx1LNcszXw6sXYmwheefPcSJ4yfQ5SHkeIzppggpUCrw404jhWt2s3/fPk6eOMILbReFEZBSUapUKFdLWKuoj4wRBBaTQ6m0DqksCI02EUImTnoZ1hiCb2UAzt3Or+zr/y6KVdG7fd5sOCs7oCevpHRhb6H6a/vFRYWRKCrqzj+3ggSSMjIesD8cJ+taKrHzR4y0PdyrwAIsAms0hpBMu27Jg977ea4kF/izN2uLCjWJ0SCk6rny58b/A2O8cHp8PjwcWFQtUjsegECwnhVeWV5gd5gwt5Rx6ugx0m6XzBoIIkooxsdG2Lx+mmocs9rqsnF0DIRFxhFxKSZLuqhShVKpQruTstxqUK6UKZfLbJuS/NSVk/ze401Pkc57+EbxxEKbkvbi/8L1P+fenOMV9iyfXwAwPrcPDlPwuSBrLcX0tYVRFAJlJVppRqOUl03kfOq5s3zx+Bz/8uCTfOYrT/LT3/s6H8363oPndHA6LxorXu6lAIvQALLc0u3miKHQLRzWC5tI6cVHLKCpVcrs2L6NmTMneKHtouAJ2N4DBAo9QJMiEQQyBpybKoMErBNnAvpu90B/gHM5+C9kIPo5+AvvI3w9tju2HxN2oKinQIg9lVOIvqqwP4ITh/TxXLFv7xpFiBSRa3RSLzMxMYQKArQohlXfY3FEHCcp3emktNtJf+Xm3HMfiD3Ov+j+/z17YM6/P739/LcX/QmL0MAC0uWji/2NFGAVNd3k9RNddkcpMhJUwog4LhEIqMUx9UqZodEhpjZMIcOIrhGoapnx6TG2bNvCxORE0SuVuFQiiiJGR0ZYaTSxhIRokjTliuky68oRQmRu4qvQ5c0LT8CTk9Yy88TaazzXQ7IF3uTGm7AuFHTUcVzzV7xMfTFu6Id5woYoLQhVhA5AS4uMSohqmaX2Ep+952sglWN1CFhD8BLnn2ZBDlJFjYF1AjzOEDt1Ji0MRjr+iMT1JFBKovOMQEqiMODQoedptVoXGBBu+9c0JP0fwGuAWWvtZf61dwA/Asz53f6DtfaT/r1fAX4I0MC/sdZ+5tt9R2O1xfzZJRYXlxkaqpKnGq27jEyNMTw+THO5SbvVYWrdMN1uShRBnhmiUuxX47UGwFrbo+GeC9gNbucCemLNymF6PQKEsLh+Aq58E4tXiwmwxvK+v/0rmo3GwHH7RmLAuVt7X3v/DgBsfefQf8Cu/ZwxSCWZPdlg82q776IPgg7nOR3nrnxrT0IkGfZsyJoReK5N8SexSszSJXchTO68El+jXoQ3sdC8fLjJlWMBywuGUIbEccBQtUy33WJxaZH6UNmp5aYZrVwzPDpCtVShFEVUSjHVUoWR4VGstYRhiDaauFyi0inTXm0xOjxC0m4wFEouHSlxZraLENb1XxBgQ3fyyhHqfZcmh/n00qi9Sy0Mdl9fsRgDQgikLrgB7m018Fx79STeF3ALhCZHohCEMsAagbKu74UWhuXVNpIcGQyB0dhetyHbv8nF8Ysx6cVyC1kRYx1TU2tXLCay0Hl01hJEIcpjUAJnxLLc8OzhY6wfm+DkzDwX2v414cC7gT8B3nPO639grf3dwReEEJcA3wlcCmwAPi+E2GO/laIB0Gl3+dD7P8MDD97H9PrNZFkKtssrXvNKbrnjKj714Ud56smnuPuNN3LP155kcqrC9Lop7nzVdWTZhSm357L4LsTrP3dzLqMXE/EupFNlcftGUdRnZCnVCxlazQa/+mu/jtGuxLOXxhrIFPgvGAgxzt8K99Ih2T6DUMSbCJSwKBXw9WfmeHyp6fcXayd6/6oHBnvPpz1/l04XWyqtffOCx7O8+w9/m2XhtBpQwgGKAMIgbciE6nBD3RCVS1SrQ+6QNRgbH6fTbtNpN5mdm2dpqcHU1CRjI8OECAJhKccR01OTjE+OU6pWaDYbaK0J4xJZphkfH+fs2QWyLCfPMsqB5tr1MV87K+kIBlJt7n7lxoByzToE1tc7XOC6erzwvvfnPFNDkaYrOlG5IxQ6EsLvW9B5Bdop09Dqdml2OqS5y91L/34cBijBgLx44ZWtNQC9xyCl45UEag1eNfiMCj0DgDiKnLlTIVIpojgmjmMmx0ZYXf1faE1urf2KEGLbt9vPb3cD77fWJsARIcTzwPXAN77Vh0ZG66wud5k/O0/SabNjx25GJ3cwvXGSOFZcceUO5mdPI6UiS3KyrnbyzYTOHbzAoB1c5dfo/rM2ZCji+J4b3xtNfY+i6EPo9N6cFmGg3MrSp36u3QT+YZ/rafxrNr/69hmDvmCk13XJo/heemsA0Vt7Ki+EPkOxrgxaqP6XDwBqF/qkMQYVSPJCZg0LImdMQlUJYhUSjo5irKDVaqB1xsrSIkGwniCM6HSOcejgYRZqQ8yfXkDFIbv372b/pZdRHRoiimNGgpAgiJAyIowk4xPjLC61CaIytJp0OgmvuGQ9731yhRN57qTTLT15scyAiEP6KUDopzOKayyu03uNON0CCT4T5EI8Y7THAYpb1Svn8pWIBRbhCEoqDOhmGZl2XkDB4w9VgBSi37S00HwYvOcDdqDwSqw/5yLsWLOADWY7inMUgiCMsAZCqbBpTvj/Ud+BnxZCfC/wIPAL1tolYCNw78A+J/1r521CiB8FfhSgUqmz/7I9jE/VMLZJ1o2IQ0WYOLGEe+97GBRs2jzN1ORG1m0oU66WyXsOhk954R8sA4AdXkeOYhIKV5BxrssrwJV6Gh/++nVWOJFHF88XHV/wJcSeDYb/atFPsa2x6YOYlD3nSQ/8ZXtP3O0sRBF79h1GKUSvddqFwv7zjzo4wAYMhfVCGObcY9kX9izwpBtNr669eE9rwd7qEmHg0llKhcRRCWMEURSQJil5ljI8Ps7U+vUcO3KcxbkFtIRde3dzyx0vZXxinEAFBDIiiBXlchUVlEEEaCMYHp2g282RMqDVTthbC7hla533HV5wIJsRvXmeGV9KTH+l77v/F9qKUFAWUIiLwaXE5NqXKxeHccZBSTeWimDO01J8VqPbY24L4ajGceSbpyjvAZzrofkPFMRIIxwDRBtHfCpqWKzPLCBcOtYC0lqSbpc8z7ynIUmzjOPHTjIzM8f4WOUFr/z/rRH4M+A/+1v1n4HfA37w/8kBrLV/CfwlwP5LLrevesM1pNnV5BryLKfTNIyMKwyWN775drppythkjVe/4VrCsnFValbgCENdT7QyCCsdaIX1GI/sxfC9OLxXr+3dfnKEiDFGYmwHKQKs1Sih0Jkiy3J3bFyjxyJVKXxOHAouQOHWuedpTRHL+a/rYQ4WayUWDd54DZKM8EbLFYsUYh4+Q4Al9ynC3thZc2PpryiDP8+9/351lGJtmnCtZ9D3ivr/Wlc8JATYoh2aWwkvrVl0EFCtVZmbX6GsJUO1YdJUMTIyRqkU0mp3CKOY3Xv2oHPDxk2bmZpeR60+TLvZBFwabHZmmQ2bS1hpiGNFlmuCMCDPs14abH6+w407h/ngs0sYZQiFJffz3GiPvAvvLq+ppSgu5hyj4A26sdaPAWcJtB3095wuhBTOEEp/7wweP8g01uS0uwmO4yjxdaSuk7CVmFCirEAPPqDCO7H+2bjpj0ARSCeXI4R0BqEITazTFRDGFUvJOOqpHmdZRiQV1mrqk+NM1CscPH76/IFw/l34123W2rPWWm2tNcBf4Vx+gFPA5oFdN/nXvuW2stLgyOGTfOOeQ1TKAUefO82h558lUIpDz5zi+KFTjI5UeeAbz9HuJAwNjTIyNM3C7CppJ2NxbgWTaZorCRhBayXB2i5ZmpBnGWk3QwhLnjumoMkMWO1AFCORRAibEwaWKCgjCZAyQgURSrk43Hil4UDhNPIIsdIQ4rj+BT6A0M64ILwbT8+0/5uf/HE+9tF/xtgCqKJn2d19df8UaUEpJa975csH3H2LtaYnsjEAJ/W2v/+Nn+FdP/GG3t9PfvXTvOvH7uY3XnmA088+QeFfHn/yIf7sx17PX/zi21k4eQSspdtY5b2/8iNYrSnosANP3X9WOz6/CijWQGktk6LF1HCVQJWo1UcZGR13egNSkmtDo9libHyC0bEppqY2sX3HJezccwmbtmxhdGzKod5o8iyj0+3w9MGn+do99/PII0+xuNQgjmOyLCUMQ5IkQ0lBN0vYP1llWzlAkCOldpMSCDKNVIO8/AKjGfCQzttc6ODs9IB/NshH8ZiB8xBF37Bji3ZWCAHtJCHLMwLhhEqVhXIcu3k+EMefB9ye4yEIn5c1fhETFGQ4/51+fFkEcblMqVxGCOHCVSEol0rc9JIXI4P/zeGAEGK9tfaM//MNwBP+948C7xNC/D4OGNwN3P/tjpdnOU89/hT33jvDzbfs5gufe5QkXeLpJw7z7MEZxoeGefSRZ3j62SPs2b2ft//wrQRByPvf+3lGRyvcc889/OzPfR9//qcf5PVvuIMPffALXPeS/Zw5vcgl+/fy1S88xRvefCNf/eq97Lt0J1+/5yBXXr2ZmZNNtu0YpjpUZXJqjOZqTpK1KZdHueK6DQhpUEGJMI6Ioogk6ZCmxmnMiZSZ00ssnHYu2OzZFer1Ks1Gi1q9QhiENFYb5LkhLjl32OSGZqNDt92h0WgzPjnilG/MWodcFN4Klo9+6jO9sAYL2kJalIUWQKNfTJ665/NE5aLJhNt/autu3vIf/4CP//E7e3EjAr7xoXfz3f/5XawcP8JDn/wgd/3Iv+cr7/tzbv7OH6FobNGPk3pHxOQ5gc6xshCzdGHQ3qoruw2jiLBUpTYSEiVdjIb66DiLC0sEYUitLimXYwySKIxBKNK0w+rKCjOnzqDTnJnZswwNj3Ls5DzzCwlJArfeeq3DFlYT2s0GuTZ0rWVjKeINV2zmd77xDCaW7gYBZZ3TEcV9tcWNPeeaitcHJ55bWV2ptLu/hV5An2pQ7O8wAaFtD14wxqILopiXlXNhF4TSeRE9e7Qm/KN/Lr1fC+zH/bReI9GujRo97gClUtwjqUmvM1gplWkuLrKw+MLA4Lf1BIQQf48D9vYKIU4KIX4I+G0hxONCiMeA24GfB7DWPgn8A/AU8Gngp75dZgAcONdpd0k6LebPnmVsPOamWw5w+tRpRsfH2LJ9jJF6zEvv3Eul2kFYgRQRQWD5+Ef/kZHhEoeeO0mtOsSXv/AQ3c4qn/vcZ1Gqyac++QWW20d58OGnIGgzNlFlZExxzXXbOXNyCSUUn/34Axx+7hBf+NT9/PEf/Blf/cpXwbhCD03HgYsYlFIsLDZZXFhmdTbhYx+8n3/+yNdYXmjw8P1Pc/rkWR687yCNlVXe++53c+dtN/Oqu27lx3/4h3jmycOsrDT4zCc/x2tefhcvu+1G/vH9/wAoWq0Gb33j63jFHbdw5y038tlPfRJrnIrR7i0b6XRS7vnaV3nDa17J973tO/mV73tlv/7FexJJu8U3PvwebvnOH4OBVW9y83YmNm7r32xvCJQKyLpd0jRFBiGLZ06wOjfDtsuvLw47MCALd1gghXKCHbKvJmAQbKqGJJnFSokKIurDYySZM6JCRYxPjmOxNBtdFubanDl1lpPHZ3n8kedZXlzh2LGzHDqywFMHZ2i1Q+bmWxgd0OlAmilarS5xFDK/ME+7kxCECpukIAw37Rphc3WIzAQYj3tEedrzyPoegNdS/BYOgffhENY4d9u6Se0wpcJjL0K3gZDJWt+YxBIohfKAtLG2J0VWr9ec1zdAOjtnsvUN1YDnIYXssVbXgMvC8xosKCzVKPRGwu2XJBlHjhzjsYceJs3yF5x//5rswNsu8PLffIv9fxP4zW933MHNWMP0hnWMjq3woQ9+kU67y5kTs3zHW1/LJz7xAI8+cZIDV0zz1JMpI6Pwd3/zdd76/S9m2851PPfsTl5y41Uceu4srfYqCsXll+9Di1XKlTKveuU+PvPpR5ldOMHsTIN9+5rs3r6dbTu2MDq+BSmHWFhe5eTJJdKsg84tUQhSKNfN1biyVY8ZMz5e5cTBkyycMgQlw+OPPsGOHU1arRZnz87SaLS5994H+YPf/11++7f/ijy3bN8xRpa5fgmzs2f4oz/+HzzyyDf5g9/7L7z5bd9NqVzib97zd1SqNWbPnuGNr3klt956u3NnARW4TrOPP/ZNPvele3hutcLxbtfVFAiBlYZ/ee+f8JLXfw9hFPW8xDUov18+hO9Wc9N3/DD//Lv/gTCKeMO/+2989q9/jzu+72c9PtqfKC4t5UEOgDCC3CCCMkVRQ6Q0I5UIm68ANawUlCPF1NR6Tp48gzRtTp1c4IHjDZIkZWxqHJMrSrFrQpJndU6fWGW12yYXlvnjHRaWVymXhwiCLkbHbN1cZt26McqBZGFhlfHxMmmauqrP8RrXbok58zykwkmDG91lIsppakOqhMvL29Aj8ucspcXks+CqD13Yg03BWrTFF+VoCiik6NOg0Q6gFoLAHY1IBURh5L0Bh/sIIFSSREiEUP2KS/dw6ANVeHxAus96RezcuBoFiXKGSjgGI8LhE8pKIhm4IjXpQEMpAhaXz3L17s1gLM+fLJz3tdtFQRvetHmKV7z6Nu542Utc3tMI8kQwNBpyyRU7i6IrFuYWKVeHQGrikuKW267kyisOUBnKuPYGGJu4m1MnzxJGknJ5iEazSb1SZePWzZQqikBGGK2Jy0NAhTtftY/aEPzIT76eMBR02jm3v/IqypUaQmokkk6rhdEFa9DS6GRcfusBykrwuc89yi03XkWr+zgbNq5j6/ZJjFHc/8DnedNb3sTOPVtpNVpkeUCad4jjMq989c2oIOTA5VcwPzeLwGCM5b/95ju55ytfxRrLzJkZvn7Pw0yMr8NaS5bkWODKq65my9atPP+YI304GSvLzKGnWZo5zmt/+N8yN+setLQuupUmIbQZAYbAZp7yK1i/Yy8/+rt/i7WWY08/ztDYJBbNB3/r3yKDgLt+9N9TG50cSEf1JbPJcwKlyK0bPiUpGA0sQktkUCYMFEIoRseGmD27xOrSHLMzi5w51WBq/TBhYAhLZVqrKcdPt1hoHGJxfpn5hQyhIkrlnDCuIiSkSZfV1QUOPZ1y5BnN9t17aDaXGRmNMRrSJCEuxdy6fpKPHzpEUXthSdECTCx8a7aQHkMPL+3l70Wx+vZy/x57ERReAGCsl6gv9PyEN6ru7hTExKI0XHjwTvl2dkoowiAkKayNpG+MBrkC/l4Dff5BwVnw7/V/urJlbVxNSaE2FIUheZ5TL0dcuvsKrm4vMpU2+IdvPHjB+XdRGIEzpxf5vf/6Qe58+bU0mylYw/5LN/LJ932Tm2+6gk9+/IusXz/FrS+9hpXVjK/f8wj7928hlBGjY2Ueuv8Iu/ZsJIpG2LlrM0eenWGxucyOPVMcfOosl1y5hcWFDkpErN8wjBAwP7fC/gNTDA1VSNI2pVIJawOszRGEtNrLhBGUy7HXjXfPq16LEbnAqoBbbr2am2++gr/5y6Ncff1ewjBkbHyUx5+4h0Zzlc3bJsFOOp6asJQrEVu2r2fPJVtdjId70B/+xw+yML/Ahz7+GbrtjNe98lYqlZjhEZfWUYEDhyqVKuAmv1vpwUrBqae/yZnnnuT3f/iVaK1prCzzt7/8vfz73/gtbJYRRRGRMEzLNpvlCl0jaBGhESRG85X3/wVv+pXf4VPv+q/c9YO/yOLcKe778P/kpd//c/2HVHwhFptnjMc5p4RzMStCUJUunatUiFKB174T1OtDLMx0qNUi7n7jLezcs5EwMiwtrrAwv8K9f76KWrakbcP2HcPMzbYJZJnJ9TET4yUEw5SCEvv3beIfP/hxjp6cYXrdFEl3GK01eaeDHK5TKQUok/iqP5AmZzEPkJ6Z5/QCCgDWT+JC1k2IfqpXAF5YtqCKW4rULD41VxQT+YkuZX+iCt+E1BsI19/STfZAudVdSAG5ORdyGbzR7jdvoFzpu8Vo3dMPFP46pHK9NCQaSe7qQKwlUJLR0RFMI6PcaRNWXrgh6UVhBLrtnCxtcezEY+StYYJA8Xg35e/f/Wk2TY9w+miLhdkZrr62yXMHZ1k4u8CHH3uORiPjhhdv5Quf/Sbr12/kB3/8LlaWc/7pAw8yMpnwxBPT3PMvT7B3/ySnT3dpNud5x2/9CCpU/M47P8jJEzO8+rW38NWvPsRr3nAjW7eO8vnPPcAdd9zEn7/rPWzbO8Kmrde7B2D69dwWi5YWFUmMp6IGYYDBEEQhL7nlFn7oe76bH/2Jn2ZsbJyVxQXGxsbx2K5z1by0l7GaldUVJiYmqMZlvvnAA8ycOcWmLeNs3rwe0dt3YKWwBffBEOkOL7/zNt700puolCPOzszwf73jP/Kr/+mdCJGjKgFGu7r4koLh0FLVOVNkCCyf+dJnueK665mslsgT15BTCUPe7UCx4tFf8VyHI1fkJDI3fCYUlKWT0Q6lwmqBiBRGa2pDMWnapVYLqNZKDA9X6XQalMIqu3aPcOllyxw6PoORCbfefB0LC6vkqkNzpUJjUXP4UIstO0YZmtrAG9/+fbz7Pe+jXF1leWWRoVLE/NHn+ccPfZJ/YC+dqALagaZSayqBoIMktwHGOtnunmiHu5G9+1kQs4pV3rqGE66Qy7P+igYwvbnrvcNeaYU3JFEQUC2XHC4g3fMT2hIGgkBbyJ3BXMMTEDBAewTRf+K9twt3Y80mEBhiqanHQb8piXWGa361zYnZRa7ZUH/B+XdRGIEsT3n4oUfZf8krue8bB9m6Y4RPffJhMt3i1InjzM/OMTw2igpCpqZrfO6TC9x40yV02gHT6xRT01WuvnYHzeVVTh1bYGgspdlsk2RHmJyWNFaX2Lt/msceW+T4iTPE8RA/9BO3880Hj3Pk8CyvfPWLOPjEET7/yXtYt6FMrSbZvGkbeb6ICKTTbpcuL2ysA7+Mkb7QxVleY6232IKb772H/3TgMt76kutRUnLVunW8+/Wvp/z0k4zpjA3HDgEg0pSNf/zf+al2m9d++pPc/dEPc+2GDeybmGDqb9/N+pERRJay9S/+lCNHj1I6epjN7/pDvv9b3Mujy8v8RbfDDzz5MAD//PTT/MynPsVcu83v/9K/5cp16/jM298OQDvL+OMPvZ/Pvv3thPd/jBv2buUnf/HtRErxvje+kb3f+OCaY5snvsQ7PvG3533nN3/jjb3f21PTPPelb6AUZIlFKUNztcNQWfG5z3yMQ8d2snVqmlK1xpklTb3eYN2kRE6PceToLDpXJIlB5ytMTw2zfddmnnt2DisUo2PD1LdeQm5Os7ra4PgzR6l32tQr0+SkYEuYIhww1pGUhGtXh1R+nvm0odHeHe8vx8IWRdOe8GTByZX7qlBRTESAc6jp/n8pJXEcEUch2lhUYXxEhAwCl34Wai0lY/AgA1kDVzmKrx41oJw6Uq+BrPRNZNKEPOmSGeuERrwRazQ7LK0ucmR2jmH7v1BA9H9i27Bxgje99fW86KarmJntcsllu6gNbWTrjttYmlllcrrEvsu2EEVlZmePsbTcYHm1yZatWzj8/Amee36GTVuWeMnNV1MqjXLffQfJM8GunVv58Dfu4brr9xHHNepDI2zfsYVaTfGFT59hy/ZJ2knO84efJSzFGKuZnW3ypX95gNHxMovNFKOjXmdi8O4gLv1jvGW2voNPoRsUrK7y0r96N3fKAm0SnLHw6z/605yab/LJRBMEEZ9+649zfxiQGc3v/NAvgDGUAskvlRSZMBwLAp75iZ/jlDLsAf4cOJbDFx+fZb61xLhdIg6cjFcYRcggxBrLb979Nt7faZJ1U+yl1/Brr34ToxNjlOISFstHC8o0lp++9WV8KMudIs0Nll9941sIgohPJIJ/Kk2Se7TZyoB3P3iM//K2u4mPPc3OKXg63E32u9/BK/7bP/K2DYJOlvDjP/RdpFmHoGPJlEIby/JKg0q9xsPPHuNDX3uCseEYqarYqMrWkU1sW19ienyMMKqwuLrESL1GmqRIA1ceWMf1162nXHY40fieHRx5dJbw2CmOHXyS3dMjbBmusyPtskSVwM+syOSkxvqsf39Sua1A34slvED4i7cdoCc9VlBgBL1OPz5bUFQT9nQKpcvnKxVQKZdQQvW+W/hnlHWN7xtQVIuek6YYXOh9hiFL0l4tQ0Eb9oEZZCm226bTbrO82iYMAk+mgpnZs5yaOUQNOHTy7AvOv4vCCERxxF2vugEQ/OhPvp4sy7nxVosQIUEgeDN3om1OllluveNqXvqya32uXPOSm3fzprfdgRGOWVYdKfNTv/gdbiWIJde/5HKmN1Q5eWKJW192FXEpIss0l1+5GxUp9l62g6OHj7Nj51biuMTZuVOU4zoPPfAEQyshltRNeGP8iuBAQlePIF1jEhR5apmfX2Bo2MXxwjeCsMZgDay0ujzz1DEmRktsGq2jwgCjFJ3MsjjT4MzJ44QhhOUKMioTxhEbJ4epV0J0niNtRqkckSU5ZdFkUi9jTYoMK0jlziPtJpTLZVQYUCKmudqkWg7pdqHb7hBHkdOp87JU1hqyNPW9RAwijFAmJEszJrHk3ZO0EkPbStL6OidmlLsl7JBc31Mb3lbWVCoRc6dWAfjge97H1NgIl+7fz9jmLbRXG5x48gxSalazNo1mSlRVbBuGSzcrmm1XBShNTr2mmJyGKByjPlIljhQ6S+gaQbkcMT06xt93Sqzedz9R0KQ9XCZWCTvECg8x3kvfhdLQVAGmVyci1oqTDsbe+KnoJdYFFnTeTw/6NN95RWeCnmEowD2JwGrdu7/WCCf6aUAJRW5NQWXoZ15eYCswgSiKnJZFLzrrlzELDDbtkCddV8ki+sc1QlM1CRPVEqdXL1xBCBeJEVheXObv/uZjZLrBS269loNPnmFubomdu7YwO7fEhk0TrC53WZhd5YYXX8LXvvwYN926h9Mnu3S7LV726msZGilx5vQyzzxxmImJYXRuyXUXoyVnz5SZWldhcX6J+dkVuknOZZft4OiRM6gg4JLLL0GqjNlTywwPTVIZirjj5Vfy8Y/e71Vcfc7WGwEhjO8IgydmWBqrTb725QcpVSJ2Al/7ykOMjY5Qr1cplUssrSZ00yVCNU69BEO1CCEFqYZKNIKSKYeeeJZ28wRCCnbs2cbOKzYjheDhx55jaWmeIHApoDiwZFKQpDnN1VVqw6MAlOKSV6C1BEGJofoQq8tLjIyOsLrS8Li3K4Qy2vRYaO53SymCRCcESpG2OuRpgmx1GI6qVOsTbCpL9m0Z5thcmWeC2Hs+oJtNDj6zwDMHDwPwkff9DVfs2MGph+9hx2VXkjbmWFyYYf9QzO49E3SrVR48s0zNSFRnlV07djI6UWe4Pky5ElKqQBAERHEVY1I6rQ7VWpm4HDAUlegMb2K+PMamrE0pLAGSSZooEZD7HgzKGJqijJExSruUnxCq7w0UhgHR9waEc7GFNT5FaHrAYEHVLVZ/8MyDguEpPJPPOkFQR1M3vd4AgYQ4CkGk/nh9PQh6Rxv8G9+J1mKMdkZooONTwVzEuPEodEagpC9LcB6EtpopGRIr0+ufeKHtojAC3W7K8uIKSytnuP9LVQJZZjge4rknniJQXeRUmb/8k/cRxV0mJr6ba6/dTNo2PP3kE5w8vcibv+sOjO2Ahb/4kw+yfdsQE5NjLC10OTUzy3/4pe/nr//i/bQ6OZEJeeKpo7zxzXdw7Og8nUTwH9/5VloN+M1f/RCvuvsKXnH3tXQ6IQsLDcbWRX7yu4fWWO3w6ANP8sVPf42F+Qbbdm3h9InTHDl0klZ7iUbHAVPPPfs4URwjZABGI0SACkOW5uaYGhvmhuuuoVSKiAPF+nrAyJ71bN44wemFBvMLS0hpmZtbZd30CK1GA2s17U5CFJeIVExUjslNTmt1lSGdE5dKID2A5Xnz5WqFVqtFu5sQV2JajRZxKcZY49tmCYJAIWVIY2WFtOsYgblNybotFIJMWq67/gbGxof5/NgQL5qucfyqjcze9yTL63YA8KFZweSRIwyvOvWajVOTjA5XMEmDZ+77EpmSzJyaY2m5SV0qRkcn2Dc6ykpiOX52hgMvuZKx8RGCUJBnCa1GTqU2hJI5nXYXIQKiWokYB/DllJjbtI9tp5bdPRQhW4KWSwXKvsZBLkLAOKFXr7SDUJ6JBw6kxWUHhJMKE4BVEUJrl6LMNYFvba69GZXWN/UYABOFcT+VBGVykK5i0IoMY0Imh+uMD48i5ucJTU5S9HE8Lz0IPm+IVcp1PPZNVaXti+i4Dku+QjFPIE97JCElXMMSk2tqoaaZJE7w9AW2i8IIhGFIpVKlVNlGZajG4UMnePybj7B7zwZarYTKyBS1eplcJ+jccPj5OV5y8+Xs3ruTl77iBmbOnKVerzE8XCaOKjz51EGuveZarAmIY4GIBKdOnGJhcZarLn0x+y/ZyvFDLXZfWmdhPkMJxfLSCjY8w+z8JHmuOXlyliOHD7Nz7whaZ+jcYo2l1Vrmcx//Ekl7kW7bcOyQpt1a4JlnHiMznV58qUJFmnYduh8oTJ5j0y6tlqXVaKKt4Ybrr2aoVkMJQTU0RDXJeHUEs2UcnWsaq12MMeRZhtUZSlgC6bTlVbmCFAqdabRxkzpPE+LY9a1zRCNDpVxicX6Ber1GEDil2jTBq9JKhPccSpUyK0vLBIFCpxl5khGFilp1CGsM1UqZ0eEKN92wi1ZzI3Rz3vXgYwCsBiGrl9/OeHsevvQJ5hdWKYmUkaFhdOZ7LdqM0ck6Q5UyY+UhNm3cQGd4gr27NyMxGJ2Sauta0wtFa7WBGpbkWrN+4waCOKLdSVjqdOlaSTg0TqZKpHlGp9ulLgOitEkWlwCXgZOFIk9vBS14AMWvfkUvQoZCTwC84fbxvvDH8otp8fkiQyBwdQQ2d2rXnSRndmmJJLWUZcSBnXt42Y3XMlSLXO8Jn9dfkx0A1tQ2eM9E+GxGT6GqyG6qfp2DRWBl0Ksu7W2+0rCV5GT2IjcC4xPDfNcPvJwgCshNwuL8JZj85eRJSqNlGBqtcsW1V7M0f5adu7Zz39efYXL9EHvyLUxPj/DsEw227rZs2jzGm95yF488MsGBA9cye3aFsc4o937jMG9845v56le+hiHh6NGT/Ltffjmf+MjXWW3MISXMzTaRQYWZmSa5zqkOVagNxRgtemXfUkCnnRKoKnE9olxSvO17Xs6v/vtf5s/+/L+TG1BKkHeavLdU8662ywsrGWCFoBzF5DpH54b169axa9dmypUKYRi6nnVYpIA0F7Q7GdVqzJNPPkOuE6QU5NoQlWto6wZGt9OhPlRFSEGeZRTlzmHoHm2WZSwtLFEpl6nWymSugT1S4DURLI3VBt12CyUFURyzutqgVi5RLpcwNmTTli8yPjHKUH2EcimkXAq4445ruOcRJxMRfPTP0de8nMVd+9132hKzZxu0GzlRICnHEcoolBXsWjdOpazopl26nVVm5mbZMVIjS1OsLaTYcoyF5UXD2NQ615Alccy9xWaTrrVE1TpZVCHNcow1DIeSdc15DkVbAZ/+9zyAXrVnMXsLbkAvJveCodYiinSsdeW72mhQLrMgHDa3Jo6XBXvPWlRgMAbWb9lNJOGGKxVBbrjz5ivZvWur5x/glYq8OnVxoHPIQsLPdgfX9BWRhM9Q9MFoMDKA0PV47EnZeam7RrPNUrNJ82JvQxaEAUMTdd8Hfoh6fRSpQoKg6K/uii6U2Ic2Kbv3b0DncMnoGFjL3itgeLhGbhSv/Y5red2bbsGwijERINA6JZBlbrvrAFkuEVYTlmI2bllPGEqMgsuv2czPDL+VcrmEkILR8TK7du0Amzsn0boOFJNTY7z1e19HN+2gZER9fJjTC5J2tkKepqAt7+jM8zvTO8nTnEBAmnYIpCKsVahEhumJSWZnF5h5+hhLy01edeeNbNi4jmuvv47hkWFUqUaSB8ycXWZ2ZpbltqGbtEAKwlKFoFLFyghtLIsLC2xcP02306HdbqGUy1aUylXicgWlJGdPnmZ1eYVtl+0hzTStVheTJaSdNqsL87QSCzYkDCX18VG2bdvB5OQY3TRnYuIA3/E9r2N5sUscB3TbOXEYsGliku2bXcFoPvsU4cefIX/RmwCYufpVTB38CuhVymkb7VtlrSyvIKVkemiU2W6byV1l9g3XaTc75O0OSZpQLpeQUoEMCEfKCCnReU6eJSgbk2uH2hsRkYUlLImLv5VgN8s8J7YDoHBovptLwlOBCzS/GHl+Vg2AbT4h7+m+oI1BhoXMfB+YK5SKBPRqDJCKchTw3LEjvPIVt7F1906STptKvU4gQ3KTg/B9DWzfJq3ZBjMVxoV3haJQX8hW44MQhLBOtDQsIaV0wiU978FZLRmFBPoixwQQzmqnaYqSHaR0LmqWBQSBA+YEihyFFZJcC6QRIHOMCRibGMarcWOMQpChdQTWN2yUgswYlIoIhKvvzrVgaGQIyDEorLBs2zWFNdKvqimB52dbWygPaarVGus2TBCVI/Lc8JmP30OrM4MRBkveU0JOO21UEJBrTRCXyNOEvNUk63ZYmp8jjAJUGHDo5Cne84GPcNn+3cwtLHLd9dezact2grjCxPgoy8vLWAxpnqHCCGUMWdJBKo21glBaBMbJceUpshSCtSSdNlhLqVxm/YZpVldW6DQ7rnYlT7F5RtpqoLOEWr1Kp9Hk7JlTxEpx5b7LseRYQrbv2sroSIWRoSoLs010ltPMupRrMRMTE+75jY1gzi4gHv00AI2rX0a28yqqJx5l8rFPUdU59eE62zduZO+WLWTCYPOcTRvq6LRLK2uzmmkynTM6No7RhlK1Rhgokm4Hqy1IgbSG4UhSUoJcBSRSkWaGzOYgYRTTYzU5yQXlwcBBPsAguNZbc/vjEAvSIvLMeQLWoHw6sT/tvaiKED3gEAtGpxgEB48cJf3YF1BRSKBiXrJ3PVPDV7rGNcp1brJiLcDIOTG7Lf5VEhV4fKG4Au/Jef8UIRRCudeLEufCW5ASSlFMUKnCkYu4dkAKQb0Us9jKCeISYMjzzJF0Mq/6azMMCcJalA0QKNJMk0sDuSPzBBrnckmDFS69I/HFHwEYG7mdrEYROuIIyvU0ATdoVIiwllgYnHiA9guG8t4AJKbL8edOkHUFH/rARxGkmMz1rHMME9BZgtEZQRhisoxSqYQQlk6zAWhMHpBnzt2cayu+cf8KTz71NPc+8E1qtTrbd+zjuhfdhFCCchzTavv+cljypAsyQ+eQdLpkSUrSbmF1RiBiwjAkkAaTdkhMRi4VGzes48ihQ2zZugHylPaSk3KbmJ6kNjzG8uwckRLs3XcpI+OTJFlGXSlajS7NxZxSWVEfiWg02wgZ0clzdntPQNSrqPkGqrPinufcCZKJLYjKKCKO6eQGsoTQVjjZblKr1RgZrpNnGd00IUtTl40XEq01WaYZLZXQeU6adJEyIGnnDA3VGStHxFKxXKoyE43S6jZwwiwhlSAnMG0AFBLri3wKbYAivsYj6G4bjME9si5BZs4DLJiEjp/f+3iPwedWdev6ZNocaTKMbXDq2FMoAWE4xOxwQCdPGI5Cp20iHF7jmqL0RWd6mx08L8h9tiHLc4JA9jQoeziGpzILFSKCvgq08bJ4tdERRBi+4Py7KIzA8Zkm/+Zd9xOVIiBDiYRQaJQNCVVApCTlUFAJFZEUtKRiJumwd2LSPbtAEASCWAhCcCmZKGZxaZU4DqmVFaHVBFKACmklGaEKqEpJLRBESiOVctV6SoHI0VaQ5BnjqoKUhdtoSbttRHeUieEaX7j/yxw+8gi5Tn3hk/EqxH6QGIPOckIBWTtHBIqoVMGYHK1zlFIEQQRYDAHLrYyv3HMvOk2R4lNM/P3fMTE5wcjkCHFcJq6PEkQhYSDpdNpkmWXm5Bnq1SqVUsDi3BJRADbLSLGexirJckNuBGOjY9gspbu6iDIJIyN1RsfGaLbajIwMceVlL2N8pE6n3WWoUiLHoEPLyflFRoeq5KmhXC0jZUZrKePAgb0AXCFSrt28jmh6HfzL51GLSyRj04RRSBTGlCoRgXKxcDdJnItvNEEY0Wq1iaIAKUNKlSrV+ghpkmIRNFsthkdKpGlKpVonDCNqFQhoYmXAmU1XsfTMUchyjE6wVjMlfHZAmr5u5MAiO9h/oLcC9wqL+oIhJs+QwikNO6/CNRbp84n6alLuEALT1XRFiF1p0G23EVIyUc+oBxEBCqxFBcq1M7f0DM8a0lCx3Ps/TZGBsEUvjGK3fniDcM1JlW9Q2vvfuM8F1RI2v8jDARXAlxtNGqsSIUKsznEdVHK3WltHigiAwApEEIKV2CMnMHjtfwFS2J7qisWprrobrAnQvoWYxFpDiCDKUsq5JjDuASvpCkmkCBBhxs58lol1WzBWoAEpLcutnH/+p/tYPX2KJ+7/Au20ibEZqnAPfSwphDMCRlsyawmVQhlXvRaoABmXyLIcYyBUgjRLe3FoGAfoNOHsmSOcnTnCFdddQ6cRs64+RprlKJ3RbbcxBtAZZ8+cZt3UCOgMm6UsNVoEYUi5WiLPDO1OTrvr4upNE1XKgSAaroMKyZqrrB8aYuvmjQggVgJVCgiFZbWTkquMlaUWcejuz3PPnmJqaoI4DIj86PkP64fotixfzHyd/OSkW51kSKk8RCAThutlojDAAqvNBrV6jagUYYVEBTFSSsrVGkIq6sMjlMsVwriMCmOCsEQQl1FRSBT30DFaI+s4W5lES/dsQiNJfKfkNcQeDwT2CoegT9PvcQSKeSed651rJIKi5aJA9OTG17juBVnIGqQS5MIQbD2AFSWmVIcXbRzl2qsuY3FpiXI8TaZdolEq2eMu9QeMG7nuT/cdxpiBXoTu3JzSdd+L6BkDT1aSuA5YGEOuLZVKjNHpC86/i8IIbBgKeMeNo/z1Ew2+tqrphCWs8LQPIRFGY0RArqxTfRECYei1i5b+CRovsFCAO8LoHldcFDFhYYWNa2gqgtARaHBrg8UiTU7YyZiUKcK3fJa4dE1XCJ6bO86xuTkWVQTGOFQ2T+m3HMWxxnAPLAgcWGOsQeucUEqSdgLWECjXTVlKi8b2Gl1kXsFWWkN7pUG9HtFprVKRNZKkS9rpEMclhodrzM3OMDVWxeQZnU5CkuZUa3WSbsrRw8fQuWV0fIxNE6Po7iodAaValXIUYhLN9s3bII4ZHR8lzyxJswnlmNX2ArabsrcWcObMCmP1CrGVLBxfICpFdLpdrgE+NZNwsJnx4PIKfw3o4SmUFUitqY4MI0kRyhGA8ixlfGKS+sgoMggplUoEYQRSuexDXEYoSRCXqdVH6CY5lVodYSVxtUJnZpHE5CgZYoRkbnwnxhxGyhLCZqyaopRY+Yak+MnilHb6nZagh9D5pdeB0O45K93FWIPUBmmtVwmyxZH9wuQxAj9BjY3I85TWNXeQj66jevQBomoXbXPWrd+ECgWBDAiQpP08Zc8zcdWJ1o0jazEmQxgnQW+BUDhRl0BKhHDzIMf3wxQCIYx7z1+3Nk4mLg4iOrr7gvPvojACRmuu22C5et0I73mixUfOGJ5cBWszjKo4MQWlMZlHesmxUiKMxOK02d02wLoqLKu33rZQmh2sxLJFgqjvPTiYzWKFwQgvJeJry0ESAFGekGkDY5PY01VM18WhrkzUfY8UTvBUKC8+YS15niMDiVWKUIXkWU6SdZEWwjBACYnOuk6/3jowSyiFCgLKQxWMSchTweriIpVq1ZXS5oakk7Awt+CUcb0IaZokZFnCzh3bEMYQh5J2Y4FarUqeG0g0uTBcce2LiMoVciTN1NJupWzctJ25+RM8+dAjXH7Fizl4/1NkqWZhqEylqonjGjOzOUnu7u0njq2gKmXiK2+Azx3CGmfQSuUSpUqNSilA6IRICcbHIyqVilPfUYpa3VW3haUy9ZFR5mfnGJ+cZGrdOlZXm5TLFYQQhDIiikOaGSSAthphJd2whEkyrDEEaOL+eo4uxoC0UAB4vorTDRPbzw4UDWW9ey502nPbi8pB6TMLQhSueb8FnQXXDARBHkhyJN3MNf8wnlyUW00xkvpg5CAgKCk0BopuV8ZYT023KA8Oau2yA64jtj8PKVBBvxuW65fgSo+DMPApxQtvF4UR0GnKsaePUq4HfPfece7cWeJfDnX5wPGQk+2clAxrQrSyGCUQaQlLjlYWbMHcGuBh+3n+LfgRbhNwIQlwt7lVPVChw308yCIlyDzHmBwIMdEwIj+JkSHS5oUAr6OTWoO0Lo3jJnpInmckrSbCWFQUo8IYiSDTOdYaqkN1lNCsLC05CrA1aKkoV4dop12sztHdDiaO0RKSNKHTbjE7O8P+/XvJrSTNlkk6HcqlgDxpYPOcvKWJwsD1UBCK42dnuemW2ykPT7C0skKlUkaFEcOjNRqtVe79l4c49fwRquUAG4xSLo9z+23X0VzMycnYsG2aMHQupqyPMDd7muq8V7PNDYQhxgh27r4EJTJiZciTNnnaxlhNq9Wi200YHRunUq2yYdMmhIUNmzcxNjFJkmZEUYkoCmm120yODxFJxXLihVYD97SNUGAloQrZOSoZ9hoHORajlCcCFTG86kl0+0fcn4SikKJ3YUOea5S1SKOLftV9kFAPEIn8Z4W1PmsosEJhe+3MCtfei8QKix4MRc4dkFaAcBLnQgUI1W+7V1yLm+hFtaRBKlfOLD2hxeFTjpSUZSlCll0l5QtsF4URWO4k3PfEN6kqyfj4KJs3TfN9u9fzg3tD2knOXFbn+ZWE+1civnwq4VlyMgOBdTe05+INOALup5/ggzmgAdT1XCthi5jM2p7HoLWnafqegwin+WbTDjbVCDQiCJFRHZIVhM57hy9WDrAuXZikCG0weYLOM0zaQagQwsgdXyja7Tbjo1VK5ZhOJ0WVYkbGRul22l4XMCUuhVSqJURUJo5LJI1lV7MuBXEY0e22qUQRGE1rZQUlBIFnmGkMca3OzXfezI4du2m1M6dQKxVKhXS7KVLlbNm6EZUt0mwG3PnGu3j00WOcnFti1/aNHHp2hk5yiOl14wCk3YxQQPvgQwCsrylOdXN0rjlzZoZ9e7ZRjiSLcwlDw+NUyiWCQJGmCSoIGBmpk3balMsVxsYneoM4jsskScLk5AQqDtG55eRCE43xMmmGNNcsN5qMN5sMV0cZXm0CoDEoVQRn0msP9l3n/ngpFo4BvMAaJ+BhCyERUaBsLmPg4/Ji6z1no92kVcoh/1ZQLMDaNze1EtdOTqgBD3Zg0Ep/HkZhhMtg9ekL3ocovs+rCVmjCaMYaUyvH4SxhjzLESokjEu+1fqFt4vCCMzbMn81P82WhaeZzp5molbhJVdfx7YtGyBNGRkf5faJKlfHHV63Lua9h9t8YM5iTcAasccLbRdKBfUsuO2/U8RoxXvGYpWP92Shs+cUY5XJINdYnWFxnXapj2ObEtteBd3G5rknsYROdrvrMABjc5TRrtW1celKg0bKwA0wDSuLi4goRJRj1u/ew4ZtO4jznDTPaLfbyDjGGE0oDKEyDNfKtJptHnv4m2zaupVKrIiVYHlhyVGJoxAhA0xm2bFtM1dcfa2PtzO0NcSlElIIksySaY0yEaNT6zj57EFOHT3IN770WW6+4+WsrrRJc8nVN+zji5+5l+W2C4O6nQ5hEIFQ0G6wPkyZ7UJJGAKleObJg7zkpuu5cvNmSnFIGAVgDcuLc5RCSRxEIAT1ep08z8i6XcrlIaSUlMrl3gRsdzqcWW34fnuSXCp0u8vps2cZG4khKxF5bq/DiZzRtsgeit5bMKAfGsrC78fjRwahcx8Wir6dEJbcGi/8eW6rO9clwLn7rkcAUmFN1muYK/zEtb1+FYObHTBOzlBJKbFSEAQBYRD0UsS9/4Ufw14vwYVYos9byHJUGDvvR17kKUItA56fvoLjo7tYf/Ypth2+l9MnP8bkyBih1nRNxq6pzWw/cAWt+Xl+4MVX8y9zJc6o3GUJ1qz8g1sP2l3r8Q96CL33Bt0I04v5AuVjLCmQvlGIyTLHxvJNL4W1GBEgKsOgNWRLjn4aC1d+aw3kGUK4BhlGKZRVaJMjgarJCaQk3rodnafkoUFVq9SDMjfc+QrylRXylQXwvRMq5RraOGktk2tPtzUsLyxi8pwrrzzg3O1OkygMXKdtBFu27+CSyy9ndGIcYySdTuoKj3DdbGcXlhkdrWIyiEoRGSkHn32U2eU2V197NSeONJkYKzNUmuT6G/bz7r9+PwCVUUWnWSOOJCzPEqiIQCcM58skJmF6eoxHH/4m1UrMgcv2sWnLRlaWl1ASsjQhkILxqWmElCRJQrU2hLWGbjejXK262glrnHqxKEA4gVCSydYJ6qWYvJmiggVUeYcfUxKLciuvUP34f3AcFKnfYkx4rr4wuctQ4T5bgItOQ8C53VJ4KfKCgmxxYqCFsg/e+BRAX2E4ALwk2PkDsxh/fvR6I2O8loDBY03eCFjwFY+SVPu/ZT+zYI3BKu+1BNELTb+LwwiAxQhDFsSc2nI9qyMb2XPoK6T5KhWbUEsszx5+ngcefIBNu3YztHcjodpAmJfoqgsAHhcK8desANB/AIMwje1lFordDLhY0X/EqQs5ENAa3SvvdPtIbOS03IyRkBlUYAkkdMlRxiDDgEAKpM5JpGBTpcTV0yOMjq7DvObN3Hv/V5mZPYWwksmpjUxPreehg09Ry9pMjE+jTYPcOHc172aYLCXrJuTadQouhQFJp8P83CzW5EgRkGUZGzZs4bIrr8LKkGari5ABYehXGCVptxPC0KH1mezSWk1YaayQZJq9l+6gNlQhDFMWF1oYqRkZG2bnddfAP8KGzdeQ5Sk2D+H0QQ63DRk5o0PDRM0FrDFs3rIZ8oS022Xu7AzlUkCj1aBWrTC5bhpjod1uEQQRJtdkWcbo+IQjvxgQMsMQcdl0nU+fXUAHASPzR7m8eZiJkZDhepX6cInNxoVjgQrRvk1XMYnPHQrnlNt4G2GxNsca14G67zi6SkFJMU3tBYv/bO8LDFhDIIMefnDe/ueOyzUn0h+XthA79YOw1xa9lw43DnfCt8zzRkjbHBFIgjAgLv/vb0P2v3kTCFtCywxrBUvDm3jo8u9guLFIPe8Q52fZOfMU06WA7ZumMF1DMw0wMkcUnkCRCTj3pl7otXPeL+y2oJjMvkBD+PJS/3lZ9H8b6DSDFD5us46QoX2DU2MIMawbrhHkliUNWaqRRhJFZcyQQnYNE+USGMWJpUU4fJg8EyRpisgEQ2MjHHnuIIe/+Rj7tq6nFS1TH675mndLc3mZlZVlVldXWF5ukKYJo+PDLC8vsbS4TBwpBIJWq8PYxASpMa5ENkkplyOCQCIV5DqnsdqiWolIu220tqRpRqOxiskMTz/2OKdvvJH9l20BYXj2qVNMjteZOXgEgEtedhudbsLJUwvwACx2DRrBwRNzHNg2zr7dOzly9HnybovR4TImD1maXybpdrjs0kvJDVibU6vVEEhmTp9iw8YtTvzEqzMZA2Q52yopQ5GglXW4ZOZp6rZLOa4TBhnDMuBA14GTxuIERn0PwTXhP2vIwgNDwU9Ua0HnfWPhQd4e83DgWP0hXAh9FNkHr1asM7AaJR24PDDk+x7pwDH6vw4WOA0sRL0TwIOZ2n2nrzOQvlS6ECMNPaegXL/INQbdY2kjPENLWEsuJXOjkyxKC/lWjo4f4La5J7hxc5l/7IzTkJAF9Jpj4hV/wHpqZqHmS/+mDXoAov+31Bbr9eWktb10rSxSR9J/WLhOL1Y6lBltESrCysC1uDcZInP5WC0SShnsaTbJlEVkKaUoIrWwmKxyzdB6nsznUDm0U8ljC/NsmD9LXKkgtSWQIaKTcM8XP0ZrfoaTQhOHMcMTVYbGR2muNFhdXqHb6TI2Nob0aHEYBpw6dcYBgUrSajRZWl7m8QcfIKrWGJ1Y52rN2y2kLKPz1NktnWG0QdgyRluMzXvqTWdPHea//7ff57u+7wcRSpJlLYIg4IknvgDAp/70j8iVJN93m7t2KRG5Yqwe89BD32Rl4STj48MMDVUII0UQKKY2b2Z1cZFWq40MIqq1sqPhmpyp6SlqQzWv3uQES60IsDZh85BkfTngxPwK5dY8RxeXuXrbOqpRSBgqrq05T8Aq2U8LX3ATPSZeEQr4VxHaOmNeYH++EKn3sze2+j0KhTVIYV04QXEsSxSFnFnp0tSzXLJzne9OVIxD1mJU9L/PCZUESIMnBxUZBuuHog9f8swVEAnHkJRFAZFw6sRI6dLZ8oUXwovCCAgEyvhmDXZgzmpQUmBEjpE1vjF5Nc/OLXOmUkNqiJFgVT/H65uEOj5R/6EWkZmDB9wqagGZG2Kl2FqP2T8eUS3D8tIi0qa0kpyNmcJYg5Igcak6NZiuUQE6LCGCMhIwaROROoktIQJyFJMqxQqDjRWz1hIIwaXlKk8vneW2ySpHmwk5ETdPjvPA8dOM7tuHtYqwFJOnKTaCeHKE+UaLTd2ELElYmF8klq7mfnxinOpQtZcSWlpYJvSVd1YLAqsZ6XbJDj7N7NQ46oBzF8MwQgmnQtzpdEmyHBUOUSqVqZRDlqVAyBIyCHpstZvvuJmjJ07x9//wITqrJzkzNwPA6LZpWrVpli57MXzxz7DaEJmMuk3YvWM9jaU5jMkpbYi9l5HTaDWpVCsYoylFIUoq8iyl2+0yPDZGs92kXK67ug8VILHkoWSkUmF3tcPzK1VOdxSV+SVa2jAdVVnJ4b4nDvIaABU5XKCP9w246gyECfSMQK/br69DMoVGoe9kZHyTkcKr6BkAXLl5rwmucB2rQdAxmizJSFXi5rqUvcXqPA+1OKGBxUxZxxPAGBorK26U566VKVIiTYaWoVvxlaM1G+81GG0wYURQGWL+5MkXnH8XhRHYMFTmx2/ZC1jHePKvW+tcHGU1hhQrAgIR+NVYgshRwvf99aWiQC/fKwAlA9fRVfVdLykEkTRUAsH4UJnxisBkLXKd0FxQdJI2M6dPc+qkM7JZp02nERJVqo6jXQAzQjrGYVDFZl1sZwWjE/cdquKAJGUZUgqdGKajmJbJaBnDpWM1nm9rtk+OM7fU4ohpM2ZiJE66LIoiZKwojQ6RpyHdhRW6OidJU0KlSLKMWm2o56qGYUCr2XRCl1KSGkOoFdVKzGRcIpRgH3mck8srNHZfSm1snFatRrlaI80zwjDC5Dmthmv+WYpDJqemkWEM1lApj7Nt21aqw8PEH/4CSWUGYmd8ValCtO0SjIp7zzRAU0pbtEWLcjlGCeH7EQgqlQpYTZ6naFtCKEdu6nZagCVPEiq1EZcT7wF2AtNpI6XiwIjhYzNVFjbuo37yQQ6dWiQ0goXEcqTp7n+IQEtwoWY/EQD0Zm/PuS9eL/Adq8Hka1dPS7/FPX4BLwh+ojiScOGiB++MkFRCw56NowTlGGN8MZtccwKDIIU/N7dsWZ+40Don1xmY3AHHabIGu+rhBD28wIGJudYYKWi1uywtXOQag+NVxQ9cP0YQhPTAEFu4PhYtDDYBKzNk4FSBlRZYJdE4NRrnMnkwz7pySqwDVYxxCLqUrr2YNoIsy9GpRsmczFjaqaXbyUjJ6HSa6LyJljkm0xw/fIKzwSyXXH2JqzEQOP19IxAigFIVuzoDeRcrS6BTpAqRpNSDiA2lkKOmg84Mm2olTnY0I1FI1yqUjhjeVGV1ZolxCa1Gi4naCEEco7VBBSFpnhDVKiRZigQqcczC7CxJ0kHIkHbTsLqyjBCCUqlEu92hWqswXCszhmTT5RsIShHJicMsPf80x1YWqW7aztTGzVRHRokrFWrlMnEYkOY5rZUOtVJEVCoRRiU6rSZJx2C1ZGJsgqE4ptv1texAO21TaswTjhb97gxSaGqBhcxSqdSQ0pJlGUmSMj8/T7UUIE1OqRS7FKOQKGEoxTFSQJ6lIALwkuEiDqnVhwiU5EUbVyk9uczSpddhTJMdRz/PV55fYe+uSzk9OupOIZT0ewjgK4kHswH0XHtP6ugvxEY7bQsRUqTqHIMPsJbA8w8MrgZAConJXAoYqXyzE9fYtGszjIgZG99AkrZd6bHPKvVnPfQJb37m+3Zx1lqs1mjfRKZrDcishxUUnJai/ZgTRnVGoNvtgBQcOnqcavS/0HxECLEZeA8w7c/6L621fyiEGAM+AGwDjgJvsdYuCeeH/yHwKqANfL+19uFv9R1zc4v81V/8g6M3ovx1OX/LpBojE/JMgHHkGYlACUsnz9FJRpZllEplEEULKRebWWvJ0hSTa99QVKIKkofVxEpSrZTYe8kudu3ZSqWi6QoojdcxusvJ2QahtZydW2BifIJer3sc7OPafGmnJWANQoQIFYNukFtLICy7N40Tri6zNy+zPKRoZYpXbK3wD4dmuXPDFOPbpxCjm7l5ZJlnNk3yzIlFaqOTdBsN6vURhIEgjMhTN2EipTh17BgzM2eQFqJoiEajQ5allEsV0iQhzRKsjDHdLmOlUUbWbSYWmuXDj6OCNqzMMVutsFyp0Ox2mJqYYMGnGmVUJghDjp88ymOPPUS5XCFLc9J8kdWVJTZtWk+9XOXU2Y5jBgIyUERkZKag5rgBnSdt6vU61VqF0ZEalXKVoaE6kGN0TlyKqNSGqNeGSJMOcVQFa+i0GlSCElIGBMpx7ZVQ5DonjEN2bxvntukOn5pP6QxvQtsKtViztKI5vv4y/3w8/Gf6Ez2yllT4ll34VmTFRHTJHaSwWJNRAENKCKcnIAob4tx8Yx1pTBuLJUcJSS5cqtXZGzd+Q+p0ui101qEUBY5HKHDckx5aab0H4cuejfXfFxIGwtPBU4zIqdUn0GLWg5QG67ELrTVpt+sS3EZjbUA3TUllwMFnj7JubOT/vREAcuAXrLUPCyGGgIeEEJ8Dvh/4grX2vwkhfhn4ZeCXgFfiWpLvBm4A/sz/fMHtbAq/N6McqCo8Lxq8hQuwVMCCto5Z10NVhVOhsdYgc+nzuIJCTNK1di/SfRa0QBj3wKXVrsZ9IWP66CGueWyJqlmis3iWZqPLaqfL1NQkGzZqduzbybrpdagg7LO3hBMvodvEZAmhAhuVMFEV0nlXhGJCtA2YDuHhVpv9Q+uoxxnPGPiJK/ZwZGQc2WoyGUji22/gwMOPcaSxhBqKabfaGGMJhCIXiiAOWV5ZpYTi9MlTtFoNojAEHIodqIA8z0mzhFIQYtotxpKIHXsvpVJTVI4epdpeYq4UILIOq2dOsxrEDI1NshgKRoQAM0kgFQsLZ3nys59j8dgR6lNTjJQE7W5KrjNKoWKkPkWgDaln52EhVn2RDIOkstJgS72GiAOisATEBEENnYfUhmqIrI0Qlm5XE0h37MZqh/rQEErFBEIS4AhZ7SQl1zmtlYyzCws88cQ3OWwmEOEESWWIrwfrENM70VOjzFfX+YFdCIoWDwwcxdz0sYBzth7xLM974aQAhLEu3u9hS87tdpiBm9SBUKQIJ9nmtQ2dyKyXLPMDxxqXOuxVrQjft8L3l1dCIJUkzTPnCZiMRqONsCFnzrTYumUMSei8ZiudYhLOqBSqQkVWQVjD0twcw3FE1Gtjff72r+lKfAY4439vCCGeBjYCdwO3+d3+FvgSzgjcDbzHutl3rxBiRAix3h/ngptRIa3hdf4PD+j1XDfTQ2atcYnaws0TPbJH0Rys+E30AZzeYfqBocVJjFHSCGtZ1paDTYM1EbK0ARNZYptwS7iEUYb6yCj14WEo8sS+8aOVGabTQoSS4UpEU1dIlBO6lERkdDDLy8gyvGh6grPaMjFcYUJFHFURW2zGoWZCevYoW9MuDzeamKUFZNWtiBKFimJkJ8H+/7j771jb0jS9D/t9aa2148k331upK3RXp+o005M8ieSItC3RME1aEElQAmkasmUZDoAIGDYgiLBpm4Zh2DRo0JYlUDLT0KSFYRpOnmn2dPd0qK6u6oq36uZ7T95phS/4j/db+5xbXdUcmqJQ8AJu1Tn7nL3P3mut7/3e93mf53mN4eDohLErBGTLrMHgJUOICeq2xlnDqmupDvZxMfLwaw2XygLlF7SFoessM9/QLRcc37nNeHOL8WgD33hee/V7zOdz9janhFu32S4d16/vcHg38OCgoChLCpN4+tln+cf/8IQ4lyDQrpb4+RzVO3EqWISa1976Ps99/HmuXL3EZDplPJ4wGg0ZlI733vguhYXxsGA4LljODcs28sabd7j38AF37zzizq197j46pU6BtlmyaiKpinQnKx796B+Cj22jqw3u/PSfotCaSE2IwozrLLLjK5UB48SmVhwSQRX4dYfoXFoNxKSh61BJn2spku8stU6/z3qO8nhKic1hxczk+QB5ipE2RnZmxNz1seCjsu3Z+ibN5SwJZaTtHGOiqMSF6pf/ye/y3/pjG1jbg5g5uGiFthpXmLMBqNpASOzfvs+odPjuvyQVoVLqSeAl4KvAxXML+z5SLoAEiFvnnnY7P/ahQQDUmcAhm0Ksz3EvD84rWuX2iDyk1qldzOXDGROLc5Bw/qZ/OOVgkfLMd0AlTdRCE9UafHKonOZpJQM2o/fnBldaoimkFvMNp8eHeDdFWQHHBDTU7FzcYTw7Qm1c4OmB49ajR2g/59LTE969/R7DasL375/y9vfvclpaVvNTmoMRuhqR0GxdukJ9cw5K0WbqrFbCjRcZcmC5WND6yHA4QoeEXi1R0XI4hN2yZbG3wUFTcnJcEyZD3rn7kIdxzunBMcWdOwRVUAwGTDY2uXH5AvXxIYeLUxgUTCdDZrs3uLC5AUli9NPPXGGxQFppwOL0FLe1olfnpQSzecNXf/MrfPfb3+J3rlxgOJxQFgPG4xGT0YjTg0NS8qAdXfAsFjVHh4ccHh0wXy0pxxN8G9i8cJnWGMbOsqxhWhS0pULfeof0xEsEmZxCSi1QYHoquNLCFkRla+5ElcQlKmh1TkZ87ugxgtCQiOjYKwuV7Ojn7suUotTtSiYRpRBZdA218YILEPPa7o1I47rXfzYRub81e6AwZXKatPTEVjyCtliX+DN/9t+gLMr1DAqxOpfOgVE9AVKtvQht4XCjEQ9v3aQqDR92/L6DgFJqDPwd4N9PKZ2e2TNBSikp9UPyjQ9+vT8H/DkApntnJyTZ910badP0iGpKvTt8H7zPO8T0kG1cn3wZRAnr8e99sFDyuikEksmKs2QgQFQJ07eLvNAtY5CoHlIkRY/SDkxCFQPS8T7BVsRytAbLUulg2fHa0YpLV2/w5Z/5o3QxUf3q3+fl0xlbJwv2ByXHx6dsac8/PTrgjz99g38y2+T0ZIU3BcvFiqtPP8PD22/joycqWNWrNW3BWNltuhAYT8akkAjzBTfGY+L0Ag8fvceXRlOefOkznL55l07P2fzcFxl89VvceeVlbOo4+v6bPDw84hOf/TybA8tIt7z37k1SG2kHkcFgQhiOeOkLP8qd927zxBOXeOHj1/CNWLyBnPI03cbnm1wy3w6vAyfzOfPXa5RCzEK1UHNlIYjnAhpCTKLYRBOiRpUjkl+QdKJwJbayqCDttpFSFItHPOhaumKC1g2jMOMaBQ/yHLKQvNwbqpf7Gm4jVGJiFJvzc/w/MoaAAh0aEgGweYOJmH7OAKwzgpBHjpES2hg6r4n9BqWSuEN7j7WGxWyO2xDCzrrQ6ANBAulL6n5tIPluRJtIjAWJksL148siMXQSIHwA1WBVknOrRK1qjKHuWnav7bH/3hsYe9a5ef/xw9gU60Mp5ZAA8NdTSr+YH36glLqcf34ZeJgfvwNcP/f0a/mxx46U0l9NKX0hpfQFhhv5xLJexGf/smS0j5LrR871WXP7hpSQOW96PUUXbTISa/LHtfJ11KSoZUePwgJUMWGs6kM1PkHQcjHFvyRiUAwNWC21n7pwBbX3NHHzOqqoUK7Ib6kEZ3hho8DOa+rXXqG+fZern/scP3/xIq9sX2UrWJxv0avEv/XEJX61Sfzhz3+Wn79yiYKWk0f7bG1sUrgBKiRi29HVDePRRADk0OV4aWjblip0fHJ3l+c//3me2p7w1MYuv3H7gLtf+RpH/pToEubtWzQ7Gzx/aZetyYBTZbDHc771ja+jv/ZVprffJd67hzWKyji6tsUXBSMjWdfd2wdsblqqzRtrivTW9Wc5njxJVC5f25ZYDVBJzEKi1uhiSEIGurahI6Xs/KQ0Wpc4I+5B1hVgFNaIFZdvA8K8UwwrS0xgywpTDVB+mUlBhqAn3DeWVZByzLkS3YNnSjKYiBKdBRDVGbbUMwGFLejRbQPJ5LCgxBosB5SeMEaKaBWzG5QEChXkfjMxQjKQYh5fFpkdHtLV9doGXRaW/EcYf4hoLdfzKZvnELKAzShSB/2S1arD+Bl6dYqd30Utj1GAMYKNJRK+9cyXDcdW88yXfvRD1/c/NwhktP+vAa+mlP7yuR/9feBP56//NPD3zj3+p5QcPwqc/DA8oD/WCxvOnST1+L/Hfj+n931QXb9hZOZTphP/AGN4HR3O/SDrsJPKQgzVWzyzLhfWqR3gjBZfA+uIriQMN0mDCRQVqe8+GI3WA8ZXrlEOS9SNp9isBujjFeapC/w3nrtKc/FpyskQXOTl/Zo/8aOf48onnuG5jz/FhZBo2wWh7RhvbUubrGmYrxaE2HHt6mWUMhilKZxB1R63qtn3nvbuA6pqg40rV7lWbPC3Xr/Hq28d4JeJhw4m9ZK7szkax7XhBDXd4LJ2fPbkbZq2FYGUgu2yoPGatLHF6lTESKZUmBD50s99nmc++ykA4sUXWU2vQjYZIST0aEAajcAYWYyFwQyHYF22eMsguNKZQJOwzmGLUoI4goo3TQ0pUi/nVE523c53pNihQ4vO4qmZHrBvJnRGgnCrzLmSsv/iDKBb/598jc99H7yYcRit0Eb+vT/RVUoJ/0T0ivkWSrnOV4CMMUtBhsFcvHIFW5bCiD03qBZ4vH3Z/9MiXnMoUU2mvLkpUErMRFXsKOIK7VeY2GWxW25ZBjGx2T8+4t0HD0nj8QctO+D3Vw78OPAngZeVUt/Kj/0F4H8N/E2l1L8DvAv8d/LPfglpD76JtAj/zO/jb3zAaoUP4/2nxy6kOgsafVRNgVJFmn7HV/3whj5anL+gCpWMEEQUWf6Z1q/d4w+QjSWVolaaxloIRlqCZiZCIluQ8ngp5RTRG+5+7x3cyLLjOt71jqkbsXfxOl/96rf4qc98kTc2trjzxqs8sRU4efSIgdUsTk7RoSW2NfvHx0w2t7n1/e+y4TRh0XB6dMTh4TF102Gt5vL2lNS0TG3F2BnsqOSZi9c4aBaws8Nof5+jg306XVAsljRdw9PTCXfnM7zr2CgGTL3n6e2Sb1ZDygQ4aFZzlsGwO95ld2vKq999jSeeuUrTtNx44VO87Cv4Z7/OwfYTpASGJp9TC2YEG9tw0AAeVKKaTKgX4n+Xy2xUFth0IdK0HbYoJMNCyrmua0nJ07Y1XddQVQU+RGLbkLyHGPL9kEB56owpueQktU/98j+38Pru0rmNIOUsEpVI3sutoJEWoZauUu/sY5SoCGPuPCiVq801Mg8kT0whBzSNj1Dk5wFSEvUbWUo/qGjMu1sMWbpsFMbodVm8ubnF9Seuc3J8SowBYwuSMmtnqRgT4+mU09WKtgs8uv+QDzt+P92B33rsbD1+/NwH/H4C/t1/3uv+wKHW/+lf6Oz/P0CvPBcEzp9IhSDB3vN0kXjLJxrs2fU+/zrr2fScobkZzOnJGucpp/nS5RpRk2xJIhCsg2Ikr9XVqLwQFCWoyLVBwyh63vnqVzHTC7wz2cD8g68w/fJnePjuu+yaDj71Is0r3ybtDji4f4fb796nm59SYTl+7x6TrTHFouWCGzCaGh6FyDIpBmWFNR2bVuGM52g1Z8+01PUmMXS4RQtP3OBze3u8fPMtZsenTE6POXKanZFla2ODNw5mbBaKLaNJoyl1KAhdS2k0oRxwoB1PTqZcurTDo7v7HD06YlIWbFy9zqP3VgB4NEpZORfI4omU6K1LpEd3SbmfbQYlbpDouhZrND4I7uI7meLrOwHVBPsB4xyha0hRXJ2WqyWjakAKkW5VE31H3wFQUWi9NpcknRMUv7f+ou8GvG/xn7+fsnoEFQRT6m8HAZLFOSjF3sz2TIOoFaiUcEblFnbK8nLxLezbdn3ZmoKk7X3i9Pji79+juCN5BF9IKQjOkO/56XSDp558kndu3mT/0QFl4URApPWa1BRjxFnLzu4ed++dx+ofPz4SjEHgbHNWH/DYejUqzsY3nTthirXGU7T/A7ALUijIMDCP1QznA0IiT6eRmnd9r/Q3S4pnphBKnYlEtAx8wFWkohMfgRjWluOprFAxcsiAUiv+yVv7dOohP3ZxwjdD4jPfeJnBM9c4VoHlK1/j9sjxufuPqK9c4NntKeU3b/IVE5gfPcBVJbrtmAxqPv6lL7D/6l1OCs3D5YKL3jE/PGEwnfKTu7vsb2gmR8ecPG9pBhtcuvker29XDHRkrwq8PZrySR/43XvvsrO5yZObJS8/nPEjFxOHg4uE0FBaS1omlHacMqZyFZcu72GoaJqWEMRmLeSWoM+eCz0nI4CYqUzEecgocbohKpyriEVJ9B5dWFRIOdVNECKh6+izLm3FplvFiEbh64YWwQCaJFmANkZ0ElpB1Pg89yFmQDnGkANL+oFF9rhwR6G6iDEemmWWo8j4OHk/kpZL98gQ0eJclLtGWhu88STMelqRVgJCJhJFJVOoldIoa8X/8Pyxph73byuRgoxjs8aK4WgWyomXoOPw4JQuBnxUhBjFxdqadbDTyvALv/ALDCcT/GrGr//Wb3/AwvsoBYEfOPqU7fz3krbp3BYinoE1j11XlXijdnjSWbD4wFymTxHP/0J+IS2tJekanRlMijW5yTmgQdmCZAsoJDPoXybaEnRH03Qs1ZJnJ447c813D0749PXr/Mp+4GceHbCojzgqNT925TKnTjMthqRlw/eGNVsHiX11Qjl+xMeGQ4rRgPb+I9QQFoslT0bPxtNPsFnXHJ4uORqMuFor7riG8cE+1cmSN0zN1hunvDGbUy9X/MilxOhTn+DHC3hr/y6nquSFacEz9ogHe5dIt2eYZk6KEIuSWg058iuGoyFVBePJBOWc2GX33llr7fvZ9dIpkrqASpGQEoRAu1owmE7QwzHzowNM4QR40aCtWgtlVLbIskpDSISmpXQlTSO+CaawGOMAMYU1BlBRev/5PfUefEo8N87V2+cuc+yJQ7nrZDQYRWxjJgJJKSIZhQIljkhWO0pX4r38zGqDJjFQJSfKElUk+oQOkELEewEjQy8l7uchrO/N9W53rrLN3gA5+1S5NMAZUkr4mHDFiAuXBuzuRPRwuCYOSfajaNqOO+/dwRaOQfnhS/0jHAQ4q/fP1+b5OpbO0gbRra+PfDNqPJ1ISFiPof6BLCDx+A/O/c2z+mHt+trjAVqp9YVBGdllXAnJI2CQvIw2FuUGXBgndurIg0aztz1lHipu3Tvhx25c5Ou3HnIhtSRX8Gvf+D4vffwav3XzDdr5giZpmraD4gIHt97EL2eMk+NWd8wgKcysprq0y1SXlOMBz+3t8XBxSL1MbOohi9Mlo1RzQUVOo+fJ7ZI7rkBt7bJFxxudIpRThu2cYqi4OCp5c7xFePRODnwaPRxTa8eD+QJdDJhuwXLVoLVmtaqzjXt/7s+dwozC0zYC+Eax7vZhhd7YEGRfkW3ZxSNPa+HaS69cdk9jREjjg9iOr+o6zxeMGGvzBqAhdpQ6Sl6y5puYc7Tgc/dSfwOdyyWVUiQNg5NbbNSPGFYL4vVrdKGjmk6xRSn8/SLRNR3DcoDFUBQWp8V5yFqNrzv2hoZBOmUfGSqjMrktRojBiyRgnYU+dtLet+epHHAgxI4YOrp2hSuGaGA2X3F//whsF3CbCwAAc+VJREFUQifFtJRZhGdZq2a5WPDe2zfpQktRfuSdhcjX5ryDK4+dlHTuv0opvO9kWoA61+vN0T4l8W1PqvcgfH8U6H83PfZwn1D0D8WURI6ZT6xGrKWUVmfy5WjBOkilFHv95lgWhBB5ZVHxvF7y1FM3uNfB9uF9bm9NqN5+l93LWxwGzd6q5qiwfOPl25x2LXeXc56d7qGrks0SFrdrjFVcnmxwtFix6ALXL+6iNqbotmbv0hVaE3mhq+HGlKHZwkz3ePOdtzh97/tsXN0Ab/jRCxXt3iXeev1Nip1tjt46pmw0Vi2wDhoM8eEhiwjdqGTj4hUSiYOjBbfvPuSlFz/Gct4It0JZWej0pzGub2qhrAYRWeU0XMVIUgajFcZWYojadRjrhKbrLHLyFGDW3QJtjOygSuVevMfk9FgMRANaJaySrn7MQcDogrNwfn6O8BopzHmiJirJPtJ3voGav8cytShtcEZTr1aMreXS3i5KO5RSWOuI5IEySuOco/ENM7Vi4k/YfO13qExF3QSoJKAaa+m6Zn2vpXVA6vGt/G1/S+Z2tMLnINBi1xOGhEkYYsLkUWtaW5SyOOvEjCULlXow0/6QRuBHJggo0jr9PgNKWC8qdS6Cilbt3Ic6H1FTHiXSIzopGyqkc697DmM498Q1k0uliMy1lYlFkjT0NVvCK02yTup/C0QD0aFMgXL59+wQU8AzI83FhWV1PGd/fsxXDhf81CXLV2LLF7cHvLS5zZub23z5O9/m1155F10W/PTHnufBzg4vHtUcLE/pLm1xxV3Gffo5nnvzHo2yPBoGLj464v5Qw527XCjg4dhy9Z177P6BL6A3Biy//z1+cbbg83cTF558gf1pgf7Wd1ld3GJ58yb10Zw7Xce/fUNhhxWzowWpaZlpUOWAbrRL3QRSW/Pqa6+zPSgobEGpFe/cfpizH2TIi9Fn5YFCZijohIrZWkvJAJmUQJsCN5pSHzxAOyUTdqxGp37kV0KnSOGcjPeK0ha0rqDrOqy0FdBapNcJQ+trNoLmKN/SSoNJcX0vqBRJnGE+8mcCRhkkn7SU9ZzxyKDiQAC4lPAx0jYdR4uWGDuZlRiCsASVEMhUSuxuTnFWk4xGhYDpGobeQxdpIxACXYjoKB4ZZ2A0PfK4jk/0oKRKdM0K4gSdBGuxIZ/nrI7VIfsaxoBxBpKMr1cEkpfxeNroH8oF+OgEgZQyE8+s63BgHcPPdQHPPekDC/2z5z6Wbn3w7z6OC8jvJSVtrF7OnOhHWmfbMQBtWQ+st2JxlJIVXACI1pJKzXKwxe6Gp9QzNsOSa1PNnQcP+OntKTfffIu30jt87ukn+Ifv3OPqyPDUU88wv3iZJ+484t1BwXaxgy0TR8WIZ+8ecPviiFFr2Vvskz7+DC/efchrj+5xenHKF1cr7gxWTF/+Pd5dLvEXxvwb5Qu8uliQVie4hye8ZRSfbj1/584jLmxOeGqjIKZ9HpRXOXl4yKhQHK9aNgcDTiIEH0nG8zuvvsNGqejmHU8++zSzpkZnP791sF13dCAYQ7LVuesLkG9crSjHUxYP70IoRTdPRGmXb/aWkKzYoGdXX9+2GOvokvTxQ4goW6CTIiixn4+mxmTIfWgSTovFuihTz/CAtH4/Gq+88BbaFdPYMBkO8CGJ90ESVmEbNePpBmdaBDl8iiyXS4ZlwXRcUVhH07RoGynrlqZZop3MS4gx4LQS8DhINpPWGcG5/HNdtmickX9KSSehn46EUliTu14xEaLPFY50I8j3qe86fFOjVKT9qDsLAcScnqtcFgBrpF2Ovk7Pxw/hFWgtGILPaeT5nz2OCPcv1V/Yx4NGRCbp9Lla7/tmrRG3kdRHZQsmQHLr3dAaRW1G/MXDLW7Eil214LLdZse1PHWpQocVP15U2K5j9vZr/Okrm3RHR6Tjmyzm90izBcMbT6GPG5q6Znfbs3y4zxPdBTAFJ6uIvnmT7zYtz9+4ysP9Y76mAi9tFXzj1ttc/cQTTL1lPoIfeeoFfBs57ubEmw95+egBz13ZY153zOqGqwU8tFOa+w9RRlOjabThcN5kNHvFYYBf+p3f44vXrvD6wTY3T47OAK30/joqSmbgKnpFW8oszBhERlw4ixsO6FSL1g596Wm6hzchRExCet4pYY2lDeL+a1yBsQZnC+ZtIlVVbsmWrKJlgWNqZSCK19BESFpLMml6QVA6VwpqMBEdA+XNVxgPkMGoTuNJmGgwWDan2zzz/PN0fakXZIPofKBtO4xOEDqMbnFag07Y0nI0WxDz8Bq0oPw9CHnetYiMmzwWpVCsWs8qJlBGiFRZMXt+TSil8uARjbVW7tecSXgfiEEMU4/rhg87PjJBQEUE7T+/K58/PigTePwVzpD588HjfSqxDzp674K1L2F/s/Q/jzHzxw3GaIrCobSRtqDue5MyFSZpOaXeOnTwPBiN2G8rEpvoboXpPOZwxqCDofdMaRirxOjRMVdMZGc5w+lDdrRj8Nb3GRooB5bi4IhQDZkd3mW4O8Aqz8PDGc/u7dCcPsSmjpNyyOHdI4qtHd559yE7iznVcy9w783vsHPpGa4+/xz3vvEyipJ2dUqTNA8PTyl2NA/NmIPZTU68IrgB1lQc+4hykSK2LOImbZFYOcU3vn+bRy0CiAIi8jp3YaSvhSmH6wZtyplACAHftRRFiR1u0c7voS88if6FP4X62/8XmB+RqGXNJjDO4ucr2rpFu4KYxEQmlBUUJReU5jAoWq2xwTIJomxs9JAY86JZX8pzKLxOeWqQIXWnbN1/m2JcEpNGxUQw4gKUOri8c4HPvPA8IYgIKMWIzpuMspa2a7n13rvUfpZnJCZK38F0ROw7SSqhrUwU6kemrzGAnj6pJVro/PNoCoKtQBt8FzBJEcM5BqvW2X8xtzD1Was2Bk/bdjStYGdHjefDjo9GEEhIz1eZXox69jj84A7+WBbw/qig+BcpHc7agwnSuhmz/qHK5YA4FElLySjhCUAUtqHRgGQGKuXqyxoiEVRJwkOK+BQgaJQtWHj5vClqUojoNuKSx9LAakGZOioVKbWiNJrSGYZFQeE7dt4xXB6OeXYUKe7NWaaClGA71AwqwyCuWJ0uOalr7KuvMlYtzcNjZm+9QaBjq/O8lRzN6pSnS4saDnioBixU4um9CzxXTHmzLGS8eYKlcjIT2lh+9b19FsWUbjhd4+uietNrjEAiqYYnP4H6+hh12hIQTb6PYpGWtMFWDn1SoEZbpO0niduXUKeP0LoiRemRl1XF8dEhqoK6q1HBsvQN6cIucTBg33uZSAR0KnI/T0ZuopC/BOYR89h07p7QWQGoQmR8us/mwONDxKeISbKTtgS0Lrl66TqXtqZ4n9YlZorxHBEocXB4wMn+gqAEoQ/JUE4nxCAyX5U0WLOmqEsLVGYqkluiimy0SzY80bn9qDQUhfAOpB/KeCRGLc4kPAbnHElLW1HE04mlD8yalhrLLJ2VZu8/PhpBgCQKD/f+dl//sz76vW+CTH98aL0PP9h7+YAfKSCp9yUbEkxijOu30j8eEZtxtAGTBBhM4dzgCTLnVAJF0vkOtE4syq2MqookoSiHQFSaJimaZKCERX2E9m1uoydSbImqEYDHwM5px3//M5d45uIO33rnDn/zzUMOYuBzN27gTu+jVMfF0YRde8z1yQDGA9RxzXODLe6cPuJFp7lDomTAbGMTrTQ/cf15ZirwG2+9TXjySUY6MTeRVg1JxqIVHHcBbE3izMc+xS4D+z38lEihg53r8Nmfhd/8ReH4Iw64MQSRZZcOhSMMxjJX8vLHUO98DZ0mdDoSYsSVpQB0IaKixylNDAXpky+hkqLr/SeApDw9kjwsst+/Yq1N6AO+0nlRxhYTay4dvkWhOpZ5xqDPRrUqJYbFlKefukpVFHh1tpvGGDFWRGnOGjZGU969d48QZZhsFyK4kjAQDkEymtgFSd3zpjYtKlZ1ZEUi6Z7epAm5LW2UwimN0lnKbgSYjlm1aK2jcAmjLM45nHUZ71YYY9DGUk2m1E3EfNSDgOq52EpQ+ff3T1U6s1ruRzQ9frwPL4Dz/KHzj/7gc9S579P7flWdzRwQJqKkW6JmzNyFNQklv691Z8OACojLkZf3b0S1iHEyhSb2Ulor+ob+s5lSRq8v91G02UNf3m9MGh0LTruWv/twyNbP/1n+03/6v2ARCpJKLDemPFwsONyfkw5qBrog7V2juH6DMgSKZUs13MTEFj1p2Cg7/nG7gykVv9Mk7quC5z/5DK+fBIzVolWPipRaiCWTsMRT0sS4zgSkNSq1q3yfUMmS6jnp+Z+CV76KenRLAmCMEjC9RzmDHQzpioIUE+q5z8Fv/32ZLhRCjpsWrMb7ljINUaWFraukp56FzudGj2RrOnToKLlkafVZV0jL5+jde/JSQhm4fv8dNpbHnISG3l9CKhfFsDJUbsj1a9sUWmPV2XKJMa2vv1WJ3Y0xMShCDz0pmVi18IFV3fLw9h0u7l3IE4MErDxdNYSkSNoIw/I8+SrBIAVKIiobhTSxo8pmrk3XsVit8D7hk6YaT2WDUL10OlE3Nad1Q5MKitG/nIDoX/0h3sqPtW/kcQFNZPDDuV8/v+b7C3tOeSg1lQytTOsn/mDZcIbIfsD76VuCSghDvempAIYy1qqfT9j/U5zzus80Vhlbo6RUgDWRI2UMAZ1IIQNE9kwGrd0esSiI84forl6r5eSjtgSlmMeS7WefZhF2aMProGB5uiRR0iGtodneVcxTn2SuS2nXaVmwOoFeBK5ME89vb/GdRw1fs0O0h+rEU5QVs6QIOBKS0RgirdcoIlZ5unzT6hQkG8jz7lRMYoZpCtTIkj7zX0P9yt+g98RLKRFTRDcJNxmy8nmIzOVnSJ/7WcK3f11ktSTZzQYDlFIEHymrAjY2McEQYpe9JIUroPt5AUDIQFvqOxfvw5qSjmzN73Pt+E3upwUOS6fi2jcQrbHWsLu5ze60pFlFgrb5XgC0pO1yCQM3Lm0TYxQ/gRTEe1AFkra8tX/Ijz77JK6063tA20xDDuIPgJeht6l3IgamTjHCQ/CYPFG55xOI+al4GvSjz2NMa1wAJFD5pIjK4IoPJwv9vvwE/qs4ZPBjcQbk5H86T3cVq+BMjEAwFE16vGzIx0CJnZQioVQ8+/n5bkz64AAgZA0jvvMpu7eeu4Gs1rS2QHU1uvOocxfm3BfyWplpuB5TrU1+G/mzaC1AojW5VHCCihuNdwWMttDTi1BMiNpltxyb1WKRw5M7/OZX/iHGHuTdRaGSZzQsUVWJvvos6YkXCXogKLk1RAxJaYKKdGXi/ixx0iROVxqVDNEVvLvwbBDY6l2VctcGEoPY4FRkklZY1YulPEWocflca4LsyFEym7Rzg1SO1i0x6bHLAE+0pYwBm0BZS/rsT2Mm23KuggwfKTIlu6qGRO+xxYgUW1KQu0FraS8nPcgsRDhRQ1LOrFRaI3DQ19sh4N75PkeHD4irjqSSjIcj4VSi0ImmSexeGLFYrEQz0TXE4GWitJcuB9nae1AYruxuAQmjLaWzeWEG3js8ZhZy1hiDOBUnUV7LgLF8j/WZS75fO+/zuPtA27XomFvWMRCCF68H39F5uQ+dc6QU5fwS6bqO0AV814kb8occH41MIK/MtNZ9rrdWyQIUYqzQI/gxorTCOkvbetZtH0ClyFXb8HZTEsw5kLD/O++vHNbfn88MzkZAxZgHTmQUN6VE1ApaISyn6qw8WWcGyGdYlzD96+UYoUxe9EmcjR57k1FuCpQmKosebIIrUctT0uIIW2hCG0i+o20WPLh/k8JBrQwaTesD1XCMefLj+OkTsrBSS0LSSDFv0ZAMigAqsbF1hZ+6NuH2V15hTqLdvsD9xTE/+eIGv3WoediJwYaOHUNV440WpDtJ+m+0x3pH3RN18udOyROVhUvXSFefRN38Noko7s+qRZuCoCKqi4TOw8CiLz9JevIl4rtfpesaJpMJ1XBIc1TTxcjQVrRb28TOg7YoAiZFApqRVaQ892Hpiuzo25drck3kSgkd+fDBA7qDRygnwT0qJYCvkro9BsWb77zNf/q3ZyRdYJRlMKgwmXxjtaGwTsoW62jrhtPDA9mlfSeSZ8n++Y32m/zxP/zj2D6DiIqg1dnUY5W9MTPzUgGEjrZd0cUWrcU2LPjMQ4lB+BImO18rMShd30YhUdc1bdtwtJixXU0/dPV9JIJAAonWOvu2nWvrpNgJgaivv2PMgUBME4BzGEHCkBiHJTq5zBbrTy6cLfQPAArP1yHp7EGJvGIpHvNgyNZY4sYGBI/2HWHtUqPPgWNn72kdG/rFrrWAg2uabH485rKgb7dpJ6WHcZhiBLYiKA/qBBVbutChnGU8GTFfzkjlmKUaMhxso4YXEHwFkh72VPR8bvPOEyGaiqN6zJ/9I7/Ab3zvIa+dHhCJ3CnGPLo/42efvsb/++aKVWowxmBoiClwOzohTAExFTRuiIny/YgVK2UISkxA1GCTdO051K2XOSvdZKhqSB2sltDMUXqLpCuK3Sexb/w6vivpMrU4KMsg++q74VCs3rUhBpnsrBKsjGfSZSqzdmcZXJLrcaYjiajQQmrFJjx6uoz2xxByKSFdoHfvvMv+0QEdQAy90wxGa3yI6z0rhERloRwP1h0lrRQxSvA/OR3RdnWu9xXGqDUAKF4GKm94KuMGiaECFRq8byismI2SkFZlSoQQCEGy6N78xiixOiEiUpbOM3AD5ifzD11/H5FyQLZjlbno/bVT+c4Vssn530Vq88fIRAAKqzQ+GtFeh/cv9g/ABz6wsXDWCoKsbkt9eq+pE6hgpCugTQYFz8ah9e9PajO5Cx9PPvrOgpGsoN+pemOJtQVVvytoonKk6QXS+BLsPCPI+3iPRe258vTHCdc/TXz6CzQb13CFJbTZ8NLkAdk5DVE5kJJkcEqnWv7pd7/Lr/322/zMJ78MzUB2w3LAt1aJSWj48pUxVhcoHKPQsmsbYhrhexxQWYKCK4i/wE+pt9lKTR4WmyAF9HSbqC2pE4wnKoW1FmciLE/Rh4+kFLSabnafThmiD7Rty3AwwpYVTiXsyLKpFcSV0JUBnzQ6wkbs+JQ5BKB1vY/EmSkMmY2PSjjlGdOifUBH6f/74EkpYrXCKPDRk3QgJI9WLcpECmfY3tykqipc4XCFxZWGotTYyqGM2I8plbLPoM4q954+rcFqIh6tQh61LlZlPfCVopSzVYzormV+esJyPhO8K/sF6H6uRtetN0OtNQeHBzx6tA8oupCIroBqQPND5jJ+RIIApCS2VWsgDQVRtOUa09sNykXtAfgMthGTtBEzXfKRHoiEVZszQK8/ep52Rv/lsX7nVedkpwavZGfuRRoxQYgebCkX0iiCMpKW6ryw9dlrJuTjQG+sGc/+ttQFwjGwOrva5GDQlzcZiJTcRQkeYAqoxqSdJ+DKs+y3lieuX4WNC1ANSEZ8/9Rqnv0NHKmf5aASUSEOOCnm8ktzwpL/7Nd/mU8/c41PX/4UCkdUMLNDfvX793luEHhxMkQlxSoVqG4lXvo5BkddolLEZaJOETraIOo6FUH7FWnvhjA5U8TjxRSVIHU8LfobvwFdR+oiqT2WAKZgsVigtKJIhqgSDY5HbkxhHCPlKGl5Uc/4r5cP+TdHd9lSS7mUuS7WMeYhoUYk6EYCa/Xmq1wt4fLlbXZ2dtjZ3mR7c5PpaExVVZRlRVWOqeyA6XDEdDBla7DBqBwSfKAqSoaDAYOiZOBKKldQ2hKLAHNWWYpk0KmBNuIMOGvXGaPJhqdrDCyCSQqnApUx2OApugVBw+r0IfPjA+ESxYQxJTEojDJoCrR2OCtYz2g45sLFPZp6gW9W+KBp28TezoUPXXsfiXIAgBSEOsx5cAS0s2d13Xq6as4ctGY9uT2n3A2ah52WXSePiF7/wvr1eyDgDEv4gbeTzl607xDEdY1v8t0t4pHUo7rGZgMLzngCLmYESJB/Mq00pWx0kcUguXI5qxHh8ffW4yHITpGMw6fEo6MTvvjck2h1QEyRJgTuvvceyW2jxpsyK/F8qXP2YuvTQlLcbh7yN/7er/FHf+wnuf8b7/LQH5E0vKt3ee/d+/yxz73E//N7d3mUJni7jaKDdDbNCes5bSSTayK0uiAheI4GwsYlUjFFdwekAMlK3Z1QaKsIj16HR+/C5WcxszlGK5x1hBhompZiMKGuZ5hJRVOOiHZEG5ZcVx0fL2bspBWnoeKtpfAXNApCYj2ngoTO1VdUmubRfe4/OmA0rYjRY7Nfoy0KBlays6IouX7jBltbW5IFhoBGrdWDtrDEmO2/lOK0bnnw6AE+dLlpZUgGrLIsQ8erb9xhsnmJzUKz30YiedqwOst0fdRUqUapGm0UGNgdj1DzU0hCkU5EbOlQxmCsQjsZOqKVwhTSGUsxMixLBqVl6RV3b7/3oUvvIxEE1vd65jzT92pz31382vv9MFuJ5/r8sXI/v1BQFrF46oC8sNY9bUnNrRJSRkwfHAiUEvaVMSaPyJb30ZcEa06AyjiAFgUX2egSKx534horunk4l5r272kthf4AnOJ9J+j9Y7RRmnndQYIdHRgNEgeLJXuXL3FaOzpXAFrYcueUao/FQfJHwPC1g9f4xNFT/NT1H+EX3/lNUlzRDTyvhorNV17mCzuX+MU3E3NVEaMCJ0FAp8Ru17Gy8v1MVURjBUBViZASqahQNz5J/O6voKI+E2NpjVYJE1Z0r/4u6urH8WHBIIljkDYG3zaMpxu0yxNMUYFzaBIXUscNVXO3U1zXHf+4vsjKnwBQGPmQKZLpuDIgNCaFNglXH1M4h0kSzyV9j/gowpsAnM4bTuqboN+TsjSptbWoM1KjG2OxWstgEd2n9qC0IVJTFiWKhrYO3Ns/YrpzTTonGePqNRUiVU8oZWgjWFtR2wbfRI6O5+jxED9bUE0dIEQlVxb9m1+Xzyq7D0USyy4w9zDaucjYVtx994OdhT4a5UCOmjJEtO/pxrMA8L412hN31nX02qTxXM2fcpOw5/bDWVmQpEZ736uevZ1ePZgBnrO3mb9XmoSWkdnGSl1vsq9AthzHFNI31wXKWDD67L30AUudKwHSeRziQ87RurRR+Txo2gjTUcF/80svsfIV8+0d4mRCWQpqrfIkHvnEfeBR586b1PRKwaKM/H++/lX+8E9c4cXJFZRVEEveay33ouLh299gSEDpEkdA5XZclVY4lpA2ADjVYwqbZHhHkNmShBr1qZ9AmWEGWoPkaCFiUyIZi/v+76LufB/dtXiEFxGDp2s7XKEYjQak4SZqMMX4hotqhQrSrrvdGe6oASFK4Pd9yw3W5WKfPeqTY4bLA6CTwaMpe0dk0K93lY6xwaeOZBTaKYxTJBPxJtCqhqZbUNcnnM4OOD55xGx+SkqyQJNKIjQLia5u6XziZHFEDdRocQZOucxT/b0sQ/e8csSQGIcWlWC6t8t0Z4d33n6bk/19kvdUZUE1KBlPRozH4zwDUWG1JYZEFxJt0gw2dml87np8yPHRCAIASoaGqh7A4qx0fnyB9lTe83X++YXFWXCQ/PoH/lQCuiSa8PWLqvf/hkL1ttVwZjqp+gGVEslD/3e1UIGxOQhoEYsoK5x7KRVyoHis/lfr3fksqzlboGf4gV7/TOUbBgxBaV5+4y6/+c57PEgOnRyr0yMubk1RUaE8ggn0mAR9SXVe7yBMtxQ895pj/q9/+5/wr3/xC7j6IoWy6NGQby8MAzfADhQ2aIYmCVYDeGV54Cc0Wj77aVC0SfzvVcxkL9+RdnbRQwkUMfsxJsR2K8SGcHKM+c4/xXULgor43P/WGvxqha1K2vEmnbLE2PKGHjHUAevhdppA9FgvQUDHnieS8oYhpWGyCvfoLjaI2WmuhghJREECxaRsyGEy+Ua+D62HENFJNBXaCNc/Kgk6QtYRajQx4ruA950Qh1Lg8HRBlzrqboXSUOjI2CpKYKQ1OnmEfi4xK9VLEvKaq9WC5z7+LFt7O1liDVVRUDqDK0RPoBK4okAZmaLsCqEb1/Mlxwf/Em7D/1UdGsRDjb5WzunvY2GqT53e99gP20F5X7Don3L++w86cqoW887gvZddRIkF9dlf77MNC6E7wwRMbgHGCMn1m728nxizf0LfIpRFLlZUQe6qx0qEvvRQZwEk7+zJGB4dnxIqJ6wynZhWGxx2QotNKuGCR4eYzT4DqpevpjyFiYxaR1FJvju7x+LgHj/31FN89/6bbBaG+4evELYtwWtq1eFDKVRXwKcSnCZq4affVBc4G5aZ1t0elEJXQ+IyZelsfy0SBA1pifreVwgqUZiCfqRW17V0qxVxNKHd2CbphA8VicQ3/QRvLBpNSAai8AR8ngcA+T7K6TxBwYYjRCjOuVL1bb0eW5Jzkkh4VBIMwDh5z/1bT1lVeJZZJnwU3EBpObM+IRZ1WvHw4ITp3Qc8Wb7AoVacmI4YV1zUA2ahoVCK1fqWMIQu4HRB7ALtcsV8dkqlLClFJoOKnekU6xJdZO14pbL/At5TaEUqSrYvb3P4UQ8CCWnBYvQ5ei5nqe+HlcyPAWfqg3/nX+Q4HyQytbVH60MImBAwWme/Avl9cXWxwnGI54KWK866GPSGpxnX6FlDMcnzdG9K0usHWHcG1kdvada3JHuJqjE03jNM0tqb1jOGVeCt+YppXDHyM6YsUYMB2lgMidJonHa4Mttz+xaNxriSydaIF59/gpvf/zrPXrrC5689Sb084u9/9xbdeJcYRtiksSoSzGr93qK2qCywiTpmYlQPpGrJODB0/WeKARV7r0Bpo/mQaE/njIdjOtWByl2XEGjaxGiiKYcbdGiesqeEaJlpS6ssq2iFgZjLAZRBETMelDBaTr9OiaY+ESaoUoQk48fTefNPBQoZ4FEkJ8pPLUKhGNNaEJYyaNx7+ymlz4bmppRxhj7RS0yLIVsbU4xWhKVnHC1zFTmKLcsYmCiXs7RIoTTae5TVRGMZjMa4Kqsr2xXTUcnmdITGU3dRZM8Im5AEyXuG1YCTW/fZ3Btx7fINXv/WB9/2H4kgAFLfRt2Rp0jm9a8+eHF/EJiXzn1xrr32oceH/bzPlFGkLB0VJxsxw6S/ufs25vm60xjWIhDj1jV8Cl4Wu3F5p+kDWzz7F/Nr/EASkF+/T2mVjFXrrdejygMpVsdsHc/Y8CcczzwX4oCx8lBtMbMT2uSIXhaUXnaC3Osgn9U6MFoysfsnfOWt3+YTV7cIi8Rf/dr36coWNdzjUrS4sKKInjJ6XO4OyK5ZoHop8dr/vT/PWT+fFMpZer17imG9kwaCDDhVPrv9DGQHzYu165aEpuApDrnPZcqw5FIZ+F67wSIqvIqgHMrn+4cgbExjEW2e/LxLnsH+gSRqnJV4ggP0wVoeN0phtQYH1cDSnHrKshDPvzzO7DH8KOtCziAo4fX39+UqrfBtx7FQj4gEtrSlTrDSimWUmYeRRBMjVkFVOsrBkITFuBJf16jQMhwUTDcmGB3Qi1oIa/1tk9voSSWapuberfeoqsmHLoWPTBBIRFRQkKOnCn0PVayl16G332oz82rtyNIvxpTHQYeccmPet9jPfb22nMqvrfV68SUlDDKrS5RKxNCSUkVI4FRu/8VMy8olgAiW+lxROhQiGhcnYh0dySiUTqRUo60l+QhWEX0OdlpSV9W/l4R0KJQmGvE8NMoTqdDAZHXIp597jru3bxOouXblSa5fe4Ynn3uWQVURfKRuOrRxtI2n7Tp8jESt6NrA0dExb999m5v37+CP5xS64ud+9kc4unsXhpZ2a0J0Dm1HRH+TUZwDiaFvuKjkZlbRgG7WOE1S4g2Y8vXsz63qLLoa4umI3hJCwvTdCpVk4SYIRlM42Yn7uQ9tFzg5OeDpW+8w3buOszNuRMdNA1VoeJA0K9XRZkxgK3Y8opPAAMI/KJcUQVE+eohVMg8BevjlrOsUcgm4s7nBZ7/wafTHCnYvjdh//QFf+eW3SR2kZFGmhTxzoJdJBx8xrleHirY/pYgPCa8S8+WCY2XobMfAJi6awOuqYrDUtHpOahsqE4mpYNiuSCrRLhf4UGf8CZY+oI2jKkpibAW7SlISyGSkBltoGt+xubVNZ0vKouTkQ9beRyYIkNe0+sAd+jxwl859n3KqKTeLgD+aGGQ7VzmbSO9/LTh7fv/N+YwjCWNLG7VmZhmTZ7+nhE0+mziKnryfJddr1wG5w5Kk/DpaEkaQ+qBRsZSSIJygjJYbSsV1iYFBXHTJZQkRlfnqOiRi07I5TFwbFTx54yJPXtvi+evXWDXwsG25OWv43jdeluckSUX755ssklEqCHCIwqua6QjsdEzlhiwXByJWidKdiRlca+sOE0UYc62YMclAoFZzSCVR99trhFBjXElIChUdJiagwRuH8gXaBFJX02khYalOMgNVWDHRbDoivdNzFMOZkzkvf+8rbG1s8bHnPsEsdFxRhyxSRWDEHTtA510WY3GqzKxMRbJGhqTOZqj6GFyfTZ3r/qSEtTJMZG9vlwt7e5wezBkz5PXvPsKfHPLpL+7yxm/folGRNpBnYJzdW8aIFL6/l0tnxU2JRBuh6Dp2J4G6E9/DVxaR6SDQuobrxvFABawtSG2k6GaktqNbKUwM1KczhmXBxsYmRTWgGgwoixE+aU6WLc4Wso9FQ0TRegcqEObHHO8ffejS+8gEgd4W+gfK+vMaYgVn1MH8QP+knIapBMRIoWUoRR0hnd/x33+sHzqXgysyci1UUsi7cZC6XccAwaO0fdzkpE/lH3v9RFIGHZXIbYNnlFr2NhTvPYSgDOJoJyVRUhoVnUR3JZNuXdKMMQxSS2XgxpN7PHV1h6qUoaj3j1re2T/i3dMV+52icUN8DihqHeASpABdC9GjlIBaGiNgJDtoHKlTvHar48d3C1qf22aIrVVMbc6TPYXXLAo5XyoI/blvQmkUSTkSCmUSSrWYkNDBY6qCNByIH17X0pwcSqbV+dxf14S2I4aGGIXGK67OCR0NTbOi+eX/gtPjIz5/ZReSZtwEChdYhBHdvXcBWL75Tezdt7CADYHUdfjYkFYdajWD8vx9JCXB+a83pxsobaljZLiMHOzPmR0e85Mfv8i9K4kHX7vL5rUnCDHITIEYMaZXjcqOZkwebpcizhhUhJPZkuvbCV8mQgtTo1hh0U3k+sXAwwPHovNMkufqxOJGI0zlUM6hlMYVJU3dUpYV48kYoqcoCtSqEy5LilRFxapOzFJBM9tH1UsmV6+y+JBJZP/cIKCUug78J8DFfNb+akrp/6iU+l8BfxZ4lH/1L6SUfik/5z8A/h3EJfnfSyn9o3/e33mspk/nHjjfvutxgnXRBb3iTp539rXRUrfH+EELv0em+5ZQnj2HnEToDU8hBDEEscZkkYbGuhJt+8En6ey9J9Z6dnxABw++hdV9dlYnqJMjCuDS1pAdHWnmD3nqyg1efPJ5lnXD8cmRgHQxIuTaSGwV25u7bGwOMWrBdGCJRvPWvUPeeRi520RmEbpYganE61RWk3QP8meSwR6glHghxOwUnHpqtTJ4NBjNCoM1jqbrIZIAdKA7TFPTvPEtvpMiVQYC9Tf/EVYpyAq+4lf/c1RoCSqBFhKM0QLOhffu4m1Bs5wRu1qCvzHynr2nso7Jzi6L+UqCLjKCTHUtPkYSEa8S6c5t3mlPcc2MaTFAe8/TBRwloS4ffPO3pd+utHgraE1pDao0lKMxSpX0o+ViTBlnVevHtLUiQIuRjsByvmCxbHnrjQdc/ZGPcfu1fSzQZf6B3E5yXp0xhCgtw8Z7wWxSApUw8wVPNkteKUpWXce4a/lEOeOf6RE3D5ZMgsdow8XmhGu64QGaaAq0KxgMNogaoGM6HhG7BmcNRyezNc6ikqbzNa+/cZd7Jw3uwmXBNOKH8wR+P5mAB/4nKaXfU0pNgG8opf5J/tn/IaX0vzv/y0qpTwB/AngRuAL8slLqudRPqviQQ9ZzPGuxKS07F2cgc4/5CS6QWzpR5YoggYqCNCdFGxIhpLMAIdt7/muyu6l+7JXpZ9Uhv5d5CDIWK/TvThBgDU4FdAh4S55Wy1knIQeEwiQ2mmOa++9hD+7zpRef4ManbvC9t95m/+ABi3LCC0/toLXi7/3WN0BruuAxBCqluboz5fmnr3D50h7LZQ3KcO+o5ndvH3L3uOY4GNqyAl2JiYqNef6eAbLqEli3T5UWLUGSQSD9W5V+fcA4fe4cKYba0iTpo+vZMRfnd7j+xJPsbkfq23c52LjEMpbAb8PeDbRxMp7tO7/K5NnPE+yAYAzBij9CWTlsPWN+8/9OtzzCJEUxmRI68dgLsSOhqFcr1NEBEU05mjIcTzHGMDs+pj46YDgYYp97ieoP/rcxWxdRIbDSsJyfMg+B5nQGv/dVmj/454Vt6BzJObAWVVjM/rukV36DDSv2YzEzSFPKwz6V1NVFWeKjOEHENqI9mNjyxqvf47nnP8/eH3yB4g1PezAnBJ+zrRx4e2wkCluy0JbgPZZIaPf5ePsqX9q+xi2f2NAn7A01zxcD7GpOHRNegSs8FwZjTssSi6W0md5sSlAK5yxl4SicorClTMaylsODE17+zpv8yq9/gzZpimqAUkb8LT/k+P1MJb4H3Mtfz5RSrwJXf8hT/nXg/5VSaoB3lFJvAl8CvvJD/gqiio6kvjuQd3ATBDTSxoj9mMoLV+coHrLNVewXQCZbkNMyMq1S9drtJD/UKru4kFPl/FZU3wCQnTOGcyyyTFwxJmWAT1Jfl0q804R2gTZyskfzOzzDLa48M+D65z/Hk9ef5N57NXtuwGjjOXan28TUYqopdyevUZeezio2VOKnPnWJp29s8/qbb/LVV77Lu4ctR9Ew9xGvS6IuSVWvU0gElTOgHjsNCZ2sOOOmKDsxQfQPKqJ0x6BriVoUkTpB6gIUERUNKmhUrFktAyoGdNcw9B0Dq4lFx+XhgOQ89YWPAdA+9RKt0tjMlpw/8Uk629t0JSgKRvURs1//x6g0w1VDoMKNx3B6RGmh7WIWHUWaxQJlLF0XqJcr9i5ewhjN9tXrFDFx/OgRw9MDtgYtR4uGo1VN6qBdeXy21q6O75NWNdQeXXtMSijboNWKQYigPUrJqLCz+H+2gMmptcoafe00lbNU5SY7dovDzWNWgxZrHDEmhgMrQGi+n1TeqBR5dmaWQVeuYDIqUIePuOw7jDO0DTxtGkIFvoiU1mBsiXMVtwcVs9MFTdNgnUw7Ulp4K7GJ1N2SDo8ykgH8x3/3H/HKt96mYU5QhvHqBhtXrqGKwYeuvn8hTEAp9STwEvBV4MeB/4FS6k8BX0eyhSMkQPyzc0+7zQ8PGvmQKbO9qUPKQFnsXW1UwCUxf2hIWFnJBCOLM+RaTKmY13ne7XOqlvrvk1hWKSV6bgHwzqYOp5jWeu4UIyr7yvXgoMp036SsKART5BPbHQ8WigdtTQo1AAsfeXjYYRrQ3Qnd8jW2dy/xyc9ts5otqRdzNjaGONdyZecSbbsglJb9oyO+d/Mmf/cr32C/jmKkWVpZUGYIqtecS7swIQFTWcladBLnHmUiSQkxqB9gqRLorqGiYaM5hapgHi0mKaxVGL0UhiCWrhuyOp3BwyOSDngWxBRYrWZsTS0nb7/FZHEql+53/hYqeXxeQKt/+H9mYIAYMbogRM3yZB81P8GUIwa5s1IvT9m8cImDRw9oVzWGgHNOWJc9yOg7ZoeHTDc2aEKg9YGdsmH1D/4646cuMjEWWxl00litKaw8709sHeMulzhbUtmJGHEayyu37/E7r82xFHKNkwB4UaiosiiKAu/Fv7CnHFlrmamSxcERdhl5ceciX/cPCZ0s+K5tMdqhsDkrlexTaY0PQWgexmBtIXoDo3FJMoS289TZEjylSAv47gStAvP5Alc4rDXUywVFUWLQWKOwNlAah/Wejsg//NpbPGSD4cefw8ykRDBEFovTdYD+oOP3HQSUUmPg7wD/fkrpVCn1V4D/ENlD/0Pgfw/82/8Cr/fngD8HwHQ3L94o9WfKLkMkNNJbNxpMCBSuogstO6MRq1XD0mjharctMbYYrYlJZ7PpKLuc0rmezzV/TvsVSUx2EtnTjlwvy0UT2a2k1d57nCvzbqtJWowho1G8dtTSBYg+4DKQ6MsJ721c5+7pEeqdm3xyW/EHf3aTzctbLP2Sb3/n+zz3/A0+9twTvPzGy5w83OferOP1/SW+HJKsAQ0ajaoFMEymhs6L74JRclJQOc0XyqlKEdV52d1ilF556NCxJcVESeBTT1xga9SgVCAqacEqpXBa03WaWE755PM/zhOzBavb/4Cbr3+XxaDkwWZFBMaDIct2xvRUsp4rR29ijaGohDH4uWGDdQVlWfLue3c4nrXS9akSKjpQnsX8lK5NuNEG5XhM9A20K6w1hATVaERZOpy2GFPIbqs13koGRmhpOsUXP/sJBoORuOtaR9vI8JGnP/bCurpLCrTVJF3Q3L0PNqDwxJRLxV6Ag/jyaZV9KlNcd4dC6J18Kt745i0GuwM4lEF1kUhI4lYQU8IoMu9ArbtGEQk2ddNyMpsxcoVsQiFR1002DJFULiYZw2a0zCDQRmZqdm0LpLwhKQ4OD7l0YRdtHQenS1579z6tSgydY29jj6Ouw3cN3XKWy9oPPn5fQUAp5ZAA8NdTSr8IkFJ6cO7n/zfgv8jf3gGun3v6tfzYY0dK6a8CfxWgnGyn61/7W9Rtw3A4AQ3LzqONxRVDgaWCZ1A5ZqtGrJZHY5pFzZXJGJ9g1bTY2DEdDQhoXDUgdh2721sMhwNmywXHpzPsZJt7S080lk4pos6GnylLW30gxo7CKUpXU3R7GVSLWYpgKRePqG69gQ8NaZ7wNBQkWB5jMuBW/t4vEXxDbDp0t+LtB453ntqjGo4gJnzzkFe+dUrXtMznK2btkq3xgM1b9/An85yWalDSoehLlJh56zFmf7rsWZ9QoC3Rd6QgQ9l73Uxf6RhjUXg2npgwLWR4RhcT81VHCBFnS5oIpR1g1YKB6fj5n/5xvr45ohpYvv+9b3P54iWSNugIzVJurC9++csUxmKdg9df4zOfeYmyLHFW88QTT/C7X/sG9+7v0y4bYhew1lCUQ3Qh+orSRlqkfm67FlsM2N7aYLWYk5JnMBjRdAFCQBHxvkNryxs3b/Pip55HaYczBuqaM9DYo6xd60MM0HQNq8UKpxQJCwhbULOuptYlplaKQB5sm4lHQnlSHD48IT6aYbQhJp8zUMk++9cQApVMHYoZbzBEfPSMC4MrLMtVjbWO0bjXqAg+0bUtKSVcoUGDj7LxDAYjjC0wqubo8IT79w94cHTKcR14+5W3WZ3OKAdjfua5bT7z/An/8a/c5M0jj60GlMMzi/j3H7+f7oAC/hrwakrpL597/HLGCwD+KPDd/PXfB/4zpdRfRoDBZ4Hf/aF/YzVDffsfUKlITOIZWAR9bkBpotQaTGIzKVyeV2i6KAl/FDcYlcS8MijokNr/nhLFa0KLKUhKbIWIMTabhIirizjASGmgrCZQEV74OPWLf0yMNkmE0GE0DB6+weSX/hNUmtMZgzWBqqq4vLvJZGsPAP3Ot9BK3p8ZjNjYvczL3/kuzz7zMerFIcOyZDrd5Nu/9020atjd2+Bof4aJNVZ1rN2UkkLHSFFVxCQec0rJZyGP2NJKFI0bmzv4tqWpF1gnU5K0sVlhBhhDaGsOlp6TlfDZfYxEnIz8ChpXFKyajqP9O7RdoCgtA9WyOdzgiSee5d2bNxnPVtSrFZsXR3LrpoLWx7XjeIiwajqaTjMabfBzP/tzvP3qt3n35k1mbWSwsSedSuswwwG+awlNw+n+ktF4xOXLV3jttdeJIVANBjhXiDRXyfWLPtDGjr2dbbY3NymswWcXqd4abLFcEEKQ9NlY6lUgAKtVjTU2A8wiBjPZoyLEhO88040NaQlnlyGd6exC6IyE4NEmm+IqtfapIT0+7hwgeC9lJOBj4uHREY8eDZlMN5hOJ5k1KU5PnY80XUdhLXXdonyQv41G9ypbAgnF9159m9fefJe93W0ODo+J9ZwnNzWf3PH8W3/4JbYv7fH11085Xdzh6OSQZv7hS/33kwn8OPAngZeVUt/Kj/0F4L+rlPosEkBvAv89OQ/pFaXU3wS+h3QW/t1/XmfAatjdKkTYkoagFE3bYZ0TskoUxV9ICZ8CtjCiQfdCV+1bUE2b8B5GhdzUWoscq/cBSAHaEESrko0bVW6CqWzZrLF02WrKJsewGdN1HV3XYsuSpBXFqGL30pTpZINCa/YmG2xsTZkMHctOLv6wtNRdQ4yR4WjKjSevQLJ843e/xXDouHPrPk/8+BWsjmxsTBgPJrx2/21Wq5qkgixe7bC2oKjE/rooCuGwu4JqMMQYw2Aw4uT0FOcs1WCEImG0yoNdhca6Wq1QSnaU1XKJqSq0sWgthEalDQotRCKtufnOXe4/fMD23g5NM+fK3iaz5YyNzU22dnZ4761XuXh5j8FgAwDva4rCyexHYLlaSW2P5dvfeZXOt1ycWj714gvsnyw5mK04WnVcfeopjpZziDDe3KFezGibjmef/hjvvPk2Tdb23793j6oqZeEhPoDj4ZDPfOoT6NTR1DUh9WKjLi++jkE+R6Aoi4pF3TBfLM6CIj3V12QlZUAphBrsPUSwmOwfILTqFCPWljIMJRPVpLWYF78sgsxAlGCgM0fFWUOlDSYE4mrJ9OI2SVlW8wXLVY2PUo4sFguM0bRNJ1mJE2GQlC0yyDSoSFfPuXHjY3A6589/2VGtEiflBpNxybRY8Of/6Et86jt7fPeNe3zvzbt85//XIJBS+i3WOdZjxy/9kOf8R8B/9M977f5w1rKzu5OpvkIcCt7nFC1Ld4GQNNoWOGsxRjObL+iC2C/HGBkVcoIwaS037imgfZdwpIzYMllLF7ywuUJWCnZdzj4SdRfxqaZRctM4V2C0o4stFzc2+dFPvcDmRsmwsIzGU7STBfXm7X0AppvbDGLAaIsdjBgPNxmOLd/6xquklPjEi0+hjQUKtBnx+hu32Nja5PKVC9hCUmtxi5G0tWemrXnuPa8hitOtMZqiLGSxZzOOnnw5GAwARYwBtbUpCyOTsGLw64WiSNStZ2t7l4d376OCTABaNJEUO0pXcHF3l63pj1A3HXUrpc9oUGWJQNYzhMDKt7zz7l0ePjrkxlNPwuYOt05POTqdM5u11MsZt95+A1M4jh7cxbcNWsGXvvBFLlzc5YWPP8crr3wf7wNts6Ktl7hqxIUr19jb22E4HHI8PyXGyxTOonUeFV8JCr41nQCKupFpxjHfI23nSYUwP0VbFElRiD0qCCg8Pz1lurEBIfL6918lKRhsTAUo7vGjIJtMUqxbiyip4a1R6/mAkESynGQzIgaWizldveS739yHBKumYby1TTLuTPEYIzG0rBZLxlsjQgpSHvXuSNFzOquxNjGYwu3ZiO1S8/SLz6EWDyG1PLu7wSf+yLNEPsHx4REf/5OvfOD6+0gwBusQefMYUnREQfLExDMmtD0T5aQsltE6ybAJPRJLcA1JKZo2UBZFnvWRq6wclUkQojD+QvQor6iqDVxVYHIbqIhpLft0PnHxwhUKbVFKo3TCWi0uOdYx3NyRcWG+o607tBfwbqkEHPv4pz8jgSgmVm3Nrdt3+MKXPsUf+oWfomlbNrY2eOXlN9mYDFCp49rVCxSFRVubUeue0aZEvJTJSsBaPGStBRRjhhndTOvPorUhRCkddG5PWWuz01Em/hkJplJjCy16uWqYnXp2NgpuvfUOEU1Ijr29Ia6yOBsZVBWTCJtbA/jW77C1sYE2Gp/tsIvCcXK6ZLVcQoocHuxzenpKbGtS12JCR2xr8CXTyZilFjLSsBrTdp7vv/Uu1XiLre099vcfkYjYomQwGjPZnDLZ2qSua05OThkOKiaDoYz6BvqpvTtbm2it6XwgpIizlvrBIXXbUQzK7B3Qk8myhD3X7qfHR7T1im65QnlPHQKXRyPKwuE7cfs1VrpYEkvVOuCq3AWAvkV9Biwqpehiog4hc1CizDAgcefOHXYuXGQwGFAUlVzb5Nk/XKBSpF4uGF3ew5hI7QPRA8qyPdlk98Uh3f27fOnjIy5tDyi6Y2xVoJQlhpbQzTG0H7r+PhJBoBpO+OxP/DyF0mtSg9zTwg/oEdrzll8a1jc0ClJStI1Ha4X3DS6TQRIJ33UYY3BGozWsZguK0rGxtYXRluVyQUqJ0hWEFBgMSkSRqTHa0jQrvvfyMc+98CxJe6rRCLu5y6pbie130HSrBm0UTSbP2rIg+EC9WlHXnrYN/Nqv/B5XLuyCSpwuFoxGFRd3hlSlpP3aiHTW+7CuI/sWU8h+AFppqkHJGUuN7E4rU3S1Ec8DUI+dNzGnkBJBK71Gr0MIxOTWk5PG4yFvv/Uug83LmIcPOb5zxJUr21y5ssd7DxpeeOEpxgOHjmc7/9Z0lCfcyHt66to12maPoXHcf/gApTRlWXH10pOUTuYpxBCom4aiKHGfeooYIvWqEcJQ5zk6PuXqhT22xgP2Dx7ReEXqAscP9qlnC6qy4BPPPkVhFMFLFlEWBSq3FgeldBSqqqRuGpSC+WKRd+7cviMThHqyKf15UqxmpzRHJ9SrFXZrkzoECmdz21ivd3qZBJRFpBk47EeIh5TW4C0q+zloRdN1pCAt7sV8hg+Brd0dVqenHD96yGg0YjKZsLu3w3A4EPFYDIToibElRMXTT15B1TVViHz6qW0uvKAZxppiWNDWG2hjiWjw0ina2Nn70PX3kQgCRhuWraHWLVoVoHIKr4CkSF564a4QdVpsJcUKIRGzR5vRKuvSFaYc0YS4jvZUFV0UZHZSlIzGhsIZko90dAwGIxTQNqLIqlcdhRMiiUqJ6D23br3LMx97EuWUCGtQVNWAQTkgxEAoC7TWTKdTAJ65cUPGUnlP29ZEFbOnXYHWBkxA6YBVhq4L+UZKeB+xI4u1lrZt6dqWQVFhnaPMwzl7lYVzDu891hictWgtYBYgu2DbShaDpOhFUcg4baUIyO7kfRK/QDQhj/P6whc+xfdefYfnPvV5DvbeI/qOt987YXN3zO7mKNfQoLTiZHOTv/i//UuPXc+/+Jf+4r+6m+Xw3Nff+mfwt/7zH/iV2dYWdd2QkmJ5MiOmSDWoeHRwhLUlCqnTrVGEIDMDuhCyaEvORVIKO6owUeYapNYz3JjgvXRobPYW8N4zHI1ZNU1uLSoZFOIFsE1ZIq4RDn3beSbTbVzbsLW1zWgk3aL5aom1BmcNTdOglGI1O8G3HXZYMRwOSMFTVpbm9JjPXa/44z/yOS5ubjG/fxu/irhqj9ofkcyQaCxt6FA+ofWQ0JQ/cJ764yMRBMaDgma2ohsoVLda1799irn2FKxbGc+MqOH6SbM98KeNzm3fPtUT4pAPCaWhMorQLCidZrq5Qdc2sjsmMbew1lKWJTGGPFxCyoeyLPiZn/lRppsDZvMGq6WnjvIUpZNJPErjrBXvAGAyrGTRxkTXRorCZIKf9Ox88BhjCTIegBA9nQ/4EIgx4pzFlwXWGNq2k5Q+CJlGdoWASTAYDEkpUTiHteI6W9dCWNLWrc+DtpbVaiWoN5Kqhs6LmaeSIR4xdLQBOr9iXFjee+8+ZTEiJcPGxPD09T2U99iqkJQ3wf/jP/ifCwCLoigK/vz/6H/MX/sr/yd829G2LcSYQULZcauqR9UFaKsXC7rgsVbeP0omTFkjyzF4T89jCCHQtK3Qk3Pv3RgHSv62spau7VBG47TGacP2cEsAUq05nS/WVGqjjKjAAYx0FVQ/5ktuPlqladoOw5Inrl3hyhNP8NVv/B6dFx8ErQ0xQvAB5wqZARB781pRGPbSFa2FUmxRTDc3GWXvhcVihrOWtq1RumRxMs8ZrqLrGnzTUgzBKE89OybWA4xObBeecdjHzxTRlujxLrVvaZaRpDzoRPQdioAp3dlMjw84PhJBYDQouLI55Z3FDJPr+56911/wlBe31mfmCZIyJ8EEyOlctm8+A8+klo/Z9AEFZeFoWyEWpRiw1pGCLHaloqiBM0MwxkQMmWWIxihNVZWMR0OMjVKaZJ5+9DIa62Rjg//l/+YvffgH/v/j43Rzk9nRMbGTVNz7xLJZMhwOaZqWej6XIFqVeTEmXFUIdmEk8CojHIY++A2qkrpuaHNAKMuS8XhEr9AMMaCtkbboeAj0bE8ZIGKtRRnNqq6FK6FkoYd0Nl1KOAO5fpewgdWWa9eusXvpIsu24TvffjkPckkURSGBQ0HnPRiNzXJzwQ6jzNFEcIoQIkYrfEgcHc8oxqVwPULCx4grKryPoEy+V4Vz4GNLvZozOzrm7v4DNnYv8PSzHxNp9+kJrRYh1mrVUK9qFqsVKLDVgOFgwnT7CsPR8IOsNtfHRyIIGGt46ZmLPHqtxYdmbaMXEQfVxzXbuVWSAwMKMYMkVw9koY9CRlyj1kh5ZRQlkY2JpP9agSkKFNKCE3cYv6aTNrmeSgL8Yq3s5imnjSkm0fqFHpqQXe+v/Hv/wzUgqdWZwKkPYj1QBKypyP0UmTPwTz5z3+VQSib2eJ+JQ0oRgxcued/9yDhA304iSRB1TgDA/m9Lp6AfrZ098JJaDwxV+TViCESfB2iuJ+6mrJCL6/cXcqnR6/F91xF9YD7v1tlJT8CxVUnb1lRGZ68ChdEGkznxJv++1kYyCcA5hzaWIpcySik6LxJa74U3n5TCewEAU8ZOIK3fX/CeZd1grEZrqc9D6lmpYgu29kTMBZdxhlWz4q033mSwsc3G1ja2LDB5VFmM2bQ141d5z6F3K5a7L5+nlCAqmU+IZTAc0XaddLd8whUFqW0pCoMqZbZAigF7NMcYRVGN+MyXvoyrHK2HxaIlzGYs6yXJGY4Ojzh4eEzdShblo4MIg4132d3d5uLFix+6/j4aQUAb/sCXP8k337rLvh4DrZB2tACA/TDGnrcPZ4tEjpSHQORFkJF0Q27fJCF4KKUYDSuclVTWGIPNQFrvG6jQmRmY6E7nKASUEwmutOQKVxGSAHexaWm6BquNmA0F2VX6gRQh14RlWeZWnLjrnl/s5xdU/39jzHrRu9wu9F7aXE7L8FFr3VribAuXx6UlbCkL0miNNZaicGezE3JA6ecpCLItCyUpJfwIZyQIaIUuHL7rcErIVT5EnJI0V/gHZ6+ltT73mCKEiA+edtUyURNc4dDWMCgcxjlCiJS2b4HKe/XeY4wAl1VVorWIZppWOhj9dbfO0fmO4XhEk7sbgq0IIu/XsyIgGZgtl3QhUlihoYeUsugsZ4xKiQozL2BDtunWGqNBRRkbVhaGLgoE2PthrgN+n6XGPtAKYBuyjDumgNKaxWqFcztoqzHek6KUetZZurZBI0Gwi2EN8rY+4gYDQoiEFLlzpChWA4qiwFEwuHiFrc2G+WzGskn4pmNawrQaEIH56sNTgY9EEEAprj5xhX/z577I3/jtb3EwU7RYTErrgUM9ktsbCfUxQHb+s11WKcEL+jZavtbsbG2wOx7ghAxKDIFBVVAUFquT7EJac/vWPd577wGbu5tcvnKVqpzgjGZQOqxOVKXClYrh5oThaMhs/xHVsMpz81aEGLBG3GRCrtVjSlJ+GCH8yPs6UyYqJSmu1pqqquhnzMUYGQwG6+AwHo/XN6lw28N6Ycc8l6/PLLTWgnfkxdmbYYLwCPw5JluMkbZt14thPputPwMpUbiC1nuME2PSEMXQssh+gSEEjHVMJuJjF2NkPpsxGNj82bZJQFmWtE2Td+nM/QjSCWmaFlVptDHZ1NNijJLx2iEK8q80XSfZhWAZmuCDjP4i6wOUyuPkLSlEirKkbmrqxuMTeN/hjMVpcRK2OYDFTAvvXYMxecBNxicKLfLwsrAsmoaUcocl80pilCxIWoRaxtX1lKScWRqjSEnThcj2zg6LxYIUhLDmk5g3+G5A07Qsl0uOT2Y82j/g0rUhMudiQKE1Uc35+qtv8a2vfoWre9vsVBXRDXhz/4guGWKnqdKSn/zsU8StISkE7ty//6HL7yMRBBLQKvjcj77E1Y9d57uvvsM/+Op32F94dGXRvhMXHy1UYs4BL0pl7/goASP2aVk+rBFBymqxpDOR8XSc60Jkp1GJqtDMZnMOTubs7x9QVY7xcES9qDm4f8DRg1PefuU9fNfSNA1vvfk2w/GI6eaAi7tjobQaT1lYrBF6Z78IY4xSs557U9VggFYyT15qSHnPfesuBolyffruvReRVMrprfeS9uYWqUiEez5EQsVIs1qhcvcgBaEQhyjs9hgjVmm6phFjyyiqyX4aU1WUFLbIu5MwAW1RkDL4lwAfOknnU8RayTSExCKZ0CgHrxQTvu1kN1/VQNYHlIUEIO9J3lMWDpXiugxIJOiEC2GMoW4aUEp0+S4PVsm7sGA7ibZrMldBGHaSskt5s1zVkilp6elrbShcLygTHCgE8XaUml7OhdIGE8U1rmk9cbFE5eCzJnFJ35HgA8nm0jTzM7quwxpDl41JFYnTZsVytUQRBeQNEW1VDsp63Xna2d6j8REx4hYegykKilTy0qc/y7W9LTGwxeJcxXNGo1IgqoTVlkIpjNW0dcPe5saHrr+PRBCIMZC8x+rIlb0xV3Y/w+c+/iy/+523efmt27xzvE9KYFUiatAYjLMZvZebgDwBFnJFt150Cd8GCgN7WxMGpcOHiC0LrNasFjOeefJ5Hj16RNcFNjY3ePTogFvv3cLZEmsKVosF1aBEK5jPTrh0aY/dvRE7u9ssZseMJiOi6mtACU7OuVxfK2IX13wHnXe5foFrrfFRzCp1vnGsk1TaOUvXdRRGUmdjjCDtZbnGRGKUboIPkjkQEwPnGFgjJKN8o6pcuxbOobSmdCXeezrvqcpyXeMaa0ErnCtp25ailGCQ8k6H6rkFJVrpxybiiuV1T1oSbKBH42OMFIUjBJk0HKLoIHTmOXStBBMfPHXTZWgu19Y526iqikFZkoCqLLOqTnbapmmIPg/98D4HD5EWSwBaiaTXFSQSnffSVdKSSfZgcj9zsr822mhC27JqGoKpGdgSXZaCDZ3DaxRqHfRTLufOaOmc4QUpsmg72i4yKGXT8LlD09Qr4cFk2/FqULIxHXJ4NBd7N5V53p1m+8I2G+MSV8gwG61ECGWMBJqUs76m9SyXy9yh+eDjIxEEFIrVomaVFMOqotMd1dTwMz/5Ij/75Y/xW199ja+8eov9ZikuwFlY1ANkKgM8Mdf9dg2WiYtAjC3VoKByBmeEiaVCJIbI/Tv3ODk65u13b+LKktPTOdYVuMIxXx5jnaWNLfVixsbGBlsXtrh4/QraROr2lK2tDTCGrmlw1hFDyD3+5oy6HHoClDjS9jsvZFyicHgf0U5sqfpBGN6HNWkq+E6swLSmbYWYFLzsLs4YUt9aNEbaqnkZaeNwhQSksigw+ecxg2yj8Vg4BEZwgKIsZSRXSkKaihJIiqrIC15hrcZqKQVUCufKM4WyGXfQoIuzYBeDF5zHgKnEL6BpWmLopOSwfdYSsUaxms3RKLxzgokoRVjVdLmd22UCVNe1mQhm8UTKwhGtIQSfwUpIXaCeL0iICjGpM58Jawxd9geMMWWW5RnmpK1BO9uzsgi+oxgOqZuWNRCrpJVtrcUVZ6WXVppkJBPRmY2ok6KuW15++VU+99In6JqWFD1bGxsMy1ICqVKcLBaU1YBu0XL/nfdYfvwThLZDO5kAvVg2TIdTiqERg9YIJEX0bQ5gJuscHNPJlPRD1t9HIgicns557+ZDLl/epFUR7QoZkOFblCn5+R99kWcvbvK3fuOb3PfiBBxiFJ11Xkw2f2iV0+yephljJDrNpQvblFVF10oNmpSSej0mbr79Lou2ZVoMsbbEGg30Y5wU2p759bnS0bZLrHWENjIqFcZIvVuVZWbheapKyBkhBLrMWDwzLonrAOG92ICnlJh1nhQjVQaA+qyhLAsK63AucxmsWWMJ1lpRmilF23UyvykDUV2231ZK44Nn1XaUSvfVlASXtoMU0U527iZ4WbhRWqShaXDO0S2X8jdN7tFH+TyFkcm83nsGg4EIeJQo62JIhLaRHTVB3bTrbK2L8nu+7VCIE2/PjyhdSaENzhg67zFGUVorBB2ElhtyR8PAGkQ1RsaGGWvXwTYm8rk8w1/69rPO71OlJE52qmcB5nkDgApiAltYm8sOAfvElu5s+VTZSwEECLTGZGentA74YkMm4Ofzzz2DMxpbFmhTUbcd4/GElDpu397nN3/76/zYT36erUvb/MilH6EYaw5nD+hSI6zGYcnD0xPM0nB5bxPnrDgyexmQGoLP95lkgr2w6oOOj0QQWK6W/LPf+mU+dukqdjnj0pWrzNuWzQu7FAbaleLtRwui0aiuA6XXae3atUX1VAzZIVyu+1OKTDbGDAsj9GFXUBaacjAgxcjehV0Ojh6wPJljC0e9kl7yYrFAZ0LScDjGdx7CEp0MfqUZjSbs7U0ZjAphm2WiD/mit22Hc3YNuK27GUl2n5gXms2DJGXmnbQUq0GV+fx63XaTEqOQ6TVVKdbYmZgSonDZR2UpASBKTWtzWipgpAQgyR4SbdNgrTD/fNuiUlyz4JRSYDVd16K1ZA79uVAZ8UcZaWul7MWoFItlrpdjYDgY5HvfsFitxK1HUEh88NJ6VPK5jdZrtydrTQbiClRKOFdgnRNdfhDwzhaOyhjqVYPRWvj3IaDQeCIpiArUOEPT1IQIy+VSOk35WsRsXJlSxBidwUSRjJOQDhIqex/Car7AjvI069yxab08V/gsmrbtiCjcoFx3anTGrJSS9meKch9UpWVYWGEskvinv/ab/IE/+IfY3Joyf/09Xn31LZI27F29SIiW+s0DBqM7NCnRtpFuMWN2uM/AaP7Iv/YTvPjCUywXM8CyWtW0dU1ZFrl7qdZS6w86PhJBAOu41ZXcv7OPjpHw6A20cfDmA3EK0oYmJIKyWGMlvc2eodqQgTWVFxRnQFUMDErDpd0p1soCE/cii04JHwL37h1IpHdDrLWMJ2NhdlkrgqHYQbIMB0M2N6ZsbU0wSlx0ypG0rkLK4pwM7hETVSU12HhckrLRiFKKwtjMRoziHGSzRiD1RqYy5sxY0Qc4Z/O09oQyhrptKKyVoEQWrCB2YyH0Bqlx3VrrWY/Rd3gvWUk1GFBWJcGLirKoKvG6a9v185aLJaWxAmpqQxf8uqYvqHCmWAc4Z6W91nUdRSkaAmMMbiBBbLSxmWneEoB6tDzmzoCoHiV4qERGzFO2+Ip4FKtVTVUN8q6qWa2a3A7WFK5AawsJ6b1nq3I6aflao7hx9Sr6lbepZ3PK0UDOsZNWU+MDXkWMz7LflPBtC0b8+8+WTyJ2Hb5pcMMRPjSoHABKbcFEqiLLlNcS+LCWtceITKEicXK6YKg12oqz0Ovfe51f+42v8sILz/O5lz7B//R/9mdYnnRY49bCLIgUA4t1Flda2qZmYzpm98IOpoCxGnB6Ml9TxJXSuFIy0vNZyw8sv/8SlvC/9KGUwQw3iXmaT+gCvh/bbfS6P0+IawNQEDCKlLK4RuyXrBU1maSdicOjfZ575jrRN7knDSoj+GVh2N3eou1mPNpf0dSe6XQigFlbMxwMGY42WcwbqqqkLEuaxmNtoJk3dN2K0eVLTEajtYdd6QqhHZuzUWEhtLKrZu6AQuURYFospmJajzlLIQBnIGJXC48crWl9pGmFXjwcVrn3nFFsJMXvOQXL5ZLGS2q/WCwBMnNOetwhJFJS6xt9MVuyXC4YDofYLuLKCmedCJL6jCtzFfoOQZF5C9oYCQBKyjLpscsO35c9CUQrkRHzmBKmrDg5PhbZLmntAuS7Dm00JknrMoSArSxd3uFXnc/ZVX5tn/B+SQheWptdl0lVKitHE9Nhwb/25U/z4GDGb3/168zqJdYZjCul/ByUdEEEaz4JbqCTKFhVlPaAzkhCjBGjoCpM5lcE6rASx2Wrsj+mgi6XAkkmGjutSV3AhEQ5KDDOYFLHpDCUJpFiwztvvUFlDZ94/mPYzURVVdJuzgFT7NGz0KzNhLUucrpaEr0Q18qB8AdC8BRlSdO06PRRzwSUQlmZ0oMxuEJlmSwisPEBlXeb0EnbyTmHdT0mIH34GCPWWJF5pkC7bNnd2mRYFaSoSSFRFSVN2xK9x1UlXVMzHIhAQxuT6Z2GyWSCKwrquhG/giSBw1pHSuBcgW87RoMx4+EAZ925up81g877DqU1k+mUtmkFODQWnBMSSQh0XbPu95ucUbRdJ12PGIX4ktWFMSVKVzE/OqHrOiaTifARyooYI6u2xeQ+etu2uUshXYTlYsloNKRrO9lNigJyBlUNh2xvb69Ll3guo1BKYZTMZPRtJ3V0xiV0BmCtMetJTCRB2YUvlzDWZJKL0GGjUms/h8FkTOM7GUcGuYticqYAhS3FHyIj9kWSbkXdyHXps5+u66SEUj2pSnwmOh959GifonJEWhQN0dck3+FDR7NqIcEsNLS1tBhDHpYalVDYR4MRW3u7qLLEFlY4IYtT3nvtNWLTCHioDYUrs8RY2pOFLrh0+SrTrU3mJ3Pu3r3DT//El3juqSuMK8ej/SO2Htxip17xRFHwljcEpSB1NMsl+/sHbGxu0NQNq3rFaDhCaZjNT3Glo1m1bEx2OJ2L+Ch2gcIZLlzcRRvNaLrFYr5gMBqu19MHHR+JICCIfpmNNM7EP0ZrrLMUyEn13mOS9FYLaygKm1tbAV30PXdomxqrNTp6phtjZifHmTWXWM6XaKXofEtdrxiNB1RjS1FNOJkvadqWyXhMNRiwXAoPu17NGY9HbGxssFgs2djaJHSena1tXGGwTqKu9x7febwPTDckzRcTCEVTd2vxU922uHP+dzYTiBaLBUW/aypxVtbGUFpLTJEiA2chJOx4IuCoFl/EkMFFaUNJRlCVMr47hIC1FSFEqrJEG9FSKC31bdedMRQ734n1Wr+DJwm4KKFf9+l+6Py69QcCgM5XS4ajEUYJYt7hsytTR1VJG3KxXFJWJdY6urZbt+LaKLhDPZ8zHIkfnuA9Z3wJ8u+uVqsMdok1VwjCnVBKs39wuDajWS0bFqsVDx4cULeeW3fvYoxlvmjYunSB0cYWphxQFiWayOH+AQcH+yxmJ/jFDB08nW/puhVdDKi6JWpLYQtUVKS2Znl0iM73Z1mOsFXB7oULbGzvsbmzy6UnrqGsZbvbY+vaZWY+EEOiKiw7T1ymu3GRw67j5z//JZ566ybHx6cMhkPaDqwpaVYtRVGi0AyqIWVVUlUjUoSuCOI+5GHV1AyqkvF4wmg0XvNMeoJZ/Jc1Gv1XfWhtmE6nYubhJAWtl0I/FZQfBmWJGQ6zj4DcMNblXrg2eVeQWqhtB9x97xbDyrC5NWEwHKAUIi9ViQcPHnL33j2ZJWcUzhqeefYpzN1D7j0UZyDvOx7t71M3kc3xmK7QnJys8KFDn54yn8/QSkxJFQcYpdja3CSFiHMF8/mS09MTRqOhgEcpURTSmx9URX7fkgH1FNOyrHBWuAGD4VCYj0m4+lpZkkkcn5xKNpIvsm+F9RY6nxerLABbFBmYbASfSFCaPjCldQdlOBwKQSa7LVsr4Nya9poD8vmZjApIzgmmkINAWVWgNc4KFmIyL8IaQ5E5Ez54puMxPgR8062fX5VlJvUYBmVF7ESMcXR4yHQ6paoqYkoSwM6VGKPh6Nw9JMDcZDRBW83R8QmDymNnRzSrmsOTOZPJCIViOp0yHmzQRUPXRmZ1jUZh3ZDp5g7j4QgTWiqnMDhmi5plbFDJU2rNk1e2icmy9fkfY+IUqV0JmStqdva28QoWK0/rLcvjlrqZ4wrH9mRClVq61YLr1z6eA2657iBtb22xWq2YbI6IKKyyYp2Wr1M/l7EfcOJD5Pe+8Xs8/8JT+SwIIL3/6EAkypBL2/Z9NPvHj49EEDBGM92YrsUtq9WKjY0pCknNdWa1iUa+oSxFKda2LSkFdEz4TrIDHROL02MuXdihLBU7O1s46zg5ORFabeEwVUE0Jb/zO7/L3s42P/vTL3H98i57O5uUr5ccHB6zapcMq4rxUAQps9kxZSnpc9d2xJDY35+xmDVcuLjDxu4Ws+WS7a1N4SIAuxd2MwNV8AnnHG0raLPOZJoQPePRSLoJRYG2htI5yYqU6BnqxZKyGmI0bBTbpAy8hSxptUaUdEVhc2tSr1uMRSFB1VjRAAQfUEawBG1sRv6lw7DeldtuHYD7cqDPCJbLJSlGkUmTdRBk9FuL+YVcx4j3ZyO7u7bLbTmNNQKgVlUhnQ+l12Wdy23bGCNbW1trAlVPinJO6Mk2S6P791yvVlRVJW5JzrAx3aBtOqrBM6QUWdUNy7pmMZuzqj0P9g9xhaHzidYHTmcztreEVde1LVYrmtWCe3cfsFgF7j46YTxxXL+0wzNXrnL5yWvMZws2hwNGhcI5hU6W0Wggfos+MhxVrOplBppdtgyTcvDocJ5JRpINVVWF1onBxobgGFGRtOhU2tRSr9ocuMVarO/YvPTSZ6lXS4y2kqnlrM3nlmDfGuwztg86PiJBwGCNoSwLfCZuVKW0w1LuuXZdR1EUNEZabKBommbNlR9NxhkoizjrCL7j6hM3qGwBSTEdyo1zenrC7vY23ge+9MXPEEOkcCXvvH2HauDY2dxgMBgym52wqmt2drak1ZI081nNrVu3mWwNufHEVcqioK5XWKsZDgd0bSNlS7dkOpmuySo9gGmMzpTbIDZgWrE5HkvrK3sZrFV8CHpeFgXVcCD1dgYBQxSQr2s7uqZBJbL2IEtwm5pHjw546qkn6cVBvfIvhkhVlfSmnFob2q4VOSzpTLDTtGs2W09vXiwWaz1BXddrwM97T5GVisJ0FATcWktd18QcTELocFYWXi/XFssuTz8cxnfdOvtYLdt1mdIHkz4otdmWu/dOaOoV48mU4XCAMooYffYe1LRdzXQ8YGNUobY3KMqKxbKhbmqODo/Y2tll/+iQnZ2piJhCyHZlilu373H/wSF7d+7zuU+/QDOvuXL1IjuX99BXd0k+oJNCqZQt3VMuV3W2Dhdqe+FKZoulKB2DUMx7jEdrLefbCp9CwM1W5MhaiwEOcr6c1cQo2auYwngGg2Fu7ZKvgc/8CCFy9cHyw46PRBAAGA7FINJkdxX6/rdSzJcLnHU0bSs66qwaq4aDvIOKP0BVVbRtx+lsgUsd+/cf0iyXVGWFUorhcEBZFGyOx4yGjr3dCa6oWMxmPLx/woWL22hbsKo7trcGbGxOWCzmbG/uEZMYlHz8+RtZ+qmYTEekBMcnM1II7Oxso0g4O6BrWoIP650f0pq5p7RmWddSmy8WawZfd3Ao9NrsUhQ6cVyW9Z8IPrJc1jS+YboxEQ9/I+fK5cUkIhbxPJjNZqxWK3wM1HXDcDCgXq3WO0ZvuqKNXr+32HVCXgoR37PhQlij4r13QhfygBNEYi0U5C7jLVEmJEWheCcFIcjiXi7F2GNQVVKnpkgIXaZFy3vv+fSixpTA0GMBpycnAIzG0sqVVlgvN4+SxeRSsWlXbG3uCL8ig74petCawUgzmY7Y3txgNJ5w5eolQIxWClfS+payKhgUji985lMsFwsmkyHGGent+5au9dhyLHPc8BCyOiCThMpKHKG6pqNrWzYnIzrv0dqSIvRDgeq6lmBblMSkCG3CB1HBvnfrljBVt7awTghRXdtmTYJd6zfEHt3QNg0+syVNpkyXVbmmd3/Q8ZEIAiLY6Hk2mczStnjfURQWV8nQzRgiXecBg9LSBahsSUyRwagABc1iiTWaK3sX2N7ZJMZNBoNqXdMG72mbFh8UxgyIQWFtxdaeYlkHhpVkGlVZMTuuWdWeQdkQU2Q0GTNbLNja2GS+WHB8vMhCIUfXtYROevI2I+cpddl0RG7AVS07bpHZbV3d4Ru/lkcbYymLM2trUCyXGQRrO8qyZGNzTFXtEbwnDc6UiN6LdiDGwHBQAFZGYynNyekJKYGpKqaTCQmZFOyDLOgQUxbEyMXog0PfJUgpiJzYWXwUpN4Hj1Fnjj8xL+LgJctRWq2zBqXFc9Ep6VL0su2U0trtqG5qqqLKnYF47nN5lILOB4w1sttl7YXJdmohhjXYWQ0qCUzOYrWVtqGzokrUiuUiZX8FhbMFuhC1pMogpDKWpGHoJCu7cvGCLOiBxSaDtY6WlmQsznmcK1gua5yr8Aq6tpEx5EpctJumxhUF1XDCvfsPiDGwu7NFiJIhxBDY3dvGe09IEQ00qxbjLMOq5LmPPU1KSgxVlAQfkwKYhHHymWarmoODQ0bDIcvZgsWyZro5pusSPnou7O1+9IFBIM95j2vSjG9FVKP+v+2dS4wk2XWevxs33pFZj36wNZiXOENSFGFLwzFhCDAhQ4JhWRRg2jutrIUBbyTAXnhBQxttbUBeGDAM2LAA2TAswA/B2hh+CAa8EEb0WKaGQ4pDkfPsnumurqp8RsR9RMTV4tyqadHTbWvA6Syg8wcKlZ1V6PzrZsaNc8/5z3+mAmdGmCxVWRASkcA6P5KTEabYFx8mNpsNZyd3efHZW1w/njOpETWpy/bTC4FBnufkSpEYI3fOg5notZdLbty6edlqO5vXYloSdDTl0Ex1jSZw/fBQPvzTyBAmtMqkJDaNktSLPvXWWupSxncN8Y28TNHEuxgAUXDknJNmJCWCoblumEZZD5XIXcb2vUz7maQUoLTGGSvndp1iui7OHlCidc8UU0jk4iQOMElEZOO8p8zF11H07+Jxl+X5ResLIUzkaSKDOnJxzxkvOg+jTiAkKjYcZZfRCEpC0izNGKKEmZBcSofzB/7+o+Nj0QT4geNr19i2G0LMAaRpivOevBClZNAJm7YlVykgn5kkSeiN5AWkWSm/1EsEwA+OSSmOjg9FFKVgGj2jHen7jsENNPUMCDTHh6yXS9Q0YsYRZ+TY6WLEJo1UkOYar1M2621sLRgZ/CADXLr+MtdRVTU61ZyfndP1HUWeE4KiqRvO7p8yeOHjnJfpW21HUAnbzZYsFfv5zXZLojW3bn0KbywhRj2rZce903Nxbeo7+t7w+R/7McYwYN2IdxNvf/89lsvFQ6+9K7EJOGu5/dY7IoUdB6pSZLPH1444qBVlUaGYODiYi0XThXtw7Iyapom23aKfmaO/8Cyb5VredEYSpUWWG624J0ZGL1WEWdOIuqooIFEcHxxIiB1LbMRWT3Xp4Dsxq6pYA5/QCaQ6Q00DdVnI2R7Rjmc6xY6WsshJMy0f4vyB5Y6KxVQnoqab5MKsshod68wEGKPCb8wlATeOI5OSSTp5msbM+sTh/FDC+Hiu14n8zd57JmtZbluOc+mcTNIJreQUnqmURIuAqSgyjDE0s4op9g4AUXo7Xl6wIYBomhI2XUsVS5HDMDKOgTwXnq3po3IzNv0MniyVPIlz4gC8XC45OjpicIMkxIDy/Q9w1kVJr0RV+UU1YhzJy4LeucuZgX3fRxekQdyLYg4h1dIR6QYpUzJMNE2FUgk2bpppJtHLNAyMQNM0hEzjjZXNNk2pq4rBedqu4+DggCzNMKZnDBNaZ/S9YTZrcKaLEVSCsY7BO5pZjY1KzESndG3LaDzbrmW5WjOfzdA6od1uaZqGbd+y7UWolmfSkOb8IApTYLHeUJcliVIsV0s225ZxUjRNTcAxTpqz8xOu33qB1loW6xXeWqarbjmudcKtTx0BMEQp5Nnpkheev8HBfEZd14zey7k0gEpq0W/nmXTuTRMHBzWBwGq5YkAulFTnorlPM3HLUdGkYrIkWvoP0qjsy7IMZy1BieLqosdfDDPiGCkvH7Kut5dqwCxVlDFTfhFxpImO7jxygYY4TzCMRP1+TLalckc1vZXR62GUBploDT4OA84Y2G5J1IVxakClKdY5BufktXR6mSDTMZqw1pLnOcY42r5jCCPLxTmJkuy/jmf9vCyx8YK7MCu9SCapBy6oCcnwT2G6TEZJI5HM8yNMeOcudR5ZLkle6xypUgzTiB/G2NCi8fHCTJRC37kLoyQSQ2ze0UlC1/eANOckOrn0UCirEmMNeZYzjhPODThvSeORzxjD4cGBJBDHgaDk3J2hOOaIaZzYbFoSLSYu1hq0SvCDpzMGlSbRdSjBDANkGX3XMdiBcbUhS7UkO7VinBxt29GZjjKWt1GKIYwMTAxA7weMNZcTmjyw2W7ptht6a2TWZJKwMQbrPaQpm8WSphKzGlFbarROca3h5P4ZRS4Dcc0wkGY5fhqR9Gqg3ba8++4dJq1J85zOdOj8iouFsizj8OCAPEupyoztes3yvuXwoOH6jesMw8imN5jeMp8fs203HBzWjKOi7y1ZnmKsxw8Dq00nCjStUWmCdY51u6Uqa6YJBu+YRhkHPXhP3dQfdtRZT28MxolsNS8K+r6XD1Ai7cJpmjJMHyZllFLMDw6xzrFptySpyFZ/5OYNuq5j25tLZyEJJXP6TUuSyv9vTI/pesq6pqxrXCz7Xdwp8zxj27YMY2DWNKJEKzK0SunbjkRr6qZhvZaEmXMu6vxzqbYMXvinKZO3ZKn48XtrSYuSfuwwTuY0rNouzjxI8d5KZ2SeEf136Xsrb1iYWKyWgKIoS0xvSBJNXZUQN6+yLOn7njzP6byntT1pVkjprKrE5nsIJHG68nq7JtWyeUJg1swo6pphGLHjhDNWRE9aE1Zr/DAwRivfpplJG/lFBUZrOi9uxyL4kpJqyHPunS5kQ49jytresFicy41mguWmpalr0jQhDIEkS+idx7Q9hOhMlGVkSSK5jrzg/tk51awiSzTWGepZw3ZrKIscdMa67TlbLEkSaOqaxfqEPC8YlaKzls1W3sdhEgfqIkqFTW9p6hrvHdZ76qah7Vo0SdR/FDjvGEboOifdpDolpBmb3rPtVrG5a4oVtY/GldgECIGiyFBMnJ6eEUbHZz73FLdu3WS5aKWrK5M5fO+89zZvvfUB61XLi595hvlhg7GWdtuyXCzo2g7rPH3XywiwNEVF15g8z2O3WbjUr8+ahq7fiqlHIo4xCrG4Ioj5RFXlDNZhjCHREmZnmTSK6DTl3vlSzt+xOcYZy9n5QpJiaQrIXWyaRobR4MLI0FvsckFVlPFu4fF9j48JuiSGwL3z6DQHNRFQrNcb6plcRAppxV23MozjwpgzxEaaKaorpxDYbrc05XXOzpcMg1iDKT8QEhlftt12MXoQw4y26zDGoI4OYqUmxM3M03UbNIq8yMmynCSVDr8JaWMeppHNdiPS3zDFduAPM/8+hvU29gUEAnlREJTCR2eie6dnktkuili+jK5CaYq3Nm4yW1mrJIrGdEKupDxp25bRj5RVzWqzZjKWzbqlKktW6xXzeYMfZbjnGBSbTspozrlLs5qAlOsSneKGEaUGRjvg1xvmR4e4vhMfxWmiXTnKoqA3PYuuI0lS1tueO3dPyMtcytlKelynIBqTIprDlGVFCCOZSkUiP0V/hUnavENsa+/7FqWmy4EpwzjEz4ujqhtCGKnqEussk+tRWqLUtm9J/5RZ75/GldgEpklCyVQrnPO88+a7PPfsLe7cPuH92/e5ffs9yqrkx7/weUIIzOY5aRpYb87woxGPPGs5Pphju55u04lUd3A479BpEt135CLRidyFz87O8IMMfUSBsTYq/AbKtMQYQ1EW9NZiuk6SYEHLXSAour6PnXVy5h3GAec8eZoxjo6ikDtfAFCB7WYrJhipDAsxdmAMFnRCrjVZolktFyIKmUbSNKFtW+azOUmSMoy9uNXGkq91Fu9HmqbGWLHPyrIM1/cEQjTqVNL7HgI61wQdCOOEm2QwSlGXWCchrVIKY3qsNVwMf+n7nuvXrrFcbzDGc3p6ysFBQ7vZYJ0jqESiquhZOJvVGGspcolCUOmlth8vobtSKlqLJwzRFOTi6GGtpe9NzKw7emOk3KUTnLes1ksyneJj8raqKvq+p6ykHLdtW8qyIM8KskxmMGidM42OJA1MjBwczRjHkd46vJeZAeM4gRpRWtNZR1GU0q8RAtk44doNaS4Gs2joTSeDDy4kw3lJ1xmc8VKSG42IhPKKYQrMD+YMtkMxcnQ4p65LbO/JMk2eZ5RFRdv1uBjBjF4iGxVGqjyLknRpWaeCvJKIrspzhkmG+no/MA6BqizpjUGpBGeNTMK66iVCHc/nIEMYz04XbFYnPPvc01jf8tTTN1FKcf/+3XjuhryQMlOqJqw3HM0b0lRzfDRnudjKRTkNTGFApwm280whgaCwo2XbdhSFyFGDkvN+HpuDjPM4PxLGCe9HUAE/fdg957zHOodxjvPlEh1bj7NMPpwWG7sdFX4YxbBjcBgr9V09TJjJ0hvL0PUcHc0Z+57NZkuWioPPNI5kuqAuaxaLJU3TRKehwGq5REfn3TTJcNax2W5k0yoKslQMLYyRc3adltw/WaD0kiRVqKzgws25KApWy1X0KxBnYucdfe/IVMZmvWaxWDIGmDUHXLt+XcpeMSEp+QTIioLBOzbbLWUhyr0pBBkAGiSX0RuL9yJSCipEg1GLShK8EzFY3xtCgCLLyfKUtmvxw0BvLHme0TQ1znoWiyU6zQgoikI8+53rGceJdtNjUhHqeOfRWUaSZPGoNMqAmSCCojHA8nRBmqZUdY5ONN4NDENPCIre9lxrKj41a8jLHNd6VquecsjJUo1SgdnRDd68e5fVKJZlEwlVmZPpGc899xPMjw55++3vcHb/DVI9cvfeOfODY7yXfNNETzODD+6eROVnEdu0pcdAjjqKz73wWX7k5g3eff82b757B51JJ+J226J1R1mWLM/OuHbzBsvVKo7iE1NXY/qHXn9XYhMYhoE7d95nuTzDtT3eGo7qIwbXsVos0JkWQVBvmQjkRYr1nirPKFKFyqRZKAniBxdCxfMvfJaTe2ecnr6HHzrGKeOLf+FLfOu172L6++QlWCdyy7yUD5xz0nkn4gsFcnOgbCSBt1xtqaqMhBRjOnrj0OFi3t1E36+lFTfLabsW+l6MMZQiaJgfygCOIWZ760YaQ3KdYKynM5ajgwKNmI1u2zbq7kcCnmEcWa23HM4bbHDMZwfcOL7Bet0yDksRHDkptW5WLXlRcuvajC+/9BLfv/Ycr7z+dbJCkRcVo/cY4zg9XaF1QpFn9Naz3dxnGAaapsTYNd57VBA1Z9+fU1SVfHiVCHo6Z1mvN+R5weEsYxrh3r0NVZGidExgesOsKVkuNxwe38A4sRRzvkclCueNVGyyjLKqMM6yaQ1N3dD1Dj9uSYLkX7KyYLVcc3h4zLLdstx6kqTniy/9Oeo65dWv/wHeiTFrEcuFzfwaTBNniy0vvvijpFrzzjvvkmqRoRNkIMnpyQaVJNR1KuW+kOBHWNmWw9mM0iX8pfyQm88fE6qKJstoT1fc60ZUfcTXVyuSTKGLik3vmSbL0yHn6PBQeFtFnqe4qWTcWMq6YrHcMpvPOb19j8PDOdu2Zb2R2Rs3b14jSeJcCKX5/p17fHB/w6pdUh0cMgyBNE85ui5+j4qE+WGgqirKqhZdh3donZFc9eNA3/e88sqrKAIvf/En+dmf+xlef+U7vPbqd0DJmbbtW7puy81PXafvOlad2DIf12JF1tQlL3/pJc5PT3j2mR/nF/76X+F3/8srfPvbrzEFw3PP/Xl+8ide5vlnPs2//3e/zRvfeZ35vGIYBo6OD+QMt9rStm0c6JHxsz/zl3nru+/z3PM3+b3fe4VEZ7SdIUwKazoO5jOuzys+/7ln+eYbt3n7zjmny46yqhlHcZlNAOOWBEYODuacny+j+UmgLCSRNvgRdEpvDJutj8M+RBKaJJqyyBknMadsu4lxMHR9j9Zb9GdmnJ2tWLWGMteQZNxfrkmTnARNaxz/5/Vv8sHC0fYDoR1IUilNhklJhnv0KCXHGOPAewjJxDhlzOaHmFbKYagEPyp6PxK8CGWmAG5QJBrSrCJohXaBrKgg0VivQGnGkFM2BUGVIvZRis5smDUz6rnG9kbGrOcFOijyIsEPgaIoadKaMA0yVwDFjZs3xd4tBIpcxqKf3F+QJIqqOQLVkmaapi44Pj6kswEmuJYcMwwDm/WGpmnI8xTTpzApmlkeZb6Bo+MZzo20ZiIvC0bTc94P3DaWe8VAMWXo5chMBfJKc5KO+FBwfO26uDkPA2WRMU2KN9/+FnfuvkbdVLzw/DMUpebk5Ez+rqbg5o0b5IWc4xOteCZ9CtBcv3bEcrkgy1NUoqibOcvFmlkzY3F+xjAMHB8fSyQyqwkBvBvkcxWdnvNCXJlFVPVw2bB6lKb4cUEpdR9ogdNdc3kAN9jzeRSuGh+4epyuGp/nQwj/13jiK7EJACilXg0hfGnXPC6w5/NoXDU+cPU4XTU+D0OyawJ77LHHbrHfBPbY4wnHVdoE/vmuCfwA9nwejavGB64ep6vG5yNxZXICe+yxx25wlSKBPfbYYwfY+SaglPprSqk3lFLfU0p9bUcc3lZKfVMp9Q2l1KvxuWtKqf+mlPrj+P34E+bwG0qpE6XU6w8895EclOCfxDV7TSn18mPi82tKqTtxnb6hlPrKAz/7B5HPG0qpn/sE+DyrlPofSqlvK6W+pZT6u/H5nazRI/jsbI0+Ni6823bxBWjg+8ALQA78IfCFHfB4G7jxA8/9I+Br8fHXgH/4CXP4aeBl4PX/FwfgK8B/RvxJfgr4/cfE59eAv/8Rv/uF+N4VwKfje6p/yHyeAl6Oj+fAd+Pr7mSNHsFnZ2v0cb92HQn8ReB7IYQ3QwgO+C3gqzvmdIGvAr8ZH/8m8Dc+yRcLIfxP4Pz/k8NXgX8VBK8AR0qppx4Dn4fhq8BvhRBsCOEt4HvIe/vD5PNBCOEP4uMN8EfA0+xojR7B52H4xNfo42LXm8DTwHsP/Ps2j17ITwoB+K9Kqf+tlPo78blbIYQP4uO7wK0d8HoYh12u26/E8Po3HjgiPVY+SqkfBb4I/D5XYI1+gA9cgTX6s2DXm8BVwZdDCC8DPw/8slLqpx/8YZB4bqdllKvAAfhnwIvAS8AHwK8/bgJKqRnwH4C/F0JYP/izXazRR/DZ+Rr9WbHrTeAO8OwD/34mPvdYEUK4E7+fAL+NhGn3LsLH+P3kcfN6BIedrFsI4V4IYQwhTMC/4MNw9rHwUUplyAX3b0II/zE+vbM1+ig+u16jj4NdbwL/C/isUurTSqkc+EXgdx4nAaVUo5SaXzwG/irweuTxS/HXfgn4T4+TV8TDOPwO8LdiBvyngNUDIfEnhh84U/9NZJ0u+PyiUqpQSn0a+Czw9R/yayvgXwJ/FEL4xw/8aCdr9DA+u1yjj41dZyaRLO53kWzpr+7g9V9AsrZ/CHzrggNwHfhd4I+B/w5c+4R5/FskfPTIefFvP4wDkvH+p3HNvgl86THx+dfx9V5DPtRPPfD7vxr5vAH8/CfA58tIqP8a8I349ZVdrdEj+OxsjT7u114xuMceTzh2fRzYY489doz9JrDHHk849pvAHns84dhvAnvs8YRjvwnssccTjv0msMceTzj2m8Aeezzh2G8Ce+zxhONPABkW3/2hFuMQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize results without TRTorch/TensorRT\n", + "plot_results(best_results_per_input)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Benchmark utility" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "\n", + "import torch.backends.cudnn as cudnn\n", + "cudnn.benchmark = True\n", + "\n", + "# Helper function to benchmark the model\n", + "def benchmark(model, input_shape=(1024, 1, 32, 32), dtype='fp32', nwarmup=50, nruns=1000):\n", + " input_data = torch.randn(input_shape)\n", + " input_data = input_data.to(\"cuda\")\n", + " if dtype=='fp16':\n", + " input_data = input_data.half()\n", + " \n", + " print(\"Warm up ...\")\n", + " with torch.no_grad():\n", + " for _ in range(nwarmup):\n", + " features = model(input_data)\n", + " torch.cuda.synchronize()\n", + " print(\"Start timing ...\")\n", + " timings = []\n", + " with torch.no_grad():\n", + " for i in range(1, nruns+1):\n", + " start_time = time.time()\n", + " pred_loc, pred_label = model(input_data)\n", + " torch.cuda.synchronize()\n", + " end_time = time.time()\n", + " timings.append(end_time - start_time)\n", + " if i%100==0:\n", + " print('Iteration %d/%d, avg batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))\n", + "\n", + " print(\"Input shape:\", input_data.size())\n", + " print(\"Output location prediction size:\", pred_loc.size())\n", + " print(\"Output label prediction size:\", pred_label.size())\n", + " print('Average batch time: %.2f ms'%(np.mean(timings)*1000))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We check how well the model performs **before** we use TRTorch/TensorRT" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, avg batch time 362.25 ms\n", + "Iteration 200/1000, avg batch time 362.47 ms\n", + "Iteration 300/1000, avg batch time 362.57 ms\n", + "Iteration 400/1000, avg batch time 362.75 ms\n", + "Iteration 500/1000, avg batch time 362.80 ms\n", + "Iteration 600/1000, avg batch time 362.86 ms\n", + "Iteration 700/1000, avg batch time 362.93 ms\n", + "Iteration 800/1000, avg batch time 362.96 ms\n", + "Iteration 900/1000, avg batch time 362.96 ms\n", + "Iteration 1000/1000, avg batch time 362.99 ms\n", + "Input shape: torch.Size([128, 3, 300, 300])\n", + "Output location prediction size: torch.Size([128, 4, 8732])\n", + "Output label prediction size: torch.Size([128, 81, 8732])\n", + "Average batch time: 362.99 ms\n" + ] + } + ], + "source": [ + "# Model benchmark without TRTorch/TensorRT\n", + "model = ssd300.eval().to(\"cuda\")\n", + "benchmark(model, input_shape=(128, 3, 300, 300), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 3. Creating TorchScript modules " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To compile with TRTorch, the model must first be in **TorchScript**. TorchScript is a programming language included in PyTorch which removes the Python dependency normal PyTorch models have. This conversion is done via a JIT compiler which given a PyTorch Module will generate an equivalent TorchScript Module. There are two paths that can be used to generate TorchScript: **Tracing** and **Scripting**.
\n", + "- Tracing follows execution of PyTorch generating ops in TorchScript corresponding to what it sees.
\n", + "- Scripting does an analysis of the Python code and generates TorchScript, this allows the resulting graph to include control flow which tracing cannot do. \n", + "\n", + "Tracing however due to its simplicity is more likely to compile successfully with TRTorch (though both systems are supported)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model = ssd300.eval().to(\"cuda\")\n", + "traced_model = torch.jit.trace(model, [torch.randn((1,3,300,300)).to(\"cuda\")])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If required, we can also save this model and use it independently of Python." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# This is just an example, and not required for the purposes of this demo\n", + "torch.jit.save(traced_model, \"ssd_300_traced.jit.pt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, avg batch time 363.09 ms\n", + "Iteration 200/1000, avg batch time 363.00 ms\n", + "Iteration 300/1000, avg batch time 363.09 ms\n", + "Iteration 400/1000, avg batch time 363.05 ms\n", + "Iteration 500/1000, avg batch time 363.08 ms\n", + "Iteration 600/1000, avg batch time 363.07 ms\n", + "Iteration 700/1000, avg batch time 363.09 ms\n", + "Iteration 800/1000, avg batch time 363.06 ms\n", + "Iteration 900/1000, avg batch time 363.08 ms\n", + "Iteration 1000/1000, avg batch time 363.08 ms\n", + "Input shape: torch.Size([128, 3, 300, 300])\n", + "Output location prediction size: torch.Size([128, 4, 8732])\n", + "Output label prediction size: torch.Size([128, 81, 8732])\n", + "Average batch time: 363.08 ms\n" + ] + } + ], + "source": [ + "# Obtain the average time taken by a batch of input with Torchscript compiled modules\n", + "benchmark(traced_model, input_shape=(128, 3, 300, 300), nruns=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 4. Compiling with TRTorch\n", + "TorchScript modules behave just like normal PyTorch modules and are intercompatible. From TorchScript we can now compile a TensorRT based module. This module will still be implemented in TorchScript but all the computation will be done in TensorRT." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import trtorch\n", + "\n", + "# The compiled module will have precision as specified by \"op_precision\".\n", + "# Here, it will have FP16 precision.\n", + "trt_model = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(3, 3, 300, 300)],\n", + " \"op_precision\": torch.half, # Run with FP16\n", + " \"workspace_size\": 1 << 20\n", + "})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 5. Running Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we run object detection" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# using a TRTorch module is exactly the same as how we usually do inference in PyTorch i.e. model(inputs)\n", + "detections_batch = trt_model(tensor.to(torch.half)) # convert the input to half precision\n", + "\n", + "# By default, raw output from SSD network per input image contains 8732 boxes with \n", + "# localization and class probability distribution. \n", + "# Let’s filter this output to only get reasonable detections (confidence>40%) in a more comprehensive format.\n", + "results_per_input = utils.decode_results(detections_batch)\n", + "best_results_per_input_trt = [utils.pick_best(results, 0.40) for results in results_per_input]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's visualize our predictions!\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebilWXbWB/728E1nvPONuDFHzpVZWZVVJalKUhnNAkugASwxCRmQBd0W2A02ot3dhkYYqWmwxGhJRmBhLDMJATJIIIRKY81VWTlUZmVGZMxx53PP/A176j/2dyNL6kqreUSZ7Ee5nyci7nDiu+ee8+2113rX+75LhBB4a7213lq/eZf8D/0E3lpvrbfWf9j1VhB4a721fpOvt4LAW+ut9Zt8vRUE3lpvrd/k660g8NZ6a/0mX28FgbfWW+s3+fq8BQEhxG8VQnxGCHFNCPGnP18/56311npr/caW+HzwBIQQCngF+GrgLvBR4PeEED797/2HvbXeWm+t39D6fGUCXwhcCyG8FkJogL8PfMPn6We9td5ab63fwNKfp+ueA+581ud3gS96owcrpUK30wHvSZIElMI5R7VcUmSaJEvxQWCMQcgEHzy2qcizjNoYtEowTU3wFgAhJEIIdJohVUJdLfHO4HwABHmWk2Q5dbXEmebB84jf/dVLnP7VflMgEEpT9PqYqsI0FSF4CKB0SpLnlMs5Smp0ntOUi3jtEJCATjKClNi6hBCAQACsC4QQ4vNWEq2gvezneFbgfcAHH5+PBCEEwgcE8Y9SKj7fAEWuaFygqS2pFMhfE/rDr/ndT3/dEF7/Wvjs10BIgpB4JDrL45cF4D0+BIIP8RoCpBAQAsF7jDE473/1awsIKdBJQpZlKBXfO3l6zfb/qyTBOxevhUf48KsuEoInfNaXhNR47/HeYXz83bNMo6VESIl3DoEg4EGARCCkQop4rfi+i/i7SPHgPQwh/hu/LUDE96KpDY0xWOcRUlEUKd1Mk6h4PRB47wmIB8+vrhryXCFFQEqN8/FFVgoIHqlTnDUQAlLG1+X0TZA6xdYVSxNf1/GsRrY3qxACQXydEwWdTgbec3dUH4UQNn/tvfT5CgK/7hJCfCfwnQBSCi4Nezz12GOMhSBXkhdf/jQz1/AFX/AEurdK7QuysETLFF2sMx7vkivH3uERw9Udbt+6yexkl0SCFBKZJjz1nvfjkTz7S/+Wxgjw0Ol3ufjQk1y48givvfhR5of7qKzApx2apkbaCrOcIoLFI/ECHALtASniDeVh5+pDPPr4U+zd/AyHr30G7xs2HnobR7OS6f4dLlx+gpBn3Hj2ozz2+OMsqoby+A5rZx8iX93i7isfQwmHEgJnGhaNY7EwuCDRScpKJ7CSK3INCEUIgtrConHULt4IgYASCi0daZIgvcDZhjQ4VlLBSk/w1Be+j5euvcr9127TVynDjkLJAFIhgkcqhfEB5wN5qsBZQgAX4m0Ub3yBcx7vBeCRChKtCYlC6IKQ5ORrW6S9LSbLivlygWtqhllC0e+Tr6ziqzlmNsOUJVU1w1RLvI8bUAuB8wErU1Teobu2yrmL51jpdchFRa4gK/pYU5J3V/F1jW1mSMBJhzABZ2uQGt84hBSkWYeyKnn+1dd44b4h05r1QcbD211WtSRkGZsPPYmbj5nef5Vet8vOxct0+z2qxQlSKESSYr1HStlGZI8xnsY6rPcIIQgerHWYquHg4JBPfeLT3DmcIbXi3OUzfPl7LnCm70mlxBpwYoAPc3Q65OjWTXbO95G2ZOPMJYqVdWx5giYglcYIhSQBFRBtFHYhIKRFB8Ht24f81PN7vPjxVxkNEgadlAvn1nnbk09x7SMf4NKw5JHzAuE01yYFf+rH9259rr34+QoC94ALn/X5+fZrD1YI4YeBHwZIlQqIgK6nbBcaJTXn11doVlbR3YKgE+zCMkgFo3JE4izd9TXs8V0kDqU1aIVZ1lR4pFDo1OOswyeSSWXQSDpJAs4jpaJ2jso5vPQgLAJH1unQG+4w2b8LixO8c9jgUG0kD0EyXdRoqZjdeoXbWnDpkSeQQnP/9iuMpyfUi4qVostgY5M7d2/yxJNvp7OyhhufMN/36DzHNSXVcokQoPM+OIf3juGgIE8U/c1L1LVjfPQa3juUlCglUIliWtbMa0gTRTdLKDSUBtY2N1lfHVCO99HSUSSaibP8m+dvMbq5y5meZlgolHBIDyY4IJ5mxscTz9iAROCsxxLiCaQUSkqklJRlg1bxtHTeoaxHuBmumlIuR9TyNdKiR8cnrF5+mPXNDeqqYTw6pshz8vVNnKlY8esEb3CmoZqfMJ0umUyWLMoFxh5hb97lM5++xsbmOk88+RBrhWZLJEgZMGaOJKCzLgQL1iCkQwiFo82glMCaCtuU3DsoOZ541lcSqnlNtZLR21ilX6So6pAkkaxf3UFnGVmmcbZCaU0AnKvxLoCUMUPwHiUg1RLpJcZagnP4EPCJYuvsNl/8W/rcv3OfF1+6wc1rd/ln0zlf8UWP8tSlgowSU49BxwxpfbuDViCdwIcpWbqKdAqHh6BRqoMUEifieyGCRwSDIgHhWEyWDE1JP5WsdzWdYYe3f8ETPPPMk4jDj7OtKx655FkuKiqfvOFm/XwFgY8CjwghrhA3/+8Gfu8bPThLEx555DxrO+t4KZmXlvWswHlJVRnMoiQpOqwO+6ieYDlXLE5OsLUjKzKe//iHyYXjbEdRm4AJHutqRvfvc+6xJ3j6Hc+gpSfVCfNpxebWOY5Ojrj+2m2GmYKlAT+JNzuKrDOkrhdkuSKXAesszjiccyQ6ppRKWQ6uv0AgcPbKE4is4NqLzzKdz9l88u04ISlHR6j+eSyB6WREMVxFdIbcfuVFBIJEajbPXma8fwtfL3G1ozKSnlIUwx6u6oIzNMbF06cyOA/OGSZVzaxU5Fs9VnKYHtyjNgs63R7TpmExmjOZzPDugF6uqdKCAxyJD6TeoTV4axEhtAmmx9gQPxcxlVdIRAhoBcYJAhKlFUHE01GKeBqmQRCcBeOo6xLvBAfjPe6rjP7aOkmekXYvkKeKRipWVlZZ76QIVxHkBYxxnOwd8/IrNzk4WbIwFaYq2b1xm70b9xhsrfHwY1e4eG6DtZ6gIz1Ii5KWJO8TbI2QGb5eEKTAO49SseYZzxu8lzgHVSIwzoFt6Kxus7G1wXw8JjhFIgXWVm1pE0sGPEgCBEcIIm52ABm/ngjwWhK8b7OwQKff5eoTj3P54kVeePFVXrl+h3/7Ky9TlZd45pEhOg8IawlhgZJtaaQVCIU3JTIEBBKvU4JUBB/AB5yIlZEMkqAMygu2B44L+ZJPeYcXgsYEFlXD7vEJ8yahIEWlgY70bC3eGP77vASBEIIVQnwX8K8ABfztEMKLb/R4oSR3pw13xns01uKtxbp442dpyuogJ/eWQ5mw3suQvR71ZEon0wQCuWs4c2kdMxqRLHxMX4Nnvn+b6dYZikEfmiXWw84jD2GF4tarL0FjSDc3kEpzeP8uikAyHrN+bod7d0uCN6RCorREKo2UktWVPtvnLjGdHNKcHHNw+xW896ys7XDx0SepZnM2zl7i7p3XEI1lURlsc8jxwSFPvuOdHI+PWUwO6EqByhLqpmE2n5JIjQqBXm+Fze0L3Hj1RXb3x/gAUkqKTKGTDKk9AyVRLqA6Q1zS4f54Fy0Fcv+AkTxEC4WSAuk9SimETBkvPFPpkUKihEbVggRJJh2JCGghSXFIAVLFGtgjyGRMQRelJUnStoSQbYosYzmDIz5RwAeECAghkbZhvn8fnWgGa1tsra3SSwQ6A2SNCxKPB61Zu7DDe89s0JQNs9mCxXzJwd4R127sMtnf5xPjES8P+2ytr3H1ylmefupxxPIYaZqYqUsQSoFMoJrhTKAxARNi3b5sGgbdAoTCOQvNElfN2rIv0ISARIOAIGIUDKe4eThFbmI9H7xHhFi7iwC5FPGekwHrPM45bDflqfe8jTNnV/nUJ17mZ37+BaaLy7zv6UusZgZnKnxwSJmhbIkk4hJWODwaHzx4h0dwiiSIFqMRXhGAtZ0dHq4bwkdOOKmgqxXTpWP3zoK9CdBJqIxg0Cs4+/Bl4OBz7r/PGyYQQviXwL/8/+WxzgfKqsY0FucDwTs0IEOgWpbsVUu0XnLc6TBe7eJlyVAJtjcGmDwj85L7r76KN44g4lsnlGS2nPDSJz7ExatXyXRC3hmwNJbR3ddYzSSsDEksFGtrzI8OCNUCs5zTNDVN7bDGUYuAoCFIhZSSbiehs3aGZe05md3H+4rZ8tOsbY145Mn3oDbPYoSl2r/LpafejkwK7ty9zvqZHUrrWRzcpp9rXGOZLSZMjCWYBpKUs1s7XH7bO3h1d497d26SCIm1hgZNpzNk59IlXnrpRVIJWksGqwM6nTWWx/coG4tA4BB4amQQBB+RwaWzZEmC1hIl2xMFSRAKbwVSQBICaZAUypMLR6YVeIcoFNY6glRU3hKkIAmiBVkDBJAClBKYEFpQTZAAInis0ljjSeopO5uXcUFSm3i6BRwCSRCBIBwqSSmynHylz5ZQXH3yUd41nbN/+z7Xb9/naDZn//Zdbr12h2c/fZtLl7Z57PwaG50UhEcITd2UFHkXU1umy2N08BRJQZrlKEC1QKNrgcTgA945ghB4GcsfKeQDRDh4FcuiiJDgg2+BwQgOStGCqCIgJWgdSytrBY31nLm4w/r2NrdeuclzL9xgNC35mi95nDMpeCdI0hRTzgnetUCxjNf3JgZIkSKEbAHRWJoEGbEZ1emh8wKLpfQpwUkO54KlXbK7cEjdodRLtocFqrgCfOBz7r//YMDgZ68QAqZ2NMYihIcQ8AiUECgd8W7hLc1yzjxRZB1Bsqo5Kucc7e5zcfMMWXdIM9rHCXABNBLvHfPpCYd3bnPmwkUmJ3ss71wnI9DtFVy8kHN4MqdcLtnaOU+5ewPnSnZv3iDHEyR4b/EIrLHUAQgLvHMUK2t4D87DYlFj7t3noccdaZHwyqdfIusN6RV9dg8OWRwcsvH44xzt7bNYzLh8+REmkwnlvVv4ZtbWh2c59+Q7efn6Ne7fuIYQCkQsYRIlGayuUgcYrKwhg6BIE5LukP2DXWTwJFKx9PHmTuIuJ0k03jus81jbIBBIJRBSIBHIJCGVkkSCRVB7xTxIEqFJnCNBM/WQoNEqoEXAOVAEPA4pBR5JEKJFzaE9SrEEhPCsDvsYBLO6giTFNwKkxXuDEArvQQhPEPGkVUIhVTwXA4Fipc+V4WNceuJh6vmck9GY/b1DXr52j0/e2eWFfs6FnU0uXtziys4mCsdyMcfVjk5nhUFxxObWZabzGaE5QfocKRIEsg1kcb/7EAjBITwxSgqFCAFEzAE8ot38khj8fNsy4fS7MU+QEZ1PJWSJjF0uJXn07VfZPLfJzdfu8s//9ct89fvPc7Wv0UpQhxADMgpP7AZ472J3Qri4J4iZViAGVykkSZJwc8/RuIjvlNazaASmWWC9pXTw0U8nJGmP9Y56w/33pggChICWIFMNHowzseVDe7PKCKQEH5jNZqSppGlyslxST2vmqwvOPnSZ6XyKMiXgQcTWjgDmZclofIIjdg4Cgcm8REjBzs4WewcjZGeF7s5DLHZvwWJKmkpCIhBeohBoJag8OOdppmP6a2fopjlNU2FCIM+7qCRhuZgzPzlhZTig6PUo791hdXUNWzru7++iUfTXtpiUJTJNwTacu/AI5x5/O9dvXmf32ktkWcHwzA7jwz10ktE0NfNlxeHJmPVhD6kyBuubHB/tMzk5oJCaxjiWtcUhSPAUSiISRyY8HQmOmLEHAs4KGiRVvSCTCiUVQUAqBXmWIJTCe4VBsHCQa4F0DSmCTEOeCrSQqADOxbRYCRlblkJhAeM8ioBOFUpnlMsSZy3eB4R37VskCThAIHzcPEophJZ4H09t79uWnBIkgz5bgwFbF85x5bGHOLh/yO7+Mbt39vnQjV2eW1vj0uUtzg4y1roKJzLWVnrsTadUxpCIADLg2+Q+bu6AI7b+cB6PAOFiSdOe9qHFTcLrf8XO5elV2lZsvLNEDLYy4iuJhjSRuCDoZEPWVnsc3jni48/ewz024NLZAhcTKpz3+CAfBNTT18YhERCzOyQKybTyLEdLrJmSotBKstq1rOsFzgayvmS7L3n0nEOYE+4dzd9w+705goAQ5FrjQ4vEOknTNGhEGwVjR5cQsI3l8HiCSnMuFn0ee+QqRT8hKzrc3N/n6O4eiXakWtBRjoWXKJ1S1Q1pkmKFx0tBY+JLe/9ghBJwcPsGFx59krQoEDdfwrsG52OM98LhpUSFgA+Cw/t3ePTMBR5+29Oc3LuFl4L1Cw/hlGS5GNPr5sxOjiibiqpacGn7HONqiW8qNnZ2yDsdlouSxlg6nRW629u89OInON69R9UYusMN+oMhidJYF0hFgx5sc3B/l7wzIEkTDvf2mO3doicEQkdOBGEJQoFSnO3kXMnnDPIEpaA0BhE0IQTmusfNaWBsPKJZsrCWsgmU3rJYSNIsoZMlpDohz1KKlT46SRA+MJ9OGC1LtHBkAjIZyBOBEj5yAkQ8E62HICWjkykqzUiLDk1ZEdoNFzeYQ+EJKOKW8jhnkSGeWkGodjMA7WHgXATTil6Xi492uPDIRSTQ1BW7N/b5zKt3uW4tF67uMJ4uaYLlzm5NYy0X17tIEbBoHLHcCcQ+f/wJ8R7zwSMJ+DazkeKUO/H642K1cPq5aLkG8WvilAsQwwFBBxIEnUQyzCUbvW12dgZcv3aDshpzaS0BL/DBt/dbbP9KZMsx8CAELkhU8IwXluPZgo7Z585r97m6IRkODF/+hODu4YvcXUqKNc3jVwTPvL1Lf6PPq6985g2335siCEgpSdMskoCcI09TtFKYssJ7gfcO5w1KSEDQNCW2ril6l5gvDsHnTO5c55GdIfpkF2898yaefFtrG3Q2Njk4HoHSCDwueLRO6BUdAh4zn5IJw/1bn2Fr5yLJcB1zvI8THtGCaTiPVpF0c3x8xKdf+ARPvP1pzlw6T13W1ELy2kvPsZZKLqym2K0rVMsSX1WERJH7hHNbG2xvruG9ox9q8hxkL2M+nlGODvBNw1a/y+qgQEjJYrEg73RIexvU1rF2ZpNupmByxOj+Tc52JGfXNpiiccDVvKEJUPU26GcZPVshsNReYEkYFpKioymKAnt2jQshwc/3GC8T3HJJ4SY0jaUxhrpusI1kXirGkylohU4TEq0QUiO8pPSx25CEQCoUItgWr1C4EFNYWVc01ZKiUxC8IwQXkfAAUvg2uY6PFUEig6ftyMasO7iWJBOBsdOgIGOZjG/RsrTIufL0FS4+fI6jwyN290+YlwuOjhdk6RClNEFYCCLiIFJhXWgJPO0KHh9AeBn78YCQp2Sq+INFkJHEREzBEafkHOLvIHQMEsG9/r3g28fEEilVgc5WzsbqI4wOR8xsw3oywKdr+PI4kqNOwQZEW3VELGMyWbCYTclszcc/cp2BNjz9ji7r51OeeLLPpRsjKpnTXS/obSQU6z0oOjx29o3lAW+KIACg0wS8RwqojGE4GDD2geV8QfDxJnG4iEoDi8UClaZs5WdIkgThFpSzEy5f3iJM9thc63MSNrm5SChrR5LlGG9RQKo0aaeDUjqCPoMVatdgplOWoxHF+jZhso9EEazCB49rWWWJAmMdR3dv89z8mMHmNrnULJdzpvv76PUB2aBPcnYLuzgml5K6rJAsubgxQGQFxycT5tMTrnQlVlkWUqC85Ewv5/yZLlmhORKBbqHorm0wncxQOqUoOtSzA0b373Img4fP9JitXkYvZqxWhwwLh9Nd9tIBmTkmDRYQVHWgNJ5cS3KAfp80CNKepJmu8VA+YP7pF+lnKdKBcQGkJ2JVgrpx+OBZ1BXjUlAGgVWxrg5KYwI0WuN9ggigEaRKY51FJZ5Exs1+SrjxQcRTvt3sIoiWHQg+uDYogGxrbdWeq1KAVjGDOE3VPbSswkixDB3Nuctn2dhe4VJpePXuiHtjDc0M5RfoNCFgEd4SfIJzntAGAikUhNPNGlP70DY9XqcjxlIzMkAlMrTnvhAtftC2/UQsBwTx/wtoAb3IkBRB0M0k+fl1AoEkSbDlnIBo25s6BjzhHzwH4Sw0J2yt5th71/j6L4PNdz5EbSXpznk6W1sU76kg6yClJrgKXAW2xJv/g1uE/64rhEBjDQkSKRVJIqjLmjNnz3Lvzm2CtQ/QUSEVGliWFYf7I9a3V5G+oVhZZ69yLGxgagVNepaZUVTVEcY7jDUxWktJlucMhwOaJrYi58s5QeU8flZhO326qaccJoyWjpKAcwke8MKjckFhPaYyhKbBTI6prUPLWK+JJEMGQ2d+SGVrts+cofKGdD4m7Q2onGdoFuwBOlU0vgRvuXLxAn1Z44THFivMRxWenK6tMNYymxyzuvIY40ZQrF3kqbWabGULowb0Dz9N7pfMsxXGyVk6Yc5WMiMEifcCIzxBSqZNwNSC5cGC/qUNlo3BipT7+yNmc08yq+MNGCITLoSAkBLbtimFUmRZIAGMi7yJU4pyGimVKOHZHCR0s4TxwlFZy8IsUXVNbRqSJIlpLg4nHvCi403uQ8sVbjePCEgRry8ID07/U/xRBGKAECLSbENE1r0IoBS/8vFXee1wxtnzDxHKkrxISdKUwXCIE5qqsafwEeK0Dy9km+VHYBpoAbr2BwYZA5AQWFqcxcdgZH3AtWxC6zzO2vga4ihSRb+TMMw1whuE1BAUUgWUkIRg8D6WqA4Pwr9OA0YShMdrx3BjleGGYPP9V6Hfxyc9OKlJN98L/fcihgMgIXATql9CLA8JxqEegJj/3+tNEgTiTSVUfBO0lFgXWzFZp4srZ3jncUHEWq2FYA72Drh4+TKz+QGzxRhvS9JOh4fPXaZaLJH1kl63w8l0inAOoTVKStI0pTEGbwzBWFKlQGvmScagP+Sbn5hwNsu5f1CyLMELxcxIDueOeS24Pw48d8e3bR1PZ9ijn+fsTe9TzSbkvT7C1JRVhVhLObxxnUtdAbaiS4kpDb1BH5053KLi5P4drj7zdtY7OWW15MZJyf7+Hc5sbRFcQ54mZLWnXi5YXV+lKx3HbokvFZP6kOq4YmV1hWlYoz44xoRjZi1g5ZE0RuB9wEmPmZQUvZy3X5Z4F2+02XjJUvUpT2qUcOTak8qAEpBITypodQk82KSFCqAg0CCCQPpIeFFKE1BYndIZ5mTlguXMIlshxCkxKW5w8foBKyJbUbTaBCFC5CxI0X4sWl5/7ElG8KxNJdr6QPhIdPLB4b2nKWuCkDRVRVU2dDsRL1k5c57R5JB6ZrHe0zQGYx3GghexQHE+xHvOBawPNLbBeo93gWChcY7aeoy1scXoA9YFbBODo3UutkuVJHhLmigGnYyd9T7vettZHt3KIFikJ76OIomEoADBO4R07Wul4u8O2DynXGpytWS87CKqgAwLrM3Q3ZzQexQp8oi7mAY/SWmmFpYVwdVvuP/eFEEAQpuSCVBtOiQEhUpYXd1gfzHjdS1JiIQKKxhPTii04sV7x0hnEElGr7tC3Thm0xkagW1pwkIKtIzXnc6mBEBLidYapCLNJZWH8uCQf1lXvGvHsTXMeOrhhPOXeqRJhq2m5CsZz79W80f+/G5MVp3jytktjo732RwImtriUThvqJvA8a1bCAyNztC2IVWKg7pC5ClHBMbGgplTzk+wgwvIPKUe30SFgNYKaT1JkpL1Oty9f4dOlrFflfT7Q9K1LhzdYVikzPU66ew+ia2wUpCunMdP7hO8QfuAcR7tJN4GilQyF0u8d+RFF60FWadPb75PL7NocXrqtr3wz4LFXIhgqRAtot6KaKSxkYhjauZ1STnRJP1Be5pJVnodikSitUA+qHfbdz/Ejd9C7pwewIiAEoJEgxLxpG0rgzZVl/GeEZHN50LcsDYIShOofaA2htlshnCOyhiOxzU/+s9+gf2jUYsxSJAyCrKcf9A5kEIQpEBL/SAjCN6jEo3WCbU14GNwctZGCrEUqNCS1Xy81ulKEo0hp65LPvjCh/gdX/0Uj55fj3wYFWBhCcE/aFsaY/E+/mt81KxcyY4JYcbapcsU/R70txGii67PI3tfjJcZp5mDUDuo4VeQFB9GLO5GrOEN1psiCAgpEVLgCHhnCUKiVYI1lieefpobN2+QSoGQAXnK+AqCyhjq5QKjcty8pKcLlnWNbWpOlWfCyEjzVAofYwxCyqgrwONoQRipEAg0it1a8kufPKDjF+S5YGtrTtGVbG4r1s5JPnPX4HBoJUlSwWv379PXgfVBDzef00kDC+OYWkdTzTh3bpWj0ZJzqSbpCA5PlmydGfCugUEOoRCCsZywOEnxAbaHKZ21qyybiBYHG/DFELUMzBdTwGNCQB3c5+nOAjnIuFM1vGd1gakt15p1lr0+XWNYOqiMp7SexgUyIcmHmnppSBNB3dT0Ntcwd0ac7cfTBx/aVploW2On2re2py5bRp2MjxEBSOL20YAKDkUgzEc4KRikkpVBQp6pSMclPFDkRdCvDTMtuw94sLlPhXO+Bdd4AJLFztGpbvI0pYj0XvBB0hhLogVpGpDOU9WOX3r2OtZLdK7xPhBE3OjWWkBGEpHzJEqCFwTp8UrGMkFqvFTULhCCxDlLY2sErXJSaKRMsN4zqyrqpsFZhwwxo9ndP0ao2Er9oR/7MHmRIWTsAAQXs5fQYhJ4/3p54jw2BL72ay4y3T/hzBdfZWdtHXrnCWEDUa0h8w1UCAjh8ChQKeRDEjkg+AGcUpQ/x3pTBAGIp7JzkW3mrAMUk9mcje11UDr2TIPHi8gG8sHjraOqKqSWBKVQicI7z3w+p5ulIAI61chSkKcpXki0iGxCicC5+AZpoVtasEaqgPclTdql1yxwPnC0P0dJwd4dQfrcgpWO5KvPK6yTjLKMhZRMJwvO7vRJZKCrK8rQo5eA0wqpE4KAlX6GEJ6yMQyGQ45WU3b8CWtuj+kywZc1IQRU2me1SNmg5GAUqEiYLxqU1HgtSUNg4I4JpCQdT+UEQSqSJKCVxnV2OGv32V63GO8xVlMayaTyjOeeTjOjGiv86hBcQzUPDJUlVS2BRgl8e9J7B0EqaEEyITyamBects1lEAgRs60ouAukiWRQaESbBZzdWiNJIuoeQjzOYyIREXROe/FtShwzv/AAMJQtCceHU+DtFBSMT0KePk5E7I72VFUiY9Df4Hh6gtACYyy1abCliPX9aSADlGwpugGCjRhIIAYfKQRaaXRIcC6Kupq6pjYG9eBQaQBBWVbULSfC+yhZVlIi8AgXXyOPYDkv20Tq9WAnW7BDikCSRKDSK0mK5/kXDrm6kfPitTlPf0kXyR74+zj7NmSY4UIn4i3SRKCCEpEkhP4AuuaN997nZUf/u64Q60GtE0LbBw7OYwhMp7PIerMWrSXWG7x1kXAqFKPRiLq2FFkaU0mdkKY549mETp4zOj4mE4IL5y6yf3yCVD6eKkGQaI1SCqlOteyaopNzcuQ4oUtHDRgwB+FwDi7urPKFT0ne9a4OQgiyfsIP/2+O7V6H+b2GfmfGS3s5R7NApjXDQiCKHrWHzdU+nY5kPF6SZCnlck7XGbaHE3JRAxaZyVhbBhis5MxKwc7qCefHu2wPFZ86lIzTIU1V0ShPkqYsQ4dzak4VBvzK5CJKCQY9zeV8jg5p3FRO44TgnFDUNsqjj4rAOEvopBnJ7ICdTUmRXSDVCUiBVFEXILWOn8vI5BOnugQZEEqhdIJSGi0VSim8dywWC7IsYbgywCuFlBk6ES0LTj2o+zn1BGg1/dBufnnqJxBQUpIoiZAeLWLG5rwneBHFVCFmDUK0JJ4WSffeYp3FesXJdIyQCu8tzjpK41AhUoO9azc5IvoMEJBSYWIkiJTotjSoXU1jTauXCPEQAYILWO+pjcEa22YgCaHFJpSUSBHZkO2zxPgo3hJSoqQkuPAgGGkh0KmmsQ7jGiRRRTqZ1PTPdvjJH3+Fr3x/ynZzB2EWTA/+BZ3zP4Wsc2Rvi2y4iV3coV4eomRFtp7js+wNt9+bIwgQlXFeaaSWeB9FKsY4bt26TVXXaAJOSqyxEaSSkRZcVkvqpSFLFdYqbDCEECjSjOOjI8rFHJlmDFfXKJ2gXI4Bj9CQ6zQSkrQmywuyPGM4XKXfX+HGp495+PwGvTT29TMFl3Y0z7y3z8qFPuQ5cn2ddx4vuXJ5h8zd5+XdPX7hn5S8cmDZzKGbQZA507ohlZ7UWRY2UHRSZF0zyKErG+oQGWWhTQcX1RI/1djSsBN22ehZVlY0t+c90BkLJdkbjbBzw2DoeeJ8wpf2xhy6NZKVTS4PGlx1jjTvoNMUUASd0tjI6DPAp154lVFZgsjYLAIZcPmRK3R6/QjgiV+DxBPrbk7bebQgn+ABSYi2rC/WBvGm15rgAt7FjRtdRsKD0z+8DvS0/fR43dPS45Qn630AT8vbECBkBABb4lFMo8FFeR/Bx/TZEQVU3TyjnFskOtKTQ2SfBhkPBCkiQce4top3kZsgpcSLSOtVEtRpl0SAdRHhd0TVYgSuIzgYAGMNAVAyAt2n/L94s4eoDPQ+8hDaAMbpy0HbGiRgHSg8wgvqUnBYGYr5kh/+yx/i2x5ZkAnH/qGgWN1ndmjwaeDCBcmd1xpu7cKwDw+9fcBRmb7h3nvTBIH2boqRU8Q3OlOC+7dji9C1qG8UyYD2gUTHIn9xMmWwvQoBbGNobESjB92UzKekSlGVcx5/+5O89KmPg4+dhzTLSHRKXuTkRYesKFhf2+Ds2W1Gt19lfdPS76b44Njc6JKaA7rrK/gsQ67uEFa+gGe+5gl0cobjw0/xj/7m/4vpQrO+tYKfHbXuRp7ESjooKkAkgp3VlP9oR3Jl09MbPsbh8YywTPHe4b1EWUHW6XLmzBrFyNBxt1BZxmC7z3yZM50tWNQNVe14oZZc3OrwxUXgoYvriG6Psqq5f3yfzbVVVKdHCDpeV0WV23Q85vB4gjszJCiYeodcLJEudjwCsW6Nuf1pxX7aC48352kKK0V05AEZHY6IZG+pFFIGEhEorSF4ECHgXdxIvnUh8pHL3HL32z8+tFgB0QCFGJCs99RljfOOoldE3CfEroRQ8WQPzkcatDFR2KECjTPknZQ0S1DTRawgBEROcltitun4Zy8JETdyAS0lvW6KxGMDLBsTvyujpkD4gHAtF1GAtYCQ8VB7cP4LvIttQB98zNKieAKt9esdEO+xTUuSanEZGzy+dHz4uRGbG11uf6Dk+ouar3p3j9JIxkeSy489xM72E/zS/ie4Xx7TaMeFTLK4rtno/P9BJuBbACQRqo3+HgVMTkaxvURb5hCBHyUFiZQsqprpyYTNlW48LaylXC4JviHXkBYphRCUkxPyvGB9fZt6MUEpjUpTkjRnbXUVnaXkecHG6jpXrl7k/COP4czLMXVDIIsM2zhGlSFfJnS1Jx2u01t7GkSX+rXbrKUpptuju3WeGy8sWC0Ezgs6uWQQAsI5lGt453DBWbUEOyCEgqyjEWmKtBCMJ5GB2WTGogyc1YJhCNw79Dx7WDI6GeOdRYSYXi+rwE8+V9MEzTc/nKEFTOfjloijMU0LgLpW+ScVzXKByBP6nT6LpsE4yJOUkGaYFgjwITzoxvjYBkAgCN6gdBI7LgIssm3JRYGSaGv3U+WbUvF5hJaOK4TiVDAnW63Ag3uA14FI2abQklapJ0L0Kmg8K/0uKollnJQJbfTBiwiyCe/p1DlaKObe0DQGaT15L6FINZWNDkFBxJJSqij08e3hIFrarg3xphNCMhx0eej8JrP5jGVVs7nSZTorOTiZE2Q8sLY21xBCUFaWEASz+ZzGOqImKWYWoQ14IsR8x3n3ANuQUSQDeELwsQyI0QokeBnoZgnLkxI6Oa/uOZ79pzUrHY0WKTujLl/4vkf4pZ98ltv3G6rGcuHcgD/1nz3GF7ztHHzvq59z771pgoBtte9Btqzy4KnqhuV83qL3r58WWkQ3nDRJOBrPyZUn7+TUZcV0MmaxKEkTTeNt/FcJcI6Dvbuc2djgWEHR6ZB1Ogx6fVbWVqkbS5amJGmCcXDh0hVmv/jz2CPHtLfFTCx521CwdiYl2dhADh4mdJ5BiB4CwaXH3s0XfcmX8dM/+4sc3b1FkiV0+hn9os+rN++htMMJRWk8HV0RLCxKz9GhoXIJlbEImaIFZEmK8ZbxyR5OB25M+xzNPSfzGQqHVBKtIwPMiBg4fuYly/mtQ568WDC6dY+17S1kkuBD7HloKVAiindXt7Z42CluBA1eoTp9tvtr5K0/Q6vFjmCdkLGNhqOV/GFVrINRccMkSiFQ+EieRyKJ0t6W63dKABK6PYIFQnoCsm0hRvouIWYVriXNnAKDzkfijXcOoROsd5hlQ5ILklQjhYu8wtOA5QMyhCjvDY7GlAwzyfrqEG1qkAZjasrSxFackmRSYk6znhBQSaQ0eaHItOLMSp/X7h2T55IkzQlS8djbzpJcu8ei8vRyieokeOtZKbp08g7z5YL9kwneBspqGcsdpR8EtkhM8vEVkw7vNYhoiCJDQAeBb1XNTggSaSnygpUi4Wg8xgVPNxEInaGLhNW1Hv2uo+gkdPMI1D75jgu871u+Dcrbb7j33jRBINE6RsUQ2VnWWMqyxDr7ADmNqHHbuxaeTq/gcDxhc23IclkBAesctEIULSP7zVqojaU2NTYvWN/aZHtjk26/z9bWNiYETsZTyuWCrNPheDRGFz3GFNw8mnA0WXL7o7f4o1++SlnP0AsDwy2EuE0IGzifY/2CC49e4txzH6czmlOFhsVohuo6uqGt/XxgVlmEbtudroZ6xmF9FucCojGEAIvgsFbjy5q9WjBbtqiy91HhFwJ5oim1imw+ISmN5B/80h7/p/fnvP2JDcTgPMZLjJMY63FSABrhBGSakHeYjGvwGXme0R10YsIqo7WWCKe1KW0LK7AoS7pFhqtqgozmJEKnD9h0WsRAI1Q8ZaMUt5UFn0rjVJvyCyC4WG5IgVAC6QU+OJSMwG3kAwS8N5SzKXfvjZkv5twYg9A53W4XmajPahvyoMtQ14aQDihQ0U4uWK7vl+ysn2VdLpiXNUU/PCAcBdoTGtpuw+u4hVIan6es6m78fdr25uGJY3XjDHld4lxgWTWxOyMSprVBpzkPnctRLXFLidN2awyM3geWtaOTSua1YaVIeSCQaFmQnGZh8RyMoKyCM+t9ytqxfzxlNYtEqE1zj+nLFVviHms7hkKlcHiPn/7+/5H7h29yngBtCyYIiQ8Ba0wMAMa2IM0plhJPHhU8g26Bk5K6Nmyc3WZZezp5ymw8iYzCWHzS+GimGWjlr1KRqZyV9U0CsDSWpo4nQgiBe3t70ZnYOu6LLT5y7TaL+hhrHP/gA4ZLvRMurJWcffc+w3fc5Na9p5gcbnJ0+1kOXr1HYiFBMguBJYJ6NqdX5Fg7QyYFvV6G1AYhA7WX3F4UnNkqOJovIAgSkRDqhtmi4vhkjpYS6aIsWiUqyl6JG6zIUpaVaQlzgpmR/NJoyFc9eRWxVBzOLa6K6axwsdY+fa0Hwz7peMZCNKwkHXpph6Akygs8vgWoIljnvWE5X3Lr1j4ra33qZU3ezTmzs0kIBudO2XwSK0E6YqcAcD6SYHzLACWcsgRPzTla0NFHvMATATu8eN0tuLZMjsfsH4zRItC4Lv/Fd347nV4HlSQtkBkA2YKrgaq2vHp/Ajoly3KUmyPQXN7qxA6UDxhjHiCfpy3J09Ii8gLiHpzUASM1PkRXZKk0ZVNSaM2g32F8cMy0iR2sNE1RUmGcI88yVmTNIBOt2Y1o634Rg4+UnMwNG4OUk1nFej8DQuvQ7JjWUYS0kseOzGnXRKrYsbi9t+Qv/uDfRsx3CVLw+DPvpOg8xM9+6NPcvLvk6bOOqVmipiUv3hi/4fZ7cwQB4ovtfKCuSry1VFWNMxYtYnr4AEj2Aa1Tzmyscv14QjdLGa6s42cLOlqRd3vYuo6lA+2b6QNluaTf61IbQ2c4YP9wj6qsQCUYU9M0DcFayrqJTjhaUIoIqAkvSJXAlp5f/oTgoYHnC6oDPvoJz69cv4NfGnppgs5WoL+KMSkiKIRbUrXPq5OmdNe3GQ6GHC2OWAhH6SW1k+wuIk22aE1Wt3s9Zjfv0dUJxgekgiAkQkYASoZ4omSJpnExXZZCIbXmYy9P+YlfOeEbv2Cbqm6YlYa6BmPBOoG3EUk/HM2xtaHo9ZlXJddHjjNj+0Cn4VsZtQCsa2iqElNWjPehDg1ZZTDL1q5dRCkwwlG5SHVNCQQfgzritI8fcEJzMl8yGHTITwEz8VmGHTIi48JF8NB6x3hZIXTC1uaQTMDuIeR5hneO+bJhf1rR66SsFjoangSwjY8BTMgog0bFQGhMJOSI6G0JEXBuUFSNx1oPUtBLodAx69ImEJKU4EDqBOsthU5Jk4RE6UhBDwqPwFgffQeFRKXRCl/q18si2bYBAxKExAbDSeXpdjKUOiVBBaZl4JWDilRrHj+r6Or4fyF6qQXAestgtUNWJyhj2ZspLq4XqExRWsfh3JGksXS8vJ7Dzepz7r03RRCwzrJYLqnrGoInGIcUkrzXQwSomxrbNCgURa65tLnGrckEUy65+NgTLBclSZrE3n+/ixkdPjCaDABK0hjDvVu3WRuu4Xpd7h1OCN5RNgZrI/fAGxO54gG8iB2GR3aGhHLJZkfy3idWCdrz7B78+L91pLakt57hnWRtNSfPJOvpKrKXIBpDqh1B1EwWNcPtdXRvwOKwouys44sC4QPOjZnPmkhCsY60oxl0Ozy+nmGc5qBsOFlYJmWDShKyENBSUZomtp90QnAGpQRaK1QCP/JPbnLj+X0u5z6aibSOQwBSKoKSLJM+SdHDaosznnJaMm9mgEMIiXGW6bJm2I38Ca01q8Me1sPd21Mu7GSt4EURhEFIwbLxvHTjgK21Fbb7up2bICOJS0bFhxCOjrSoxiBzHakCbW9QteKCyAL0SAmFTLCyIskUmdZRkSiiJbcncDQrmZcW03iGWQ+l42avGsOirtEefF4wPqno5hJP/sDg8xSEnJYx0OYCXPQXZTarsJ2cIhExQ0oSggJvavIsYzgY4r0lTxKi0tEjlEYqFbtCeJRrWlJVi4kQry3b9qt3numyYXJS8rZzfZyX0T8jCOZLR1fpVowUBV2unS9BS01WPnC8P2ITQ97p0Oxd49r+PsN6wldcSRHOMjaK4xLGRvBG600RBJx1TKcz8iyh18lR1rBsLMuqIlGSoiioVMIwV1w4s8at4xkH+ydsb2ygex2mswn94QoGQaoU3nhEEttUIQRoGV67e7tsrK1h8SzKGiU889kcU1VYa2jvQLwTWGlR3nNprcOmTkkzG2m8S0vu4e5tA6rkfL5CkSXM60AoA1W1IM0LQtLBKANCUXuDsw2q6GB1BOmsUPjgMGmCWdaYZhmZdypHr2bMVUpwNZ1E0h0qeknKcR2ZfFoqMJGDP+xpJotIcIlqPo0edrg5hQsDRSGic44L0RxTCIEXihNlsFjwEqUTlgjKQpFUM1LvkF5SV4Yw6CFFEgEzBT40rPYcKUTkWrhIvyVBOMdKpumlkuBUO7TD47whUQlaSErXUONJlH+gAgynTcgAtA7Hnig4cjKKu1SaRkmvUpG8xWn97ukVCUWikCr27CWwKCusdSAM08kJAsey9jQ2kCfylJ4QT+Rg6WWgpIKgCEKQJ4LRsiHXGdY6vLSkSULa6dLpFiSpxgZFYxuEVHQ6HZwBGxxJqvDW8dKrN/g7/9OPgvc8evUif/o//wOkiWY2L/mzP/Aj7B2OWNaGL/8t7+fKN30F+3f2+DP//d/GOscf+j2/k7OXruCs5Y//2e/nr/7f/8908qzFKgBnyHB0vGWznvHplydcf/WId5wpeDRtIvfBC7YLycuHFUfT5nNvPt4kQSBRCmMaEgFliF3VYVGw0hNUTrHSVWysDZnWDZ++dchsPuepy+eZNDWuqajqEjeKRBJLQCbxlMDHmQSnZJJFVbF7cEBndRXnHeVyTlWVBBuppADBOYKPNZsTHh0cWtYEA8Y7lIgGKC6UqBCo5jVZ2sWTUJaWRdXQyTrINMczJwhF5RrKtGB8fIhwBq1zpBBYJXFSYYSOfxqDqSrOyhTaXr2zsZdd5Al+WZMVOU1j2hZqyrBfRKWcE6RpTpamKKUZm4pX54In+yaiz0HGrIB4+ulaxklPBnzj8EiW3YTNSoDQKBnYXikQWJyMdl9SSASCZVWxuq5bsDGAl4jWgXdRNfS9j3W9iLLeQBSIOSXAK/YO5zxyYYD18bmF4NrfV7QnZ2QQ+hBb/fPG45RBJBJhA64d+EGIct/SQD+TMfgT8SPrI/Mwgpqm1eR7nLdYJ2PgaUG6xhisjy5O0d0qdkasDzSuBfOcJbQM0+AjbtUYh29KpJJ0e13K+QJhHJ2sw9wu+St//Qf5nu/+Yzz98AV++Md+gp/+wIf5uq9+P//wp36ei+d3+PN/+o/zoRdv8T3f95f43b/9K/gn//qX+S//s9/L2a0N/ru//nf5vd92gQ998MN8zZd9CWl3EB2HRFTSCgX97R4r29s8tL7J3U/dRCQZD73nMbZ6CiUilfvoYMInPvBJjHBvsPveLEEgS7lw7iyjg+PI9ityjhclWVqwtZpRGcdzt/fY3R+xniY8fHablfU1ysMjfLUkL3LmszK+od6hEk1dV6SJbn3cI/4bgNHRMQ8/HOmozjRxzJMP0VHX+3Y8VfvGBwdppM8KKdvJOzAvA94FOnlguyPwqWZRN2RaMa9qsk4gUVmsldsbau/uASsbfQZFhyTNIo3Vlg8IMgYFUrC2ukq1GCFpqEXA0hJlWplr7aLopduJDrpaJGyudRnPK5I0J00SlNSUwGujhu1MsyIdXhLl2S0It0gSyrkjyRNULmAyhmVO5SWqaXDeYqxBySLaiPuAxBKII7Nox6YhQckITGoHQThSJSl0ipQe431scwmF9bH/LaRCidPpSRIpA7K17Y7kwNhTF1IigmR0YigGPUSWYqslWms6eUYQgU6dcu3afb7ne3+ERx+6zCvXb3Fme5Pf+Y3fhEgS7t69x7/4Fz9F3dR0ux3+5B/7Tp56+Czf9d1/gUeuXuZTL7zMF3/RuzmzvcX//A/+KUIIOp2C//f3/N8QUvDX/87/youfuYaQij/8h76NL/qCd/NTP/OzfOjDH6WqKu7d2+WL3vNO/tAf/E/b0jOlajtbWmve9vYnWF/p8DVf9aX80I/+I779938LvUGf8XzByvoa3r1Gt9tla3ud/qBPWnTQnT46SfHG8MKLn+a//S+/j1SrB6+zaHEUAfTXB5y92kd88h5JXvDEFzzGRupbeXzKK8/dYZC9QBreaPe9SYIA3rO2sUJ/OOTkZEJTlmwNOxwtahrfJ00T7MmM8xsbbA57lMbig4ttF91a/npLY330oAtgjcWIOJNNqTh7TipNVZccHx+Tr60w3t1rN3u8yb11yBCNKE+prJUDLwSJj176zsd6DwKN9+wuSnw9QqcJK/2CzBga25CkOVmSkkjQicSYWHv7nAc3u0PSuEBpHWXjSZOErJNTzqdorQjVqcWVwDhB1ZJe0iRhuLKCl1EItbm5SapnLGwcChL97AVV5bk2ha99ag3vWrmskMwWS3xIqMcNOI8yDi9TclWwffYsipLSGE6OTji7tY5UGuctiXDUVUNZV1y4vEO3l1Bkik4uyRXUZcn+aM7bHr3IxlYfRaC2Au+jMlQIWCwqKu947ImHyVKJ0lGHIMVpqBYPOkG0GczuyZzzF3aovSUJBfdMzep6H4RkNDcEAXfv7/H7f++38o3f9M38zz/29/mlD32YL37fe/ln//x/4zv+4LfTKXI++alP8aM/9uP8pe/5rxGtMerf+mvfx/7RhO/+M3+BH/iLf4b1jXUO949ZLGt+4qf+FUEK/uYPfB837+7zZ/7cX+Bv//BfhRB49dXr/E8/8oNgKn7/d/znfN1//LUMh6skKnZK1laHeO959doNznzBk/z0v/1ldvePsLbmW77xt/Jdf+p7+Kpv/kPMF0v+yHf+QZRS/N7f+R/z3X/uB2gaw7d88zfzU//m3/C7vunrUUryQLD1WcYrSIlA4puGJggypchldG4yQaCs4969PZZB4ZV9w+33pggCp0MsO1lGtrHOfDEnbUpW+xJHYLC6ysU0w1hDN9WE5QIpJJ1OzsrGCs9/+jb9bg9rTNSV+9hIq+om+heSIKXEGYNMNHdv3uDqytupTYMJlmCjECS6zrYKRe9REpwwWHS015aRC+6l4FIHUDWmKrHdPt4aXK1pqoZyOSNdyeh0C2YzTVlF/rlzHqU1QkUufVM11I2hdp66sfR7XULTIJ0j1RoFWFyrbdfRg09qkrxD3u9TVTVSaVbXt3jokbfxwY9+LPIhmqY1tjB85v6S973jHBc2i0iXBtbCKvdvH9DLFVViaGrFOoEkEZCnFMOzPPf8DQ5HAdlzXNoeEqyJDDg0e2Xgom1Yzbt0ix6DAQx6kqNDSDpdhqtd1te7VK7GLz2EbiyxhMNOK7q9LjJXZEWKphXbiJglhCAw7SwT7wNaBqxtaMyC/fsjdrZXmEwWHI8mrK+sMJ4uMY1hZThkdWWDsqx459NP88sf/BCPPPIIe/v7/A//499qOx6Bfr/HKzf38CHwZe9/H3f2pzz1zNv54i/+Qv7i9/8gX/7lX8pXf8VvQUvF9Wuv8XVf9zUY47hw4QLb21vs7R+ipeSd73w64gCl5/zODnfuHjAYrKETRSIV82XJf/Un/gv+2g/9KH/lb1q+5IueQUrJbDLlAx/8JI9cucRf+m//JB/4+Mv8jR/6EX7X1/0Wds5s8Xf/5vdijOef/6sPcXQ04vz5s/zXf/a/x1rLn/gjv5+rl3detysLMSgY47HWtJQCSSBmXQiYTJZ0ez1mlQZmn3P/vSmCgJTx5m7KJXhPpiRBJOTKMq0quv0BDkiamiRN8E0VAS7nOJ5M2VjrYspoclk2Bt+OC3NNTF8ba0iVIksTnDUspxP2b9yIdFdn8SaenME7JAHpXRxX5QWDfsrFiwPyLInzAGUkz1w6m1Ekghf3G37lbuynV2WJXEi6ucJ1++hEURQF5bLCSIupa/I8JygV9RDeUNaGprEE19ArUpxtEIS2TGnl0614p9/vx5ZXlmMbT5bk9FZXqYIk6IRet2B2dIixjsYYnLM4J/jl5+/xu973EFmqY1AJklxkNNUSKRJC5ZgvluxpmDeWjWKTKxevUo33GB/dZaOXcby0vPP9X8/R7hHJnZJP3pgzWsBjD+UMVlK6GnY9pN2UrJujUkVhMqxssBaUhspp7k0r5k6Ajd5+IhFI4dE6lgXORcDT+qjZb2pH03jSoOjlKUkiyFLJsJthrWG2rMG6VtpwSiRr5cl4tre3+L/8se/Cn5qc+sDJaEpjI8twuLHO2TNn+N6/8P/kZ3/mZ/nZn/slfv8f+i7++Y//GFmaMp+XWKnIH2iV4xgSrRQe+WBClPOR+CSEJ+90qRrL2556kh/8gf+OQUfzKx/+JDdu3UVrxb/82V/k2/6TryfNUs6dOcPm5ga3bt9lc/h4tCmzjn/yk/+Cr/vtX89P/+uf41u+4Ws4d3aT7/8f/h7f/+f/q9hZiPQmfAjUjUHLCBp73wKtUuKFZrm0SOlJuxvA3ufef/+H7PJfZwkEmHgiJ1ojhSbr9R+MZpZCkKYpUitcACk0zgWCBKklaT/FuQap2qFNrTFEmiQPetBR6hndb4KUHO/uYZs6mkVqhVQKRCSoCCGiEQQCFWLpEfSD4hcpNStb63TX1+mt9MikQ2OonaEpS+qyxJRxrlyWJKRKkihFU1XYxrSCmTgUxAfAeFIhGPQ7CBlwobWmolWbObDEP1JHwpNOUjr9IVXTcP36q3zkIx9isZhh65q6KqnKJVXVYL3j7sGM0dLQstRZ2HhyOB+o5oHRrMQUEuEq7hzO+NjHPsmlx59keOYi148CH33uNi/emXL7aMb5R97GxnqfxWTMyWTGvPa8cKfiX74w5+9/4CajUrA/jm035wQuKF7Zm/Azz+3yUx/f5eeevcu1/YrdZcKN/YrFMrrmaC1IEk2iFakSpDKgpUc4w/pAkQ/7bO1so7KCLEvJ8pzRtMTYKEQYjyfcvnMbJeDZTz3Hw1eucH5nh+VyycHhcdQ6BDg8OMA7R9PEtuvqyjrjyYIXXniJrc1N/vAf+D2sr61x49Zt3vnOp/nQhz9G01j2d+9zcHDIxfOXIsgoBUUiWyuweH8GAUroOEjHWo6PjxFCYJqGv/X3fpxv/abfRtHvs3Nmi489+yJ5kTOZTNnb2+fiubPxJA+Bj3zyBXqDPhsbG9HspNVilFVNW6m2xikxi65NaEFVQfQqky2XQFLVDV5KeivDN9x/b4pMAGKbUGiN8YIkzyF4VJZj7IjJbEZvZciyKqnKklTArFrifc1iEfC1wyuBbESUcvpW6SYFykct/ClXwDuQ3YTgA0mAfr/PfD5vBXIagaAyLt403iHMElPlZJ2iTbVaay3rqIMnqRasyYZFY1mEBF1J5ouSXr6kM+iTpymJVq0gLzCfz1jrFK3KzSK9JyWQ6gQlRdQCIADZik4UjQ3UzoPMybKCNEshVRyOjmmWC7ypcdZGMA0w5YLauJaVBkejhpdvnbC1do7Gep67s8f9qkT3FapRTCYWKzrMVMJkNmI0GvET//QfsJyVNLWlylcRKuXZj3ycq+cvQ2eVjr7D4njKBz/8KqNZyTNPP83JWLBz+Qz7Zc7uCydcONvn+Vfu8pHnb/DuZ76Y//Q7fh9/52/+FUIzgnSFW7evI6RgtdTULrDWi6rFxjimNSwbzcu3TvjMTLNtBD2dEmzZAq6S6axEEZ2BNzc2+OCHPsI/+vF/xpntTd7/pe8jSTO+4zv+MP/oH/8TlosF3ju+8v3v4/zZbZxzHJ/MqV3DbHLC937fX+b2nbsopfji930Rq/0+3/zbfxvPvfBpvvv/+v8g0Zo/+Sf+OEWRolUbiNMs0tqBRMZ3LSlybNnQzRR/93/5x3z8k89C8HzrN/023vuedxCAP/oHv5X/5nu+n2/9jj9JVRv+wO/+T1hdGUR5tAv8yN/7R3z9N3wzAN/427+av/CX/gbWef7cn/qjpyxiTmcaEKCxETOKtm+KQPSlUFJQGo8NKdvbm2+4935DQUAIcZNYaDjAhhDeI4RYA/4BcBm4CXxLCOHk17kOSZo9oFK64KOi0AsUitHxCcXKKkpqhPBIGbC1YdBJaNKCNIP17S1uv7ZPZh3e+sgCs4ZURlDFWYcmgjaplqRCUjc1RVHQNIYsy2hMzWI2Q6cBVznSUCFs03rTxzl/Me2MNGSpAycmZatTcuwdzmiMs5i6oapKdLeDSAvSIidbzqmtpZ6XuHWPbH9HZx3eOfqDHlIoQhPBTS8giNarLjgUOVlRkBYZeMfR7v2ofHMOZ0z8uOWcx/kNMeOQQWJcwy988jrPPLFNkWp6ugBXY23UBOQpNJVB9DPefqbHS8cTTDlBziq2CLhgOD4pmS8t909G9FfO8NLBB7n62Ns4Pj7mwsULfOt3/hf84x/928wnNzi/c5EP/OzzqPwymxsXWOkdEHQg63fIV1YJsyULZynyDstZTT9XnEwsaVJw/2jMJz+zh+7ucOnCZZ599RVsLbi2V7PZVahgMSFgPfTyjAzBtzaenxCCj33DN71+U1UWqhlkBd/7+37fr77hlpbv+gPfHj/+t78EwM99+Vf96sd89DkAvvKrv/ZXX/PnP8T78z68893wL34GgK/57d8Yd8Bnrv+qS/yOd747Pu50/auPA/A24INf/02/6rH8zCcefPiR3/HNkck0nsAYvv33fBsA5sRxK3KkP3v34F2cxO1Dy5YkBoCIGXiyVDJYW/8cOy+ufx+ZwJeHEI4+6/M/DfxsCOH7hBB/uv38u//3LhCIIg3bVFy+eoUbN24jlcIay6DXZTwes11V4GFjdZPFfIRdVmydO8N4WmMSw96de+SZZkxDXijCMpo2NMGSpDm5UjjTkCgRR3T5aMP9mU9/hnMXd0iSqKATSYqtl0hr2BQzpC2xpomgWtsvD3iECmjhSbOUSbZGWk7YcnNuhhUa5ylNTddZev0OMwRmafBBcvbiDkgorY16GhxKSXq9XlS+2ZiyJy0nPjrfKJIsAymYL2aRVl3XmKaJhJlW+mtt63JLZKVF7n0MDPfHJXf3Jjx8cYUs1MxPDHUe1W9rawPqyuKWDWWhOb+ZEsyCtfMDHn34MQ4Pj/iFD73C2GV84Ed/iNcOpiSm4qFn3kV27RWm5Yxbu7dptOb+vT1m9oMc709RnQlPPXMJmaaMTk545ZUb9Ht9XrvbcOcXf5m06PLU2R76TA8XBD//iT0+/Nx10s4K3/CNX8jX/tav4Obt+1SH1+nQkPfPc/3Va9RNoCyjrr92nh4wVoIf7ERWoREKJxTGOzrdIUIqppMJUjh0iIeECQGfpLz/fV9Ip5syO9gjLTpsbu5Q11NMXbN/NObO7gG91VXWV1bi4BUhCM7gTBxiOjo6wDqH8TFLXOkWdDsdZssSpRO2h4pCi9aLIWZ4BDCmQmvNK6/tM1zrcXa1FztGIXB8NOUT13dJEs2XvvMqnSTKth/76Y+1Q1vadIBYDjQtEC5dnBXhZGizBE+RC7xKGA47b7j/Ph/lwDcAX9Z+/KPEUaj/u0FACrCmQYiEG9dv0tjWeolAliWYyZzJaITWCfO65mA2IW8q1rIM0w3s7U1JZEqQjo1zQw53ZxSdjEwrvBcsTIVzDdPJFJ0mbGxutmQRD9MFu/fu88TbHmdrc43q+oLFPLAmlmwyI1hBXcUNJ6UkyPhGyQDeCIZ5wn2VYsScZlmjkxpqQTWBO9OSynmMbVgdrHDx4nnyPGe6nGGtxxrTsu4kuZb40ND4KAjSOkFrTaIU3gXquqIpDbWpY01rYi0sVcuxN1Fq609dbkMcHx6n7EAi4TM3j3ns3JDBWpf8YIaZW0yQ+NqRe8+j53rMJlUcPba6TiUSRJpy9uw2l7fv8ezz++yOx1gC58+scfvaqxxO5hwfHvL8R57lnU+8h/LmR3jphWc5uj9namo2tjaZzRZ4Rty98Spn1ze4rQXJbM6dl2/C/T6XL59lVAmuPvIEn3zxJjrXVCIg01XW1jfZnd5jtphzZXWFajbGUUTpcUzLuLyywp/4Y9+FQ6JkiHMmWpu2slySZAV5CrmUaJ0xmsyxPs5PPFUgru1cQqcZQecM+wOqxZSj8RK8QAuBNw2ogqZumE4m1E2N1Jr5dI4XUZeRpAmzSuJkVE2qeOnPmiBE+/NOuStQFBlJlrVU6QhsNs4hpCLRGq3kA6HV6Tr99DQfcD60ZiRErYmIeFYwcdIiQjLIijfcf7/RIBCAfy0iLPtDIYQfBrZDCLvt9/eA7V/vIkprut2C2azEeBu924QgUfKBemp8csLa5iaz5YLFyYK8kAz6HQ4qy872Olm/z529+2x2+/QHK7zy0k2qssYaz9qg4PzVC9x49gU6G+tUtiErBoz29ygXJ/hmyYvVkp1HHmNZ1vSrKRfCCCEdtdCYtsSgbVuFVqQiRWD3pCL1cBAyyloyL+fsTmpWOiWbK0O0Tlk7sxVtu5LocGudp3E2eiQQeQNJnkfv48aikhThwoMhn9Z76qqh8WCsjZLS0NJ1Q+tzb1swUQjwHucceZLjgsP5QKYF++M5jbPcuXvAZFRTNTDUmt5GgS0rjpYVj27lNKXGakllDSejMRe2VnnPu56glxWUdcOwV3Dxyhav3b/B/ZtTytrwqU9+DC0kH/jIHarZiJ5KsOM5zz/7AtPpAusVo8mIR64+zPhwxv6NPagbDkeKw9GM2zPHV739nWR5SqI1e3v3uHn/FtYF5kbhZiPu7R9gpcLZuAt0opE6AeLcyNJ6Gi+jkafwIBRFEqhNSSdRDHJNbeKsheg74DHO0u+tk2Z9kiRluYyTrTLXIUlztJboJBKA9g/vUpUVVVmhlKCqGpyz7d6O96nSCp0kDLs9BoM+PqjWKamVZUPs+LTiqDhcq93VradbtMmXZEnSDtB93Sk4VnziwebzRKqyD4EmBJoASQCExtk6eiSoJOJsb7B+o0HgS0MI94QQW8DPCCFe/uxvhhCCOO3b/JolhPhO4DsB+r0u62c3cOwznRi8D2RpQqo1aEWeLZjP5mxsbbOsG1LXsH3+EqPRmKub61QYGKywmM8ASSdLePyRK1R1xXw8ZmW1x3Q2I99coWxqDu/sMhisYZwjqBQvDeXsCDNeZWdtA9uckM4bHODweBtNT1yIFlkQWW3OWjLl2S01TeOZlIZF4zhqBFfWd9jcWMWKBKUVSisSnSCCQ7rIk3c2Glk6CSJpH6c0tmniIIrWusq7gLUG294kvu2AuHZ8tWpbV42x8XA89dCvDd08Q2EjSl1ZfONYz1PSdMHJaMH6YMD+vsN7hW8mPLXRZ+PKFvdOKrrlErwhYOl0cs5sr1B0E+pyQVZknBlkuL37bIWEm7/8K1z/2EcoyxIhNIP1Pg+fX+XFF15lVtdM5TG/fHDIL+sEMz5iUcfnut7rYU3Jnbsjbty6R6fX5WQx4+61z3B44wY7a6sc3tFsbCS88IlPMZlV6KygKpdYD3UTXXQj1ySa0RQ6jWKdEBj2cpalBa1QOkqqbQAho/dgnmVkSqJ1LPOyTpfpyQlra+vR0NZZptMpZlkxmYxxPqC1ZlnWbRCOP/d0SIppDELWNGXFfDEn0VtsrxQoLXHGspjNyJJoJedCPABECA/IQAiJbaL8OknV614aD879llQVQAhJcDCZLDDOcXg04dbtY566sglKxIPDerQSqOSNN/FvKAiEEO61/x4IIX4C+EJgXwhxNoSwK4Q4Cxy8wf/9YeCHAXbObof+cICSGpUesZgtSZBkSYqUgWFvzmK+oDEV3d6AclGSD/scjmeUSjEjRc320P2Mk6M560mK7Wpy1SHPIuI/2d9lcjKhKWuaZcmsNpAX0Q03KXBOIlEkWU6TZ5gRuFTgBZH66sODwRBRAeawxhKMY1EHamNpgqC00Ror0QmLxQKdpuTZgIEWsR71AYQleBs3qg8kmSbtZCgRSLo59WTGsqmpbIMJHoRs/QcFUsgHIKD30dxSehHHdQmBdRYCaKno9ooIOFrLvLYkqebj14/59M197u+PIXju+YYkCAZakqiKcVnTEYq9/SlpkZGuDnAohKiRaaDTyXC2JpiajY0+K8MOvZlhr6opXU1HJ2xurvDe9zzC5tYKB/f2Ge9VLJuGcj6lyBLyJGFUeVbXB7zvi59gtd+n7/a4fvMWk0XFYlmxuibIN9Z51/lzfPjDH2DBkru3DzgaLbj08FW0kpiyeZBCn+6RIGjnU9Fulpb3YQMhiZOvrY/j7JIkwROovY2BEkGeaHyRtRqDOJy1Gk9YLhbRy0JKmqZ+4IN4akX2q+zQW23B0lnu3vF4u8rKoE8qw+sWYiG+l6E9I08HniJ4UOplafJ6lvBgtbY6Iv4faww3746wPgLEz37mBo9cPoOyjqqMPBClc4r081AOCCG6gAwhzNqPvwb4c8A/B74d+L7233/2613Lu6hK666vRcmrCwjfDoCwjkxrtFbMRmOyczsMV1ewlaE36DEZjbl7NOXchW2yXDPo5qys9JnuHTAdnRCkZ311g8tXLnDXw43xHQQOZz1u3uBTTZ52IOlwa++Ik+WSweKEvg/IBnxCdMylnWPvAeuwtqRuPCdzQ9EY5jIjKwas6IaLZ7foD7pga6qjEns0pur2WTl3DqUCwhikj2SZuqoY9Dcoii6+KVGJRiYJpu3jnw7FDCFgrUWp6D0Q2kGap5NzogVbW2kKQa9fcPHieaS1nNnZwQnNwa1rTI5m6CYgRXRsSoXDGodLMp54+mEORiO6awO2+gn3x0vc9pC7JzNWCk2n32VeW0g7GDJ00uWrvvzdfPpTL3Pm3ph8kHPl0Qtsnd8myTO8TLn08BXunbzAzMfNZ2rLmY0Bulvw3ve+jeHaGpW3dIXhhV/+KKPKIlLN4eiEl15+iUtf9pUsfcIHP3anNUXwlMs5f/mv/xCj8YKDkznTsuHH5CnwBt08aSnfnvVeDiHQeBgUKfOyYjyrUUnCYNDh4V95HC1CZDHqFK3icFmlNNdeeon7+/sPRpdrpeKkoXYS0mlf/0E2zylZiQe+AWmiKPKUTpGTFRkrvV6rT4mO2rujkmE/pZcnD1SNN+8ccLKoOLs15Nz6oPU5EVz8yMvceelDD7w1pFSc7B+yf3hMr1tQ1w0vvXCL+Vd+Af3ugKXxWAIpkHc/P0aj28BPtPWJBn4shPDTQoiPAv9QCPGHgVvAt/x6Fzo1ddxc38AQ/dn379xFSsHS1Mymc5QWzGZzevM5WiecjBecvXqGbmfA3ugVlIzqsG4nxxBQWeDsmfWo/HIe0pS1zSE6S9i9dZflsoxvZl1jrSFJEhoBh5MDMuloOhCcYGkhTC0cLSiWtGQNR3A++sJ7R6k6IKAqK85c3CTbHPDa8Zy+M5zZ7LKeSELdcHzjBZbGImWGQ+CURClFpxunyDaNRSpFkiXY4FBCkUqNFZZ+P2d5PMOY8ABj8iGyFwMxGAQvcC7SY/1kyUuvXufymXU6/TXuHxxzf7zkvq3oZorNlUGrvZCcmDl7swXPvrrH+dUO928c0NjA7iwguI+tHDrAeidq+RESj0VIjZSSnYtnOHtunWjK6Zjd28OLSI3uasf7n7nKbF7z2sGU+wsLax2e2VrBVnMOr78CQpC6iuZwl9nCkSjJfDLhf/1rf5X/5Qf+KuOTEyCgEoESnoudwKWsYjI7ppyX/Nm7h/xQP6cyUUbcPzMgTQLCeIp8SDeT7M4dV7ZXeWU8xS3mvO3KNnQ8v+1r38ulnS2Gq2cZrG4DgnJ+wuhgn7/xl1/hleMDKmNIEOgsp26a6AZsLa6lIp9ueFr7cqkgT1MInlIEFlKSp5oiT1HrfR4+t0ZXS5wLHNmGDRacSzNwASsE18a7VLVkuCG5qBxKSxIp+G9u3eIv/kdnH/w8hWD35B5KyWi+I2A+GfPsL36Q/Z7m3v0Rs9pQH+1x7ed+8t9/EAghvAa843N8/Rj4yn+Xa0mpyIoexljyPGMw6DHNc46Pj5gfHXN4dEjRXyEETzWbo7IULwK2CYQcNs6t4J2lqubcunaHtWGfZJhThcDGcIXlckq5WBKcp7/aZzzpM68MuAYRFM45gqsfjD23EmwImAALI0kXlunxArNo2lYPCC9onGGxCFQ+xQZPTUAPO4xGU/b3JrxweES/yHn8wgZXzm6wurPCOpEbMF/MmFUemResbqzQ6XbBW4SME3q8i9oCIRUheLpZyvpKn4PRPG5878FHgMm1UulTFFkrRZZIOkpzdHDAJz74AdIiR0vPvIoMtGEvoaxqzGKJUmDLgF3WFFu96KIUoOMNTdB0uwpRldw5Kel0FJlSdIuUbqpbowyJ0EmrbpOEVvLqnMdZQZIpVtZ73JrXDGTC6rCgW+joVhw8ZeMIWYr30SjDC4dqKtyypEYQgomAoAlcWu2ws71CkiSYVmsA8NSlDT59+xihNefWUlYGBfV0xsIYEt2hsQ0ET5JI3v22c5wZ9Bj7hEFvnaK7QXe4TlZ0CTZAV7JY3GO2qGI5Qfx96rqiru2Dbl9o3auEiAC2s6GdwhSZp3HagMCjqCyYeUWRajLpyNMUZyBPFVliyPKEEG2i4vsJFIkg04pEBWQLDiZE2/1T092lMQihEaoVX3kXCWSJpimnOBJkMCT1G1N13hSMQaU0veGAXr+HGQcccwbra9y5fZ3Z8T7GWnRlULlmuqhIfcAmipu3brGxPqCTdxkdj1iWSw52T+hawVOPPMaomnGwu085X9IddBFFwt7eKNJ1XTtdpvXTi3s7vnEIwdxEyWYuoUgTOnlCmiiEEnFMuQ+kRhFkYDmb0ARBt9tBJhmj0YgrV87gbM10suTF6/d55c4+QaRsrQ24vLOKrRxNY0iE5NatXQ4PJyR5ihIBrTPStYw0yVn6EdXS4KqGtUGCtQWj8awFlkK0tH4gtpH0E01d1UhSHnr7Fe7evgPKkeiacxs9Vh+6yGJe42TFtmgYzY6ZLh1X+h182RKVEs3J8T6mhPGiR9KRiKphZyMjVQnOOw5Gc9ywy2ovj/yG1kw0EDM7QTTFRESRi2ssN3fHCJ3S1dHvQQaPN44be0uEBNXrkdQTjA/U3uM8JMHidUT1O/2Cp5+8yKDbwRioy5qqiuq4px/ZppMIPnrziFnlSCixy4ZjF1hb7dKYOI+glyk2enmcr+BTlkGyun6OvOggPBhvmNcLTiZjdo9GGAcoRV7kCO9RKlKxI7HLEJwDKdBpEr0TRCBVOrJNtaZ2llRKXAAXRFT4GSCNgVYmGVqadpiKhOAwNtqcpaqdS3g6m43XsYN2ZALGBKQWDxiEQsrYzfIpjYvj49Ik+VXW7r92vSmCgBBQZB2Kok85r9hcWyNViu3z55nv7dPznsnkhPVsk9JXKAuL2nBzXNFJUna21vB+hWq5oKsE/U6PwcYKo72Shy9fjMqvVKNsw8a85OB4woqIcl6tBJnwpFLEEdxE8crUQaIFnUzG8dKnjEEfYSdPfFNFcFS2xhjBzHn0/pj5ZEb3oXN8yfuf4e7tY+68/CqFlhzWNYvlksksj/z4IkcgmE9OWE4ncRhmaMnhSpEVBUJnVDZwcDLlol5hc6VL8HBwMqYxUTYKkLStVF9WWGupRGB0coDOE8bTKUcnhpUVz8VHH+dd73qET3zs5+mmJXmqGM09aSqZjhYsZhUqyVhfHeA6hiybE0JCkyiCTGmEIk0VvY7DVAaKDBEaAup1DENEMQtE/odEMCkdi8qytdGL9mWNY76sOVk4FvOaXjfn0oUzZEqhgqEqa3QaSEUCacITqz06uabXy7DCUZmGJo4CAWKguXBmFRECo5MZZBnTOjBXWTvmy5GvrqIns+hj5EElilynZEUex66hCWWNWdY898nnOT4+aQG/gAmBXqdApykewbys0ELiqgoE1NaipEL6aFOu0zQKpIiBNUkSnPGczGvunCzp9Tp4AvPpCflmFx0kS+8wQWCMA9NORmrl31LErRqEamEfgXeWxsXfA6FwMkrTay9xRO8JJAQpQb/Jg4BSijxJKfKCM2fO4IJFyoSzF65y9/mX8a4iJIEwndHbWAERGPRylnsnCFtTHs05e3GbypTU8zHZIGcxniBC4Pb9fR5/9Cr3Dg9RpePpZ97BR+YLZF2xnC8RwaOEJBGQarAuUAaobKCQEi2idLh2HuNF64YbUwePItGOjUwydTWTBo73jlnt99vZhgl5olEC+lurcZKsFyRmESfNNjVSyTZtlNgQQEbSiZJgqobaeEDS7XW4uTvi4mYPnQm2tzY4OBi1oJXHlDXOeWb4dtoPHByMKfKCk9GMREuOzTHXX3qFb/ym30cdMv71v/qHXFpRNKbmMzfGKOuR45LVc9skaZejvRMOZjWj6ZjKKoo8o8gVm6sD0gA7mwM6nYQ06SEIVMZhQ3T2cc6iBDQSpFAczBY4JMNBTtrt8pkb9zg8WDI3FcIG7oYAWlD0ujx87hxX1juxNJAedBxsen13xKJy7B1NWenlNC6WZQCDbo7qCNa6OR994Rrr3QGj6TFCJnjnoiLTBZIk2pwF6dGpotfvRkfrIMi6BRQpz33yOr/8Cz9HkWiMMaRKs5wumE3mcdKR87G/f0rNDZGdKZSm3+9i6oqyqgiBaEHuHEmiUVoxWVa8fHfEoMjo5yn4QLU0HJQ1QmkOThZUxiOEx0pLZWIWeOqZWdU2ZjESnIluQSJ4qmoZZyE6S+Mc87KmthCnGycsmze5sxDAcLVP1kkxZaCsPVon9AcD8jPblNdGJBqqcsnA9zFZl/7KkHJ0wnQ8Z3DmDPZkjsZx6eqjyFSxd7DL+YeuUjaWj3zsBbbOrFDOSkbphOHWBqM7B4Q4ZwonBCaAsYGlBWclTnq8F2ytD7jyyAXSLGt96MMpCI0UgqYxbI6mTCYLqnsTDmcNTgRee+EaF9/+EKP9XVLhEJMx+WDApDHc3j1iY1DQ7Wi0TVFJ9KTXQiMTFY1G6grvJcYYKme4cH6Hg+OU+yczrDMkacbG+hBT1yxKizUOb2tCiPZTwVmm0zlZnqGSBO8sznkmR4fcevVVvuK3fjUvvPoJbj3/CebjJVUZ5y2OTio6w3UqY9gb7zKZzMgE5AQS47E24eb8KA4zGWyycekC22sdtBAsyurBvD0pouo9YLFBcqf8DDrRXLp8nv2J4dXrh6xoxdVuwn1Tk3jP8cwxXViq0vDo41/KlXPriOAQ1nD72m36WrKWC9KtAfPaxHFknQxO4MIjjyCQjEYnmOducmd/QmU8XjR4EhCBeW0ZDvtcfuIRtFLcHi+5ffcGD12+ymClwEeJKrPRCGdqdJ6QNjXb/QLbTbm+O0IlGusi0UcEQZHnKE4dnwXWOSrj4mj3EEikQimBtRZjHUollLVDD4Z0Oxn5omTl0nk+8+pdPv7payyXdWt0I/nF5/a4euks737yYTbWusAn2Hr8GTIdcCZA0uGRA8EnXr0F2lLVnsHGNmcfeYoMMPvP44Nn5+3vZWVjFfj459x7b4og4KwlNAvSoqDoZqytD8lShfMlZ8+eYf/ay5EYQ6BeLEB1KfqrbF99jHLvNutnNqmamlW1Tu0ltio5XExYvHyd4eqQpnEsRjPOXzyHrwz9wYA0T2lMhQuCPJWkqY4trKWlCZ5cJ+hEsNLLWR/mnPrRx5o3nrbOewwWZyrmkzm2arBNoHQGV1fcev4axpSIEMePhXJG2hkQgJu3DkBFTUC3k9DNUrSMAicrgOCYLhyT+ZKiyNl2DTpXXLp8gRvXbrI+7JDojKOy4erDF5gtK26+8hrOONJER7dbqaiXNWmSRCoqgXld8XM/+5M89Z730CsG5POKbRe4H+JhqaRkMpnx0ss3mU0WTBZL+p2cbqpZ1AGlPKmPnYu9l6+TC+g+/RBr/YIkTXBNE8sSH/kNIgi88YzGC5JMMzkes3fzPjo4Gh9AFrzr4TUWszk3j+bsLQzNouSll26ys71GpgVKS7Z21kl05ClkswWLxlN7WF/pw71DmhCNWZ5//lU60rO1uUW2fx8lDUqnpEIyn09Z7eYIqZBakouUal4ynpzQ7xcIGync21vnePLJJ/jExz9BUHBue8h6r481lqNZRa2jh58LYIzBK4lvdRuLpkYKQZ6kJKmiqqqWmewfEH+KXoduImhMw3I24xc++Cnu3znA+UCqFCpJoq9F8Nx67R5HxzPe865HAej0c7IiIdcdRNHnS7/6S0Bp9k7GqKzLM+96ioceukI9m+EQ1I1j56HHeOjS1Tfcf2+KICCEoNAJ62t9AoppVdKYhixNWd1Yo5EprmwIbe93mAbGe3s88e538bHJmLvXb9BdW2E8K/HSkac5ZdmwWBwzmyzwInDt9i7Fap9O0UFIDUmCUxnjuqZqFJtFQX+Yk+uSxcmSTqYY9BKcSAhKPkChEeKz5JygkbFG7uekU4tY1Oys5HQzzeTkOGIOhaSTSpbjCaVVuMahCCQyRLuz2ZJjGdCS6D2fxEnCvX6X9c1VtrfW8S4QmkB3M+fylW36wxV6gzWsu0Gap5wfDllMZsyPD+lKxf+Huj8P1i07z/uw3xr29E1nPucOfYeeB3Q30ACIgRQBiCJF0VJJplSmE1qKk3JFkqVYTlX+sJRUYjupVNmJU1FSSsQotiLJqbLDQaQkS7I5gRRIkCCBxtBAz9333r7Tmc8372kN+WOt/Z3TIJpULDtub6C77z3nu+d+395rvet9n/d5nycfbbC3N+L2vWMEYSKxdZ5Zafj6N1/hr/3Vf4eTBw/IZwt+eG9I/WDOvaZhgOM733yLxbIMG2KtYK0IKXTtDLVx5DpjlCg2NxOYnvDtNwSf+uizJEojRWfoERSOZfRMXFSBIHV4MGa5LBlpze56xotPXuKJxy+zf+sezraUCGZVy+TolOPjCdcub+FxpL0e6zubLKuS7Su7fPn1V0ErHrmyAd8JDE5nDb4x9IuE4aigPlNUSZ9iNCQvTigXcwrhOTubsbu3EZB/oZidjbllGtbWN9Eq4cYLT/Ojkx/BHdxjPs3Y3tsm8YqPPH6Ve3dPuDud0ShJaWxgLIpkNcEpCZ2dVgayUZKlCA9tU5EkGpxnWlXcOjghQ9BOTjiezBgpidLB7cRiSbQnIXBlRDPn7a+Fqcaj8YQ9uUGhHL6esrZe8CM/9jnKqgKV0Styelpw++57HM8qqrrl9p1bPHn1g9n7H4ogYK1Ba8FyWeNwlGWJaxuqZUmvKMj6a0ynCxbWYhLProaHB/skr75BWVa88voJL318jUJLGtdwMp5QTxp0njCpJvS2NpmMp0zmExZnY0CytTGgyCT+ZMp4WnMwnlNZF3XhPUMFWaIwNtCF6RhikR3mo1BmmicM+n1wjsFZzbC0PHV1k6wHt80C1xrWhn2WRvLG3TnV/hIVSaK9rMfl3U0evHOXynu8heH6OtcefYQHJ2OefuwaXipab9DWM57NqKsFSZribEu9mJFoz2JaMrg85Pq1HexazqWtEQ/HS5598hKtcbz8yu1owy2QomUqBfPF62znKRPj+fakZL2nONU5Ps2Y1i2JlCQSEgQ9rckUDERGkihSIUh7I4oiIetJJqdnHByccv3aHrJpg7SVd3HGwtO0hkVV4a2gbQyNs0idsrM+4uBgyhu3DzHGkirNZu5ZNg7vExaLKgJqntP5kqPTkrv7x9w5mnOwP6UFllUAIKfTZSBfeYMQlrpe4jEUScFwuMZGL2OUpyRKcef2e+zsbWCsYevSHkjJfF7SNEeAopWK0ZVrjEX0XIjg/NZgQNWbc/tsSustKhhkRs5AmNvQWiG8pIlj3lJrijQhzYbM50uEgHre8s3XHrLez7C1pZf36Pd6DIsEbyyXR0Okr5lMZ5SNQUmx+pzvfeMVxPPPIa9oijwn0Skis6R5SustUHN88JCvfeNbZBn0tOK9177O0Y3tD9x/H4ogIBDUTqCRVG3NdLFcKaIIpcgHfU4iG6tuGuql4ealLRK3RNqSZWsZz+c8eX2PhXe0+/tce+4xZnVFNW85WSzBwcF7+6QyBRy6rhn1cvJUc9xbcDJZcHA6QyNYTyUbvYQiD95wHoXzLnD0fWebHbCBRCUorfHeoaRkc33A7u4aVT0jSyU6TXnyyet89a0znJihvF8h+otlydA4FlgyGTCGrMjwXjIez7j7YJ/N0Rpoz8beLty9x+H9Q7xU3LjxCEVWIKXk8PCYRDr2dte48sQVejJj/uYdtE559JFtvvXtOxgf2ksBe5RUtsXIgqxIeWtec63QXNsZQd5nNlsifRtUlpXAWmi9J880rXPM65rEgZ1LLm0N6eWS27fu8sjVXaTUuLYKUl8RMGuMoWoNSZqS5ylnY0mDZVkbikShRZh/XxpLZQLLbVa1SCFpneOVt+/zW19/nfGkpGza2A7zKC94/c1gtPmbv/FVCp0yOZux01fgBa0RpMN1hNAMC41UkixPOTyZ0DaGqq2o6pokTWmrCiuCEWg7nVLN59RtmK5sqgaLRDaO9UGPp3bWuTNbMK3qjsof3pHz+DaUBZ0zc902wUHLx2zMtiRC0Fg4qyHXGXmmsUnOndMZrl2yubZBWS0p+luQ1Vy6tMnJ3SANVuQ5B+/cJun1uLSTkuYpzte01qNIUELwla99k0RrNnc28G3LYtkyrcoP3H8fiiBgved0OsM4zayac/DgYfAQsI66rkm0IMs1hdS01nH7/j3G8xHDPABe3jkS4M54yeW9NVyjOR3PmU1nDIcFTV0xn5VUi5J+EUgto0yjlWCQaYY7I65uDmjblgQYZAlFGvnd3gbbr/hevegsUYNZpUDipAs8+zz0ewfDgrX1HGccy+mU2sPJeMowS1i2LY0JU4jOtDx87x46ME4wCGpjMZE37qxHpAJnPL419EdrHN5/SJGB84Z5U3Lj8UeYzmYkvmVnkJMA07ZifXeHjeGInVHGC49v8/rtE5ZRTh3nkcYxXy7Y6OVB0amXMcgSrG/RKpiJWNuiI4nCCkHVGowznJU1rgalErIkY63f5+DgiMl0wWBQkBhN6xokwTuxsY66sozWcrY3ejzcB+sV86YhV4pcOWrnWCOkwgcIUmXZ2+kxPpvxq7/+dcoq+EIUBJU3VHARJhK8bp+U2MUR232F7A/DYK4SzKuGWVmSKklb11QqoawbrLe0TctafxQCuZ1RTptwz1WYMSiKDNEq6rYN+hZ1S2Ia1jLFo/kOd46PsIQWXHBNdggpsS60BKWUJIkOFnfer0hdOknxUlHXLW3TkomMarlEuyCkc3hwyCDLmDZL1jfWmExKVDEKn/NozJOP7HF85x69vGBrMwnj5q7FuIa2qjkez1FZD6c01jiMaVadhO91fSiCQBj0ENRNTVs3pEqxtrHO6WyKNZY806z1c7RKqK1lOl0wH49xwwKlEvZPZuwfT3hkq8/xwyMef/oKJ0enJFJQmobtUYF8+irvvXmXpqzo5wlZ9IdDCqQX5EoyyBS9pLPk9sHBwhhCAy9c3Ui4iLr4zgbhzkSmIAJXnKg5d+3aVSanPU4WDoyn0DrQhiOeYCPrC4JqupVBw1BpxXDQJ80ztNZYW7N/dEAvVxR5j6oumZxNyfScItll2MuZTWbYdsEg7VPPFgz6PSrXslHk/NEfeomNr77JW7ePmJcGLxz9VLM16HH95i6Xrmxz7/U7YcrNwEJoMtdGe3DC6KvxVARBz1RomtbROMPpfMZ2XbC7ucV0umBzvc8SgXMapRLwNcZYmrri+Rs3+fjNbe7efkhlLLPK8OR6wlqScXfScFSWzFqD8YLHnriGc5Iv/fbXSJ0hlS25TvEIDFBbg2gcTYzO5bKhNbDhwzNFSTQSJROc1EipmCwqqnZJ2bQooTGtozYNxSBnONjDNI5lucAhmDQL2qbFNgZdBZwBKUnX1vGzBdWyYlD0OV3Wceo1p22aOF8S+B7WGvIs8BSstUFmLo4CG2MDo9IaEmfoJYpeKllXmkx4hHBhGrRuAMMkTks+PJqzvrHGXtbj7GzK9vYOSRLaXBLHeLGgEZoMhzdhPkGoAL5/0PWhCAJSiuBiKzyT6Yy6qliT0C96KyuxItH0ih6lbZlXFaayeBNUah2Ot966zY2ndnlwdEy1WHL50atsXcl5953bXN3b4tKVSxw9OOPsbIzWKjDWpAxS2IR0NLhcd0MgCqegbQhSX3yXKqvvEHBB3svJkowsn5H4lCyqAimt2Nje5qQ8Rcvwc3tpEk5952mdo21NEIYEhPC4pgFnuLy7xttv3aWXJ0xmC1KV0M89w1GP6d0JG4MRLYJ6XrKzPmKRCKbjJdcvC0ZFxsmyZJitkwroj9b4oR98no89N6MuDdYTwMxBTtLv8c67D1iUNYkUOAeF8Gz1JM4rqtbQ4si0RDgZJimlRHmL8I66khiX85k/8kO89ca3A3nHReHL6ObUGlhWhscf2eLxp6/yfXcf5Usvv01lGtb1Ost2yemi5f7Sclhadvb22Fjv8Yu/+FUm47PQmEkLXMxKvHX0Uk3akwgsHE+RdR3EO5xASY+Mng62MYynM1zdcvdoQaYNVx/ZJtVBjGX/4IjHblzHGkde9FGFRNqWPAepHUZrvNJ4pRjtjtBScXXQp32wz3g2J080rQyCnsaErFSpYKrivGNZLqMXhidNNEIIGmvIhYzMwzgS7DzSWDItsU1FY2ryfBDWXJLjlnVYdi7j1duHrO9cYl0m1K1jlGV40+I8VIsFQmq0lCjnKasGIRStdXzQ9aEIAkpJjHdMJ1OW8ylahhrz9PQU07bU8wotJaP1nKTNWJQtZ7VhUhuOl1NSrZkuS9566z2M9UwPjxkOCtSwz97ODkcHh+xe2uaxp/Z48zXLYrlgXjb082AOIlMdTELiIhPeIyP7LfR7AyfbyxANggCoj2KOkkRpVCqDeUgUenQupF+BB+5QStPYlkxLvAsELi0lykuU0nE6UKK1pzVLjo4XmGrBqN+nXVZkPc2dO/fZ3NrCJylFfwBtw/G9e2xd3SMfjHhw+JD+qMfNK3tsMeCZj36SW9/5KqmSaFmwtZcSVSyQBAs06wz7+6csnSfFMUgUg0yDs5gYElvThpPNB2ZcojRpFuzdVKZwSpNJgfaaTBdYV2OidRfeBTAQz97eFrNFywsff47D4wn3Hp7wlcM55XzGpJGUUnPj0R0++sxjfOXL3yFLFa0F09qwIcPEFEqGe4xQ9PIwKP/CjV3unC3RsgkaED7oSpJqjAsn5VOPXePo4IjHn34ULcIg2HJ8gq0dja2xzkdH7DnzyRTbtLTOoBIBSoVs1TSM1vo83XuC648sefv2A+6cTjmqGwyeJAmmpHgwTRDIEVE2XorgIpWkCcNE0pOSeduiJAhncD4wG5UA4Rza1iznAtkrSLMwBVgUmlnbcv/4jBtXLjOfLRgOerhW4KVgviwBh04z8jwN96GusfbDngkIsNWck4NjmrYhz1PKeok1DXW1ZLZcYMqW+nROL83YGPUYL0qW0yVKaRLhSSU8uHeCSjTT4yk3r1coWopsnXt3TxifTTk5XdAsS6S1VLWhbi2DPEE6h9SSYKEtgpYgUafNRX86JaNsVxR4cAAisPxi/1fJnGlruHc848pmhhQSKSTDXhoEQkzIKrox1CBdHWig3jryTHL58g4H4xntokYCZVXSH/WxDppFw7g5wjYtJ/sPWL+8Bx7GDw7ZvXoF08spp3PGvQJDQVvXgMH5JHY2QnqvdRBK9c5jrMXULVpIEgVZqkkTFaZ2GxPmJKSi9UGvINOh1tVaY1uDa+G9w0Nuv/UKSjosthM4xLjwZ6bzkixRZFkWNlUq+YE/9BJf/uor3N2f0Btu8OTlLfYub1NVDb/5269gGkdrA8hmcQgDmZCxDRkIUdYZmiaccCmOl67tcjabIqVDaYVMwDYtdSrJZcJ4tuR0uuQb33qbR3Y/GTIwAbWxaJ2Elm+iKXzOtPVomWLqIF9fNRUKyaBfcHwyY1kbpssZc2vpD1OWpsBOPSJiFM7alVy4VIoEWOv3yQSkEjIctQSvFZlzZEojiP6NkWOBVMzq4LGhRPi5/UxTpCn37hxz8uiS7TTDW4uzDu8t5bJcqUxLpXDWxFmZD3km4L1nuZhi25qmbnDGMDubYNuW2bxkMp2HNMtlnB3PuH5pncoF222NIxMKlUhmp9Ng2mg8v/nya9y8vst8eovp8Slbu1ukWYLWAiuTcKrVDfQTdKqQ3aBGJADYuOit83gbN3rsCjgfSwMR9N3KpeH1u0e8eusYEs3+4Zhnr65x8+omg17G2lqf4SCnOm0DguyjEg4hC3I++g8UOVYlTM+meCcjki/I0wF3D48omwZlDbkALTVJklG2lmY2ZWtnl8tXL9GThpPpGd4a2mWF8NFCTAWCSzDxDCVYIqGuPctlhRKgALXyXlDBAhxH6+JwVQySqVYkuaZVnqp1aFNTLsckxYiyNdE4JBBvvPeM50t2N0dI5QkJkmKw3ucP/8CLzJYVic5YW+sxnjT87D/9LeZ1iSbBmQC+dgIeVvgwYJVIEinRcW4fIBMeXc/AGtJ8QN7rgxJIrSmXJWsJLI/P6GnPyYN93ntwhMdSLhbcvv0mGxvrCCdJBwWFlizmE8blnFfvH1A6wfYgJ1vXSL3J2qUtxHKJnRdMzUPMUnBzb4977oBl21I1bWwte5SSrK+N6KcJuVIkeFRbk3gXTnwfaL9SJbQe5lagHGgtaB00zrOcl+hYi0opSZVitljy1q0HrK+NMM4EslLTMp0v8Vas9DBbPLY7pT7g+lAEAWMsp6fT4AVoHTpN6fUKzk6WHJ2cMV+W5EkakOd2wdFkDs6TKYUQHpVIdrc24eSMsm7w2rOYTjh8oKhMDQ7K+YxLa7sUvYLFfE4v1awPc3r9FBmptjLyAWUkBAnvaZzBGhdGNS+MkBoB89ry9p1D7t/dp162LCtDrgU6kzy41aCyXTZ3e1xZUzz+6JKT6RzRBPcYj1gZTDpPZM9pZuMZ1OdTZVkxoqqWCOFIs4LWNCA9J5MFg8vBsNRYQ9Ms2VjbZq3QzCcT3rl9yOnZwUoIxfs2aBNKgVSaVAdEO1ESZwxZptAq+BUaEcozJ0I51FiPFmHCQakwnOIrgxUB5ZdI6rphbbPANTXCBXPXgLB4JvMlj1zawlsTR6PBCkXaG7HbGwWdRDy/8pvfZDKeI0USAiPEdmAU44EwPmw9qc6DQpAIgzFJIljrayZtg0oSTFvjDeRbm5SHR5S1QStIZIKdlxzcPSHbGDIaDblz+xY6fZy14TbV7IQHd9/m7bfeo22CPuPR5Axj+zzxkZd48qVP0h+t473h9MEB3jU4K/A4vvXy13nn1i3ee/iQyWKBTVLSLGPYKxglwYAmsRacIcPRN55DaymFoq1bikTSOE8mFa0LfpqVC6PWuQ5lz9miJssSPHBv/4iP+6ewbRuUpp1jfXONg2lJawXzpcGjKPoZUn3Ig4AnTOQ1dUWWF6Aki+WMxjQcPDwMbQ7RMjs6pJ8nzGcVmZIM1/rUTYWQEmMdaa4pG4P0DoXj5GxMUeQIHA7JI488wvqoz+nRIeu9gu2dbbI0ZXx8jDUWLz0iWjgL4o5fjcjKVWcAD2Xr+dLX3uW9e0d4BD0BNwaK/bmlkY6ymXHwzVe5dvMy2x97hCuXt7l2NObd2wfR8izMjAvvUQh6eUJfenxd42QwQBGEVqGSGadvHQfFY0AqTVlVnB2f4KxDJhovHb1UkacZerjG0fErvPadb3Djxk28cAgdpK6FD1ZtxkKRZuSpi7P9QTor0aG/3daBHRg6S91kYLgnjXPooJeOlIJBL2c6LXnk0ZyqtsEf1gZ6Nd5zOl7wkadvYJxDSR24Ft2Tj7f58HDKw/3T2MJ0KxVlFy3PETErwEXAsgnBOoDmVK1nXFpqwDQ1S2eweERrmC5m4MrYvUno92oW8zMY9Nh/+B7Hh1OkSri02yLcgrdff52yFTgpeOzxG7z0+CUOTio29y6HdqltSdKEy088htCKtm1ZzOY8LSRXn3qSt779Ci9/5zUm5ZK2qcm0Ik8SCg2p8eAE3kpaq0i1p/YSJ4KYjozZgZUEYxof7nuXCRxOJqwNhhjjUG2L0uCMiT6OcP3xm+xcvsp8WdEai9aKJM9YHw4+cP99KIJAl4J7PFJLlk1AQk9PxhyfnEaSiw+afqlCimBvPdraZHJySqo0jz/+KEenx9jmPthguNX44E7TKxJ6uYTFjK3NXbSUDIqC/vomQmcMdJ9FXTM5m5BVZ/Sz87KgaS1ta9CJiqpCQar67QenvHP/OHgkqgSpBI/vaE5sy6QylI1j6OccHJ8wm66zPhrw6U88jW0d9x6O8cLhnIm1n2Bnd4NPfuwZvv7NN3BHYZZeCc/B4X0Gww2W8youpkBcKhdVmCzTikUNR/tnzG5OGPY0p7MlD09KbkxqfASlhAksR+uJAKfHmYosTejnmroONWyqBFmimZceawL4KWXQUPAWXKxbtdZIoMBjm4bJXKJ7BfNqEQA572mc4ORswcHxhJc+ltJ6jzQVDkHlPFqqUCNnmgcPDkJdG4Ojj4o9LgK0rfVo1WEpXaYG3gXA67RsuH3SkPcShsaiRFDuaVvLYlGynE/ZHg4YqNCjN40lFQpbGx6/cYnFeMKRsBzef49WDrmymbA7GjLFMNi5wnA3QyeexeKUspqis4w0y8mynEQnZJlmuL1O1u8hheO9wxPG790hVZphv2A902Fewgu0bqnaCqdAZ1mY3iToWRohg817dLNOLSRSYmMrObEWX7cY77BNyAqMaYLcvHXBWStLWM/SgGtJgfASX9YfuPs+FEHAuiCbjUqZT0uWywWT6Yy7D4+oqhrlA8qupAwgIuBax9nhCb5tETk888yLJA9uUZdzZtM5Td3ikeS9PhJH5ST74wUfeeoTFFtXEC6AfI211AJqC3VtAxPOhURWekFrHFXTMOgFrToPGCH41jsHLGxoMzprOHKCl8c9nn30EV6/dYfS1iipyJRlPG8YjhwyTfn0p5/lqaMJp/OWWw8O2dnaYG93k3lZYzxceWSX+/tn6Kh0K0moqjp4EHhLqiVN65g1DYeHJ1SV4+qlNTSe+3ePmY4bTg/26WeSk+mS4+MJm9vr2CRsMCXUqkL0UtIaz8b6Ovv7p7RGUCuL1p5ch6A3qwzLJphbJEKgnUDpUIKkSpKphMZ5nnjyMU7GY/bv7tOn5ht3znjvbMnJ6ZTZsuG/+K9+h81BxvdfH5ImkvdmoPsDhv2Uq5e2OTlaROAy5AhSEqjaRF19rSB6PpjWIFBIrYkTtqRSMV7WbCWBht46cMYzHZ+RKOj1NJOyYmmgrD2XCs+jo5y1rUv0BymcTJg+eIgtK3Z2RqG9mKQcHc35la98m729y3zuxjWyNMUai6lLpDPMJ8dkvR5SKqSxQUxEpVxa63PbWdaHQ/q5ZmPUQ7SGhZ+RCE3PByWlqhXRnEQF8VkRwJkcyJSmcU1ge8ZsPs1SFs5ijGOYaKSAtmkxpl3hTD7o4QMgvEApwd0373/g/vtQBAEg8K+tp6kbTNtwcnzE4cP9QMaRgUxER66xnkG/x7XrV5nNxihnefe9t0h7OTrVUb49gFObO5e4f3REezpBCs32/n02trdQWoMJyLN1jrpuEM2CoogU4VD8k0WvAOeIYFeo4ed1RciHwXmJw3JvVjNYb2iFJEsUV3bWIQVkVI63DqkVO5c32VMpm5s9FlWFNSWmLnFtSi49l/fWub9/gvcSLyw6yUg0YD3We1pjEd5gWoP2ljRNeBjT6TwRXF6DYeooDx/wjemC9au7PHF9j/W1Pj6RyEhb9l7hsGztrnN8HOS0rYWqafHW4WyLtY7adoh/ABY9QclIecXMWrJig+lkzOTNN3iwf8juVoE4qxk2Dq1hd2vArG5pF3OmxzWH04ZbpzXWS6wQXNpcQyiPcSGt7dB/KcOId7BSCGUPQOMsxngqb3BdnozHiWD06gkCK8GuzAbCjgmDSa4saa3lkV6fQS9nfviAnF2U9Gxsjdjc3QxEHZnxiY++wPx3v8G0rDk6OeTrr7zOFz71ErlWCJmQpymqDq1Sb0L5pkVLkcBzzz2JlJbjo1OWtaE2ntRaUqFJNRSFpW0tGkkhVCx5BZmSKGdBOCSa9X6fw+kyqEgDoKK5iiUvsuCmJDtJsrDOfCSjyRXBGsaz5QfuvQ9HEPBgmrDgmqbm4PCIu2/dQlRN/CDhAznnwq+jUkrRLxDKYuuKs6MDrlzZYVAMaIqayoOpDHfeu8eyrpHW0dSWerFEb+2QpzmtsiH9ShqksCgVVpxAxtFPiZBQtoZeDArCe5RS7K71GM+raFXt8cZT1zWv3LqL8p5hojB1ycb6iNGwR2scSkZgDIGjYXNzyIYbEqkIVJVhNh7zyY8+ydpoyGtv3ePu7XusbW3TNoHSbIRhbb3gSr5O2Rh6Gznv3TumbVpSH1iJi3Ho8a8PE24++zxv3r/Lb/3G13jp0W22H71B2hshdXjfUsDG9pC8n9K2ZWDgmRbtQ76QSE/qBcZH5SKCpbcwPvD/G2hmh6SzMe1ijreWiRRc6QnSpkX2oPEVdxctx0vHN2vDvGxJlKAvPEshoF5SexlETOOeFr4DIsOKdsbSNoIkDXp6QbjEdTwrTuc1eZ4EDX8LTkLdGLauPMLJvbs4r+gPU1or2MoSHr1+DaFHrPf6CGtIiwylFSsjWJWwtrvH5z/9Er/xla8zs7B/Z5/XN+7w4rOPUeQJOknpaxW1GmI2S9SxnM9o0x4VY1zTcjxZsJFp0iRh2dS0PqX2niQLY8iJFkjjKJTCeE+FCAzJtKAYCurpfLVZjAnq3Gu9ImQP7px5GkBUGeXIfMxeFWv9///akP3/fHnvqJrgB3D4cJ97b9+imi9DD57wwZRSUQswtNSwIXNQKsGrmtY0WOcY9Ho4Y2iKguZsyrIMp7y3hrJuWJYVi0WJTNIQNU3gkNd1EKvyPszA+3jwWS+wdRiPjRgZ0rY8fm2L2/vTYOqJi3Wqw1uweMaVpbYZVy9fxjhP07YoIUnT6JIcdefRcbBHhLbQcFSgtOfFF26ysV7wypt3aRvLqF8wLFJGG2s8dvMyxw+PODo+4/T4DFOFzz5HMl1YhICekmGxvPUaxaLkxqZm3c4RD+7Qbl9GbO8gcShg0C/YubTJfHpArhzGWMrWhIxIQuHACh9zdB109YBl7amqih0tKceGw7qmSDx2Lnlw2gZgUUich4ESLLRnUjasacULO30eTEpyKchxTFrwqjPViOPaBAwjkKjAC4lxwXlaihCQTfRuXFqDSDIkNbiw8KVXzE5OmZULktbywkef4JknrjMvPWsbO/R6Gb1eH5WmaB29H+M0YH8wIM1ydi/voZKCf/bbX2fZNrz2xttcv3GFQT8Y2XrXnb+hXXlwdMI779zhrXfeoWraFQO1sVAbsN6QZwW+bcJ6Nh6hQvapE43SoeR1KBZOMKtqkiQh7zax90jpqa0IZV7sXnfkEyXCZ7CxRSsAZT3XH939wP33oQgCzjrGxyfcv/seh/ceYsp6NZ/to/mGVB2e7EilIxc1bvIeTljOlpCJNDgOZwmDQY+6VaRlSWI9aZZhak9VN2RZgRcC4xzOWUxb01QV1XLOUPgAyOFBBEqwTjUmmn2EaCsxXnB1a8C17QHvHs5wXqwedpCol2jn6A/79NKURKehxy5F2EhChkAgIwAWwg9ZnrC7uxX04/A8/sRl8kzx8OEZe88+zvb2NnXb0JQVa+s9Xru1z+HZgkQrvAhmmdKHrGnpDC2e8b1T+rlgeZZjnKB/doa/O2HvpZThziYuBtZnn75GdTbjaLKgrxSLNgwyCSVROIxXaK3RtqV1Fi8SFmWJxDBtoQWmrcaUUKTB8ahsFY0wpErjpCJPg+VcjudoXiGEY28w4M3TGT4JcxKplLRNg/PBissbF9SccGjlEEiE8yRpACZlPCi898yqhtFAohQ42yITz3Q2p61MIPxYQb+/BT1Bvzei18/Iix5KKZRU0dob0iwjLwp0fF5PP/c0+/ce8PXb96iXJd/69ltc+twnkGiWdYVUAmssX//6t3j9rdssqxJjQQlFL0t44WMfYWOtoBqfMN3fZ7k0bG6s45qWcjyPOoItbd0gVIpKM1obguFkusDaWXDjIhI+nac/7HPtyjasLMq6aCAR0iMjriWEB6GQ/y3akP03clVVxXde/iblbIY1NkxmhcwKLwJSL4RCENpYixrmpuHSpiORDWfjmkFSBA9DGdDm1pRkStEsZ2FqLpYVnlB7tnWDsYZlVTI+O8UsT5GFwrSBYKE0pAS2oG1tLEmIog+OXl7w6RcewX7jHu8eTnA+pq4OhHFc3hny2BNXEL0EqRSpDO9d6BAElIjONar7fAJkoCzjQfqgK1+kOfPFnCtygzwTZL0BYq3Hd77yBgcnZ/ju4YvQSJcyfEqNwBmwyjGvFA9sy7Q0ZNay1ZM0r7zOzU++SDHqU7eCVGs+9QMf5zd+61vsPzgmyZLQUbCORGqETLBSUBtH7SWNdZw1LUIGcY1eVrBsFiRC8GihGWKZaGidJFPQU5bGBePV48pzYC3Wa9amNdKASiV5liK8xzVB8s05j9YikqsCHyFL1GoOw3mw4WxACYXylsZKai9JlKQBdKppBVTWMxwMSZKcPtBf67O5vok1LR6PTrIQ8JRGJylJkqyGp3q9gh/5Yz/E8X/+C9ybzHj39h1eu3mVl55+AiFgPJ7yW7/7Mu/evR+egVJcu7TLtUvbXN3bopdnVFVFr9djuLZOeXpGPS85XRqsTqC1OG/IewVSJ4HgFG3Oil6Kqz0uYgJL02Cc4BPP3GB3vY/sXI+61R3xgNgRDr9xQfvxg64PRRCo65rlOAhT+sjSq/FhbLeb6PMuCDZE+quRHpKMeWUZyYpB5pFS0YrgyiuEBBTro3Vmdc18HCyrhA/efsvFjKZaMJ1MqMbHUDeMm/B9aw1FqlkfDUHIiM5G1dfIu3ce1kcDvvCJx9l46z7v7Z9RW08mJVe313jh6UcYjgY0JgwKTY1BS4UVAkTKcjmnaVtszEg6IpIQoUwQcZZhNlkwrSxni5ZiUdPrwWxa8dbb94MlmbfR1DTM14fQch4YLGEirXSegR5x+ZFdJgfvYZZLytMj0kGBUhIvIM8Uf+jTz/PKt9/h3dsPaCIqp3WCsEHkUqiMncsjXn3jkGntQuByHnyNRGC95+HSkvUkW1lgVyTaY4zAe0sqPB/bUBzVnnulJxmOEKdTjIXR2pDpeBKXs4hKPQFMtT7U+K0xKBVwGyklIqLgwXlXM1tU3PETEik5LiW92AopiiE3rj6C0ylKajY2NtFaYV1LmuboJA1qwUKidEezBmQYNtP9Ad///Z/iH/3SP6Mxlm9/81WuX92jmcz4tS/9FkcnY7xQJInk6cef4mPPP0OiYTYZUzdNKG2Vwqc569duMBlPUMt3WU5bvA1gs5CKEtA+Ct7WNcqFWYI2uiAtWstgOODJJx+JcucBwyDundjcjrS3yIIV5/4M3+v6UAQB70M66WLosgQU3EUiTQJkWtKYIOLYTwLNVg93OJqcQDUh73sECuuawEjzQRWoWS4YKMn2Wk6Raab33mR5oPAuMLfwnsKGG2YdseyQod49HKOVwGcNdx+ehEUig7kGElSqybXmxWeu8MyjlzBWYrxiPG+4dVaTLOH4dAIWnAxUzizvkecDHjzcZzYd0zQ1pm2jv6C7YD0Xyw8PznrePJiTJYoiyxAellUgy6g4ZSlEINcQATwILVVPkN7yTjC3ltHlR4If3+IB6fgEd2kX8gFKhNM+Hyg+8tEn2bq8w8vfvkuvn5JphVaeW/tTnnniKl/86mvMy2UIxm2LFLC0DrzEeU9tHMZrFsbQOomrPLkOMmMz47gs4dGeYCQtry8mqDS4RM3KBpmktLLCxt45iijFJpFJEgImbgWmriY7BeSpxhhJIj2F9jResbe2yexsyic/+iy7e3sYD0WRk2cFzlmSrLea/deqAwXFakOFDCsoJV25cZXrl7d5870DZrOSL3/pd3n44IhlNQNgkGb8wOc+w1OPXaetS7RSK4u444MDWiHRaU61bMhHG1x76ilO569w9+QMiUAuDFJppHJYE3r+dezCmBgEkkzzQ5/7OJv9orM0xMZ2NoAXjtWJgg/lNGLlefi9rg9HEABqc27qaJ3H+nMPvizVCGeYzw3OBInw2klef/0t5rWjqhyLiWX27n3K2Zy6rCnLEm8t/TRhPQsGIloppG1Cm8t3oFOgHqNVEA+1BkcY9TVNS5JoZtbTnkUpr6Xn7lnF3vY6WxtDRoOUXr8g7znKpuXotOHOg4PA8tIpJ6dnXL68R2M9i9mcdS/xhFn2tgkdC2MtNtqJdxsfv8rwQ6+8rilrz3i2QAI9qQLTUoZuiZZy5Y0XeE5BL1/ElqYAllXJl3/3q4xyzcd3CjZzTbUsWXqFlilVGUDaxhiKXsqLL1zh6HiKswktLaOe5P79B5weTXHWRD88HxSAQoMaJTy9RHNaN5zVgomxFBIGiWM3E1zvK3KtcN6znjkex/CNiWVJyuG9Q7Y3RuBCWRTstsNHSpSPaa4MrcCIwnQkGuMDz0MiSXWwR1OJpapLnn7yOh/9yJMkeYYpa0br68E1SMvQjhTRVVgGfwkfVYE6vr2MnOW81+OjLz7D3YMTnF1S77+H8hqlUh5/9Aaf+8FPMRqNcNagRAEOev0BzhuGozWqpsablrvHZwyzBIqCJ55+gvFXv8n9swnCS7Q2JInE2ZZcSjTQuJY2grGf//6P8di1rXDae4fzMiZ90SnJdVhaRxSKn8J/yIMAPgAeQdI9nMg2lgNCiCDbLCSNt1TOhPpzEXq+NoRCxpMl88ltpAjW3VpKlPQYK6nrOCFoW3p5QhbloYXSNHHCalY1lLXDNYZhnrE5zFCDHnenFftHC8TYMMpSvBQ8OJvQ2gDOiLKi8UEcQkgRHHmu7TE9OaO1jkMXOPvTszO89/R3tukP+hwc7COUQCcqeBs6F9qNcfRYqPBAnQ2tym64SUTVWifDBGPR62NNGwhFUoTZAFxE2c/7xeG+eGb1klTkpMUmlVDsv/subm2Dtpdw4qBqbFA+ci0GGQKR9TgDPeDuyQTTNGHcmrBBbBgGIEkESWzlGinBOwZKsFMI1rXiUuFJvWfSBKdXIQSJkIwkJMJyYiyn0xnreYZWYGw4xVrjwkqOuhMBAA33o3MCbp0Hb5DCUtUOI8O60c7y4jOPMRquo9MMZSxCSxprSDptB2vJkyze506CLaD9Pt6/oJfoeOzpZ3jq22/Qr84Q7Zw6yXggB/yhz3+W9eEQ7x0CQZpmtE1DlueYpmF9a5Oz42PIC0ZbAUxsSsfWtas8VxuOf/N3mDVtCHgIWmOxPhjXtt6jkxSA55+4TEJk18rwzkTcQ92BcT4stOobrIDr73V9KIKAJ2jYeRem2KQCYYminyK4umBpvUWS4oSkMkHzT0kR5rB9SHwNocdsrMDYIMOVKgFVECAphacSgZIrZFB7yXoZWZ5i64phtkaeK4SSnJWGhycLSuPwrWG6qCO3WzJblgiZsLO1hVQqoN5FDs5yQyfoRHP3dMZb/9WXeOvdu+hU0SsKPIrFsgIkWZaHiO58ONlW8l+BjCOQAWwklEpSCIQIWnlVN6e+mKMITkpKiPC12GbrFoHr+sUOrHdMm5pX7hxgJop81COVkGtFbQxOGlBh7l2LEIiWxrEwbRgMIkwX+jhr4L0LQ0XSs5kpKmMxQrGeJiwwaO8ZSs9AWnCKRnjqRgVJOAUSxVbmuF9bUhV8HOpMM0w0CqjjMFJjHcJJGhOCoCLgGN3lvKf0np50DEcjEizzieG5p27wyOUr5EWPvD8Mqs0+kNOSJMG0bbDoEsHWXeug7SAjcBv+32VVCiUl17Z61GczmqUmSRx/6GMfY9QvQkaJQCoJIpjIeB9S9drU9Pt9plXDzs4e8/mMVOWkecL1xx9j79W3OLt3PwxuWYtpGrRUbKz1ee7Rq7z43A34P/1nCKXCIYHAO9kp4cdAFd6rd3Gk2QV8SEDAbT7g+gODgBDibwN/Ajj03j8fv7YJ/H+Am8Bt4Ce892cirLz/C/AvAUvgf+y9f/kPDgOR5y8lYSYsetkJEZSDpAqAoQ8GElW7CB+sG8qP9l2WQJQQSpJqSa4VRZrSLxLyXFEUSRjpzDVJkoJSoWPnoCoXLKeeeWvxVjDIMzaTnOdvKvZPZ0znDXPjo9uupTaW49MxV/Y2cE7g2pY8S8K4r1Z40/LmrTuYto3mnJbWGPb3D2itCaelsTRN0LUjDsoIxPkDjC1JERl0EEaPEcGsJNUqjqOKC0NJ3eKNlFsfOPhZx6/1Pgi41B4vFQoXhFVEuIcuTv/pOJ0nlCJVjrKBqrXhfSgN1tC5sDgTyphcKtJEU5vgTuyMJVUKR5ABaxCcLh1rWUhXSxtIVaNUMTaQa0EhFU/e2OHwZB5wBiGjslMAbSGO38rIt49ru5sxOGsFZlyhFVx98kk+8uxTpHmGTNPQh1cKa8Jm985iTEvRK5BSYFrXVWIX/okwWyyzHY6kKJg9WIapS2NZ395AWI9XHV8kvL6zMpdaIaxEZxm6qnBCk2Q5iQ6nnZKCj73wNNP5GKcgS1M21wZcu7LDo9f36PXSjgUcDkkRpM0v7NHQ+xJEGfWLGlhh7Zh/QUzg7wB/A/h7F772V4Ff8d7/B0KIvxp//+8APwY8Gf/5NPA343//wEsKgQI6meqw2EM6WpqWRGgUAust1kpSESbetIZeXtDLM4o8oZ9nJDpBJSEiq8gxCHifDPz3aCMWNCUCgJakGkRgA/bygr3L22idc+mqwzSGWd3y2nuHvPLOQ6R02BZOJ3OM9ZzN5pSLJc88/ij3Hp5w9dIuRX/IO+88DOpDKqaxhIGcVCdh+pGokhMlqUTgx4aUsjOgjOkpxD0X21YKj6azuQqbd8UaEyEVD38+nJJtx77zHuE8VqowKmw9iZIY52haG4Z/RNDH9xKEsBRFQl4kNLZAiTlJorFxzDZMWIYpy8bBZuKppMPbBHzoXgjRqTRZnPSctY4q6l4WicFZgRaCLJFcv7LOo4+sc2NvyDt3jnnn4RTbsTijHNcKMPXnCXBtDUWv4COP7NCUDQ8W8OyLL9HLC0QadBudCEGtqmryIsdYS5ZlaK0i+BfPFOK4dwyg3nnwFu8UKEElUl47q+glko2tLfrDAbQukMy6+0841KSQeBEGwqyHLM9wTtFYS69XUFdLwHHt6Sf5fDtjUU3QiSbPMhKtmZwdM5sl6MgTmE7mpFqHsk+LgAVJFZS5IxaEiEPYMvogtI6Xv/XeB+69PzAIeO//mRDi5nd9+U8BX4i//rvArxGCwJ8C/p4Pq/G3hRDrQojL3vuHv9/fIQQkACJwr4RUJFqHSAskKvR900STZ5p+kTIc9ukVGUWuY080gHmhRuyepD+vhwR44QN6iiDUHJFd7X2csdcUqQr6dVpBIkhQpEkoGZ7PU95575iybVA6kIaa2rBY1OwfTUiS+yyNJTk+YmBaqmqJg9hVCEHJehvYh6EnRIC4AglKRAzkIg20W5JhdSlMYxA4Cp1EAZ/gNOQcIQ0lIObWtrFPHE/ruCC86MpryaNXd3BZSpUPkAp025C4YCkutcIrVhvcI0iEYm9rjWubC241JkpWCbyDVPigyuwdWwlo0bBIBD2tSIQJmgkWtlLJUIcOy7vTFktCjcNKT5KlbG+tkTiJ1oKPPnmJrVHB77xzzLQsQ1uwe5ZRt8/FU8+rjI88scd2P0PrhGd2HuXxG9fRWRbwGqUiCBxPUR/KsCzPu2QSH01dV+m1D2o9q8o7UnEXRnDqhxzPWgZPPEGiMxoagoGxXD01G8lWEEhsk3KJ1CmuCs8mSVOMiTRsZVjb28O8c4xvG+rlktLbSGxjlfHcee31FRdEdso2MrBQVVw/OkkQSsVsRHK2MLQ+/cD9918XE9i7sLH3gc7e5Cpw98Lr7sWv/Z4gIIT488Cfjx8DI0QcnxUUWrOzMWB9fYRWgjzRJKlCa0miQ0onFasb4eJD1YoAoPmQJvpILV0VTgEmxca6SYpgLmqJB6cP4hA2csGVdgiC4Kh3sJamPHdti1du38dYWC5LZrMZOkuRWjGdTNm7cokHDw/Z9inWBzSbeGJ18l4dAAUh43FOIrw6J3/FZM/5TiZaBPTXdwYokiB1DjrsCPI0RUpJ0xpMp1UgwkIXCHzr8Un4tSOQSZJMkWzvsrN9laKfUFY1y7LCmGi9Tfj72njffFPT1DVZL+Xdf/oNkkThrcPQCX1IckVQbMbRU45R6hlpTW2hdQ5vg6BrpiRaK8qY/40bweVrW2ys9bDeYL3kwdGSWycNjcoo7TJgJlJGm+1wbNvIgjmalXzl9UM2+imf+cQLPP/M0yRZEhif0zoEMmsCBoDAtZa0X8SzInRmpJIreTDvoxAtce/TofCSuqoRhHUz7AdSkYxBRWoZtCniUhS40MqUEu8cTmmWy2VQQ1YqTJJrhTKW3voOy8EI21QI5XEuYBNO+FVmuDksAiIgBdJFjggdKBizQdviTQN4WgTtvMKEY/Z7Xv/CwKD33gvx+xQcH/zn/hbwtwCkFN5FooxOEtIsZzDIyXN53gyOrS5PbOk4HwQaCROGASMgsPHi0EnTGlwEGMOJH04PH9tBxFZT2Pqe2lhSmYQhGRf+biddeBgejLDsXN4i3T+jLWu8hNPJgvXdjDxLmTcluzZYU81m06ArSKALx0S9+/QorXHOns98R8vzi4/UX6Ajd6Ia+HDa7O1tcnB8glAKlQT+gjUG6wzGhlZZADFdlEf3WBtOM2dhbz3HpwWuP2TQz2hsQ1WXIBU60fgOhxCQColpG45OTkgTHQaM0pxRkTBflhRakgClc7ROUpPQ05J+X+B9wwSFkx7hW1o80waGIqVVkoMqaBGOLl/ic3/44+SpYjav+e1vvsPXvvOA0gYtQSFSlI7xXIbNIYAkAcoKlWhOpyWD4Yirjz1NlhcorUNmrCTCOawN4KiL6ynLMtq2QcX5hk4jAbr8S674CD5mZ0oImqaJyIugP+gFG3YZBFGVD6o/XX/exBH40K1R2NbSNC2oQHZSQqDTBGccyWBIMtzAjx+GZ9Z1d7qaH0BrpA/gqJcq4EHxhAtBm7BupFiVhJKWNP1ga3L5gd/5/a8DIcTlsDbFZeAwfv0+cO3C6x6JX/t9r064spMXb72lto6ybimrhtmiYrasmC8r6qYJiLTsaMDh34kUZFpHimsg1fTSLLLKFAK9Oh2JPejAFXDYDniSAdS5P645OTvGxrFUj6dpLa++tc+3vvkubW1ojWc8nTNZLEBAP8/IewMaL2iMIdVJfCCs6nXngwEFIrSQiP1ouWJ9eehcj8VFhD82fryPiLjgYx+5zsZ6P/ALjKVpW1oT9IF1p8W1WtgO46A1DmtDFvDCzR305g7DjU1q27IsG6xQeCXiJoGoh430IePoFXlA5rVmY73PH/vCCzz/zHWUVFhH6MxkOQupGZNgBkMqmVEiqJRGFAXIhBrNkZdUQnImJes3bvKHPv8SOlU8PJ7zc198hW/fPmXZutg6VigViFwyBgCpFDpJkDrcm0RrRmsDPveDn+Hq1cukaUJ3HOeDPmma4JUnzXTIKIsMI4IisVs5BokV16Jrta1wlq5MECLSyMPDHRY9FEE6THiHsSZkFCIQp5wPbV6tw4i7taHsm0ym1E2LSlJ0liGkRCcZw71rCJ1iTFBVMt7ROrviQwQ6vQ+jLf5iyIqgsofgSm1X+IZSga79Qdd/3UzgHwL/OvAfxP/+gwtf/58JIf5zAiA4+YPwgO7qADAXISRnPU3jaKPbK4vQBgNBqiReC5IkagxKGT5omlBVLa0PPeZUazyeujXhlJUqSFYRHgwi2Gw57xA+DDIlvZzj0yWPpbsxhfPUVcvXX73P4uSEx3fXMcdTFrVBICjrisl0Qb1sGIwGPDw4YTpZcGV7Gy0kNsqVEZF3rZNArjHBTqtL+Tti1HlnNyZ6ogP7LvTDhKAoNB997iZf/t03IHrhxW8FdFh2/ePYJHLdz/U8fWWdnet7DHZ2UUJR1S0GFTdByI2kD3lJJ+4npGC0PqI1DUlhyfOEre01vnBph2ce3ePhwZhb9/Y5Hs+xpcNYy9GionCeAsPcevqpJssEbZZR5AMubQ146coWV69u0csy7h9P+S++9AoHx3NMG9uxWLwP0lvnnzEeAD4oB0HAVB65ssfNG9dQaQqElqvMU/JeETawUhhr0Soh0Rm2dqsgrTXx8/sYnMP97oRMJcRDwtE0wQ0JKUgHebAZCwU41tlQk7tgHiJ8UHTWWpPqhKps6A/6jGfTMBbtoGxbVBJ0CbK1TfKNy/jqDGva0M2xnWZjAEOtj6WiN2H82p0jmqtnJs7XTJpILi6f777+eVqE/xkBBNwWQtwD/l3C5v9pIcS/AdwBfiK+/J8Q2oNvE1qE/5M/6OeHJxgXbETnlZLUTVBtrZvArxdSkipJL83oaw1pqNcSwsIvbQDP8izFlBV1EzgDvSJna22d6XyOQDKva5q2iSezC6aSArxQtEiOxyXbRUYvVeAUDnj11hnMFtzYHDEvS+omUlfx1LXj+GhMVTX0hz2Oj06ZTucBFEIgHXjZodgBwJFKhBFSQQSfXETZ4fzkj0e5iDV9rFGBmA14nn30KljJ7379VTDEFp+PxU24Md3P1QiccmxvrvHZTzxDdulyxDWWeOuw8RQRHU1RdnBlGHy0CFovqJsW0wq0CP4JAsv1R3Z45Ooen/n0MwhjqauWsmqZL+agEoT0FElCmmQkWUGWKJTyVM6Gdp1PGM8q/sEvf42TWYNtmzjkbFAEhL1rD3ZXZ/zSZUl5lvLZT32cjc1NVJJRV0ukF+g0JVEJDodKM1Rdk2iFwGFti3MWqcLMgIhgYMjMosR8vB+d3qF1LVU0OlFa0S8KvAl4QmgJtgFoFjII1hhPax11U6OThKoqKfKU9bURSqsgEKNlUFduDC7NGOxdp+dHKNFhCzE48SVuPv9MhEN8VKl2OBvVhp0H67BNi4v6BtY4vG1pOjHG73H983QH/ocf8K0/8j1e64G//Af9zN97xdl6H06xxjiWTXBzMTY8lDC3L5jXNWmlGOpAy8Q4nHDhAViPa5uVDoDBkxpPkib0BwMSoUiylNPpDFu3WAxYh5MC4QWtaZFS05M+3FRvKF3Ow7uHfPqJS1TlnMZUsbAIG6YD4ara0JTlqjuhtMb6YIIh4sARBDadtR1wJ1fRuqv/fNzwvtuQEfR8P+NLgFOA5fqVAmmv88adCXf3j0gVaDyt8EEV2AX3ZCs92+sjfvizH2Hz0g7LeROZcSpiKV0Q8gjpMbEbsKxL3rt3yoPjMdNpSVnVSJnwcDLnV19+mwzY2xlx88omW+sDkIokkyR5xnCjDwRvhYt72HmLbUP7TSYaYxy/9Y23qazCtiYcBnRMyfDZfWx/dWl7OLXFqn/+1OOPcmlvJ5h/yJiy64S6bjg+PibvFWipWC4XbG1vhQwzlk8+lqJxThcvFOceE+cZqhcS0xoaa3C2JUmyQIHGB+xFcH76u3PeRdsGJmCWapwz7B9O2dnZCOvBOtYGQ6azGSiNcqCSjOUcelnAvug6XsRsUYT3pYVESA06xaes5gO6UqWL594Tp3G/9D1334eCMUhEoYk1k41ceilDvdydcMZ5ytYyrRqc8vRsSp5o8lShVBTDjEw7SSDFODyz+ZLRaIQQgr5OAo+/PMF5R4tAWoFzhtZ7ykXDYWup1DHrs5ZZrfj0U5d57vGbvHHrFuVyuVJ+FQQSUJIkVHVN3Rh0ooMkV93EpkAosH2HQViLcxJrXSTmdN/vSoLugYtVek7sV3eCKiE4tsEVqXVc3VvnyrVLvHFrk1t39lnOl4Fl6cEnUPRSblze46UXbrK5MQhZivGBVy49IrRacL5FeYmXmkU159XXD3jltVuMZ2UYKRYeoTVLJLVxvHX7kMS3PHj9Xb5TJOztbHLj5iNcubpNP9eIWBvHXKa7aeGzBVM+nPO8+s5d3njvlMViiQihKwbJVYM3pLcRFQ/Nii5TCu/9kUcuMRgOSZIMiUSrJIwGa0WeppTLJdWiRCjFpg/PzbcGJzxpUYAILlPiQinQYTpxLhMngq1XE4VM0iyNeEgQvhVxuKxugqOybU0I5hGb8C48w2UZLNfLZUmSB+3KNE2pXYv0Fp1ltGWB9YvQFRB06R+dI3aHJ8VIdQ4cdu+dC7cbv/r997o+FEHAA8bZWJ+FyOcApcI8gejSXOdolaCSEiUlmBaRS7TUpEkAYvCeTGl6SUrjLQKJF55+Jmm84OGDfU7nC84mM2SiqVvHdNkyW9ScTZcs6hpvJW/sz3jiiuBSP+EzP/QZrE4Z9A6ZJhlKVMFrD09rDIlWwV8u76GqFosniX6ECMF578RHHKPjAnRfP194F8uB7vsubqOONSiEYDGds+9qxuM5eaKQes4z1zZ46toG8/kM05oAihUZa+tD8iJDywS6tpII5hdhLzmEjR0JHNPFjH/6q9+krmqWpzMK6RnkGb1ej4P5FNfYgJXMa1Tika5l0NS4g4rv3L/Hq/0hL378eR65tkuWq9WJ1C3JMAoRcI+6annt3ROUTsHPkUR0u5t8kecpvwz91fO7JM6X96VLe/SKIkzuOY9Mg9quE5Lh2jp6uWQ6npFrHZyXfIO1Bp2Gjex9CMqJTlZ8ivAMRMxQw2YulyXeepTUFEUvtKFFcCJWWqOThGVZkud5AJ2djS1IgUqIFmoepQXL5YLNQZAC986iEhWMXHWCzvq4tgbRxPVxERvqolMXYQJj1Lkul+uOEVZrUIoPDgMfjiDgobXuQjSTq8XpVq5WYXoQH1puXc+9NhXLWUu2rNgZ9UkzhZRh9JRoHzWdOyaziqO54Z1bd5guShrjsQS1obq1ceHFU8aF0+jhyTE7epPxdIpRoeOwNhoijmYIEe2grUNKaNqGsm2ZTGcRxDkf45RKRsQYkiQN+EYS+OvGGYj93fNA4FdATsSDsN6dy3B7z1e+cwelJd5LBOF7g+KAJFXBJShRwYqLGVqdorRCSEGiNFmiSJQgVZHEJGUYrMoCX//1dw64de8IIQWp96zlKR+5votPMx5865StRLEQHuNKyqXBIjBOsK4UmbD4xYRvfuVlvHuRJ5+5gZeghVoNHSGDqYnE8eBgyYOTOVXdBLYkgSq8Ort82GR+dT9cfM9RfzzeqM31DYp+6AJYG8hfEGzczuZzlos5w7URWZZH41AbcZawobw916/swEHvQbhI1FKrjhtPPvEY09kUleUY05LobFUKJFojCa7DCIG1QdWoqU3EAFp0oqmrmjTNwkRsVSGUQnuBl45WSXySYdqEhDaAf767HTEYdGzJ2Nly3ULx54Ggyxg6bOeDrg9FEIBAp+3eulIqes6FSOdscA3Os5QsTcmUpNCCREDZeL725n2UN/zgxx4jyxTzZcXxdMnptGJRBpHRJE1DnSYEZdXQmgCqSOHp+PndewmEEUEmBDPv+H//2m8zyDOeuLqDyjQyCf3ZLo2XMpx2jbXMZosQ1Ezb6TnQJf3WWqqqZmNrC2fnUZiyi/BcCAQh8ofn6VdfD7VpOK8Pp9X7I74QMCnjz4o0W0T8fOdsRBkXDSoJ1tc+lgXegXD0dQJxnDgo9whmbcs37h7QGkeRZyzrmrKxaKUCFx+YOMlkFmzclVJICw+/9ibvjB0iSVksSyazCU21DD1sKRnkBSdnYzbXN2mrCWcTgzEaYS1O2lgYhEUspcDaWA+L756vAC8FbdmgVXg+TgRdfuFc4Db0+/QHa7i2DViAjwIyLpB5XGT3rZIzF9uxq3QtjPdub20w3zniicf3WFY1iVIYb0mlCg5aiSSVimVVo5IEgaRtKpq6BiVprQ1W5a2lWO9h6gaZJMEnAYHVIYvUSlH7FEeJwK1mBfx5eAzP3p9POHZTj6uAIcL2F45z8ZXvcX1IggCrqN5txm4II1ESoQNwmKeaTCsSJanqmrn1lG0gkzgBX/nO7eBiG3ngneW5VipsQuepmiacqkAA6sLfI1c67WGTGTwvPfcUzzz5GP/wl36NRblgvAhCHqeLhthoxDrBbL5ACsnBwdGqXTRfxk3qLTiBtSIqI0FdLVlbW+Po6GiV/XSYgb+w6FZYCd1alHEzn2cIETc8DwSsMkC6albKCKD5ALYpqVAyBBQbJxhdRFISPM632FiINwjGRoK1YfTWOpJigEwdk+US34apxV6voKpKnA+pp9Ke9SLnuPS0k5L9/QdMxhOapmY1/irCx7y0B5//zIsMEsliWTFb1tx/eMjxeM7pbBlO4HgiuxiwmqYMJ2nsmEipcepcCtwrg0sUddIgK0l5WgUXJQ+JDmVR17bt2sVKhEC9ohaLOIEpRSijrOXw1htM3/4OdW9IsjZCPHIT61uc1KhEB3KQ1tjlMnoy+tiadDSzOeWyZDafMxoOmE4mrG9sYhtH5Tx5XgSjVxMcrmtdUDdTioh3deszQgznXTUuZLGr9SPOD4/fDxDgQxQEVoSZeDnvEE4E2yoRot2yrpmXFa0L/IHWitXUm/eOZRt690pKVBLYXyoq7jSujae/X/XkgVhtX0izhMAjUd7xzv0HLJuaSVXSSxKStFO2iYhtVCUW3qOVZjadESH3FbvPC963kb13SCDPs/Ovxc8csIJu8KcLCkCc6+/+WXEKVsW2P48E3T30gRattVzxHQKHQOCsDfMMSpAmmsZYfGd7piVtq/FRk8FGVuNa0SPPM/ZnC7YvX+OZnW3efPttHjx8GNq6WsYp0G7gBgb9nBeff4o777zH0WFIi6SWq1M4KOVLDg5OefWN9/jcJ59FCM98sSDPMqRYREwstNuCGpQjK3osjT03hgXu3H3I9tYu0+mE1mQMRyOwCp0p3KJmNpmzvrWL0DoSdiCNIrKhSxM6QoJwcDiiSIf3IetznrZacvjGK+w88SL9tSG3v/GV1TO01oLUceQ4rOfGhRLXuiAx56wF67j17q3AXXBBSUjrlPWNjQAyIgK2oDUqzWkqTaY6CZUVe2QVSL3vekpcBAGianL4/vszmt97fWiCQLhWZ1o4oQRM53UAWLrNG195kSwpZJgvlzIAi9aBbxt6WTgpzhZlPJWjkCc+3tTzdlN36gbJ9sDXfng6ZjydkaWaLFUs53MUHtmRQxAIqVgfrbF/PKH0gSCC84zPglZex0XvNrAxlsVyycaWDwM/Ld+FSHddgfNPeo6HnX8NOK8Du/dPJLPGbEFrFabNhKCN5YWI3zeRzaZ8KBcSLbGtp5cEPfw0ZlHOe+racGAX+FmF85Y7791FqwCGrQ2HSKVYljVpFgKbFIFVOJ1Nee/OA1766OMcHZ8xXyxInYvz+pBnGonk4PSUt+/cwwk4OR4zmc4DniEj4CZENNcITlT2gmZCl0n98q/+M65cu8azTz2GwuPaUOaVVcl4OgUVwOTJfEaiFWsba6F7YQJRTGmNaZtQKsiAvLfR+AYfBF+m+3eRMmd4+QZFAq5cMj4+ZGP3MjbKrIW5sLCRfVkF4ZomGIa2VR1ERI+OuXPrNsPnn0UnCRsbG4TwGfQxhNSoJEGnLaXIcDQrUFjG9H8FskLMolnNnnRrIFxdAfnB14ckCARwqmOnyXgiGhOcVeDiadq1E+PEYIegy84liMjVD8aZzpioS6Bx3lGkCVmaMCgy8jwjSTLSVEfTCouxLcbB8dkY0zQk3pNLQVnWCGMoJGQRvRYxC5guFoEAFN+XB+49OKIoitX7XaXnPmjlHx0eryy3u8/Q4QIXH+I5ThCCl7sQHM6Lw3OAjLgeZGS3WSdpbUtUp0LnGiEkZdPEkikEqV6eUWQJz17eJkkUv/adt2i8hah76F0cFPKeqlzwyrdfZdDv8cd/6PuREurW8vo7tzkZzwPxRoRpxKKXY1rJ93/yY3z2+z9OrjVKOt69dYvtzTVu37rHw+Mx81mQ8tY6QSlJ0R+wWC5YLqqgzZhFFiDBAk3E061TFjo8OODnfvbn+RN//Ee5evkKaZZiGkNZLVksK/K8h/CeslwiizzgTlojbUDwU52SiZTGGtomMPisF6TRH6Ipl8zuvsv20y+QD/rYpiIbjjh6/VW2r14DB3W9DBs4zaJegcPTBt2CtqFuavq9jI9+5DFmToNIaIxjsSwpioJUJ8FWPEZ9oQROJjQGenGnRhOo1ZrpmJ1dB6rLCDppOYHoJos/8PpwBAHvg5SUjbW5EBE0Oz8dAUQUmOzqHTgHSjpyTbeRjA3KtAC9NGV90CfPJJe2NlhbG9EfDsjynKLoUeQFVTWnqiuW85L79x8w7GWYTFMtSoj+70m0evI+zJWHGjVM9yVaraidQogIFoo4NxCGkALYFzZzXdeRM9DZS4lVxtad6MQJwG6hdwHj/Nxf/VEu/jIAQhYhFKZp0VqR5Xp1T72PZUIUwGito64r+psbZOtbqPkJN/Y2uHs8Cf281kbpM78iPQkhaNqWxho+++JHOJ5M+fUvv8y8rJHKk6gE62A2n/G1bx1zbWeXT33fx+j1B5wc7vNP3rjNcH2d/QcP4ikfOxpKU1UVZVnR7/WD76CQdCWRlBIlNZaWzmoOIMtS9u/f5+svf5P5EwuKLCXP88DJ14r1jXXquiFJE4QOHQClFCrPqNqGzOcURYG2jqaqaBuDi14E3rfMb98iy4cML18hSTSlU2Rr25y98yaL2ZTBcIRxQUTEG0mqE5RQNFEw1DQNWZ6xtblBu7iCK0sW00ANLm7cRCu9KvNCaayQUiPTlLbMQNRxDcS1sioBxLn8WTiDzjUXiJmJ+O8BT6AD5gKgFTaDkhrrTDzRwst8XIDf/YlWH9idSyt3yHrXkzemJR0O8FhMU9KWAt82mKpkLgXWB7WfumkZra9BlnByNmd2uiRJINWCpnEkqKgRIMOEofWBEqrCCSulCvPrF1J851x8eJ0MmqBt2wu93/OD/OLn4cLD7D7ThcQh3opzMBC6FDk8fOdDa8jGLKdbDFKK0I6K7TecRWrNdDLly995jSu5IisychX0DhTBW8C5+Cziz7HG8sa7d/mjf+RzfOedByzLGqW6ABjco2dnMxbLOb6uuHJlC2sdk/mchydTrEo5nc2Dum/M4uo6LHalFHmes1jMVwKsQQ9ArTbKd+NIXgSs5dGb15DWsyxLnBAYY7h/9x5aadY3RsHUtmnwaUaSpeRaYdqGedOEHn2iQQqsaajqhubshOO775Bs7JJlOThI04zh7hXufeN32H/3TR7/2PeRpQXWLmjrGpUX6FRzdjJhOptjjeXy1SsURcb23hWyyZii38N4z8P7d7H+MsP+AC3Vqt8vBGgZ1pVfIcERB4klo4tcgdXeQETyUlgw3XoRv08Y+HAEAViBc+ENy3OHVd/lMitMeYV/vb+3HlJ0d+FmhY8e/lc3BucFKsmQaR447GkaCWeeRCTh7xQ1hhZfShpjqIxlYj2buaJ0UPkgYokP/XiLozEtKkli/zq2suiGT85ZgefXd3UCVqCfuHAzVh/y/L+cZzx09+vCH1m1CuLlnEcnycqyWmsZZcNCy7AVQfJMa4WTYUT2YduibUq6rALpJuYlIr4HH1PMbmEdHp2wXFbcvf8Q6w2JDDiMEI7dnU0OT46RWCbCsn88Zb2fUjaGtm3Yf/gQ09qgvqO6zxWe32w2oyxLzjsk3YCTp2nac1u6VbYYUP/r1x9hY32AqQ15kTJdLACHaSxVY3DDPtZ5ysUCZ23QHNAapTRJmqC0pI78f6FTFscPufWVL0Ndcv3pl7DIQOLRKYPtXaRQHN9+h92bz9DvD0iTlKZa0Mg2CIz4wOxc31hHaUFrDGmakhc9dJ6T4WkTRVWHsidP8zDPgg8GtkLiaN8nJ3aeA8dDLqaHglCe+pgRdIfBhQXyPa8PTRBYTdBFkMN3Agnhu6vFHzaPe98JcHHlv6/FGCGUxoVFUNcNbdPQJBLjUrSLTkDe47EhY7CG1rS0jaGqg0DH2HuapaOXqIAz2ACmwXn3VomLHPluS4bgJeVFanBgP3bILYB3gvfFrlXmE0+E933C8+v9LMMLReGFboQQsLk+IlGSsqyomxZPUCPSKoxwG+ep2zbW2IqDsmUnT8K0pmlgNe58PqkYPovFGMs779xiPJuthr+EEPSLgpuP3uRg/4Czs1OEkBydnLI+uoJKiuAabAOhRsTiRmuNiSWcixLsspurFx224uPXxfvWQYfQf+3r3+Lxx2+wvb6GNTaYlzqH3Frj7q27TOZTNvpDjLcIazh4cEbdtEynM8aTKZPpjNPTMbPplMYaFtM5i/Ex169e4U98tOS0vEW/12NrcxNUil/f5c3X3+LA/jIf/8ynGRQ9PIL5fB48BPMeo2GQK9cqpWlapE4YjdapmoqqbclSTb1cUC1LsiSlKHohM1mWLCZnZG6B6Kfx8a7aQOeAdszqfMSjOret9wHGH/ruQNivaCniDPZFJEO8b8N3jLmLC9/Huuf8h53/Xgiw0YbpbLZkNOqhs4TKtCAk2oSOgPeepjVUraGqGxZVxXyxCOCOgMoJXGPJtQph9sK02aDfx7i48WWXtVxEacOmd87GDWRDX/vCzr84GPO+awX+/d7b1j3crk787j/Xy3MuX7nE+tqIy3uhfXbv3n0eHJ5grcUYgbVtmCXosAbhKR08LFs2UsVAp4i2RUtwecqiMcFzQAZFXU9g+3dOOCJ+FqkUbdNy9coV5tMpzsNiuUAnOUJWUXsvWLpdzIwukraSRF/IfMI9TZKUokhW/fzzMiiwJ1/7zmv8/STlz/1r/wrDokCnCW0bJugWywVf+uVf52yxoFfkTM4mjKdTmqYJakqyew7nfAwpFc5bDl9/m5f/N/97ZCIZ9odcunSJpqk5fHjIfLnE/85b/Ow//EW2tzd55OpVhqMhl69c4crlPdZGfRKtaOslKmIFRhp6umB+uOBsMiHLU3SSYU3NdDxhMp7hlWby4F2ee3wz8E1WT12cE5xW9yfqIa4OU1g5E//3ojsQH7xUEuHBmvOpKThvca4WiBfvP3EvptLhBXBhg3R1+GxRcjKeo3Wos9rUBRKN9EihsNazqCpmiyWT8RxrHFqFyS+EoI6pqBDBsw4l8cJQLiuQyYWN7PHernq1KqrIdJ9BAEqGKThrzwPB+7gKqyzgAuljVRKc//73BI14JUpzaW+Xm9euB6TeQ5b3ePqppxjPvsnR8WmkyAamoBQK6QXKe5yXWA+nteNMWhLpyIkTfnGEd+VsEwlY4n0Kt1DGIJqmmsFoxOnxEcVoQF70SKoWrTR4t+rohDS/ed99SBINSJqmiZJiARh0cbjs4mtDxiXQScZrr73OV37nq/zxH/0jHB0eBf6C0GA8j9+8xn/5q1+ialoQbhW0tO7ku7u15QhCqQ5pg4qVBLCC+WzBm5O3YgpukdqDkJSLBXcWC967ExT2ev0+w+GIra11Hr1xlb3tHV546UWGWcLDgyP6gwH9Xo+jkxNOTsbMpjNs61BFwsZonduvfZsXHt0hS9RqP6xUirpNL96fEYnYYfOxAg0lwgXluu9xfTiCAOHUdC70f1lFtC5RjBXQxfrmfTlyV7kC2NXpEfT7zoOJlIrxdEmmNZlSJEKh8yw8/Ph3dqq/RZIwvLQXJxMtrj2f2Z6WyyAQGVuUYVECvptr4ELZEt5nl5pfBAu7icGLbMH3C4y+n9gEF8omOE/7uZAwxNdqremNhjQ+iJJubG6hgPnkhCefuMHR0UnMTARE34ZWiiDBJixeqJghSJzVNEpgsXE0OjyEDnRt21BDr05zwsJrmoaqrqnqCqFSyrKlburIhe9m8753qXMeyN0qWHV/XwjsgYjT0WEFoRB2XiCc5x/8/D/mN3/jt8M6kIr5fMYf/sHP8rGXPsZotMav/eZvcX//IKwrF5Jo7wLmwYUDxtlANZcizirIaOwSle+8l6vC28sgY9atpUWcWTjYf8i9+w/4Q5/+JLMv/w7f/wOfZG1tyHy2ZDFfkOmEbJTT7/VBShbjCfffeZ0nr424ursWTSfOtSRWx4OPCyveQEeXyQR1IefOe0gfdFjAhyYIRJRaSJw7bw1eEHm68KvV2o8bP970WKiGlDa8Fh/qzCTVZIlmkOfINEEnkqzIGQ765HkWzDO8ZxlnCpRQpHmGUDqARzJBSI0RLRpYNi112yK8iPp0wfije3NCSqQLfG/rPF517z9y4UUM0XTg5+/dBl1343shOr57gSfOkIc79L6ySUn6ec50MsPmGTcfG9GWc3pFweZoyGDQZzZf0A3RrA6/VeiNHgYd4yz200Uc8Onwjo52m2UKEfl73bxj07Y0TctyWYWvWUcTU/NOT3HFivwuHGT1s10XTANxKFi8r2a5V4s8zkWvgDLjLJPpnH6/z+HpYVTiETTG8uJLH+XJJ5/gt7/yu/z2V7/O2XS6OlS6sCRiuSK6IOz8SmNg9Ry6zd9lbU5cCOThtU4ItjY3+P4f+Cy6rfj1X/xlstGIL3z2JbJsSNabs+Y8wnrOpmOOj455cPttnnlyl0d217hAGA7/juxGb+MdvHBggo8twe5+nqPGnt+7xrrrQxIExIod1i2wVZ3vO3AtBoWwa/AiDBVlaQ4IjLOBRKICz10IyfpwQH/QWwlNJkKitEZqxem8ZFG3ZIlepdy1sUGHP83xBH16jEXmGaK10YwUdKoQjcL7MPluvSfIS4YWZZKktE1DR/aUQnFuIkJkHAucE+e1Due4wMWNcPF6X7AQFyP875WPquuGo4Mj1tY3cAjefPMtFrMx/Vyzf3gUT9C42FdZShdb5PtO6i6zif3BVQodTmqLc5a8yOJ78Kv/VmWJHfRjyQHGGZyXKNWBXF0o6f6u8w9xTpnuygVWQfb95eF3gSa++wMglMTEQ8Uat5LpquuGjd0d/tSf/pf51Gc/xS/90q/w8rdepW6ac04GfsXT79yIzoHp36/CDu9dRobio48/zg98//eTJJK7b7+JsBVf+sVfZmdni2dvPoIULjAVrUVJj6+nfN/HrrExLKKT0PsfbJKk0bw2ELlspCYH0ZPwd3fZmiDoQwpxbtLyva4PSRDwF57deTr8vhRGCKQPi73Iw1zAuk4Y9FQ4nSVUreNkvmTZBN3BIlMUWmAIo8qtacAopE3RukdTtjRlS9tGRyAb+PJCyuBU6wVFkuIRlFWFtQ7jg2jJeq/H5nqCUoqi30drxbRckiUFvV5KU1esjdZJE8Xm2hqHRwdoregVPVoS3rv7ACncigv+PQ58vtdau4gFaK2+Z8AIIGfLm7du8fhNz8gMuXP7FidHp2gl8VKyrJswjouPwhjdaO2FDdc9m+50uQDWnpcDjqZu6PX7gR9AAG6VlCyXS+7ffxDfc/j51nS0YYHxFzax4Hw4xrtzcOvCZ7rYUu3WxMX74rxDx2gWqL9hXFtKRZqkZP1eOAR80AXIN3KeeOwJXvi3X+Dlr7/ML/7yF3n3vfc4G08Cz/9iprF6Tufl6Yq81QXu+L3RcMjlK5d57rnn+NgLz3N2esrZbEazXCATxWeeucyv/f2/z92PfZQnHruBamucsRwcHaHlklF/c3UI+gvZJQSdRC8VSEsbdRg9fuVehSB0nS48RN9trg+4PhxBwAtCwBZxIcbV0OU2wiGFRgBrWcrWsMAZw02huJwo+mnOw0TxYFmjpOZ0WWJaQ4IgF57RWsFiXlGXhr2tEYNhD4/DesGsbHi4KEMXwbrYMgz89MaEdqH3PkpEhRCVSMFnv+9RRn1Nr99H6ARvPXu7l1gfrAfUX0lGm9sslyXK1dy8doW2cQzXBuxcu8E/+if/Je+8cysKR4ZF35FiLgKEAdOI6G83604g/IxGA7oCNeghhA3UMfuU8KwPCmazMYUwPP/YHsPBgKNpya0HxwjhgkpylnN//4i6bfBeIGW41x1WEgb4LqalIXuQF+rxIi8QUTBDChl1+847Ht37tt6yYkRGj4gAubkLpVHIUASsVKHP6eIBvfd0Y8VxCcWf7/ChG2TDsFGnEqzThFQnq/FnZx3T8QQ3dKR5zic/9X089sSj3H+wzzde/ha/+eXf4uD4mM4E9by1KwlkKd8lqeEeGUeWZnzyEy/x6U99H8PhgFGv4PjBAXVVoVwIKtev7fLss5e4tjPk7dtv8Y9/9yu0ViG058Wnb/D801eDv0Rc/kqe40thTUAiEywKZw0WHwIW8gKn49xBqYsHv1/u8uEIAviouhvjbhT4CDZKoRWlkHjleWZrjV6iMHXFdmmYVY7DhaGUgq3dEXuPbGCkZDqvcI2hyBJGoz5yewOtFWkiqRqDTHogQc9L7h5NwqKJYJZOU9plhXVh3j9MnTrCWwn4gfQSKRS9PEFqjXeS69d2EFajcOT9PlaCqwStGzKvGrSyLMqGq0rz5NU1ttJHqI3FOolpwgN9570DlmUZugaClXXYeZbkV5BC2xq8izPxPrrfxA3T6+W89PRN8izj5YMDRqMBsj9kUrZMFiVJqsjSgkSBTgXraz2ybIv5fI51nq2tLU7OTqiqJgKsXXXqVie1taHLUVYtWT9B4GKL16K8Wp3G4b13aLuNi1UgVCAjWePjJnPvB38lYC90QmQcr8ajpT7HRgCcwAtH29a0jcE4T5Ma8jzIho36o4CsR5cqIUKpcDYd0xpDnufoJOXG9evcuH6dH/3RH+bNt97iO995nffu3uNsPA4MRB9ozFJKtNLkac7W9haP3rzGxz/yLEmeYBDMJnOmp2ecHB9RtwaVSJIs4enL18lUSu9Sxs7lLT5ZW06PJ8zHMx5/8SZiNZx23l5WF8lmQoSSWYKSCdEEiuDjHX7dyY2HnRVLo++VasbrwxEEBKQqjPB2kVUGECDgK96vBD0XeDaubJMYx53pgqOTCWkCl/a2ydZG4Cze1IwySHojZCZJ0xRjLU6lHC1q7h+csH/wNtYZvBU0bdeaCkh0Ly7GLjVtbejvK5mExSM8t++d8eJzexjnMHODlDlWeJQK2gZQUy0MZSNZLmsGPcXO5iZWCm6/e5t2sWBnVNAf9Sl6I5aLhnndcDJesizLc9onF2bFCVsgSF2FQZ6gDyDIkoQiT7sXIZXgjTt3aeuW5bKhqhqOjsa01mCNw+Fo6xp8JzQCVdWskPiT4xOkhH6eolQYkZ3O5zTtOSFFxlmIpi3p9Xp4wpSfdKDj4BFeRKnwcPKXsyXJ2mi1ebVOaBoT02pYUZk7tMCfr4eOJhxwujgqGxd3yNjsKmsz1q1MS6yz9AcFaRJcgq1zJFIEARIVsquyLDGzIDSjtKSX51y/cZ3HHn8CJQSz6YSz0zHOe5I0RaUJWivWBgMGozWKLMWUJZP5jNqF+RLrPVmWMZ2MWSwXXN7b4unLyTl47RxJpukNM9I8RVt7nl34jg0q4v/PQUghfSgVVjwAolpyVKDqsBkvIlXAvZ+M9l3Xf+tB4Iknnvjfrq+vX//9XnPjxk2S6DvI+3CBC6BUfNiLRHN/XJMmGpv1KLYTvHWcNILxyYKsSFA6A6ExtWV6uqA1sw62Cy0fD6P1zQiqsKrlRDxiVwKOnKfkKyJPzD+NTri136CODVLlWN/QNKc415ImaRA6ReFM0LQ/GysOjo8w3jGfTnBtjVKSXqlJshnGhk2ms4LdvUvAeR183lr0q1Ooyw6c9yvF3e4uzWcz5tMp0gsSGToo3obTV+UZw6JgtpgDLnYGPIrQZxfCk+nQDrM2IOq2rlFa0YuiIvZ9tTrUTRsWZleb+nDPgk1EmFtweKw1lIslWxubdPMHWgW0O/wsETth52XPOXNQBG5GfCaiixpxXdRNHbkX4S5478PkozFIATtbm6RZGjaJ96QqIc2y4BFAGCVGRE6C1iiCVJjHI3VCf7ROb7gehFUIgSZRivlyyXg6YSYkpmk5Oz3FxDZh07aYNmSWIyU5OzjDu4y2WSKlRqcJHosWwdLs5MEJvdGAfFjg6CZkO6g/fE5nLFIGHorkXGdASomLwGfXPoXzToX9F7Em/xe91tfXr3/1q1+9/fu95t//9/+9CyKSF9OWi+cfgEBLxWNXL7G2UYT0DqjKhrptQw2qZUieIufg4emEs/E8tnp4Xx0XJtLUqmf/frJOVCbSGtO2aKVivzicUrsbfTaGPZJMI5MejYXFbI5WkKYpXZtMqsAUNNZT5H1q01Iv52BbsjRlMBpirOB4POPO3Xu46DAsLrxHEXEK5xxpml5Inb8XUu3523/7/8ViMcPjaR1xyCSk7rK1WAxla1ZpvY+B5DyFDG9cyaC2I0QQ4kmUYr2XIYVBKoVDYa3l/q13aZuWREuk8AgfbNCsDUIlzgbfCOcMjWn59ivfBt+Zc0CqwgntZDiJw+ElSKRitLlBa9pg8R6zokAcCq9rm0AzzrOcjrcBBmMNzoUTvt/vcWlnB28sLYZeP8zrqyT680kR/ACVJisysizHNy2q1MwWCw4Pj6ibCq0TEq2DK7O1CB9YiMa22LalNo7BcIStLa5tkVJgnOFsPEHHZ3W8f0hepNRVyfbuHtbbQN8uNNlazoM7D9iwWxSjXpjc9Ba8XGEytmkxVSA6mbalbS1Jloan5mzURPSrjkxHTS+K/gfuvw9HORAD3apVBauAcD4y3MVEz/F0yqxaxowxAFdSSlpjaE1Qb3E4rAmpfAiC4TSXIqD/MiLUCBEHXlj5zXWIeKcZH+rfSFaR5205nRUkeY6QKYaW5WLJxtoA72RYVCLUxx3QM56MCUVPIKBkWYpUmraqmYyDCImMU3hdS+6i0hB4qqo+B+S+BwGkCwnBhCSkzVKGz4gMSkJFv8DWJbabPupaYau/JyweZ6Fu23iytUFSuxPaIIhvpFIzXOuztbPL7fsPqeoGJcOY8orIo+TKdWn/4IBmWZIoGSXfDGmqUERKOEG+Gw+PPX6dFz/yXBj9dQ6cRBLmOR4eHKMSTb1o4Zd/hU+89AJ3bt/h+HS6mtUw1pCg2d7aZrS2jkpSsizU/iKe/N0dM210i7aCb7/ybW7fusPB0SGz+ZyqajBtuzIgaZqG1hiMsTR1HbAZ78l6BT/5r/0kT924zmI6xQlI8owsyTk7PuRkPme+f0Cv16eXJszKh6SJAtuisozEe5wxLMZjdBpISFleAA3eh2BXzmfcunvGwaRE0CC1pFek+LYm1ZpeEWT4lXCkSYJWodyz1eIDt9+HIwh0BBtxrhTTLebuJJSwkh6fTpfh5I7gshA61IMiUjs9KARJllLkGSlQlctuNiug/9ZzzsbmQrsnfG2FSnfAijgHWfCCeVlyNbuKSlKcFyCCCw1Skvd7eOGolgtSpaPVmSVNNEHGqgUkwR3TkibqvNvlL3RzukyQ8+xkFawulkxdqXLhOu8KCYTQId31gYdB1BVEBKntCDeG7MLFQCAcWZpQ9IcoqamqmrppgjpyBJqEcyA8iVJsb22SKk3pBd3IrxQy6ABqjZSKIk24cf0RFtMp+6djqjYMbFkb6MghYQklz+bmJp/5zGd54ua1sNHqBmdqGmt4eO8Bl/b2ODw8Ie0Fye6nn7zOczc3+Me/8lVOJvN4EwID8OruNmu9PoPhYKUvaJoGrA2iqFIG2jCCs7MJP/PTP8+Dg/0V9rBydXLnithKa6SQGNOGuy0kzWzOr/7ar/H4v/4/orc+CrZiJkwCVlWfIsvIfI5QDmMrzAIq54OhqS8DOA2o8ZyHxxOMacAJ0l5Kx8p+5dV3uXUw4+EyqBiL6LtgTAAstdakSiKlI0kUeIsSwdn7g67/zoPAT/zET3xhPB7zhc9/jl/+5V/h0Udv8uSTT67q9IsbwXnBq2+8ztHhAX/485/H49FJymBtHdM2LKZTcmvJPPR3tultb1M3NdPZHOc8TV3GExbA8/LLL/PEE0+wNhqdlwLhW7EcC8DK//M//o/5sR/7Y1y5ciXUvEJiHfzir/4ab7z1Nv/2X/m38M6xtrFNnqWoRHNydEiCRw4SrBckmSIFnDUcTMb8hb/8v+DP/as/zp/9yZ8INl/xhPmbf/OnGI1G/Nk/+2cBz8/+7M9xcHDAs888ww//yA+D93zx13+dvb1dnn32udXN+W5qcTdkdXHKTsqgppMlOpzq3q9ai0oIhArpsRChFMoSjZKS1oQApqSg9KEFhz9nZzoZe/RSIZ1HE4QuukEcrYJXZJYmCAeJVAgX+ZPOnXvpxWctBXzf932cjz3/Ak2zxLUNBpgvKr7y9Vdo2zb68UmECvoDGMPDwwXeejKtqZRGakmWJezsbIbSL+m8owLOIuP7Wr1PCd/++u/ycP8BxoAj6EkG0C20PbvuCx4usDxCgPXw5quv8+6dOzz9xGNYRzRZIZLhFF/+5j1UlrC1PqCXSdaKlEKBlC29NIkHUnhPiUw5un3EcG8NE3GTt+7sM5m3+NbTCheFVgVCRim4BmqpgAimquAw3U2Afq/rv/MgsLq850d+5IeRSq3S/g787DYkwvHss0/z3LNPB3txoUAI6rqiaVqGCNYGQ3r9HllWcDQeU87n1Hjapg4P0J2f9i+//DK7u7uMRiMgIrD+/Ej2rmvNsbJFx4cFP+gPVtr2HbutbWEwSJmMz7BNjU7T4EajwsCREICDv/Wf/D0++sJHzn9mTJu//OXfYmdnh7qu8d6xv7+P1pq/9Jf+En/37/5dFsslpmm5e/cun/vc51Yiq+dJwHfLkoWvOmfilJykrDg/vfCkiUYH4AKhoiSWD3LitjUYH0QyvQg1epalsZ3q8CaeRCKYxyitUUKihSRLEpRWaCnJpSDVilQp0jRhuYhj2D4aoChJR/lFwKDf49Of+lT0D0ywc09tHF6lXNm7zGQyRkjFvKw5jaf+9cee5PRsxng2R0hJrxccqdcHBaO1dXSWooQKXQUZO+rO42QIeEJKFuNTvvKVrwa+RJc3eo+PvXpBAGUD/+FcxKbjZ0AQWtk/OOCZpx5nhW+5kObrJCNd22C8qDg9XGJNi/aGtVyy29MM0ywoH0uJTjVSQNUYmCwhC6lA07Y44ckSj0LhsGidBvApbhProtOVaTFthb0gWf69rn8eQ9K/DfwJ4NB7/3z82r8H/E+Bo/iy/6X3/p/E7/014N8ALPBXPvGJT/yen/mTP/mTP/hLv/RLHxsOh4vt7e3J+vo6AD/zsz/LM888w4svvsB/+B/+H/nExz/Oa6+/jrOWP/dnf5LtnR1+96svc+/ePf7lP/Un+emf/mmyPOPevfvM5jN+/Mf+JT75yU9QS8V/8rd+ijffeIO19TWkVHziE5/g+ec/AoT07jvfeZX79x/wMz/zM2id8Bf/4l/gS1/6Eq+//gZt23L9+jX+5J/8k6sH+Y1vfINf+IVfwDnHj//4j/Ox557j7XhyWWOYjMf8jf/b/52TkxOMafmJP/OnePapJ+n3+git4tCM48u//bvs7mwHoDEi2F5qxuMxb775Jp///Of58pe/HFO7hNaY0Ht3Ia381S9+kR/6oR/qns53P61AFHJ+pdF/ASVACEnbhjaotQEYTJIgquG9x9XNOXMwgpKhJArKyq3sDMJ8AKukBG94uH/MF7/4Zaq6ojYNlW3RbY2IRp+JDmPTRZFjpODg4IDa1KhEIRON6gw+hEAoxQ9+4fNc2d0Jm6wxNLXlwd0HnE7nPPPkY7hqh1p73nz3PjIN4qZrm2vMJmdxiAYyJdnoJVxaHzEYrAXTkdaQFzl1U69AVU/wahRCcOu993jz1p0I6rrVgbByBMbinQ133Z3f+4vlm/Dw3oOHoBK8b7CNpUt2dJaye+kK/bJhPJ+EAavFgvGyiZ6MLRKPRqFrS9U0JFoglQt6j0BjFcNeSp5r0qzH2/ePaQ1I5dFpSn9QsLu5y+bWNm3bYGwDKJbzBW+8e/977vF/nkzg7wB/A/h73/X1/7P3/j963xIU4jngfwB8BLgC/LL3/jcuvuZnfuZnLn/xi198/rXXXvupuq7lRz/60b/wiY9/PGYAYRCnG8zIi5y/9G/+Rb7yld/hi7/2z/jTf+ZPx94zK/LMbDrj3/yLf57jwyP+zn/6n/LMi8/zm1/8FY6ODvkr//N/i8V8wV//6/9XXnrppcisCqvkhec/wle+8hX+2I/9Ma5euYIHPv2pT/OFL3wB7z0/93M/x+uvv8EzzzwNQNu2/OW//Je5ffs2v/DzP8+/+mf+NB2Zz1nPT/3U3+Jf+TM/zgsfeYZXXn2V/8N/9Nf5d/9XfxWVNCgvUFgW8wU//XP/gP/d//qv8bO/8I8udCPg5/7+z/Ojf/SPBieeeO3s7NDv9fh//NRP8dGPfpTT01O891y+fHn158J1vgpX48xSxk77RcIOK3CrY+AZE4RBzmcBwk+ysaToNBAg1Mfen9fuXe20LEuWy2XksUgMgtqYCObKCPp6knLJ/vFxfKseYWE1PSCCRddjN2/wQ5/9fpZnYwYba0wWS9Y2N9haLhlXFfkgZ1rNWR9s8PgjnvFyCcCt117n1TfeRSWKYaLZXkvJIw6Rpyk6SVilyEKusjsZMzEJvPPubYw7dyU65yqcB9SAExB79x1D7xxgVVpx9733+P9y9+fBlmXZeR/228OZ7vjmnGuee240GiAbICBTpEhQJmkJJA05JBKUODiocMiUI6xQKCyGHHQoFGE5RMKSTYkSRFMmDYOkRIJCAAQHgCDQ6Lm7uruGrqrMqsr5TXc+w578xz7n3vuyqrpBQ5KLPh3Z+erlnc65Z6+91re+9X11XSOFoGxqohCKJdUZg8EQmRqaEBWGkkTTVBXTuiJRsKMVSkGRaURwWASrAMLFnT7rJQzyrA3kgdpCr5+yuztm//ASSsKDew+5eecupjVHUUohOwPN9zl+M67EvyKEeOJ7Pa49/gDw10MINXBTCPFG0zQHwM3uAb/wC7/w+Oc+97lXDw4ODMBnP/vZ15xzP9jJiUWSR4y8H3npJQSCq1ev8q1vf3v9ZQRoWXKBF154gRBg//CA+XyBtY6bb93kIx/5CATo9/o8+eST8c3Fe6P3ZkeAN996i1/91V/FGENZlhwdHfHiiy8C8PGPfwwh4Mknn6RumnaWoOXDO8vXX/4Gd+7dQQDG2lYay5MlsRQw1vDXfva/5cd+14+StOlnpxz8G7/xJQaDAVevXePmzVsXLuiP/diPrX/+q3/1r/L7f//v51d+5Ve4f/8+Tz/9NJ/5zGe4AJxA2wKlDaqRXRa2WGeb4Zz36hFcHGBi3aloaQptvbq1+7XPWdfHa8glrpQg/DqoO+vW39tGSmzTFpaZ5CMvvhC5DXlGUBKhIjPv2rWrmGXJ2YMzKmNRVcNo3CMQg+Zb79xiVtccjod8+skx9WLFojQkSRrHcKUgT/P1RiDbGRE6QBTBrXduR/JQS0zr6vNO7b8btoqafnFoR0keuRiwnE2Zzebsj0fRbEVtWpvVasFkuYx24XVFojW6SMhszShPKLSkahoqa7EO8lGCVJKyjmtiUBSkWpEVBfeOp6A0OslQSUpeFGgp2dnbR80X+IHf6DMqPvD4rWAC/6YQ4l8DvgT82yGEc+Aa8Pmtx9z23j/1fk/++Z//+e975ZVXvm82m416vV5Mudr0rLumsgU7pIpCEhHJjUMvHcVUSoGzbr0EbHfStLvMmt++WSrdol/vjEQK7s/93M/xp//0n2I83uEf/sN/0FpXx2Mt2kALiLXgmJQS0ab2/+lf/Atkacrx6QmLySk6iRwD4T1aSd66+TZf+PLX+G9+5r9jtSoRQjAajjg5n/Dyy9/k5Ze/ibWWuq752Z/9WX78x398fb1eeeUVrl69StM0nJ+f80f+yB/hr/yVv8LHP/Fx0jTKccdFut7/Y6tMbD5/J/yxrVkgtnrJ8ZrLdWDsjqjzELZjKBfZfa0VW9j8o2gjxaNBRinFemIwbMoLgSDRCVevXUNmKUmRI6yjl/epVxUqUbhyxem9E5LhgFmmKUTK0aV9AKaTGQTIU8X1gwHFQZ9qYTgXRUuxbTOS9ffnkVKh2nvFOsf5ZN5ilBHtj9eg03zo9hDRft72Xo0pQWsHFl+/qWqOj4+5tL8PImpOSp0QpGFVLVksFvH+FZLBoM/p3XOOckkuHdZ5amNoLKRZgkxUnHFpR7CLNIJ+VW14cDYnqBQRAqax1GVF7WMb2VoLArIiIwTBoDU+fb/jg3OE7378Z8DTwCeBe8D/+Tf7xN/ze37P27/2a7/2wg/8wA98/Sd+4id++tVXX62Btlcv0EqR6Bi2uovqW/Wdum5ommYL4QeEaNuEm/9+/InH+da3X8GHwHw+59atW3QDIJ0bcAiR1NM0LQ/Axovc6/Vp6oZvfevb7evFv15++WUAbt56m6IoKPJ83abTWvOJj3+Cn/mZnyUEyHt93nz7Nj4I8l6fNM/Isoz/y3/0H/BXf/r/xl/+v/8Ffv+/+Hv5l/7gv8jv/T2/i5/8Y/8r/vyf/w/4s3/2z/KH/vAf5sknn+TH/9AfWl8z5xyf//zn+aEf+qG1Bl83wedbI9eOXtx95G2AsFt0Yv1v8b/kmpwV1q/ZHR136wKB6kJA2RCZIv9iqxRpgbNHx2C715ciovJxlkO3fxKSLOXo6BCRxt0PrSl2RqSjPumgz3wyoV7MaBZztEz4pV/4Zf7L//r/DcDXv/UmZVXx9r0T/v5X36VqAra2hCxHqOj0axoTmYxqI42mtCI4C1JQVSWbUM/6PLqbYN0qDNGCrjN2EaLbGkSLETkeHp8QiK1E1zL5rLckSkd/C2PROuH87JRgDYJA4xzWR+FVpCDJo1tTU3u06EDoOBQ1mS8p6wbRek1656mtb5mBnsbUmKahWpU0VcVsNn3f9Qj/X2YCIYQHW1/sfw78XPufd4AbWw+9LqVcbT/3x3/8x+/9zb/5N7/5/PPP/6+Hw+Hy6aefvisEe51mHbSIOXEgRikVWzOPfCmifbgU8oLtsgReeulF3nzzTf7CX/iLjEYjrly5TJpl2wkzAJ/61Kf4O3/n75AkCX/iT/wbfN/3fR8/9VM/xWAw4Nq1a22w6BZ6wk/91P8V7z0/+Uf/tU0gatlZf/wn/zj/1U//l/zrf+pP4ZzjxZde4oUXn0fJiIhLEVlpvpMma7UIy6pmkGYbBaT2r+0E/wtf+AKf/OQnybKMy5cvY4zhL/7Fv8hzzz1HURQXUvj3pveRlivlRhR167tb4wOwkUbfZAxd96Hb/cTF91iXBWErC+n+afOYi5+nY2p2AWRjqLK7M+bw8JCmacjTFKEVWmmSJEUrwV5vAIOG6apESsnxwxNOZzMgouhKaWrjuHu2pOj18Foxk5EHkChFcHFX96FL7dt2b3DkScqqqtosps2GBBdT/fU12Qqyaw2M7l6JWMlkNsMLQZIkLOZzFBCMoR9KDmVJLR2hit4TMo3Uaku0s0gSgRdxtiFIWDpH0s6F2OCRQXE+jZOvoRt51opev0c5X1BWDY2xbVYH4Kjqig86xPcSSGhP+Ang57a6A1dCCPfan/+3wA+EEP6XQoiPAP9P4LNEYPDvf/rTn/7HX/7yl29+wEsD8Jf+3J/79//k9/wU/3THomkYpCmnqxWf/S/+C/7JH//jXP4uKdH/Px1/7qd/mj/39tv/v/4YH3i8LQQf6w9i8G7NUkMI/K5/4XfxL//BP0BZlmRZGgdghKRuShItee2Xfx0tJcen5xSPX+Ov/8zfYLZccjaZsLez02aNjlGe8G/8ro/ig+NYXOHGSx9nb2c34k02DknlWQaIOAouJZPjU/69/+Ofp24a1rJvQBf8uhISaDGXltjWYgSETRAQQvKpH/gB/tV/5SdYnJ0zm05oyhWnx/dIVncZZkBwOIiiHyGS05zrrNZc+ydQ1YZXby9JEsWvfOMt/vnPPEOSZkxnFWVjEWlClmWkecHR4RVmsxmrcsViuYQ20/HBs1pVvPbaG18OIXzm0e/jN9Mi/GvAjwIHQojbwL8P/KgQ4pPES3AL+FMAIYRvCSF+Bvg2YIE/I4T4I9/rPe4Jwf8pudhz7yLuphaLm4pSbQXTfiO+I8asv6T44P/qr/01qha8+9yP/Ah/qeUC0KXGW+nyB5z3B/585XCfxx67gTWOJFE0HuaLFeN+jpIOjybLe5xPzrHlkp3dcYzKdOCYRSAp6yYabGYp79x7wMnJGax5jZvj0c/43fTiAP4fSvEfFUWbKrZMw7Z27a5BRLUj+aVTd+6KBik7Refuj6BTL7pQHnTP6Er89/mc72Eyhmg4GmilsELsxEkp+NjHPo61hiSJ05qyBTVNY1AypZzNyUYjhocHnM7n61IuvlcseyREYRjvQSiciD8716pDSxUnKE1NmqQY6xiNCt595512ErHNjLpr116v9sNvn9z6Wm4CgFgHAm9t5EHIODtSmwYbPP1EkAqPR6CARMvIX+huax9LjCQJGB+YTivm9QpcfMA7xyWIBbrl0+TGgfB4HKf33wEgFzDcKaJeplQEIfG7Y1577Y33vV9+M92Bn3ifX//l7/L4Pw/8+e6/P/OZz3zPINA+b123A+sWjFYxFe3Szo4yu5WNty9wMf38yZ/8yQ94pw60AkQHjL3/wlp3fsJmkk+I6D5DCw1JIDi71hdQWmNMs64pY4/Yd06VBAKmMfFmdFH1pjENaaLjnhMiscOLTR2PEFufc3Me7afbuobrnwihsxxrU/qWINNNSHZBFiEQIUrpSjqeQYuOd+fftsK6a7fuqGx1a8SF9bFVNlxIqcXFf4P4OYNkON7h2tXL+Mag0gysI6golYH3BOsQUjI9iz4B931NY5utN+0CiohMwSJlvqjwuUYnCm8bin6fqqlJ8zTW3onGOYNE8q1vf3vdlergw/UVbm80QSvzvamD2oDRPk5snidaDwpnHajIkxDOk2pNqv0aWJTIdhAuQPB4GYOzCBIdHF95/ZiFsWvab+UF1kDAobWiDilaJCgnSI1HSM2TTz7Ocj5lUa5YLecRB/kw04a7o5ORliKsv4JOT3KNAwY2U2bvt3C/+wb5vR/brjKxFeU3gSD+LUVUrw0Q5x0SjTcmagYCUmnq5ZI8j4veeoO1sV6VcpvR57HOIrc8FiSCTMI1rbhpbKvJHzOIzlq8Q/IvBoNugbIVrDba+fHx4uLNuz4/uaa2xnq26wyIzeuHrdT4QkDaLOiwjlCPZFbrx21Ay83ngU589eDgABV8nCNwEmscWiqEVsxmE6r5nAf3H5AkGcvGcDw/i+Be93YuDiw5Wus6AV5IdJqSpBlBRHGRxhq0T+IMAbGmX66W3Hlwf8vTgjjPz8VwEO+7jayY31ZbajOhDqBN0rSVKIuTqILI3AySrZgoQIKXLRYTBAkyTpIS0Eqwso5luWK+jANAs9k8Ao1sMBvZDmgpGTU0p7MpuztjEALjJXXTULSU8Pc7PjRBQHcXCtbpfac0Cxuw8OIOuNlh/mkCwIUvduuGFy1qHWBNye2+sM3i6laaRCctQNnNsQuFC+CMJXiPVoo0i4BOjPbtziwlq1XJbDJlNBrggortKQJDBJ8c9bl9MsGyyULiZ+3Oe+tmZPO77jGRMXjR2KT7W3DR4DQ6+1zY9+K92UXgR6739vWI7+Xf8zm2g/PaH6ADD9eZdTfVGb0bjw73CKaiWlVkmYHgcRJWc8ftd25z5zu3WJ1PSXRKozTj4ZhhljOtIuAVQbz2PGWcXaisRCqBTlIQUJXV2tE4aQeqvPMslnMm8/kG2GvPO1qNhws+gGErAwjd5QnbwT22tAf9Pp0EWaJkOwDU9hBa4RYpWJuJbgJNQKr2MdZjrEMq3bGC16PkXdcnQDvevilLZrMZk8kkvkb3no/4QmwfH5ogENpedDcCu/592Owa27//XnXxd3+zNhCs21ztaxLNQLpZ7O0dbPtI0iR2LLxt+f8dOuwJQZJIgbdLJLFzEXxos4H4ZXnagSHjKJuG07NF254SWAGrpsayloVod//NAlvvol0d3p7Poxep08bbXMtw4XQu+jZuyh0BuFZGK4qYdAFo25knPke2akved+WcX7/PGjgD1sy69mKrVu24m2HcH43AOUxVQVPhrSXIQFkb+sM+pRS4LCWvapw1JL0Rw6JgVpbtG4T1eykZ1ZaCzlBCkmYZ3lpW1RxCwFhLlufR6ENqTqdnlFU3T8HWdx8uuHZsj3VvZwRdRIy3i2g9BRNs08QsyUfCVCIVuQaCXU/NyiCidbhqGQkiYgVeRNamc7Ht1wUJt8ZkYubA1r0bA20bGDqzGzpXL8cHHf+jB4HJZPLOZz7zmSe+22NOTk5aWecPPtYn+T/AIRCtAGVbmYWLuxy0QyXrdHOTbkspuXH9Gr1en8gCk9GvoLZkWfQ0qJdTtAYvErxz6GhztAYHG2Moq4bzs3OEEKy6G1BAT8AvKcnLTZdsbs76Qos0/hUfsQam4jGfzy+cr28VlNbwyfsAeJs6n42dldiS8Gqvg29ptc7Fa9aN4naJmW6zCisiXuJFZC12foa+lSVSKkrMCwFaZ+zv7UWZdgFoiZQZyIBycDDc4fDyIZPlirRpuH75EquqZn/vgHvnE9aXog08m/IkWQ+haRWHpLTWcaG0qkO9fo/J+YSmqjfpDe2PfrPg33MPra/RJodaX6P2GjpjSJOMMqzW10YS1hlL2AZSWl3NjbmIxDuD9e9H5tlkLGIrh3v0s3Wbw+Y13//4Hz0IvPHGG/+H7/UYIcQfVbJ1G2ojcNw0Yr+263c+unPFY6sk6H5zIVXeHEptJq06AZGY0sUJse553vvo4Ks13vmN6DGCXi/nhz/3gxzu7ZEVBXlvwLt3HjA7XXB4tENSCCb3b1KoBSLdxVlFXkiUSFDt682XC27eOePll78Vhzy8JAiHCII9KfmfjzJ++WzFokW7urRThDjymyaRNrpcrkAIvHfrQLB9v3bXS2zd3N/thl4/LwS6gaNuQ4xBMZqSdkpM3eyBlPGmlEHy4zs9XkoSfnYy40GasApxWMmJi5ZrUe1IIgUMRyMOr1zCq2hgopMCoTQiKKyZM5su+dQnP8Vb85J7D+9zuD9kvtRce/I6t+7dhvNuWUQSj5QSH8CFTqgkoGXknOg0QUpJVVXRqTlNojuyjXby6/Q6vP+12j62rdA2RK0um+pGrj3IFi+SUdJdEXUc2gx+jbfE57emJ8Tv1QbY+G+wkVAL663pwve4+WxifT/EjOxDPkosRJztXpsmiE18iwBI9zixrkG7C/9ozbyVccbNVUZKa+dhF7/s7vVawZIWFIuNs25D2EbA5SaVDiBVinGOQRIZS1IprI0CFQTwMkUlPZp6hTWCPBuSpAqRKFBw1DvgzXfutxLf7c3mBQhHFRwPyVgHt87KjJbEQojBpB0EkvLCHs+jwfC9F7u9Lls1bHdttx8vROTsx13fEcdoQcroHOxdR6UV645OEHCI4bCu+D3Xr/MFYTkTYGpLEyQPpzOWVZz/d7a9ngJ2dvYYDMaETmvAQnAOVSSUyxVSeQaDnJ3DPc7ShPndO1it2L92wP5oAHfaxdfOieuWiOWEJNEq1vSJxgGDLAdiSSAFqFRz/OBhHDFuL5CQMjIxxftfy0d/v8E9NkvZBxvt61q6e5KkWG8RohVglRdJbojQ4gYdA9Rj3WYR+/aVlej8oTY4z/Z3uGnLxpmWjuPw3nxhc3woggBtBrAxFo4rObT4QFyU/v0RaaCb6V6/mgAl1Hp36MQqt98rlgGtZBis3V034NBGtFKwWV5KEB16fYNvVgRvWzAokjKC80jZY3x4nXu3XqUpl5yt5tjGxshex3qwfHDOlX6+HpgyQmBMxAz+SWmogsBJifAtLZfofSiUYlU3CESr7Q/BdbfIppff3Qzb9Wt3Du9t07035d0EJyjyjCzPmM8XQEArMI/kmEGC9NCogmqY4bxnMMzwUmO1wQGLVcl8GWv4Dih0wZHnA+pGoAqBkRakJBEJtTF4JdGAF4ogAzKVDA9GJAd9grIcjVstiADCh7afArYxBNmLi8lYUp2sTWU6l2KVJGRJyvHxSastIBBS0bU24xVzF67heuNpgZLtDYn1YuuMa6EpSwKQZTkrANllnPHLkJ3N2zo402Z9AWs9DslmiGmjv/I9kpS1X8WGNP7Bx4ckCMSF3IEaMbpuADAfi7P2cY8+c5urvplB8C6sWymPHp3m4DrPJqZPg+EQHzyL+XKTWotNhgGgdNJy0TNE2ottIO+RWsZ59mbByd13OH5tSXCWflFQSE+/0AgtCDISO0aP7fH41TGND8xmC+7cOSYsKg69ojnscZQIjLU0zrOqLcZ7rItah8b51jk43pxaK6xvZwkIBC/bOrANaEJcuJE2N4Wg23kQYr0wYwYlW9S5wxNEC1DFB8RSqvsXkD4+v5aOnace49a8plkt0AIQGi0hk9vVbbyTlUrJs4LppGY2nVHknplpuHzlBsFZ6noV5zS8w8mUk7KhJwNP7e2iguTK7k77ahJk3PV1otrvThFav0jTNBRFDqL1lkgSdJJijeHk5LS912Iw9a5dZWJzm8RkbBM0t0eIHy1TnfecT6bxO/MOpEbnKSL41gJ+wzb065Z4+x6hDdxC0pjWXIRNJtIB6B35a7tbsV4R7Xe5bndulYPvd3xoggBsbSzdDdyir2uqSpvmbEflzZ9OnnrbwKKNy9toruh2/O4dY73kAyzmi3gTeL8pAbaWSwigpSJRAoLAe40UgWp2xuTuuzyYPyTVgTxJ2RsV5ElC0cvRCkpr+cYr7zKdLkkTyd7uiPGwIM0LJsczysrSDyCC44n9XQYH/aisIyHRRJUYW2NdwBqPbSyldVgvsC6wagxV4zE24IVmaRy19RhjaZyFIDE+Is0+yLXZS6fnsSm5wnrb6MqNsqpZ1XVshbav0V2/DhGP19HxjWnJ8BvfQicFFCle6iimKfVagnx9PVsk/eqVA6x11PWKcX/I5b0jcIHaRy6FtQERBIfXjnj26ScYjHqI4AlpwsGl4fru8SIi4VIKmtJCnpDkPZy1OAn94QBf1ThjyIscrRTn52ecnJ+3PgChzTjjfbbRmbyYD4o2S11vr+t6lLV26XK5xDjXSnwlKG2jliSx1JLQ1v7dtr7pzAQEQSiMjV0l5110IO4+wRbwB5sygPZed85tspb4y3VAeL/jQxIEtvPKTYoFXRTbSl3ZINIblqG/EAnfDxi8ANy8512jYWOsA7uGX6R7RuQ7phkdcq58INiG49s3Obt9i5OH90lSyd7OkDQtCL6iGPRQSmIECKU5m6549d1T6rpBBoG+N6XIMkaDlMW8JCSxfKlEQOc5KitQeDLFxuWoqfDexpad9xgb8R6lJE6AkgFvDN7G1LayJgYMD7VxLBtDZTx1YzGNw1hHYzyNdTTGYrzAeKidj+0pH62+O3jZ2Q01u/MK2P5eBJITASftvxsRsy7vPZga4TdtqtAGECUVl47GDPqOaump64A1FiUVUmuaecUgJDhn0CLh6tNPUimNGO5QFEMO6qz9zl30qoQ4vZin6Dyj6BVY7+j3BwghMCYCgEIqtFKcnh9TNk3UHaDDOBxda8+3u/T7zdt2OFFcmC0TE9rR3gZrLEXRpxMApRvt7qKuiBOBXddo3YlpRWgb51t78XjNt49tS7r1Z9m699clXhcIvks98KEIAuv6E+hq8Y0yjke0O28UX9S4FuB7v8X+fukRvBfMCW1hFbzfSGN3Ab3LEtp0S7WpsJISief0/h3u3n4Tv1iQ9zLGowF5b4gseggMvmyYni9YrVYEJKauKZ1nNMhZquhbt3INPdewmhmSNCWIgFWSB00DD4858h4RPHvDHCkUwyyQDTPmS5iVlsWq4nRSodM+i/kMU1X0+ymf+tiTJECSKkDFWQUcLkRUOhqDOBAOHzx1Gwycc6xWNU3V0JiG0nia2lPVDhsUVgjmdc2yjsHC2ph1+da30XqP8OCD4i4KYT218VTColrPAhPVQeM1Ju7uSuuoCK0Dq1XFt998l8euX+fS3h694R4Ayzu34fyM0YtPk+3uUc0rUpXjnWF8+VL87nyI9HoBuhVtUe0MgtI6jo1XFcYasqJoy0bFO++8237v7YLZ5gIg2NnbY3Z2vi6VfIsjrclUobtnNqWWCpBITSI1KkkxTfSYUCFKsQcZ6e8SyYWpxHaTiUHC01jfroFNe9xv3vARHOu993lXFrxfG3H7+FAEAejS/+1UPf6sVJTjjswtFx2E16Vut2pbTQHvQG51FtYXZ9M6W2cYRH3/dSeA7gYILYdAIVEgYnqY6sA4EeRuxc2Xv8xOvyC/eimmtEqAFrhyiTM1y9UCb+Psem2iSGbdWDSCfpYgEujZhMI6linIVKC8oKwt86A4u33CWydTUqlJRBSS6BcpR3sj0lRTVtH23FjD8vQuTWmoAuzpnLNJzajQ2ODJE0mWaqSI47jeO0xwuCCoK2hW0SFHSsiKhPEwp0GwqitSJbFlzbJ2hJCi0hRjBUFmuGCxLmDqhiA8jYOqttTLJfWq5F5Z0jQO16xYBUHtIlZjXNTZY1W21GuJzhKGozFaBJxomC6WvHbrO1TNdZ5A4YWld3kXf7ri5OuvQpqiD3aZ371P/2gXrQsggnzBRTQeBxaJcSG6DGmNUIqqlSKLEujRsefbr73Ghk3X1s6hTf6E5NPf/1l+7Zf+HqU1Ldj83rS6Kzk3WREkWYpQkiwvqKsKgUaqhNZgkfWbtFkAdPo38X6TCBrbipeErRJ3jVNt7uOw9f7rLDeEDcazdf+/3/HhCQJtjSWkWIN7EKKH4NoUJB5dbR9CYGc8ZDDs8eDhGcb4NYvqYiawQcOF2Ly+66TMWjQ2PkYjg0CpdrZbCka5ZpwrdgcZu6Mxea7p9Xvo/ggTJNVqgStXlHWNsdERd7E0GBsVazwuOuV4gRYSJzxFmtBYg1JR1tv7gMhzarMgz3s465j7JtZys9gm/M7tMxKtyNKEcS8j0ZKsV5CqnCt7u+R5yoPjBQ+FI9UarTQkEnxDL0vIUolSkGYCgokiF71+K8HlQCou7R0iEk+wNa5yiLTPfD7F+CW+9lhvkEFRNaCzI1yQ5MUQGaBaLWmqJcv5gtVyyfn5GbP5koUNnFeGlfVI3aXdsQ23v7+DUorZ9JQkCwz6YwbDHUbDQ8qqZLWcspP3Gd84oDqrWS7m4MEiYtlQ3gegl6dMFos1iNt4gQuB8WiMkgpb11R1zc54jEDgW3bi7bv3Wj9C2tp5A7wNRyNeeO553vjqV7l9/AAHiEcW0zY+1f5ijXUgokeiUhLrHK7tRHUf0ou2A9EBjOtkOGBdoG7FTuJcxNad3G2AYZPVbmDai//eAb6PJMwXjg9NEOhccoSMfecu3Yd4w1xoCbaRTQv4HZ/+JMWNS/zK3/15jichorGP1Efb4CFs9Am7X4ggWm32CIwpCaNMsZMljHsp/UHOfj9n0IvCJFmv1/qLGexiSV0uqWrHrLSUjcda3/JqHTI4+mlOPhpSrQzWNizLBl9bnI5DHwSBsdGN9sqoT94vsC7eiINhnwcn0Tm3bhqqxrAylsliiZIqWmD3c46KHo1zTCZL9g/2CHiqusaXDaOBQBea8U4fZ0oGO7v0B30Ws5JsMEQITb04wTWGRbkgrBT9QUY2EEynNdZJRnvXcas5i+mcfj+hPj3BLM/oD0aooFDZEOs06B6kmmw4wCkJaYI/m5ApTZZJ7s8i19/amHWlqaKsS+48eID1kVotCLz2xqsc7e5TmxqVpIjCMXzuBu7hGU4KVC/HNXMgvl6vl3O2WIAQJKmm8RIpNVJpsjRlsZyT5j2SNMfahuA807MJ0+l0zVb1rXVdt5qe/9hHuXrpMk89+xx3Hz6MLcTtDsH74E7dHSqlQHhHaPGNsiyRWuMatxkka++5IDbTiUK005yEWD4JFaGER1vjW5ltBzZGjDu+dzdt25UX341t+6EIArHGUlHu2nWBciu6sr2ooWNP+QDfef11PuWn3MgF8ySwqDYnG0uJTfDoxmQvfJFAwEeOuRIM84R+ItgfZOwOe2RFxqjooVQg1RKZpBjvmB1POF+tMFZRe4/OMkKSonxJLxMc7g0YFilSCtIkRaewmDfU1vLG7RkP7p6gco10kVkmgYOh4Lmnr5LkOctVSVkLHpxWZGmC8548z+kXPQjR8qosSzywqCxfe/k1tJBIAovaMMhzdkcp1y6NGA7g6Mp1nBckYszp+QIjA4NBn6aaUdWeQMF4tMtqGS24p/OS8SBFiYAWgeVkBq5h92AHu6oYjvoIpdCqoK7m3H/nAS5oRJquOyvD0Zj5dI5DoJQg3VK7lEogguDBvYdMpjPGu3sQ4Hx6ys5ogKkd0/kiYkJpHymgXk0QRUKWZuhEoVrCD0A/ifqTrvVUMEiSNIsEHVXQGMtgOFgDy95YprMppt1s4sbSApchoNOcG08+QZZlPPbEExRf/jKLurq4GW13ndZHbBEkaUKaaJqyQmdxolDJJGYKgYj9tbBj1wkT27ZwPkSbuBa3Wt/VIjIaQ5u1BNiSOIsdhy4TEOvyJrxH6m37+FAEgQ7h921KJkTHRoOudQJd+yp+CVJEhuHrd4/R1ZL9QcJu7qiaEhckSkVsYUMS2sIYaLEXupQfxpnmcFAwzDSjUY+dvT5aSvCSICxpmtDUNeVkzszCu6dLsIEbV464tDsmp2bQg7JUEdSUAa0cIFGyBi8ZjxLunDYcn05xUq1ZaWmiGWeKJ25c5uj6VaTzXL+REoRnNrf86hdfo1CeuvFY4+kPBqRFwt64jxOK45NTnI/y1r0i43hyzn1ree7JI14YjUmk4u47t9nb2yfd2eXaVcvpwxVv3G/IFOzsDTg9PuWV12bsH+5y7cY+yfKc+WTGYHfA5cevMD1bsDw3TOc1q0XDIE/QaUBQcnoy4eRhhTUBpTSupTqv5iuWyxX9NMW4gHdiaweLX8BituTb336Fp569gRaSp558hnI5x9oKY2rG/R55doDNJPfffpveaIfh+AZicUYIBq+j5uLRlV3evH8Sd0QlQGWkaZzdsI3BWUevKGiqKAVeNw3LstwaTd+a0QBG4zHXL10heM/BwQHD3TGrB9V6g+oOucV9WA9OCYnSiiTVzMsamaXRsj1JcQvfyupHGnGIgwYXsLDuMxjrWpn3zWfzIWyVrm1PkS2uTNgYq0BoR9wDF178keNDEQRge1eGOGwTx263h2ZaFG8DxBBT+zcnJYWGl3ZTdGh4ZxFlpnwQa1IFUkZjUBFpl1IEeqlinAr2ipSdfsHebo4SCVkvQ6kELQVVuWS2rLmzrKgaR+0k1kOmFSITVE3FLorRsEDpBJ2nZFqj0xThI9ag+znOelSS8Y+/8iWa0oCSBAfGe3aHPS4f5nzsUy+S9/uE0CCtx3nH/khy6eCTfPv1u7z6nQckKkUqQVM3NHWUn8pFYP9gF6RiNl/gVIK1De8+WHL9XsXTT47JgmI+PebBvTsc7eXsHh7RBNdKUsO161f4+Cee4+TkjMV8xdHBNfb2HavpQ26+fgstUx57/DJSxNr6/HyCUpK3313y7p0FmRAkwsf2mDHM5xXGxHZm5TyN7cQ44yHa4tU4w9e++jLON/THQ3TWY388JkkFZSXI0h7HpxN00WO0ew3rVyxOH9BTgmYyIc9jkL92aR9vX0dKwWJh8CJHSolt3Xi0ViAkMknAWmyIdul0i69LmQMIrdg72GfcL5jPpvTygsPdPY6PH0aRmK1s8lEKe+xuRU9HrTRClti6IdEJ1keQtJfELCB6MsR6ILafIVqcCMKaNtwGlvbayTbT8H4zeyDlhg8jEevndOtedmvnA44PTRDYProL3A385HkaW1J1fSH9imWEoPSedyYlO8WAFw76zMycaaUIIqzTxShVJZAy0FeSvZ5ilGcM+wXDXk4mHXsDwdznJEUPU5acnk6ZLhomZYNzoGXAuwaBpHGBZ558jKtX+/SKhLw3QItAEIHeYIiWCa42COkQSYbwiu/cP+f43jTyB2wEJK9cO2Knp3jhxafRWrNaLLHWYKol3jeRYCPh6ccusVoJ3r11FwtYHyfjrh0dMNzd4/b9+ywXC1KpEFITdEqq4e79BbWHvb5iPCq4/MRjBNewWNYUaYL3in5Wx12zrhloQcgS7t67x7BXgFBcuXoZH8BYKJuGk4cT3nrrlEUV8M7QzxISAnjJcrViOi9jqy5LWZmWyquIZiPrtI51VrBaVXzja6/y2c99H1LAO7ffJs0ypGxo6oYz0zA2Ddloj6I34sHJQ+Soh1saiiTqRl6+8jhS/DouBGonESpBEAVgkJKkBSQJcRHrNM5/eL/lJxgRYhSSg4MD8jRnZRboJOGZJ57i26+/SgscveeevThEFD0nhXOkUlHWFUoqvAPnZNt9DnjfblCiTdlbUxQJNAFsuNj+a+/ki52IVqq/wzLWU7HtfwsROQf/THQHOnIGbJD9rivQK3pRj72JvuxSyi2yUHSLfVAH3jwt+chRjxf3e3z9QUkVfcQRRM22QQKHec6gl7IzGtHfGaJUwNcOuzzj3omjv9vj3vEpJ6crGuNoTIMmgpYxfdc4AXkvZ38nZ284IFGQ93Sr8JoQGotQEYxLigG+jq3NL37lNZyKET92QRTBBWQ65OZdx+37Z8yOj5kup7BYsQqWXAqePBwjBj0ePJwQBPT7Q3b2dnDece/eMa+/fRulBTvjAakuSLRkf1yg6jI69gTBN2+eYktDUTxkOOxzuD9gf39IkSrykDOrFamXDAdXONjRDMo50/M552dw850TpvOKyXJBNS+x3tMb5BQYcgLaeYLwzBcrmsqQaYkJksbaSLEWsYEf3MbNKLoAdW5GUJcNr778Gs89+RTj/pDpfIb3NafnSy4d7rMsl4z7u9RlgwmOs9mCUb+HqeMtfGXvBoM853y1IkgZZbpUvMbeu9iyEzLObzgLxnL68CRaksdl292IOC946pln4+BPmpLnOZ/67Pfz+S9/kQfHx3EycWuQrTu6UiEI0FoRiHPAwlmWkynaemwrey/EhjvUFae2nSzUQmAJNM6wmQx9pDvWPq+bsA0t/Xs9LLQG0f0aMPyg40MTBDYU3XAhvRJCcHJySrTR2QzCdFN0a5sr4H5pubKsubyT8uYgwy0tqRKMUsFukdLvF/TzHr1+j2I0oMgSZLCc1HMaa3n7wRJ7f0Wa5jHlajX9Qyt7JmXsR2slwBnOJ0uKLOHylV3SJCPvj0izAXVZIUTA1BWT2TGZEtx9OOX04XnrNReJUForjHFMpiu8mEFVM51MsFqgETQuwLyimVVMhUZeGjPYOSDNNSenZzx8cILUktEgdi52BhlFlpHnCaKuSHopzjSo1Yq9YDAZlGbJ8UnF8ekZUmckeR59FIqCXpaidUox6LGqa2bnp9RVQ71a4ZxHp5pi2KefJWhfE5qokWjqmsViFUd3tcDaDtkW7a7nYxrtNv5+a3WjrlzDc3p6zndef4tLB/ucz89w1rK3s8vj156gXi1BCUrTkGqJSFNq48g75uJiyvVLB5y/+W4E5rIcqTXL1YKD3V1c6Pgf8Vi2fhSdHXjEzxwiQNrv89STTyFl9MEAyHo5n/vsD/Jzv/jzW3Lej7au404svETpjLwYMlmcEESgWsxJFyu8ETSJj96BIXIP1qpDArpRbWcDTePWg0CPrhWxiabrsfhNnLiIb2wQsPc/PjRBoGM3bdqmYZ3KiHY0dI3GspXAidAOu8DKwusTwyhPePGozztnNQOtuTwq2Lm0i/eCrMjQSYpSAucabt07ZTVZcjCULI1j1O8T2AwfBWKPV6WaflG0gx0GhODd+2e8c/ch4iuaXqI4OBjzuR/+Aa4+e5WmrpnPShrV4/xswi9/5W2cA+kEYNCJRgVwQpH1hwxGO4QdiTrYx5xN2T0/w+UpD3ygrgxHH32a06bhlVvvInVgf9znhacPuXqYMR4W5L0MLz3j0S6pSPF5gXGeuqyYnZ2yXJTYykBVU7vAYt7QeJCJR/kSsahYzSPeobOEvJfQV4HxIEX2I+ruvMU7h/QW4S0Ww3JVUa5iB8NbS208QSh8cIiW3amkwoXA2XQOorvlNq2tSMwRBO/4/G98gU989KNoBVkv5dLukH4GQWRUiyVVU5P0c4bDEZPjByzMBICzO69y0M+BKNWdZhlJZ/yBRMkYjIwxSCFYVCvuP3wIa0HWllsXBI89+TT7O2OcqekIbAL4yMc+yte//U3evHlzw8V/lCcQoX2MMQipETYC3vlogJSKajbHmjnKBkwwBBlHn5OWxoyM6kHGGsrGrbsHXfhy3rcjyG0WTKf5sDU1CutuQCBWG34LIH/0+NAEgYtRtYt07RycB/B0KltdJFStwGKnB5BnCl1ovjNt+ERvSHM0RglH1ktJ04IkTVg1lsnpnNPJjMW8wgbHMPPcnlo8ktrEtlOaJmt+gm9biKuyif5xSTRPNRaEFiRZYOoN9dmMn//FX+HSy/ukaUGvl7C3N+LmvXPOFxP5bgAAkelJREFUz0tEvULrhLHQBBHYzXMu7x8yQtFfLGHQ43w6Y3J8gj0/Ybh/wN7uAfPZlLtvvcP50vDks4/zsRfHvPj8Fa5ePWL/YJesGCKVRguHbmfSlZR4ZLQ1q0qW5ZKqrDk/OeXk+JQ7b99lNlmiVA5WRmMOrVslIAHetbx/S1NXLfffooJAS4WpK6arFcYFEq1pbIjuuK0Ia6IVjQ9orVnWhjunS+aVIy82t1wnXhJFVKOuQ10bvvX66/zLv/tf4OHD+4g0IUkTEtNwXs+ZlxbqJc3sIY2pEHlE5/Uwo59FxeaiyNFJSllWHF26EucEtMJWJmo9Bk9d1TTNRq1YSIn0AZTkk5/6BLaqMaZud2eBRDLc2eF3fO6HePDwAYvVar3gLs65RMygLFdUdRkdh6o6lkRSoZOcXK3QWsScsJVHF0K0Hgwx0zWrksbYdm2wViHadMoiWBRaH8X3joJvlSls0Y3f5/jQBIHu2J7Z3k5hOq55aKOyEK2OHAItIU81O72ULJHMV47vLCxPfOol3vnmVwmLM8xqTj444rxyTGYTamNRWrGqasZKMp0YUp0idYzKeZ5CCDjrkC4QiNM6WmlSKVlaw8oGpFfkqWRVVeg2G7k7v03wikwFvClxQVBVC3Ih2MUzso6R0BzWAVOtWJ7PWNQVdVEw94FFXSIHfQYvPs/rb91jbof0Lj3Bx3/nizx1VfDRJ2oODgrSPMfZFX5VUjc1zWpFXS5pmholFJWNHZIQQCU5xbBgf39MnmU4J3HuFlIJJme2ZUoGnDEY57BVE63HFShvEbYheEee9zHWMV3VCKHJdIjTbu2N7F2c9ZBCoAVMVg03H84pGxft5dZc+Yu99m4AKS6gmvPlgp39HfLeOLbF1IxUZeSpwoYpOtMEka6181SacjJfAYEiy8F7hIqtOqUliHbGX0qaqsYYs1Y6EltIeq/fZ2fUZ7lakiSaNM3QOkEKiXWG64/d4Nq1a7z+xhvv4Qh0bW2BoK4qmqoiyTJ0XWFCAs6TNTmilS1TInaPCFGKjRD/WyqBFhuxm+1iYC2f1q6OjZPSRf2IR4+NnPp7jw9VEOh6rt4/mmJFVp+QgjRNokyU0mAa+ins9BKkzskSyXI5xwbPg+mS+Ve/jF3OaPKUpSs4HF1mFZac+5LhaMyTTz3JK1//Gs6WDPojLu8PqU2sZ70xNKZBCInUGylqvMChCFIw3CliH9c6BjqJAysInPEELMYrfBMwzmIJlFJyLAULpbmvJLdCRTg7oehf5uCZ50n6Y3ppzijNGO/uc3j1iE/9vjFXDwcMhxJnVtx65StUq2Me3n1IXZY0taBsHNaY+L6tmYlzcY5CaYGUniRJWC36iGDIspi9CKVxoaFxNZkaIgAlITiPSgLSW0JtaaxBCuhlGVVTs6wbhA4E66hM7EWLdrIxMt6gagx3J4a7syaO1CqFUJL1OF43N7/Vd1+z5gLcPznm6cefAOcRymOXU7K0oBIJwewwW8xIlWM1XwDwn/+tf8jDaUmQkBe9CCj3ogGHTnQU/dQSb2wMdE2DaU07Q9sxCCGwMxpxMBzR7xd4YNAfEFtDCm0Ept9nf3enjRqxHbg5Wt8MEQ1TqsWKwe4umg7L0Pg8w1dq3SEQeFxwSATay3ZcO0TV6gBrnMxf3Nm70eZHyUvrxzzSRftux4ciCFzkXtMip5uhDi0ESksO93Z4/IkbaK1RIbA6P8dUE65evYLKUm7fvc9iEqhsIMtzzhcrEh/wq5KQ9qhMQ7EzRp2f4qyll+boYDk3gesHYz763BMkxZClaSgnM+bzCdYJyrKkdlCWFdY0GA/CCpq6QuoEQZQqH/aGuERBU1PO53EUuMjIdcLs2BKsx0tYCZBBYpQgUwnXnv0If/rf/ffYv7xLL9H0M0EiHd5WzBdLFvOSxfSMSWViR+D2KUrWUffeS4xzsQYNsf5GxDFopEY6RXANnppER/8DbypK4yh6Pcqqjq4/IiB8g4Q1uk/whDwh8RrbGCbLCh8C1sXav67dukdtgidB4YTDGs/Mau5Ml9jg48COkm2d2nZ+2u827sKb8q+7D2zdYOs4Fi2kIO3t4VaesKiYzRa8fvNtzh+e8OBkwn8K3JuskCHqPYxGQ4ILDIY7cadsBQeFBGctQkf+R2PMOhhFJp+gn3jmN7+CON1F9Eao0T6hbOg9dgW7rJg/vENi5psW3COgXewyxntmPpky3NlFuEAzW5Ls7SPSgmbpSYnBTQai2nAIBAnOR78BayNjcBsgXx9rPKLNkB9d5KHjP2yNFf+zkAmsI5qMSjARaY2XONGa61f2uXawR7/XIxkMKKsVgzTF1UNKF2C6QqiMvDegCjWN95i6Jhv2qKuSRMB+r8+1j3yCs9MT5icP+eIXvxhbVSphZzjg6o3HSXSPZTlnkRUcHR3ilhW1t4QgWC7OqUzNorQsV5ZV3VA7j9Aa4xyzqsJXERjKlaKXpeRZyqKq6aichLBx85WSICFLPY8fJBzsaFarCozgdHKOcY66KWPvVwmyIqcohpyXAaVLlFCkWqOCIckSrPMIBWmvh11GrrrSCdZKvICmNNR1xd7VI66NRnzr1Xd5+KAi0wOU0oTgcC6aWSqlEVmCMNHMclJGs06cZ1k1OB+QQq3bnbnQBOcRXrF76RKFb3j17mydtUWlm81uFVy4cANv1KQiSm6txQdBbSQqO6SX7BHykld+4xf4+rffZFLN12pG0FnMC9JUUxQ9eqMR/WEE44xp6bXt7isDzGfzSFPfqqeVgP2hpieXyMUMv4LZJCNYyfT46/FxdcXlvOUXdEM9W5r+AoFQgso2WBF/k7TW8VYJnFAszmu8rUh0INGC3VE/ZgNeIFoZNWc8wsfWdHd9uvN8j97G1voJRLnK9f3WPeafBZ5AJ1vdfd5AaHclwWBQcHR4xJUb13ny2Rd47vmPMSvnvPPWd3jjzZu89a1vkKuAtiuE9fSKDBsEvTQjyVNUUkCS8pHnn6dOFDujEdrUGFdTLVcUWjPo5SyXFf1+Brog6WkIYMUC2dpF7+zuIdKEeVOzWqw4fXCf05NjGqUJNkHk0e4q2AalMmwIzFZR1TbTCY0xa6dbKYmtrDyLwyLWY6VCJAng2Ts6oKoqVktNWS5BqEh4EdDonJ1eIBGKxjXRz0BKiiRFqgRTG1RRxL4zmqI/IghFlRrcouT4oeHb33gLh2Q46GOrEm9WyOCjkIoPYGucTliUDZPFgkRLnHXUjSUESRA+1t0yaiuKEJC64IXnrjMe9vnWO/dRWq27W+sd85Gbtvv50cM6H0FGmTBdGvqDHONXnC8XTJezuKJb6474+hKCY2e0w9HhEUWvhyCO5AYJQaiouKM05WLG/dOzaAi61WpKk4Qb+yMyPJKo/+caA0HGOj5u2ewPc6SMDkd0HavuvFpVZltbGhMB5XXP3lpks2Q4yihUQgiWm3fOKUZDEgINAYXFe8FsVWLxH0hM2j62h+Rih23DKHyUy/B+x2/GkPQG8FeAS+3l+kshhP9ECLEH/L+AJ4impH84hHAu4tX4T4AfA1bAHwshfOV7vs/WTwLIlGCcawZKs3P9CipAmuY8c+M6P/CZT/GNt26RScfcOd65+Rrj8ZjVbEpORVhV9Ho5eRFrQrzn+uWrVN4xPz3haGdI5kqs0SxCoKxL5k3Nm7fuMOqdI7QkKfqotCDRKYmK1uSJ0nih6OmcXjbEliXBWVZBk2dD7r1zJ7acGkfaSynLFYWEIsvRqmwNNOP/QluD1k2D9RbrHFpGVSHvLc5YhIu7o9YpSpUs6wadZrxzt+Jdf87Vg13yIqHIJWlWsHt0nd7wOqu6xq0WrMoF56dT3r13RrVcMVtFuuxuL6NfZDSmwZsGpUEhCVUTCT2JpnGCVdlQNoY8TwjWsmwMIUh88JEz0U78Be8pjeCHf9tzvPTUJb7z9im6JUNdML0IrHkCbKeqoVPsFS3QBVXdkKQp52cV+3sS7yXGeFRQ6/vkooRmTHeH4xH94ZA0zeM0qmtIEo0PAhlUK+EtWa4qaP0ZYz4Oea4ZD3KcC/hW9ScO9UQEXjmPFZJeriikZOnjIuvwBCFkayQiWZU1p/MZKktItEZoSV1WKATSWVAghWLQSxHOErAInxKEwwXNqjStuuN7d/7tn9dZZReEwvbV2AQM+Vt0ILLAvx1C+IoQYgh8WQjx94A/Bvz9EMJ/KIT4d4B/B/jfA78XeLb98wPAf9b+/d0PARJPkWgGmWInl+z3Mn77j/xu3qpq7t+6yWx2zlu33uYjHzsnTTWr5YrUOo6OjvjMJz9Fkgz49q2b/Po//CWkNyD61Ca2hVSq8cKTasXu7g62nGArh80SzhcLlpVlsFtwr6woFwsSISl6ffb29uglmr2DEVleUDYNpm5IswLV20EtGy5fuszJbEXeS+klUbVGpwnLc5idn6JTDTq2oYQP0X+u1ZeTQuKcw5gGbx2ByOdvGoP1fs1r1yKhV0T2mk5zZlPNG2+fEWwgLxIGeU7/VkOe32dZG45PzskHOU1w7IyGZH3J5dxhTQnGYlZVrNFDlEq3zkf3mzSjrA2zVYVzBiWhKg3Gxh2GEKKMd7v728bhVM4LL1zn6Wv7pG1tL8W2lFab2W2lpZ4NuaUrkwLd4wOrqsIJx2iguXv7lMOrI4ypMe0OJ9mg8bQ/B2K6bKwlz1O0VvgA1gEtPTgIyPIoMKq7nby9Bcf9jINBdCuKa9+Bh9DhBiKqIysCO0XCYlHD1ph7CLEkkcHhWjGZ0Jqu5FnGvG6QSqGUwrkGqTTRFNdDUNjgUAGCdyxLg42ysWzn8tvlU/frDX620RJUQq4JWd36+qDjN+NKfA+41/48F0K8AlwD/gDwo+3D/mvgHxGDwB8A/kqIIejzQogdIcSV9nXe9xBAXwsORz12s4Rhqjg6GDMaDnnmB34b//gv/zRXjvYZjofkvSL6yQVBbQNl3VA2npdfeZVQG44uXeazP/Q5vvj5f4I3BodDyoTlckmwjuFwGJH7IGisj2aOUrKsG2y9QBhLoQST+YzaO0zw5HnBu8dn9PKEwXBI3Ri8O8XZQL53CCqlaSakaQrB0VQlzjY0dQk+sLu7w8o6Vqsqros1shxrX1MbmsZRNSa2ckKgaWrSNCVJEwQrnHNYU5GlGZf2d7gyAKU0/dEIjyPYqLyUJpqxLLh8NEArwez4hOX8jMoYgrfI4MA7lEpQUqFRNE2DVAKfZsynK2armlRC8ILVssK1LS1PINU6auOEQGMdIRvw4nOPxw4NrOv5CzVodwN+AErdeSd09FgfoKrrqOA8P6ZIc+7efEiaSuq6xou2vn8PINaNj8cx4thCi5OjztuIuhO7Gadnk/V5dK+zP8hJZaCRDkW7uLQEoYjRAKwPCC94+soOt1+/1/pFXFycvpWsC0pgyuizkPf7zJua2tRIF+c+fDs6D7GF180TeAGLOipTsaYNr9djGyw34F9n5htC13LtLnf771uB7v2OfypMQAjxBPAp4DeAS1sL+z6xXIAYIN7detrt9ncfGARSJXjpsMe4XzAc9dnb6TMaj9BpjiSQZCkPj8/QvT5pnjMYDChThwlRuaXfH9LvD1ilFVevX+fJoyt85de/gHWWIKL7jDGWs7MzLhc5y8UC4wOVsUBgUERDivl0xnyxJMkyjo72SbOMVCUIpWiEp6lrHlQrFssS4QN5r4fOM8xqziCVhOGAyekJy1XJ+WSCJnC4u4NWEhUi4aRTgt/WfRPBI3wg0ylSK7z3JFrHcqGqouCKVoCIgJ1QuBC/9NWyJM803lls07CY1a2RCzG4lCuEDiSJIjSWQEDrzgo70FgDWhEczE6mVKahnwhWZU1dN1GWuzIgAqmSCO8QQrEoLcODQ5557CqJcrEjQRygCsETnIsc+5jRbgFXm3ZWBEe7qyDbYAAIyJKUItH0dwZ4C7XRrGbTrdHaiAl0R5f2Jjoh0Yo01bhuCm+dEkf+wvl0wWyxXLcnu+fuDwu8s8QUXK1t0ja03khMk1Jx49IO6Vv3sZ51cAshslcBgm95CalG9lJEGR2Wq1VF6h2oaEm2VhpqFY06X4HK0PpJXAx07kJL0iP9VmYAFwJG/NSxXFPyt1YOxO9FiAHwN4B/K4Qwu0iSCEF07I/f/Ov9SeBPAhSJ4uqVA/r9PKauaVt/V5bbv/GPuXT9cW6/+WZs8dSWarli5eNNMOgPmOQzJtMp1jccv/0Ozz/2BI0A5V20hfaxJlpWJVJIkqxACUm/12M+OaOXKHTwZFnG/bNztLE8fmUPjcF7h2scVeWoXWQV7vRydvb2KQYDrGlY1RXBWYZFyuGoYFmumM12UNZSSEGwSxLlIpjkifWpD4hIqMdZQ+MaZBJ3xGimGWm4Sii8dCSqtZ5WUZfP1gJhLdY6lnWgKpfR/lwXcYQ6OHBRWrvX61NXC2pb42qHylKE1rgQosuvMZydTqnKBamS1KWjqhqEkhjToJXEB4mWEus8cyO4euNxHru6h7AOLdN1m0vgSURb9qy/7Atf/Oa+YZPWxoW2aWuNhiOKNGPUK1Ao7t455vR0wunp+UZEw1/shYcQePedd3hw7x5PPH6DPC9Is5y6rNpaW5AIyWvfehXjQxwvp1OrtuwOC5wPIBRebDkEBdaydTJEKHI47DHIU85WZi34uRH2iFyH2WRKbS1KavLRiHQ1Z1ZXiChUhkTE8saF1k+glRjzUQDWuU7rYOv6dT935UBHD37EnGdNGtr6bB90/KaCgBAiIQaA/yaE8DfbXz/o0nwhxBXgYfv7O8CNradfb3934Qgh/CXgLwE8dnU//HO/74cxVrCazfB1Q1lXVG7FbH6X+ZnAC0fwgto63n5wihwPSdKM3Z09zs5OmK9KRgdX+Oq3vsm0rkikik7AiaZ20Sq8KSustYx3Ruzu7TE5eYAQijSVCOsY7Yx4rtfD2xqZpK01laIxNVkiMVXN/u4Ow/GQXpHgMdRNiTANzkTQL8FxkEouHQypqgWZ0iTFLiZdcHK6wLWW1F2qKmiFT0IHicp1m8yHADK0lNF2pQiJCCBDpAMnirWFlvcBKTxJkpKkGVpDoiXBGry36CQh6UxdsqjWu5jNmJ6f4YNFCUFZNthAKwQKWko8bY1pA2VQPPbUNS7tjWKQap2Xkrat60O0y+gw+7X5Zpv9XBi4if8QH+bDGqATQjAY9Nkb70QAMs1J+wWvv/kGs8UyZjq2G/zZvJ5EMJ3N+Bt/67/llW9/m49/7GN836c/zWA0pMhTjPNUi4Y3vvMmPoR2utEjpEYGz04vZe1xwUXoMUp+0Sr3BNIEBpnmdGU2IGeXyARASo4fHlNWJXmaorOUnfEOZ7ffJARHQMfF3S10H+cAgw9452nYzDRsn6e48PPFLOCR9RXPTcT7ohvLf7/jN9MdEMBfBl4JIfzHW//0t4E/CvyH7d//3dbv/00hxF8nAoLT74YHAPR6BS+9+AyltZTlClOWeCmpyhXWWq4+mHM2X6KCZ5AsaUxJWhd4qSnrqBkvmob/xe/73fziYMB3vvhPuHo04mxet97wkixVMdVuaq5cvsFbt25iGotUCmNKMi2RoWFvVJDqPkqlBCHJ8hxbLWm8Y2eYU/R6uCAw1ZKsyEkxaOlJdvssFzPMdI4rS7wU7Oztk/T69HfGzOQp6rWbsT8e76pYr7Y22t7b+JW2aPO2bRoi7sQSwWpZ8+D+GWNZA4H5Mirojvf20CpDCEGayLjopQRjcNUS7Qwq0dgkTrjVTcP58YTZbELwkULb1DW0N6JUqm2vSUJo8A4acp566hoHu0OCtQgRW4Cxs6EICHyQGB/HeMUjN/AHgVMXOwQR3Ds7P0MkGq0UZrnga1/6DW7fu7Om5cYs/JGsQsSAOF8s+MJXvso3vvUKP/9Lf5/Lhwc89cQTfPSlj9Dv5xyfnbI2em27cFon9BKBDG2wDVxwDd4su/ieSgSKRK2zhW6wDQFCxYBYm4oEFedI8pRQzqhmU6Q2aOsQaRwYihGn8xGIpVrn+vzo0fEELrBp32eXj1hr9zj3XduEv5lM4HPAvwq8LIT4Wvu7f5e4+H9GCPGvA28Df7j9t/+e2B58g9gi/Mnv9Qbz+Yx/8At/Fy0E37oz5e79FT/2Qx9l/9IOQSt293sMRwWDnYKzd9/APBBU0wN8VYM3LBZT7s/Oefk3voS7d4uBVmQadq4fMF8alNYMhj2QgsYYTo9PWMyXGOPwCLwTpD1FrgWDvEBm0bkmSxJyJWGg8Wia1RKpEoKKnQkfJKPxHnVZIW3J2WLOYJjTO9wlL/pIEQU+HAJXN3ERWocUm0XhgaquqMu6RdGjKo2SGm/r+CXawOxkwltvvsN//7f/AQM5pX85o1ytyBPFYNgnyTShKQkovMzj1JwIWFvjnEUlKUkry22amrvv3sP4mkQHqtpR1dE7r+sWEFx0wfENhAwrcj75kafI0jhP4ZFIGVVxUx1fNxa0fr1/du46se0XTU3VOn2Pl6Bb/I/2s9+5fYff+MIX2M9T/tGvfYE7kyUEGwdstnUiN/lxDF5hQyCqTMP9e/d5eHzMV195lb/1d/4OVy5f4vjslOAdQcQWoXOevd2CIpFbaHwn99UqIrUdCSGiZbyWkQwmWG5j9+vuBgTKsqTxhvL+23zxW6/yi7/yawzGKb/3B5/h7P4DxsPe2hIv/uVjC9YLbGeF/T6koEcX/fbsQMe89C1jyLddC/lbwQRCCL/KBzcYfuf7PD4Af+Z7ve72MZ0u+et/+ysc7fXYubZLviP5u7/6JWoBu+MBvd6QXCd8+vnrHOwdcfOt19jfP6Oe1xi/A86R5Sm3vvVVhoOUK5d3efmtd3jm4AAvM65fu8bk5CFFmnK2WDJd1mAdWZ5hlpbaOs5njseu5hSjMcE07O4MGI2HDPI+uweXODk/4f69B9TzKakSOKMQUmGaBuUavDEc7O6SpDlJ3pJJ6gaJRBrL0Shnb2fAw0WF0pEtKFTMAmxjCNYjRUDImEyXq4az4znf+c4dvvyll7n59new1TGP7cO1o2tIPHmvT7DRqkxohddJ/FJVgrUO3xi8c2idYZ2JrkSV4eH9B0hRk7qa+crSuLAeVqEFz4SMDsrVUtDf3eGFG0cUmcBYHwOACDjnSROF95YiSShXNbNphTEBZ028sbf72mwW7Roc/YAdzTnLL/3yP0YE0Q6/xOdtLD66G659buTw4kTHM5XrjCG05RZK8uDBSRz0Iw7oBAHBeg73+tGLgM24ese0i4ahnTpPBF2FlGTtNGm3OmKJ3vFAAvPzCb/wd3+eW2++wel8gSNgg+Pu2/cYZ7rNuNpJQB9Lqa6L2kEq20ESNmpb68GrLbLS5k8XP9py53sQhj4UjEEf4JMffZwf+dGPcnD0OJPa8M1v3ebByQk379/lnbt36QvJ+e27PPf8dcajXaypENJiViUoSX/Qx/qa8dFl8J6nRXShvX51j+AtWiekgxxTOqpWzts1BqwFBEmeUAz6XLt+yN7BAbapaGYTbCUoF0uEFRzuHyAODphMzyFZInxD0d8DqVlMZlTzSXQlNoZytcStStIiJ+kV7GaCH/3ks9y8conjh2eUVRWFJIXEC8sXfv3r3L09pbGe0+mUu+++y+ThXayZcPVSzscfH3LQvwQq1qzWejJfEHxc6MYYkn4PV9f41TL6BXpHliaELEN5wcnpGScP7qNFg2sqZsuK2kbQVLUoutBiDTaVNfQOLvHC09fQIsqiuxCdmIILZElKwJEmCiUlD07OqDx43ync+HU3hI7bFzpSi2xba52e5Gb6rfvb2otafpv7ZTNff6FvDlu/79LzzW4aPOsyIgYkWjNZeOJwp03/N5lKzGVcpAUHoplsiFRj3SpTd6267jW75wcCTdPwla9/YyOgEgSLsuGdueV3XN3HlHUEA20UpA0hul3ZYLFCtSGsJQWpdmRai1Y1ewMYbl+37UwhhBj8uozmg44PRRBAKhbGMyszwvmSZjXj+eePONiVkGq+uXqD2bJhsfTM3jjlpcuB3WGBNx7jQaLpF318HdgZDSlGIyYh8Oa336RQKaO9Pj7X9NKUwaBPZT3LaoFstf6vHx7y0rOPcXk3Zzzaoa5jWjbcu0bW7zEYjbg22CFJE4aDHh7J+WTGg3t3eHjnHqGp2HnsBovFHqdnExbHD8kGfdRoSJqkzObnzE5PaBrDYSp5/PkjwCFUTuMBlWNOvsrd1TfJ84JBrvjYYym9Zw7I0ktgPdZFAQrvYq2qNNSrJeV8QgiBJE3xjaNerTBVjQwWdApCMj+fsawbVpMJWaip6obFooIg0aK74QMEiQhxEm5pJDceu8Zjl3YQQmCca/GL2G5NtAIiuCaB6WyBsQKpJUpsDbV0i1AAW2anHZs2tCnwhRFYsf6/tcEoW2WA6CC7LTRcykiV7eYRwmaFxB66aJWNiItRSolo6+9BkbI/SIF4TnHxqXbHj07HoksJuoAQYCdPiU2x+PqxFInhZTMZ6beuRXze+bwm1ZLG2fZcNucmWzl06+NAkQwxC+gYf9vu0hH0uyjJB6x5BN012jzv/Y8PRxAQglvnS/j8V/AIbly9xs7ljKNLL5BN77CavQrecjDIOBoo9sYpOwcjZnenjIYDqroBa5l7y8OTCU/v7kLjuPHE4wgXwCmigEPGjeuP4VEMhgOa1ZxMCZ66cci1y/usVjWDoiDNYp2dF2OMc7hyRb1YsMJhFpIiLxgqATsFh3sfjSlys6Suay7faHjrtW/SLzRJmvDw9j1Ob79NNT9Fy0DpBKbZp9fvc7AXNfSLokdvMKIYFNFog1gXoqLVmFeSIDTBWIKUGNvQrErmZ8e4akle9HBA08QR2eA9LknI+kPu3b3NdDKB4EldxaqsqeooCwYQTKyzERKrAtYLnEh47pnHONwbghJ4E2cnpJQ0dY2Sat3B0FKyWKwwTqATzZXLQ47vz1k32IMHLtar0KW1olU73tS9m7bW5vZYp+fdf9N1V973ZmpLEL9eANuv3zHq4uIRqCRh0EspUjbPa1d5XEytPmLoCDmxly+B8SBFC2h8aEG4Lii1hc/2wtz6DEmSRks9HzUrY2vQdxgw0bdVRMC4s47vzsWzfv0L1+zC+2wTjN77WR49PhxBIHj2m4rrc81ykPLqa7f4katPs390g995/TE+8olnufXVz7N8cIfnbhyyvzfg+MEp80nKYy9eoiwbZtMzrl+5RqED1gmuX9uDKnrS2zShvnUXGSpOb73K/pWrPLmnkbt79PYugfCcTWfsjQuyXkaCINcprpkTrGU+WyCLHt5YZpMlWTrALGeQx9bS9M5tGu/xSY41NcNhn9V8yWtf+zqTt99gb5Qw3k8JFs6mhrPTE8aXrnNSg1vVjK0mLU/RZ5o0SSiKATKJIhaJVnihCAZcMAgbxSeraokpV+h+gUjyWDuqaDPmnMUZx+03v8N8tcB5Q6oCx5MF3vuoe2AbQLYDLyLqA3pNUAWf+ujT9BKFEB5jIrCnBFGaSyt0OzMgpWQxX+BsoGpqPvn0Y+Racs+eEFrjDN8aZ4gQd7nNEd9XKdHqR8hYF4q4F4u2bRgtwgJ41qo7dDuc3ISGjjl3YQHI7YxgE0y2+fSJFhwMc4okpt9xFkDQtddEqxQUpw3FOtPwPtAfZvS1om582xaMZUjH3Fvf3mGzWEMALT0gaWwAHbC4qAORpmSJxtmyDboBL1TLLYk7vt8KJutYsMUfWmdI7TVuT/27Hh+KIKCkoH95F5VnTMqGmbRMrGe0mzOflkxeeZkrqef6D3yMRTnntbcmqOwxXvrtP8J8cU4vL0jFDqM84WCUEuoFIxOwKsE2jlwmfOz5ZwnOk6YJQSqcTzBSUi2W7IxTZNGnXnoOL41BKRoX00KZJuzujUj6e4Sg8b5mcnrKEklYliyXc3R/RL+IrcNytkCYmoenDzGnb7M/UugsQXrP0tTMK8/OlSepqtiWGw77NE3DfGWRQtPLU2arFTrLovaciAIlvrE01mHazmGiJNlgROMMLgikTkBqCIHFbM752Yy6WjDuaRa1ZTFtEALS1nzFBNGCTwLnYdU4di5d5qNPXiHPEvAe43x7U0bRkk4XQEtwpmG5qLDOY2zgo88+xk4/i6PQqgXYRIezb5CzjkGwpte2QJaUHQc+liPx6scauVsAG9w+LoDtW3yDHXTzvfHfZLdTrtOGTT7h8ThruDTukUSSQwsYbpStAm6NY7SDBOtdf9jPeWx/xNm981hadEh/2HQWulImHrFDolXXDYkFiPOQp3ksrUTsVgjJRpm4qyPaTySEiOaoIZ6DF5uSoLs22wzC70YUgg9JEAhCMGkavnzvjDkpn/ltn+OHf/sPYu6+SWpmfOLpMZUpeOvNB3zja2/ROM2f+DM/gc9S5scL9nuabDxGekO5mOFMFN+IsyYRhdchwzQ1i/MzpstV9KoLCpWlDLTiyaeeZPfSDov5nJ3dQ1wicQ00sxmChqIYk/R6vPLN1zg7vs9od0yapxz2L0X6sE4IWlPvlJyenDB7eJsijYSlal6xqjynC4PNd5FWUM9WJFqR6Cjj5YVEqgAiIJMkfqEhUJcrjLVUVU2aZxhnkAFcSFgaT1NVDIewu7NHaeacPzjhZD7Fr+bkyjMvSxar1glJRCPOrokWWpBraSWH167x0aeutfJtMgpathp2EFBpEmm3KgqClqsVjYXlyvHSC1c53O2Bj6PIXTqvhNi6KSPFu2tVWWPaejku/IiAdws8psI6aXEHpTY1LjLKgoWL5KPtDgTtT+sduK3nhZTr+l7KaDybioQnj3po4rBPaD/8GpRjK/lu6d1KbvCKxy+Nefn+pGUwbwZ5uj+hxRXaD0kQnl6exmzNeVQaA1eiExCOIAS1cyA24Od2+r+GV2Q7GXghy9js+ZvJxi7gfsiFRlWAZAmDwwNeurLP9z05IDn/JjJpeDiZ8OrLb/LOrWOmywatU559+knefu3raB1QIZAYh208takxdYUIUSnYGoFOc4JOOL//kPl8TtXEHVcWBY1zuPMFq0QR3lVk9x8wHA4YjM5Ih2PSNKNINE0549atr1BVJXmu2dkfo3VCplOyPCdLMrRWSK0Z7ucMRkPevP44t756n/N5oAkalQ1Q+zmZSnCmWYt6GqCXpCilsS5OPO7u7nPzzVvgLdY2dJvJsoq8gTxNyLQG5djb6VOMhiyqJfffuctyeob3DZkylMbQeInWsp2L79JIgdQa2zhKJ3nppWe5fDAi4JFCE4yJTjdtaql1tFaTEkxVU9Ul1sGyDHzso49z/WAYx5K7ets4cqnZ3x1TGhfl1YzDtTLxwGY+rr151xNvayAr2pn70AUB3yLkF+cPto9tkDCEDWi2Pmch44iwiFqGNgQ+8swllJBMlwGpXOw8iLiDKxEXiNJhvehakB4bIjFqZ5ihAC9F3HQukHkCQiiUTNpdO+Yfo36Cc47KOAYFLa/fr8uOysdgGD9HqwrUnmqcztw0Wrvz7YKiJ6zPe/v40GMCw1GPP/RH/mdcPhyTpCnl7Jy3X3+D27cfcuvdh1Qrg3cerTJ6vQG7OwOaakoTAl7EC2rqJVolOBOjudKaYpCQZRmmXHF6dspiMkenGSJNcZMGZx1JliGk5N23b5MXGYNB1JTr9wp29/YpejnWlqQpXLq0i07zaFGmdUxjhWgNLQKDokDKyBDbvfwEX6m+gih6EWzUCo/G49G6IMlyQoA0yZEofJAkacHZ2YyT0zm23TWlVDGjaBqcDTg8PkujXr1Q9MZ7ONNw/9bbzM/PSKQlEYbKGByQJB5Xh0jSEdGuGyGoG4tRA1585jGuHY3W0uDG2igQQrzFtNYtpwFc1VBXNR7NvCx59pkbXN4bRnajd9HmDdYAVyIFIWk7Ki46TTvvYb7gYHcHQVyoMTgEnLNtU7ENDs5HJ5+2K2KMwwe7bsddbIddbDGK1s23s7LrzE6E6FqgnlRpnrs8ZJjpmK0I8C7umsY6ai+oQ0C0Emed4lV8jwjZVSYWKFpnrVpyve7tI9Z0wFa5KaCBfhopw0FIEiWiXmbLz1CyZVx250fsBnWU6hYxabOrDehK+1gZBGGrO9NNrH7oM4EiS9jLEl798iscPzhlWVVUq9hHN65FZZ1CyoSnn34GkSZUNtAf7IAI+CYSYiSBup4zGuax/+8b6sazWlUsViWLZYWYr6i9o26iRNZjl6/iC0cqQTnDcjaNqai2CNmj6Bf0+ntIJKmWKJ2SZHHqEB8JPkoKrI3S3Gmag3M8+dwLhHyHcjpFCoOTFp0Ist6QqjEgHHmek/YGZL0+Okmoq5LMw3xyhggBV0eRTreKakneWzANIk/Qqebw0mVuv/4G9x/eA2fop46mWlG5uApTCcHG3SdI4gLykqbxVGrIb/vEsxSJxgePIrb+BAKlNdZaUpngRWw/LpcTyjJaer/14CGf+fRLPH44BELLvNMgXGwzrstgixIaXzfg41CTa2/GTCu01rG0cXH02AcPOsqf63ZYytmAUCrucCKSlZqmpmkMzjkSJWBJlArz2+3B+D5rtF6AlhoX2m6EDwyHOXnCFgIfZeyVFKS6DSDEqUEfopZjkBGHk8GhCZRVlBFLnQelUCq54FXog1t3SJx3ZFrR0zEoeCFIEkUiPVpGRSkIUQ9RKGRbroG4AAgK0YnSsA4GogNUJWvthE7ZGdaQwvseH4ogMJsu+OW/96tYYxEiULf1UggSJRQ2BKROePqFFxjt70f5LCVwtgKVk/UHhKrBeYN3NdOT6IWnlKCqHY13ZL0es0VJvazjc1dLvNB85603eOGZZwmJpOgX7B7s08skR5eOGI3HpFmKEAIt4whJdD1yba23xfxrd9kgwBnH5b0dPvnDP8SXf+EXkN6he/tkxZhs0CdJC4pUY8t5/AKdQUuYTM+olkvK+ax1zq3JW2Wa6WKBd55MJ4x39xgORrzxrVc4eXgXKQyptNRlQ2kiPUC1AJuQGkHAG48ImqWBwaVLfPa5J5CteQWOKCDS1vDOu1ayTJApyXJ2SlU2NNZzf1LywnNP8MThqN2z/ZYDbsC3foyJFBwMBpSVjyOx0tOgyVtloASB8h5FQAUfwTQp8R6k1HEx4RHBokJABg9CkmtF0t/BI6IuvwhwNo3eB41ZA44d9iDa3VjKeD7YuNtLpRj3eiTtZKdU7bm4rlyI4CQSgnAEGuI0t8SHTVdid6dHTylqb/DtyDGtvdo2SUcAUkmuHQ0Y5RIFKByJSlHr+j4gfcDb+Pm8AG9si22o9ny2M592p293/g7J6FyLugASgnvfEqE7PhRBgBAQwUDLm5dhM7UVR1QFl65eYWd3J9J0E01eFKQ6ozEGNznBNw0nZ1MqV9Mf9KJIZWUhOBIB5+czlmfneBPdf1yacT5ZMCgKBrsD+sOCS/u77O3t0hv2yfKCLC8ixReNd1FrLtVRONM6F2fHRWTmRcvzQFWuYh2dKP75H/0s5cqymkzp7ezQG+1GGq+KcwhzZ6iXc2xVM7NRYspaE28Ib3HOsFzW1GXc14KT7FzbB6l44zuvsppPyLRHC0dZ1tSNRWlNywAgmqcEgnME4ZlUmitPPckLj18CE1qarKTxVQvGRbclqRSJlCjtqaZTSgPGB7702h0+9tLjPHftAOc9WsRvKe6YLUddtCMw3rMsV1gXQS+NJJObm3i/lxGsRQlP0BrXsvlcu+P7ligjtWqhCdki5Z5goviK81EzECBrvQa7dNw5t941lZJx5w3uwgLJtcB5E9NtuxHoBNcObMrYIvQeb31sYbSyiUJEXGO3pxgWKVXlsbZGtw5Lvt2pOxKTkBKJZNzLyLQmiKg+JVXUQBRyg1UY3y5wH+KsSeu9Sfu+2wGgoznLrnSgK4dEy8T87ngAfFiCAKCVQAiNcZ5ESZAB23iCDVy9do29wwN8XZElKcaUNL7GSU1TV9y//xDvA4PxgIHMwRmytI8qeizLGbfffJfp5BwhBE3jOZsvqVVGkRV86vte5PkXHme8M6ZXdAs/JcuyNXEk1QKRZutZbwSRoec93proTaejyq11NopS4hnlOX/4D/5z/MrnX+b8eIauKqwpWVUlOItbzqjnC7SW6ERTLVd40yBCdFvSSuOsxTpP0e/z9LM3mJ7OuXPzLUQwjPsFZjllsahxPi4EZx3CQ1YUNFWNtY7GKiaV5qMfe4Ebh7uRoKMCjfV418SUXQQaY0iShFRLtPTMFisqH1iVJZ//5h3eOl7yg5/KYN1fAIJE4rE+mrPIICDImJoqgXEmjk8jwHpqYwA4WSxpnEH6QK4TEiFi21PrOJMBoCRObqTKo1lInFvoJRLvZKvNHwVU7NpMZIs7QFTvkTaKhQBR4ksKbj044XRyyihJGPcSRoVm0CvoF5p+kZBnOoKDnRNVS8UWSq6FRu6eLLGqYNiH2dzinNvi+kdB2dAu1ERrJguLcdGzUUqFaj+vaAOkc57KxetZN82aTKW1bs/Jt5ThDQAYiAFMynXfh647sj1f8IFr77e+fP+HOAJKReMLqVV0A64coLh89TKXr1zHuoBOU7KiRxo8tqlYLWfMqzh5vXcwoshSkLqtkQLlcsndm7eZTs5RUlDVDbMaykZx44kjfvv3f4TnX3icojeIRI0sa+W8JEnLaBNKkehW/RbwrhV78AFnLcG61tWmQhKDQ1VXGFtTruYgFIfjjPmpYTE9YTE7xTSG8/sPaCpDMdqNAKGW2OAJwaEzjbGWRGRIFEoLnrhxmeVkymx2hgoGJQyrWUW1WhFEVMoNrh3hlRLjLCF4agON6vOZzzzFpd0B1tiYFpt2LFVF6azIodBkiUJ6y2K+orGO1azm17/1Lt+8e06RZZjgENKvCbbx22OdenofGXUO4mcgtqnwHpREtbecCx6tExpnqWTAiNgSpVX3bWynIARaSxKloxxakhLa70CHTVNuDTqy1S5sOQgBj3ENSqjWJi2+7qoyTBaGEGILVRCB3p5WDIuEQZ5SZIrxIKeXSHpZQpYoBrkmyxSpVrx6bwFJjilnaKlonN8KBF37Ll4lIQSr2sa5DudQtDZ6QIiSyHgLxoU4p9G5OrWZDbB26g6twlIHCMbzBsTGwGSz7rvA8P7HhyIIRPKDpnEe76BeeYbDIw6u3GBcFIBAZop+kSKaGktgOp1SrpZYa8mkRjaGbNjH+UBjPO/eecD5gzvgYvupXHn6B0e44zl/9E/+Kzz79DXGPYUXglRGP/tMeVQWbzLZ1qdCSpCaRIEzFULG2fNokx4168rFLCoQ1RV5r8AJSdl4jk/OCE2FxPP4lYLlWFKWOc55JpePmFSWx5/7KLPzBQ/fuU9PNczvvwvOMuoNQSqcb9C2ZHpyl9l8QS8XFMpxejbDhkCepTgbU/KgBFomNKZGC8XSBZpkyGc++Rz9LMc2liAE3sZloLVeA0xposnThGAsi6WhCTBfLvjFr93i9vGShOjsrD04F4VEZfAtci1a+quNba72dyFIRPB449oOf1ibYBhnCL5l4hG1drSUECTWe0yIPXMIa9kt6T2isSgpmdVNTLnVuvh5D4W2oymtQbpuR1YaEXOEWG74Tuk4pv6l9VTzioeLikDkLCjReV9CKmOJk2lYkSIUWGPbRRvtzyODU0E7IOW8wzeOPGnl5QIEHQjKY11b+giLcYaVMZgmCuHE1uyGMOWcX3coupmIbU2vNQIhWLMXv9fxoQgCIYD1CWkxICnGXBrsUPT6eGtxiUL7QKoDk9NjqsWC+WKO6ubeXZwKnE5OUffukvd6LCvLycNjBlnCykU2XgOMUPxb/7v/DYNUUs2nqBXsXX2MNNekCoLwsZUmFTLRcdH42KZSWiNk9CLwzsU+uhAEIUizjKapqJqGqlqhlSRJc4oiofSGZmXRMjDqp/SyBCEVe+MagSQvPNml6ywfP+De7Qc8UBIlA3mesZycszx/gHcVgcAw09jVOSeNAVSrnRjHlWlpps4aQDArFYODx/jsc9dQbc9c6QTXSmnBZmglTROyNMWWc+bLFS5ITo5n/PLLb3P7dIlWklE/o5enrXqRbIdwaG/6GEh8CFEDL0SfvUyBRsX+vojjOt0gzOF4SMDTGIvxISLv3qNk0jIIW5+AttD1LXnK42lMtBCzztNLR+095B/JAETbJmxfQETarwgBJTy7ox5FNsL7QNNYjHVUJr6mD/FPN4npXcCEQGNi+3QlBIIGD6SpQ+s4Nq2UIircx/HqdWeibbn6EJjMV7x9UvLEKAMnIw8hiawMb6GqGqyLA2Ox4pD4rWnKruW3aQ3SnnM8zQvKTVssyd+SstD/FIdKcp76+G9D9wYkSuOMo2kanK0J5QKD4PT+OZMH9xkXOXuDnCTTsffsfNx5XYNxtOqtnuF4xGK+5GxSkeZ9nrlxiU99//dT33+D1eyYXubQO4fMM41ygWBXXH3+JdLeAFfXMVrLuE9FGqdGiQwvJME2EQuoqy0ENuAEUXOwNMAcpSRFmiOR1KZGWE+a5+ANWiUIqQk0TE/exRg4fXiXfpZy/ZlnWC2nHL/7JkUKu5ePmB/fZXo2w3hFmqW4poo1eKKjPn2I5+6C4OHE8sxzT/LM4wdooaiNW8+tO9venMGjVXTrzRKNKZfMFjUIzclkxi9+5S0ezpaR0j3ISNMUh8euZ97D2kilo9tuWH0tauB9y+6TKBVprq5t3Uk83ltyGVAE0m7BCkjRZMrj0bFO9m2b0Hoa77AIfGv9pltgMEixbqVvhni6RRHWC0QQ6OU5g0yTSNBJgkt1XPCBmJITDVZdiAxLay2lbaiMJdiAdRFtl8HT1CsEvYjm+1Y7UEiCUJEWLOOQlPe+nZ1QfOmV29waJGRJxslZxqifMOznDLKUsvF4GyjSLJ6LErHrsUWQijyEDTW5Qyq7rOf92IO/JVGR/ymONM0Y9ncJtGmfAmVXuLpmVTWcnB5TLZfsjzJ6/SQq9giJ0IHaNDgX6GU5jfB4EZB59C9YVRXDnTHXrl3j0qjHpWuXufOlX2JvoJFe48tjynsr1PgqzfHb7B3tUwxGkGXgGvAyzo8nSRQrTRTOmDZFVEglIhrtBUWWMehpZiJQ1/HmdM7SmIY0yykGfXQINHbFau5BCrwLCAVJmiGl47Fnn+H0zgNcOeXmN79KuZqQ9xVmtuLsfBY17bXA2hqVaHSITaHax3QbmbEKCZ/89JPcuLwTzTeMRet4XY2LSvYy0EquabQUVNWS+XxJQPDug3N++as3uT8tSbVkNCjIs3Tdpw5BRIUd2Y2qtuq6OIQIa1syIaKsm2wxChdiGdFR+2OKH2tXgkS1mQm4mHKLmO5KiP5gImbtDoUP0VqsMY60FVKJhkiR1LNe+G2HJMqQK3wIpKlGSw0hDk3Z1oo+lisCF1yc2VDgiA7LKs9wZBjv4+cMnsYHGuOorKcxBlPbOP8U3BoIjGDiOjLF4BAck1XDWVmhWfDqfYUk4mFFqhnmOUYpnI+26DJEibVuV8+yFFpWoPftmHT7fmumFt1bdlOR21nBe48PRRAIgDM1ddMQhGM1n9A0jun0nHJZ4oKlyBOSPMW5QGWqyDuXitWqJJGKJE1QISr4eiGwzpFJQX+QMx4ViEyzWMyol1NOS8v1a0do1UPKhmZyn1VVcef1LzM+uEqxc4CpNiKTOkmpFkswDdY7jLGUi0VLPJE4V7NcWawxJElKnuU0zSoy4KzEB8u46DE7O8M0Dei4i8kgSHWGTCWLEvKmpJ+s+OY/+RJNMBzsFfjVGQ+Ol6S5pioNwUGSZRCi14BzoFSKtYGpSfjox5/n8n4eBTRctOe2JoKECBDtTZHrrG1Vzpkto5b/nQdn/P0vvsnZsiFRkvGwT5FF4YyOaBesbxdbZCFKBA4fCT8izh0oGXfB2BTr0nS5lcqCt7Gd6HzceWkFPWQLhAmxaXd5vwU9+vg85T2pFNR1GV+vzUK23Xu3NQuFjCO8UkUKtBCdQKtoPQojYxAVJd9TGbsQgQgWOmNJRacHGZF4ncSSjCxhJUsmyybeMyKiEVJ0zL542tZavHeoJLZgRQtGOueovccYj088mWwXtdKRJen9OhMoyzpugsRg64m7fAx0G1JQRyDqyrVudPz9jg9FEPDesZyfU7uGyXTOyYMJeEeaK6qmYdhLcd5QlQ6dxLSwqiu8D6RpjlCS5WIeRTyDxAKnywX3jycc7O4gfQVe8MqXvog8fsCVwx7N7JThKMP7PkIXHD7zPDYY3nnzdS4dnrH7xHPY6RRb1/RUSugPqMsK1zRxcQkRraadp17UJDoj7/UIBExZYa3HecFwvENvOGY2m6DSDJmmcUKvrhGJQOQZy2Xg5suvUi1ucz6ZYF3FMLPU5zOaxuAJiKbVqheSFImTHq8it/x0bpDDQz778SfYGffwLUItZMCYOAUnUNG1WIk4DpxqysWcZW3wMvDWu6f8o6+9w3RRoRMdZd203hqgC0jfBhEBQqo27W0DhIpkFdXW4PH/W119sREv7XZGE+djaZXG14Kdvq2fJRLhQgTUiJN5tGi/aMk/1lhoWRE+bFFtt3a9iCtE0pl3NrIjM72WRwuA67IOIUjWwifRDShSrVm3/bZdfSSBVILAI7KUxSoa1EL3eIlUEufrVkIsegvsDIeM8xwXQpuFtN2AEP0WpIDFKqo+x3PayItJFenPa90FF9mqGx6BIM9zjIlOVlpr0jT9ZyAT8J7SNMyrFVVt6e2MKJdLlmUDLmCsIdMCGzxmZeLElQeBxDYOLyOGYG0kj8xrw/G0pj8as7c3ZDE9palL+u6M/b0+40KRCEc9PWNwNMRkBen4gJO3b3Ln7Db/8B99jX/px1MOHrvBqikpTYXwAdPE1l9T1TRNGXX7rEclKf2iiO2uqkbqjJ3+mOFggFJwenxMaGqkCJiqJggo+j2SbMhk3nD77Xc5O3mTplrgqennjmZZ0TQN3gd0noD1ZCFBakEQHtsoRALTpWVweJ1PvfQYWkRdQxNa8wzjolS4jIE2kxKVCJJEs5zOWDUG1zhefechv/ry2yxWDXmWMhr3KNI0zvf7DiTzsVsRiLRWDS0U0S5O0ZJWohIvOJAC4UN0MKaTHFt/69GFOGJ2a20+2S0y0Q4VKYEKERfwrSmIdVERKmZTcetTnadDW/+ua2OIc/nO4IRGBU+eiOiVKOLodUzd25ZeCBvKP2JNAY5CSpFF2PERohWbiHiEFhRFSr0oN9TetpffKRjRUs938pxUuBgwVQQFdR75FziPUorhlT28kNTGs1qV0Q/hHHqZbq/FpvbvsqUukJmWTBVCpFnL7bLkfY4PRxAgpjHaebA19bJhvqoISpHmBdPVnHGr55ZkCVYqjJBY4xAt8GKtQIgMlGZeGoa9nP3EossTeqpikAmOxn2SVGOcZboI9EUfP5tSnc05fXjMydmSnStP8f2/73ewUDm7TcWo1+d8ssTWK1wwUbSylXBWUiNUZAkuJtPoWJQP6ff7CDznp8fUVYmxFd5FbnuSZuzuH6GHO9x68x2+8au/ijVTVLD0ipSmLJmfrzCuIUnaNK+Jab1QYBoXywkZuHPqefzpp3jh8cNIGXVd609RrppWc0MQsJEPryBJBNP5gtpGltk3b97lV15+l2VjyPOUg50+Wsd0vqs1A1HjTmvVinRG482uBy8IiCDXmE4IUe9AC0Hju+GluIN3aa0SAoUA1ernhdg28z7esLHca9Nv15YAqlP5id0GLSQudNp7EmMdIijWU3aiFU1t03EfAsM8JU9aHMN7tIyP75h4ou21x3Px6+xDEcuHTgleSgFSx769iEIrvR5M5qv4/sGBUGsF5vgcGPYSEulaJqNCEnCBKOHeXp3GWox3aKkZCEmR6TUpam+QdVhsVMpuVYmt8+3CB+sduIjfiDaQeT7kmQDBs5pPuP/wlNl8iQ+CpnFxlzCKy4/fYDJZUi2mjLwm6aUYCQ7HYDDGBUMqFZPTc1xtuNTz7OuGXNdkuaSf5UilMd6zOC85XUrSRPH8URwEOjudIvKEax/9LKOdXZRbcHrvPkm9w6Wrlxnt9nG2jzE1TdMQ8FjnovS2s4x1GjsIrsGUJbPJBONqnO34BhKVZmS9HsOdQwY7hzy4c49v/savsTi/TaIcaeopZyvqMu6QqdSRICIhzRO8jV6EQmfUteG4znjxpWd57rF9ghM0NlqqCSFiRiRaWnDw0ZZLxV12PltQG0/TOL7yytv8+mv3qIyllyccjIf0krjr2q62bHdppWQrgOEJ+Mifd5HcFOXGZHQ9krLtekT2W9QgDNHDL2wWhPDQ9hiJKUXbkmsXv25/L0IctQ2iFQgRbSngAy4EdAs05mmKsdW6bRbanUW0jwdIJOwMMggBS+yjO29omxJtadI+uW1JCinZFkeVLVNQylaBSIY1Xz/TCtUKwXYuSc7ZddcgzxN2BwWKaGoThVgj2Lgh/URGoAwxgHhi1tNxAdIuYCK6caOonRgRVEC0nYm0VYX+/7T3ZsGWZeld3+9bw977DPfevDlU1tDV1XO31K1Wa2i5QUISCAESDgT4BT8YIkwYP0DYOOwHhhdeeLDD4LAjHDhEQBgQMiEMsghZgEYkNHXT81Rd1TVXZVXldKdzzzl77zX54Vv7ZKrpKkRDd2a4c1Vk1M2bd9h337PX+r7/9x8Uc0kFTo6Ovurjd19sAuMYeO75l0EMwxiUjRcSbduwGSOrV17j27/rW0nuHQTrKUkrBCsRtj2f+uQXuXH7Gks3crGFRy93XJpbGjqCMQzZcXI6cuNoy+1yyMOPPMLlxchqnTlenbIOB3z4D/2n7B1c5uj2i8QhYg1sQuSll6/zyJVLNJ0KeeazlsY35JwYxp4cEqE/53xYc3p6gvEzLhxeIOVYTybDvOvoZktoF8RcuPb0U/zrn/3HnJ/eZL5oaFxks1KTDt9ZxmGkaztK8sScWW+3WCx73ZKTbeRW7/mh7/su9mYd5MyYlIVmnRCDknCsc5DrBtAaPJmT43P6rC3Jb3/xZZ4+hdnhZWR1zKWDBZ3TTSMWbR9E9ISdcghE/bPIRDXgLCDTaUOpfPv6RJWKSIvyLCqvlYnp4p2rmIGCeVq15PrwTC1C5ZDUvn5qO8SIirJTRkrimrPcPDr93b3YTldft9fxv3Ntt3B89jV/+qvOQs61osqVwq6tFqL+Byr8op7+FaScLJ7eYN0Xm4CyKgtDPxKHhLXQNZ69xYxiM4jl2c8/w2OPv42P/NifZJszKRW8eJ767Bd5+J2ZvDnioHW85ZE99r3g84rGwjiMHB2vefnEYBaP8cTliyw6zyYIIVpCdOxfegxjPRC5dPlhWteQksp9cxGOtz02RCQHYhzJKVDCQI6B0GuisIJXKIA5FnzrWC72mc33wDVk47n2wnM8/Ynf4pVnnmLsz1nMDCZv2awzpVis1xNy5jtNXc4jYUx0TcN83nHj9pbYHvC9H3kHi86SS1IX4lxwRoihYgjOVz6AxmWRIkcrNQIZxsivfO5lbqU573r3wxhjOb1xk83pbShBTS7rA+zslLCjrL7JaBOkgqMWa+8O7KgnfVGJtUEZbrb26NYY8o6/orhBSrl+H0PB1hSh+rloanBBR4g75l9KypLMWq7/0ccuUozj1aNzzoegJ+rE36+TBu8sj1+9hEkaG+aN4gKlqOpRXYp048k5U6pox6Clv1SMQPGATIqZhFFpdP3RQ0zcPN9y1t/xPJhGhaVkHrlykWVjMWS8VabqVL1RuRulQAQQjVrT25m0qxCUpVmotuO1yBchG6mS7skRSu/xxCHhfscEBDQDLwmzWcvMqkZ9GLZ4Cm42x5B5y7vew4WDKzy6v6QfAs8+8xxhfczCnfPwI5d5/HKHkUQe14zRstpsee3WhudvJZbLC+y7RDw/4vQ848SyyHPm+xc5fORhjFVll3EaP9Z4j5/NMabgjCeXQL89x5cl67MVQ8jEWDDdgsWVJZDxxrFc7IFvSWFks1pz6/YJ29UpRy+/wMvPP83p2RHGJJbLhKTAMFYkXQpt02iROCbWfU8xjuWyQ4CXXt/Q7j/C933Xu/DWKMaQIqWo8CaGkZJUdFRy0v7fGlLoOVsNFGNYbQd+9bPXOGHO1UeuYFDQ7eDyZUpJbM+OiKLovytS4zsmP0/7O4goXnwd57ED0nJVfKpXnioYXe17pfbzuYp4EgWyZh5SpFK09UHPKAlM2xCnHnrTdACdHEwOP4mqvSdzcTljSJmYsiY9qx0Q3gqH+wtsDnVubna9szLtdGPbuf+UXEeRTjeCog/iZOKpeJBmL0wTSTFC4yyHyxmxbIlFK5y6T9H4htmsxZZIU09tqjxajFRSUU1pKJUBWd9GpFKHSzUdrW2T6HizlII3VhmVKZFK3nk5KiiaKOk+3wRSysy7Ge18BjkRtmc0znJweJkQA2UMGCc8+6mPkoeeZr6HsZajs1ucvP4sOZ7yxNU5s8WSzcltNpuB9cmWV26u2ETP3uE+XWMIY09OyilYXLxIN1vSdAvEOV557hkkB2azlmG9wRmL8ZZ+s6q9osVYfeEfPvQw+xcvYpzGjJ2drzg5ukXrO85na8Zx5Px0xemt19lsVhxff4WzWzcVu/CFxg+EPjGGoqSfCnKNIbIeNA24rVr3mODZm4F3vO2dfOC9j+iDWHvnXLSsznFE3ZQarC3kGGmcYejXbAaN2zpdrfilz7zGtlny8OWHQaq5hoGmadg/vMh2dYItk+jH7jjqlOoBaKrgRe5y7bXTaaYPtDF1sxDBW0s2BamW3IWCr/25qYSinQSo6EZRStHpA9qSuGoDkGs+gY7pdHY+VRhSUMKWSzx80LGNeUcz9t4z857WCqU6NUOh1NbEmNqLT++vEw6pY0KAwpSLkOvsX516hKw/z7RxFU3YfuziHkmEUjkQpWRmTYOUXN2XUgUf0Yqpjh4npyArSqzKqdTxpOyqmuk/lUdbpP6sTvT+xpzJUYHXjGYa5pzu5hD9W+u+2AREhBh67HrAO6HrHM56TB7Viql1Ogpq4aWnP4VtvKKhKXBy4xYX95fcuHGMy8e8cvMWq1VAcsHN97h02NC0Da33Wnq2M3CeXGB7fgah5+yacHLriBQHOmcoOWCs0x7WGaw4xHi8b4DIyY2X6RZ7iFjGYVC5bE6EMTFuB5wFP/OkMRDKwOnRdVKItB5aCSoRJeO81xdQKQxjqNfn8d6SxpHTVeTW0PCBD7yXd73lIS3vUqwz8aIMxtoaGddoT54M3meG/pzNEEgYbp+s+OXPvow9uMpbrj6EJC2xS55GY8JssUCsx4SgGICYHduMio1N6r1UwAlVNlx/iUU0VUhJBCA6TUhVtKRlPjuTTlcb/pSzegLUknqXtpNzPcXyXSe1Mi1F9CTGGrwxpBARq14P3kXmOWklUQM5pQQkld3XNsZWR+EJv1A0X3b70USDnmi6dxl/1odJH8RaueSqS1BiAR5oUCFVLtq7uxSmYgYRdhwB2bVRZeeNSEEfZpQOPe3G6iVYtRlOjWyMd8TKBJ3aMmutdlv5TsUg/yG0YRF5HPj7wFW9PH68lPK/ishfA/4r4Gb90L9SSvm5+jl/Gfiz6Fb635RS/uWbfQ9rYH/RYqozzYX9fVzrGDdbJEa6wwV7vqOdd8RxIBdBojCOPcUKn3vuVVrfsH9xSbt/SNNsmXUq1DHeMGtm+K6lbWcqU46BNGyIFVgJr79KaQzOBM5OzhjHkfl8gfcNY4wace4cGfCNo2lavHHQemIYsMUy9gMUi59b5osD5hcf4qUnv8Dp8U2cwN5+S2EgbDQdKGZDKElP7DFRYmaxaMklsz7r6UPmZprzg7/nA1ze39PxVBjqeMzgGwVRY4wYKThvkBTwvrBZr1ltE6U4To/P+BeffJkLj76FK5cuq8FpyWz7Xplm3tI2Df12y8OPvpXTW68RhzWU6rNfdM6dkuIOOhTQUt4YIUmt1HXOVftafRhCiL+DQeecvRPJJZUEA1QtLVTqL6UyhaUay0ymGmIpRnkArrFM5hrW+9qOFKwoQk5RliD1YctkJFf341J0jFYEseqhWKToNL+OREsBX6SagFYFZEE3tDJ5CHKnhZgYgtTdrp7apr7AiwFXXZNzbSvqfkiK9Z4YtIUomvgkxtI0HlLSESWqNlRQtlBSVuGV/rjqBu0s4hwlVLfGyjv4DwUGI/Dfl1I+KSJ7wCdE5Bfqv/0vpZT/+e4PFpFvBf4U8H7gUeAXReQ9RUXbX3Xl6g2XrdGwz5QpvaLcyVq2qy0ymxzYVJByvl0Tx5HlYs573rHQcV0cNZvPOUiGprE07RyyYRxgdX5K41WA0y4W5FJY7i3pFktKGjk9us1pLtjFAr88II9R1YIlkyrQgjhVvpFpspZwfYxY41geLjG+5ejmEbdu3OLk+Ba2MRzO54hNnB9va3/d4HImkzUe3Vj8zBFTYRMGrp8MXLj6KD/8be9hb97pS7BEjFi1JjdoNREiTpT8Y6qrz9nZmr4fsdbw0o2b/Osv3GTx6FvYv3CITKnIgLUOt8sCg9XZiocfeYxSEjevPYe3ovHYde5vrexYcCIWjNENoPb2pZ5QIhnDFK4qpJgrN346iaZTzdYhmTLbBMBaPb2N7KzLnXO7h80YIZbJy1/3jlTJPepjoAN0Y4yanDKd6lBi3p3su6Re67B1IjLRhykTzsCu9RKrD7eadlQXYBSYCyEpF6Ogpb4x5Lr52Nr7p1I79IlEIXo/jFQdh0z1gP5QKeY7G1+l/yKqgBRRqXWpfIaJEq0OV3lHGMIZ8piwzuHcZB3/NW4CpZTXgNfq2ysReRJ47E0+5ceAf1RKGYDnReQZ4HuA33qjTzDGYBpH6nsFbIoCQTFnQs5curDEO3VzMRnCMOBTYe+Ckn9uHZ/rjRELKCuu8S2ubckinJ2vCSXTLeZcuLBP5xu6WcPy4ABrLCmM9Odbrj50mb29A5IYYo7025Hh3NB0Xhlq3mBso1z8Ko8lCW3TsFyqwvD0+JST268hAotG2JsL43hShTKJYRjp+4hrDM54uq4lDAMxDGyT4eZx4uoT7+a7vv3t2Gn/LwNQT62ciEPQPtAYvLM4J0DgfLWuJa7l2Zdv8K+evM7lt76bC3tLnLeqYsuZFBOzpt2JbfrNlhAi1hkWe3scW0/J4y6cxDk99aQ+RHXuBJPVdT3pJ2RfT1O1CDdJKcWUyVm4koWsqPcgpfoG1PJ7At/QB0qoppopkbPKl6nGJSXVTxNhGpwV6oMr+vmx2pzrs6d8BVPVg9baSueNVXJsEFP766LTA6zBNU6NX3fsv6yg4DSDK7WryGVX7kvdAEpO+v/pYyjVJwCEGsYKlRNimPImfGUSMo1RyyTDvlPN5JIxzuymC67RpKhcdOMxbtJJlDcbDvz7YQIi8jbgO4CPAt8L/AUR+dPAx9Fq4RjdIH77rk97hTffNOqLAlyjRpJZBFOEznls27JcdJSc6bc93XyOLAx7tmHcjmzXPYt5ByYQjNe6CEOsQEq/GvBdw+X9Bc5Y9mYz5ntLfNMw6culZGwzB2PZ3ztkfb4inQx0bYMFljPPkAum6djbv0SxjhsvP8+w6bny2Ds4uPo4Ry8/xa2Xn2WzXmFN4dJS/fq264ApiZATIegvo2sd4i02ZYbtSM6JfoTX1/DBD32Idz9xERPVTy+SiUmDQlMKOjJLucpoDW1jKSlydrZhW8v0J198jV976ohHnng3B/v7ahdeMmUMxBBAYH/e4o3l7PSUo9MTTOvZbLc8/+wzMIadGlAPmWqciZJfUlEwyk6EGgSMRXKs0wSDWFFvAalRZPXhn8Z8KSfIZUdv1RFk2T0UYlQdWEqqGQC+VoJFLdTkjtX21LJA3smb5a4HEFupvbsqRLBOxxkl52rfrgi9EaO8BiNYV3UJMe0e9Fhqi4PUTWgakVYhj9GN6O7Rn+xyAnTfpMhE69H2qo7/BAXxJst3Pel1k5Oa66jO0NRrQHkCdYSZq2W7lAo4Ws1tSDGS4htbjr8xWvAVS0SWwD8B/mIp5Qz4W8A7gQ+hlcLf+N1+rfr1/pyIfFxEPr4dA06ExXyOs475fMFsf8lyb8HBfksms+0jOWtPPu9aUjScnmzZbkbSmPFGZ9Z9gJANqSTW5yusFRazDsnUGC2QnJAYIWf6vme7HfDNjMX+gSK21jNbLFjuL+kWLTkXOtfQmgZnDHkMjGPBL5YY33D26isc37hGvzqmsZn9DiQOxKGnlKyOSSK0s5bZvKWbN0jOyj6MgfNx5Hbf8t0f/nY++M6HcUUtsDKlkmSSGqxEta82ztC0nqZVyuvZes2QQYrw5LPX+KUnb/HIE2/j8HCfUmIdHWX6zQYphdbrGPHk7JRbxycgjr2DA1595Rq3b97Uk8xo+WtAx0u5UJ9p/bvW2hW0q69IoT5IdyHu5Y62/W7DzByrHqEy+sRIlSrkHRJupeAmFNyKPswC1tt62ipOoW691casouzO6ik7cZesERrvaBv9Yysg6rzTCtMYtTkvOuWw3lGqiWwMkZiTYkhINVXR7w/6EKpVeW2v6oNcJvVf0U3D1FGgZdI1aGsy+RXmyknWTEmtfJ2hxpap1NlUcLIYbVOcqQChdgB6TaL32daEopzznd/TV1m/q0pARDy6AfzDUso/1d9vuX7Xv/9t4GfrX68Bj9/16W+p7/sdq5Ty48CPA1y9uCyLwws7k03fNHgrzOctY8wsWsdsXpjN5phccPMOaTxmtSKNgZgSm83A6XnPKEIImdYI85nHehjjQNfOmHUqGIkxUHIkG6c4xHJP57BjT16f44DYNsQxa9CI8aQ6D1+f3eb09i3anDg/ilw/O2J9fIMUC/NZoWszYYisRk37zSnQzTq8scRqGxVTpGQYC5ysRrbNIT/0B7+Dw/mcsXLNrelIRJW4xTsvNpyoGWhrKaHn5PhMN72c+PiTL/Gbz5/zjvd/KzOjWoumbZk1HmMd/TAAEIeeW7dPsSL4pqFrW9I48uIzz3L1cEHj9cWV6lZkjCemhJtsr6eSXyY661RRTWCevrhNqaU8GWe9/gwT0l2sRk8JkIUsKC23nunOTN4EllRyjZJTtDzFhPNOPQOtUX/BqHYl1lq8N5V5qOdlzqmellq1eOd05p6iGqJIbSVqze6sw1pLStUxqE6JYo2yN/nOKDGXKtMthhxi3Ty1V6f2+urGJOrGJEZNdLNiPEYEk2uVNVUP6B5rnENK1kkC1ckpVYDQ3hnXancg5FiRRqOVT0mKkViqa/MbrN/NdECAvwM8WUr5m3e9/5GKFwD8CeDz9e1/BvykiPxNFBh8N/CxN/se1loO5suaNBOUTdV0WN8w95Yx9OQwkvuB/UsPc/Gd7+X5z3+a/QtLttvA0e0tQ7Iwm9NmYTE3UCIpFTb9FucXbPuItSPSj8wWLYvFAmss3lkgVYvygbPTLQXD4aUL2CYw9ELMke2mZ7u5xXK5R+Nbbh3dhtLT94mYIgcLhzdb4ggxwLxrtWQ0kENmU3XvxSiS3sfI62eFS1ef4A9/5IPMrFSjUS0PnUmYDDFHJKszrbF6crnGkcYt56dbcraEYeBjT77IJ14beP+3fZBZ1xBCxBnFK3LJhO2aHBJDUksvI44oojZu48gLz7/IrDE0rcOYWr4WdqMlPZwzcZL25gxZKq0+7cZqufbzXlQzH6XiAEXTkHfRYIYd+YjKBVCPwfo6tnZnmOmNq5uOBpV4a3FGNfUTN18qsUjbkYpBVFBNU5TZzefSXW0Au82mbk6oQ1FKScHgrMzJHLPuWRUMrUNWrP5oOvUwMImo9GtpnT99DpJ390dHAXr/SvUoQGTnwIQIkhMp68mvfoEFY6kTIj0YYlKMQxWXTiuFrPZumCrBdvZNS/7fTSXwvcB/AXxORD5d3/dXgP9cRD6kLxVeAP5rgFLKF0Tkp4AvopOFP/9mkwGo2msLUGhai7UO27R0sxlxHBjHgVzbhX7bc+2pL3F+vsHYhmbeslcaDpzQekvsAzkXjk/XOFuYdR1N62hmDcUa9vb2sQ6GMJCTev+J6N8pilr7bsbZ+Rmrk1OkGEJfo6Kt0A9rTm8fq532VnMPLx00OFPYbvSUXnRCLMp5j8VAShhXU2SCos/XTuBdH/wAH3rXEzTekFOFprPmAOai5h2FgnF6MmNV+BRDz/nZOTlrr//rn3mOz90MfMsHP8iVy1cY+y3Chpwy222v/bcIIWdc0zBzDa6b4Y3h6OYNVusVe3stjx0+pNLjmBhDqInD+qtzxmm5bixDTMyaacw19dpF03ZEsNZTJGCbBpsLMSg5Jsa487orQEllB2xNzDy1LZpizOuscAIkK1NvciFSk00F8rDKeygTCGdEK5dcOQW1ith155W7YI2W2PpgSj2CK1JfagBrnU7IRJuumEMSdaOmFHWeqm2MYpfax0/4iY5Ws9KZ6+vMuknNWHZ5jzmj5CpylUU3ulGZqpUugik60kylYE1ERFObxCgOECfuSC0M9Nrf+FH/3UwHfp1prvM718+9yef8deCv/7u+9rSMCHudI2eNXLaNJ5XIeH5OSInZbA9nlRgzpgTjOctlo/12CMjcYrPg247YtKQUsd7SNVZHReKwzmJyot8GVmcnzPda9vf3yTkxDomEJaWRtrHcuvl6deEVjs9OsRiuPnxI01pOj88Yc8CGgUXrWHawXm/ZhoBFr6eIIVSUvp03iLM03rPd9Lx07YiTsuT7f+BDvP2RS0pHLUX7/moGmkMk1Aw+U1+bvrU4K2w252w3I2OG1XrDr3zyWZ5bGd77gfezt5iz2azo11sdLVXDVMFp5Ne2V8NUASuR27ePCVm/z6MXl7z3rXOGITL2kc0YGGNhHDPDmOiHQERw7YwhZmIq2otPjja1XxahgomFYRwYY9CHBxCxO5Ra+US2ntL6c2aq0Ug9uQp3XIamNmJ60FW5V8NOpt63FM3800GeouITE28KMZnIR4XKUFRQLueiUwwmduIEuOmDLBU0TBMdWQSnr3V1d5IJ+09K0y1V5luX4pOCrePHiamoB6Cp8unKRZgmCLUFUBKRCqZyrSK04qntTkpKfsqJQqrXgt5BAVsm67avvu4LxmDKhddunNFaFWe0vmF26RFs43DDOY1zGG+wxVZwLBEThCJISXhjaOct1jpaEaQ0lK6pTryiAIovGNux2kaycwx95iyf6dcJieVehxPh/HQNztB2M0yBbubpFh3Lbsn1165xfnwLyYn5zNC5nvUqsN4GvHMkq72oM0Z97MQwmzlmTcsYIl967Yyxvcgf+4Hv4tLhQnneUjBRTxAnon4FRef4uSLovnN4J+pbsN6SMJydrfiljz/LsxvLhz/8nRwe7NHMZqxOV5WFplZfIUa6bs4YejAW6zxh6DkfRj2pndPUoxI5ZMA1Bbdw0M4ptmEzFLXgHhIhFtrG01hLkUypMtfp9Jw4+bmoYUYpGeN8BQmn37a+4axTizKrZX1OdzaRnblPvZelZFKpCL3Rcj6VUiW4U8siGOxdyH2l8Ii2m2IMY6wbbgX1SjX/zGhFFfNUDdQe3kityFTbT/VGmCYQxgox1hzDyiEg5btGpewwBd14689jQMTs/B5SjsSYKnZXCVJSFYNT5aEfqtwNU81ZcrU4r6ItEEoSJRPVqUnO1d78TZ6/+2ITKMBxH+D8mP78jP3FHleipdlbUuhp2oY4BEpSIkpxjn7sMcaSpZBKIoWIQfs3KZnNMIC3ZGOYtzOamUGc5/jkOt5Ewjiw3Ray6zg4uMBsuWB1chuMcPnCIQeHF0moS0vYnHHz2sucHd2CHLkwN5Rxy/kmU4zFdYIzFt862sZi0KAToWEYM+vVhmdeOuLg0Sf4fd/zHubtjJS0jCNmqri+qsYyxmmAiimC7xraRtier9n0kYKl32z4f379KY7Lgu/50LfwyKVLRArb1YZxGzCuq9zxRIc64q6GzOFDV1k2LZvzM4Zbt0hhrPNqYRhGzlYJIWFjYD7rWCwWHMznXJh7rHgwnjEEXG5wRtQzg6xlvDgoqQJyWvI33hNjxlU0XCZlH3qiGyOUmJQXAnfRW3W8aGuQTM55F/4iOdcRYq0uqgw5lVz5ArV3rq8F/V7KjZjCUEvRCDVTK5CYUiU7VS8AZ5kIQJILVhR4lVTw3lUyU0aKkplUSFQqaKmtU3FS27WCd7bO/+sGIjr5sdbq6Z7VGajc5QWo9GZld4o+3xhnacRUTYDeMyU61Wqh0rV3XI5Ji7lTen71dV9sAjEkbr3wEuebDc28ZZVHjuLrPPHYVQ4uLjjvM9a24B1jf4ofA6YIY7/V3mmMnJ0N7O0tkEbAwmJvQdPMyKWwv9exOVuxOT2mc4X1mMA0GBk56Cw2bNgeb1l0De3FQ5q2xVbhyepk4OWXrtEPx7RNxkpBxg2bzUg2Hd6I4hilkGOgn6xnxGKc4/xsxctHIw+97Z38vg+/B2u1jVGZbVI1Wk6kpMGT1IfLJqHpGozJ9KsN6z6SxXLz5Iif/Y2nOG8v8V3f/gEO2pYh6uxOnGexpyfsdtOTi2Wxd5H5cskjizn7Dm5ff13LxqqKC/2gD0wzZ+/SZbyFPG6I45az7UAbVYHmGg3ZSHhk2ZDGwBCExlpab7CSKhpvlPxjDM56fA67rIFJXgvgvI7TUq60V8AZuyPw2Dr60pNWhVK26Ggsiz6409grF1XsqdlJ2fX7iUmcU4hKscMKGON2BKYxqu9g2Y3gIMdIqQ+T343ghGJ0Q/LG6/SklJqaLTjRQNpsdTwXU8J7R0MVB9XWIMeEdTVQpPIdpp/XOK9tDZNFmm5UE4CqzMKkbkh17KtzjWrWWrRFo26QZCE5/dgS7/N2YBwG+mGg6xo2g/r2v/Vgxnw8ZV4WyEOPELOywm5ev82hQ+ftjXrVj76QmsRpLnTrkYceOmC+vwcI222vfv0lk6XDSGbWoS8uY3b922JvyWwxw7atmoSuN1y/fYuz2zfJ4zn7jaXJkdPzDZsxU8ThpJ5So1FVmrU1ntqScuFkteazz6/4A7/ve3jX2x7Bi8FktUXXnt+RSlHADANu6m8z7azFlMxm1bMZC8Y5Vmen/N+/+gVuDp4f+I73sHQN4hf0KXLh0hUW+wtObt9m7Admew0G4cLBBS5dusjx6Slf+vxTDJsNbqYe+SklBf5KYTNErp8NNNbR2I5Mx2zZ0KcB3wrFgnOV5ZcDt26e0YdMa4WHL+9zcGFR5+HcxQ2oJXkpUO/1rlutdmtTrz9VCRbIxkCukeVUTnylyOIUxrNSIKrIJoGejlll0KZQ7b0n9qlWIY2tFua57DL+pmXF1Lw//ToZwXqHF73WVPIdYRXTLF69Byd+A8hudOe4a9Mravah7Yep2IASebLVqYZyKETHjEX5CYjGxBljdtc74QOKJd2RWCt3WjfDqqDeYUq5OkC90bovNoGutbz7nZdZ94Gbr53w0IUGl9Ycn46E4jhsFsyahm2IHLYQSiZsB+bdjM4bGguuc1Ay887Q1Lm49Q7ftMQM7d5lhj5w66UnNR03j4joGEraBoxhGAJljAzDSNhsOLp1A28jpmyxSdiEEesb9hrDmDIm64u7bRswtireNHzz9umW6yvHH/vR7+fxRy4iqOd8KkKOESca2jnGiDFO/e2NKvOsa6AoDXgMSjh55dWb/NSvfJ6V3eNDH3ov+xcvY63lyuUrpASHl66QcuT6+iWaxrE629B0c8IQePXV1xhjwDjDetzikmW9We/GeiUlxKvDUywjvTGkZDg5Hwn9oNMVryecc0LqV5yc9vjW0ux3pKIc9RQjpkzy3FJJOgZvfXUH0gcUlB+vZTdMfnu5qBS2VKKSFCXhaEx9JdckffAthmjqA1vJS2XKHWBC9/Xf77ZHK7XHz/Vnd95Sij6AOyou09Sjfk0RBAtGQUfVN2sGBUaZjrlIzUIsu4f1jvmqgobW2uqWVNQEpGIatkqoc05kKeRUuRgVFS7wO4BKJVQprlDyxLWYWJ2KqWi7uZvbqCr2DdZ9sQmICI1tWPdnPHqxIYyRPjU8dHHO4RXPrNzGBIPNiXlXOBphvc3EElkPgm9bDAFBiOJ1fm0MNhQsyhOPp7fYrE5117QN7dzXzEFbTxegFLYnp9x49RoxrvGtxYtgiGxHQy6mOunCYjbDlIIzSSXBriHWQIzbJxtuD0v+4A99GxeXM3aOcJVFhlHkOIwDzjUYYyklYIGmbUkhsDo/34VyPv/Sa/zjX/0S527Oh779vSzaBWEciMaw6beEPnBwcMAQIsZabt54nfPznitXr7Jew3rouXR4WFHwjGmcpg6Nmnw7hsDSeEJQCbaCVo4+xLppGfosWCmE8QwJQQ95sRXBh+kUzBOJRgTnPDkHcgz6IqVUfQcqehLl4VMfAi1368OYE41zVQNwh15sxdQ4MrUwTxXME0TJRxMhp2RK1UCb3RRAlKhBqelS0BirTD0xpBwr6UnL+0jB+Cpz3qn6FH6MIallWtH/UVsGTC3hS7lj8aWvcmLOWG+xxmtFUJ/ahKYapaRgohHFPpIYTK6jV6gTj2liopoA7y2xpDtTDoHJ6WWiIKuU+z7HBARh3K5xMREyNLM5b3/noywbq0BQjDoJQLCzBWbo2XMFx5ZhOwIdpp1hfMtYLavyYJDQY5zHpUIOPcYIi9kMgDCOBFHwxmbBSubo1VdZnZ1SiHSdoXVgciH6Dt8a1cYnjdaO40AB+hhwbqCdz0lD4rPPrDh87HF++Pe/kwuLBSmO2FxNIaOWgzFpgInxFmdEP8YYfNeRxpHN+ZoUBOeEL7/wOj/xi59ni+XDH3oXM98Qsr5g0jhw88YN9hYKahajfvoWg3cN1rWEOBD7fod4e+fYbrfVs197a+88MUdidDhR1d4YNUjDOYuzOq/f9CqFFiLzrq0GonA2FpqTDQfLlgnGlmKJYWQ7qI7e29qH10fCuKraY5L+ahXA5CiMMOaEw+BqUtFkriFl2igy3lqtHiozTl16Kn23nrJGpI6Ya05dzlinG0opIFUmLtarWWpO5JIwqdKYncF7xSrCmBhTpESNpqMyBPV6FBxk0j9YqQEt7AJAnPVIVo+BIkbdobKajVCo+YdVERmTVjulOlurz75es0zcDKU5KzV4qhjYgachjGr08h/CE/hGrJIV/BLjuHxxn0cfuYDBMEZtdagiCuc7utmCwwTr1Qmb9QpnPGXs8a2na2eEUjPixkQOCe+XhCEgMSAGNeIUqRJQg/Etm/Wak+uvMKzOECcgmc4YylhIraPN+mKyi4YhFFLWcjQMgVQMY4CTGyfcPLO84wPv43ve/w6os2frrPpAhKAU2JSJY6icdatWYM7StJ4wbjg/3xKLEErii597iX/wrz7PJhUe2p/xwrMv8uhbH+Xg4hVA9elhHIjdnKOTNfO9OcOo5XTTdRiEs9Nz5vtzTk5uU0qklMh2s6lehA7nPDFFkghJBFLQubKIcguMRaQwDhs252skJeYzR+MMxjlyM2PInqNVTx8HLl3Yx2TYbAa2Q1BZb/UQlMkTjDttrCJySn6xE4Ou6LWp6k8dm9md2HptsSL9pvLklRNQtQZ1JBeT9tQ6nUiaTlW5BZoyTBVEKZJe6kRhF2xSx3xSCsSIFVunBw1i7gSXaB6CVDIRO9KZTk91lGnFIE7bzzxWRaKBFOMOs9CHoRBqu+LQ/l8qDhErAIzcwUuwpm68lXQkUwqyYl5N02iW44478G+v+2MTKAWM5/G3XuXC5X1MSYh43Skl4UxHt1gwxsT56YZhc8o4jIjpsDPPbLkkDInURzIJ64TOFLW/yStiP1JCwHgPYSTnqOYMvuP41m1Or19n3jr83GNDr5z4tiUTMBlcazGNI4QRUsaLkre6rmVrB45urXnt3PF7f8938cRjlysIpKdCjEmBKu90hpwS3nudT1eTzcYLw7Bhvd6SsyA58tFPP81P/+aX2WTh0uE+ISfO+y03XnudxXyP0aqjjPWeYexpW8jRQYp477EhIWnDcj4nlUgMkfPVivPVOf12oGk7akNeNQ468ipiSGK1V86FECLjOLBer0i5KGnJGTCGZr6kcw0mbln3pwzbhsNly7rv+eTTr9ItWvZnVg01RfRBrqQVo1Coqt+MVF8ACzlVP3499a1U+zAq285oVeWt002j1CDYmGoRItipvZt+vlQDRrNOUFLWjzVFj0xX+QCiBgWUOvqLIeiGgiWjDqwi7KLXETBkJkuiklVobOtxXSrW4Spzo1TcoVT8wqAHQMqVTpyzEn9UHKAPRyoUoxHwOrKs5CcBMU4rHSPELPX6kyZxZdVSiBi89/f/iNBYy3ve/y6cRJzvdP4fBqxrMG2DEce2T5UxGPR0cJaum6kVV47kHBEcbecxzivQU0dh1jsCkNMWyZpmBMKt29c5PzrCYTAl0SKUxtN2M5xXcwhrLHkcMKGnM57oPNY7VuueMg7cOho5Thf4wR/8Nh5/+EBnzdqS3WF9WUNMqlpUUYj67jmrJqHDtmfbD+TiGMYNv/mp5/jpX/8SwXoeOtzDW8e2FJz3bDY9J7ducsF5LX1zxoieXNt+xDcN6/UJxMBWMuOQWI9b2mbGZr1RIMmoClGBPD2VQsl4MRRnVXhidN6fwsjZ6RnkQNs4Fq1iGO1swbzpkLhm259z/eY5v/HkdWbuSc7HwEmfecfeTNHsWjKnSm4B8KKgnFDIpn7PoqW3FbtjBtqKYyTYVSVux+lREC5FfSisWHUkmmzFRBH0bCrOMU0gqn1ZrIEpjqJ2aSIkyRWwE2zr9bWYwRtT+YBaiRRybTuk4nJlF6aipSuYrFmMAa0IJBtMyeQSYQKlq6EJecpc1P7dTr19BTChTjrQisoYvXdUrESomMpE0trpJewdV+I3WPfFJuC9pzHQx4TEgkmBXCLLrlUW3/kZpSgvX7whjZ7WQTdryRjK9hxM5nSzYn9s6S4syLZlHAbStid7jRO3BqzzWAwvvfIap2dbnCTmXabtPGMQlTHPFLgJ40geI7ZVBZkalYIETVL+7JdvYvYe4T/7sQ+rUqu6vsAdW2jvHGEcNRfOVyFMyXjn8U7Yrjesz7eIN4zbNb/yb57iZz76HMU6Lh/Md6w4bx3WGEIIHJ2ccuHqo4AQa2BlTiPG6oTj1tEx3gpLbPX9qLryetLPuhZjhRSL0nTFMvkJlhyxXr9XjoXzk2NKDnhnmc1bGmNo2475cqGW68PA9Vun/PJnX+XaSQ/GMG8tnTE6Eq2lbMilltv6O5dqUJrI5KRinJiisv5qU2tLUTtwY5lMkFzthWNJFHOHCyBGsCgmUmpvnKOGpGaUG9A2HmLUtsA6Yow0Xt2FYoqkUX0EpPHYIphSGMdYzVNqEpKRKm3WuFU1LknKKrTqeZBSrLwADTkxzoJR/gFFiUBU/oEkNU7dpQobbR1Afwax2qbo5KGaiky6CuoYsuiIs0jZgZRkbZUyZqeGfKN1X2wCGvWcmHUzVifHxCHQNB6HxXd5FwE+hu0uX09yIQ5b8B3iHLOm8q9T5OzsNqU09H2PxBE395imBedZH52wPjljs9kiRJaLDmst20FYHMyZzTqcdfRDX3tT1MTDFZKxFG8434x86qnbvPcD38p3f9s7lEqahSxJFV3VJN5alQ/nAt43unOXQtvNgMR2s6YfAsYbZBz5ud/4HP/yky+Ca7lycR/vHDEkQhyUU5CrOakRxnEAY+iHCLYhjoFl0hfJ4cVLlJiJMQEKZM5mM2LcJ4wBKQljGnIeyRSaxpOHDM7jxJALDJvI+WZDsoYGz3ze0BhL07Us9/ZwGUJYs92s+cLzR1xfh9qLQg6R1LaElBTUsoroKxmo/s6NJWQNFQkxaYRaLhSjL35bqckqv61gIDpdsc5gcnU0ric4dTyYqnNQieqYjFVnJJm4/t5SsORxrJLoykAUA85RUoRRw0HVP1ETrqXoySoFLKWORDPVR5RS0JRqo1wRqSapaggilVUtkJQUpeInHbJMSp+CkpOU35BIVTcwkaLMhPiVybCkMKZI47xqTKYIhDpWjCmRS8RULsIbrftiExADjRdW5ytiGNXOywr92BNG9fvPWV12fTcjiyEacAVsCfjWU/qBuN2Siu7K2Yxs+wEvAqlhLobVrVNOjo8wUthbNhi7wEsm247lrMN5LS/HEGp5V0h5xOZEchZjHddvnPP0qz3f+/3fy3ufeLjytquYo57+k5gmJpWsNt7vqKztYo7JifW6ZxiVMbY6Oeef/Mpn+LUvvYr3DQ9fPWTWaNndu8B2m0gx4jF0s5ah7xmGLd1iTgjqNLsZevb29tlue8UKTFFX5mgoYcvpyQlt0+C8Y1gP7O97wmgpGBrncV2H8Q3ECAjbzcA4BMiRbqYOyNY3zBcXcMYSxi39esvnnnmdL93YqJ2VlR2CbUUQ5/DO0drqipMzkidwMGmIaNT8BFCGnJU7nn8pRiyyK+MVca8BJqXoSVwzB4zUyC9EW8OiPH3ftdXxt9Rqp+wmCwndoCjKXygiTJSaYmTHPpwcmY1yrMlZcxHGqMEv5GqRLjoBEGtrBJ3sTD6tGBVIOVUuZpImPYnyH5w1SFPHpjGTau7C5JFo6/h1Yht6a8kU/GQiKjUiPlf9RbWFb7yrDs/3OTCoNlMafe3FYHeOqpC9ozRevdStw7ZNJZE4xjCShy2b9Tkqp1b6ZNvMmHczmoUypWK/5cYr1wnDqA40JdPahrFkBoRZYwh5IPfq46YaeQWhiELxmtD77MtHHA0zfv8Pfy/veMsVwpir4SRMds9Twm1KSTXyjd9JR9vWEuLAehMYY0QQTs9O+Ymf/wQf+/INuvmMxx66RNepg5FKbJXMM4aI85a+H9hsN0pxNkJ3uMe23+Ksln1G7RF29l9OhP3Di8SU2fQ9KWbGmOiHgRgDbdeSUmaxWDKGLa0R+vWa7bCBlOi80DUW6xx7BxdoG08OA8P2nKdeusFnXz5TDCZERNSfoUhBvGG+mNF5Sw5afaSUcDLZhmme4ZQDoDReU92UlGvgm2YX5KqbhPbM+oDowyvmzkitJHXbmSoA7xy2jtxSKqSSNf4sJYxRNqAzhhgH9XPMicargYxp1MF4OO+1SjdKQuuHoW70UcE5ZzF5GiXqBiA5q4AqKyVY6mtOUFzHoDblYgquBq8QNezEOkeWO2SmYmQ3ISmAdXYnvZaswPIYgmonpk2rOkIZY3XjEcW23mjdF5tAzonzk7NKLtG+JvUbrPXg9bTSc9mQssU41ehrnd3gnCHGTDubk8iQAyEmfNdR8JzdPiVLlZ/GxHLZEqvU1jlLQdsIHR/pie+dBjqJ1RTjL794zNY/xB/+oW/j0sVljevSOa1kFTHdGdXUX7jVVBhrLV3TUNLAdr0hJKGUyPHpip/6pc/wW0/doJ23PHr1EvPGcXfUtAhYb9hr55QQOTs/p1hLHzJjDnTzhtY2OK9knwuHB5ydFaRErPHEFLCt5+Tm0c6qWowKYmIstAXa2QzrHSkm1kPP6WZLTomZF+YLxUeWewfMZi2MA6TA6zeP+dQLR5ynTOctYizW2WnMz+HhBRaztjo4FXIdue1MRarUthTwtkGMENIURqpjxZJTRfIV+ZZSR30UJOvkIFUGoZbeengooi+1PSn1xIWqVKbU75GTbkyWeuBg1FqstiQ5o5tTPURTUEv1WkxoxVM5BCIF551uUNVsJYgG6zijFmmtt7tJjKukp1i1E8Y5lUEX/btUU1hjpToIVfkwMnUHNW2qotA11s1UEHNXLWUFWifTlK+27otNYNrdVRlocNstIpbZwQFjHOnaOTQJ4wzz/YuMKbI9O2V5cEAU9ZxLWW9AJ5ZtEFLInF6/zaWrj+Kcx0rGl0BCLcOt8/pglkxJkZxCBbGgZBVzGOs4PT3luVcDB295Jz/6n7wPazwUS0xjHfxkdQRC1Walqsu890gFBhtvSGnD6mxNqDaRr127zU/8wqf47IsntLOGtz56lc5bTe81oidSUm340rUcn5xyfHaKsY7ON+zt7+/UZBf2ZnjfMIwDp8fHZArnq3Na32IM7O07tv3A5cuXmc/nDENPP4x4b/G25fDCBeJ2Q8ay6kdSLLQGDvZajMByuc/BfEkZA+N2zen6nE88c4NTxbkwVnMXY/UmePhwj8evHFBiJAlKg85ZW7oqsJKsXPyxTCV5oe2anWgnjiMUQ2M1oCUWHcU5p0E0pUgVDiVCULKQbwzWOSwKCqYCMRayUyTdNrYybQqJiLiMB3Ks1qBZH/Sm1QTrUgTbKB09jtrieee1587KajQixBS0QqpAJF6VrC4VGuugaKtiGkdO5Y5NOIIpVn0vTdX8TyNAZ3STrkEptk6AitRNNKueI6GvF4lJ22MxVeugUyCxai3m7uJofOW6PzYBMZh2zrLRF4vYhDMNxrfMmjm+OuvYdo7xDabfktstMfXa242VQSXCersmVL98m3tWN55h7otC+hmGPuPaTpF6Sfi2pR96fZFSkVtrcIs5Z6fnfOalgQ98+/v50Pue2GnbNfBDRzGTPl3ZW9pzGoGSIk3j8d4wjj3r9Zax6IvxxVde4yf++af4/CvHtF3D5UsXMSL0YySlrKM4bzElcr7acHq65ny70ROpaFlrRJgvloxDoB9GinU6iqtz4b4JNLMZjTXcvH6D9WaDOzkihhHnLLNZh/cNlw4P6VrHraPr3NwcI3HASeFgfw9vwLUz5nsHijDHDavNmk88+TqvnUWlUNuGKxcPsAYuXZjjgVYMlhpnVsDKNFozu/wB6/T0dTXWnB0IlrBSsK0nRGWTmgqCTT26ot5ABmsbVT7mhKk02WnuHpNOaSx6UJrp5K2btDWWHKICzVaBXTUJUaVetjrWNPlOeQ3K5Iwxqu2ZgGta6o+AFD2A9HBJFFs3dWsJ/Yg49ZnYGck6SylqopuL+gJKrgajlWJtRKXLFRutzMLq5ZAnExOdohSnIqdZdRtS1+Q3Mxe7TzYBMTqaK5Sq5FIyh62+bWOIJARTnWrUXDIQ+w2h3+Ccx9jCMCbGzYZ5Y7EOGhtpOkcMhSEJfTQ4K8ohKiMlFG05qrpNjMVIoWs7Xnv9iC88d8QP/OD38Parl5V/ngs53nG4TzqLwjqrZg+p9oKl4NsG6wzD0LPeDCQx5JR58fmX+T9//tM8e/Ocbtbw2NXL2kcnxQj2lguQws0bt1mtzlXqmhTB7ppWOeY5sem3XDi8SN+PbPs1IQ5YY3He0bQOv9U48RQzZ6tzFrOOMGjqsDWGxXzBI1evMHeW1eqcuDnFDD3GJC4dLGm9fq29g0OkRHLcsN2seerF2zz1+hqkINby+ENXeOKhA1JJu/6/JA3+lJIhQzSAKDfBVQWRUHbkn4ICiY13iFisEeIQ8K3Ow9OYsEXbtlgJM8ZZnGj6z1hitfTSTQdjCSmRRTUKto7VUhjVrLNxu1atWE+WVHUDOiWISScAU+ZiFlF2ZK4W69nRdG119lE034qQaip0iVkrU6OszgiEqL154xS4U2cRGMdIqmPNMARyzDivmIZJlR9RINafZRJ81ZuolGzvVURl9eRvGs/Yj2oUe1eewRut+2ITiGNkc3JEN+sQu49tF9XJ1tAt9glxZNyuCMOAkEnDQNyeQw6kcST3QsiBcRg52JuxXDolS2TDOCbG0WK8YEyoFM2MKQlS1sBRM0lEAef54vPXGNw+f+KPfj+XDpeUWKWqE6ssp51yzRqzk2kaa5WO6oTGCtvNOdsaCCop8NkvPMs//MXPcTok3vLIFTrvVYwyjhp5nTPrsxUhakWQa5Fhnc6kc+2pXYYUE7dv3dzFiQ0ps1juYa0jxszQ99h5RyiZvf0FJRfGQUeNh3uHPHL1Co1vGLYbjm68QGMLicClw33mXYNvPHt7+7Rk4njOOGx44eUTPvXCEaFaYF85vMAjhwtaU0MvKhiaa0+tVJmKtdS/5WqGIcYSop6SpEJxqhew1QfQOg9I9SWEGCKtbyo339REqEwOAS+qwBTXErNON9o6EjOV5GNEENvc8RxUzjKlpKokFFWRUsA5ktQqACUUJ1AsqlZ/YVB9gXVO/72yQameBomMcY1uWpXFGFJg00claeG18pG8m0QYIxinpKZcIFYqcu1RmSLbJy6Bc5ZxUEKUGAVCxRpyiXSNr8KvWDek+xwYpGT689vErcednuAbJWGI9YT1jJAGJEXIKspIcVAn1jFiSqabN1zo9tUrwGsox3nfAw7rO0xI5ByQEil5sn4WogBGAUf15DO8cO2EtVzgR37gO9hfzLWHNFMFoDd4itxSzXquM3C95sZbjEts1luGPpElk0Lk8089z9//+c9yexO5eLiAGNn0gybPCDjrKUnxBVWvWWXGFajTZM2nq260YRjY5IRtmkpMUtRrdb6i811loGnZaFAj1dlyzmK55GC5hxHDdn3O8asvIWFAKOzvL1l43ciWyz3mXihhQ4ojt482/PbzN+mLEpf29he8+7GHcKCU2srRmMQ6FFHEm0lUXBl21fdWgU+roJ+DhD5EgmC94iYqGatKwEa598ZWjcOYlLNvhc51ALhUiFIIVYiUs24CBtj1BdrtVeoveCuQMqkYUtaH1VpDTNp2tF5NWkJMSgFXoT6lqFW4VPm4VBlfridzK6LqSEFdnsdR7cuMxRhXOROGRDVmRUNVSkg7HcDEi0iVPWnEKPWcQjRa9fhG4+uouQtWDEIiSdL4dxS/iFP18FXWfbEJWAcHex5TDCkPaqhAjaHu17g6MnKtxziD6+bYbo92foF505DXt1gdnwFB7ceK7szeqZOMKsYc4xjIKhZX+m5Vu+Wkcs0vPnfExUffxZ/8vverqw+K0IdRvQpTTjW2SsvGqcSyRstW3xgcifVqw6avAFQ/8huffoqf/NWnWW9HDi8c4ERPtlwpqNaIJgwXpZ46cbvZeBgGQlY+uJ6ld8VSuYbZfI9xGNX4s53hEKTpcF1i/+ACvmvZrtfsiWYxXLxwge0wcP31a6xuvESXEzkN7M0cB8sZzgjz5QHzWYuLI0NM3DzZ8rGnb3I+JLyzmMbwLW99iJl3iM2EKVHZaEmfUlJbsaqZ33l71j4dVN6dBMaYaK3FYZAUKcYSx6RTmiq5NpWmK9U+i5Ao46g9N0oGMghDGSmibD4xGiTS+KaaxmYVUFUqeEr6gBirY2XBVrq5jhKsUfpuiL1iDUbNWp01StwKkSyaRei9tgpK+nfkuxyMU4jar3vPTJxWS9XhWoxyRyhZmaEUSuP0EMhqGCIFijO7qjMraaCqF5Xh2bhm13qlEMHpfcuVfxBSBSzfYN0Xm0DJhTAm2tYwaz1N09K0vlqPNzTtjHY2Z2+5z2K5T3GwPTujPz7m+NVrbLYbpFjamdJfd5LNygjrx4FZ62k7S4xoz1XHTDmpwcMXXtjyxHs/yA/+3vdWcUelte586couycVYy5Q7p+4yaqVlGFmdr+kHPYm2my0f+9xz/OQvf4FtFC7sz5k5/dpFSe4YsVXDHmkdtdpQ45TJTGMaSZWcwan5hrENrp3TNDMuXnoE0zbqZmNge37KlYM5lw4vac+8v+D1119ndXzCa69c0xOjbPE5kMvA3sxzsOwwztAt9pgv9pA8EsKGs/MVn376Bi8d9xSnD9XbHrvKzBtSGTGhUKLOzI1VYopkSFXSbYzQdg0pRMYxqkgIrQSct3hniEOvDsN2CgyxjCGSC7Reaw2MMhFz1RikrPr+tmnIgjIoraWp/ozD0IOz9GGgcV6jyY2vcV8CRZmcRuxOodh41RRQWX46Si2ElLDoBoAIJUVtJ6FKwbVCMEawvlF3oepeJEWVhykFjBPsDhMR/d46iK4ehfVhx5BrroCg40KDhrlE0apJMJSQKdWLwRQhpUQWqQKiOg+1Qtc48v2+CeQsHJ0mnCvMOsO8NezNMr6JSIiaxpEDw3BKPDWMJPr1SOwLY8ykogQQN1QDBm92TC8DtI3DO4sku0sfMtJCicRc+PTzK77jwx/kO973Nj0RTJmcsfQXpBepf+q8VR2AdHfWmKiRzdmaEAzGWob+hH/98af56V97mm0oXFx2dG4yKSk7C2tKYSyFnE11tVWQKKWstM9cXXUq916BKbh06SKXrj6ELcLhwQWMqy4yYjhPCZk7uv19br7yGierE85OTjg5OqIfejoPPpxixoHFXsty2WKtoZst2du7gElBQ1r7ni9fO+P5ow3Ga1n50KV9rixbFQOlUkM6tK821S/RkPWFVSuDEFRjgGnUOgy02qvBHuK94i2FSh9Ou9M/VlUkO7PQQbkEjScbUZu2DCEXKKlamBVKyjSt1/YpqQJQnZylug3pYRErsq5aCZXnqjgpY6LaiRvj8V1bnZGLAomxPrRIVTwqYczkpBmGJSNJ+3hNY5psyfXgKEXvj68uxpPAKQ6BEhPGatp0lXQo/yLpRpvqhptIZKN5GKRSpxsZUtUciAbw5FKw7X1OGwZNqXUuq/kESnBwAsZEigRSFqLYKuh0iE34BZhkKJuROkZGUHvpRjT4WoDYaT/lrIc+EBOIDFy/teaF24U/8MO/l3e97WG9juo4m+vsX3uyVM0ga1yWgHVlR47JRIbznm0pFBPZ9ht+5uc/y7/85PMEhMNZp71zjISsm4ZFasyXbtixkmDMhAbW+lnQt8VNDj56kozbNSWOIJbV6lhBQeeJ4xaxhfPrN7n+/IustxsdK1Z789Zm2jww9wbjZlzcmzFzDuc7Di5cxJZEKQN9v+Lpl4/52JdvMaIn40MPXeGJRy5jYqgbpJ5W1qrnvYhOBEq1vyq50Pe9Jj35RuneVRyjNOuk4z5baJynUM039RnSMV1Rm+1U9QU7imzSB8ukovydon1ziApOto2ruEgkjAFSUQl0FjV0MYJvFL0vKPsuWaV6Z6qisFSvQedJ46i/eFN9FhrPGKO2R/W3kqqiUx2QjYaTmELXtGoaYqiAr4aEiK3cgGnMbKSyDqf8BtFk4axR70FvHAaVTmfRn5+c1fCmAoQpJVKsobKVdThtcF9t3R+bgNF+30muriiJbBoCYK1HTJXNOotr2oqklh1oZBtDDCMpZFKpTKtGzUSpI7Fiis6GN+rL/sJra15bd/yRH/0wb3vL5XrIm9+xAaQYdxpv9Ytjt+t7KzhniXFksxnIKWMTnJ6t+YVf/xz/78efJ5bC/t4cYxJjykoeskr7TGhZa6sdlavgn+rNq4tOYoc73JmVa793fHJCu+hwWJZ7CzbDitObpxSntNkYFcfox5HWW7wXOpMpaYvNA3jDhYMlnW/UpfjCoWITw5Y4bLlxvOEzz95mFVS2fbDY432PX6UhUhoHMVOIOBGceFVGit7rlDNYV52YIrEGkDhbs/NgR7jpx1H/HnrartOHSJRSDNTTMGsfLIEx1t8BmhdhqrRWcoGkM3+k4BpfwTXBd5YwappwSKoKLNZo3JtIHQ/r/XbOEaJONKzoxGfyN5wi1FOpgR/G0HYtOUfFbMRURuOUUCzk6l9YCjs6L0knKSVpcCp1rJyDAr/eOLTIqPLgokpF9VjU/UKnU1oZpqJj5FS/RxbdOLVdre5J9/uI0CB4o32NqsVkInZpf5O0xBejlOHGWHLjyTky5on26RXMsbbKOg1j1KRXRYkLYlvC0YYvPH2LvHyIP/nHP8KV/YaKEQG55t2p3ZPkpH1jTa+RpKEazro68tmy3ozErKfG0A/85M99gt/40qtEMnvzGQ0VNS41LQfdubUyLLsXzMQ/n5YFsugoLpe4c7MVlPSy7Fpaa9gMAVZrRCDIyLLpaBtLSg2bbU9JPUMUcg60+VyBogyX9xZ0jcM4w8GFy7Te40JPjoGz84Ff/9zLvLYaiBT22hlPPP4QpFiZe1BCAFMoqUqPa0KUazxdbQFSiNjqXjRhKhN71YrDeqnlK6Rq/+Uq8h6jHgiSkm4iFgL6kGBE8w/E7SLGbFRDGR1AWPVnrPJgMUZFZln5BjknnfuXwrgD9jTdR0pSi7Gi9OJYTTpySbjGY3x1FxKNzhvjqMYezpFjhvpwltoe+MpDSTlhrK8mocp8zFEr2EzGVaajbkg6ktZA10QMmruAUW8KTUFSkVAKhSHWSDYjUM1VrFQgyTiaWVtjWb76ui82gQKEWKOoc+2ZajHvZzP95fgG28wUGPMO51pldo0DhQHrda5urDoAmWJpXSTF6j8ZMy+/dotPP3nMpUffzo/88HfixJCKR8lJFbAp2uOlaizpaq9Ycq6/bGWM5XFk2AZSgpJGrt844qf+xcf4raduYSzMO6/ipZBpG48RPVmmMt+IjqIUGCpkMRSjkeQy4QCiO6E1poI9ZWcYOQxaki9mel9OT4+JY2AVCqMb1XchJmaLBWUcyedn2DSQS+HwoKObNRjrmM32mM0aSlQG5nqz5uNfeoVXTkYwhcZ1vO/xt7DnfU3OQRmTd9FcJWZo1LW/JE0qijHuZLo7KzDndi9FV3+uHMru39SMVDdtWx+2EOMOn2msr52SOgSJKJBXkhqDFKOz852DUVaSkFRashRDNmimROf14a5OT8oQqPz8bMhRv25GSM7gjatR31l9FztXwT0YxkAkVe2/VWA0C7nYyikJCnrWTc7Ua8QJaRzxXqcNUgrGOK0UdBuo7eFdOYgpa7ZlfcX2JVbPBa0yrJkCTR0xJ6RWmul+rwR2QpwqnPCNw3eebuZo5p3SRZsG082UG24NzusYjcoGKylqfLbRqYCQyUUVbXGz5Tf/zSs8f2z4oR/8CO9+x1WsKMruTE12rdTMXHLdACqVNE5EIB1FOWsZhp5hWxjR7ePGjRN+4mc/wadevAUWutZpOEXOhJzxpRJX0Nl4Kho84sXWk1HbA61pKkAmNU4KKqNxos+qz34RYf/yw5QcmC+WpFSITa8PTw60aYMRLdFPVkcMsScBy65lf9birKPd26NrlxB6JG3ZbLZ85pkbfO7aGRiDM4a3Pf4wB43q750VQFOS1R8/k+rpbEU/vqSo5KdKz1U/fbNzFEoV6TJOyAmSVeksIe1aHoqi7mIKIYNtvHIhxKgfQSn0QfEIRDUByjjI5NrLq1kK5Pr6QEoFXi2N05ThqRIb+001g9FWzzlPH8f6e3eVTKYzfldL9DEmJBda59U9uD5kSS2dKUSQrFVMSUotrmNAg26SWXRDKWLwXjM0VQ+h3IDJTTlVz0DfeJXG9wmqzcBy1hGGEaxGzsXJXjyjeEUNH7k7F/Er132xCYgRZnNH6y2dF7w3agRhlEZqRGmiYgXj1E48IRjX4DF1ZJdgHLHGYUqmpJFbr6945oVjbm0cV975Pv7L972jKtsqK80YYpVaTsGVesqpQ22qjrzKxNKZ69CPbAd9ARiTePXa6/wfP/1Rnr52SpGiJbbR+a4RQ0LDPazUfPlSZ8Q7nsFUg6jnXMnlTg+aFVxLWZ159Dev+EDZrGj7Y8J2oJzfpt2s6EzBDeAlE3PE+5bbR0eM/RZKoXOWw/2Zagfmc/b39xTzGHrSOPDiyyd84rnbRMB7y6MPX+EtV/ZJYcSLxqSpcYeOBKlmmd5UUQ+JYejJIaomwJnqCqSv2JIVMQc1vDCiJ1tKGfX1LztiTwqj6kFqb0ypNPKsOJBOF9KOZVfQtF4ldOaJk6See9Nolwo8l1IBQHUPCmEEFKvBauiIy4WxWtI7VzcBdOPKSVuMkhKhWHUJUsFIjUPLygoUYTZrSTHtRqPabiZCSNjGUYxugrEaqojohCfk+hoTDXxtvLJgc1aHKjUjMeQYmHWeMRdKUW9GNXbVvMaEbn6S33hEKG/GKf5Gre8WKR+/1xfxYH3D1s3G8d995N3a+liV36oK0Kuku1TFnm0mM2JKAnEKkuWUiXWjMFVb70zNMKjz/ZzUlyBUnwOlDyd80xLiiMma3ac996AaEjEgOuILQyREdStumqZWElkZeVJIWVOjRBwx52qblup0wiulGKkYhY6UclLadJqAR6ejazCkGKpgqUAuGp4q2mI1VmicU9af0TCWVBK+bTCiP3OMhRRypSirsChUVyvrHKYIP/PbX/pEKeW7v/L3cV9UAq9fmvE3/tj7cKITAG8L+7OW+bKlmXe4ztP4jrab1dLOYKs5wzhu6NcbXn3+Fk+/ssVf2Ofhhy8z847Fcsly3pKTMgitc5qGK2VHwpn4+DHGOyYeuWBRkMs6j82RzbBlO2heYMqJ55+/xo//04/y3I0TUik0jaPznikC2leXmlJPYJFSkXSzG/MIoqPROj8O9eNtxQ1izow1sDIqZw5Bv+6jlw74ge9+D7ZrkX7QAJU08Q+EzXrN8emJ+uKRuXCwx6z1eO/Yv/gQ80YoYST3G24erfjlT7/IM8drxBhm3YLv/JYnmIvO80P12Q8pqGNQVtss13htm2Kg9RWzN0IcBpyorNd47U0NhjAOpHHcsSFTLqRRgTkrahsmRfQBrQ+1jnYd4i2xZj5oXJmenLmemEUghIBtnAbOVPMNLVn0iDVNSw5p93s3oqNTbTGVOaoPmhbu3nmygTQOZKcj5pgSjbfYXCqrsBYJRSnOzkAp+tBOQ/5QNC+z5Iyv1mK5ZJydQlMMFjUUSWMkxxGTC+JQzQBCCKPqaeo0pHNKWSdDzOPOwEQryMqRcQpEWmt2be1XW/dFJSAiN4E1cOteX8td6zIPrufN1v12PXD/XdP9dj1PlFKufOU774tNAEBEPv7VSpV7tR5cz5uv++164P67pvvtet5ovbnbwIP1YD1Y/79fDzaBB+vB+iZf99Mm8OP3+gK+Yj24njdf99v1wP13Tffb9XzVdd9gAg/Wg/Vg3Zt1P1UCD9aD9WDdg3XPNwER+SMi8pSIPCMif+keXcMLIvI5Efm0iHy8vu+iiPyCiHy5/v/w63wNf1dEbojI5+9631e9BtH1v9V79lkR+c5v0PX8NRG5Vu/Tp0XkR+/6t79cr+cpEfnDX4freVxEfkVEvigiXxCR/7a+/57coze5nnt2j77mNSW73os/qFjuWeAdQAN8BvjWe3AdLwCXv+J9/xPwl+rbfwn4H7/O1/D9wHcCn/93XQPwo8A/R5kwHwE++g26nr8G/A9f5WO/tf7uWuDt9Xdq/yNfzyPAd9a394Cn6/e9J/foTa7nnt2jr/XPva4Evgd4ppTyXCllBP4R8GP3+Jqm9WPA36tv/z3gj389v1kp5deAo9/lNfwY8PeLrt8GLojII9+A63mj9WPAPyqlDKWU54Fn0N/tf8zrea2U8sn69gp4EniMe3SP3uR63mh93e/R17ru9SbwGPDyXX9/hTe/kV+vVYCfF5FPiMifq++7Wkp5rb79OnD1HlzXG13Dvbxvf6GW13/3rhbpG3o9IvI24DuAj3If3KOvuB64D+7Rv8+615vA/bK+r5TyncCPAH9eRL7/7n8sWs/d0zHK/XANwN8C3gl8CHgN+Bvf6AsQkSXwT4C/WEo5u/vf7sU9+irXc8/v0b/vutebwDXg8bv+/pb6vm/oKqVcq/+/Afw0WqZdn8rH+v8b3+jrepNruCf3rZRyvZSSimZ8/23ulLPfkOsREY8+cP+wlPJP67vv2T36atdzr+/R17Lu9Sbwb4B3i8jbRaQB/hTwz76RFyAiCxHZm94G/hDw+Xodf6Z+2J8BfuYbeV11vdE1/DPgT1cE/CPA6V0l8ddtfUVP/SfQ+zRdz58SkVZE3g68G/jYf+TvLcDfAZ4spfzNu/7pntyjN7qee3mPvuZ1r5FJFMV9GkVL/+o9+P7vQFHbzwBfmK4BuAT8EvBl4BeBi1/n6/i/0PIxoP3in32ja0AR7/+93rPPAd/9Dbqef1C/32fRF/Ujd338X63X8xTwI1+H6/k+tNT/LPDp+udH79U9epPruWf36Gv984Ax+GA9WN/k6163Aw/Wg/Vg3eP1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1YBN4sB6sb/L1/wF8jIp4URfMKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxty37QhX5/VTXGnHN1uzvNPefem9wk3tCkofEZu4dEEnyQB0RE+BBAIESjhqD4lEfQx6MTRcEGRYQgrXmBgNJGPoLSiE9B8dF8aIQk3NzmtPvsfq+15pxjVNXv/fGrGs2cc629z20+7Hw4tT9rzzlHU6NGVf36TlSVD9oH7YP2D25zf78H8EH7oH3Q/v62D5DAB+2D9g94+wAJfNA+aP+Atw+QwAftg/YPePsACXzQPmj/gLcPkMAH7YP2D3j7giEBEflJIvJ3ReQHROQ7vlDP+aB90D5on1uTL4SfgIh44PuAnwi8Afxl4JtU9W9/3h/2QfugfdA+p/aF4gS+BvgBVf2EqnbAHwC+8Qv0rA/aB+2D9jm08AXq98PAZya/3wD+0asuvnHjhr766is7R+X6J8j+T907fUUfz9X1NRftnZoe0Ofp4fPS5HN4gNTRHZhHUPuUnfeQ+eUiZc5VEBGcDzjnZwNTDs2DoppRzcMVIh4RmdyzM6eayTmRYiTnCKrzzsWV9R8O2O/djTF9Ux1Gc+iC/VG/T6ZZZ9+Eq2bjeZZR5x3OnrB/7vBzvu/7/u49VX159/gXCgk8s4nItwLfCvDKKy/zn/+W/4QBeEQwJmXcdcMGUR2+y2SziQhVtBGRyTXDFbN7ptfUtnu/7O76Mrfz59e/2SV747MRjFt7+h7zB9R7Dy/k7jtc1+y8DtMoB+6dz4fiRXHYn4ggTnBO8CKI2Ds4EUQy3guIkBScb1kd32C5OiU0C3ANFbwEBVH7rQoa2Wwec37xgNT3NM0xJycv0S6PC2YpM6WKiJL7DXFzzsXThzx5fI/Yr5GYbLqcoN6jrkEloDgyQkZQcSiCIohqAWKxT5UyMi34REFlAPRDYrKqDsdVDjPRs2t0BFJ7khzEJHWvCQ4m+/hQf3t9l2O7x/f2pSpf/3U//lOHxvyFQgJvAh+d/P5IOTYd1HcC3wnw5V/+cd0F0mk7BLC7xw4DldE0YQTuq/rbPW/37oD37j2VGIltoF2cQVn4Q6A6RWrT3+P7SHmcTr7vPH42pOniX92umqdpn0p9r/HAdOva+QwKThyqSko92+0l4gQl07RljiWD5vnm1ETqt2zX53TdhtVSyaszyEvE+0I07b6cerYXj7l8+pDNxWPSdo1oKn07sjgyHsWBFsJR/rQsS53P+n4DBzBA/PT3HAh3m4hw9dkr7in/X8WUqFZkmQsiOowEdo/tA/78mjreZ7UvFBL4y8DHReRLMOD/2cDPue6Gfao+fp/+5Zxnx+Hwxq7Hpgzt9Lrde6Ti6tmxggYqRMyhbgL0e9BfBlGe/1mw7SMnIDOu4BD3YMPaR5LXtfr+8zmxN1ZVVKQAjpIzhQPSQtUFcfbcnPMA7Knf0InNmxPBB484MS5ABc0VQD2LxTGnp7eJ/YbF8oTlYmn9aKGa2RBFv7ng/NF9NuePSXGD0zqYQJZglF4FzQ4RZ+OGystQcNV0ugaEMCAKRgL9vIryK6WM52wV7EcMWzmFOWG7jiPZO7f3Ds+38b4gSEBVo4h8O/CnAA/8LlX9W9fdc3DTyuHzu5R8Kgpcd82z2i7NVhmX2kSDfU7gqjEOF+hOnxPgu35sg+DAdYtZAXWPbxkoQT1Vt93hZ9u4gEKVMgwstBNFpSBAoWzWigCciQwCqpnUd3QGaYS2ITQNzgcEDxJAHaqeEITjlSMve3xoca5BEXJKaOqJ/ZZufcH68ind+oKck82lusLmBzKOXIEdB7gBwCuLPcrLozhQuavpMhlCyFfO8/O0q4D2UJuTmpEjeT8U/GCnVzz+uv6+YDoBVf2TwJ98rot3WXs7OOMAxkunLzMB0h0KfxXLf7gfrqDk7MDiLtRf0x8jxZm+2Z7IMWHprmL57fpDb1H7k2vvFyncAowbjpG5qeOpVLEirlzuzeVmEQzYnaIZnArqQbKWsZhYkFMkxUjoGkLb4MOCEJY454rc64CA90u8NKBC7BJZE32/pdue03Vrus2afruBFBEc4loqZ6bii+xvMywThFDfQYA86ALmczKllsYBTSjz+2jXseRXXcvwlLmcVfUTV+mqnqcd3lfXI5S/b4rB3VaVcKqjZnpX5t+7R8a7P1u2WJBdYj05Z1RvkATeJ1+//+j9++dIYVfyruzziHwOKUbre+9KK/X37vYe8FpBHCO1nD5JhgMG4lUTIJBtDLmIW+rsYeIyhZkwriD3dL1HwpbgO4KPiLTG8ksE6UEzGiH2mb7v6OKGGNekHNHy50QGhZ+IR1VGBFD3S1EA6lThBxMEsEM8KvUf3to+K9J8fzKc7v3a0xzs/BSVqpssczYRC6aI4QB3MV3/2bkpVt8bz9XthUACMvx3iELLuJOBfUw9ynczcf0afcFzs1qz/q678DACGoYrz7OlDr1XYeCfcbPIFPPv9KoD+th70oA4oOo1xz4LBhkQiFaUOPISVclWN7TkqosHp6CaUNdD7onSI3RAWwA3onTk1JOToAlSSqj2ZI1UawKu9KienIvyTx1JKphPkdUI1CO1nxsAp0rf8cR0D42iwvNz5FIHYOOeE3g7vIPjqzWC+rzhnusJ3/T4HnJg97mmln7Wa7wQSAB2sJqMA5+t0zO4ospB7PZ70BIw/V/LhO0oCscrDo/XBlihbLx+xFc6e5eBCdxh8Q9r+es1lTLsKzUP6RfGpvOvV4oak61XKIliOgFXdQ3DQEdAmw5XtIgJVWQATFufUcwfIGtCNaJ5g6gDiaAdOUdTGKorfebJsyr/YZyA4tFiAcjkSswNX1DBXYb3moJ/QafG+g/zNed75pzD87Vx/kdudO+aut4zFFrntK7pSMUPmQSfYySTzwlnI7vn99sLgwQQV/baDG/PgVFg6uQ4srV1n04BTiY97KKU/Qlxs0ks/18BPAOTPtlLIjpcP5/3Xfy+i6fkSgQwPT9qr+eUv272mU9DRWqVB5CrDJVjG23aI1uaKciunpMJztNsM1tIXCoIyTkhC5BksDCoVOegaMo3dQh5pOSFug9AnCtLX+34BviVYmbRcvccmw5rAMN5nazAHtM+bKq60FM/jivm58otdLXL0RzVcHiZn0Xhpq1aUXYIwFT0mXI8+oy1f0GQwGQBZDZdB66UyUZlXMuKCJQdij7t6xmM0UEgnp8fHIR05/SgmJPZ9c+WA65a/H1l3768OgWE2a0jd3NV7zv6lopYKiqYj0HmSFbrvO6ym6YwFCekXPrKMiFOhcdQZdDDywQ4h2WtQF9vqyLBODZFyUy1+RVZzSmyDjtgZLu0PHfa33VAWK0KI4chO+fnfeyz6XWmGCj/Hk+wo9Ab7p0BeuVcp7qMGe85Xje83rORywuCBOabct7qlE82/wTQ61R+ViaVybMH08zs0VMZcZzMa580NfHMKPyU4rDz/apxjYA/vt9OP1d1IxS53n7sXrarKxl1A9NNMxEFBrCvvxxu2PT1eYWZz3XLG/WWCRWdSO2MdnEZgEOLMDGY8yZefPV1J8oIe6+yPiNg1G/jzpl/mbwS7MBJ5Sqmc6T7N7FPiQ+3KYcx9rW7m+bc3W4XI/KdimZX7qnpGkqdm6v32guDBA613Ykbjl9pMrz63DOtBIf0BjJ+vh9ZcV9TL8Om3j+2S913+5pje9WRBb+SM8Uu31X2Daeu0ikMSGdEPIYY9oUJKRtyoLHlYaNsmwaqXtdx6jOXYTL+Cqx1LFPEO6F6lbpP9zjzfTJyDnZLHm4ar9lvc64IJkTmioV/lp/K7gj3V/h9EIM6A2Xd5Qpz1lTo2+VFrmsvBhKQA8C8i53Lht71JpwqT57lG3DtEK68T4bz789eO/112FYrcl1/h7mGKRKZSrl7VpAZo3DIVq572G2XIg6I7ABFFNSOTzTp+46xI2DOz+xS6h3/eGG8r7LvWt6h+jBM7h+3/r7L7fzYVZaWfXR6yFV39/dViOKg81p5h+F3mRQdkKdece/OnFdAOLB1rtrBWp93RXsxkMAEqHfbFAz0wLXXORN9TubBA+157933+roewTzHk6e9P5N2TCm7/d5nHKd9UQTIuf5B5jftIUA1cb++68wSMlm10k1mFE1GYX+OtMxWblzAVGhQBc2FtUFH1+DSZaJGiGhhGHaB8vqI+VG7X68/hEyGNxom5TrtfXWBns7XDOnKeHwm7kz2rIiYo9YUSQ1AcDXCmvWv44ivai8GEngGLGhBZaM2+nqA3PWJv+rauvijGY7Z9c9yVnpWm4sE87E93/0jDd3nAPb7uMqXfPwh80Hp/EI7JVP9WjFl72u+Rfapy/T3FOx2OXEZhj+h0FREX52A6r0VsBmRCFMvv8l1te9yne7IQzIcPwS8I2BdhQDKgYKL9ue/WlJ0PHAQaN9X03r3Pld47T7KE+B/xqNfDCTAAXFgdm5+ZJf6Py/Fv/qaw45Gu9c+299/9559CnOor6vvfxYn8T7bhLXef0a5hHHDDVaYA++qeVQ17SlpgTTds9PPXXSyB2NTAJx/jtdXDmOHL67IosrMO8N+9pxfT2F1ULRe096vAul5xnYQh1TEfTUxuEJq2GsvDBKAcfPtwPzV108o/ufC5u/2OX63geyy988vFsgeIjj0nEMcw+7yjXqQ6RXX5SSYK6Ou3L+VQah3VXfWyePzIao3k6On3zELw5Sz4jBcjMh9vF5nHEIRS4bP2cvPWO7qqFTPXeckc7W/f/XJuJrFn/NEdV/M36+OS6sINFFyVpHps+Es5y/xXIfsuF7vJ/JCIAFhAhTPmJtdQBwUVpKp5qbPFSF8NlzFNb0N36a6uEO3z01SMrvn4OOE/WsZ+fTZZjsIhPXakePQA9eO+3UiJ0yeX8WIPcQ1jOHQO44Av8vV7drFZ1hq8u4zQFKK9nxyW7U07L/6FUB4WIE6Fy8n76lTRDsfyz4ZtgPj/89uegDzW4KUQ/1PYyjm7Vlb9YVAAruAe+WYK8UvFGTc5DKef8YEGxCOFPp619ur+tjnCGai9pWUZLia6VsOe/cA+38YWbBDQCeUc/7f/L5hE05Z/j2eeU5w9/qqT5xT+7l2e+fqKzTru9adA286+ZiaXXU+hZWj2H3Obm/XrPGh2aqUW4fuJ3Mz4MGdcOWCJ6TeNBdsZ0raeZtet6Ojmu6H2bdDHM28Z4MR4TqweEGQAFRV0ggHB6jv9PgeJdh/0auo9VTHcB2Lf51icJ9bmJ+7bsN9XkSX55FPh2tnT5/TihnV3UFOE4H+IF65gpu5digHke78uToA0O7zJpaRqRayAuCkg31QODSWCSu/d8kEyKand+ZSy1AGZKo6uXPCYU20/FeQiNm4xk/h4Pw/J9EyLvvKhwIvEBJ4PlPeVZl6dHr2mvuvf+bzXjulYp+Pvuv1U+5v3KC7QGptSmFH56EpgO8+fwrQh/il8fxAeQ8ii2sPje9zoOfxvl1EsHvFrklP2X33/bCsse+rFbj7ItYBtcCkr/F7nsnVhYuEA6z5rmNQjat8fwlL9oiO7uoj9t91PFFGONDL/Xun7cVAAnIYyMqPCYZnwuoeThX22XkGjv08c6iTsb2f+55nPLtDq5Tg2QrnigQrezges+M7zxz6vy7hxATo3u/77RLpKziGUXyyK8exHCTNe/cz9D0ilF3nsdEMvIuW6hruDfnqZw33yfBo86YcEe/uG3z2O2PaZK+za9dkhyl+1vq9GEhgb5HKURknG+qG2qV0I4Z+v9r7q573fq69HpCev10rrx6ApJlodEChtd+mu2gEgvfns/D8Ta/8UUazozuwZ1zHP+x1MLlsXzZ+lh/JfhsRqDFWc6J0JSLQw+AuE46rWnE+K1+Tnf19iNOZIsDPxrflhUACJrdcvWjvh+1+P5zA+wXgQ0jms13c99t2HZquv/YQgE826zMURfv3MqOun492SDfwvjL6FLn/0FocEgHeXzugYb+qrytZiWcjtOfxW5iJPc+4XpARKb6P134hkAB8Npi7tImssLsh3u8zK3V6v/v88wUYz25XbYKJKuqqOVAdAGeU+z+7IVwnXz5vO4Q89y0Rz+zkuQBpKi5ce+UgnhxiXSbdDb0+m3Adeuqeg5ZePR/XKZyv9neYjPM53vvFQAICzj1fRbSr7Lu7IsVnLxK8n2s/f1zAVeN932z451E8OdTP5wMBXN3/+9AFTNqz3/c5OYwrL5soXUUGQqsTVDDV23w+FcZzvwqdiQPXm1efPZbaXgwkcIVO4DlvtXRVu4ffR3/PMv8dfOznqH94nvY8PgzPVhqW99vhEJ+LMh6gOi9KM6bheWXtZ6voDioOB6QwKv9mGimtIsx1g5zcc4WC9BDmedbcXyWuPeu6Q+2FQAK7OoH3q3W/Cgy/EArCz7eb8rParsfaIVfXQ4qxg31BrQPyXNfvjuPz2T4vXNQBHcDVnOLz9LfzZfhdxCeZCwC7zmJ7z5neX9HI+wDoZwH/Ia5gX9T4IYIE4LA48Dwv9PlCAM+r+LpaEXndZF9Piaa0YKpsHvIGVsL0OWjyK+Xa3aszL7idc884eJADOTwf11O6+XWH6yfsPbOwQIdl6fmzpwrHXfa6jnk4fjBhxyHl39wfQArHcFDhOTy7CBGHqHxZm715mSyYTu45hAx2EcEPKesAImOBR53IWQe0nHtAqsrhjAmHFvMwldDJ9fOFrYt24K7JZItcBSbjSK49P+7sgf2s/YoKVpfP+sjKJEXns2szDC914Iddr2UOd0d8oJsd4JoeP2QyrZfvhDLN+OI58i0lxq6Qzfdf73mo3n56uEPcgwGuXKsUktm3w2rBqW9Cff50LPXeHcGiDmTyx5AncqrHrQlYVOv3A288cAe76ONwezGQADCyYDL82l2Pgyzk+2IrDyOLCneqOpH1BlQwu+8QFanIYu9Rk/GPKGbnsgkA1m6G7aETRkBr9twhBy8o5HwFZZk9dxeAZluKARFM73ifnPp1FGhvI17B5o6ej8/z/CuepfPcC+MI9sXNg+2a5+pw766Pw37GoukYDq/P5PhI4qnLwaFz2OzUNZ8XXznMmVE5hKtf68VBArvigLOdz/vejde2Z7P6h0zV1zkyjT1f75p53TPn3+2dRazMlwNisvJcWTNZLOW26rgh66sN8fVTeJs9TeffdDK/Ezx2laJ0DuTjRE1FgIH6Tzia69p12v7r5X3du3a8bnrNyFVN+6nIe9anHuZSDj9nV4a66l0P74mZ3F+Afpetr+env/OEE6hrrTv9zsWFybVXtM8JCYjIJ4GnQAKiqv5fROQ28D3Ax4BPAj9LVR8+R187RwqGe4aM/v5MYodl0+H+spZXsXnTew73vkf66x21k71nT/sXkdnzRdVYQu3puw0pRbLD8v+X66UmHpXdCMoJxTkgrhwklroPULOxjQMvtxza/HVjHuKO3j+afD9a78N6HRvj7lwfunZEjIefdxjZXc2R7CoSp+fmSKAAbn42Epih8UGcGwmQqpJz3tMbXNc+H5zAP62q9ya/vwP4M6r6G0TkO8rvX/6sTg6x2dYOU6V67QjA+gyEsb8Z9p472beftfPS4TvYA4idfiqgGUDbAjsFKUU7Uu5QTcPa50JBXMnRb/ey8xwBN9QRsvcseoaqdJxvU3c1kMrci04PUPopMh3daXdnQifoadIfI7v93OLdFddepxis5w8qnQ+s667ycHfk1471CqS3R/EnnEAF4Pl1wATIAVTycM5VBlAV1Wx9lCKxte7CdeP8QogD3wh8bfn+e4E/zzOQwJTSTIH/kPrlEItG3XAHKN7kKdanzCdz94p9wNhv74/7qJ278vz9DVSPOVeq8AgghgRqwj3noCpArbhX2Szqx/EeeHktVHkk9EUBBoi4QQVrf6lOwL5IUeelSh+HEM5EPNkBw71LD45V2Kl7MLllCoTDuufnsObUeS676RrN+cG99T7aVQSmnruSwhcksEvB5yz9hLIXIlH/ss770ykimYkPh9vnigQU+NNikPXbVfU7gVdV9e1y/h3g1efp6JCMfVVCzfl19r8Bz1UppWvLV07GgIR45iOv2CDX3VSo7gHz4i5CqbqFkdAW/YArOEAzglXmy04hT6jNdStdzF91a0i5vpb4Gv90LiJMXmHkOKRQuQnQ1FEPAF7PuSHjzxRZ7Y7U4EAHhHNonsaLtSDV+TWHWkUAI7145uI+V7/PahUgp2Ovx6bAPhMHDiAKihJydq7oylQzVTQZr8kTZbHO7r2qfa5I4P+qqm+KyCvA/yAif2dnIlSucKkSkW8FvhXgtddfP4AEDjGTB1plAur9V940ZeV08jl9oh163nWfyYjXXzkB6t0+xhMiQtY8jFbrf6r4AoBlW6AoXkpCz7pBpqMYgLZwAjKy3KPsD4rVBtwZ6dgqYNb/RIbwWWUSDlwvH1IF1znOCG7CJYwCwRTX1L88OXE9AJaSqTuANlV2DKhn0s1V4kY1EU6R8q7u4LnElDJfAyDncV12AX2k3EWDsicOjLMznstlzbR8H99/qlfIOZM123qoWRSuap8TElDVN8vnXRH5I8DXAO+KyGuq+raIvAbcveLe7wS+E+ArvvIrtexWA2iFSrNkOD7ViE/a+0DUo9h3BQLYZYVnFI1xPHvtWWnN8gxRjRttZFOHzUY1P1VhyO0NRcp7SCGIOSs6eA+UXgpyQEFFSFCop2BVgdyY2rsoFeVQsdfKTg9zP2HtJ2zT8FULSiyUqEKglEpElROZvVMV0Wb83zjve8A3KNx2EYBMuCEd+qsU8dDSTYG+Kjr32XEm/brZO8yEnwEBTMY9kekrcsg5D+cHoC83HuYGJpQeRXOacxFlzJqrKJBJOZE0z5SNV7XPGgmIyDHgVPVp+f7PAL8W+OPALwB+Q/n8Y8/V3/Bf+RzyAI4nP0vObDJmT90QO5A+eXjdxHMqPe/n/Q1Ey9j39R7l/CHkNsVGld+j0LdBv2CmVKkCwg7TVXsotHikz1XM0ErVJ++pA6OAFOcdo+TTAduDRxww8BhDHwMYD0VM6m8d3ZYpyF4nq1GQ/ZSa7jYRcy6z8Opi7tud0KG/jOWUnAP82Je9qdaip4y4ZLr+o+KwODRNwb8uEzD1CqyAWd/5EBeQcx7nK885gfrcKtNbRedkHMBMrLBzFQnknMycPEFC1/Gqnwsn8CrwR8qkBuC7VfW/F5G/DPxBEfkW4FPAz3pWR+b55idHtODbKggz7kz0Wup/NcYbMYwB5JTlKv1eccfe8T2A3b93ilr2TGzDWGt/FcvvP3/Qi4hOgLWAt049KydIrFKPAqVuvKNshokIMNyWR1CW8WpDOp6pCGHcgIwUXKcdVdAeeLkBseiBtZuJBAfmYL/Vd88jfqli0lSvU99VAXGMytDxCcZFTNfHYZS+EKCdQqe1/mId7zjYCvgycAIjAijenlNgnQH2eJ3J8hUJ2FypKjlNFX4jEjCAnygTi2VgRCRVB/YFUgyq6ieAH3Xg+H3g695XZxMqOTlk/Q0HKhu6e2aH+l1LpQ9R9fptVKYMlx6YuEocxpwxu/0UiqNM3uuwe+9BTbWMHzKhsjNCPLlQhofvb+4KkPP+6vE867XaYozoj5t5nI+KCASkUE2djmVvRnbGO/1/vGJ3FVVrT/M2oPDhpooIpiKAzKh3lVykILgB6EtHM1FAq+UoM1gzdpBKHehkpplOaUViI5BnBpHsSn2Ase9Zi7w/M++Z5j+nEQFkTeY9WvUDWe3eMnlzhWMREZ+BXF8Yj8Gp0mtarOFqB5xyzfsUEZ6PUxgx8TUjLv/nYfyz5zB6pV3pUHJofEw5AMoG3wWsuhPFCLqWmauIp15aX+HgOxeOgImuRRziKpA7hj1cNhT4AQgruMyA3cjyKJZMhn3VCHbnbKT0Oyf39Cl1XON51VzGXoOBGBlImPYOpZ/6fYpId5H03Gelig3TEurTtS1AVzX0hSLngf2fU/BcqDcVAUwQiCn3xnsqFyADmz8qhDUzKJXrGIaxXMcG8AIhAagLVJM3uCmevf6m52wzmXDYP/NJGpRfI3N8sI/R5FSTShwG9r0NpKMyqzKWB99SbbsNSEHG+alUzcQBHWvjyXw6pALENZM0yr72PKs25BDJiBhrPEMuMNE9jFRYh7/6rVomDrzYzq86fGDmZHRIMz83uY3vOQWKqel19rRCEfcUtPX+CRcx62MGRBVF6wTOtDJIoBSALxr8XLw68viXUh6BPE+RwAQBTJx+RtEhlfmpwF0noXAM1RIxcDV2Xp6BCF4cJLDDZu0yk/X47IaBEj1fOuf5gh50bL3yPthBIjvnpr8PeaMNFJVdjmCHlZ997iIiYSjMSnUb1hnrOmWNd/vd17xPPQ0rZa3UcfhvYskws5wgOC2BTINmn5Eq6XRt6vnKOV0fYzFQ5p35O+jhN50p3UfmU/Z81+x3CGGb3f35ckVUJFBNcEyQsekC8/CXc7oWCWieI4ApIhjWZAD+gjDq+9bCWwMWrmuQBxFQGS0Sh9qLgwTY2bY79eymCGCXWqvsgnPZanv8pu5tsLG/3TbdHCPgDceLxrlSyENejyNlqhT3injzKY9d5NYBtGQCWDuSkczuZ0bWRxiW2cRO+ZL9NgVapfLSgiuHDQlMeRKZ/F+Lg6hUr0QdOIkpF3P1TE+OHQDow+PdRaoThDCIJ+OTBtFnj8zUY27oY6bHGdbdrhWRIi7pTIafav2nyrtdRDCIAzmhudr9KxIosv70mWVBs2ZzJZ+IG3Nup4qSZUwVKVyDeF8cJFABSOt/wHQSJgu5i613X/AqPD4g050L95V2uvPbnuGGnAcj61dNfzUK8rD8P/XrP8TNmGZ5hosqKz2lcHXBB1k2D6LCFMmMXcskV4EO1Hh4xCggT3iD6ZV1fGky7qpQHAFp9v8ECdVHp0FRWc7syhe7bQenXyUWzAB58p7DcR3fbIQjY5Ur0h6QpSimYBldkQ/peUZkWj35TAOfK0AXpFA1/UwQQSqIYIokjBNIyEQ/U6+fPbsC/PSzoq/Je05IAEPmiQExHG4vDhIYgBumsiZQTEFTfK3DJjCEfyXY2//Tvg5dtUdlhF1kYPfWTVC5DLMCuAMcwKH+rxbLdnZ9oWBTN98KNFXOrtqC+aJPuhjk8Qm2mjxA6rhk8lsYIxcnSNf6GpGLIKh4Rkw1f67NX0Jk1EhUTmCCd55nJmZtzrrDITHw4Lo5GRBoRVjVGjBKFYIhAHeN/DzqAUbKrQUJVGo/cgLkNFxnSGBu0hsof84T6g1Td+CBmlesqorW996hZvNxT7mIqxEAvFBIAHZp+rgPdbAJi7idDT1unF3ZXUTm7pJ79esmVGZCmepG2mMJJxSZStkrZaiUZQD4qyd+5C5qNxPxpkDjVOCpyNHJyNpqBVRlfuVkDK52XeXwgYrV+dhBnkWccHXTTcWPIp7pxG9jr1jIBMKngsXAPk8odMFCA1cz83OadlXGddVs7iKNQ/Oe08gQV9FtvyOxvXUNxRzNerqjyR8BfUrhycn604mWf0LFR05iqrwbgX9ANBUuDNuA5OHdQUwvMB/p8DdYKK7BAy8MEthdvJHFnGC0CeEZKGFl6Sc7diqfOxkzsGhhucaupxzCfKJG7nKkolMA35Uop8+eU6yrZ1+qA84wAp29ruGlGvY70DCmoz4whNkmr6xipfR2fVURzm+tWvbxHWQGnXvjm3BG4xVVaTk9XLmWEQim7PwkZGoH+R1uI/Lc3Q/zG+uxIRHH8MQDrL4q1a360JoNwFhl8Z3Y/11dQE6JojW0EWj136/APwH4AQFM90sF3koGdHzfXDf9COwMszfOuU76ePGtAxOWZdynE953uGhGmmzDDDA9Bw2ZUI/R+WUKnAwbVYfFmqr+5hhhev9c/hzHM21Xm5jKU3Qqo1fSp8VtVnGVJy/zMAAW5tOmMjokzeZtthGmgD+ZIynXHdgXUzFC5l2Nr6kTZHQoPmw6MK0UdO7YM9NdTAY7/NzB//XbuFW0ILM6yOowMyEIqiXsuirtSuz9IA5M6UCl7vN1nlHt+lizxw1I8TAyKDb9AqSDjgD295GaRWGg3Dtzv48qC8nYgZlhboHByUN04Byuai8GEgAsNpxh19rUyUAtx4Utn7leUfTVlTTIOEE2JzUAZ44Np/b7akmQcv+oaJlQVMriFyjRXIKC3EhBB2q9p8CaUy97phtY7lQ5FFfeqYxhKg4YIhipQuVGbJxuMsoJdZwQDJnOIZU+TS4u19cgolGRWT61BvfUTSp4tIgEdaQ6dKQyytyas3Gx4gYFap5mwxmeMgLATNwZgHUqMsGeAnmgljr0lnM2xFrfefelYQD8Slgr1UeZR/WVi7WY9QYKO0UAlPsrkpg+ZPe7Dg9Ep/O3N0JrdXVnFH6YQ53RSLth7PO6+ggvCBIoW1JHCpWpzkKjfOzKt0HOGaLzIBQSpcWkFnWC/WYcxZxol1Cc2YQhOiCfYYQ7WDcPi3q1WnKKAOaczsTgOJKnAqllh9fEu1UPUICiavsnsYUj5ZX5/pou+8h87xDf2VtNkNXALcz4eqrupIoomueIZ+wnD5u2KszEOTweSiBXBdjJVrWlKsulBdCnoFHZZ9Epeq+fFShH6pwmMvV0HahzX46pKpLViIuOvc6CdCrATpCATPod53VH7Km4a2/iJ/K/pOH+YZ1miGM+u3ZvHgjJ0AauUceFnPW6314IJGDrmofFFHGzSTUKbBK9c2J/EyqQBWJle0RRgSwZxBVzi1hyzspC11UZ9sAcC++Ci1E786KrW2p0oNmTBPZapaBDEI0KvmihDVU5MkImg0b7VsQFiw5syCLgCjuZwUlG6PCT96jvpWVQIztrSrk0mXEVJZf4rF2rxmiNkVm/M86omP1sqebBNVCyIlFdixRSRLMjhbKWdR1mHIcrHMN07HWNGJF/OZx15IrqCu6x5vXYBIGMfepox69IYPLcaT/DA5mfHwGZA8fU1k1k4vZSN93kxQZTntq6VTpQQ47L29mcukKvxj0orhBLmUZ8jse8d3g/DdCbtxcCCUwnVqpzDDXRQtnC4sg5EXvTuDpnLwdqQRUOnC/suasAlcmYOUtR25DTDa87azFpM+XajuzI5J5KJWby825n9Tqp/YoRnEHZV+R8FfPdz+BU8WLIw2u1JQOuRui5guTSyEDY0eKsYxtHpDwLKc8bWXeb13Gscx3AzDXqoEZ95p/AXICqSEInyivzkptaCnb5hyIWqauTy3zaC6Vmsh4TRJ7r+YFTnCCBnT8Y5fScqoZ+sn4TBDJlr0bKPSzs+LiBaOh4zTRuml1USiUPQ0r5Stp19v46aASk+mmU6XOucGZFGe6cwzuH82787d21tT5fDCRQsTyFqojZV8Ub2ygCXb/l8aPHrC/O8d5xfHLMYrEgxZ5NtyFrJHjBN46maQiNx/uA+IBIg6jg8HNKwHSDHN7os0EePFZDk+fUdL9Vdt0wvZtE+JttXvGScJqNL8gR7XrSZo3bbmjVUpBnFVKx0Rvb5+z5mMmu2vSNvhhlUCmuKIVaS1WqUhVXu+OWCTBf904jIqhKv6kicohpGAAim2bb17mazM2gb9AhiWql4HNdhgG6DOcZ+lKLohmo+ZieezTfJS2AP3AUOqRok9lzJx1TL51gngOIYQ7gEwozTMbkfJFABxFjiHSs01WI4oBwRpHWnJ1c4Yp9+TRq773HOcfUHfxZbtAvBhJAyTlOBmsRYTpgfeXRwwd88hOf4PzpE1566Q6nJ1/MsvE8On/K4wf32XZrYrdhs12TcqRpPMvVirMbN7h962WOj05p2iNUnMl5YN8HLuQq19Q5EOhkQWvb9RGYHq/Pqq9W7RBaOBXRhBPFSwbtkLhF4pbtowc8fPcd7t99lxx7Tk9OOD07oz05oWlXSGgR50kSBg5ZpXIJFSiFpLZhauTZVIisYlfVrdgLHqL4V8xNecYYwDTV7tugqpHHYWKbiBbkU2ZTC2IcJ9jWYgiGmRDTCeBazM0caAeFnM6Bvx5PuUbzjcq+IdqwAu00Z+Nem3pS6uy+AQXIDiIgF/3Sjoa+KigHzkIHp7NBt1FWaohGdSZGGsAHQgh47ydE6EAsyHO0FwIJKJBzlVhN5gc1X4s6uUUGatuGGzfOODs94Wh1RO4jrmzu2G14+uQhT54+5smTRzx67x7vuTe5f+M2t2+9xCuvf4ST0zPEeduzrjjgmLco03JVc3l0QgGG8zbWYYFmIsNOqyqIiuEF0ISXjCchOeI0Qryku3zE5sl9Hr/zBnff+DRvfeqTrC/OOTk+4sbNm5zdvsPq5i2ObtxicXQLljdp2iXO+4LUHGkopyXF01/BjUAkVNZXh0w+VW8gs028v5GG30528MUOez8kHSkih+SZNXEqbORJ3H3lCgZx4Cr5XAuiUMpnnlP+wb++huzqPK9/rp6Qk/fKOnsF2BcLJy/IiLomyGFvDxjS290g9dugNyyvPTzCO7zzM3a+Un3j/lz5PlutgasdjjwHInghkACqpBSBSnUEJ25gwbwTTo6O+eiHP4I4+NgXfxG3b92iCS13br5E3/fWR7/h6dNHPH78gIcP7/H48SMunj7l8f0HPLr3iE3X89Ev+mJOTk4RHwzJOJtQHVZiGNRsAw6fUk2KMt2rVLFgt802Uc4Du+7oaUn43JM358T1Uy4e3eXJvbfZnj8iXT6m3dznqH9IunhAf5F45+3MuyHgjpaszu5wfONDrG59mLObtzg6OaU9OiEsj3FhYZyCD4xx7zpYNAYnJak0eeqUPbK543rs+zsM6LDeUljWKbs7KuwKItAadWBzVXgknIx1FKqib+qMAwzJM0xZVs2VpneYeuop1Tsvo2mU/6di30DFBwaoslKHAEZGE/AkmxK7M1b+k/L/4AYs8/kcxEcmFF4ECktvrDxIUeb5csxVT9lhz03nZ8r6j895tohr7YVAAsYJFD25K5aBqsQqud/apuXll1/m5OiIO7fvsFwuEOdpFkuWZWZUe85euslr+hG2mwvOnzzmwb37fP/f/X4e3H9I123othviYmEmRSkupZ4RFe+IBfvfq1NKGae72tV0N7rPHmmUwWkkdxd054+5fO8NHt19i82j+0juaCSxpGe5auBsyVHvid2W7WZLzEp3/phHj+5yn08izTHLo2OOTs44ufUSZ7dfZXXjNkdnt1gcnRLaFaFtkODBmRUCcah4EoYiUpnn8V8eNtvsPXbWbHzRnQMTsa4I28PhkqFgwBsiIM78QbLoRKYfk2xM3W1rxl1jbSoi0CGv3qBQy5auawigGrH1bNgDspu8h87ecEKite6BSgh0PD8K7CMCQHcIwwj0VZ733pR4bqD2psDbDUir81ftBYdhe6pgH97qmdzAC4EE6qJBiVFTo1JOrLCGZiVhKba7bcfTJ09NNFitBkqDEwRfZCvPsvEsjo45uXGLqMLRO++yWixZrZb2nJwHTXtOoLP01VBQE/Vb4TsnQ973wtqNWR+urVRDBHOKUnK/4fG9d3j67mfYvPsp8vqCRiPLRaDxgSAO1whx0dK5jGrPqoHQtkRJPF1HYt5CjqSnTzh/8i4X997k/tEZYXXK4vgGy5MzVic3Ob5h35cnZ7SrY0KzAN8gzmz2gitjL1F0ZVMPHDojxRwsozKRfycy/Qj/hgAsa5+Yp6tW6meXOGEIAzdKZ449VWIyQEuDfihPzHnm5FmRNhM5v8x2VmQmZoycyDD+YS2vB5KpCFJXdJTx5xR+WOeJmOgcE1ZeJko9Y/FrNqdx/0yHNy7CdB9V9DPlQnbbFFFdxxC8GEgATDEIZaIdKsns+oyBrAklaSQ+SSSUk5xp2gUuhMFzT8SjOZHx5pyygDuvfgjfLpEM3pm9NKlALtEEg/2/6B5mwpkOsrSqRZkhpsOwRSua+h3Ar0rB8Tsm4qjiSGw2l7zz6R/k0Vs/wA3dcNx6jpdLmkVj75EU12NmUKfEGFmEwNnRAtdmjpc9OWccjphhvY1s0xPW50/ZPBEuCGRxSLMirE5oj29wfOMlTs7usDq9wfLolHB0RHt0glueImGBb1qrdORgjKirjIwwQrKbeyGqkNXEqsrpVPqaETxSPAQNoJwWHCGVna9iRKHsUsSuwmRZvaWafScNVL760NfUXbWXYRXq4AcxaBegK83WATEcUqoNwDkcKeMbDjhcUdzJoLhzg8JOhEGun4kA4wPm4y7PnzJUU26jKg4r0TJnjd2xljFyCD3M2wuBBFQzGvtiR3dlMZJ9n8iZRkgdqVuTHie2/ZajoyOWyxUhBELwIGZZiLGn77Zs1ms2mx7nGrIoqeQxHvZHoXhzrZUMMzcAcp3kSiHrAuy03UhGrbIkzkSIqiBLiXj5lLy5YHFjycnpEcu2JWNViL2COocGIDiyBJxvWaw8i2XkaNWg2SHekVTZbiJ9VLZdYr3pibEjJqXrnrJZ3+X8nueJLJBwRFiesDg6ZXF6YqLDrQ+xuPESJ7fusDheERYe3wSctCCOPFE0VsLqVMw3SwxrODxjEFAma081YVYnKZtCV1KgV59JMa14oVi53IMrehcUVVcQsI5/NShH2TEpVnI8fgz6/h12X3cunBLfURZieCspgC8lF2Nl6+eKOjcx09U9ofuAzw4HMrAo45h0Z0tW027STN/3qCohBKtOVXRo0yeIahm/7JyZtxcCCQBoijbOmuiyiAKUF68vo+pxCNt+Q/+0Y7u9ZNkuWDQNPjRWgFOVvu/Zbrd02+2YsNGeRN0NOU/dOuuWmIcDDyYgVasVqAyJIOpmukoMGN6t/Ddm3BGCcyzbgK5ajlcNIXhUhKTFZVpMLsxeyV5xvsH7gJdEE3pUBU0B3y7AOdoAqkKKynoj9H0iZSUmZRuVba/0sadPF/TrNdvLe1w+hAd+iSxv0p7c4fT2qxyf3eD49Jiz2zdYnZwSlseEsIIQoOgRMqa4FTP8lR1qWDUDOMh4wOT6LEM6VsbowYoGZGCupSAE4zzMQxMc3o+iyiBXD+uQR5+BHfPeVPs/roWMJ4FRF1TOTuBwkN0Lf+6dAb/3MrD2ZsmS2R6YijzTY1e3EXx3r9sNZRcRUs6klKjOQIPn4AynTDmVHyo6gaHibpE1a0KKwjZWhODUTHpZlSSgKdFvNlw6N7BjJucnUk4UZGgbrWywqnQxV2XZSzNQMW7OmRgjKUZyVnzwNCEYkiqiRNVKH8w7MHk/50YqWqlX0zTockHjHd5NFlwczinOC96DDxAa+25sen1mKn8e7zPiHE3rkKDEiLHL6shZiVkhB3Ju2HaZi+2WTYqs4znrpw/ZPn2L/r1P8SSsaNslq9MT2rMTlqc3WZzeZHFyg+XpTZqjY9xiSWiWiGtQnLncusoVWGm0LL4AtyN7P4gQUw5gLE+GAbxzNmYpGXVxmJ642v59mR4xB6sS9SdFeZgljfJz1ZxXSl7+G/NRFARU4i6kALKbKO6MqhcxR2Qi01dZ3x1c97lMP29zRd/kXtlHAGNfVU81PifnUqQWBuKETEyowzwPPR0eEC8KEhhagRIFlVQFx7J+MqD2HM2+LU5ImslAr+OEMaHm5jZbKIR4EAYl5BBuOWGXKhKIObPddGy2G2KMqCpNaGjbxvywxZQ6PjzPFGaqu2dVDGVAvEe8K8yPIM7hsuKCEKKiOaKpR7Qn5w3KAhHPmHkqg24YFHrqEfG0kgleyWLRii5AShEPNK5B1XOxdmyiZxuV803mcrOh6zLd5WP6LGzeE3Lb4pZH+KNT/NEJi9MbLM9ucXzzNme3Xub49BaLoxO8X9g7uGAIVzBN/yA7F86hRIrW2a4WIKUu3ihu2VoUDsD5wiQKmgSXk/nLu4wr3n/VKXYsxln88fMUERTlMSZHixvLursqy7uyDpW9nwD6DEiHYiwjAZh+v0pU3PUsHRH/cNGBn4XST87VOAHLBD9XSlbCV1nQsY/D7QVDAjC4scJELpPCJUCqYTBiMJzKeVdz5jMqsgYbtxpnkdU033mYjzHwRZwpV3JKbFOi73q2XUdOeXTUQEmxJ6cICM4HmrYdKMQhj0Et5kETMzPOFRdhJzhv7FzwrrCcahyBgpNk7yoJ5xKqnUXsaQs5mw25cfimzJZEi7IshSpKwWKSWL56kVQ00h1OHCeiLDolqbBqG5445eF2Q4qZ1bLFLzx9jnT9mvTkEd3TwPpeA26BX5ywOL7J0Y3bnNx8iaPTW5ycnHJ8doPm6Jjlckn0Aj7QaybmZO66E2o6lcsVHcIFcBQjTFlzBJFQfOE9SCLHiHpD5h6FbAFjg3mziAa1gvPIHmBICYcPrsjTvlB5vwPAMqHodV1HrmGX1O8igPl+2NfO7ymS6z4/ABGzPhGcCywWfkBcY8y4DB/zyOEfAuKAyBhNa21cuHENihxfrnBlk6Ag3pSBOVf5HqouYaA8UpVTU921XeOcsyQRxd4c+94op3MEXzaHzJmrqqEVxiSj49in71YwdvUdV0VywqMlSIhqQxqpgxYvMxIQEacELzipUYbRPH2dI7iGnEwCd+JINYFEfe+sKJFcshZEBSceJONCh5PAyi/oO+GpyzSh5+aNJcdnC1JSupjoUqLrOroOug30T+9z+eBdLt894uHymMXqhKOjE45Ozzi6eYvVrdusbpoI4cMCcsCJIztKQJdxeIOy0MmwzjNLRE21nU3/gDNrCN7SxjmfBxFLMzhnHICxykX8yoUrGOBYEefxrqFpDblTiQY1sGmymjPgPrzMc0vCuD9G/YcpFXfbsG/kMJjKBAHYp13vfTB+ZkdMmOZyGQLvZ0jscHshkADsIoEKyVMmZko7JnLekBXTZmCYlOJSOqwDgkpgYD93uQUZ5Ugz57TD06sHWy4LOwgOw/27GHxCfYZtpaX8n53LRelo721GUHVhUHSZqBJBI04iIVjOBCESU2czpI7gAylZ8nnnjdVNkob+pYTt9jGRPAQHwSXz0iMjklCSmVNdwPlIWGZWJ2JRjApOWmKnbC8TsXNs15FH2y2XsSddXNBf3uPicaB7sOTp3RNkeUyzOmVxdpPVrVe4+cqXEI7OjJrn6m3pinnWEKwtYaJYB8nm52w6oGHNikZBwXvFK4YckgOJNouaix5Bx4QilT3GzQDZybhv0OqgNm9zpd5IPCYba869inGdhxBGZeNHJbQWBFB0FdP9xvQROttzgyNR+W8Qhqoiu4icjvqsPPR9qL0wSGAuCY0TNKjWyxvLNMnFMJ+V3Rvt8gOjqbZoqkqWSMXMwLg5ZNJnWRDv3ND/kEVIi0xfEU5VEpUuRqw8n/AxEoxROcg8yk2nGKuEU+daeooMkgBPDYYBRSUTc0cqsnYWsTwKznLTpyoXo1S92+DHX4AuJyVHIeeyCTUh2uEINM4oWNuCto6+9WgKdFtHe5lZ944umtVB8xbdbkj9JdsngafSkJolt177GMcnLxGWp0X/IWTnUGdxlMjo7FMnUMVs7sYZVO7I5s85EHWmBvFSFRBlztKAPCgIwtzPR3dlpdokGHIeFH6uzH1duwkbPqznpKcZlE/Y8GFjFnGisGRagH2E3AKsZZMPxs3JJYOepGbZxZSUdc7Glgp+GPsUxnxTeQojB9ozkYCI/C7gpwB3VfUry7HbwPcAHwM+CfwsVX0oNjO/GfgG4BL4har6V571DNhntarZYw+BDTM03jhVsgxLOAh0I0cguxhx1ECNuEZkCMSp7FfZpQP6GDFwCSIZgnB2mjJwKTrdXMNuMffYFMH5McDG3F8jKcfBPm7XRjMNqoIm1AmJbPpOEfCRrAl1sRSpTGbSKogtiMmRJjqoOSHlWMZp7+tFWThlKRbSDAnRZOP3gAt4Lxx7zzIJKTtScqQ+0vWZy25N7pVeA4ul4+zYc3q0wDUN6puR7a6iAQboDjHgVhkC7LKCJB0AQgo0Kb4EPjpcEbWyZhOXSIVrSIUhLqZKtIRwF0UgJmJIyctACbmeiwOTFZf5kQHAhiUtQK8jomEG2JV0yPg+A5dReZ2yj8fyFlSiIIXoMKCk0XRu76gjpzHMjBRu8OpcAvB8nMDvAX4L8Psmx74D+DOq+htE5DvK718O/GTg4+XvHwX+y/J5bZu+Wj1wiHmZXpcnx4aMPfXYDM7r9DMr0jDcTGEIK6ZQLT4AGS3s41DnXRgLkAwdlrTSE85jPujqXFSX2pBAfaZqIqVIkxQJRcmTOzRvQXuETBDwzgJisjpLMFTTUVWlmQORBPR2To17EDHq61RpnBTAsLEaVS08iVKQAARxBCDl2ldCMYQTVUACftEQCMbaZ4dGSFFYbGHVw3mfyX6LxKdszx8Swil+eURomwFw1RuwJE1lfoyKT1OoibdVV5VSa68ocUPAqymDi1HYwrKzN8RZAAGpWRPKGlnWGczsZ/EUgul9UpWpZxydKybqcT0FLS5n9XIDZi9CLYNe9U65rLr5VVT8XyMwjeOxN9BRTJgq+ESGHJo1YKoGZlVTa9JRm2EMg/Xosk70LZ9DGTJV/Qsi8rGdw98IfG35/nuBP48hgW8Efp8aaf5LInJTRF5T1bef9Zzd8qO7BL+Q3mGNxpz69ezIVu3B+URrWyn+DGkM5woQ55oeOpfy8qMPdh4SaCq4UACoKqgqMij+rsLI4pZxDLkLq29EjmjcIiHiUiapK8C/wUmH14zLyqDNUEqatQy+5AnIhriq34SgNL6y+IqUJBwOU5hlGNx4sxYDpjgQT1aj7DEKyYELQlRIyZyPNDtUI+SumM88zgVc6/HF3bgVaDKs4wWbdz/Dp9ceVm/QHp9wenpKe3RKuzo1n4O2sUxQzoEE48JUSTkbgnHGmVmuxQIoxTys2c6JNLjiRRgomZopyEQr0ci2nsVkqeIs9VehOAaYE9JSOTXGmEA7XNyZJyJG3YauIPgsMlDhQbSrjK0buYThRrHzo0A6IXhTbtbIkiGaiQk25Fjcqa10eUo9235L7ntS17NdX3J5fs5V7bPVCbw6Aex3gFfL9w8Dn5lc90Y5tocERORbgW8F+NCrr+zIWOWa2TcZMICUCauyttQJ30mKeai3iipmiKKKHjreVorWFMDOA3ch1YddzdREQQpIrQAx6WT3+TKhH6WmnMUzdwM11eyBiNAjGkvySw+5vKVaujDbODZmLZF3MkEyIubMa6JELunXivcbDk2GCFIWA24VVE0uHvNtVrdtmwzJ1DSOZvPPtcpQWQdVGswMGh1sU+LyaeLiaU9e3KNdrnjaLMAt8YtjVqc3OL51k+XZGe3xMb49RtyS4FvLwegqsDrSZHm8F6QgOMWZAtMJOIpHo5I0o6nGSeo8cWyZkykHN5cJJztG8g4hoZLzss0KuFYgrqeq0ljmrD6Va9WqPNThn+07WyML6yocahprDwoWt9IXC1ZOPbnb0G83bDcXbLaXbDYXbNaXpK4j9x1xu6Xfbg/sSWufs2JQVVWuy2d89X3fCXwnwI/84V9e528C+TIh9eOnYesJNigLWBHB8HltOamxyfR5k9/VWmCsaPEwtIGbxhyoARr1v3GzTF2Pd967bBhXKJXUApMpk8UV81ZCJJvcnx0peWKqLqreAm6ybWyh7r4anGJcwbjnCusppkg0z0xn3E6CFJW+S6RobLTF40ey+kFT34ZAcI6+T8S+zHJhQZOOef3teZnGZZwXk+fThthFuu0T8roBtwRZkPE8lYBfHbE4PWVxesbq9CWWx7dYnpyxWB3TLFe4ZkGWQBJHLNxLdePFVVs5uBxwKsTW0Q8ihrFNohBEh/cTnCV0kTQXHSc7YboPBlGv5J7ACdmNhMdWZaJDohKoKn4JNfuyWTd04Bctf05Za1XIth8kZbSPxK4ndh3b7Zbt+pJ+u2GzueT8/Anb7ZoYO3Lfk2NPzn1Z34RkMxt7X0S8a0Dhs0UC71Y2X0ReA+6W428CH51c95Fy7NltR9s61ahPeQLVuZmnnp4G7FzttTXF/AceOwHe+f06+ZizcjIggErlR2mtVkAzrrQiq+krz2htGZoW/FblYEfXCdut4hce1KPZgNAVr7caQjtsVnYi6koyDNVEMlkATZWLKNKzmLLQPPESSiSIELw5M2VAnaIul4xPpqBLKvSFMzH/h4QX8A6CF5atJ4kQiTQu02im6y+IGZxrcemCfvOQy/uex4tT2tUZy+J4tDo5oz06pVme4BfHtIsjJDRo9oaYC1tfsyepC2hjrH/SzmTnWBScpex4jYVyWDLXMTV39SodFW6Di/BksdU5tOgVRspVphhDgqKjDaJ2X5E+GKCn1KMpEXMi9htyt6ErFL1br+nXa7rLS7rLNf12Q99tSf0WzaYnEjFTaOMsxsL0DoI4Q3bmTVkQpu7u83n7bJHAHwd+AfAbyucfmxz/dhH5A5hC8PHz6ANs9kaV6KhZnW7uAthuetNIaWUHEVzzIK5mXPYjA63PAmgDq212ftskBpiIG6iGTpBFFUKcShVnC+dZFIquvpcj+Oqw4sxBRi3irusym62ybIL1mC3Xghui1xjNiTpxQqGIKIM7nlXc1Xo+gUhj/gFOcA68CG0Txiy2bjSBGsWrvJanpib3Yu9vm9S4CBBcMHHExx6XoXUtC2ecgqrDkdj25zx+vGGToD05IS1X9Ocrto9OWCyPLAz66AZ+dcri+CarkzN8s0LcEeKDuViXYDPxFN//QM7Loj/p0KiIhrJ+vvgmBHANOBurmoRGDRWHEpxTOLe6N+xeX8QyHSyV5p2YQGMRlRSNSk6RnCMxRvrNhthvif2WzeUFm82artvSb9ekbk3s1+TUoymifUJjj8uZgNA4WBTg96I0TUkqKlbyTNVEPgFy8aq1jESmfLyOJ34eE+HvB74WeElE3gB+FQb8f1BEvgX4FPCzyuV/EjMP/gBmIvzmZ/VfnjJSriozoQMwT9mzA7faffW77nIAIwKp7DzDwpYrJlrZ6gWoe9M2kfum9Hww8+yw/kIxFzGkSqsKRvszmdSJVIdBvKubFJwmsg+4EisQo5KyIyeH86F4wlV22GYvxjRszEEJKsVtmoKBaohr9uTeI76BaBPnvOK8xUO4YGHPOSX6vlAZLGjJucLcimm9nW8Ah/ZiFowcgYDzppdwRfHlnCM0AScRiw4MqCZy7HDqaDWi3RNyfMLm/B4bMbMizTHhyMSFxfENQntCuzwjNA3toqVdLFEf0OBwIdB6j7YOyY6uL4FjSEEK1WrQIK6ZU3Qx7s3WpFoeZNS3FKTniPaescjkOaJ9T+q2xH5Dv13Tb7bE7YauJMDtN2s26zXddmPIMsVBxg9BcCUYLHhovMV7iFezyuaEph4nJS8BxrH5quT0hXBMCKQrsS01JkXc51B3QFW/6YpTX3fgWgV+8bP6PPgcoEDO9AD1cMXOe1R+ULTUC/eBl8quUl1W59fscQ+Tbg5yFgNymiCvPR3ABNFMkm6a/JcHWcGXoBU3UJtsQK2VE7KhpAwpQa45K4cKOJV7sTyNKfUQ/GDKrJStPrLKqkk8UYWoDUkzSZN9kkkqZDwOR8oRIjReSrzViMBEHI13JYOz0IQwKK1yzkOMRi76B7O4CMGHwm5b7IM4R+sDx8sGHwTnEpvt1hBEjlxebLi8eMLDBw9Qt6RdnHDz5h2Ojo9M5m0WJCfQeNqjE5qjEySYjsDLqLFQxEKynUOcmTfFWYiwUQ9HjAmy4r0QxKJRNUVccUyKfUfebkmbS/r1ms3lOZcX52wv1/TrC/p+Q7dZk+PWFKfF61PUPFFbscI5oTVtQUq5RIuOUaMWKJVMsanZRDRJOOcJTY1xqIAtVYtbOLcaC1GzFtXPF774yG4b5e4KO9Z2Pbuhev1dx+4MQt7wUwY9wt6lO3qFqQunYso4LVp4KTH1c05Ad9QOI6sy6LPKxaKliIr4oiCC6jknGs1hqDrqiAzvKqJmIiSSsxVWydVrxaRdUMtmJFQfehuGxUkJXXZsonBxnlAVkvoSXyBEdfTJF+cbRwOm88jmO1H1C5Rcf84VGdg7sndEJyWJp9ngLRpy1HVIkS3ECyTBDUk1heCUxpkY4pxDnSeI0EvDeZ947/5dtvFt4isPuHXrzPrznkhJaR6W+MUKDQsIC4tw9C0+tDTNEt+YCOC8x1OUsn1BFFnRPpNypD83ZVvqO1LflSQ1kbjZkNYX5PUFabshVnk9RVR7ahr5YDjJYj6GPacDMXLFuy84j3gp/kp5CCrLzgLdsgpBHL6YcJNzJga5hiTO1kNzsehI4UzHwiPiqv7iaqXAC4MEauxPNfMNNLaawQobb4EhB4B38m3uODSe0eq1U+X1CZU/ZKKc5wnQ0vfolFknu2qFVaceiZPnTsdTR6jmhCOYHF79FHJOOE0oPUpEJRMaR2j9UGGp5F1Bc6KPcZwnyli05FtIRe+glh1IK3chmS4rD59k3n6jY7VqOD5aoXhwnoSjy0WeFCU4Z2XcnExSdClKRnOPk56cHSn1xt76QNfbWhrysLmoTi9OMBfi4JA+g7Pf5j5vYddBlOBAXMY1nuzNZfq9bs3m6VM4hcVpIsVIn8xDsk+wTZAksE7KOkLMAR9WLJZHHB2fcXJyxur4iLOzM/LxiqyRbrum6zvitqdbb7g8P2e7viT2W0g9IkqKie3mkoApN0O2QjFCRpzQOsF5tezAQkFo4MUNSlzzBRCb4xIA5pumbJJEJg6su/ce9cUcLYHkPF1WkoIPrR0rpl1xAR8a8/HIZrqWouOxLHp231XthUEC5nhDYW1qau4qHYxglPfYbhhYhl3qKxWd1FaAWmE0P+63KTewFx5MWcgB1kedQO1bKUCq4zVzXqV4JU5CXZXiLpxzyaUwenj54GkXzaBTMC/AxsaiFiJtOhRLxDn43WctQUtG6ZXqJ2D+ARfryMNHHSlBaBa4IBahJ551r3TbnjYoi8UCfAaJJleXjEy+BAFljcRe6bstjXiLUsQUqVb5yebAO8GLhVGbLtECmKpbtMGHybaasHkwYQiRhiZ4Vq0nLQIni8yNRU/2PX2MZFW6Xlmr0qmZ1dbrSOxg3cOjBCqe5fKY5WrJ6Y1Tjo9XpNyz2VySYof2kdRFcuzMh0MzjRNWR0uOmoDPFwSBVoQmFBFOACeFkymFQEqtTCdi7gjZFI8+tEhoyDhSBte0SNMQu2Ryf47m4OUanG9x3rIIdRliVjYx0it4v8T5xsQt5wntksXyCHHtkF3JOUjFNCEi+FFhsNdeCCQgztG2K2rkF8UFlGraKQoU1WqbZfQeK2A5ZXd2GP+JD5EbIFP3rp4D6Wx8U33EhGMZTEg7agb7vYNkZnjAqChFwWPuvtUCkScyTmHjSnKL7XbLhQh5oYXCOiRIMZvqUA7bEmdATmLfXaEaxc3S0SDScnQs3LydWS49vlFS7osZ0HNx2XH3naecnSw4O7tJuzBOxzwlFbQvcQnmtai+cgrmNis4UI+oebE7ZxGM3pWcCc70H8FpKa6a8cFbFiUBdRmnlpTUrKaZBs+yDfTLQBMiohd4eps/52jx+KysU2SjG1Yk2qahA7Yp0nWJbnPO+kHm/L3A0fEK581G7x20ztECbTARhJwIzrGQjiCJhTeuyyMEF/AhoMXb0fkWJ40hdo8pWZ0rjl7mCRmWK3y7ZBNNfJN2QXKeXiw0vLpn+6bFN0uyBLoY6bpIVogB1DtkeURYLq3MnjhC09A0CyjVqAZ3drHANydFcXhFeyGQAAguNIbBtLr+RmpGngo8SlVM6VDznuJ4UU5WNR3TqDSDYRmAS6uCbvL8sY0IZRdR1Oy39TopeeJ1YJF3ri8IYmDFxFvkX5HXIRuLL1Bd8Qw1BFS9uYBqQ5KWsMxstz0Xm0jXw/mFErxCoyZTl2Qd3jlLgYai2tI0wRReWjT1vkUJCMLpsYcPGWJUhYtLY0e9d4TG2WYODucC3gVwubyLK+ayjHfegEITvXpyNH0CagEskqvSWoepqWZHm8P6/op3Ft/QuoB6j+RMUMW7TFIrMBNTT5e2JJQsGUdvuhX1SE40mDWg0chSlCSWs6FpHFHMlNpHhbxlkZVF2xC8o2mUhbdw7UXjre5jb/vISU9wJcS8cmFuiXrLudhLQHSBp8X5wOI4kGRLlxVPS3AtzfKI5cmJOT2tt1b3ISyIYlxZ8C3BUUzP3qwi4nGaaKPpV1bOkZ1DQsA37SD6GW7XYR0tOlUgdaDGvaWhwtd+e0GQwBgQVHYENZW3UmRFqgadAegsFNS0tlXeN225YVWrK1edNyDFWBI01udM20SW11H8mF436BcHM6M7aFkQdsUIHbX9Wvz41WLlRcXs6kV0SeLIOaDq2ER42rdc5AXOO9Iik1MkKbgSXZyKUkvEvA9BcRLt/VGaUFKHY4Va24XlKxQRcvS0riUnS1xJFMQrQeDOzSOO2kDjheAipFIuLWdj2QnGGeBNdg/mVtypR70b3HdVExlzXBlQqzCIJdWOnclo6nChKM1cXygjiPYIEaUh6taiK8VSqblSDs3ji74hE5wQBBaNJ2aHOssPGYrY0TshpY6FU44XgeAdixaWAYITFk2ABNFb2viM4EMo2Ys8fW7YdI4NIMslzfIMZUnjlxwfnbK8tWKtF8Rui/olrlmQ2iWbdmFxGIuE9wvwgbb4ODTiEMzV2baXiVrB0iZZnshkbuap64ibDTGW9OuxJ8eOHLdG4KR4hMateaImJfbdlbD3wiCBaQEL02xVTbcOcveuFa+y6RQ7sGiJ7jKtGXgd5G4pokbue0SEENyQThwOKwZhVznInBOotuMBO0zPj/dWjzXjaqK5dKqx8zF5OlpEPMm1rNXRJY9KQx+OiCeQeMRms0blDKcRiRGfk4UrqAWNmC3bdAqmLOtQTfhoY9KUcWzx0tEEj/cyFP2sdQBQ0D7RX16yCCvOVgFHRvoNqLe6iSnhyGRnYcSqFmSEmmdgcp7soHeJpImoamZLV7TYKZFFTduNQ8vGNu57a0FBJJQ1ivk9iEbjXiThXW/mtGomw/QITjxKxmXBpAOHLwFJIhnxlnSlmlNz7hAnNE2DF6VtHKvW3IuDQEwWA4ErpdwksE1btrHn8TryuO9J7RF3XnqZWy+/jmhDcAvcYkVcecTfoBHzYkzOowQ2ySwQbuEtlsGyqiA5kdKWPm6LpaFEVWomF91RjJGu64jV+ajrSH1ZXEafBSdquoliAgVzkpru9d32giCBqtUe+OayK2uQh+zL2JN7x3guJkq4osKTmryi5BfM2Qp61LsPAP/UPHgoecT8a3l2vWemoJxfakjKcsT1EZ5eZsIWjhcLxC9JckS/WKKrJc3iiOAcL7/0RTx5dI/HDx/Qr5+QuzWkjhx7XEpI6kb9CQo543LCxa54q5mjiUbz5ks52gbPMiRc9SghmE055Z7zpxf0/ZY2BAtkEWXZtjTe5jgER/ZCVLNtSwmfTSpEXPGFjEUks9wIqDPKHkGdMwVYKRQjmo0j0MhQal1iKUCTgR4wz0TvzGPOFfOjmSjNs890J4XrEvPSpIgarn51MnhDmgMUVBuqw/QRQonIS5nkQJ1xHTEL59vI/cvMY/UsTk5pX/ooq5c/jEbFZ+PmNprokxCR4pshkCKxiwa4WdHOiAHRuLuYt2y7Ldt+Q0yx6htt/UgDQpDC9WnKmGuExzcN0ixxbklwdsw1K/BLJCwIoSGEAPzpgxD0QiABkSo/y+xYKRLIYNkDRggzMaCsLIOvdgnqEVeUiTlVzdJQMGL3D3Zl+jqGOYK40ht5dlHtqygsVYt/vinrVIQkDfef9HzizceEeMHHvuR1Ts5eIRzfpl3eoF0cExbL4hmYOH7ygOOHD3j88F0e3HubuD4npIjGnpBjKftRPREL8CVLla4lVFnTFpeL7Tsm84zThJT8Q7lQ6hgbLvrMRR8R6UseRCG4ZNr9ku/Qe8x82Hiaxji2LPbufa/0nSVDDWIebjXUVZUSfFQUjSVLUuXsPBiwSyihnAYE4PHiCSQcDu8avLQ4V0qZSCEHpRZBFeMkW4ixIao8s6F770vp+ExOxhkhUjRRxrHEZFyIJSZdWj/ORJNmecLR8U2WqxNSFzl/8IjHjx6Qs9InJZcCLS4a0GpK5nyUswUKZQscU1GiV/qCoPGwWC3MNVgsDsN7R9N4msYA2jtHCJ62aWiDx/mAbwJNsOMuLNGwIvsW8Z5QTZEH2guBBGAf4Ay7TxWBI1avCpCqP5Aa3aWj6GDZwdTspDEW3qAq7PY1pbuy/VV+A9WjUdhHJOUEOWdSHDfcmFUokFBiTtx93PHJu09ZSuRLvvpjHL/2ZTQnd8hhSQhNZTBwwMnyFoubr7O89Rppccb9d96k214isS8KTh0SlFQnHvNZMB92Yi5ZiJXcGxdh11jWIOcyUdRyG+SORE9KW0QjOfdDzgISuKTQVVt5yebjkgUfebCUZRZkdHKyMMWh25rloTj21MxN1Y1Xsd8QEAl4WeG9QzFvO5xH/ALH0tZWEt61hLAolZ6rb0gJH64OCWKIqqZVSzlZCLLoUAvQuD0tSVgVj5JjMbt6GcQti8hrCAEWQVhkYekdR77hJDTEGHnw5B7vfuoHiFFo21Oa5piFD6AW/uzbBmmbUh8i4IPVIXQhkH2JY3AeFxztqiUEU/JWwBbvCcHcuqW4BTvxBCeUlxyTsIiJMFksnNnMtofbC4MEaqssuFGGKVuuU0UAlSMYzP5QqsWMWnkKEhiAcIDVkqRhB9Crv32N26+nZ4kfdX79+KxxXF3XsVlvCKFhuVxNHJxMDo7Zsc1Crw1NaHBHt3Grl8iLW2QXyMFZSq+i5BG3pG2OOSuY3bXHXDy6j243uIn7cK6UPkc0W7w5qmgqmu6oJNeRQ4+l39IhctBJBcWMEPHaI7lHUm/cRcpoVPpkOodt1+M1mgaaZPs3GYUjW98LXZqpzS3M/cM1FqvgXEligpkbnbPakASgBWktQajzqHpc8FZuXZaISwg93jU41yJExEFShVrdN5UAK29aA+cLosxFNCnKYwZHL1ufpJm+KuCqKFjyRQTvUGloG2UREoukLB2svOe4aejSmpXvWLDmqD3i1dc/xPGNl/Fta/ESi0C7WuKCxYaEZYNvGlywzMdOWrxb4H0DDnKObLsNQi1vZn4kiBG9TCFmKqRif8lSkAHOFM8oLscSsv7Cmwit7bLk1RHGtNADES6WAKj110y9lQfT3qBMrN+HhJv73oTToqGMdzPvasIlzHQOMlw4ZBfSzGa95uHDxyyXK5qmtQ1UkpWi3rLmIIRmQVgI6jwJbyKDD+QSYqzOoZi5TSQgLZze+hDiGh40S3Lc4uvzcyT2W3IyKp9STx+3pD6iMZH6SI49se9IJeglp55U4uxzSpDMkuIkEGRlkXCuN2VmK0g2OVsS5K4zZdb2kthvTG5NFhgTyJy0jq02xKQk39oKOQ/BKJ5V4lUkAN5DtKAeXEPGWyIRMcWccx7XrnBxgfgOJ1u8NDhnplApXJ9DzaQZ8wxhD8lnREvg1Wjd8T5YXkYyCUGyErPpMlwhCt4JTfBAoOkSTXC0iFkhvKPxnhw8zVHD8qjl5o2X+dIf9sNpb7xEXrUsTo9YLpa0i4WlV/MOv2gNAYRA8IFGTLxp/AJQzp8+4Z133uHi4qIUXKUUwVXLZ1BFTimRp1qzYFm2J9EERV9kAVNXw90LgwQqkJnHWzUhlQ2KOak4KWmbBoefPFBizaYYUilSQbUaCIOsmthBMmVzzKj75P/6dU9fMBgtpqJAUUTihvJlY1CRUROXI5mewIYmbwn0eAkWg58j5FSi8yLmMlcUX1D0Hp7GLzg+usHm+Jzt5sKcVkpW4JR7UhURSu7C2PdoH3FZ0djRx66kCkvkbLb3lLP9jmkIXHGa0dQPce8arW5BToZGU2jJzYrUnpA1IWRc7nC5Q9IWlcxawKUOCQtEstWKDC3OWz1Jq5Jmqc3Ul9/irLBIMnY+ScQ5X/wGzCnKNc4iHZ036uh8kQCMYHQul/kqTkjewjQzQDIls3cOj8c7Z4pTTDTpVRmqYScLefaNY9E2NG7FplN8G1FxJBeI3tOHElwVgOUCd3KMPzmmObvJySsvcef1Vzg+PqHxoYQemz6i+E9bJiEveKEAtP1++OgRl+u1KRCF4kqiZqo1l0qG7MMAzpv+pIiFyVm9CVFB3AtvHdhpBZIPgCxMsFo1z40hxyNlrkrDQYKQSR8zrDgq8K5TEu61wTxYO69uxtnst5oHNs60hcWwLwlxHVZRKCE0ZloTA2RDVck045ZN0DTMzgJtBFMOte2SGHtTdgWhcYGAJ/owcDc+gw8JFopXRWOkTf2EsvRAMUNlHbgDTRFNkZwL19BHM+1FJadM7BNdeXYJDxy/a4/kCC6x7bYoa4KYs1H0nuxaNFjAjAN009mqOCl5BI2lFTeG/mZxVttQPHhHWDQsjo5pV8ekFBHfFNY4IdueLl2CO4fcY1GZJvKkouxzTq1ugdcSZVjrHdhaWq4GMylLRcSuYbk65mKbadY9rtR5mCe5LUAdTPYPqyWnN29x587LrJZLiyPIOoishUexnVvEDtODUaojuQmh0XHfM+VySzyHUPRAlabZ9zzkq7h6K78QSOAQzNWy1CM7XpxzvCtpqCdyv9bkGSUzW4H0IcPLaMw/yBVd5SNwqJkOQsZnDD4Mo7jhvaNtrdJwzfEHlpVHSWQXiclKdzvX0vkFXWP6gQAm57tMzQyc1NKCB28KzyCB1WrBdntp/VTZVcUShCAgDg0eF5SULACGUnTEUZiFbE5FmqOx085s+jn19P2WFLeEisDUNNwppqH8W9JMTJaUVZOS+2gIQKPZ/Ls1ub8k5zUSL0lNIjVC8j0+lHRbvgNnpc19CEhoCKHBZ1PGqTgDqrACtTJoi8WCWy9/lJdfuUNKiqonuAaHsl6f0z66z+PHl2w256hu8YXjIUcsI5GaLoG+OG5ZFiWPL/4FJftwUvooKBa1d3R8zNEmEcIGn7Jp6F0tWip4NQuG88EUoM7jmpYQWhoXLPmIjGnGTDAZKZrBeh72laseqeSBm0RrUtKxpmIVQylEZPCTL1YzY4p/iCgG9yP6hOrvL8KQScccrYsYULFwFQFK3j0DoDqhE+Ug14pHw/OvNRnqqIkYepwkEGnbhsWixQcZFRniEGkt5DMHNAtOHUGCpQgrwTWtmmInqbmoioLD2DsHeDKu6Qk+IhKrUtg2T8rF1944EnGJGrabSSDFro8rClNvopMvCUkdeG3YdlsePHjI22++SU6JtrGaizdvnHHz7EbZmIZYU3F4QcWyr2ezKPRpYwExaYOkDb6/pM0byBtivMDR0zirJOR4goinbY9pmgUhtDYPzvQLTbPEhxPUeZbtJbjASy9/hFdee40UIScrx+ZRzs8foTmwWLxjeo6cS/3Imn3HlXBwqLaJ4KARRzCJ0sK7nbHpRoxMzl4tj1gsrJaj1aOsoeC2/zzgtZYyd9Rya+OeGWRVRr3EBBHsyKVTcdMYh3qvK/tPBrG37kkZNng1mxqnIPnqXf/CIIEpNa5s0MzLqbBqQ7UeYPDZzzq87CADTEWDXcF/6PP68VwlFuzmHBiOF2VTCI0pgQpLpwpkY2lNL7VA1OOzEBRagVYSS0kss6kxewVSLBl9IyqWWSZ4ENezXCXObizJ2poHQuxImzUaza02F3KtaqG8PhWLSMlj63TUiYyvYeYqRXGu4el5x5MnT0wf44RXX+05Or3D6eq0KGwx5WHx7rR9mJHcQ15AzsWbMZpuoL9Eu3N08wTNG8Rly6rDI0ShaU8JzQIfWhaygCKrt8sjQnOMbxxHR2tSUhbLE9rFGdHZ3Dbe49RElSYc4Sna9tCj240VRc2U5CBlD1VXczUeriZ3KWBv1FwdCaPKi+WSpl1YjH7dXaoDsmlwBHGTAFAZFdplO47WpPGa3X0oUwQw2c4V1kcRlIHoVZPo0OeESx10Ble0FwIJjLJ1/T3/Pi3VVVMvA5Z1166qV097LRQKqsx/paw/os+ZbPIsMcFs1m62KM452nYxJMpwzg9aW1VX8u+Zo47LkTZH2hRZxC2LuKbNjqxG5TX3iHaI7xAfcT5YEooGXrpzxEsvfwjcKaRI7i7oLx6yefqA7eUTYrchpUjfRbpekYiZ4cpYU9Kia7Dxt4slZzdukjJcxMirN89YfMWXc3G5pus6+hhp27bUFohjPbxiY8+UoC7JpfCG+QOgAeWI7BIqR4g/IoQVIZ7jtcdvMuJWCBDCKaFZ4pqWJkRyvyULLFYnhGZFaB3HR+dcXHQ4twKWgBZfBIcQCd4UhhQ7uvcNSsmngKMo/klawtILsymipQCt7RlX9BPJGbcjHkITCI2JDM5P4kbKnvHB04RQ8jBI0WsUZ7epIovRQqFU9VU9ZntxMD8zrlk1RU/1UAz/2++xpqHswdVV7YVAArVd5a479/CrHFZld4p4kGE6uTXWQKmcku7pHg6ihAOc2RWDHdQzu2MPIeC9BbTkwqXgSp1AelS2OOlZNcrx0uHSU7rzd5BN8XUngU84nyz81puS0fmFZegNnvb4Jn5xm+xOSzzBgrSG7XGkv8zEDfTbSzaXHZtNIkYhJjN/paxEyXQxEfuMNJ7V4hZ3bjpil6zIaD7nznHi9lFD1taKnorg/RqJW9QZV5NTxkyYvkx20R/URCuIiR04svcgAXFLs93HNXhL+KmAutZ8CqTF+UXhWjKuWSFhQeMdTbtAL+OAVBlcl033oi6RJZV8BZM0W5QYAnHUEFucOdc4lSISFb0TUsyD45rWNa8uxznnYuo1wDNHKMuhWJ8rpZ5lWf4Rbqs4UL6Xp4ySwrANS7yMThGBUmMmZhtVCjbDMfZSzN/PEIBfCCRQ2fpD2vlpwo7R44/hUzAZ2OLT9xHI9Poppq3HdfJ7csfOoaq1rStY3VzLeHMVT/TA86vuoGxS6UF6Gq+cHDlu3ww08pjt5drYTg9tSLhFsrBW35p86hvb7CEgvsV7yxIsPuCKdOgakAU0qXjACRw5R78UUhL6mOijubTGCOtO2fQRcZnWX6D9A3xSjtwF2Z1bVqNg9viYEknV8geq4v0RGWeurgg4Z0hGM1FBK2ArxavQ47B6CjWrcs6QnJA95ufvPElaHGZLNzY9G3KQYPnzfAAHSRN9NrncnBkV1Y4ub0l0ZDF3aHEeNwCG5V5MZHOqqZBZADhncxhyYjn5TGdimaUzgHPlmBCjmVlLljDrpgJ+aTnnwRJTRYcxxL0ka1UteryaU9L2Tp4RIR3/BMzbswJB/Sji8nBdFZ8B2YeJaXshkADYhDlnNvarZG4jNJWtH5UgYwrxifBFQQj16ASu64JU9+E5yO5O1nik1r0fUIdUwJ/fsY/MzK0XyVYARMzdtm2U42NYhkyUSCOOhUs0foMLkUXjWYSICw2EjGuPcK1HWqOM5h02GkbFZZxEct6i3QVxfUFOsRTc0WL6s4AdL8rCW8barBHtIhcPN+Zrn3qO22hJQwIEX0utKTEmfAisTlu8NMQeIlhAUVZiFrqobBPElNhuIyknUp9wMbLwylLM32Cbe6KlNrVZcoYIJLSoE1zjCmfhEQk435gfgcCm71h3G7wYW+9yIuaOy25NzD1Je6tYbtVaLclpUSzrADA107Adz2jVORtld95qGFDqGTpvDk+UQqbjig9K3EpnYozQd5aXsI/ExgOmOxBGESEXJa2oFYwxPxjHdrOl7/tRCT1kjXKDqCJi8Q5SbYQYLIz73Y344BrW9oVBAjCnpFNAmjrdTH9nZahFX11+pyA9HJspXUdbLDpPPlbP78sEBfBlEDaG75MbB/Fj+tswRR7ul6LdyTkOUWA1xXQriUaSJbAo+fmDd4UCCq7xuMUC2iUaFmTXDBu6JhgQM96RUkfXXdJvt8b2p0wfzYmp1kwYNdeZpMpmayW9nLNQa0v5Z4pXV7wKtdty2XVsHgYWvsGpQ5pAdg4fFsQEQRqW7YqoypZESkLX9+S+w0kmxp71+VOePn7I9vKCPmXa0FgIslpAVPV9F1VUQpHrKf4Nyrbbcrm9NGWpAzQSc8cmbokCSTxZLGTXUqCpcSMuAJExsUw1x/mS5bmUYcsZ59UMiSU6shePOjP/WR6D0bHIldoU5rwkpJTwxcU6xkjsva1P8US0/WvmvyxSVBNjQhub9jxsJrP4SHH88YMzXV3+YddKERVKnwyw9IIjAREmiiYbdI3wml83kYQKMshVOzrhAHZ6t+sZlTCDvrCyUmV+VCYH2fmuUHTG+4Mv54fblRkqETAKhiBiWX00Wzisl4CXUgJMkwXSyAKJjeVDcN7kVQ2ImMyMX6KyQGnKozOUwheQChA3NKElbiOpT3Q9pYy4Nzm66leKlkzV6g6IN0NkTaOkOVpyjNjTb9dcnj/lnbff4sHb92iSsvQeaRwRpV0dc95llqc3+aKPfhk+LElZIEOIkb7bEhE2Xce7773H3bt3rbpRTmyy8uZ7d0kp89LtV/jQqx/CvC/VfKyo/vSJrJ6Mo0vmA1oz+sYEUQOdNnS5pc/QOgFZoK7DzHa2DkP0olgaMBdK5GJBAibSBMznztGrJ7oGDY35LZS8grUi9KC0xjwwEfA+0DTlrw2DjqOa7rJKidawcXgxIFcV2rbB19TsrtyZjdJX8V+VEpcycsPT/TlVOF5XnvyFQAJTdnrKCRwy01WRwSL6KlsH+0hAR51BKfk6CBHXYsYp+I5NBgZQRnFC9586dDvr3mIAMs5MftkXT7SA5sb+NJIQkmvMjyAJGk2EEC9IajFNux/ZWEqxTCLkCIXdt3TfHueWeAdNWAy5G1GLEXCFxbRQa19USiWtWfZkhOAyfa9sziNpuyZuL0jbLXHd0z18gnY97aJhebSwmPjLLX0XCTER7ryObwwBOAHJCfqtae9D4Hix4Hi5JCmsN1tiVs4v11xeXhJC4OWX7+Bdg6rVSxSg6xKbTcb5JaE9woWVZaluAmhi+7Tn0cNL7t99zNOn5oyVJBGTRQBmMQBPE27SCFD14DVkm1Jm23VIzkT1pt9wrXkmOkv7Ba74EpivRVY1BaR6SOa4ZaoSsdoIzhzHijak7KPxX90ldVxV7NSajEZqjERJSZ5HHZWTmccKlBJtMj3uXnAkUNs0lTX4neNzTuCwoqO+ch4UIoP4oMbaOnPGs0vLvIzlwg/pBOqpiep2Jl48x3uVzDSWd8/j1aK/Mp6YPbELVjzDK1sJoN7CdrMVknQZNDkjdamDfIn4YOhPA043kLbk3hJWOjy9BlSLJt6ZpcFVbqP+UWMVbDPFJIaAnDkwRY1cPO55dO8JaXMBccPCKUFazo5aFj5xsnCcnCxZ94k+B0gBnwOp6wmh6EIAF4QWy3hz5Bc0d17huFnw8PE5d9cPWB0d8aFXXyGljtVqUcKaFbJVFRIc3rV435Kd+QksVmdEAfEeST05P+Xe3Xvcv3uXy4s13kPqztHuvBTwsNLrltTTGbKsBEItxFtwrLcd9x88wYUltEdI06CUgqdJidlk8IDHqwmYGiz4SbLDZ1+Ui27IYcGwxXb0V8KQX6GKp2ZazKXycCoOYQ6HhRAPYpy4ktzVPAUth4YrWbmKuzXgJAzk4lB7IZDAzO5ZlBg15eYuJ5Bz3ov82w0oqqw/6BBQVF19K+atpUBLR0x0K5Rb63/jcana1nGs4qSkdDPuRCeLrZoHJZPl/bcsPj4no/zOipBrNsqeBbYOc+NNikvmUCRJyH3Edx3SrnGtFE5CIXk0rsmbp6TtJdpHkwyyI2dvyrnekmtaqSpz6kkJ29CpeF+WOTHtd7AswQnON/DwSUfebAkayY0VSfVti6OH4Og1WxRkWOGT0nXCm+89ol1swXua5QLxoDHS+C2NdGw2lifPxUSjQoujUWHZLnAIcb0x64eUSjvJQm7bxQJNCR8afNsW8ckUc6ujY159+TYLOrYXjxCBxckp3WVP12/YRrAaj96yACePZl8EcFBRC1YTR2iWZGlIyRUvy5KpSBXLiKbQKxpNn5KdpYRrpCVkM5emsv+GrEYmFw56p5oTZ8DDg8LbEqDUiFDvTOzL5v2FairigLmhJ9kS2aIa8eoRbRAaC9d2DY1zkH4IcAJTb6jRQehZ90w9CAsiqYoSmYSTFh1AFgvUyc4NsdkU+UyG63SAf639URWIMmheVUvAyyRy0T4H9GOKI7Wx5MKdOEpxEY2loAdFrDBEkDAzW58zLlYNMPis4DvcosPFAMFkXKKSNhfE9Tlxc0lar9Gup99s2XSJy01kvenJGctUhOUGTKqkXIpgSEmwgYXzijTkki4syYLslkTpySkjvYkzGo4t3VbqOb/I9BmOTlaEkwXn6y2X5z1Nb8hi4RcWsVcSYPap4/zinMv1Gs1Cu7RU3Q8e3EMl0bjAom0t2i4E2nZFszyhXZ2ZorTxpBzp+p7oGkPi0Uqf3Tg5wnenvBXMRn/j7Ji127JeC+kymo4Cj+QA2RuHFYwzQCCmiPMtp2c32fbC+TpaCbcMXqssD32X6NZb1udrwuUlXexYb3qCWCCXww1OVDOmtSpkhdmesnMMXKaryEMsqtZ0GMkCr3wmamS9fcrTyyds4iM2/QV9WuOyI8iSEI6QpmWxOOHm8cscLc6uhKPnKUj6u4CfAtxV1a8sx3418C8B75XL/m1V/ZPl3K8AvgWLMfnXVPVPPesZsKsXKPMxsQocvqeKCaOX1CEGfehHRuCkWg4qN1Ep+ES4quCMSPGCqxaCym5RKIcaQGseMHS50+zEAETTvGc1M1y27L2UYhGDxUOEHo8rlFg0oQlaQPqI325xTYNnAxLRiCGB7QXdZkO/2ZD7SOwtQUYWhzpjB1UcMUVjZ8WbjCylwKkPiJgpLosvFcYamqObHN/JxM0FLnc0LrO5OOdiY1gvpY1lPNbARVC0gfM+0AdPiM7qAeYti0XLnRunnBwv6dcb0lohWKbAVWvONn220GVxga7rcSK0ObPFcbo64sbpkqNbZ0jT0i5b+r6nk0xMGe0uyRdPuXhwn4uH92mCJ6tyuV7TdUofA12Ey4tLNustIXjW6omXG/w206yNozBPwh5xS7oI6y6zlAU5qSHOFNl0G87XG+J79+j+z79JeOsIkcSyT9xgYVGLktFsSV3SVM1UqH1FBDsaL2oRHSdCCCXjdtGBZbXkL/jIen2fT7/z93jz3U9z0T2kS2v6uDHCoJ4mLFi2C46XN/ii176CL379q64CvefiBH4P8FuA37dz/D9R1d80PSAiPxL42cBXAK8D/6OIfLla/uvna3WSZoeud3bY72JUzMzGpwXvanX2mdhRJ15h+y7Go1mxZj1CKcE91bvMsD7KDJNYsshsBUI1mwKvOI1o4UbM9l1EFxxRMy5bgg9z8i8ZZUJEup683RY51lkk73ZL2m5JW8tAm/pk0X0IlPLdOVEcXISswUKCE+RsIgAScMWjL2OypnOexUnDzWaFk8yysfTiD+7dZd0n5OyMViPdugMCm5i57DJrHJt1Jl5suNw+4c133sV7x4/5qh/JV/3wH8b9x094cO8pwTmCD1ZdeLmwzZ56ZNlw+eQx/XZLcIk2QWzWcHFBaCMhJbrHj8Evia6lT5FGe4iZyz6xjUq7OmHbdVxsLtHUmsLV90SXiV5wTUtsWrpknJOPZW2dx/kWIRBxaOPRsOKiz9x7csGTzZZO1ThAp/S5I22Fxtu6KyVyVIr+JacJV1v9RequGvflqCowomDu521JEFq3ZvV6VLp4wZOLuzx8+ga9u6SLa7ZpY2XNVGCb2SRHl25y8/IOMX/plfDyPFWJ/4KIfOxZ15X2jcAfUNUt8IMi8gPA1wB/8Tnvv24c156fuxwPd83OScp4hVCBvMgAMr2uYFwtvxVjxaqHmwjFTCN4VZypr3EFsdj9FRGZx5hHQHNx1LHClbUuQMkYgiJ8z5/8C1x05iBSmHOcZEv9VbXMwYpp4t1IVHIipUROseQFqOYqIWUtmmRDRhVPDRYWZKhkOyaosD+peR4plMlb4dT1es3540tQ83UgGxfRRSsFlrKVzUoKfS887FZklO0nn/DJy08S1xd85Wu3aRZL2+hNy+roGCTTxy3HR0vO0xucb96j32wIXeZRFO5tInhftPQt+CU9DZebDasAK+nRi0fkyyfkHOn6zMVaCdLgvKcLC9JRi4ae5B1925DSAu/MndgC1yxJZ6YoI8WhzYKn0fHW4wvONz1useLGnducHd/ipQ+9RnO2IjiFp5fo4zUWQVQ8WHMmJftzGABL2Xt1S2uVJykIv+yfEAIhhGGtLEVYSZzSr+niU5JcIE2HYg5SvtRt6PsLOsk0okQek2V9Jex8LjqBbxeRnw/8H8C/qaoPgQ8Df2lyzRvl2F4TkW8FvhXgtddeq8dMhp6yT8/R9pJ9lqYVGIviMW82XD5+SGpKWqqapXgqChT7+SAulFbDmAf5TEGOE6lZ0XU1uafO/rJmS1utFuyEKg0bNo8fkPotwbsS+w8gXG56fsWv+GVzJGDJtvDOUn2HxnLuWZ45HQqH5CGTrRZnFxNFqhIrZytQamXCdUhxZkE2YShjrVIVhILzwf5KZl4zdTkuzp/y7lufYbs+x0uJqw8NKWW6GOmjadCzONbbyNvvvkfMmS/52Bfz8S/9En7jb/xNfOU/8U9Z4U4fACnZcDMxdjSN42HnyJvMOj0AYBOFy20kaaRPa7bbzMU68c6Dp7x79x5HrePWqmElPQuXLO3X4hiVlmUwl2uagJzcwCv4xiMh0JDw3tKHWfFQq7iEa/DNgmZRwr/JPOwUDUtuvfZhXv1ww82jM27cuY1bBcgdT998hyePL0wMwOYl5cx2u6URSn1CSyqiqgXZTitbF5OgQtd1paDsVOyVQfTdbtdst09J+YLU23XBt1YhySe8JnLeEvNTYn5K0u2V8PPZIoH/Evh1GJH4dcB/BPyi99OBqn4n8J0AX/mVXznAW9Gb7l1/FZDvHx4xyFA7D8gpcv/dd3jjB39gADBxpowTrVp+NyZyUAZ23QdPKLnuLKOv2YRv3L7D9nKDCwuUCox5MAnlbMdiVhKC5kTQNd2Tu2zOz0tNu+LbXijwKE6MEQdalINatdJiqapTTsbil+ea7GhsY1YrZmnViS3Etl5rKgsBsWpBFCuMiR+jUxXFg85k1ZLn0NmnSrCknGQaEcM6TiwpKBmfTMttDjW+KPkafNOyWB3x2hd/aeGyzNtBjKVAyHSbS1gcoe2K6BfmSBMatFmak1OfkZS47J7yznuPeOf+Y1oHjxeekxaOl96CuLaB5WrJjcWK0HgWRyuaRQtiKbyN1c62Dm0guEoUPL5ZsFwdc3xyQtd3rNeXKBFxStMGVs2Co7Ase8KyKuVoiVhUTYEnpcx4Dee1j0p0CrdZ9EuDq/yEKE2zChU0gBQX6O1mTew2FmWaEo6Az97MqiHSOCsTnzWx7Tf08fOMBFT13fpdRH4H8L3l55vARyeXfqQce//PmD/vfYyNGWWf+u87sSq45ETKVlJKMIop2TZidkbtFKOexiEHElYaLGsumNwT44auW0OMiAh9by6irvh355yJKRFL7kBNiSwb+u7S3IbVzFNDWi1gKjAWIWbQN+QsVnUoWgRbSok+JVIsfykBQvCmMe9jHBBF3/WFraQoAP2g29CsJE1W1k2LO6yT8tssaGLBgmWTmmjQNi1oT/DGoYhg3n0CPcaFeCwHTs6Zbr3m8vyCFCNdt7X0XDi0xEAghhRzWTvnK5eiVnQzWF1FzYnktYQ150FuTuLoxXGZoAkN/SZx0iRaim+lWPFO5+xd1Hu8NARnOf2drxTX9BS+DfjGlLS+DWiC0DiaRUvbtOZhiHlVEjvLyRg7ci5p3xw0TWDRLmgXbSmaoqMOSZUa+Wc6JxMjHELf9wNBEjcm1jHHJEskKxJpG1u7lEtVZHRIfZacOaKlCH38PNciFJHXVPXt8vOnA3+zfP/jwHeLyH+MKQY/Dvzvn80zajsUOzCO48q7GLmBKv8LZ3fO+NL2SwmCZW6d5HAbApOkJDmVEVe7wibHFMkplsSenuXRGac3boNvLUY95YIEivhRZfVs1BhNBL3k4fYBOUeQyoIbbzLEkVXxkMl7S7E0JPtLKZmsmWv6MC1aejOBiwh9ivS12EiqKapqbceqEC26Aorpqlg9UCFKqZI7zFEu3ojKom1p/CmqHWimaayakOujOfCoWshyr7Quk7Xn8YP3+AyJh/ff4723PsnZzZs07ZLsAmHRkqPdm7oLgkROlw3+dGliQzDqrubXSMiOdHbEF73+EqujJTmZ4rIWVLlx8w6uXZaiIUrSnph7VBqL+/eOZRNY+EDjHG0QcBHL0W/FVdqgeJdYNBCcmRRdcBA8wQfjkrSUZSMCVuwlpd6CsjQP8+ycH1e4ZJOuNSIZdmvxBda5jsuyVtXsWnbMkfA+EVxv3phYVimL81AkCUhj7uUarjW3P4+J8PcDXwu8JCJvAL8K+FoR+dEF2j4J/MtlwH9LRP4g8Lex4LJf/LyWgSk7RIl+OpQI5JAr8ZB/jX3EYGq/Ak5NYHlyYgte0pjXrDlVgzv12FLNOC9oCWx59OiC84un5Jg5Ozrj6OYtTm6e4dujMskyhBXnUl1HKUCbjdXN28c8vfcGqU9oK1Ycs7DvUCPbzCFkqK1IoVwJ4xyKw5SJG4ZgcrIMP5ozsVSgTYVLGJyrdKI8xRJpWtEwE0dysZb86T/7Z/k3fvl38Ie+6//DV3/VV/NX/8Zf41f+ml89sKa/9Nv+Vf6pf/xreHx5zrf9m9/BkydP+X982zfzT/+4r0Fz5t/4d/49fvkv+Vbu3L5FDNAEiFHouzXvvfcOjx895Mmj+9y8cYoviUBXbUPXZ8u42zacHi+ReMJRA0NcvFi69iBWLiy0DYvjIz607kjJxJm+2yAKt26/zMmNWzw5f8zF0wesN5cIpmxrm4Zl4zlaLGidx5NpQ8lf6SklvwNt61mtAlYzsqaNN4LgXXEAlmxpxTJILLEuzlHLTeeiqK27cfjQ6e6sHGxZ66IbGC3eNRq27uXiM6AWkISW4rYllsTqbpZdX4KvruOln8c68E0HDv/Oa67/9cCvf1a/O/cYViwjtWop+eB1MCKCUelXJm3QJsrQj5ntFLAKtTEqOVvVHSs7VdxyCxKwkFBfgDjhUXoiF+mC97b3ePfRPR6995DbixssVqe88hGHtAuLtpMRcbmyshZYYvV1EglkQXYO7ZXcClsv9F7QvrqD+nlUWUVWWSwPf8H2WpSAmi23X9UZpFQ1CZCyQq5yvZbxYPNFMv8GLbYJMc3/xfqS7/r938NXf8VXWhRNVj7+ZV/GH/lDf4jVquXBvXt8/Tf8FP78n/gj/Hd/6n/k5/7Mn87X/fh/gm/9pd/BT/y6H8f/+D/9r/ywf+hLePml27Y5i5IVb8VHY0p0fc/FZjOINCkl+tjT95HVYoEko7yLRUuQJTklSygK5K64xgaPuMxJ07JctqQMXVK2mxZUWCxXHK+OWG82PD3vuVxvCRvjvlbLJSerFofHtSZsdSpFR+MKwu6JUdhudWI/ypbMVR2ala0HFWXRR9o+WbkxLUVZxWO50wvRynnY0X5GqXJx+50gCEp0oqtrFalhwSMiMBBxGnBZgBbRBdXd3hKpWuUtFwQJV2vaXxiPQZhS/n1vwasCiup908/d+6rFIcbEtuvoiQiWedcCO0w8sKAQVxRAbjCH3b+4z8P1Q877LY+ePOK9++/yuL/Hxz768cEkmWU6fqg6vlwRASVdVcXSBVZrMU8mVLrmQQD4zt/73XzPH/kTAHzTz/hG/sV/4Wfz7/0nv5XXXrnDz/+Z30hW+E9/x+9mtVryzT/7Z/Bffff38N//uf+Zvu/5CT/uH+fbf+HP5c137vKv/PJfzY/9yh/JX/tb/yevvPQSv/nX/79ZLJZ1Bot2VPnPv/O38y0//1/gd//X34VtuczRagleyCmyWa8x7fSGnBNPzy+sGpH3+NDwXX/we/mNv+b/ybbrEaCPcWTPihUka2a9XvP48RNCu+Fyu+Gtd+6Cwssv3eFkteRivSb1PZoz3XZL31vEYOwzXcxsUqTLGSTjJFiodJ/YdoZMYoYuZd67f59Pv/EGF5cXhOB55+57CMrpasnrr97h1Ts3uHFyxLJtcAlCMn0JwHa7LdGtJeNQERU9Rumjt2Q2fY4s+8i2T2xTpi36DUP+I8KuRMI7K0Vv8F4KiYghkDpV1WrjQxgUvzlnXCiBcc68TbUgWeccOLWcERIRySV3QaT1QuOuzjZ8tUPx38dWqdWzr5ub5Grb5RQsF6CF1/rQDBpbHwLtoqVtW9p2YQqcZkGzsISSTdPivefho0d84hM/yKc+9SneffdtHj1+yGZ7yVgtNo+23ENWDEbPwYoAXC2OWjL3DmbiwUaq/I2/9bf5g3/0e/ne7/6v+BPf/Tv57v/mj/I3/8738Y0/+ev53v/hzxWKEPnv/syf5xu+/sfx//3f/zKfevNNvud3/Ef8t7/7N/N/ft/381f+5t/AB+HTb77Fz/3nfwp/4r/+7ZydnfBn/5e/SNMEQmNKvRAcf/f7v493332Xr/1x/2TR01khi5x7/tpf/av8M9/w0/i6//tP5df9O7+cnCJf+098Df/Dn/sL/KJf/G/xi/+lX8jv+wN/jH/uG38yJ6c36GMqStFSPcrValHml6AZLi4uefDwIW+++RZ/5+/+HT7xg5/gjTfe4L333qOPPVnN0mIKsjHaTnGEdsXJ2S1u3LzDrTsvc+fOSzRNy3qz4dHjx9x7cJ833nqTd959h/sPH/L46QXiF2y2Pe+88y6f+MQP8n3f9/288cZbrNdrnHMEb+G7oQlWsryUMjcfDfPTcPWvJiaqPIIqUSEhxkBlY/YdVqUopszlekOMuSADSqITKUinIh8L5fa+MZOfMzduZKxxYL5dzmolekFdQn2HNmty85QczpGwwbmIF2hdg+eHQEHS57EAHAL6yjmUK6CwS6aBLSywpcE0G6orEXxVJnPe3HlL6XJwpaiEQI4sFktWiyUXF+fcP3/E4/OnxG3PrVsnKIk+bpG+s/t2U0tNQp4N4O17qskiqhJyEGXM1GQsYuYv///+Kv+3n/DjWC1bEM9P+vqv5X/7P/4av+jn/UzuPXjIO+/d5b37D7hxesKHXr3N7/kDf5j/9S//VX7GL/rXQWB9ueFTb73F66+/wkde+xA/8kd8HHB85Y/4ct6+exffmOmPgoT+g//sP+ff/7W/Eu/zoIQqtcT5UV/9I/nT3/uH+eQPfpJ//Zd9B7/1P/x3OTk64r/4D38dpzfOOL9c89t+13fx2/7T/4Bf9et/I/fu3+eb/rmfypd+7KMDZ+PE2GhBrPxXzlyuL/nMZz7Npz/1adq25fzJOR/+0Ct89CMvc7xa0jpIi5b1uqPrelLqcA6Oz25x65VXWa6OCCEY9ddP8Nbb7/Lg4cNS4cfTdT2IcPPmLX7YD/vh9P2Gz3zqB7l48pCujzw9P2e93SLOmQY/+JIg1g37S0QGxx2RElIuQhQTB0JKeNfhvBUAjdnqPOQusblcc35+ToyP2Ww23Dg7I+dj2lIluCpnkcpt2C7MyYK8cskYLWLJULJguosmWMk6PFkUiCBr1CeQDnUJUY8j0IZjvD++Eq5+yCCBq1n+Ql8Ge5cOKaLM4y9PpSg7Vl1/rcOSELImbzQEoVi5KOcCt27c4ote/wjxLUV8IHeRJiws716ykM9K4Q9xJjYyBx76rqPv+sF+Yd4BiUE7VDwJq2HQ8uZH1NkdVonI81N/0tfxp/78X+TuvXv8tJ/8dSyPjvFNw7f/Sz+Pn/czfxquUDGAz7z5NsvlgrObNwDh6PiIi8s1pzdOzflEHE/Pz/n+T3ySX/CtvwSA9967x7/6b/0yfs9v+y38qB/1VYi3Ogg/4od9nKPVik/84Kf4ih/xD9E0Dc55fvNv+11827/8L/JH/7s/zT/8Y380/8iP/mq+41f9en7Nd/xSU1zm0WdDc2a72bDdbHn69Cmf+uSnePvtt/Au8NYbb3H37Zss2h/Dxz7yIUvQWiocZbVw35isjuONmy9xdHICqlxcXnJ6dpOmXfDo0WNSTiCWlKTvI6+/fouv/uqvIuXEarngvXfexBNZLQtgF3PkIYvTbqLbunmGNF/mdEKPskk9oe/otx395Zp777zDvXff5q233qJpGl57/XVu3rjBjbPToSqyZS827qMJll+x6zouLs6Jsbd9XcWH4sfgpEVYoXlFzhtqGOzgx6GOHD1ejgnhFsjJlbD1QiGBw1R+xMbTa8fjOphV0Koxz8XDzReX36qQLd/NZoOvlLsmbChVjoaalWps3q2zm/yIL/8RbLNyo9uybJasH1ywaI9pmwWhXRjmVx02+6i9TyUzLUQSab1ms92YCzHmWmx16pWaqbdWCfqaH/Oj+Df+nV/Hz/3nfyq+XfKn/uz/xG//z34TJ2c3+Dk/62fwS/6t/xf3Hj7kv/9vfx+377zMT/lJP5F/9zf+Z3zzz/85nJ2c8Na7dwmh4cbN23gfuHn7Dggsj45ICjdv3xo4gRu3bvGZ7/srQ9Lmb/hnv4l/71f+2/yYH/Oj+MSnP8NHPvJhgvf84N97g0988lO89qGXzZbhhL/3yU/z9jt3+cf+kX+Mv/W3v4+z0xOc86w3G7ZdN4Z/F+vL4BQDkJUmBF556WWOj8947+67PHn8hPfefY/XXr7FIixLWbcRgVTqGJoFoVlwfnHO4yfnloC1XbLprASac774elg04q3btxEn3Lv7DpvLJzhNtF5xLpg/gncTh54xz+WYUNaCxaSYUFXMx8GUgUJzvOL45g2aRUvqNqTNBdv1BXfv3+X7v//7WS5XPHjvLW7euMlrr7/OcrkclOLOB3PL9rX6UWK73RbOicLVJqtL2Astpyz9S5zHNTmfYxmUjYPUbFYUUsvi+CWOlq+i+ehK2HthkMDURXLK4k8p6kEkMRyDnBJPnz7l0cOHHB8fc/PWLbMt55JBp9pavUeclQtDtIRpAupQTQy5BtTcOFrfcHp0xqt3XsM/ecqTx0958ugSx4Lgl4MsuTu2WpjUstgqMUf6vLDaARS2smiOtTr4V7EF+Imfusu3ftnH+eaf920A/Cs/9sfy4//SX4O/9Nf4R4CLz7zFR4+O+If+6J8FLHDjk6+8zk/8J78BgJO25bt++k9n6Rzy4BGr3/rdALT/61+h6zpW/8V3Xbke/s13WP3h7+XkL/0V/vpf/+t80//yv9AUJ6jf/nVfz9f/jR8Yrv2Vf+gP8Z/+hJ/Ax77nv+GXJOWf/W2/g9+z3fJrv/Zr+el/7+29vt945x6/7D/8Lzi/dYPf9Uu+hdu3b3PnlVf40Ksf5t2334HcIZLYbrbISS3tbojc5PRcLGwexHN+YVWgkwoX644+a6ng1HB645gQAk3T2jsfrSxhSoykboNfWVyBbyq7bxzXVBwY1rM48xhRKQSkmnadZ3XzBh8+OiX7FanfsH5yH5zQSs9HXr2Nc46GSOouOH98j27dFhGguA4XpyBVjJNBS4mzQucq1+Ejq3CDV298MdIHNv0TEEstpyS6vLUiLO0pt29+CafHL9N3P0SsA8BBin+oBkFFFCIUG6mSYuT86VPu3XuPlHqOjlf4cIRilXBqDYCaVLIqdgzLUsyMvjABFg1ufkOOxi/40Ide5+7D7+ev/9W/y8WDS/7hH70tjPuYsHJ33CEYNbIxOiQtjOWzCxny5WsaxlFbuFzz9b/i2/nRDx+yOjnjo1/yZTy6cXOQ1//it38LAlxOrCbf8ou/hX9RKsU1JZQ4+N9/5S/lsozp2/61bwZVLkdDdGGmivciwh/7xb8Ip8oThJ+G8FMFrLpQ4v477/C/vfsm3ivHp7f493/6N5Bo+ZsRQPidP+fn8fTxPe699w5/tN/w5Ok5XR+LNUT4nz/8Cr/1m38m3/arfxOLZolTWC2szBkKJ0ct7779abMsjLuBMcipFDlxNt7ttmPbRZ5errl79z6bbQLx3Dy9ycc//mWkbA5c682WdrkyMQHh4vKSRTgqooDHl9qRw3OGPWG6HAdDoL8jIFhhE5FM9gG/WhKOHCkb4ZF+gzpYNZmjl86M6hclZ79+THepprsoImi1ShgBicW/wJBA1mxrozq4IRy5G7x86tj0T6ycW4P5tWhGs9C4I5ZHdwjJsVk/uRLmXhgkYJMxsv5DTP5EFKjpyPeagHlhCTdunNE0nqOjI1arpSWyFEg9aCq+Aa6wWEUpMyQaVagFI0d1ouJxNG7BzeMFN44ecLq6TR8C240l6GhKotDa5qZOMwlmhZLZyjzpYiqiiiI5F6cPhvFVHUaMib6PNCUgJ0t1MS3hJzoijsH1pAJ0yY/f91tEhMWyLSbQwRzN5MMMgspgragp8nWogWfiC4UyxxhNvt/2PLm4BLfEOWdybFacb+gvL+j7zvI8igyOLKm4sSY1K0JOVmClaQKLxYLgAzGmIXjJOUdKpryVkvvf2GhP2yzwPvD2O3d56527bDvl9OSYW7df5kOvfZjbd25y//49njw9x4fAerOh7y0pSS6AKVKKuQrF7bvEc2ipX1DmRyjXa8BpAzhUEtJWz1JwyeGz5VJQSWRXXc2xZDeuxIkAIub1iY4h6apWQEVdVRxbspMMxbLlSDEjUdg+iZw/XXNyY8XqdIn3DYt2hZcGTYpsA/3mCVk3V8LeC4MEqr19ni1o/5rp9wHQisOFIBwdHXF0dEQIlpY5xRK3b+52RW4qO7xE9lF6KV+w1N3lqALq8LQEhNPlGbfPbiPbhuViheDJNSBnh5JPrH1AyVWcTUxImgcXVTRPnmfef1VdUd2DTfFomWgRh9ZUU+VBUvoZXFXLuzx+9Ii333mbpgm8/uHXOToqWmIdx1t4KsbZLMioKjsprHApndb3fSnI2ZNjR+wu2Fz2+IVlKd5s1gQXLUTZuRKFZ6GwGUgxc3Fpoa0x9/Qp0UXoe4u/3242k/oTmNJWBlWpRUCWyRWE09NTzm5ccHFxzsXFpVH24AlNw7brWK6WNG3gk5/+JJ95w3H37bd59OARuestHsMFsnpLSFqVfiWlmBYgVBHMzds4Q68el71xDM6RgpBDQcIeXFS8WrGV7EqSV4q+SXJJG+5BzL26WpcsZL26mYMUF+McihDiPIKnT8pGIV52XD7asAwN7UlLw5KlHNP4FiTh1NFHWMcvTCjx57XlHKkvOY3+m7ZDdnhzxLHta/HuVgbKF81rLVsuamZALZlbx01UpDyDpqIdrpmEbBPkYtoCOF4tOVot2B51tK3HOYtIM9/8EZnMRBbHoO131XpRko8KZv9N1bmoBvmU1897CMACbHI012JzF7R5qYUxq8Iup8yD+3f51Cf/HovlgqOjhY3D1BDWpAQsK0N2pVznWgenZXKOiFpqtL7ryGmLyJbYn6Mus1wEtmkDElgtF1b8MwV8aJhK0qix4utNB8Cm33K57QhL4fyy55233yVt1wg9L92+wbbv7S8mNn1PlxLZKUgm5R7VntXJgtMbJ4TWcXS8ILQelcjT80f84Kc6np6b2/D9+w/ptonUdwRg0RwR2iOQlk2vZDoLjfaulJWvIpL5OeBNrAsCDa6EUQu4ouGXxta/KA89GCK0jVrSu02sDVjm7JqLwiUjBjlXxGA1CsRVxG9rrqo0LpB9sM8+cf7onLOzExbNCtGEl4QP9tycI5vLh1fC3guDBIARaEf+dkZZ6zX2mRnKK2kJhxVHEksEYY66tllyQRSW5SXhctUnmF9AZfSK2EsWJUvN+BNQ8aUUlbA4Oubmzds8enhpZaimfDV12DIgAztQIa5yIZAtDMaQgPdEnwZRYWQWMVnUVfOVs9x2XUeMXZEbLVDF7PAQnDNP8ZzJOeGd45WX7uCDJ8WOi/PHxS3bFXnWl8o+gw2qfJehDoOIEFxjSS36XEpvJYQt6IbWt/gQWIg3u7XCtsts1udstmsDgIJsjO215J0A6+2GB48e89Y7j3njjXe5d+9dgot8/Mu+iG1M3Hv02N6rWXC8OOHYNfRJaY7OyAm2W8vIiyqvfeg1vvqrvoKu67BS5wucg+A9i9PbvPrSR8hZ6LdbRBONV26cLFmuzv7/1P1bzG3blt8H/VrvfYwx5/xu67bXvp5Lleu4qlyOTZAgKOYBFF4wDxYvETwEQiLMQyKIlAeCn5CiiCAREz9FKhQJLCUKkRxEhCwhg4RIUGwUW8apcjmuU3Wu+7Ku321exhj90nhovY85v7X3PnWsysPK2Fp7feub9zFHb721f/u3/x/oTHyFsoiiNLNVEZsrSKkyBp0SyHgKSFw6Bq6xChGceBNKLbLoDDp8nUKV5f411aF+a4iYc1OMZiUfOiuTS6nW8tU2veSCusLZ1Tn+bc/d4UD39p5utcJ14LXU79fhOhjW384YfK+CwOmCshnslu4e0/+287f0+fRitbVdH+8qjkBLd4/PTfu57dwVfrVH2AxDUdudRUyn3nZKh/gVElZc3+25P8wUfA1C7ZXqYjrNZBTbLVSXCcGskAs0wdLshK7z/G//jb8MamOyn/5//lN+72/9Kne7PevzS55//Bmu65nnuOwINltgT9o5Rxc6A0lzeqA4tPS3tZU4UmtMT9cPR4KU1vOxBEiOBJkSmccDu7tbxt0bnIys1xv61Rni17hug+JJKXN3f8fLF18xzWN9ymDPVxyimbdvX9v3kxNd8Lzd3bHbHsglsbpc8fyjjzm7vCI4pQueflgTwgqkY04KbiBPMBHJKVFm+ODqOfJdT5xnvAsM/YrVaqDrOxDH+fklpcDu/o44HXAkhg5WvTM4ONeMRaoWQnAE8eY45Ds6H46aE9QBYGnYUav5pc4IOKjYRalTgM3k5UE2WzkQTjLeWXs41zkK8WIdmVLZhZRqT+/IGaZUUB+gWzEfItd3I+ePZ8IQwHkCoTojZfp+xbcd70kQeFjrA5X8YIuqnIBfCw7QhmkaCAbHUU1t04h22G5pQNRpMdHq6fav1iNXFUoRY2JpsUKxfqE+DAzrS2JxzMWEKaW69dCyiXcyg0UrQLFhkVL1AbSgOVFSRhX+/H/7n2TeT1AyfQf/vX/3r/Fv/oX/Jr//45/z8a/+Cn/uv/Pn6TZXbHcHtCRKiTY9qLbo10PP+WZNSTP73T05V6KJzjgyKY7M40iaM3E2Su+wWvPRp5+x2pxbWVL71iIenM3vi3N0Aml/y4//89/lH/7u32O6fc2TS8dHH1/y6NmnbB5/iF89IRXHNCd+93f+Pn/z7T/kEHdsLq+Q4NjdJzQ5Nps1834PwJPLC37lO59yvrkgZnuti4sVn3z6GRcXG0LdZQWPlmB+hxmGviPQmbx3KXTacbW6QDeJ1GW88wz9wLDqGYYe5zyr9YZSCkMpTE5J8x7iyLTfcz/vLZhUwHXoO4Z+IHQmf+a7ATes8aFDOuP0W0chVLDV3rt4mx7UCuELNpFo/JNS7cUs0yjFbNzTPKPzlhJHKJbhiTg6H8hadTBxpJRJ84TTGXHBcIE541cX9FGY88R2HxlWSs5CEKHvgg2f5f+C9QT+iz5sjdduQNFlUTWwUGsQeCAjdtpKXLIHFoBwEfLUo9LPkZd/DDZiN9RsokJPRZBstlDeQcDaUlp32o8+fMZ3v/cZl1cXjVu7gFhaG9pHBRlOAEI1bEFb/Z+tXx2N3daAPlXMDwDDLgke6QIZpfeOYdWj2RYFajqCKSfEQVQYY+Z+jJV/n5AScSWSpn0NApGUsqXJqxXeg3N5qVddzaKMYW11qM3Ye6YUeX1zTUiAvyTmge0+MslNlUEXNCtXm57f+vVfwwmsz85R17HbRTR5NuszHj15BP+Xv8Gnzz9k1a3YT5mEIxUb6nry6Annm57gIM3RRqaLp5RMkObfkCAWdJ7QacLFiS5nSBFHoqSZaRKyt1T7FiGlxHTYM+7v2G9vmMdbctyBzniBnBM5zQQxXMCHntANuNDjujW+7/H9gOt7u63vcb5DfEfoV3S9lUaht9v6/oxhtaHr1/jQQ7C24pwLqepAJj+RnDLN1jHqfc96tWZYrVDK0gmapolJAjllgu/MMs4rz7sNT55GpmlrWUIJxOhIajZ9IfRMOX7r+nsvgoAtGrcIezRRjoX/WxesETgMJDseFXKS4139yU7cQKl3rZypzjFUayj7NwiZThy9A0i4MqMm7ktyHu8Gnq7hT/3ad/jog0cEORnVPb6lCuIcf9Hoy+1dOYyNOJfMqioZEQQZOnzu8BVHuHz2lI/Ec/HkEeqtBRV8VbRxVc66qhPlnIi5eheg1Uev6hBOiTwV0pjIc3zQ0swpUqJn2KwQrBWnFSeJc2Q8HGzikkI/2II4jI7bXUACnJXMKkX6TbShJO959vgJ58PGuh+1dWZlbk/XDazPrEtxeXaJK1UQ1XumbBFy5YVB3PJdaimkeSaNMykVstyRdq9tpPcwMh0mDvsD4zhRcqkii8a/iCmhjQlKpuSZOO857G4Ydzc4DlxdDFyse0qeyBpxCjIpzM2m3JHpyD5Ue3QzJ23ehi50SBjMLckbIBrCimFzwWpzQT+s6foB3w9GPcdmG4LvrErSkU4T3kNA6IvSpeoqJLZZDd0AFxW/qdlHkWCsxQIlRbu2fAV7EzjfgReG9J4zBm3JvwOmLbew1FFLy4gTZl77TxYOV8sLltttoR+RAbAdjpPfSntOVbwm1l5MQZZInEeSFrrSkXTkTJXvP9vw7KKjk4TS/xGfT5efGhHFVVsaBXxvKeS6H1itze7KqUXu5598jD+7RM4e4bqAeHMOJlhZ4bSQkpFJxmlkP2dSjmbRnWZKNjQ/TxNpnkjjTDzscSh56Hn5+hU3dzecn5/xyWef8OjRY6ZxYppmYiq8efOGl69emRind8zjgbAemMY1d5MwvZ3ZTHvOJk+/NzHUvu/wOZCTdXwKmX5tO6Q4RWp5BVCigZheMp2DgJoq+2FiGnfkNNqcwTyzP4zmW5iiAWXFnJLTHCmpkFNG9cQmHCXnmWme6IbBApgTss6I7EjsyGxxemDlCld9IoSpXgNaW6QmuIoKMR+qkrRhG6qOOdU+vwuo66CVA3gSpos49ytC6M0uzXfgAhmjPffDyn4fPP2qo+87kjii66rvgOK8q8CwdQokePAedd6GiMQZEInpITi1eRDX9xCsLbvq1t96fb4XQeDd4xQ8eZeK++DfNVVqZA5Uazlgt7bdeIEPGj+grb4GlLXXrb+iJAKZXhQnid4dyGSc68miDChnXeCqL3SSyE6Nur0Eqa8fx/dVK5kGvjlwwaHOM/gV0FcdQROGDKsNfsqU4NFgll4ewRUPGokxEuNILjPjtOf127ds91v2uz1xnkkxEdNsnPs4k8aJAGz6nuBNOHW3vWOeDjx9fEU5OyPNE7v7O25v73j1+jXb3Q5xMM8Th8OBcZ4Yzi8I4tkfRna3E/eTJ3Qz3juGoUdjsQzCOVabgccfPGLTe6gee6kGua++eMlufw1M9N5sFkq0OllKJseRnGdSikxxImk+6Ya4auRivg7SGZEohDY2WyxozLdsugvONiazdch7Ur6n0z3IhJfI2kU2TuldxIsFI4eVb8EriCNW6XBVEBfwviOlQioF5wuFuGSepQiqgVICZfQMq7UNZIpRjJOKjQuPvSlLuY7S98zBdBe9CyZhBnXTqN6G3kHnKE4oThZpOvE2ityJxzdjGedR30M1lvm2470IAq2W/rY5gVZnn94Gx12+ggqWwh7/eazDHyYBx37+CUaw1OPUqTVmRArOFRwzgWi68cHjROlUWYdMcBiPoNqeGalFH7ye1P9bm/J0xBhqnm3dDO9AjSfR6EMmnmkdEHUOFzoG7+no0Gx95904sdvuuLm55fOff86LFy+4u7sjxbSIpYbOVIDTeGDddejFFU8fXfLBs6dQ9fBX/UCeI+TMquvwVxds1r1pA5TMYRq5vrnl5vaGNCfiPDOPSikOsu1AToSo1paT9RmII3cBf3bJ4w+f21i0dgS1nWm9vuDli59xc/05aymsxNBwau3vKDiX6Uh4TVBFPMDRd6tqEVZVeNTKuxBkGeaaGZG8JzDQkZhiYj5smfdbyjwhOeFF6cU6ASTDf1o7zlpyivPgO3MDzpXM1XVSPR8rjqJax3plud8UI2MqbBxGIVddujLeR0TGqkMQcKUjT0LKBZslCFZOYdmI6VEqxakFATE5OqRmBc6jRQhqvhSzQLZhGdD3PAjAycJ+d+dfWgCVyPugHDhZ3UbIeieg1MKg4n0NYNT2b/vfyfNU62oaecfGfFs9LxpxjDhRgl+bykt9nw0VWIDMB+WH0KYdVZvmf711wTkd7VkKnBB3mheA6ReWnBEf6PsVqh05BC4fRZSO27s9wQ1cnj2md2umeSLGyGE+2O7p7PPd3t6zvb0nHkbG/UjoPCnNbO+3BG+o92q95vLqnEePnyyCIL7rKarc3d1xt7vhMO5J2dH5Dd6tSJMZnPrgODvvOL84BxEO80QYOs6vLri6vKD3K3y2Euo3f+tPk+dr7l/9iDTuKM4TnOAFOu/ovBg+4hLizEn57rAFOlahIxWIOUGx1mRB8au1BeRSIEckZyRn8jQx7g7sbm457Lc4NXFOFzxeelR7xpQJTtFQA7NAoeCl+j2oImIgKs1xmIRKndOoF5ur14Xz4EshhMLQ+yr5XhgGwftM0Vgp5QlcIqbClKN1opxbJluDmlR6SqYa1HXB/p3VSivnDZfIZpzqu0DnhUSum963L/X3Jgi0BfIQwX/Y5X+I7LffcbR2kmP1DQ0pPH0NO6kLHfYkRW+lgADFOZI4YDa/QBEKoQqQJpwWvKyqlx8P2oJfxzXqe8HVUqR9DKn/2QQZHKmxYiXnyeer91JFU2JWj8PUd/vVwPOPNjz7QPnk0+/zG7/xjzFPE7vdju12y+3tLS9efcWrVy847O7xEpjY4RT2Ufn85Vs2Z1YrH9I1XbA01Pl7Lu72PP8QLh9dMaxWrM8u2Zyd8+RZYs4TSRO4DjSQZyHNljaHzjOszC1JndQJysppEGHMgs51atQJQ+foiJS0N4chvNW+xRO6nr4TE9IQ0yd06WCqQyVXHRbTKLzb7kGsJOi73s5bBlcEjZnEVL0aI5Kt5+6atFs25/cpFaKUCgRKpRELQYVApfWqDY2lbC3h3HAIcTQR0KJGDS8q4G0TMPvwQuiEfrD+fYoWBCiBkjKp2shZwLb35kP1uyjWqQne1JFVFVJE1ePEETTjnOkaeiJe7H3OOTHHb6lTeZ+CADxMz+Fkl6bu4HoE+k7igpalw/bgaRpAKHr8Y+L55VgvVOzBlH0tOy9C5QhEvE5kD5kOw+MyfVHmOi+gy7RZC2DH9wAcFzZUUKm9bAUI6xhpG4gBcKJVk96ymFDFQn3RRehkzibn7FBEzG/w7HLg4vIRiu0YKUbG8cDt7Q3X12+4u7lmHkdcsc87zyMxjmzOVvRdoB86Ls7OSSlx2I+IQL/ZsL54xNn5Oav1mtAPZr9WjOFYBLtYBzEh0WL6CXNWSowUirlBFyHnQqgkpFIHBLMo3iudJIqfDQBzllHkBOKLtdy8UjST8wQknOvxgsmbO0fWzBQTzgVyssCDZsqc0BiZDwfrLswTWma0xKr3mOidjZarZlKqFnHF46v1m4Xggvd1t68bUwq5AryCV5Nmb1iPOG82ktjiFY2mStwJXR/oh0AuSiyRFO31SlZ7XRFyscAmPiDqq4K01PZjMGfkmIgp4QOVhZgX6TxHZqggbdaeafq6cG873q8gcHI8oOO2xXrS27dU/R2K7TFeLPFj8X3Xh4Hj9GmP+YMuD7QspNDktYxOYJeDqCIlsxQr76CBrWQ5fS8nr3DMBOSIFyx/qplle7Ntws2pgWad71it1+Y0rEDlq+VKhS51ZkG8Z933nF1c8OTpM76Xv09JeTkP4+HAm7evuL+/ZbUKDEPH0HdsNmt7byeBzWpjY1LOyfCMVGwGIGsm52RtyGSTeTlnY8c1k1UvdP1gn8UFOj+QnX2+MATW64H10JFSwKEUTewPBwM90xofLsCbDuKyyASQowZh6AKbs01F7ZV5nilpNl7ENJk6kygxJcbpQM7RhoGdpf3mF1BHuiupx0ga1Cw1I6klnBZgTGjUvjMvQmguSl7rSK9bfAhLzgTX03fd0dfRCz52pqCs1orsQqAXE3Kd4lEQxUxImsyZZ54nYs7H/FOVFDO56mR4UWKELnjWq3O6X7DS35sg8C4Q+E2c/HpH4CgyUX/JaUvwQbnQlmp73uX2k2Tg5HG2iEpNL7RGfh4EG61mE75t687SNusOnLyrJbN5CHraIUsGYejWkjoccRBAvDkEl6aQVDMLV5l85n57HLhqSkZN1MRLdclF8KGvmYSjX29Yn59xOGwpZYZFP6FNUVTCVS7EbJ2FZaKx8tJzw1lOP5WYm0/o7X0rQIB+GECFNBe8D3RmH0TK0U6hC9Yz18S4O3C/vaPkwtB3VQTGQEchkIsAmSnOpCIkFbNv97ZjToctKWc0RtI8GrtSI7FkEAP0VquBIEInEMTmSkpRuq6m0970JprxCji0tDNT8RktNhWqhYQSKybgcv3e1FyYRGzqbzfO5FKHjsRMZ3JSvARC6An9yoaM6gSlDwE8tdthqX0phRirepYL9J0NseWsxBQJ3mzJuy6AZqY54XwTyvnm470MAqf/fvd2eKf+Ph0rrRfnsohOPJ+PACN1V29dhzbDfawhSl3mBlPbfarWEI2WbGQUayGpPFwI9n5P3ncLAvU1Szn5bI1p2LIaad51drP3fpltbwu05IJKI4UcywjjkPgTPT+prkWVzS5CqhmOc0LoVgwKh8M9KY3kkqqpqZG0CmWZnkw5WVYgsvDnw4mwqq/GpTHOhnRUDn3RAs4Gm1LMjIcDs0S8s0vv9Zu3XN/cEFPGK5SUTEh0s8Z7z9XVBX3fUUrkkGb248Q4zZUY5dBKusnYJGeOsZ5jGxYTiYQOnK/ORcHjmqhvLkg2ebeWVXSdjQeHiua7qt/gfUAwvoBCXYzRFIDqAgQTCRGVWnEazyAE0/zb7yfiNNMFzzTnRZQUCWieQRyudo9EoO878K5O1hr7rwnohmDCOMEHlMJ+fzBZdoW+gPcdJcE0Z8QlnPsvgdrw1xWFHgaDh6o9TaeuBY5yJBs9ABPbSrTfLc/7tV35eFgHwjIBc5yx57RxYLASoVSQpjx4roXWvJQU35TJnGYrJ9mMPPjXyfk4SpOfzkO0c2EPk6U9aemxX/AJBYpW3p1KVbEtaMponohx5DCO5DzZqHV1L3LOtAFcECOraG8mIKWYTJbvELy5IZdCFzpCCAZs5UzGWneFwnyYub25Yb8/8PbNDfv9hBPPPwXc3W9JWRGx3c4JDL2NI3vn6DrH4bBjjiMxzsQ4U7QN56gFQ6QucNPXtyBgWVmczRw09MGUpb19h6WYT2MRy2xKyeRUA1bXDEtZvHu8Mw1/xON8Dzh8Z4rJKc/oaN9pqLTgkjGPx1LIMdGHgMNajCXDlCunwHlEEoliQ0OhLclaHroq0V6vlxCaH4FfzF615KqW5VGFlFq2oKRYUDUm4bcd70kQeLemPqbQ72YHpZRl9yw1lbbF6OpOSkVi63Pw8LlOA4SqVvFIll0a9Lj4MeswiqG7rRdsNcRx5HnBKE5mGx7gm6c/ows9+mGQEB4GjsoTyIY0e7Xdp2hZEGvLamS5r2Ul9Zla/BMx6ihtTNnqYNVCioKUZEMxruCq3qJznr7vUc3EaOn6arUipch2uyNnk7PmREx1roanu92OcRwZx5E5RqZ5YpwOaDHEO/iezWrNemPqtx99/CmHsuP+53/Afvsa8kzJM0ehT1d1Glv9H+oitM7BqU6kaUi46mhUbdiDsfe6YPcLvtm4JygZ0SNrtBSr9b1zEASt4KcAqaR6bjqCgEiH92IMv6yIy6h4QhgoxTGNhjGIFuZ5AoR+WBGodBC1Ya2YS6U1Ay6h0QrPZleuIvjQ0XV9NV41D4M5pgebY0qJnOz6jy5zkGij5pkl4H3b8Z4Ega8fDxeRnvytJ5v5yZ1E6+I/Tf1rbb+k+rrcdwkw9WKzFLhKi7VsYgEM7PmMK9AmFcvy8lJBw9OgIEu80AfvswWy0wBwOmjU2ITtd6WY0pC4UtV9jk+n9bU4wSHs9LRgdCQo2fuqk271fiVLDX51SKXuOoKrJBhlPCSmaSLOJpp6f7+rWIFWZyC7fRxtp25yYN57VqsVTx4/o+sDXedZDb1JlPuADzbaenn5iNXhGVePn7F98WOm3Q6RtBiOuNotEJxRb8UzTjOqmWFwNiWnkZijmZEKQDLz0WwDWilnWwgpsll7Gwo7dgZrOSgVc2hkLnM/Nq6Nr4ItCmQ0zeRin1V8h3OJvpMqGuKYEqia4lAp0SYFSyYmCH2/2KKXAuUw4jrLKpIqGV2qTTAsaD6MTGPk7Pwc54/Gt0VNVbvrOkIYEDG3opQKRaeqoenJ354EAL+cIel3gL8KfFjP12+r6l8RkSfA/xn4PmZK+k+r6rXY1fdXgD8P7IF/VlX/zh/1OvAQFzipDpbbvv4AltR72dmhZgfHcGB/N60gWAC59prLQjkBJOvjnVrPvuUUSzdB7TnfzWK+7WiAXqtXT25p72pJ7b/2IaUt9mMpIXXRnlpXNcD0nRNnz1GnHan6A4vEmibSPJHzhAZzBspJyXlPTpntbsvd7a1JYM8z8zQZRiJUV6dA3/dcXl4SQmC9XrNareh78yPoup6uC5gcWkbUiFgNB00xEbqeDz74iJufnZN2Ju3V9x1dF3ChttKi4p0pFpVylDEvxVyIRaPZywtQIprnxe+gqKJFmOdIHwq+8/Xzt+vthK+huQZemxp13pmDkBar732V/9CCqAUGkYx30AUhZ3h7v2W7m9lcnOODsfzmOFEShjVIZ+UKQhfMvk2Cx+WE1jmBnJVSIKbCvN2z3W9xPrBen9k57Qf7xisorVqsqeQsE7aqtGanrtrVf8vxy2QCCfiXVfXviMgF8LdF5G8A/yzw/1TVf11E/hXgXwH+l8B/F7Mk/wHwTwD/Vv37Fx5tdzxN29vO1yi2x9vqDsbxfm7Zidvf5cFzLc+N0sRKWtAoLWgc8bjj4uE4l4AeJxY5fa9/RBywp7YIr+VhJrBk8/W9LLt0WyVKVeI5CrEeH2h3KOUhprK8/ZNgZl547mEmU4ysstvecdhvbUhnu2e3PbC935FyJtS5+a7rWK/XPH/2nPOLczMLDfb7ruuW9L259Dx8H5aNmUV6JmomJrvPbn/g8OoVn3/5FYfDyGq1IoSMD96ATycLw7KA0aaHtbXI4owWZehskKpOVIGaTXgL1M45+tDRB896ACmmpWDfp6H4hgvYGzYYyNR+fJWHNzUlofNVLl5BpaB5Rl0h14ytlJ4YZ/aHA91qRVeHlormpaVbNDNNqQKRK4b1yuQuExYMnMc5JWfwwTHNmbvbLSkVnPcm5DIMeG9KRfM0L9ke9fpu126pprXe/TG6A6r6JfBl/fleRH4P+BSTuf9v1bv9n4D/FxYE/gLwV9Wu1r8pIo9E5OP6PN/yIu1/x1z3eLEbbbMt8vrRlrV+3LhPwb+T2f6TlyiCRe8TGzBBa7umEm9UK7GoBpLKR5ZWMrgamDK4bJlClmw7deX4H/ODI5ehLcr2CWT5GapdUg0ulgq29+7E4ypTrS3808e1T3gMKu9mEi3LKLYTLydVGfcH/vAP/oAvv/wZKU14Z3z89WrF46snrDdrzjZnrNdrAwedr9p7rk4CWtuKcqRzl9oyK5rRnClZqy3XhKbRbhNXgUCT0prnyPWbV5Q80fee4K20kwrS5lwYx0zMmYvLJ1xcPWV7d8Pd7RtEI5dnHUMQcKU2wowNKKK0S8U7MaUgp8d2ayVhte5KA33BOiopqg0FqgFuZldXN6CSKHVeRCtQbBRg5fyso+uDSaipIfbOefrO0QePl9pexNeUvdQSoJibWLC8RKWCuMX4AFrdokpJaLHvQGARpZXa/q2u6PXcZUqGvvv2Sdd/JExARL4P/OPA3wI+PFnYX2HlAliA+NnJw35ef/ftQQDsxOvp7s1ppnzcMludzklKTyO3tJ22WmJTF2Ntw6uc7OzYSZMa+ZHaeitlsdO2iF85CdLKi/reSutKWLfpYU9ikUihdRBKSz+r0Yi0FJ+jIOlx94alztcW0I6fZ0H+5TTz4eS5ln9+nQzV7gdkLVxcXjKsfpW+dwx9j/cdnbe/zYjTFn270Jf3YCehourJ/lRiTM6ZXLIBa8WGXERtAEiccfWluuSa/0NBy4RIxBg5R4GT9tr7w4HtvtANZzx9+oycJ+7u7HsWrMQSUUTDktZTW3WIBT3j9TRsZzmZCy1bmgAtpQ4JOdIM0tn9zBskV7cp+w5zNs6I4TAGJHfBaOC5ft+ihuqvVgOr1QopiZhrKzMXG/SqwUUU051DkLKE/yUTzikyTck0EUIwHGJRmPb2zRaqGEzDuersyrccv3QQEJFz4K8B/5Kq3r3T0lP5Ra/yzc/3F4G/CPDRRx8+mK7TuiiButhq2t5qtVrv0Cya1Eg+1Y3Z+r9iXvKtJ19qHe200nJrFYiWRdG33S6V+OOdM1FSZ+IchhabVFnRDNlQa9SYXQDHs3AEKYsma61h0bloYen7n9Tzi9AJx92pLfpW29bzzSkR6fgcx0Xe/q8nT38aC8zZd+CjTz5FtVm1qwlcLoHPuAItcyq0/rvJmZVilFgLALWWLict3aW+sZrb1+GgIp7SPp8DJQEzygQ61VkQrYGwwznFBwi94ILQrQLnnHF/t2bwhc5lShqXXVGymOxaxpA/AVIrKSr24+p1UGzhOdS6I2LDYiVnMo5IRrDhqy6Y+ElMsToDOStvsmWCTmqWiiLFQREbJarXiG+vqY0rIiY2mTI0wLZ2W4x8FnAu1EXsjNJeEiULEoz+0/tQladt65HShHdO8Sq3BIpvOn6pICCWu/014N9R1f+g/vpFS/NF5GPgZf3958B3Th7+Wf3dg0NVfxv4bYDf/M3f0JwzD7KAkwu9CUQ0q65W2zcgxLlqvllkie764I+dD5cKpNnAlFJI2aZGrKWUyPNMjokYR+QKPnjqcV5NatrpIvZ4usOfYgjHBbdswYtsWZMBl2qx7aRZbvvaDjoOEJ0GgQUQfICXcLxNTlb28m6qxFp7R+20QFVBarcZ2SQmS9t9bxZfpXkjtMBcA1CpIh65FDRXXP2k7BIxrn37WYCipvzs8XQqeJQkznY+WqwvFdxr3Zwmcaqgkc4Hri7XnJ13DCvPPO1QTaxWgc6ZnBiSLZsrloXY+25B9fjeywmwC1q/J6XUaOHrZODCjKwjuKIWGOy7MRKX1uytpfIGKZRaRHaUUlWaqlpSKYV5nslxNvMQ16M5m71YwGzca8bV0nrqRma1PThssnI99EvmltBl3LvhW7mSpXAGPDaNzW86fpnugAD/NvB7qvqXT276D4H/MfCv17//rye//xdF5N/DAMHbX4gH0NKcykirEVHbF6XVoKPer5kxGCquNY2zC9vAEVkWDieLRnPmcHPHePsKtDDNkTjPkBM5WV2a55mSEnMe6b97yfcePUO75kNku14RwxSKOkRtDl9rqtYWPi2NbTt9Ay7q+1oMOmkpb/0MC9Ho9Ato56Kl418vlY6B4VTJ9vSJ9MFPSzlU09UcEynNQDC+/pwWivDXSrTl9ep5lja8IovCcytrHIDYVKAn47WYPoAcdQwX/71cLL6Kry3B05IuswqeDKR5x5tXNs6NGkuvqPXEMwbyppwpoiYpVr8SnC5OSvXbtD3DEL4651+9K06ckEWcDQM5MUZl5SM4722h0TIm+8RFq1irzZUxp2xitNUHo7k2nSplpWylRWpdI60pPRbYci6kmG1UupWKVbG0qE25OtdKVwt4xq3IOG+UbP1j8gT+HPDPAP+ZiPzd+ru/hC3+f19E/nngJ8A/XW/761h78IdYi/B/8ke9QGvQKBCcrzLJ5agybFtYXQws6DwLMm87W9bGrnI1ta5yzlqI88RPfvxjXvzkhxaJq9GDFyMdlWyS4MZxm/joiZLShe0kEmoJUGrqqmhpSAC2QKvWcUvzTz+dE2e+eRWFzrV/vexYJ1U2Jx/twb/LSVbD8e6n9/v6ea13O0nLT8sCcW5JP6dpYhpHA5NSsuuwBmU4Ao6tC+BOiNTSAnENdq0cMHDVqL0ORepAjmsAW31LtmvbTqcto6tpuYgNa/m6p88xc3tvPfCL81V9vGVzqiBOzd3JoFBSzngviPeWpbhK96YGb6TKhCuKwwUDP3OlSdvQk4FwJdmCFHG229fAL86+Y0qwRnQ2HKTgLHDQgk/VJvAWRFQdMdddu7paO1fHk2up1cBBcyUySncpVNl5A61PO0eNXLYI9qpSUloyr286fpnuwH/cLqFvOP6pb7i/Av/CH/W87x5NkBIqSmr+08tsQEujW63dQLYC+Gr6sOADtR8t9fFNruOQZu7HPXmeUSx1NcnO2m9Xewuh7/CduQw3fMCJoE1EogWiGoGLyLGEbfPpQP3uza9A2u52kvYvqbR9JkfLDL52VpefFmLRaUr7Tcc7ScXDp1zQiqWGRYRcefsuOCsPKmvt6KbU3kMbyz4GhmMQaCCU4S2cZGqW7EiNRQ23OOIX7X0VrWFdjzbtRbNlFGKCp22Z2YBCrcOPfZS6P1gq7euMRdE6K9BkzKWWR1pbqIjVl+LAe2MOeKNcl6IgHh9s0c/RNoPls3GUxjcwswa8mhEsitftS1Tb+VNWinNQmr2azalonT2oNQFdnRUoairFc8pVdl+QatzacBmw68p7X7OP+A1do+PxnjAGj/V/u9SkMvhqzOY4pVdvR2m6As1qLGebzy6j7WDr1QpXs4GimUghhYALpukevM1uex/qhSdcnG+4uhz44MM1XQhQIUQnDrzg1MgfBgTKsrrapXDykU7wgsZatIuhzXwvC+QIJjw4Jw9P0fEJa6WzBKNvbg8+CJn18bZwG17QEqkFcBStBiTmtLsMM0EdJa730zro9C2ZANSOhmv99KP1tlCf9+SdlpaBqYFlTVzN1/dvu1/N7JLhEc6L0ZalSbZZC89AzTbN2d6fs8+Y7Ry6pu58ci5LDQLHgCcLNx9MTNQ7R+g6oDDH2XZtbyi+ImQtZDXNP3t9KyWklg2lFFqNk0o2vEHasFXLbCtu5OsZcB7nIr7ztQRJzHNG8/F9tqyqeQu0se+WPZq2wvsuOV4viRbFjhhASwml7prH2eyUEilF5jiZLVfOHObEOEdiSmw2Gz779FPONwMl24z75aPH5PI9+i4YsDL0Nvjiu6rHlzg7O+Ny0/N4dSCEPc7PFBGc63CiuBqcnOswU4mWgkibPD5J7k/GgqVddFoziwo4iQ3qtM9nWcnXkdzTkFBUazJ+Uh587QFLtFxGRx6EGG0BVZaA5b1byqtmAno6D3E6xFV7Kw/e4UmlUT+zpasnoWhpxzbor+3Cpe3ctbUGhvdQlJQtOJis+pJgoNk0/XJRSsYWWPVqNHxAao/fBneaOWrr3SutRLOSpbE6TD1YFgn7XGrK7hUfaoqtpujj8Yv8W0FOhGMc+EDWRNaWd1GpxMocoy126Y6jPa229x7vPJbzGN9ApL7/OrBEMayl644C+0sZJu5IN6+tx3l674OA1j6uW0qAojYWOs8T+/2eaZpsIGUcmeeZaTLp6ZQSipq3fBjwXW9TVs6R5sgoQJ1Z/+TT7/D8g+eGAGMIb7uQSyp1GksQYkVoPV3oyOIMF6htR60ClEsNUI07jybHDUg76RiczBa0W+wiLAsoJUtn5NtPE3AkMqn7htLh5JAHfz1YtEeE/J2HnGQo7wYBOLnQTp7vIc/h5MW0Bb82i1FvUF3Gr9su3OzU2ow+0lpq1ioz49ZQK5CmyFRHvNvUVA0uDWHPdfOvo2U0DoC5NoGW2kLG3kOq7sjN9yJpgZQwHoKh/i47vMNUfzniNO15jKPQsjv7nLllObUwLdWOnRwtFjbhGHfsElm5Uo1wS6liNlTmp41mG7bgjtfFg4Btv7Pz562z9i3HexEEtCjjfm+imIcD+8OO6XAgp5l5Grm7uyPGuKTR3pu+Xtd1bNYrhtVA1/cMmzPWm3NC19U5fEFzspPoHKvVBvphodGjx6lEF6DUejGUqjXvlUTG1VrTRDQcWQV1NhrKkhofzUXaAtFaYijvrFSBRS79pOQ5VskN/zg5R+8uND3dab/9OM7IvdM2rEFgec9SCTNIAzxO8Il33v876OSxJHk3qLQAkB+cGT3ui3W0tp2HTK5aep2zXEBb0qB1nh8FMY89h690YVlijKqgpTlSezJKUOvZi6OSckqt0Jo2gM0zpFTIdYHb95OW2QFfF2RKBQmCd93yrbUg0tJ/1QpjNi6EthbfMfBaVptQB86HKine6r1j37+oAYPAEiC9w0oTbzoTmnPNIo7ClCJ2nyVYvu+YwDSN/MN/8HvMMZJSJGeLvl3weOe4OD+j6wKrlQ2ndJ2ZNPiqOCNV583MHSq5ospX0RSpMGOGRgpq6ZX3Hmpyq8EykKAZ13VEyUzq6PF1y1JKNuddZEWzO5EKDBrZqP7huPQcvoI4rc9cF4McM4IFXhBOLNFYnuX0N5z862v0Yx7u3G2xLxQ5hSPZyEampb6ecNz5Hw4mHbGAd9+T/ethUEBYEHhLloxMY/W+GPZAa4fV+r3iNoVMo3KD1bO59vlKq92rXqSFgRa8TgA5bd+oTUPmYj4AVCyijRtnBVVzUXbqTRBVqw+jqpURNXvxzqMlVqTd1JOKVgeoJeUy/8aCaSq6CqB6FRs6KslOOcZtyY0W0YJoKcegoiYck9QyzLlkeqneJkgNAh51rfSxc1/qtW0dmKpob9bM37j24D0JAjkn0nyg7zouLi7p+44+BIvAtbXj6s8tGzhu5ran2PRUQUu0wKAG/pRqW63FkO+q/gjYxesawIfx9EXF1GmdMIujl0DnzIveEjtH1g6kt4uMYkAh2M6qzX24bU22lRnCXbOGikCLc8fpPlh24NPjweCTPkzha4V+/N3XE45lr2plSo03QFluO1JqdMlBvh4ALMjpyXMfX+c0w2gvcxJw6vxF0UYgqnwL2mK1V29zHTaXYAuh5ExO5sJTcIuQqTa+fyNgqfHmbZEZ6Sdr052oPwOuZVSl0HCArEYVz848HuyrqJ0fjC3aefu+cnV1kt4mCkWFmO1DS+0glaI2XIQFLFc8wQVUZ1LKdM40BnNRcrIMwfkK2BajLdWtnFSgOMEP5iaUNZk2oaudEO8oruojaLVBrwG8SMaH+jm+FTx6T4LA0Pd873uf2QSar2lNvfgFKoByWu/U6kuOl2/rzzttqXilbzQwSxzqfU2B7WgnxrXWXwXsgtppUS+oN40+LwWkmOvLogdYliCgdXhBtNCm5hYEv7UMFycZA68aGAY1I9DyTreg7bnH2vPrU4unu7Kdl+OfI1C5/EZamfK1cGPnTFoq8vCiOX2ehRjVQsfp+23Bpj7KAkA5IvYq5uTehFQRG/LRE5yi7vSqjfQC6kttjyWrsQVSzW6SKFlMuVjFmB6qdToQxbxRHNlj8mkqzDiiOiJwKEKHqRUVVWK2heFFAHP1sQzT6u+i9hxB7DpJatmLq0NPRW0Hl/YexIKQNQdqfe+8JTvOhtLE+Oo15bcNqali96FjdbYhqZCm+eREt3FyKy0MZJYHZYR3DvXWJvy2470IAs57zs7NkcZYg9RU7KSSFFmmpY7pl4lP+ipo2RRykWrcQBPVyDVTDnW3aC0oWxGNg6DOHtEkuRsN1ldePQ4SCmSMppoxEpMsi7U8XFm2yLWBRq1OtN0iFyOcLGVBJR21oHZ8jvb/b6q5T3//ThnwTmmwBNGTey/ZxLuvdppxfEM9uXQcW1alD+8jLUC3L+bk/SwlUHsXBZqgi8CiBWPpf6EsmVQhZZPiKgIJozBHtd3aqc0HJE3k4sjZ1JCd2G6anDn2plIYizBmGIsyFcdAR8mekJUgShBHR2EVXDX18HQi4AKi0bKL3FqPtnC9V5zYtKYrUJxdHwk4TAkvTQZM8aLgFBfs/GSXqxakvXZlHtQStgXKQucDrrFWS6bEyg/IpZa2LTuuGwraIuy3Hu9FEKAurGOLw0OlQS47mjQk/JiuHRkf9bd1FzJMoNbHbZFLqcQe41Q7PV7cR8pvQNRUXDUqmhXRjuxKJTP5qviieMkEV2h2Ew/345a5VARZTgC45f/2Nbu2UBoY8E6H4LiQ7OclG6jv+5vwnmWAp72WtI1bqEY5NNHEU5FUq9stfT8FJo/fiyw/K1ZQtBLj3YxAassUERqD056rJQHHMsPMRfNSGRkOL6bKU2yG3jkPxZGLDe0UkgmMSqk+EdiwDp6siVTkiCcUAfWmTJwdYwocijIWYVKPdgNudUHsHaVkkhY8hVkTU06Mk9AnYeUDvQ900qFJiVXWLGcoxVnGUCcJLVP19fwUpjnRucx6qK1hjwWCnGk6ljaIBJ3r8bUkUoU4z9zd7FidnXO+GUBna5umTPDWlkScDaa1701tw1FxS2vy2473JAhQQW5bONKowzRiS6uNT3alFgDaUS/yxrqDWpe+c1J8I2FwklrXQEFF+xFPjp5UCkkDSYoBQzXCIjYR56psbWUz0MhMzjlKcSClSnZJHWOt9NL6Hg0TsMzg3RnMBzU2Lft7KC/+C9uDJ8/U7iwtICwlVHvuChQu9YK9/teFSvQYMJco9fXM4fRl3/nxa79smVrJzX2xtsKQOnxXvy89BkD7DpKpHi+ljTNOQPGoduSipGw1dUyOeRIkCXN0RO2Z1TG7juJW+NUGf36F6zqTKFNTK9KSSHkilcS+FDoKXSl4FVbJOhgOpZSAlsRKzNI+FQPrnHqKpiWcmtR6R3AZL1ozAitvUy5AXD6v4KvQiZVE0ziyWp/jxZDAVEFd17XtpAaDk69HK0kqV57Ftx3vRRAQEbPdXoKAY7EMk2N/dFkY9WJtF7Uu/ezlRh7uy1QtQeHoHwdLq6imTG0yMKkD7RkVJjoLEghIIYmhw7gOlUYUoco8eaTuoh5BU0XAvbWnnApdF+qQimOZh+AbFsoJEt+AwdNBntap/9riq+fzIZWXBy1AEQcevPOVpadLVnFc998SAE7f2wJYHu/TXqtwGhhasaTHx5w8b8qFrIpXoNJmpSHndfHboi5HnAgxPgECxUFxlNyRsyNniFmZsuOQktXnxeO7jpg6sgjZdfhhw7C+pFuf0282iDfXZGqQcVqgJOsI5ETSiZmE5JmDZlzMxgYsCS3CkIXeCWTr4wc6os4mWFM9AkLo8C6hpXL/1UDOclIyqjiK85TilpLowQaIsWPFFZjboJcs2V4740Ub8Jh/4Y7xXgQBxIwxWu1cERO7bWl7AXKiCiPH1qA7XdicZA0IuBoEnFa87qQadUeyjbbBc3GortBwRSaR+46Z0XZ1SUSXLFPpBly3xoq6Sq+tZYdiC8wFM+/IrSQoBS9ukXo6ZiJ1iZzU2acpf6kXitZztVQQDXk82bUfnAeWBGn5vMaIN4msUPX7Fgp0ew8nz/BtoPIxILxbnjwMTHqy+Jey4QQTsO+qDVEZyFUQjoxGe42SCyXZrIBTj2gg54CqkBIkPFPpmSOMs7KfM5FAWa1Rt6K4DnzPar3CdwG6Dt+v6IYNLnS40Jh5bVK1x5SNzMy0pEwpG7vWSkazMVZNvCSbyEdOxkvJiaDgDpkUrbskdLjscZNjCC2rEWOhevO+VJcAIUtPI0cV52gsUgvSth5KzhRXcLk2oZ2tm5Y1Nwk9G47LfMvXCLwvQQCwFlKp6fRxl2/Jnv0kOF/7r0sQoHIB6s4IlVGnx7pWsN28WM1XTk7oEcCqJ7CIqdOItxM5dCAzqUyQJmKZ8SEg/YAMZ7gwLDr/zjkTpqhpu6ssw5ITRU3XPqU28dbqbDAMuzELoO3+9uO7efXp7nr698MAcPoQ0SV2gFgP2diGsrRbv3mjOEn7T5/va3eTdwLBUmUZYiI2f9GygLYA2udrIWH5eE5r5uQWbT9Vy6QcUpkEnaH7SdlFYVaYS2FMkEoghd4YpGFNH9aEsKIfVkYV7ztc5xY9ByiITDVjqxvKSXuxCGQH6Io23aO5VPDY6nmXk00CJpv0izlS8gzSg2QOCHPMHFJh6FyVKXMEb7bxdj12ODAcI7dgr2b1VnUKtL5ezsm8B4JfsJxM07xo17aRZJpozrcd700QWAYupNZ3jbDiGsB2PB5c7C1G1A99WnPb856k0K2fXHemY9psC9DGNeuO5DqSZiY6fLcBnVAZiWVPFKFnILgB53sznGhz9xxT2GPLy3bBolqFOvQY2urtx077uy23k9Rbm+mJcpKFn+wQD8+PPT9L21FbJ6JeXK3m/CWW+YPbGrlpuas+fKTWyHOa/oseP9eSwABLK4Al/7cFKJbtKaa2ZXP6xtacs7LPtttNUdknmIGoQvQ9DD3SDXT9mlW/og+DWXOFnq5zeG9IvneKl1SHzBJah5uM9GPzBNbKNYKYisfkw6nzDJaxainWQQjHYJirt4EQkRLN9GUeSSUxq03JqkakZLpU6F2mQwhSzE+wFJyzWj6pksRwgFJZh4uwqLRgVUeo9XgNuDoGXVKuU4/ffLwnQcBwcrO4qqn+kt62n1u6aI9oaeRynwrAeeeXoNEEFo5QQgXoHgBilV8NiFfEF3IRc3HJgiTF9z29Dzjp0RJIahryLgkD5hkngslsxbh8Qc2kM6dEbhe7YJNnIsuos320k6D1Ts18ulOe5ApL1rPM+H8DAvxN4F6u6junykHHTsMx8/rmb4qGshybGScwjHJkPjyIDsv9TgIULKPiqibzZkQrO1VFhFhMdjtrIZXAIQu7qOz3CUIgSyBJh/oO9RvCsCKs1nSrDavVilXwdApNrtX7QnBijkKaEDWE3TnjeAjmE0A1T1UZyPQovtbvSlTHlBSDfATRrsWu6nFQzI8g9IiolQjicEPGkyk5mnioJkqORJ2Z9YDPEZcjXgrBS52dKBySEovUjscJcKpNa6CqPSn2Ou40y7N2dGz41Dcc70UQsMXpj4u00YCde7Cjt/sqNKaNlQKVOtz41+3D20mpgpYVO3DVR0+pbLSc6/BHTeu8Mz5AFbnIQKyKN8E5ZHC4Yrbfqdh0ml8yjZp+VSebptxj5YC50bS6vslAGc0YI9CAjfLaT/VzlweLq4F3S/q9YAnH9t3pYaeollfa7p9JxZRnjr6Idvuxc/BNoONJCi92IR6Dk2UHbsnpy1LSOT3BQAQrtZY3GCl5oo2Si7ZsQyjqbddPSiyQEEbXE0OHSrBU2/Woc0jo6fsN3aan32zohhVdF+jIhFLo3DG4eV+sPVcZW855gveIRtCEc9E+iOuMIq4DqLdSj0zAFJKSCFqJISqO6OzcpCVoq4l7FDEPg84h0qO5Zo4UUy0uM1p65jjiJOLIlq2mDDkzT46sPVkDsbRxdk9eSiO3ZHXWym7fTZUmy9Ss5ZuP9yMIiCySyHKSroozvkCzoGrgG0WPeEDjCTjTBWjquM752sYLlXocqoa+BQFT0zkwTqMZS+ZEY+x1AiE4UrLyIooFBUHw0tcIn8jSEWMi5Lny4gxga/5zXgrkhJRkBBBx+JpqpgooOVVCAXX1CxUHHL3jji3BI8+/ZUbH9FuXc3R6PMjWK0e9iIIUUo7kJr+uVC4+yzo/lT/7psN2Pseii6Qgmuw9tgygprNejQ6rosatL545GvPt7ZufcnP9pVloFY8SASFmz5ThblS2Eebiya5Dut5wGj/gg4F63juGvuNsvaYbHF1wNvLrCkELoQalqErnfd31q7lqcHjpCG6FaDKsxGVwk7X6koF1Tqq2hEYLLBIoQc0ePFPHzYUk1uDTuihRG0YrUksc73Bdh1JVmbUgrMm6IacZyRlfTDcxTxNZI+p7QhAOuaNsM16F4DpiCeTc4RthrcRKua7CKLVU0Azy7dXA+xEEEI4pTM0CcoXKLVOWasVdKcX+KNLpvMN3vi7wQLuKu9CzWq3NTVZkmUFoCyilxDh2hK5jHA/EOANHeSd0WGSrcs6W5lcpbe8dXTXfvL+9QUuhX60tOifT2295snMeQs1WFFzwy6x61grkyLENCA81/VqnoHD6u5M0Gx4s3K+P/2qdq69tOwGkLBlQCybLE52UI9+UXRzfmzHaXPt3LQ3KCQZh2EfNFcSkuve7O97eb7m7uwPgD3/0h7z66iu7UBnI6snRUWZhTIVD8mTpKGHA92tCvwJxdP3Aan3Gen3Gqh8Yuo5h6BCXKSkCiaJKJ6ZwrAUGP9igmDosr6iksTzTEfDOBENcmfCuUJwjeseUs5mOSkGksy6LE1IpBD1mQiE4S9lxZIwHpM4j2GNyC9zOMggLnK4G9w4fViaYUjEDty6ElMnzjGhmXzJ384imTB+EQT2roqxCoQM6saGkkgu9q3MS2nS1vr3Eey+CgHAk20jl1jfXHUvxbXgoVKUXX62anG9mC66ipFV0IWW8D0sQsAENc6RtdmN9X7ODrsM7zzgdaHLaaKlMS6nvznrSWZU5JXKdBtOcGHc75v2Wi0ePGdZnePEMzln6V9V4ck62SIqNjlL/tJGkmhgu50Npo6m1xVMBnwe9+neOd3+v2njlDXvgISi4aBu2V6x/yUOa0jcBrHYYWrfU/43TIa6q49rrpBQ57O/Z3d9we3PDdrujIPSD0cSff/Qp9z//fa6vX5LLijEVplQqB8NBb628EAZ8v2IY1qyGFWebjr4PBBcI0tN3HX1fR3mDq+PEgtOMKzbJie9JycBHpyZL5woIkcHtWQ3KepXYrDLrziPiyXTs5sDr28zbfaHIQJFM0pGigopHqreg7zrbuCqIF1NhmpWUpfoBtrlTW5Ku4kK5VMZjwcoL1yGhP47O5yr8WrsPlMRUIlOObOdMN030DgZROin0QdgU6IODUkgZVN7zKUJEWG02NkBUF33oOvp+Rdf3eBeWWt4kxl0l27SdigXlb4KMVqJ6wxpCa8GUCn7VcctqeilYpmClwby4vpQq1yTiCd6APe89KUZisX5wnvbE3T3z4cDZxSWb80uG9Zk55zq/KCCrKolU5+ZL0yKxQKB5aSs2cGBZinXxnZJ67Nf6AExsf59mAk03zy3z9jVRPwFGefDcfOOG8U0BBm3nslSfgIrcx0zKhcNh5ub2luvbt9xvb9ESWfUdV48e8+TJM64ePQZg9egZB3reHoqN/cqKJFV12gdC1zOs16zXGzZn52w2Z6yGnr7LBMmImpy5dw7vjLsvnsrEDCCBx4+f4pzn5eu3xOYuLDWTkcK6h4vLPc8/uOPJVeR87RgAXzzjPDLmD3j+6JwfvnK83joOJZODY+jPOdtcMKxWDCtrQYYQEIwKHXPmMGUOY2I8jEzjgXmaSDER55kYo2VOVVhGoHYlqpoRheADvvoOWj2HdYhypCRTy45xJJfEVGbIEZcSXRK62mXwRZdhp2863osg4EPgydNndH2PeL8ox4aup+9XxuXXNgNQ09PTlhgtEBgtOIRAybqotIZQx3iLzXG3XbmlxCEEQuhgGpfHlKyL/rulyM5MHbu6i+aqzT9H0MKYt6RpJo0TF48Sw/rckGrnQR0ZIwq5Ze9sg+XUdNAWpKHGx44Gelysp8zBP+pYwL4GHNa8puJ/D44Gth4p2TXFPQkqp897DDIVt0BIc2I/zVzf3nN7d8/rN9dM04zvOq6ePOb5B094cnnBqgt2HqtB5qTCXoWxzm2gtpg737EaBjabNZcXF5yfnbHZrOi6vs7KRzzVLUqTBaWsC+XXukVw+fiK3/gzv450nu4P/oAvvvqCcZdw6iFlnIusVsqzD2Y+/fSW87N7myCclS4HQvK4+R6/+oz9sw+ZCuSyYf3sEY+ffMTTJx9yfnFulGMXDAzOefkec20npnlmt92y395z2O24vbnh/v6OcW+laMqGp7g6imxzD1o7CAaSd74jeMt21Qc0GG06xRUlmymOqloWotaJ8GnCa8L/AvGZ9yMIeM/Z5WVttQkxJlJMS+vPh6PI5ZEO2y5O5dh4tvu4Kv2UmxR1RWlVTWGoaCFGM7RsdX9KkXmK5nCk1H6x1l61zQs4ga7rUYWcMtM8kZM50jpV4uHAbXXuPb98xObikn5YU9XylvFUE8Q0lF4pdSTadv9mXdU+b3P5OWXYlVJbabXUa6Sor4N4evx/awA0Ka4H92+BqQYbTgJFbT1+nRVo8tv7w4G31zdcX9+w24+klBHvubw45/F3n3L16DHr8zXBKy7N+JLx2RYtwKBWyzp1dKJ0Tll1gfOzNWebNUPf0UkijHdI3JqqhhNUMkmzPY3akIx1OnJVAMh0Q8eT5xc8+egcv/L4zSf4zcibFze45EmHCd0fODtTnj0Vzjc29y8E6w6kxOD2JM3kuXAm8OHj5zw+/5jzz/4E6/NHhO4M1/UUjKegueLyzrpBDugF+rWyuXiE5kxOkf3unt32nv12y3Z7x+7+hv1uyzQdqjeB8SNSLV9VMz7nxWgnSyHVQSvD0TqKrMAH2yBrC5ISjfH4CzaO9yIIiIiRLZzgvKOrAOHSvjpuUMd0d2n51N2xnLCisvVPY4zEWE1DypFgYbjBTC7Nz94u7GFYMQyD7fDJ/OwtTa+ofUl0wb6EidlS4GI4QRcsyORpJE0T0+HAbrvl/OKK9dk5PnT4IHTO04eO4NxiW6XFUlhRqWnhcTEv77u17E6wASMjLSfxa+f12Pqrjyu6jEufUpaPZ/fkXC/xVR+o2JZSOBwO3N3d8/btW968vWaeIn3fc3F5yePHj3n8+DHnl2c4CcRYyClS5gmfJ1YOOm9yXwDD/T3rKXHlOjZdYBUc676j84qPB2TeUzQxl8yczVfM+2q1XTn3Rc30NEZbGFEjMU2sz1d8+qvP6VaR7izxwdCR9BkXZz35UBivE2+/+BnDKnK5uWQITwnhQ3ArNE/AW8ifM8iOWDJugkfn53QfPcI/ekrEk1TISavOhDP/wKYkhI0Vm6FowUuH6wI+9FwOKy6fPENLZp73TPtbtnc37O7u2N3fc393x26/J8ZUOQAFr4oj4sWRvTCrEotCsDmbWYVcMTVxNoQkMpgk/38pBoj8ETJxwRugESeKKj5UElBtFy51UanutyWT89E1pymtHg0yK5FCXU39PV0/sPae0LmFPxCqBFNKifFw4LDfVX64LRibIlbDGUSqS2/PvJtIMeIFKJnCTJpn9tsth92Wx0+fcX7xCKFHs+0OTkxRSXOuiLXUWq+m2434I8cSQGvG01B7M5iQ1id8CC1K6/u3wGFpO8Wop0feBTSMRDjSL5DmrWeW4tM0cX9/z+tXr7i+vmaaEz50bM7P+eTTxzx5/JiLc9N3FBHmeWScR0ouBlaVkVU+EOKBeTyw3x0AePl7f5f19pqPO0cfjDLuNVFGa9kauzMiqpWSmyAIzneVFCZVl8G0CrNkA25zJgUYDzegt/QuUELi6SNHKGsONyNFVlzkMy6HG1ZuppNzfP8MDeekvCWPM770+LKjY4+f3iK8RPdviYd7shvIDnLA0H1vJYErUklPhWzqB2gVRNGcF4IXAM7h1hvO1wObq8eUFInjgfubaysZbm/Y3d8T5xmNjWRkLcEuuKpb4Iml8k3EAk7RXDEgV9Wp3/NyAI7gU66iiahanZQSIZiEkqqaFVPJdXGnqhSTal+28dLrELL4OlxkF0vwK/p+oOs6QmiyZYYztMUlWMrfvqR5nsgxGpgE5Djb2KsqXd8h55eQMuPhvqrCJFuQMZIV4jShMTIfRs4uzpkPe3NAipEyOzQmyIU47hnjniye4Wx93NhPlGsbqreURErVKji2gOonYSH9YI9Z+BRyIgUmR+u243dQS6eiTPPM/jCy2++5ub3lzevX7Hc7ur7ng+cf88Hzj7h6/Jih76xVmBNxGk34I85oLngUr5FyuGN3/5rD25ds37xke3sLwNsf/X2Gec+5S7W7Y/Md5FQhkxYICq5YsPJF6UxZDxTMlqSCcWScZCQUnChpvEX3b9BVT8mJrhTOA2iZgcjjpxt8eYukt3Yt5TPUrUm1o+IJkBWJEZ8m0vyW6fUXJB7j149wa8WLI4TOfCxcwKnHqWVcsWSSaJ0dmcl5NtCZspR6UI1wCfihZ+g39JsLrp48Z39/x931G3Z3dxx226q6PaPJphv9iSpzJwIYoB0pJDUVRtsE3nPasFLpj3UXt4vziKDmlKwOytkCAyw7n0D1W5PaXbDOga9fiIlPWsvK0S2koVDT+oWBB1AZfSLQDyvb7UNgGkfSNFbAsk6WAV3X0YllLYXCPB4siJUqL1aUFEe2MTNtd8RHV5RiJBBNZj01bndcv37Jzc2O2+3EcH7JR9/5jND37WNaJiMnlOka7KraFS0wUJPQ9qdp+DQG5fGQeuvxvqbdb4t3HA/stjt2dztutzvGmBDvOb96wqff+R5Xl5dcXDwm9CsyypxmiDMuTUiOdJroy0wcrXNyc/OG7esvObx9SdzeUQ47MxEFwrzFl2SEnqKkWtYFseBsrcZgqg0uVg5MquKlrrL+qMGyECQyDJnVGazPPRfhhvnNH+KSY5z3lMkj+YLV5CnThJCJeWbUe6ufJ1B3oMSCTAckt6wSfC64ec90+4qb8cccdMVw+SGbpx/Tby5YnxU2mzN8N9SU3ARIBGzh+0DRjlJSlcuP5CKmW3Dy+c1xoKNf9/T9GecXjyx72t6z2225295xv71nPBzI0YBpt2hplqqmZApJInUQ630fICq5sN3urHUSU8UBDKzLKTOP08IGDMEvFGHvbYrqyAQ8Jcq4kyzAUsU0Q2vXGfh33EFt33QVYbVBktD1S1ZCMRKK1kEX13ZV7xk2G3xw7O7vuL+7YR4TLhW8Gr4U54nx/pZpe4uSGXf3FUgcefHzz3n51St2u4lxLjz96FM+eP5skZ8uxbCNlGM9N0dMwEahWqvQWGKNRtw2e1cDQJs0a3mCnRMDRbe7PXe3t9zf3nB/f8M0jYgKK7/mbH3JBx9dsbm84PzinCEYip+zMk8jKUdEky38PKLjPWl/y3z3kv3tW/Y3b5nur9nfvCXtd7icqxBmvfRKqg66tY1aTCloWFXlo+ypNAtUIt4d2Gzg/Cyw6j0lB3Z7ZXeI+Bw5v4RPPr3g+UcdZ5dwdpXw0+9R3iZkGpl3AukRZ+4TOr9mTIFxDkzbwvpuS9dBZgTn8TIyJUijZ95l5m0ikOjjRM+en3/1JXf553D2GHzH+cVjPvz0U55/+Anri0eEYYPrV+ZTUTUMnTPg2gBvb9hUhlKkDh2ZNZkvZk/mCbj+jFW3pt9ccJFmrqaR++0th93Wytb7Gw67HXEcKWoZkndNStb8Nttg3Tcdv4wr8XeAvwp8WC+t31bVvyIi/2vgfwq8qnf9S6r61+tj/lfAP49R7//nqvp//0WvkXNmt93WC5y6AzvWwxpZ2ckJoWO1WtH33UKicNXY8bijLzn0AhIamkr1tJOFIpxzqiVBGziqY71tBdV2Td91CEpw4DRT8mhgjNpsQUJR7wirDWfeiCq7u1vm7Y44zriiRgEtMyVPTPPItNtBVdG9u7mlIJYG49A0UuJIqt9ZSjOH/ZbDmIhxqiOsVKltOPYGjNcurRRyUn9WFnekVouK4Arcvb3hJz/9idX400TOmWE1cP74KY8fPeFifUHoerQLuN4jKNO0x6WEy5lQEkEjpJFyuGd/+5rp5gWH21ek7S3EEeJImCOrksghmItQ0op6Y2BfoeIihojjU5X+xnQURFGZ6IeJZ887vvOdDc8/6NkMQpkD+zvh9u7AYT5w9bTjk0/PuXpWCMMeF0Y03UKEISp+Uso8EYjgzgj9wNnZU0bXWxbqN7hwjhtWNgUskXh7w016y3TIZD1jyoXSJ84vhHF/y/3+LVmFPF9xd/sFP/nRJ1w8/T6bRx8wnG9YbwYDO4NYl8QpIo35XzeUyma14syWb9RCzArVVtyJx3dnbIYN3eacNI2kOHG4v+Pm+jV3b15z2G5JMlmGXNuUgv6xW4QJ+JdV9e+IyAXwt0Xkb9Tb/veq+r87vbOI/CngfwD8FvAJ8P8QkT+pv8AgXQRWq9Wyu4cQFqBOEMZxpBQIvmMYVotd1nHctNayD9DuY1Boxg82U2D/TjlSZiMJdV1npQPSMmUa91urgIRNu+XWi6gDG2aRZWVdAe8Yzi/wXcchBLZvr5n2h/r4jCuFnGbrBqiru6ApFakaSy7nmVxmpCoep/lAiiM5lcXTQMrJz7Ls66CNeGSpZWny3FkXRV/vHT50SCmUOJGmkbPNmmfPnhK6jvXmjGG1rkxKKy/GPJHyTCDTlZkhZ7p5Io/3HLbX7G5es7t5zXT7GsZ7JO5xpeCrIIcWCOKR0BlQliMUKwdKyvYdGverKvZi5VIVHfSS6IeRjz71/PpvPuHTTwJnZxMu72Dy5LOO8SozpUJY71ltJlbnIP1oMubFW9tPhNA5Ut4TpwNT6pgP54SzDzg//wTWG8LZJf3qKX51hQwBXCZsr9Fnb9jfzhy2E7utMDvh6myN7PesxgObzYazzcD1nfD6Zsfn+2vyl0pYdVxcrXh0ueZ8s2a1CvQBgjeOgnfRBEorKC1Q3a2MpVoo5GwkoVzLBTM59bhuzbofCKEndD1dF7h5+4b99h5NEXIyVaGiyB/HmlxVvwS+rD/fi8jvAZ/+gof8BeDfU9UJ+JGI/BD4rwP/ybc9wHvPo0ePFqPI5sPmnQUBNDBN1oMuGYIPy0Jd6mQqKVPr7+EoNrIUv3WMtPN4MT+4FBNCgWAGGU10JKWZeZ7JOZJTJM8z8zwyx5kcTRk252I7WgXdiloLLqwG1lyhqtyWzJQiqkqnmYbENwJQm4PKVW9+miYOhx1DmyosM11n04qlfrGixey6m2VVlecuGilxNH/GNJNTBU5ThmyZi3MeHwLed2yGjt/4wa8w54R4a10VNW59USxwOaV3CSeRviS6dKBc33D71c/ZXb/gcPeGaX9PmkY0TXSYqm6owaqUQs6OpKHSYtv0pmE7JZVa55uadBAFvPnoFUAyzu+5upz4wa895gc/6Fivd2i8RdOI14C4nsErYxrRVOjURn+LFzp/htOBFGfEzYQu4cuMlMKchPnuQDp4wqM1ZXXF5uwx/uojus0z6FYkTXRnH3D5eE93OFBevMK/3LKRMx497jnfzbx68ZZ1t+fqYuJsdc5qfcaXNx2v7yN328jd7YHbzcTVZebsrGc9OFZ9ofczwY90vRL6gHOCVrak93X2s4qrWKu2loG+eldUoBjXsT67MApF8DYPs9ui84SUbN9DdTH6puMfCRMQke8D/zjwt4A/B/yLIvI/Av5TLFu4xgLE3zx52M/5xUEDEdPecy7UmlvaNg8IXddRSrG20zihKlVe+QhtLZN1egTDmlF1k/wyRXatYKIgqTBPE+NhtyDlKaXadYiLIpBmc8JtrZ7SxC/E6jutj22GYlnVsIKLCy7ExkgP93dM4wwpL71filaSSbYvOAixFMZpxFVVWh/g/GwNOnJ/d81hd8/Z+qJabNtzxBKZ48icRmIcSdmCl4mQlPr+lZIKOZVKHBHwgWGzstaoQOcCpZiBh/n3FDRNpLxnPtxy++Yl8cVLpq9eM968JE/3kEYoyQR3tJjct2ZD7J2QszLOmVhblFKyGX7WS09cxzFTbe1QWYxKvE90Q+bxs8Cn3x1Yn92jXFOqfLcUQecEk5J3hTlA//SCENbkwVNWlzAMJH2D7r5gYLJyxll7LaTIPL5lF218eH31BP8443xCxfCpqMI+Fb54/TnXr77EuUuef/yM1aqw2yubTU+nBdIWT+Dx1RUpTOxzJG978hzY5YLkzLxP7DvlfA1DiHg34sOM78F31q0KnaPrzE/TMj23dLpKaUQta5e2MlfE0Q0rLh89wXnPnRPiTiDOaM6EX7DSf+kgICLnwF8D/iVVvRORfwv4V+sq/FeBfwP45/4Rnu8vAn8R4LPPPsN85IHS9NdqSqi6eLE550ltV+36ivBjzL4qt9ygviUolNaKKeQyGyobIzHaTj/P88LQKqqUkqqOYTkh1ehCkRXUiBdODHCpJyCJNQVK5RMUsRn34fyKK+/ph4HtazjcJ8ZcmFXrlJ3guoFu1dFt1pw/eoz4UBcKuBA4Pz+n61fM08iLL7+gC2vOL66YEFQjuURijqQSq+hlghztc2Pcg1wDgQEZNZMpyv7+DWE9MKxXhM0FHT1evQFT8z37+2tu33zJm5c/Z/f6Je5+iz9MuDRilWLrljQqsUfxdj7URo2TJppwSGrzGBX4DF3TeTQfSGMnerowgGRwM74vnF91nF+BhBHVGQ0edAVzQULCBcEHQcnEqRDygHPnsPoE7TakEXT+ii5XIdjcs0qemGCKE/vDzFQ8w9UFF4/P8YOj6ABFmHc73rz6ihdf/pBA4umzJ2zOPDe3N4yHwmZ4yt2b16wuBJGZOf6cZ889o3ZoumC/E8o8MWZPmYQYhLRTViETfAK3R3ymGxyhg34Q+iHQd3U0vtrtOQmIBMOpi9GEM7YZhEqn74aBdTknx4kDhbSHEpNxWL7l+KWCgIh0WAD4d1T1PwBQ1Rcnt/8fgP9b/efnwHdOHv5Z/d2DQ1V/G/htgD/7Z/+MznEyYkxpE3RuIemIVLaoC6QkVV89GzHD2f5h15Ht0lqUEs2oIs6xuthkYpqI87j82wJDk2yiZh5N4qrOvy/JxpFN51oHohqcWJ6Rl7spNg+BmGjm6vyS9XpD5834IvueFHq6wbNZb7h69Ijzy0f0mzNcF+g6j+uE3dNH/HP/i//NL/MV/ZfyuB0CoXM0CrGJyljnx8kAvqDugA8FFyISIuJzPfeY1VefkT7hsqfD4cdEnA50+wPd5QWeNeo2dN2a5EL9agXNgTIHLF5O7O4P3O9fs3n0ksPTp/b8Yc1+yrx5/Zrb6zc8O7/k2bMLhvUZd7uX/PhHP8QVz0fPPuTF7g2Xa8fZZcfLr37G1Udn/OYPvs9ZcHzxs5Hbu5E0JQ5TYpKO6JS9zDj2wBbxB1v8G8dq7VitPF0f6PvO2sXOWe3vu6U1btOg2Xgu0jYuoesGNmeXSC6MKhQ/U+Ifw4FIbEv9t4HfU9W/fPL7jyteAPDfB36n/vwfAv+uiPxlDBj8AfD//UWvUUphv99TitK1SUKOFGG3GI9AyJ55nlAyucQlKpbK/48x1pQ+k1JadnoD+SKquV5orqbKuab3LYM46aLXVa3VKYjaarHhlGojjaHwpdlLYe5H1JkDo/0aWt9dXLKeRi4PB/z5GRdn5zy6uuL84pzQr03HDhiGjm4I/M3/47/ZzrUJXGQhhDXBD7gqx1aqOEjreCwux2rdgtIEKhHIGZ8yIWckZWKaySVSnNFtr5495rMPP0T2e37y936HF//whxxu30I6oHlCNUMu5pzlqg5fsd3dZhI8zW4sVzZjydm+r2ouIqd/HEBCmpdjIzlVlNA5oQSzCJ+LI+MhrOxi12zsOEkgEWVGROk9zOOeuN0Q7mfU7SAk/LSHqLjZIRWXjDPkEsi5cNhPvJ1Hyo9fIKs1q9sbZjrGFPD9OZ98/Gt8+GRDYWR/2PPq5z/hi5/8lE+/8wP69SXqesasfPjkks32S3J8xccffcZ52HDmJn7/h7e82o0mEOo2zE6QfKCkHSXvENkROqVfw/rME88D/coRes+w2jAMK4qfic4ZplOnaEUEslKqBVqzIu/7DXmdiHMixUL64wCDWO3/zwD/mYj83fq7vwT8D0Xkv4ItlR8D/zMAVf1dEfn3gb+P5Yv/wi/qDNTHkHOubT9fVXtrm6ve3gQ2c8nEaCSiheqajeefsgF9uS7sVuMvooyNx13rdGqK2hxxbFCn1NTW2op6ur0rqLcFpS1I1Me1xeqxelZRkwqrT6QCblixunrEcyeUFBn6nvUwMGzW+DBUKStTNRLRRfnHe7PAUjXA1NiS5pRTNBqouLAnj+2RZWYCTHK91qXWnbCFJJrpnXB1dcGHnz3n+dMrpjeRIHsCW9Z+xGkkabQefoBTpeCiR8CpfU+lItkN6DW0u9q31/qpaQqKVEmsGnrNcsyRi2nxFYmE3uH7AQ0rE+lQwSQ6kp1eCqUkXDbmYNor6as96C1nrJDB4Q/XuFFxU0HmQsmjuUupcJiF263j5X3iVXzLq1G5/PgxVx8+5/Gzz3j67Ds8ffIRqz4zTXfEccv+5pqzVcfzD5+zPjdZM3rP2aMrnu4/YEyR3kdWjxLTB5n7O2W/O3B3L8xzgRBwZbbPmDJSlDROzIdEGiGOwurMs9r0lJgocTaGqjNafVsn3lWbdpGFXCoNI+jX+H5Cx2jB8luOX6Y78B+zJMIPjr/+Cx7zrwH/2h/13KeHAF3wdN7bAqquNDlnUjSGVUyJudImU0x13r9UJdvWsjsu+oVjv7QQWhAAfMUTtC3idh+lkKsIR1M0OvaxLQUry3tuFUN7PUdt953w/C0WmArSZfeYy0dXaMnWsgvBoo0EIyuVNg5b8K6jzUmlnCmpMM+RFMsSwJoqUWNTNhRYAFTI2bz5RMBrxlV77TQfiPMOLTPnz6741e8+47Nf/wSvibe7yHqTeXzhGBPMO1Pi1SCI70hAlb9dqMioSXFp9VjMpSyBtklz1wqqZkcWcFWL4Suufn4VcjEPCNPemzh7Co8/XDFcmF+A5gtjwMkI7FDZgpsMJCsFPwduryNxe0dPR7gYcWmH2yfYO9gpOlqX5xAdbw+etwfPy/vC/e2e1X3mT64e8Su/9Sv82q//ac7PnhnWUQ7M08jb13tKjvyp3/gBv/qD73K/O9CvPatVz8Xqks+e/wo//flPGW+vefyo53xz4PkHhd0OpnnHfg+lrGrnaUJKWkBq1ZHDdkb8SDcol483XD1+zLQa6AZPN/S4UFmxIdB3PcF1VRuzeUpUB2/fMWzOmKaZNL/nhqSoMo97dveO0ZsQR8qV1JOqqGc6pryNxVdqu6mpADVJb20gYa0hmkaf0BaP9Vvb7acjuKcswgVldMv2tYz1aq4EI6q4SfM+rJ9HK3XYOVkyBkSMY37C31ex1NnaP4XgXR1ntSQ+p0xMBmTmWEA9JdnnLloge7Kag0/U2ploXYEqU+VROi1IHCnjnsP+nri/Z5yv6XvwF58w6BO6fIGmmcAdm01htwJ1NpCDgmRXd2EB9YaZiNTSzAJ1G+wyHkNt/tsHtUGtGlRFCog/ZmnVxCUXEJ/swi49ii2ix08KYXVA5RLnPzGALN2j/iXqR/B7xFlbsSsdei9cvzXm3ZPvC30/I3OEaU05wLTbsT9kbg8jN1NgDAl5pJwNK371B3+CP/tf+yf4/p/405xdPMFJpHDHtL3j7YuXvH19S79+xKff+S6XZx37u1eEPNHnNYMGrrpz/ARf/fjHrL6f6dQhZWa9OmO96k31qHTmqFSq+IvW7DVmyjRTyp6Jifn+jnm35+LqkvX5mm7VmZxeZ+xZ7QK563Eh4L1J4Dsx/Q11iguBfhiY9/tvXX7vRRBQLex3d8yjteoa/7ldzFbPHxVwGlZQirnSiD6kRUrjCogty7YgTLe0Dd+cZAiw/NxiQKtRG/hy8m5rIGiORbpE4OX15RiAFmt0qrRZqTPgYgltVvAu4EMddtICxcqaOc7E2eo6Q/0VzXV0FchqNNNcJ9RiqZN3tTfsSsaXiKRIGffE+xvS9oa4v4M8In5kuBzo5wG9/Zz8uvalp1tWoeB6RToh9DYZqFkodW6nOEvdzQhUK2bRTF2Urn52rcV/gYrf2MlwYulskVItuEyZSEURFwmhIKVHuGTTRVa9oLoHLsCtEdlgvZl72mWsqSApQBQkeu5eJG5utnxPPc8+FvqSyIc16b7n5nri1Tbz1aHwJkLqBp5+tOKT73/Mb/7Wn+K73/uU8/WAxJGU3nDY/pzrL1/x6ostaS589Ce+y6NnTyCPlP0dabsluRVpnKpScOHLn31B54Xzs+fEw4ymjvP1BcGdk9MlKUxMPhHniTxLNSTBHI6Lo2SI84HX447d3Q2Pnz3l/PKMft1TOod2Hu08eRjwXY/vTFnZud7wmRqDfdcR+u5b1997EQRAidPIrMeUXDmpNWv9bd5qeaG+NqKMgXPUNdmmCetzSdPNAU4Wvd0kSyq9zNcDRhkGOQEkW2u9pfeoHukMJ1kHsIhwqGoVDGnvx8QFS63hpbIVQ23ippyY54k0TwZwRpudyNEyojYirVatkMRwAa0jqk1aqtdCnwuMM3G75bC9Jh7uYN7h8oSUSPCFlVP6WGB7S7x+yXTh8aEj3e+RPNMHRz90yEqYqu5BLIW5yq8ZYaUxNaVSsEFUCDWaplrSIc4Ud2sQ995KFcSZAq9YILW5kQQka4lpQNKGMglpv8P7O5y7Jk8ZxhGXC1IEUoAJOHgkGsNuez/x4osd5SJAX7haOeatsrvOvPwKvryFn+/hrR/wz8755Okj/uQPvsN3PllxubrGz5NpQ+xfcPPmx3z1ky+4vhHOnn3MZ5+csQ6R+9e3vPnyFXfXN/S+Z7t7A+LZbQ98/vk1+1F4/nzgZuvZbjNaOoJf0bk1dANDSEzTzOwLvlReSkzk2UBWKTDvJ/b7HePhwNMPnvDk6RN0CJTgyEMglIJPGZcLORR8yDjfgZpmhXcw1IG0bzreiyCgavTR0934qL7LsqBKOU4ZUhF+Lw7jnOdl1y5VmWfRJRSpMlR1MZ7s1EuK3ybzar+66FHKrAWLk9ZBDVRt4X9dlfco1dXATUPUVarpmAv0vYlJpmxg5zia/HlJRywk50yJVgbFkoytWAk/WTJoRHIiFCVoxqUZN8/E+y3x9p7x7o55vMNJpPPK4KH3Qhe8aeLOkXm/Z39zx3azohsGDvuReBgJztF1Hck3lqPV+Tmbv52jIv4owTtwHY2b0YxNYk7VPLOrn5+qD1lNOIvhBd47PB1mxzbT1Hk8Qpw8h9uAfFhw3UzRV8R4IKdIr3d4ImSQJJRoduSHnIh94un3Vjz9Ts/q0UzXgxaPHIBdYN5nbqbEyzmyWWU+zBmnIzq9YC5fQVLKPJKmazi8ptN7Nt3AeXeGbn/K/faSty8mfvajz7l5e83ZxYrb/RumSfnixVtevorc7HdsD7dM5YxSPKXYhCx6AM2kOJOjtca9D4ShJ+tEmuv1L9hoMsp+u6ekjCuOJx88peRCShGfCqEHn6CslEDBk3DFU9Ry1KNex9eP9yIIoFplvdoor6WlX1v8UJmCRrMtKVlqvczct6zhuCAXso8l5FCfvwWH1hq04wjooUvDagH6tD6/lR9iGu/+qPm/BAuOQcB+Z/HDBE/A+cBQ07N5monTZFTfea4LX0lzXLTnYoqUFBf585JTndMvBJ2RnGCeSdMBmQ7MhwPx9o683eJSZHBGxPIIQRzB2QBR0YJ3jjgW7q4PuHDDsF4R55l5P1LmhCYlxcycMqmm7c4FIEMxkpBzJp+mWSt42nCOyg6sPhCm7ygVtPJ4EVKKNRjUtisO5wPBq9mmquewc7z5KvPRJxv6y0jRHcpIdhORLZ4DoomIMLvAFrgPkatfG/iVP/2EZ99R+hW4PLO6EvpHgf6Dc/hqxZsf7vnixzNv7m55+ypxuHakK0fud+YGVDIdI/0wsvogcDgEst/y6ke/w/XNwIsv4Q/+8Au285bVo3N+/tUbbm8T/+D3X/EHP9ny6IMz1DnCsMG7NWiwVquOlDST5h1x3pPnA5InJM+kNFe/TKkmsnbeshbmMfPqq7d46bh6coXrhTgmUlR8ShSNKAaAi+uMUr7M13zz8X4EAWys1XZ5bPfURoiwo83EtyEfJ1JBQK2uN62tV9tRy67c0tU2eE4Fs1hAK4el9TYcWBdxXbitPajlKAqusPQPtQ55LCg5PLADa1lJroNG3vf0fQCUGCfrdowjKc0GgMbMPCfmyf5d0kyKc50bMMMSwVLHPidC3JOnkWm3Je7u7cLNCZkmQp4RV12VRIyHII65CGmeKBoZtEdGQbYJ/J712px2dYrEMTHuJ+aU7MzVReqrZmKbUKOCgTkfszAFxHlC1d13LiwZWJtfcNU5KicDCcEtc/gq1botO6ZDx8svDnz4UWAIA8HfE/I1zHt8srHtFGHKA3sCb6ZIPC98+huP+eBPCv3ZHnGmzOOGzHrjcOseLjbEixW7cM8/+NGOuHP0MrEKmd5d4zXiwUxJfKJbJVYKhzhxu/XcfSH8+D+f+eqrA7EXuhcjs3vLy5cHfvcfvuFHP73jo/KE4aLj6eoJJa8NUNYZ0ckAW28CujPmJZgrIH68jszjItjStvbwmHnz4i2ijmcfPgUp1i2TQpFEIdMPpU4sGmnt3VL49HgvgoCqmtOLHOfeH0iJ192m1e+uLsCTZb4YXuqS6suD54cm92k7eQPolmeofIDW9jt9hqNSUXs/DS8QckX+yzsZwKk4J9jYc/A93lvKPE0H5nGyLGCeLCDMMzFm4mRKRCnOJr6REq5kXM4mNa0V6NvvKeO9YQjTiOZYdQwF6aB4T1KI9dxY396ZSEbxtWnRE3LAzcB2Yh4ngqszCaMJvtriNE67ZGetwdwmKU1ExXwXW0lnwKcPoQKAHSJ+uQ4LVEt0CL4HClUlHu8E5wcbzNLafdGe12/u+eEPJ7rhMc+uNvRpj58SMmXyFqb7jv1uzd3ecbc7cPH9Nc8+WSHDSO4ElR5HD+xwOtOt4TwPfPbJhj89O+ZJ+fhZz4cfdJyfz3iNuKRItI6IOrWpP+/w2aNuxZPVmgFld7/j4D3z5xNfXr/i8y/u+cOf3vF2W9j97BVJvuDPrL7Puu/w4khpNCVgQErCobU8c+TiwDubMlXDSZohTsrFSkBR8jRz/eo1XfA8+vAJPngOcW8clsqa1R5CUKOwf1OTvx7vTRAoxUgxbfGcqqMed+S669DSfCxt11YCQLXYYWnXtefg+Byny//rb4YlBWkkoMYjOGYjx/dtY8XU4SJ9UAacfoAQOrzvyUoVT4mmnDTPlek4M08jcZpJUySPB3SOSEn4kgklI/NEng6UeSQftuT9jjDtIRt33HtHJyabRvAkLTZOWjUWVTwJb63LEGyGvQuoBHJSxv1ElEwfPJ0P5tBc+Q2SzR9PRU1XoZp5asVgmiqUiF8AVal2WFqtuJw0wLTiBTHX/ravmEymCAiewmBfhfcUUeYp8LMvZvpVonwy8NhdEaZCGWcOW2F323F32/P6prAT5TsXZ6x7s7JX/4SsAyXMiH4F+WCfXRODFj65WrP7bM/TjwJPzqB3CcQjfoWq8QOMlpvxkuk0M5TAk03P82eB7ic7Xt4lXscDI5FXb0au94UJx35/QL94xeNnr/i17z3HS8GlCS8RKVpH1Wccxpcw0dCO4q0b5BCcWo/fIeaRWf0zyhR5/eIVYRi4fHxBkJ6YZgp2f82Qu4zzYZnV+KbjvQgCcKz/j4vdWnwcsX2gtp3qffUkG2ikmuV3+rAKUqjMwK/fdsQPju/lm/zcTQS0PaaqwYjWbICTLgALMAksxA7EkefIHGMdXpqI88x0GJnjSJwOxHFCpxnmCZciriR8ihAn9LCHcU+YJ3ya0RIJziijTlzVuHO1/Vi9FvCLSvCCcixtUmNbalSKU6Qki6sJkrfywcaLC15soTdNRFJa7NYcYgi/81aKVZkz5wJUafKslsE5L4gLoIVUIpIV7yu+otG8EhkoblUFRK0NKtIR7wfKH0a2t4Gr1QqJ56bqvIP7W8fd28ib25HLZ/Bb6wvoI7LqYPURnfvAxo85VIfZgtdIiCNnZD59lLm6DPSSgAxhheoV2g1o2tZy5Z5mveZSpHcTz5+f8+z5BT9884avrg/siucQYXaO7AvFCffzxE8+/xnf+ezXCJ3DhwRpb9gAQiGhKaGY+nXoqwlqtrasFCDbbSrGtxBvASHPibev3iBOWF+dkSvYGInYsKvgXD4xuv368V4EgVNQrbXrmjnoEYA/Kv8UPR0XbkCeHv96kEXUll4tKdrxgEm4lCDtsWWJGG3fPwaKsmQKBVMWKnZH2l+NAm2TkZ5+MDeiKSbGmvrHGInTzDSOjIcDcTowjzvKPMGcYBqN3F4iPkV8mglpxJUZlyNZE9EVigNRW/halBwTot7s1Zt/gWufoxmfVd25asKasPQ+O60qxwGj5BohCrWFWrKSNVVsohp6Vg47dWZAMcts02ZQY3uWqvkYag7mpHI+pKobm1AGTlFnxhkpO9Pfc1SZ9I4YHYfX8PLak3vP9dbx6s2B221knDzlUHBE/uT5mn+y63ncH+h8Yegv8O4pSE+OPwN9jZQJyYpOB0LsOKcwiEPLDnUJ7VaonuHcJZQVSsDlGedGI0nlGco9q5Xn2fM1/ocd27Gw18CkkF2m+EyWRNSJV9evuLl7S7h8ZOzFtDepteLQZl1Jve6daWaIrxtPAqrPpQ+ApmruWkV3dnu++uIFH8hzVhcDmUROBSGhZUSce/+DgGrlydfV5JagwJJiSyUC5HIEEL1vTL4K2i2LuLX7oBmXWpvQL8HmIVGoBpdcUzLnDEypKarD4SsfoKiSlMVllmIusVLbXhYGPMGvAFfLgBVTiezKyFwOaByRcY8f94TdDrm/Q/c7ZNwjkznTumRlgNeMS5OZZJLwruAGQbJHM4zFzFslG4fC+WBknmLpf1EglYW2W7J1GdR5s+xSSLkCqZ5abkVErCRwzqNOmOZEjqYb0Hkz1EwlUKTu/s74Abm2B6nBYMZmKYqRF5HSnBcb8mq8/xAMFMxqdXGu03EmItWhBKJGxikRC4xOuJ3P+XI/8/L6lt1YgMAQCmeHxJv7A9+fldVccOMtdA7NWyTOpKxEnzl4ZRbzCRyjUYmn2NHlAZ0C+IPhAb5AX2qLr0MSSJ/QOCNp5Mz3bDoLgtH1ZO9Q3eNQijrUZ2LZsT284mrjYB4JOeJyxmVwddZEKIhY2eVRGxKiq6PpyViWwVdquRJQQr0e07jj+qsveMIzhvMVY4pksql0Y+/t2473IwhgLsFtYrCIq4h/vX1ZsFrbgkbm0eLMvXgZBeadxV0BQSfU7RAWYs/DYkFVaaTDJu9U6nOb8lsF+pq4Q+0YCFSRU7/sgs4Hq42dp+ssGORcIEU0TjCNyHhAtjvK7S3x1UvSfk+ZJ5wqnXP04vBqCyTlmaKJLOasA4UiijWDDLRT1Pw8WjquTU6t0VJrq7TkuhqNYux8ReqDia/UHNJOVbHvxYwwtbY6q1R7NvApq6OoBW7vPOpKbYEJEiBUoRLUgMhUMjnHRWjTO8vUihY0eXL7WQvOS8URXA3yZhs3x8iYJ0B4fHYB6nl9e+B+zMw5cn8f+fLnd8y/suaqTzh9CeGWnLYw3aNzIUWPqqeo5zAHbraFEALPDuesDhnXRcTdAltc6im5EDWgPuP7glsFdF/MmyB39OKg5EqlNnFPw0i96f5LoeSJnGcCVfIulwWvwSlOFC9VbepkstI5y7BcBVcVkGLKTVK7Y1Iy6XBge3OD754QOiGmiDmuWpfh2473IghYbZpx3i9rtWjd4VuNXaqVgpZFVVirbrvUFqFaHvoAlGuThKZjJ0vNDMeSoA0fNaKQZfyK5FKzkzrsAhAM+HJaLBAEB30DvWwNhc4Ukb33OIGUZ4v+hwN+nMmHke2r19x++SW7t2+J+y2aI0FsYYhzZK3tRapVWb0Q5uq30OYFinZ11FqtbFVbREidzRfLWrJpe+GFRbG5wgMmo5agC44gZqFecmbKkZhynau0C0krYu+6Du8tEJc2+2DNS7Kd3CXAiBoFFtR2vWwXuZUFlra0bI0iCwnJiRFdshovJI2R8TAxRdODcBRW4ni26Vn3G24Oyv3ulvvxhr//+xO/8auPuVh3rPMO727xmtA4UQ4KY0caPbuD42Y38PlLpdz1PP+Vx5xd7unTGzqZIa2Q0uNyYahBWXPCZ2AuxEMijckUg1HQZPwNXzkhzgLN2WqNR5mnA+AhW8dHckbUlKnFDARoJrkGRtu17USM+ie2oUlRXClIUTrMk0HzzO7+Hj8ELp9eLjqTrrndfMvxfgQBqn9btWsqbUteADxt9AG8r7W92IVnJ6qm4XJc2CKNxioLTVezyTg3olDrSpwGAxGTxRLUyC+lypHZlm96Q2oDx3iPekd2snQsLIsoUGZCMPpsiSPusEXeXrN7/ZLdm7fcv3jJ+PaafDggabbR3uCgBLJzJKhDSAWkELy9r6KOIqFFSnJWi/iqhNo6LTnXVNI2ASnJtObQRZrdsBVjH6aSyU6QzjIYKmptF5sQXEDFmSdftvOVpENdb5TnDMllGooCtiPmSgUuAuot+ARnOo5SpdtzmsixLKCwyWPXwUpMv4BSqdKxoHNGU8KTCa6WHiVy5i8ZHj3i2bPHpHzPF7e3/Ce/M9KvNnz6JLLxEPC4BHlypFHYHjxv9x1/8EL4//2oMLs9F989cPFs4MkGfBmRrJA6C1z5AHpAUsJNnjwmxilwP2Z2UzYMRjJeasnkAkU6um7DsydPcM4xz6M1q3MxHUa1YNZyU+uuUIO5Lp0v2+fsxDgE5xRXrGujqnTiUd+jOXLY7Vmdr5Hg0JIq/+W9DwKGkdqCc4hr9aIut0GdXqPN8rf+YH2C9uMJP70t9jaAlDVRijsBIlsGYLVEoxm7KuJYJKNSlrajYt6D2vgClXS0yJur0WfNTEPoi5C2W3bX1+zevmX31Uv2b9+Qdnt0u8VPEy6Zm0wuySbKKBA60y2sfXhVU5z1zlJCQ4yo6LzV2IsISlEcllo6SlUmtqkdEaqph40mU9LyOy+muZdLMqcf2ty6I2MzACmVitirmYEGc9/BuWpzJajzpgikRr2m8iu8E4a+r7qDVSsgx8U0hkbdLqbsvACtIgtjrnPBdBA9xndQU252BcgHNAfWF+dcPvuQ1eoJX7x5xd/+3Xv2nwkfbDxr5wgKJTt2I3x57fjRV8Lv/HTi73+VmCic/YM3PP/uBd3HygWFoYz4BBodRQ8kzZQRxq2wPQTe7hw/f5N5sytkF6pgq6sZHSBrzs8ecXF+BQpxnsmlLjznCGKf1eZQKq+1dsdowZLGVq2YdM0OEBu4ypprlhsIYszUeZzoz4Yjme1B+fvweG+CwDIHX2sprVJh9rs6iOO9iXiVo3qOqGn9iVgrCmFZzK3b0Aw1VduYcX3NE90B623XOWzn65gu4Cz9Van1bAHxpt7iUEKRJVp7hJVAKIrLiXj7llcvvuLNly+Yt1vK4QDTjFeld9bvjXXXVLEUPpNpQpttAMm7sHQ+cgWFSsnkYkamfWeW2FR76y6EOith04TYvN/CnhC19yzaiE91gdXF2BSSVGyyL8XENCemmExNCFM6onYLtAph+hDwXY+It7Atdl9EcR5jvom5TufkoDjImRiFmCZKilXo5CgoI+KMdSiO3gdW/QpJiSnHio4YuBhKgTxRbjNv7+84e7TGPb3kZy8843biyQADmSFYaflmG/nJ68Lv/zzyB19MvD0EUnFMv/Oa/nJL99+44FefXJLyjr7MOHUcEkxxIO082zvPz24Lv/tV4e99fuDFHrIfkG4F3uO6QD/0DP05j84fsR7OyMnMWaUUBt/hutrSdVbCmR15rkleNiKRGUbQwG6th4+PWgAAGXpJREFUQb76uVrQkGMW3JSv0pQIg7l8l/q4bzveiyCg1qGyaFcsJWyuqnbUcdPcBoD0pINgGgItOJ6m+i3dNw52VV6pO7+lXvbszkmtkdV8AKqZY8F2/SJq7SuxBejE4cWQ2VCEDhuAyslIQPfbe/Z3t+zv7xh3O/I4QY6QIs5VTQMypQMkmFx3AZFijMCcKhDkrOSomYlU3MN45dTPaSBcEzx1CMEJi3YCeQl+uYquhtDhMCDTYqqiziF01ZuxllClstRKLUOw2r5oIWVLZZtmeqg8CKMEW0tUfFeDdTbUu5KtTEm3oImaVUhtk1kg9c4tpU1rC1Ol4KTqTxbpyOJJxZHKjCj0kg1/KHC4uWV3l/iqF149OuPx+YqLlVDiDYf9gTe7iS/vlS/vlLcM7LuOnAufXyf+o791IMw9/9VfH/jOszUXa4fXwH4f2B5guocXL0Z+54s9f/snEz+9gYN00G3wq3O6Vc96s2Kz2bAZzln7QMqWeUopBDWsxxiBxz3aZOetFBV9aD/fWrUUoxdbFtDSJY9WvwkTtYEcEzpnpPe1+/aeBwFEkGBmF13X0YXOdNedswuuKgvlKgfeEH/nxDoDJeO0ELqwEGNOh3oW/QHND1IjbQhs6wouyLQsxMMWLGz6TU1fD/MQCFltZHeamfYHs5S+ueaw21KmyazN68BPS9tTFRspoqivX7y3WsY0Ay3lXiTXq8oOhbojSn0utZ1eymI77TF6sq/gkbVYvOkr5BYULdou4Gj9fDnDFHPdmYSU81ICpGK5hEioNlmFrJbxiFgQXQDXVqmJq3u0AZq+Ir6qVhp0zsQzszhKLERMSr5pPYh4QpD6Pj0lWgBLOdX61ngEWXqkM0WhQEFyrGCjMmXYToHtNvNVOLDuwXnF+TWz65hCQTaCF8FNjjLP5Ci8eKP8v//WgS8+H/nHfmPNZx+vGfo11zeOu7vI3duRn36+4w/fzPx8GxhlwK9W9Ksrus0Fw2bD2dk56/UZa9+h08Q0Hui91jIA6/ZkNfKwb9LiTbqeqpxUQW9tgnYVH8gKUmpXqM6+LOcd6zgAJRV8F0xF+9tjwPsRBLxzPHrylGE10PddNR85gm2NYjuOB3aHPXMcyXMyoEutpu18Q6DLCb+gqv+0zABo7cBKN1qwB5t5L4uAqHEEFgUMfBE6cbishuqmRBnNsXe8vWO33TMe9iYRVetaqRqBWmKVNW/KRtW/oNiMfhMmtZ0+W51IBQbJC3fci50r01KsoqnO6nbUBlHE16lFZxgGzkoXLxnqFJ/iSDEzxUhRFqu1OSdjqxXqeHO27kABH/qKUxjI5MTX91QxCHQZEbadyIgthZqNeSN2acUu7OKWaqmm9OJMDbhmDq75Tgo436Gu0I0TPprrU1cgFSUJZpNGhpSQPFf2aCM9OSgQo5KmbNz7kNEuMaviNXDeDXTOk8OAz46BwFRGfvxiy36O/OTFxPm5526vbO8O3N4ceH1XuI4Dc78hrNYE6em7nqH3DKsV3eqC0J/b9VhB01wsANr1eRSBleL+/+2dS4xk2VGGv4hzbmbW9Ez7gY09GAts5I1XMLKQF5aXgL0Z2HmFF0hsQIIFCyNvvAUJFkgICYQlgxDeAMIbJB5CYoXBID+x/AAs4QcYjNw93VWV995zgsUfJ6sYTTd4PN1ZUmdIpcrKyqqMPPeeOBF//BGRY8ic7oP3sRImzMqsgwejQQ5Nf5dnQ3JYRkip7A7rwNhMBuXBGcKbYQTqNPH6N7xReeNSDmHBYPFtst6+brdQK2U/aVLwMqtevTfW1SiuoRIaK1Yyr82Bg8ABXhlhRdKQs02ZPIIikCwyTZj/w+nQGv1yZr64YL53n/lcRTzL+YVITBGHjr8jjmt9Zckx0n5w9bgqRw4Bke6I7BMatzZ4C6UYJU29Gnmu9GUPrVGL4SZ0GbK7Ulfj6WJTNldRFaFXh6jZgk1z7jQIM1gMyPHZc3LYW2/aZK1lv/vkTWRdumPUmt6YXA1lMrLJCWgwSLGM7fOGLMU1qDUrOGQEnOLlGglME5JUTi7MpG7UdHPuC3G54GvTiVhhSR6Iu2OlZyi1oQRsmWXHkYFaDzjRonReL0zRsChEVNxkUMKMe8uOi2/NfP3eQp2+rRqPuTEvwUUrXDKxUIjubK2x6XumVrFlpu9nFmaVApsG51rXQBhC49YV0uW8DfIa5Ia+MhZiU1p6UqOhzhU2Pv5Ght9D5de9hwxBHn6v2ASiRyVeCtunns7UW97sPmoJFAsXczZeueWFutlRp3Pm/SXz5SUt24rvl5neO5s6cXa2o4402TUDMLyEQae96hLQtbCrvleMycC7KhzXywvO795hf+cuy/k56+WluPSZMjsgvAPQdGEKc5JthCgateRkWopmzZn68+n+FwhYTDf0Zqo5gmxhnRda0zhri5XN5Ey1KN+en+kQ5qjd0WHDexYXMSbaBBSrBJV1FXuwRzD3TiwCGwfnoashoApXYmApTs24vXiI2kvQ11nGq0wZloxmFiW9GCiZ+zeyS1JiH9ULUcQtmCbV3K9N3k71HFC72+hnC+Y2i01phgaMowEdk+rzWhRqdKp1PGSUWkx4DzpOo1LDWAjW3lh7Y2l78RHawmyF3pUabfcWOntgMCGNFaPZSjAzFWdTjI2tlLlgZQt2QW9Oq5WpyIOzsCvP1ZzJYCKJmrpR8ysxsUySlKL43+lXQNbAwdJjPpC8QgY3cqT6oHK377Ll+COX4Sop3ZbPHQ7tOMSYpVSmuqUPwKoFddJB1POkWuYLzs8v2O/33Do7Y7uZDo1Ixv8bSIy2flesjxBzX1e8dyaMbQTMM+3+ffZ37nDvW99ivn9fAF9mFA4hRf4sTCJj/R7i9aM0ziiFcnfGeToQX1ALKA+jryvFZTB6azlLQahyLaIkDxpwAcjYsEVkn79suEpcu7ESMB1zEwgZIlceufXRvOVaAVao/+HAD9KykG9JQQaGdEVVSbmq9GIQf4pSgMXHULh+mJw80r2j1Xx11yy96qyzphZZZoMsOtup4LGjRnDegLoevI914AhTFYsxKcrFHevyldwVsqxdfAxwwgVET0bW7IsBuapGStfHCsEm8SQ5PS3jbzyYvDG5U0MYjq+zqN5h1ObU6tQyPEpjQuXe03DjQ4xUldErKdjIpipkpiq0vpaPoR+A1gOfhBFqCjzsjDobbj4moOs8+P/S1q4Otquf0Q01sAIi0pVX5x0rGsa4rit3X7jL/Rfu8urbz/Cq27fTVeLQIjyiw9rzVNaE3xJBobOx4AxjSxCmNlpBYx+N3tV0w1zxm/K7Gc+NwaBN8wYDo5SK1WQ45MlVvByQbzej1Ak302l44AV09tGzVDdHU3vJlJGnW4lQ/Twd+roeptYO/r54E2RZcByap6xdYFEjUeaCjGCSiiKu6i5GyzbdpG0cVofOy4OVKkyg5MXKBgFxLSWZ1zfy1BIhSQM2C1WNSQhYFqXKXGsl4DFTucXptTLvJmoxWlvZLsrSFK/UMtG9UHpjWY1YnR4qqzYf/SqKyFiHQa4JsPlwqzdsAnqNq3LyqHQyw5G8E6wKZylKkYrND95WpuUSj0bpRu2FzWZDEgJldNwUzoWuh8JPtcmT5VG7vJKhqA8uSNZayHzKcDD+xkcCQdWLUUVu2+8XLtfvYu7A45JD62nIT9IZ5TgJ4Qkwd09m205ghwlIWnM2m2dzzHV/wb0X7nJ5/wUsGs88/bQqswKIhvcVQiBcyQ69GzN2pbKrztaM2oJeC7uzLbv1FnFxSd9fsu89U3oZh2PZ721lWQerDtynLMIRGy+aCnBqSeDRim5Y1zmgza+BIBBZm2DJoCvU4jISqGOM7GKRC9s7azhRJsL8AMgNpDxCN4GVoo0Uo7uSNpePpqEm0lOnZYJC1rg4mUbNeJSe3lsyFTvqZze5gM5MhVqTwV0HxoIYjQeuR9NxO+o11rUzLwJRS9XuGLl0+krEgqYWNYwmJmR0JlysyupYLUzhzO6s1jWzcV3FpThgMlfpHxkoP6QjhQMpfgm/3jtyxPPK5VsagY6rUCihT48VX+5jrcrAR1W/xKlSPTd1aEbF6H3p0Q7NblQPoP9mjjCUxFaGhxx2OC/lkWYKODyHuU4TZbOlY9y5c4/78+UD996NMAKRgBrpJOrC9KyHT1Q/c/lmuoBenck2XPsDzkl6MDBNlU2tvHDn23z9qwvf9+wb2d5+1WDAs8kbsvbG1Bs1Ojs3niqVTYJXmBHubKYN01PG8szC5eWe1oz5ctb47Ap41+CNzGNXVx8+c5H5LdBQld7pOVDVzZmKhmnMlxd56olp1tLVN4DehdCvKz2yJuFaC+9mOs1biKbqRXnhaJ2lL5nP7wfPo3jJeQDa7NoHSds2rXPxZA/mXVYTsDUz1lWnr/5l0rnJ6+JxOO10YuWgFlODjNFvvI9S5OQCpMU8hC7NSrYiz155IW68dYUbZis1GnVtzKuapnSEqJs7tZte33QwjJZs3mW8rKvopsj1HEiKvKQ8cRW8ZHbFR1bDE6jLqtaugaxOObD4dDuuapzr7XAP9bZiNZmZ6P6OFqM0RZs9a1Z0UIxd3g9AMlwtl8htBcLUej4Uoqi7taE5nRNL75xfXHC+3z9w/90YI7AuC2MR3cYhn5bbTDcd6W5mb7vqDtOGODMwTV6xnqfSfmEzbdltdtz99h1qwKt94uxsQ6Ez2XD9YTs5tXe2JhzAlzlBMAN3pmnDZIVlucW9e+dcnq/MOVltXVfWnGpUvbCZVFrbElnvETIGmd9vq7rybGoVnbdrxFSZJiHIg7IcXS2mMt++X2aWReGQFxXpiLknLMRMvIqlK5TQuLZGi2GU5J17wklt1TgyLL0DG6WrclfxQolx040YqouDYI7b9RMS8Tu2O4UqpGcXeaqZdOgE67rI+DDqMhLY7EWUY1fprTyZRmszsQRMTrXUgaB4UFzXMUgac+Naay7Volhv8mIy1rYohKf3Qch7Gr0jbISKSsuVJEINsDdCBsFd+nd6emvClSznAfbeEL7clCEJeZbbvOcsUVe3LMtyl4eQqShPXUi8yLJILmyktnW9ZbQEbPbeaYgrEg5W8x4kqJsd002vHYjeuby4lFvqQlKriQNncGCl9eiZC+UQY4qhZmx34q9bull9v9DLzFO7W8z3zlkvZ2x/yW5X2VbY5ntsHCbrMDdsWeiXs+78WrBaNFRj1cXofVWTkKmyr5UDecMN83LYxCNPr0aamihUDDXUrJ2WMwUUy3W2u41eg2VIoRkDjsp2rVS8btSSq+e4L4IwYwlV+U3TRLHB8Et2oBluU3IHukhLKJfcsh1YKXnmmeuxjdJpmYyWwGRr/ZCGKu5X5a6mQi2NkBv/V9emWvYMNNU9qGdPxrWhMmWdrAIrO2qEsrb54L30tdOsawR3bpTihe1mUs8EwK2pph7DUF2C4WxyUs/SGmsOaRGzXJ9z6aKcD+hp9ISIDFXG5+vkjAQfZb52yMYIeQlVPibwrPoXhUTuneqNjVXqQBTzb90rddLovZpDeOWA2jjuCYy+5kSpER9naXqLdtU6LvdJi1DNx2aiGcyrZhA8ZOzAzTACPYLL/YVulkSJwwvNh0dwrWmHNZXMwsFSOiG3rRSibqBO9OyrVkuh3n4VT28nXrOt3K7GpjgV1W5vcEoXMy4uZ0KMDtw16Wc/L8xzw6ywLAsQbDYTT53taL3hXUSinuDgoQNyqTqBSzaqTKpvqY5FYd3POg2K+g9aJzn6e+Z1xrzgRVN+wgyfttB7bnLVDXSCNVOPbsqPq5jJssvsCBrzNMsYwiwLskbDlUSUimkoyDj5Rx6agdIzXNQsUy6qtaiTSql7a7RFLcTLNAZlKhxpq2ZLWgJhrXeWTLHW6rgnsp0ltiUNKKWovDk75moIpzJFMOo9FhZxnMUrUIEHXmryRZKT3xuOsakJMjajjFFqY2MWvWdv7VB+XSEnLskwRALSGuyqgrfBv4x030s6rcWDyTrV9N4jkJdh5JA69YFYZ/gYI1QZxLIQzTghAZG2mtruK7Yz3IQTWSl4FTa09kGdv+H9BCI6bdmLI9+rBlz4mDirjVOyy40PTMCvIe4ExEqwsCuNp2pwa+fMa6Xszrj1vbe5NVWe6QubvlBxAVMJhC1do7qviofUuEI5ZFnWcersdht2my3t6c75xTl379/lfO5ZsMRVe7TMzbaVwylaMiooJUdIrT3TnYpr1yW9ADKDUKpOoeg0EoCyTjOjmXrvDW9kXZeMUcl+f9rYbYQkoBjSlIYqLjZeGXUCTePJ6Y761utEbxnHj/i9p1FoKK1XSqWWbP2WObViyO1FfQn6APtCadQ1iUjgeFGLcfJ03k7gts1TVUy6AQiadaZaVTBFpXhjKs5+KeznFbPlYBQxue54Z6py8eeQ0XFzvCbLNGcBRiRdN7MQa5DFVyF2ZPHkXbQrWjqWxWRKFbeENjznKnhRethj1WERV9dGNGHhAo3IQ04BsTI4WufeW8b8WVacGR+lVRX6rmkIeu/4VPFp0jBYF3akdPENDwfk9q2HKbbdE6k18dInSuastfAUx3pncmdngfcZ1kv6ekFbz+ntnO6X2FmwqxNnpeDrgi17WHSl1JQj+7J2qEXttCJgXRbm1oji1GlDmbayzKVytmp4dpsb0Di/8IyhdWFLuo89gv1+f3Clp2lKFpwuZImcvdc1SVlch5AVN3lCS8bjXWkRuql9NMWSLhxEH4MquEL6a1Kfx83UWoYlmtg0cJeanPVYZoArnnpknUGMTTDKpiPBRM2+rZ6AIUDOjqymTdBDm743hSjrshCohdichk6bq4LXAyC3zfCkLWvqWWg0SpmYSo5td6CpwOZAQiqwqerR77VmylYxs6fBCRRqytHR5lZDlCZMyTPTE8FklV60cTQ4RV2s1mVlbZ4pbTvMWtQE62w4U0oOUslQwXpiGCPLMrAH8QMGsj9CSAKVkHNAHrQXlI7K7TzwsyBIlmrkcJ7MkPg00c9FGBuj7l5KboYRYOBO+iAeXQCRQ4xUSnR1XUWjy8n86YR68LX5Pv3iBbg4p+wvOYuVzRScbaDGSp/3RDTmRTfgSmeJEftVvBaiJJctc+1lqvi00Vw3k0O8soqaWdQrfrOZWCOLbAbHAblqbcm+/aaLM00V6Kyx5BBRxarLMAKZJ+/hyaZbdWNlKNTpLDmyPe2OkOoYJ1+690keynvmMAOwM4Ze6oT34nhu+KsLIY6AWJoDaR6FPfpwArJKehN2zT1uMtDkNKlrIcWhPXsXySvMsi1Cxr1BhmiWDLrOqOLqrSe4qahZuJpSn4a8RTeNtjeveNX1UsjRMkXaBFBONTd+9l30zG74aNaaNWl+1ZzTXXhJRJ4hGN2FB3QyvLGsOu1ZMhWiQld3dWxyVXeWMuordD0s8ZVOO/ApIpIvMJIn49pkBuJ6j8wBZA660Rg0U6tShCNEdL8amPtisf91AxxJzOw/gfvAfx1bl2vyOk76PExumj5w83S6afr8QES8/sVP3ggjAGBmn4iIdxxbjyEnfR4uN00fuHk63TR9HiQPKTA8yUlO8iTIyQic5CRPuNwkI/Dbx1bgRXLS5+Fy0/SBm6fTTdPnJeXGYAInOclJjiM3yRM4yUlOcgQ5uhEws58wsy+Y2ZfN7ANH0uErZvYZM/ukmX0in3utmf2FmX0pv7/mEevwYTP7ppl99tpzL6mDSX4j1+zTZvbcY9LnQ2b2tVynT5rZe6/97pdTny+Y2Y8/An3ebGZ/bWb/ZGafM7NfyOePskYP0edoa/Sy5fqY78f9hRrj/DPwVmADfAp4+xH0+Arwuhc996vAB/LxB4BfecQ6vBt4Dvjs/6UD8F7gzxB95J3Axx+TPh8CfuklXvv2vHZb4C15TcsrrM+zwHP5+Bngi/m+R1mjh+hztDV6uV/H9gR+FPhyRPxLRMzAR4Hnj6zTkOeBj+TjjwA/+SjfLCL+Bvjv/6cOzwO/F5K/BV5tZs8+Bn0eJM8DH42IfUT8K/BldG1fSX2+ERH/mI9fAD4PvIkjrdFD9HmQPPI1erlybCPwJuDfrv38VR6+kI9KAvhzM/sHM/vZfO4NEfGNfPzvwBuOoNeDdDjmuv18utcfvhYiPVZ9zOwHgR8BPs4NWKMX6QM3YI2+Ezm2Ebgp8q6IeA54D/BzZvbu678M+XNHTaPcBB2A3wJ+CPhh4BvArz1uBczsaeCPgF+MiLvXf3eMNXoJfY6+Rt+pHNsIfA1487Wfvz+fe6wSEV/L798E/gS5af8x3Mf8/s3HrddDdDjKukXEf0REC5W//Q5X7uxj0cfMJrTh/iAi/jifPtoavZQ+x16jlyPHNgJ/D7zNzN5iZhvgfcDHHqcCZnbLzJ4Zj4EfAz6berw/X/Z+4E8fp14pD9LhY8BPJwL+TuDONZf4kcmLYuqfQus09HmfmW3N7C3A24C/e4Xf24DfBT4fEb9+7VdHWaMH6XPMNXrZcmxkEqG4X0Ro6QeP8P5vRajtp4DPDR2A7wH+CvgS8JfAax+xHn+I3McFxYs/8yAdEOL9m7lmnwHe8Zj0+f18v0+jm/rZa6//YOrzBeA9j0CfdyFX/9PAJ/Prvcdao4foc7Q1erlfJ8bgSU7yhMuxw4GTnOQkR5aTETjJSZ5wORmBk5zkCZeTETjJSZ5wORmBk5zkCZeTETjJSZ5wORmBk5zkCZeTETjJSZ5w+R+vRjxJjnV3zAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d7hmx13Y//nOzDlvu/3e7U2ranVZsmRb7sYY28GAMRgMoQQCgdBLgkkIKYQECM4vJJQAiQGHYlMDhI5xl+UmyypW12pX23dvv285ZWZ+f8yc85737q5tIE6UB83z3Pu+7ylz5szMtzfx3vNse7Y92/7uNvV/ewDPtmfbs+3/bnsWCTzbnm1/x9uzSODZ9mz7O96eRQLPtmfb3/H2LBJ4tj3b/o63Z5HAs+3Z9ne8fc6QgIi8RkQeEZHHReQtn6vnPNuebc+2v12Tz4WfgIho4FHg84HjwEeBN3vvP/W//WHPtmfbs+1v1T5XnMAdwOPe+ye99znwDuCLP0fPerY9255tf4tmPkf97gOebvw+Djz/UhdL0va0ep+joXw2zdM2mrmpDlleYp2jZRRpq02v2yZNUwCyvGB9dY1RNqBwMCwFXAlpCxCgwVV9zj0xm/1L41gcR/W1PvdZNOdAq233NPv+TE0mb/ls20W7rl/g4v1V91zy3La18I3+6n4/3Ts13tt7sBk4hzYJohS+mmM8xiSAYL1DiaAEBE9ZOpS3THW6tDtt0jShyEvObAwonCMB9izM0eu2WN3Y5Mz6EK8mX70jnvmpLr1ejzRNEITSlhw7doLBaHThBMZ9lxhNp9Om2+3R63UpbcnRJ588773fsf1NP1dI4DM2Eflm4JsBaPXgli/ctt/+ukDkL3Hv9k08CawCKO9oJ4aFuR5SGjodxRVLLe647WZuvekGDhzYj4jiiWPH+KPf/WOeOvJJjvUt955XyGgFv+8QngSwgALnwbvwV2+WS49ZJIyxEs1EBCRsNHH+wj5k/K4eH68XxIL4Emc6ICBiwTkEj/MWpRLwCu8dXnxzr+G9Q/ojmJkGSUEcXiBIduC9rTdYmMHwzPGYJJ6R+qdvrsV2hOQZ3++rd6z+Gn2qcZ+T19edjPtuHo9rIN5BUYC1eGXiddv6q1qF/yT0qazHK48vMlg+gh5t0lvaTdKdwjkLtkDwzC0s4bVhWFpSYCrRpBScWR3Qyza588YbufGmGzl0aD9PHTvBf/rz+zidDejmJf/4y76AV7/kefzi7/0Jv/iBT2H1eB+ghat0wVe94nncdtvz2Lt3icSkbKyv8e3f9S/58P3345Ud7zXvwVmUh/275rnxuqu55XnP56abb2RtY5l/+JVfeZSLtM8VEjgBHGj83h+P1c17/wvALwDI9JJHGpLJxNq4C6lqtcOkufCqce/FoO5i1A08DqcM64Vl49wGCgOrJVqmeJFReOviIyUCq4DzKPGIeEwrxSmh9BLHoEAciArDcO7C8dSbLwK/RMQkEmCh2vxewvsTvo5HLdvmCBDFUqJ42Y372NoqcSg2RyM2hwWDvGRkLaPCk3uP9QrvBOc8VgQX59DjEe2BEkHVwID1E6gzjLea7wa1juOfQAQTwNlEGhebj4st0UUAtl73xrlqvn2YL5SErSNh7bw0xrtt/ieeWb2zCCg3gWCqt3BjzFnf6mPfznusByeqfo53Du89oyzD2QopKgoUW8MRIpp+ofFK4+N6E/eE1hoX7/fOxS592JfVWGvkO+YE0zQlbbXodNqIkrCel2ifKyTwUeAqETlMAP6vBL7q095RTTxMwkyTYkxcv31zNCZiAmlsY5W3d+U1WANK4ZQg1qFIQRLAYbWOi+tC785R2hIjgnhPqg25UigneBQeFQE4Ar/S44150ZdufpUAWzUgTdDqSH233R6prWjPbKJ44ZXzrK0NWdq9E8Ej3iMorCiKwtMfjuhH5LC2OWK9X9AfFYzKktG6IetOkRVChqPwDu/A4hg5R+GFkgaFF4nDlgZxjeswgffCe4g03sWDxPfx1VxVc3ABgqs+t+2PGmCb51Wg/gJeBa7Mx2f7JiKv3kPiOBgzCI0Ox+N3buIajw+sf92Xrym4cw6viUArWGcpy5KyKCmtDXtEwKPob22RlTlKp3EcAUmF8QZC42P/IoJzNjxLVEB8FQHxzYkApRQiglIBgVlruVT7nCAB730pIt8O/Bmggbd57x/8tDddDAGEE9s2xQVQvO14pArbT0/slsZDBNBl/Bo2SonFUuKkhjEAnPN45/G2QJxGfIoXoUBTs8MSd5aLf3hqqunDom4fddikqrEJK5a4ApJt79fsIVJbj8KiyXyLpJWwtT7CaIMoQWtBxJFqQ2dmlp1zsygVnokI1jmsDZu08EKWW4a2pCw9zivywpL7ks1+xqDwrKxtcmJlk7W8YHWU4yTFlz4gPwUowScuzKhK8F4H9jy+rW8ibqcQEhCHdxbxHi0e513Y6ErjPSgFeDcG3Epk8p6aRleUtyYG8ZiKayE6npucyvEWqdYwrrcC8fF+AVA4D9Y5dNxPnsBReXF4b/GiUTicj6uuBK0UidIkSYLzARjFK7yy5MOM3JXMTXXBCWKqfRoWXghiWJCUBMFjyxLnKsLSIG4Vu+g9pS0jXTWINmj9f54TwHv/x8Aff9Y3NKn9BCFXF8L95I2f5bFLnffjTVNRI68CkfGgGnK6SAA2EDQWtGJkOoAKQNzcjBWLWrH5BBm1puaVWC8y1k9VcCLja7yikgga3E/8t43jUUpIlMakJsj4UZ5WKo5FBUTjEJyrACtwCmnSJk3iM7yPQBm+lmUZKIsStFEoregKDMqcYZZjVMLWqOD8Wp+VfsHq5ojVkWOzPyArLKXzDHCM8OQWSusCMkWwAnlZYH0ZOAIvWFGBdGADmKkkro4Kisua6vq4P3QYdtR/BH2KC5KZVw3mUC7OVfqKq5F6jgIUS4M9iPtAKUQpsDaIURI0QQ4fORqFkjA+UYL2GlGBG1DVXlYKLwrnHf2tAVoUV+3bhfKackLEDftAa4VS4b2dczVlClfVrON430U9kVIapRSJSYJq5RLt/5picLKN2aAxIDZOVe2SCrZPc51sP3gxXnOS7Z4c0vh674PE5hESFehAKYH99KIacmfjr0YCBGC+YDzbmZUIsDXh9JNjanJGvtGDErTWGGNAa5wtIbLBSoWNWCGyilVsToEXH9nzyKl4jYgPxD1NajnYe4UtYKg8npRupwMO5hPPbK/Htamh399kenqKPC8onaO0FltCVjpGhWWYl9jSUTjYyi1rg4z+YMhgmLPWL1gd5mzllqy05M6DlDgRnJKgZlE64skwXq98nGYhYI+gGKynSQTRGn9RSJB6nT0RIce5CdMdATeKdHWfDR1BpQ8It0pAUBKeq5zHaINOAqhZFwlBRE6DUUFZWA7vXECJinoUHzaLUoHLi8/XShAVfgc9ThQJmBQ3BUgSg9IKE60Z1l1KJH3GIAEaVG77Dr+QffvMfTV/+G3Io8Ge17/HWCeAQpRhGVNpqRCCd3gcyqQI0ElgRFjwsRjiG1iZiuQ2yHo8V1N+X1MjKlmvOT7V5CYa7xeRhniPV6C0QhuDt4KIwXvfkA3Hn0qpWsasOqpk27jj4maOQ/WgCJtbIRRFiWolkVMKMr2KuCrPCtJWmzzzOCdoMaRJik9gSilMREZKQGuNj6wrQFlYsqJkWFryoqQoHMPSMsosg8KxmZdsDnM2s4Jh/NvKLFsljJww8iXOWjyR04gA4yuT3qV0Sz4iiiirB46gWrsKIYz3R82JxPnVKuhKVEQAPop9Do+Ja6m0Jk1TtDGIhxYKI4rhMGOUjdi5OIsxhhFFAPQ4Xg8o0SgRtNK4SCQ9xOsqwtOQ+QWSNA2cgA4cx6czWT/zkACMAaLZmi9xganoIvePT0Qgq665CCdwAecgeF9hdI/HIt7gcZR4bGHwEthOYzReJ4yxMoz5z4rKVD8jpboAv1UsgkA0ydEcqt82xu1jJSiCtAipMeCEXHm8eFIvOK1RoiPrDyIKIci1TiRwNxHHGFFgHaWAqlhNDbWCRDxKRzHbewrrIsKw4dN5XBF1Hw28pXV4L6XChhalIjs9ZmeVFtpK024RuZaLiYIBkWmtMErho/6gdJ6twYj+IGNldYOz6+sc2xzwgUc3GQqgwrtefM2lnuZKuUgUocSXkTNTiNI48ZgKIQg10Dvra5NitS6CxnmHSgzWerAO5z2iU15+5RR3XnEtVx08wObKCvv2LLHUTRkWQfGnnYoG5xLxgsNiEYyu5i9yCJXI4ivriI3j9WglGKMQD+7/tGLwr92k/jchCVz8mksA/sS1l8L4FWu9jaVuIAeJmHa8CQNF9CoAUOE8/VEerAnSZeR0DbiV5tkTTYSKiETGj63eRRq722+/YIIb2vb9ohxtOKgigBQGjAg4cCJoQGGRxIS94iBRKYV3KAXGOhSKXHkK8UGJ5F1QREVZWomADppvJRoRhVK+5jZQEs4p1ZiLMZBMHKuBMHBb2zmTah5rs2zjePX6znqG1obelMcozcL0NDOdDrsX5ji4sc71CB99/G5GDryVqGeIQC7VnG6fR7nws1LMMeYIfRxLLW55d8G+ExG0MVjrAnwagzIanOPIqQ1aW0NOPPY01119FYcP7GImNZB5HC7qmCI35sNnkZdoneK9Aq8nNxSNMdeM5XgOP50k/cxAAkQ22I/VHRe9pm4NgLjo5dsPVsBzkRsuQBgSRWy5QFcpXihEUYomlcCyOZ3Um8VLxMq1bmCCnx5TdL/tLZsUqqJE9VP9uJ9P04SghdY6sIy6dJAYirIACVp+KSziBW00PvG0MJRlCVrhgFQCex6Gq6KNXSGoqNX2Y7GoHrpEtl5471/+BXmWjeeslooiQr3otIc1Gfv5bOMCtyHMiRW8CE6M4jjOWbayksWVZWa8C6bC2vFItve0fVDjzitvwTQoKU2+iRT9sIbRBJguD+k0vBITBeCZKYLH4LFHHmDj3Eke+liPta1NZs5uMPKOR2zGGe0ZrJ/g2NF76Zx9igODrAEDArrg7g9s8NhDH6fT7jI7N8MXfskbQSqLUtwfFSERUF5IkgSlFUoHfdCnixF6hiABuCSVgzF7X8nRNbDARbHAdpl6QrF2MVNJvQPHGzcejjQsaq7BiqF00BEwEjTdKFXxko0xNIBZKmCOj3LbZbTqPjX5btX1vvHq1S6fuDcAp1Eaow3Oe5KW5sQ993Hsd/+YnlgkTTEz06jZKZKpHmp+gd3PvZl0xyLiLSCIFoZnVxicPA8OWotT9HYtQVtjJEErRRnNU94FCq+1jroSKPOCf/JPfwDwOOcnFJFhSsbcwdj5inqDXmyjTnACF56cuM5H5V3lWLO2NeJDj51l5IrGSldim3CBQi0qB5t9i/f4YohsnkdwmKkeSgWTp3cWpRTtbhfrKqSgSHVY41HhmHIF+3btZHHHTuZmpzizssbHjywz8NArttihMg4eOMQVVx7kunue4un+iKg6xAP7Tc71B/ewe89uup0eP/5jPxrEU4mOTFGcEoJEIKLAl8GHIYpevrIqXKI9s5AADQisZOoLKMOnoYgXOSfRltx0tb1gO01AfEXVwz3SYKt8xL7iclBtQmxUBxE9du4TIuWvvAf9GOCjU4xcZJy++j+BS8bIYGx+bJiEGjdbraOHrUYrD0ahCoc6cYJs2A+3egNiERyjpMPo6HGu/KavIdUJ5cYmT/3Zu9j46H2Up85TOkey0GP64EF2fMlrODkYsHZ+hTRVJImhMzXL4sIcS7t2IArK0kV2WdXA2AR0qSh+hexrWKtEhGrZJ0WHi7ZatIs919MUFWoRkTqIloPIIk9MblP8Gt8rMPZjaOh1xgh5fP/EuwXZIPYhuMjdVkCoKiwe9SDiLNgcT8mgn9HtdGvi1SQJxWjEcKvPsD+g6I/IRxn5MB8zhxFJ+mD7jc5pYe9WIoGz0QP0Eu2ZgwS2s+tNFvmzun9MLZog4pt9SUXXG+xR/VwarKeaOOajLV2isigvC4QWiVYU0ZNFPHhxcTPJpOdfhQji38SY8IivkAzbuJht83BJPtjjRWO0xujg6SgKsBbxFu09vpNi9uwlHw4wK6sk+YjNd7+f4g2vwSYpj/78r5Hfcx/KjcB7Whr8mVVG59YYPf8mPvroo3zoPXdhtA9+P3Rotw2LO+Z5/Rtez0233BSpdsB1SkdrRKWviHKpeBXnP/oxNClulLObHEGNDKpzzanZNhU+Alpl3XGMlYHjOW/uq3FvFZKdQK9Bv4bSwccivngttobeIkKqvB7jOlV+CVrpSJEVoGmbhDk1ZEF5xDo6rRRbFjgHvW4b3x829kiw9qStlFa7xXS3h04U65trZKMCJQYrZWN/h/0pWmMSM34XHzizS7VnEBJo7uqxh11NpT/jfY3FvqBVaNPVzEW4r4Hp690bWHuJmvSadayRRnBO0TKW/eq+KrYXXZuQQmuw/xUVq59JgzrK+Bn1y9Q0cswhbaeScfGN1mgdvNpELNgS5SwKaF11Gbf9+L9i89QZHv/Pb8Pe/yC2HLD56CMMj50l+/gnMXaEM5r06suZv/ZybGkZHl0OMQZFRl7kjLICRNBqRJFrNtZX+W8/99957etfi4lrpbWKXEGD5Sewy5964FOsLK8wNT3FNdddw9T0dOTUxnPcvK96v6ZScOJ4Yw9MnJdgvZDa5Nqg/NtY/vGx5tyG3wKB9a+sIPXZcN7hsd5HZz11oUgT58RaiyhHVuSITsmtpR01/eDIC0uvnVJ5j9Z7TwRlFKIVymi0SZibn0UZormwGRPR5DKDqKZ1MBN+OlL6ucon8LdoFxlu7Sddh3ld5K95fRMzSj2Z436q2yoEUMni1Sf1pvNR3g7dBUVL6QJxNwK4YHppShm+CfDVZ4PqjSlSY2x18FHQvMv2MVeyrOgL/kQ0QjARStxESgScCx6PSuFaCV61mdl/gM7enSSiUV7hbM7g7ntIXAFKmH/hHVzzlu/g4Ju/ksu+9qu59p9/Bztvf25NJ5V4brrpBl7xqlewsDCH0p7+YIU/+V//i35/Cx39EATY2NjgN37t1+KchDkaDoecO3eOc2fP4kqHx0cX5mpJAsD/+Z/+KV/0utfyDV/7tQjwT77nu3nD67+Qt//yL/HTP/Wf+NBdd9X6gvq+xv0Ve79y7gw/8wPfCgInjzzGn7z957ZtmWqPhHVZO3ean/2n31yvkUR2QLzjE3d/kM3VFZQIJppktQSznRHNB/70j/iJ7/9O/u33fxf/89ffTmUyBTh1+iS33XQD7/j132DFGp5a2eBH/uUP873f+3189KN3kxWWXrvFO37ih9hYWa51E+I9ZZazubbBxtoWW5t91lfWQgxBvYfH+99HYiEOsMFy45wLCuJLtGcGJyBSU1EmKCgXp3qX0nR+Wt1BtfINxZq/8LzHo7wPbJzoejNFfzoQIfMKhaelHGJLqsgvYZLiSFykaiMEIK5YxxpjNAhUQBZjrl8acmSFQBpcROM1FAqlDUoJyglaFJQWHdzLaJmUreVTPPLTv0r+4IMkrsDMz2JLx/DEiSAyzM+y8w2vY3pmB06Ct5tOFa1WJwKsQ2vNLbfcwpd85Rs4+fQp3vrjb+X40ycZ9IccP3Y82MUjEtpYXeWdv/HrfPXXfA3OB2paWRlCaHMYp63nJ7LfwO/+9m/zr3/kR7nt9udx7tw5Hrj/fv70r/7qAlavaVYM4sa4L9fwrxCEfYevZu/l1zDWpk9yg1IhhIrRr+I5vEWJcO+H7+LQlVfS2rU7jNWFfTLV6fDwfffy8Cc+zr/6qZ8l0YqV8+eCYBjH99P/6a285KUvI2gqDJ+86728+BWfx+fdeRtv/Y8/xVd93Tdyz4fey77DVzOzuBS4UYQiL7DW0Wq3mZqZotfrsnPXLkxrGuTseF9hqaJXxYMxmiQ1URSwlMUzHQkAE5D56ZRC8JnPf8bnyPhrs1WKoKDWiZeoiTsRTUFw70wM+NLWyGHMCl5Cr1H/VuPNvJ0jra+TSQRxwQ1+23eCXzsSQ0cFX7o6nBZnOfKLv0Z+90cRKZBWyq7Xfx7ZyhDjy+BMND3HwtVXBw4CwavActro648QWF8gLxy79uzh9jtu5/jTv4cSGA6GlEXJcDDi2FPH+I9v/QmOHT3KF77mNbz4JS/l5a94GT/2o/8OpRQrK8u88IUv4B994zdy9uwZiqLg73/t1/GGN34ZP//zP8c993ycH/6hH+QVr/w8PviBD3D2zBne+PrX88//xQ/zO7/9W7zs5a/g1a99Dfffdx///t/+W4aDAUma8ktv/x90ez0CQo8K3tiOPPRJ7vqj3+Grf+Df0F9f43d+5sfZXF1m/1XX8eQD9/DN//ZnAYV3jj/4xbdy/JFPMb2wxJu/7Xt59J6PcfLoUX7t5/4LJkn5lu//ZyTtFihF6Ur+7Pd/l5d8wd9jNBzitGJ2dpbMKSjhgx94H7v37GVubi74XImgdcJwtEWWF3hRbA5HvPN//BJ/79v+ddQvB4RkWi3SdhttdIwFAets0HUoQXTwJwjEwtWiro6mwSzLsLZDXuRcqj2DkEBstYa0YtUbNuRa4/JpdAR1Pw1Ke6lzVF01gTbQfB0pdnMTAaAUGcF5wwiIcpPKKiUh8gwulA+byECokU6IXqzOX0S8GTOH4Mdhu+M+A2AqLWMW0RNizr1DvGBGDnZ1AIsWhVpcZPcrXsLTf3g3onxgHU0Ln6SQD6MSzONcXAtXISYX3IRFkY0yrrzySnAW0QZnLefPnueRhx5lY2OTl7/8VRw7epRv+uZvZ//+vZR2xNGjT/Ft3/5dXH75YY4fO8nnv+rvse/AXq67/hre+IY30O3s4MUvew0fufvD/NO3vIVrr7uBV3/+/bzlLd/Lr73zN5mamuZ3fvu3I4X1fN93fRf/8T//F266+RaG/T4mMcFK4n1IqFJHz+mac1bO8p7f/TUOX38LL/7ir+TxT36UT7znTxHxCI7l08d543f8IG/4pu/jHT/1b/jUxz7Izc+5ho8eOMhrv/Kr2bv/IMoFV2mjDUppzp46yRMPPcif/s47SJOU137JGzl47Y2ofMjv/tZv8p9/7hf5/d/9LSp/iRte/Er+8Kf+Ffd88L286eu/lXf+2tv54i/9MkynwyCaNAM8q1q8qUONI4cjVOJhvLhhuVAx6Cgvcvr9/v8jJsJt1D3Apo8ybtzmlW/rX6evi4kFFxxrKO7ih9aKEBoa/cErsVFpRjZE1hlJqVxxKyXU2PLgL4IEmJRFq3et2P5aDxDfswpFbloFtkeNVZ+VAim6kfoIBCpSRLW4wNXf9DXcf+/jDI8dpVzdYu2Bx2gd3I31JoTvDjYoz54nmZuueAuC+2/cdCLbHICEdqcNSrB4rLM8+sjDrK1v0EpTrr3+GtqdNt6XHH3qKdJUcfnlVzA3v4hSgnMFf/XuP+PRRx5Ga8Py8nlyk2FmpxiMco6cWcN2T3J8bYO8sNz14fvZs3sXWV5w+uwKv/Hrf0C702Pf/st45OEnKMuCK6+6nKIMEXseomLUY8RGzY9nKk14+tEHefP3/DAazzW33E6nNxUSxeCZ37mbvZcdxvuSfYcuY+PsabjuukB5jcF02iGDD2AFtASEP8ozvvtH/j0njzzJ237qrfzgf/xZ/vD3fosv+dI30u11g9Y/Kkc63Q7f+n1v4Yqdszx2NuNXf+Yn+IVfejvf8p3fw8bmOnd+4Vdw4Dk31NIglbhTK03DmvvmfokIQ+mgV9I6iLN5npMkySXB5ZmJBBrAcwEYVQBzwfFt35sa9gtY74rLkCBHOcYTieBFk2qwaDQ+RHdB2ARKEBJKl9MRR4KQK43YGCfvKoRVIZXtMnz8dH5yjJWSS6Re9IpbqKhHwBON968Vm3FzJDogLQXeKcQVhJAfh0eBTem94GaKkyfIhzmbH7mPg//gqznT6kA2pL3W58wn7mX/S1+CEkOpHNqDowhIruJctI6sqObcueXg+ySOoihYW1tDRNHptNixcwdJkjA1NcX6+gYnjj9NkiZUWowHP/UgTzzxON/1Pd/Prbc9l2/9lm9ha3NEu9XBS+Bspqe6LMzNkKQJz7n52vg2kHY77N63nyRNWcsKXNoCk/LkqdWYWswyKAtmtMco4cB0wrIuScUz7YdoHDMyYpZhjcin7BaJHZJqRTdfDQ5TLmdQ5o1AovDfx3GID4A4u7DIjXc8Hw9cduVViCg2NzZ48onHufeej/H2X34b/a0tEOGVfcetr3odJvqY/c93/g++4qv/AX/0h7/HVdffwsHnvYh3/uS/4Ot+6D+gvEPFuAtXJaepiIVqEA3R4EvAI15FF3JNt9cGLK64dOzAM8c6cDEu+AKlYPzXtBY0AOHinTb6riesOh+hSUn8C6YYlCKRmCnIjUNIK9gr0WRFjhGPqWQyGf9JZQ2o7pywUsS/5gI2v9cKw/EQA/EI53xjvM3wYBHQ2iACRjQWjXcWHV9b9RKMNuz4vJch+/aRUrL68Y9j188xc8eNoBRFvsXK7/wxaw89hEodHS04HOVgGAOEADRaJSSiSdB85MMfCWYoJaRpQqvVBg/aKKbn5hj0+yQmUKFhVkRPwrDt+v0h7Xab+fl5+sMtjjzxOKvnV3jwvgfIhhnnz63xqUce55EnjpCNMj5570Pcd/8jrK6u8/SJMxROc+7sGe76wAdZWd/g3PJ5VtdW2BpuMsiHKFcyHfMPMOojxQhvS4abG1x2+RV87L3votha44EPf5BBf4tssEnW3wrZo7a2KLbWsHkW9CFK02p3GI2G453lg8rYe8/1z7uDxx98AI9w9uQpbFnSm5nlLf/yX/NLv/pO/vDP3sXXfP038Oav+0Ze9Lo3BgsDcPz4Sc6fP8dznnMjeTailRhAUeYZLi8qiZiJWJNqDzQtSHFUXsZxGM450jTBOUf5/5RO4AL17wVftl1zEexRzdzEZRU/fzFOYtv93mOU2oYhx0BtkxTnKk23muy71iEIjRW88BnNfhuxAb4aKwQrQvPeCQQmTae5oKnWgQLgPZaSwpXkYtESovcKcey46mpWXvFS1n/1t/Ajy5Nv+z32f/XrGTx5Cn/mGMWxp3nkh3+Kva95EbJridXzm+x46W04CUkyFJoTx09y70fu4YMf/BD33ftJrLOgYGFpiW63SzbKcc7zwve/n5cvLvIzP/yDvPbKK/mqq6/mZDbiXxQDODMg67Z42Ja89Qe+j2sWF3nRvr28ef00Lz/b5k+yPm986kGel6/y1Noaf1TmfN+JRwC4d2uN1505ypcd6fHCL3o93/Ff/gPDsqRjDH/5tV/LVMwOva4NP2o1ZVFw9LEnWT1zliLLWD9/ljtf8lJ++9d/lY9+8P0cOHgZU9Mz+Lwgi/LzaDBAPNgyZjwSx3NfcCe//ytvI0lTvv2H/jXKmEBxRXHnK1/FO/7rz/CTP/C9JEnCV//j70RH8RDGMRdB/yN4W6Cc45d++Zd55Zu+EbThS9/wpXz5V7yZtXf8Eq980z8ApUNmY+8CMRKpkY7zlSjQMDFXzxOhKAqUhBiCPFcMBoNL7L9nIhLYTtmbirv62CVJ//he74l+lNuAtEnTL4JAfGCgExXD7RohxTXWNSmusOiOR1dmoAbh9/XCy1iN0WBK/PZst/WYI7M5YWmQyWHWSGHbJEWzZpVXzpiUfS9+Pt2ds2ycXSHds59UJWRZztLn38mpv/wr/PlViuNHQTRXfPc38Kn/7220zp5FZMDpP/lztO+w48u/kMWrLsNbH3Vtlve//718+MMfYWuzj/eOJDXs2bObQ4cOMTUzw+rqGsNhTmsw4J/++m/x8QceJGklnDKKr/qSN/JbJsHHyMuvueNFGJOQpillnnOqyHinVnzbC17Ckx4edyXeWv75K17FOwBrLS+79gb6WvPfRhnqmuv40a//Rk6cPEmn0+bhQ/sDJS8tL/zDP2R+9yG+7fveQifRXHfzzVxx1ZUIjrlel+/6nu9hdnaWRx9+lNNnTmH2Xsn8fs0//sk7ggFHwZ1fcRA2zyO24LpbnssNL7gz7p7gj6+iu7bShq/59u/GeUtLKaz3FG6s0BNRfNt3fjenVjb46PGN4Izm4fv/2b/gvlXDqCjZtWcXb/2Fd3DPyWVQYe+5itOrxZHIOSqNqBAViqgYBhHchwUhTVNarRQQjDGXtKrDMxEJNJtsgyDgQoRwyZvHH00E4BvnLvFMJR5tiPbrmh8HQrguaRdVJBiEuUSxxbjb2se/0mNWlL7JgTTGMSnxXCAPNTiL6h3qBzWuCuJBqoPTUCkOI23mL7+cHdddi26leDxlltHyinTXHl70C29ltLrOKB8ipMzt3cWt/+Gfc/Jd7yd/4mnYWgPTYc8Xvxg/cuzeu5fDa2tYWzDI+mTDEmNaJKnm+hsu58u/8qt44BOf4PDhy1hZXmFrM1Ce97zv/bTn5xiubVJsVS6xPprqg6ilYi7BQMRiog4TojO1CunMfJTDq4AkZx0mDaLH0WMnsdaRDUcc8ec5sH83S/NtAOyuQ5CmqGKTNE1CopEi49ypU/zMT/0nEALl/offgrSn8GiiejfmOLQw2MSNRihRuCKPadeCIU+3WriyDObYyPk5rYNfhKTxnVTtvVcjbK0wygRgRhhkOd5Dp5WgRHCEUHQfFZwTu8N7vKvEgIaSWELqM5MY0jRFGYOI0EpbpO3WJbf8MxcJXMwX4NNq2xv31c412yiu345QLuQCghXAYRJFjAKPt/u4oIJXhsILHa1oeWGcTVgmzDTjR0g9rtpFVsbsfxVcEqw8MjGeTzteqHUCHki1QtAgOXbkeezhpyjLDmVR0DYl1iS0U0O7bZC2odVqkcz1aJs23lpmF3cx8+Y3kGcWKTNMYSinU7QVvvwrvpRh9oXBeaUYMcwGbG0MabU7HLj8IDO9We6/5+Ps2LmD2573XO79xL1wrk9W5pi8JE0Ms7sXSbQOKbgJOfms98Hr0lXydXgvF69xzuLKAu+DjBuOx+lx42vBo8QwHA3IyoKZm66M8+vwusUwG1FsDQNQze5kOi/5R9/yLei0y+zcPH09zUiCh2Bzm3klICEHACIxc5Or4z2U0YjW4bT3IXOQQFGWuIp61xr98RpKjJ0oIqeaOYcrLN12gpbKUyWivkjEpNoS3lNHQ6ommxkTzBhFmiToJOSaTJKE8v8JE+H21gSW7W644QIuAIrmz8oLrVK6VX1GzfTE9du07QpFUrFQ0qTWkTNRCmc0idYM87BRKi3x2Bwh476r5zaAf+JVK4tCpTBsvj9hc00yMNLoPnABUkI7Cb7oiU8wHc21N19FYXNWzq6xcmqd3QcXaaXgC09pNXl/jbxv2GSEuJy8hKIs6JWw6TVeZ7RcghOhnQhlokjSDtOdKabm2lx2mUErFwElzIsoxa49u3n5/Mvhnb/JFVdezsmzKyid0Ol26tAs710wdnpCEg2v60w91VxNlEdpOk75sfnVS8gCXRYlZWHZGGRs9QfkuY3LrylbHWzapbQ5IhoxQtJaRRtN2ptGOl1cewoBlBvR8iVdLfgkJStLhlLikgS0QUwCOlpK4rqIUpAK4qKFSAc9gY2ipIiajOmXmF5NCYUL+6efh7TkrSR4URYTXqWN7VvtA2EsClCZ0cfXl2UZzYVhTw2Hwwv2XdWeOUiglpObx+K/7dSxSV0nrq2+RGDczjhcjLvYfgkxRbRJYtrr6lnj7r3SjJxDXElBixDNUS1wU1vXZNWEOnW1dZNjExjHBjTGWHELNfJqiAPb38srtHhyW+CdIEmJVxpXGu67/0luve06HnjgKC99+a14W3Lk6AmeuO8Y3dYC192+i9n5JXTLsHxqk6XLZqDfZ2HHIpt9TemH2L7j/PIa2htGq1scOb3GaOV0yB/YnWGmrVk9u8na6XXStoEksONakpC4N6beTmNewTQJlhede0waEo4GD2epKZo0llFq5FhJd2FzOx+4hzwpaItnYCsRowIIVacuF0qSwRpdZent3EGdCcrDgs2wfoT3Fpvn2LJgfuciPtGccgWjatYlumQ7F8WZkHK8WhHnPcRISRczFlcenHH4cW84tFLkToOCYSEUeUk31RilkJrjaQQtyXgMvmkdqChEZZ1SgkmSOq+kdbYupXex9gxBAtIwqTVazfddRAy4mGRQwZ146vJV1SRdEgE0nh2ZBKU8OoYHN9FvMLeFybdolLNMG+Fc7cU3zhcwSbmrzRATXio1Mf6xX0BTzosQ4PwkJ4Ewdm6qrg/XuiKjcCWJCNZCMHF6krTNnn1LPPLoo6BKRCnOnt7ijlc9h4MHLuMD772H+Z2LSDnkiYeOcuxxw3Q35cbbZhgNhhw/dpJ8MGLf4d0s7Jyn3D/H1N5Nzh2zXHb5QfS0kJouH/zIX/EjP/JvmZrrkqQpV773Xbzr/R9hbXOD6U6LbrsLErwYd3a7tFNNJ2khowEntkakrYS1rMThUHpya4ZEG8F5yRiDEsUoyzFaU9oSj+CsY3VjE8Twoeuu4PBf/gW/csX9+DKnbUf4/jqUBWkrpdPtRrk5AIuSWD8Ajy0to+GI7swUCsXq6gobW1tImqLSkGC2SgyjtMakaVhOF5BCSwm5h8ILc5TsWFxkaWmJxBjOrK3zyLkMna2wK3X0k1nOFQpdOh7+8yV0arj7qRUGRdhLSzLg4OIs8wsLTPV6zMzOBy6kXnegoTdQEPeuQ6kEEYNzl44bgGcKEqj2tm8eaLJ/zWtlkjVsNF+db7L89YXjAKBwhW8ghybQVpUFgnxfM/jRvFPZ5suI7VvGBJMP1Mk4674nBtcUE2Ry/FWEYfVeMSloXcKsiUxEXdg3IdFnJ03CJrYG7w35sI9Qsm//Ir//zndz6/Oew9bWAI3jiit28OTDZ3nioTMcODyPLUvEtNh3eBf9zS2W1/oUicZ1cmZ39Tj2SMa99x7jla9eCPJ7CZl2+E4CzjHVM1z9nBfx3OfsYWOQ8Zwb9vDat7+Nd930+WyVmj07drB/xyItbVkUzd+/ch9T/RGz1+zi1KMnaLe79Ke7vOPBpziZlUg7QamQJlxpHU1xwtzcNEWeI17oDwcYpegPBgxLhysc5x5/nCSZ5fVv+nK+7L//N/7dS7+BxeUjzGXLPPHE4wzynLTdotubIkk76DTFJCmJNihjMMaQjXKGI0vqC7yCzcyxnnt0u0Nnaj5mGypwZUGrO0V7Zjqk9C5LRFJ2tYXNUrNVCktugxtufT43P/cWZqa6fOiRI3zw7lWmz9/N/iXFA+2reLrfRm1tcOdLb+amW67kg7/0QY6uZig8u+QoL7z9em567nPZt2cPSavF6vnTASUqHZKm1HtKhfkyMYRYhNS0KF0gapdqzwwkAFwAGE0N+HaAv6gYAOOCfc2KQBc+w9fXjmXOyhddCPKciV5agtTBMwGJBEpf+MCijkhCuauKxa/H5iafC8E0uB2hQWBVK0RSRVFO6EG26TBqUajiHsJ1SVx4pxxlETLSWFuSpi1ueu7lZPmI9acsQoaUlrZto5IhqydKzp48zVSSU7oW7emd7E7WWT65hdYecsXcfIvdexdQaIxRtKcTZgezpNogxpGH9MSUrRJKSy7BOaWdJMEcpqEncPnCPAsDSzLfYlBaZhemMKUwvatLdj7n+j1LnDp+HOPTYOAVhStKTGowJiDAVtIK79UyeFvQ63UYrfcprUOUQRtTO8e0B1scZouNzTWKosAD2pi4Hg5bluA9koTKUmWh2NjYRERI2i3KwjLK8wnnnJAjJuydZrhwZBEQQs7GSgxCorefEjwatMc4i6AobDDpioGVzRGtdsqUSUFGY6Ug0b/AWWxpA6FpiAs1YYip7bWEJDPV/d77/wdCiaGm0FXzTWo/Qfm2y8ONL83vxFjwS5WfvphsHaYaI4pWktaKHxg7fYSrNKUE19lcYqVbkZjaScDbwEWMmRCaGXajkBser8acSI0IXKwyyzZFIQ0rRGP8Ho+4kHE35PvTqESz69AeXJlTCmgvCI7SU2vby9zjGGFLjbUWVXpKayglJ2mlDAcjtFiUdyRpB+eHPPKpo+S5I7U5I1IefeAYPSPkqs3h/TMYSWl3DMVa2HTOh2pNbVFMGcffu3KJ2SkocrAaClegphNcq0eZKtRwRIqA1jFTk2N+doZur836+gbeOZJWSPHus5ChqLQlzlbP84hSdR0FlW2xurzMaJjjomlOGxMDvcKclmVMI5cEy4Atc5JWi8LmWE+s4xcJSETOIbCn6YpbBZyHfWsJHIyWKLqMRsj8TNB5YDGuRJs2hY+sfMuw2s9JEs1cq4PoTVxpx2ItxHgLG5yzwiAmREglgilGdHstRBuMDpxNXhKQxyXaMwcJ0GTntx3cDqsTSsQIbL7SKAfKWUVc+SrJZ1PeaFocfC0M1I9TAokxscpLiMiqU2GJQjB4AqYl0XEMKm6SSku8nZrHAde17RqfkYPwVdJIFWoeBjVAuC4EnsjYUlA5MDHu2lT1BRC0tuRlgLTSD7CkCKH+nVEzeHJ0zwEJ4tOgYDMl3graaqw4nBecHdJJelgKkqSNSTxpq4VJwegU53NsYSmGlnJtyGA4YHnDc+qxkwCcOr8COkUlirTI0Ke3yAcZyyW4PKe3cw8MDeXxc2RLs9i+xkiXzJWgFLt37WR9ZY2+sxR5ibNDsmzIwuIi65sDEpNQlFmcT0dpPUppOr1pADI74uzxp5ma6tQBQCoG1lhnQw0xBCuCigFrRZGjU4PFU8aKwCHFuo4Sox9njpBAyW0Z9061gUTjRZEoSNOU6ZkZqhBykZKOUiStNvko8g5ac35tjWw4ZKad1mKlrqpde4f1QqJVQ0ccRQIJ+0IGmyy2YOfsdA0PSkmdFflS7W+FBETkKWCTMJWl9/55IrIAvBO4DHgKeJP3fvUz9DSWg7fpBSp26AIPOmr8CIRikFqlOPS2Wh1xEitEMR58nMxG+u84cUaC+aaqYuucI4SZRoFBPF6FZJGJDpxAs8imV0C0LAhMhCOLML62vqeJ6aqYcN0QXSquKFaciWxnZBuo9CCiQoWBIOkYtFI45VA2HYs7XoFkaKUoHCHnPyE7bTDTBdZYIifjkw4iHu01zhXkGXgnFEOAHOfKWD7bo2c7zC10mNvvQe0EoNNTMKzk01nSqR1M39JmcL5PvrbO02fP0PYl6fwe9PImdi3jypk2vfk2Z/vCMBuyuLjI1tYanW6X4WBEluUM87O0UxPdt8HohKIYIiqk2g65FkGlM6gQ4whKoYwJ4ptSiInFTtF4iAVYLa4owXmyvKhrKoQlkBiVGQp71PU8nEeFiCdMqbCeEF7tBO1DKbbhaBSsCrYEoyk3N3BultyF54t02coLummbmS4gaXQDCJmXlHZ40XgfMhxjQHRjHw3W2WW26CYt+nlBqjWtJKHMRqyeX6bMP7exA6/w3p9v/H4L8C7v/Y+JyFvi7x/4jL3UlVSgBuGJ2PntVLUp2yswKiCAbddMtE9nIqywqwhaj0tkNYti1Cy7d5ReUQQVfI08Gg+qLQ4eqfFN3YdvAHd1ffNvu6WkYmYmsJ+m0mnU1Gmb8qdZ+IM49irYCAHlJSjrhSrOsL6vAmwVA1JUI1jJWYvSGhfZ0uAJ5yLCrNysw1izkQVKwNFLC9KdGgY55ZkhvaVZevOzZCvr+KU2vSnPvjbcutRiyinec3qLJ9cHbBUZrVZKf1iQJpq9u/ewvLbOVLfHcLiJ85DnlQweqhPVGYd6KTuWlsjKPNYkNJgkxSgNOiJ4FzhD54M44eJe8c7j6irS45JuwXffTUh3FRdQEa22FOhiRN+NOHfuHGmrxcLiAv2tdeYGJ+m1BWM0hSQY7/Bas2UtRZaxY6aDsS6WTwvFbBwJiQREFtbUoFSKF0cyWGcnQ5Z2L3L06HmyzLK8vMxTjz+BxjHIRuTZ/9kAoi8GXh6//wrwHj4bJFDVgZMmbET5K1ZkHW+ui+gFvN5G/Zvntl2LNKhrXMLqOgmyVVU2q3lbbXtWGiuGohyhvb1QXHFufEzGyAMisyONFxWolX/R3n9ha3JBMh53E4cQogjH56PXXQOJNXsTLyQqwfo8BBhJKFzpxVOUAWg9LnbnqZO9iNQb0RiDMVGfoKr6AsHUplSYP+9U8AiWFKOErfUhrZZHugmpz8k31xn0+7QKh0sMV2bCxz55lH2HDtF3nna7w+kzy+zbvcgw79NttxllI2bnZqF09Ho9TFGS5QOc86HmgglRjQCJ9aRJyAGB0agkCWnYIvJUSsdEoYGYOBs5sW3c4zh3YZyDBsdaIwNPxM1CK+/TGw6Z2znP1uY6jz8+oHVqhpWzJ7lxeIbzLic1s3zx1bsYlpD7EYubJZuDkuv2zPL5B1ParQT7tAlp7nwQL5QSlEm59erLOTSYw/sCVk/SkXkeeOIo+3Ys8pwrD7E0P4dOg1hnnaPd+dy5DXvgz0XEAz/vvf8FYJf3/lQ8fxrY9Rl7qQEhKtBqLrma6aqgZHW9TFLeCb1BlJWbQUZ1JaCLjH77OFBoTU1VfZVKumGLRYV01taVzFIQCmFXWMRNvE8FuJVKsS42WQN0dZ0a31dT/omBNeaqkkirNNfhffWEUUQuQADNTLTWeu79xP3s3b8DWzg2Vja47KoDnDixzMHLd4PTlK7EFjnOQrfbCmCjPUnbhOxESkWmRddyc5gvF1NsE9hX7/AU+CIh2/JkWUExGNLqzrDSz2gpjS/AJmvMHehwpZphUJSc3xiyWVjSdsqo0vZ32oyGA/zIogRmZ3t4hDQJwOycxZhxia52PiBU5fWITlA6QatxXUalwntWnGg99bpC2kE/40UCl1AVOImLUe8TGjULPOgyZ5oc53JaxqDThCIbceapx+n5EZ20y/zSTt74ylsQDwV9Hv7II6yv9rnx4BK7u9fRmkr5vf95NORj9GUoK+c8xii+7DW3k5gRw0HOcDRibW2FJ5/472ydOc5pU5Cow7SmOugkZW6xx+bmOpdqf1sk8GLv/QkR2Qn8hYg83DzpvfcRQVzQROSbgW8GoDMbNesQfWgnAGTCnx5pAEH1u35gA16acvc2qKqRS5VWfFLnIHWdgIDefeTfQxIJcK5A0BSuZA9DWjiGqFppN3YWEsbpnyJbWXMiMOkhWJGSiitoWAIaH/X3WmyKz3SaJCWWIQtmKqqxVM9uIFUllpnpNvd98ijXXb8X1REKP+LkUyscfewpHI7LrtjHqRNnKUeey67Zy3AzI88L9l92mKUdXUajnHbMf9dupfXztNZ1Wi/nS5T12Lxk92KX9LI95C1gbYMzXkgXuzzx4BG2zCY7ZZ58dZNs4Fm9rMX5YwMoFbqlcXlBN+2wub5Bt9dhc31Eq5OwvLbJ1HSPosixOJyzJImpaUBabkQlICAmIC6iWU6FyVQiWKh9QILYoJCY+EUihyMNS42PnoqViFAzZy6UeqM9RYZGG02WZ3hb4mzJsLBsesW+njBYP8vv/+EfYVzOsMyg8Ozbu8DWqvAnv/WnSNuysdHHHDxMhid3lo5SlNbyibvvYjRcZ5RlZFnOYDgiz3MKURw7cYalXftIVEJSRxJeWhT+WyEB7/2J+HlWRH4PuAM4IyJ7vPenRGQPcPYS9/4C8AsAMr93DL0V26kkKNcqObkCnqqJmlT0waSoEAFvLA005YLK1kuEvbFNvz5GFcwSNsCYcw8IwaqUkVOovE/Sc2QocMEa4asyY5UZcDsEy/hdJdp263uqR/pL3DPR1xiJeO9ITBKyIDUKfG4v/RUeq4IZLDXc+ZIb8a5EacP09AxXXbsLL7sRB0u7F1hY2EE2yjlweInjR86ycn6DU0+f5BN3L9ObbXP51Qe5/MpDeF+ilZ7QQUAUSZQPQUJWcf7USWaKghPLGbumUh6/7wgHr9zNjFGkgxE91UMWDEefOI1XmnaSQCqUNlDBxKR02l02NvpkZfASHGVrFIXF2xB3n6ZpPS+SjUL1ZQ9oFRJ2el+LTtY70OGY81SJ3xFROGKl5cBXUVlravEubqlqb3ilMDgQx4p0ycUwt7XFnr1TXH3tDaTiaC3u50MPP4EUJzg60rzv6SGFL/Eo9onl1q2M3uyIt59ymI7itk6IPGxB8MkQT1lYPnnv/Zx8+gkGwy2s8+SlJctzSlfSaXcYjEZsbmyxvr7FYDDkqSdPcqn2N0YCItIDlPd+M35/NfBvgD8Avg74sfj5+59Fb9Sbu2kXtQVOmcgJROofBbBx3Th/ITIAqCwLPlYFGnPCATlMaOarr4HFrpRLFf9QmezHdfE8eEfuFCZJ8D4G0Sgh2pxi4NKkayfNR8o4RnxcYkzqsflJ5QiTwB+vbdZJUI7UJLFGYAQAGX9uFwsKa9jYsJw68yQ7FjpsrA6wmWV+sYdvaRam5/A4pudnInM24vJrDnHoyhKTCK4MSG4wHICUNftPVISOS3SF78ZoTq0VXLXbsNYV5qZnKbItrrvqOlafPsma85wfjHjuNZczaxwnjp/EuGBpUTqh399kx+ICq2vrbG1ukbY0ttKfeCExCVX+vtQkdbJXVWQInjICqjEJ0kCqPoowoVpSQASJMXHtFaINSB78Di5NTBnrlxRoIbcpvtujmwo7duxix+IO5me6nLJTyJPnSPU6fWmx1p6n1GHcnXyNlZWzXH3NZRRT+9hsa4b+MZwyoYR8rM+glLCyep4TTx9hppuEGAznWOp00LpFoTQ7d+/k8JWHue6657C+vs7y6acvOfS/DSewC/i9uNgG+HXv/Z+KyEeB3xSRbwSOAm/6jD1JjCkX6sgosa4OwKjkLmdDwceKksdbqbKt1PoaIQR4VOGTSkV5lYjRLa52JwmFJfDB7IcXTHRVtb5ioSuxIXSnRXCuxHvPyDa5iyoHXHB3ldift2VgjysxwVWMT0MMqeMJfP3MutUYTGp5v5JChSqYREiMZnv134tXow0ms+mZGa66fj+jrQLRa5w+tczTT53lqhsOkcybMMyKM3IGrzVaJ6AErYPuo2dMTL8VgS4WHqkQnKu06sZgekBW0p2dYWNjFVSKz3PObI04tGuRHa0OZZ5z4tQmq0UZkJzSpF7odTugLN1umywrmJ6ZYnVtCxWLpOZFjist3kMrSeq16JYOK57SVVmk4z6Tmh6MFX1RX9NqtYLLsi3HzlqNdxIl+Mo8WAO/gC9wJFRmXFEGpzSpaaE8JEmKMhaTb5B0DWsWvNJhPbxjRMJ999zLzTdcza5ewlMOWl6i1UEH3YoNepblc2fpD/o4a1BAmii2+gXOCTsPXoGIJjVt2kmXLb1FXpYX2Qeh/Y2RgPf+SeDmixxfBj7vr92fc7Xshfch0W67izhf169XjTzr3rqI0QGJ9tsIzMGBQ4ea9BUysCF0taNBGUs/L8NOiCHZ3pUQmDlSFxbaWVur/CoxQHBoHLkILi+weUH5wF3o3i789ELY2CqYLL3WhDIlAkkCSqNMTGyhImw7H2XPSJ18xXr6MYdQIYaIC3xNaStKDyiHNkEUCKLOWMS50FFEQOV0eg5vS+Z3dplZaLO01GF6dgZLyGjjnKPMLK2WkOgEUUKSSvQ1CKx06aFK+KFqgPC1ldOpsJYOONtfx5hZulbQ7Q6WBK2FhdkZlteHZN5xqN3i/o11RKdYW5K0DFkUXdY3BnTbHYpigCsVRV5iY0GUKgLRe0VqdIW26YxyMuMDQo+TpZSqRT4lgrMxl0EUr5xzoaqveBCNOLC6yiAVELCICzkBpMrmA4rArmsnWHFhnkgpihHelXgveCtY52mbhC1SvNgwf9pQ5I7OVI/pKcOBuRZHV4ZRPA0ERyjBtRE8s1NzZAvzIFV5tJj5yStUGvQ0gZBZnHOsnF++JOw9MzwGRfBJMt7o9QavEk9IxcuNXQkkOHpUQnxVzFNcqCAUZGON1b4u9YwIubfBz7/bxZfBySg48xgimo1uqaFVmQZd9CYLjkQOr1W0BHpaRz/G1N4r2NjzBeQSzE8uArHzIEWBH2XRHg1CrBtvgjLUpgqfxLJiCGgfiX9ADuJi9EA8FvLNqXEsUeRwkiQovoIv+6Qo4Bt+BM45NtZGvO+vPoFRbZJWwvNffB0P3PMU8wuatdWc2+64ntGwz1NHTjAzvUCe52ytj5hfmKa0gsZz+OqDLO6ZQRsXwperSXNj/wSlQhIRSstWq0c+1aV4/H6GZo6k1eWxR9dpzfZQvR6HZjVH85ynN7OQIk23SNOUYZYzHGbB9z96VA9Hw1Aj1EmditF7h/OeNE3r8jGlL/E2+O6LMnF4DQLCGEkqEUbO0UpTEq1IS6HUhmDxUWOOwTM5t/GAw9fBZJ4QOm1MgtaaNG0Fj0UPqswxJqEUQ1lzd2B1gpteot2ZYvdsG788GD+HoBNBAtfgRNAmQYmtQ5VHWc5wlIMEMTUxCRLhpEkUtrdnBhKYkPOBWOHHRz9wE1NMlWVRF1GQivpohXc2XgteE/y9o+hey/9Rm+vE4NM2vixRNPIF+ACE3pVoEXA21hWILHVMO95SwQvMiSezjlIJh6enyBPDWh7cUl3MRCNEccak+ETwOm6YyiGFyG57QTIQsUEcGrlQutqNqY+vchGIxEpkEkWOqEfIginKGIMt7UQV2iolV4UMRBQLizN8weuez3CYYV3K/MI0tzzvarLhiN17LP3BiOnpGXbu9MzOd2i3NY8/dILNjT6SaBKXsra6wc59C1iX1XMMhMIXtU4gxtWLYVBscf/xZV68ewfG9ji/tcnc4X1IkdEablJmszx4+izapIxGW8zPzJAVOUorbBFk9CRtkSQt2u2E0hb40td7okI87Xa7Tu+gVUFpo9KvsvVXnJSMd1JFeDw+RBMqjUkSiqQdcxYEQAseg/G9arM2McmIQ2LpukrmsKXF6ARrHQqP8pC6Eq9TCgcQzZWisCrh/Kgkt7BvRxuOjPVIUpWnU8HdeWV1naeOnwZvQ2yD97S7HXbu2o02aUhq4oK/h7UlTzxx5JLg98xAAgBaRYw+VtpI3PRlQPOI1vgyLJiXMUsX3KsDNyDBTF2zzD7Kf5FtiBsy2n1JABs4gOg+UkVejbKMVqvDBMuNp6WElrMo6yizEu9hJSsZjEq8VvF5KjrZBK8yW8np9ftFH3Lvw1hVCHSq9RlGwOmQWMKOqXrluloVQ6lC1cRZEk9I2FEhyXrDj5WClfMQlKQtOHuq4MprDrGxsYYRz579C1ibU+aQtMNGWtjRRSTBe8Wtd8wiyjLMLGI1SUfHjdZ0rIpUq6GL0DrMbe4sZ4cj/MxhTL/P1Mwsx4+eZNfOReaWdvD+p0/z9KDEiKWdtNDakKYtsrygKILycTgcMTc3S3+wiUkTCmdx1sW9EN61laZIVR9SHLa0E9aSmmPx0brfOOZ9QGKVzqVUUTdCQGzVVvKRMwxu12O9Qm1FqJKjeE+70wnWCOcQ51BlRuHbFE5CUVhCpSsrmoFVjEY5vaSyi431QRLdlyPdCIjOeSTqIMq8jI5a4bfWGo/FWUv5jA8gqkQAVangmi9eLUhkskxSrcIYGPT4Hh/c58P37c+J3EAz+Q8ET6z6nBjW+gPOnLEcPjSDFRsNFtG2TEGRj3CjIQU5IkI/L9myUdMswYXWK1dzEOO88JVLCZFQSBxrY8A1f1+lqhpzA9J0XKrkA+fxymBaPuS7cwETVpvnQgQAYNhYWeHdf/Zuzp08wKOfOsdoZPnSN7+aE6fO8PEPf4oX3nk9933yGEUxYv+BPbzsVbfx4INH2FjbpNvrsXffNK2iw8ryGvNLS/SmErwLNnfnx4gL7YI+IU1Iy5R+XrAx8mhlmZltwbER03MdBl7x5GCEOE+uHdPtHlorRsOcwSgLgVESVJpFWWCtp4wl0ZwLRTdKqygQuq205kpKUgpyHC4mYg1UFeeCjF4x83F+NaBMCMzRrsDqQKkV4Cqi4gNX4qOrtMTzqASRKvYjJBe1tuT0mXPs2X0wxi1YeuJAd8hjSrVq33ut2MhGnF9eYbYtJFLlYgxcgLWOtK4y5eu8h7U44mN69IpQEPaWc55ed+aS4PfMQAJQm3QiLq25AR+PUR8LCMC0NLYsGxtOmrij3gRUvVSVeyqf720Zvio2GyWc6ZcMswC8lVLSRyAaWEcuCT4vsKMho3zITG+azCQhaWStKa4GoyaGMfnSjXdDGheMEQVNc2Eco2/6Q0STaqIcJpopVeVhGVuVoLOOLfAWFYtp3H7HHZw+9S6yc6ucOrXMQ/cf48jjp+l1LU89cYbp6VmKXT2WT29w/OhTHHtyna3hkP17hc7UHKdODdi1dy9f9fWvIs9drXsZqzQhSRN0mmA6bdbF8f6jRzAtYWfaZU0bepklTzSZMRgREm/J8gwV7fq9XpfRaBRkbmdDKfAY5ZmVBc6WQXdkAxZttyZ1AqV1Y1fwSjSsRxfnvdpvrjI8+2ANUSYEZkmw1wdz4sWWM+YV0DTe3QVOxBaIjn4ntiRpJZQqIUNAj1l+j2YzdyFjknO0Uo3KKnf6CvuM3eeD9WlM4WdmZ0ha7eDsFLMOO+fJ8pzXf+kbuPsD7+Ji7RmCBKqNXv+8EEAi619dE0pfRTQK9SICFd/cuB/qqJ0aOOvar/iIEbwEUcCpaUwChbXYMogQGkAUpUoppINK2jDK0NYF84IOHEUNBE1q6Fyt4wit2owyMcTx7qo4CJicFDd5fY34hLZJMVqBVkGb7atEm5VlRdW6Aa80C4s7eNPffw3tqVk+/wtfRWlHLC7u5JrrLuPmO3Zy2f5rePrYMk89eYLRaMTC4jwrq5u0Zgras9O0uo5Wq8vW1nmWCo/WCd4Ng8JK67HuJo7XIvSLAutLNrISk2i0W8cpw8c+9VjNsXil0M7jjGKYFSEmP/51TBIy5FhLK03xomm3O9jSsrm1hWcFgFaa1uyvSDCrhTyojcCiiAhUVdwDsHGdqopJohXaB87B1cFaQdDYbnqtUHhFMEJMsSdNEgb9PnmRh+xDRRlYdzR5JUZVPL54Nrzi6aePs3j5YVpG8Fkwn/sYzFXpqKZnZti5exdahXwH3vsA9ATLWEjLbllfW8NozbXXXcel2jMDCYiAMZHFgShcEf41qCsSVlNCuWxRYyCYAHqRmJorfveN59RUVMbdVo/0HhFP0urRSgu0CFqNs9CE0vJt1NwSym/iz2jyUYEkBifR5he5iYlxXyqxCdUlE5A9VpBOIDJP5ds+6YQEeGE6DUUmCoLZqxlRWEVEVs15C6Iw6QyjMqc9PY1zPfLSkXZ63HjzC7CF59qb5rjljucgCrJRwT/8tq/EecMoKzGqwCRw5ys2WVicI8uyCQVk5fasUBRFzsZGn1YrIdEJpVIYQgQcAiSGwnq0dzgHSgyZteAdWX9It9OJGn2Hci768BM13y6y3Q5ng4Kt3U5qnYSocLzaKi7G1gdmMSjzvI/af4gZogIga0LMQZ0kplqbihpHrrQiIDiPFoXzDu09lCVOLIsLi3Q73dozUWmPwwSrlwsYSkXudaRSzp1fI+8dx1sbS5mHLTLs95meTjHasP/gfjodob+1EVylWy3mFxY5ePAytvoDpnozbG31MSZhcWkxeF5eoj0zkEAF/Cqkg65ZnglubTJl85gzEGof/EoMCIIfEBEy0byCaph0GuJGRXWjsmdKKRYXFhGvwVcJGcKGSUhwug26x6ifkedDjIQ876OaDZ5k62sQr95JRRdE5AIEUN1dv29NYqqzagJ5SdQQzbeDI5WqnJtqS8CF/SsJzlNVf6HUeKU489jSx+HpOnU3KIoSoMQYj9DCOc/i0iJxZhE1NkMaFTadH3iGus/y8jKeklYrpdNuQztWzfUhjt8WkQq3grk08ZqitFh8cPcVA2WJVjELUFN5jMeVJUoXaDHoRFH64ByT51lc+2gVUNRKvQpY63Rh1hNCw2LsgE/JO1Mo57GVd2fU2QjRElDtjfHKhcBfb9FYnA85CRKjw5Q6QApK0diiAFcgWkI6MIGBbvHxRx7n5o4jK+eD8lgBuGB+lAIlGq2lph/tdov5HTvZsXM/87MLXHP1YUZDRz4asHquYHZ2iqOnqpi+C9szAwlUzVVKFYLMo8eRfL6qBrSdRW4KaIEfq7H8mAkYs93j6ubSEDtCB14Uvix51fWHmEmy4LsgWcjg6g1ew4uu38XsVIs/ec8Kn+hvsLKRMFhbQS8cQBkFXgW2rymd0HgmjBHWpVo17okN1ryfhmwbNvF0r4si6jCwDeRVPXJMwZQK11k7FhmaZrYxF1EBjzQ+q7mN7raqqb9ujDS69L7o9pt4z/vew/n146yfOVU7fXlaeC8oHaIfgxolZC1S0RSIjim6tEKLItHB9OpiwpdEK3pTPZQyZKMh+ShjttdidmqKPDrIjRC8K2sLQtgbLipxpdYdKBQFZSzrHXIp+FabqhaE+OCX4ZyNdqRxyjnnLMoLZSx7ZxFst4tWU4jdxCStwLI7hy9zDDrUJIguzFUWKZRilCQst2YpSRm5MC7jFbYoSVopQuB6kkTR6bSZnu6yY8cO5pd2kOeWzlQHow2PP3wfg60NNtfWeeFLX8T73v/+S263ZxYSAIQxF+C9Q7QZWwgqTxE/VuSMobt5rMIIMpbPZXITV0AU7O1qTKV9wtMnjnH0oft59Re/El/qeG8AlpXlVaR/hgNTGffaEevn+oxGA1Jrg8VOVGT/m8DbiE2vD09goElOZzuGkIscqxBiZL3TJNTE8zXwj8WBcV48mdBNVMig4hia0YYX9TKsEUHFNYz97sMQx/f4mH/vW7/lK7n8sn386tt+jcHqBs55ut0uL3rZ8ymdYMuStfUVOp0Wjz76Kc6dPYLzlsSk4BSLS3uYnlnAKc96tomgGIwGOG9ZXTlHaTOUKNqtWfbs2s0XvOZV7Nm5wJFzqwDkpQZd0EOTrW5g0wGSGERrjChUGsp+eWsxPqQTc9ZiRSjSbggsUjqofbwLZmxf7TdQMcuwjYlrxSo0GoPCG8GgMSbI6IUrKYsRLdNi6IMjkmvUrAgOrJrldJGpzgzGpHhrkCToQpQnWqhCyrLZuTmmpqfoTk2TtFosr5xh0B/xSH+DzbVl1leWuezQIc6dO8Phw4d577u5aHvmIIE4qXVOQB8n29oY2hkrtJZFI7OvHst21QZssOQ+hoZWHEKtMfdjBFEDZzzutfD+45tcVQxxqsCKxuNxyiEFPHo64+33LNM/fQ7nDOv5iNSnpK3e5Fi2KY4qtqSporhkuwi8j+dIGpmHKnHBMTc7HRTNldgz0cnkE0PCDdeQbbkI0G8f/rjHWpnmxy7dTQ4icD4htLjMFC+88xYOHNyJiCPLCpQorr7mKrxXOOvJsj6nj5/lrT/+cVbPPB086yQh0Snf8W3fxNXXXUvpy8Cmi0a8456P3sdP/9TbyIstlCiuv/0avvd7v5WpHUsYbAB+IFVTLFy5k1mTcv7sWR5/6JEg75sETEJ7ukeSpGxtbZG2OuRlwaBlEJMyQmOzIlokFKUtKKOvhzaCEaGTJHRMwoggnnqx5FmGcSXe5mhxaAl6GZ0YPBalAmB7p0NqM5GQVFUJSQmF6jHf6bITwyuf+wIW5rqgFe12K3Aj3jM/v0hpQ/Sn9bC5tcXs7BSrK+t8+KMf5fChfRy+5mquv+Fazpw+y6H9+y65ts8YJCCVjE9Q+NDIFCwiAfCj0sibSsnha6w89vyL5Ztq239g3WoKGVnZCtHgoeUV3cSgjcdohy2mkbkljCRIfIZ3IZW3JJqO6VDOHkS/9h9StnsUXrMqSSgiKYI4jxiFWB+qAOEjUNpIT1VIHRVdOSvHEqL9OvgDVGnIbRhkVaKsUkgpFYpSQngfHSiRTkKdvOpcsCoFrbaNz3OujGqUEAcggaTVAVO6ModRuUqroEyc0K6Dw2GdDo8WQvlyUbHibsj+65UlbXU4fPnliES5WAIgiQJv4MypDX7i3/8kjz76KVxZoBIN3pLbgp//uV/mm771H7G0axaj05jNSHHDjdfygz/0PXR7M6yvrrNz9wLTS0soUZTeMozZh1f7DrM6ZNCF3vQ83W6X9eVlyqxAa8Uw69OPTkMlG+ikxdCGJKssHCDNwQ828J0Z3MaAcjBEyhKnNUz12ExS8s0h4sGkiu7UFIPRgKwLKk2xZXhhi6cjQlmG9bKS4sTEVGaBs9LOM+3XuVZvceXcAf7dSxe4+roDFKM+VhuOPXSCpYNLvPfdH+HKQ5dz2aG9rK1tsr61GQq2CLQ7LXbs2s1ll1/Jjddfx759+9i5azdnTj3DYweMKOZVN1CASmFGYHNFdISBIDs1xWSpkkBW2YABb220H4YulAhahT8joEXRUoaOhtlWws7ZKa7YO8uOmRJVDCkGJefX1zjy1EYICvYe632QtwWu29fjh/bfSJmV9POcc/0tjh9f5uTmiNN5ytpI4a3HarDOBiTgLB4oY6iqeB9TYcVXxUWzExATp4LgfCgwqmLFoUqJ6QmJK1TkZJx2vP/BJ7lspsPsbJdOAt00ITUGoxXaO2am26BBGxWsHjZkwvUJ5NbW8nbAMUHutQA6bGAImm2JYlmJQQtRng3BX8qHYCiPxirPaM9e7rzl0qapqr0Q+IrmgaZz2+Mfh+/75r/2nnoRcLI3w/U3Xkm2tcLs4jzGKIpiyPzm7hBHEDeTqxTMFsTouE6eIu/T39xgkKSYlsLMzaCnukFBiSBJQmtmmrTbw1lHohy9zhSZ8niTEB3HKcuS4WjEVK9FWRZ4VzCqswBHhYh4tB2x9/TD3DA14n3vO8O+q2/j2hv2c/LECqfOr1AWjgeefIzRcIMnHzzJbc+/hnPDAXd/8AMcOHyQubl5jh49ztKOXew5cIjF3fuwhDoMR5968pJz9YxAApfvnOHnv/PVNOvNIaB0VGY5XwN5FdftXRUtGOTa6t6KTQ3icnC1NDE/gI5IIX7BKEhNyIt/9tw6y+sbnDx9mjLLWEgSdOnJixHnz59nbn4GJcJMp8XS0gy9Voc00WTZFsPlVfJ8SGtxH5aEteU+yfQcRRGi7HIHpS0pnKdwLvoeQFFYcmvJS8hLx6goKIqCUW6xgLWevLCUVihKR14UZHlOYUeUCKNCyL0it5AXlt/4xCbCZnBNlUYglbe0Uk2Cp6MVCZ6WOLoiJOIpXclUx5B0UtKWoZUmTHdbdLsJc1MJMz1Np23odFokqcKkCu0y2lrwhcKJwhhN6UMJL1uEqL97/vjPCWgjIB68q+3tVXafsrR89O6P8+M/9hMM8/WQ2dA7rI0muiIn0WnIUKQ1LuaSNK0WU3NLLO3cz+z8LpK0hU4Skk4aysiJpXQZiwKDxJFtDTjfH1CoFnq+jWgdzX8hNLy2KHlHaoPuyeVDcAMwCamKRWZMEnP+VYRBIYnBJ+B8TGbaauGTFBGFVhprPc568myEsgVtBUNXZcUe64YK0+aRnTdzevMk1zx0N8fOZTz3pst57NgRTp86y8Lu3SyvnODBe+5n52LCL/z8L3P8xGkKLIcOXc7CzCJ3n/oIl11xNa1Oj970HCvnllFS8slP3ntJ+HtGIAHB06YYUxVROAvlqABiWTCRUGI5arQrOdSFhIBU6Z6896ESTaUvdI6QYbqSVy3WFXTTHt12j0IbMnFkhWOq3eLy/fvpief8ufMUynH85CmeemiFm2+/nE4nRStDYtqB1dOKPGuxUlr27Fig12lTDEecPv04z7n8+aStbvA31wrROoame4xSmJoCjLkYiSAjTmI9vlgduVYqOrLRiKzfZ3p6mqQ9FUKSfR4i6jJHXioGRfAj99aR5wV5kZOVOaNSUVhDXgrrWclmUdIvHYPckuclWeEoC89omPP0MCM/63HHSnxRUpTgJMdJiWhYkoReu6TbFZK2Y+eMxrQ7KK2YThzTS9No5WkZMKrEOUNA4ZUVQiitI0lS9u7bw03XPY9zy8sMixEei3M52SjHIOzds5MizyisJysKCldgRXCkjAZ9ytGTOGsZ5iW5deSFx+UWypzR6nm8Lun1ukinFdFPpWsVSudjQpjohatUCL+1FmcLrEnRSlAqiaHKHus8RgJ3Wjob8kt4H1yaiwKnFNZ7TEjjjJbwVOscOjG0ei3WcgVplKMi1+t9Sd5JWO4c5OPi8K7He/7Rv+O5Vy3yDd/0ZnbMz6Pb1zPaWud//e6f8vSp43gK5hYXMTGQrnQlZZHT0oZTx4+za+cuzp5dYTgcXRL+nhFI4Pz5Vd72y78blHrOYq1HRGNMdPUMuaAxrTS6v2oGwyGdTqdm9Z33kT0ONlylVFCcVDKqUmSjER5NWQhJolEmULX9h3ZxxRX76LRTNjYGrA8GFIXFlY6ZTo/Me+bnp8nyIoju2tFqhYASqzxHHj7CR46fYDTMQ9GOcsSHH3iEdncumBfFkCSKqU5CSwliEkySgAsJLKwOsd+h6EkIQXUioAzd7hSiPDpGOiemDTqh01lHLGQ5KGOYnupijCYx1cYKZjXvHY4QXjvVS/ACabuF9oEhSowJps1UhYw81oEtkSRQcI/HWhs87LzgnMJ5KF2BKwjJSMuw6W1MlqLF46qk/HWhGIdSPng1Rg5NR0y9c3GOa3/iMNkoZ5Bl5GVBXhSMBiXOF+zeuxS4pqwkzy1FYbGuJM8G5DbE4zvryUYF1jr6gwFPPnGKo0+tU4yGZNmAMi/Yygu2RoPg9Z8XFM7Tmp9mkGhy8diWQafgVIqVAjn/NLJyDusF520UhwKqLgobCn56RW4LrAvrZY1gcsH1ErzSaNWiVJb19XP0N0oEz/SeJZbPddFpyDdR2pj/olCQW1yiGe68AZPC3nP3cNXl+5md6jK/MAta89KXv4T3ved9tFeEwhucDbUfSheiR7XAaLDBjh0LdLpj68+l2jMCCcwvzPDFb3op3ntSoyHmqjNa1dVpRSImVYLRhjzLSGIOgvELTtrCy6CFiemvPSsrqyjxzExP4ZzHliXDYcHG6pDlcyt478lGOYUb0m13yLOS6Zkprr5mF2mqGGWeza0hgyMZqTbgHdZaks4M8/tSNkcjNrIRowyyUmEHAYxyNySznswprFOhSqyzgW33INaiK8ZZPOLKmLkIEpG6EIh1FlTwTix0gkk8iQ1mFN1qkWhNomMWYKXReLwtUdW8lkFUStot0rSF8ZAAnSQNjjsCptsineqC8hitSZQJCSpUMHWlSchko40OIbdOIaknUapOO54kSQjA0cFJRqtgk1c+qDkTY/BGY1XI9CPKMT03w4z32DxD65AMVBKDbpngFagS8KoW8SrnpvDMEF1nyxBwIzrkHrRZUBh75/A26F0sJaV3YKGwwsg6hllOkRU8fPIc/+tDD3J+c50eQ04UOVlHMSoKvLQoo/JaJxqMYrrXZW6qi/WesgxxAloZkhbcurSbq/fsYWm0m6lWl3xTc2p5k43+LMnCTm5mL9IxGAVTiUflW+zqpcx2NceXV3j82BHOPHGWQz3F0t5F2t02Q5ez0JtlaccS7bTF4UMHePL4CXSsqhQs0ZWoBXPzs6StJCDeT2OTekYgARFBmxbgSdI0TKq1KJNglK4TdCQ6bAjnwKTt+v7KcypEFQaAcd5HBBL9vZ1jfn4Ba4OjCMpj2m2mW47ZxbnYh4BTGOM58vhJnnj8cbTWtNstTJICI3q9Fos7piIwBORz8KpduDKEtJbWorVhY2OTbqdDu5VSElKYSVRsWiolv8dbz9ZgEJJORKWbtyEnwrAosbHP0pZkeckgs2QU/PL7TvLIVhYokymQLBb+rLwMo1pKXDQqSMhPEF50iGIL7Rzaloi3wVuvQrhKSAlKVI0EFUpEUkaFstddn6GG55HuHlwHUkst7mil6UqKVmCUD4jJO1RpEWfD3CnQSpMkBqMcxjnEl5TliHZq6La6iNHoVhtjemgduQeToo2h3W6htdBqd9FJQpFndJIUiXkAWmkrpGA3JiRAdQ6tPUYFsUQpgnckQXfS1nDTwXkOL97E5tY6G+vrfKLb54MfXuf4YIBNHPlwiCstynu0MeQeNkUYjjISY2iLxieaK/bv5qtfeQsvvPkKdEtITIp3wbLjHCjjKLwJIgBBXNja3OKBBx9CEsPZmYwrSLjn5Fk6Hc30bJetzS1mxKCmQzKRvMyZmmrznKuv4MSpZbQal2gXgU4rpdtq0Wl14j57pocSAyZmf1WxqGdZAlUiBxFspPhC8M2uE1tKI7NvxRVUPgfRBm6tBRG00rGCYB0GEoExGO99pW33rgIhQtJOjTCOUQ5FJQ3OS+XRCaJxUuIJFGmqN4V1lrx00Y8s3BssDTFgyQsORdruhuSmSkdFcRh/j7BBPMQ0URbrPKku+Z27l0FneK+jbSGaVis/BKl8CiJyE/CqyrAULDDiHdgciiwgzrQVqC0ar/UE7QhqiSpRiifJh/ROP8nmZZdjyxZSKqR6JiCusuv7QJnwKGtDIhccysUkH5QYb0N6N1eSCCg3QpOhyi1UmaGkFda2LNG2wLiSVELuRqNUSEib5aRKocWSJiHFtlYak3ZQ2uALi0pSzNIeur0eDNdJEoO1DmNMyHmgDVmR4WzO5uY6g/4GZ9Y3yIsRrd48XhlGgwFZlpMS4hCyvGQ0yrGSI0nCVNri6CMn+eD8B1g/fYyZmVmStIMX6LTbtIxBUOhU0ep2USYkxhkOc/ICZqe7zM7MsbS4g4WlWWxhSbXikceO0NYzzL58gRTHnTfs4/SpY2wwT15MupaIgC1L7vrA+3n+C+/EliXWfg5yDP7vbCKCSZLawUULdFtpHYzirI1BgOPItNo3qAqb9dT+8NHZFaI861xY6EoHQ1VAwrPNx75CNEEfIV6HTRwpXKV8NKqimGEwEjGt1HqJqq8qmYhDYkUj5cOYlY6ymveNVN3Rb70qQAoUMT5cCAkohnkWzHG6SpbqCIXpaCRPaSqcwhgrV99qfvA24koJilUddADU3pk+ViRim3kyvpKHwguIwZtOQDASEFtU30+sbwizbaAVif8qN+KyDOsYrQhiHeIyvB2iu7N4ldalviulHtGBDDxiLRIz7Dhn8dkQc/IIfvEwdjjA+Bw7yPDDlHmt2HzwSdywjx/lJIXFWIdJNK2eJp1qISbB6i7DRFHaFi1n0b0OM72FoBy0Dt3pMj03y3y6MyDu4YA0SbEm4/333ssDn/woU6rLwq4dzMzMYod9zp87Q0+lnPWaQveYnu4yP9Viz4559u/fDR0YWkWSCNMLs/RX1kESlqYSCt+m1TWMtgryPMRVHHn8Ma694bl02h2cDRmndaLRJmXXrlDN2aJBnvGcgEStfhlYUmlEoyHbAJW4CJZm1pyL5dcHMMaM3XEvIhY13WUrrziJ+eQm+/a167AgF5yvPOeq5txk2qvmeCfGGjoYP3/b+1QchACokFq7lWgS03SoisBeAdEEXWDsxVi/65hi+xh8JVUNhJiVeQzwDYxbvV91rzZ1QpZwWsYYuqqey2SS1LrVFZmDo46vyycR/BWqa4zBYgjZSoOprXIrkyoip3p3G13LESTtwPQCMrWIa01TaB0jETUrziPXvTS4+uKjHwSowoIvgsOS9XjlWdxaQ49OM8yGSO4D0orMJguGXPcZ2a1Q+l0E3ypooznTnWWUbXDLYpdrb34OV1x1BcVoyF/9xbt54OFjPLTzRrbmdwTz7cDRe9qxZ22FnR95BEm6bPQUm3Yv1yqLco7FQwfZs/sACIzygoceO8rK2ml277uSTBxpr8Oov8rle6bpaI02La698Sa0MRituf6aa3n4wYcuBACeIUigAq46XTVjIKkKYQak4Ovj29v2Yhuh32bYJxcgkqo1w25rhEBVjbjO0TNGGI0NXQNrDMJpPrNCAtsLhW6/d/v37dc0x2SMoZ2aUGCD4far48c41Fhq8UDq7Ma112FFjaPoM45srPqoB1HNznjOIIgM2kQurYEAqmxKtfemUIWA192oGPlZZTxSuv4NKgRLeoOIGdvSpTGWyku05u6qfRPrBrvAEVDG6DsXg55USC2vLISUbgHZKRFsaoAU2iFewKewdt866dYmnV27GJWefDTEWxsqLumgrN7c2sKXjpk0mEXPnDnH1pXPo0uLgpxRXpIVOe2pHt3DV/NIf4H1gcJLD6+g0LAlwpkhmON92DON7S6gZtvs6p8FZ5luTzOVmuB7kKQsb5WMyjY3P/f5rA9WOXv8GDNdw9xUi1YrFF+x3tMyCpxl3949F91f8AxBAt4TEyPa8b6MQFdlxRm3EP+t1Dgcts7A36B0wWcgbMKmf7t1oZJwsBhEihM9+EINuzgAiUknVRVAdCHyqPrcDsDVsWaAzvYCp03u47Py3/fBYUohiLhQYyCmuApAIGPkWc9hBZzUVBeRen4DObXhe42oZAKwJq5vNEFwooIAE6BojADiMc92xFnLcA18EgU3BVhbB9NUiKjmRrxrIKNqTprzJyGHfxRz8IIXE2RLF7kEnYR58kFRqqRKGhp1PUrGLtwi6LwIdQN606g0Ie22SKe7MQmsxYnQnu4hrVZ0o1Z0tKe9Y4ktSXC6i0rX6KYduklK23SgM0/e9fjRCmLLMGYVS9hJTNGuNDr3Idgpy8iLICqVoklFEGWwusdKNuDP3v9hDu+d5vEHHgCB22+/gztfcAfD3GLzkvObW/zVu+7iioPPcCRQFgXnT59hfmmOD931SQ4e2MOByw6AeD51/+Ps2bfE9GyPRBlWzm/hXcH03AweR5FZkraQtJJQJBOHVyWKNp6cRHfJy63g7OGC1G0UuFJTuBFpkpLlGaJVqGFnA+CHbOAW60PO92CeiopE51AYvJQgCTSQUKUTcExyCRcTBWC8iS/FFVR6iHA8ekxqRUtHiieheEWtEwhXjqlu3OaTrTIZuapTqqSslT5jAvhrCaNiK4JbbbAdOEKm5grgw/mqNkEAch8SiDTEkEDxx1yHMH7PethVoFTzRD1XMq5R6WlcF58pnhRPrhzYkHHJ1+bmKkknNeIKcRSOKjeFE0ClQCicoo0BpWOi2vEcFGV1D3hrsaIwKArVIhEfE9+GjMciHuUEcQUejTcK78eESwCmF1H9jF7/NN38HIkfkrTaJCrEcIjXKFEkOw/Rmp0jKzNW1zZChGJuyfMQ//LEo4/x+GNPsLa6wrnTJymHG1yqPSOQQJ4XnHj6PBubG7zvLx7g4OWP8Y3/6Bt4+JGn+IPf/iDX3XyAL3rjq+i0PX/6Pz/O+eVTvO5LX8rZU+d559t/jxe+9Hl8xde9Hrzmw3c/QDbM+OD772F1ZcRoWPJlX3Urjz+yws5dcwxGIZvtwkKH62+5jvvuOcLNt13OmdPreO/Zu7tLf2PA5lafRLUxxGq8cb8ZbbBlHxITMto0XJqNjq6zUf43Zjy925FAs11KXKju03X225h9WKROmTjmhSPQbU9ZFjqJn43AqQqolYrJSdW4j9ryMpbbx32M70Mn4X5VucBWwwkm3SpbXw2lzXefQDaCt27cN9UtMY7CTyIyXwGir3CSnxxnxUkCiAuIUgf9iUhMhFqJTBVSBhBdryXE6kneoXTIG11GxOVjBiGlI1JQUd8ggcigBZe2EFtQFvDJ+x4gR/P8229B0iSot5UZj6HWthb49jxJDt6eYebco7TnWnhb4JSQe0dbBKvAt9rkozUMsDYsOXTZVbSxnD55gnvvuZ/Zxd1cc/1zeOKxozx0/6c4dGDuknvsGYEEyiJn+fgKW+uOl73iOew9tINRPqS/tUWWnWNrqxdcOC0cPfowZ0+fpd1+KWWec+01+7n11qvodIQidwz7m7z9v/8mizsMo0HCgYMHWFyc4hf/8jfpTSU8/4XPZfnMBn/88KPs3X8F+/cucdcH7mJ6us2jjzzF53/BC/nI3fdx823PYXZhB4UvIjUuKYqSB+97gocfeJKrrz3AF7/xZeSFo8qErJQCrYNF4rNg8S+lzGy2ca5CPwYGqbd4lASqzRxk4nCiAr4KeJs8fnU+5mansgxoquSqrmK1GXfRVGAGK2kCqqoAXIkX4Rkhk7I0HrmNqkvjewW8SjeCvyKiiZxFY9Imfzf7aM6bBF+L7fdP6JNqhDF+t3qo1Xs4h0qIrukSdRESszfHoce18Z5oAA1IytkC01XccON1XH/T9SQmAL5DEKVjAFljjnyKkFPkqxSPfZCjWxtcMXsASdoIwctYO4t2MF30WRhtsnx+hQ2dsLKxSbFyhq5JKKznq77+6+nNzHLzrTfy5KP3MtNJuVS7NAn6P9icc3z043ezY2ePuz90D08+cYrSluQji6bFiWPLWFsi4tm99zAHLzvAxz54Hw9+6nFWVi333/8Ud73/sZCwotNlZrqDUiXdbsKuvT3m53Zw3Y0H0Vpz9VVXkheOO192B53uHLt27SHPS5Rk4OCmm6/nOddfyQtfchtZluN8QYA6V+uzvuqrX8511x7G+yK6K1c2b6mLblxMebld+7/dEnCxdlHuYYKYR12AV0S+fhtCqCh7vdsj615R/gj8SoFEb80YtjxGLtVz42avazwavNJjwGkUSKlFiAqYq79mLsZIvSfTxqnxPfVn9V0a70fjnm3HqjmSWAKuglbvG4pRPnMfBBd0Hc+p+H5SE++YjCVWXFJQpz4LDnAGbRI6vW5tpRJpzAOy7dkOV/bxTzyAP32cYjQK+opY0MRoUycXWXAD5mwfUwzJspz1XCjSOcSkHLjsIJ1um3xk6fY6HDx4kFbrGZ5jcG5hnu/7V99KmnS56oYbEQxKO577vCu5/vqDoCwKxTDz/P1veCXWeUo7wpYl/U0b8gCkPUSVXHPTFbzlR76N8+dW2dgYMhqMmJ2b481f86U8+fg5Dl99Na2pWW648SoefOAJ3v3nd/OVf/+L6A83mZk/yVbfMr+wSJS+USicL/HOhDJVo4yf++k/4ZWvvokrrj0QAbTA+xjyKxZlFK5UeAqqzMJKKrkvUD3nQVQZioxUVF3GFgkYIxLvbfweqHSqJFSvEQGx+IniH2O5eEIGvwDPRCShAG/GPgGA9xcCVMWBVETVO8FGy02ojlRFgEYgU9XWUvHZjkkuoIKkbQCppKncCE1HS0NTwVgjjOYrV+bKcNCJG89FU/wYKzkmAL8aVvVLotJUx8Sx1Xo4F+pahnd2tWVEvEXQ4KP+oSwwWqO8CbEBhNwUygWTaNMPQ5yDUR9OPYasHMEPN0hmd4EqCeXuBevykE9Dwex0ykbWZnqrxWamQVIKV6CmWqRTbQSh3W5jkhazc4vk/bXtG6BunxEJiMjbgC8Eznrvb4jHFoB3ApcBTwFv8t6vSti9PwW8DhgAX++9v+czPaMsSj7+oSdYOX+OqTmD9ymHL5/m9Ikhp05ukY0y5uamKcoBN9x0DQev3Msn7zrCVKfF/MISTzx2hLm5afprM+zZu4sT53LKXHPowH527l5Aqy7d3ojbX7AL50v2H9qFSVJuvOkKbn3elVhvyQvhttufh9EFN996JWfPrqKVCX7+hLqD2iiuveEyrrpmJzfceC1KPN2OoigNSkMxEpTukkqOVp4sK+pp9rHWfSCiCUiJLVPAYXSsWCQywUFcaDmQGg7KqohppQ+ob5pYvaqjiyCB6vyY2obeZPLeCXl87MjkEUQl4bRqyOTV82AM5Nt1kxUgTvTdZNP9Bbhhot8a8BvAXfUhKhZAkcbry7b3aiCBybedeI53ZR00FAqUqolKPj5eO5nFqUJOwd09eOvFZC5RZPD12hE4k7KAfIisnoGVM/il3XD4KuzBKynKs6RW45SvrQkeT6fTopW0xjmkDHRajp2zXVIdIh7nl+bw3mKSJORYvET7bDiBXwZ+Gnh749hbgHd5739MRN4Sf/8A8Frgqvj3fODn4uenbXlW8iv/9Tc5fMUSUzOz5HnBx+/SdNstXvLKW3nwwWNcf/Mu/ut//DNe90UvQEnCB/7yfvbuazEz3+XIE6f5gtfcybv//C5uff5l/Navv4/9+/aw60CLPfuu5oqr9/Gz/9/vYXTB4ct38ad//G6+5utez2BrjTNn1+lNLfD+936M62+4ioOHd7K5ucnRI0NuvmNHKMXtK5NiyBD9sbsfo5VMs7K8TJ4V3HLzYZ584iw33HKIpx5fYWlpgc2tDeYXpylKT7dX4qygTIHWrWC/9hajFIULcrd3F5oKt/s11LovpSitw9cJSGJrAntNHRsset2aSjvChaqq5LsNQJqUsinKKInh0Tpo0muK20AEFVdQjydcU10e0nRXJ5ufMJZUfUQKAbjGJsexUrGpe6zernqeCGPRYizwh3Fsx0ONJpWy0jmU6HHtSMaFVcZiWqUPoC4p5lEh8KuyDMX7PBLWH1UXapV8BMMNyDcAC/uvRu86RLGwRHlqHUzwJB2NMnppGyVCmhh6LcXOxTar64pNM81ix3D13gV6aSv6rZT1vsmy7MKXjO0zIgHv/ftE5LJth78YeHn8/ivAewhI4IuBt/uwm+8WkTkR2eO9v3S+Y8JC7Nq7RLe3jxufu5eTx8/wZ390H1dcOQu+YH5+lpm5JZSeZnF+B2sbm2AVM1NzbKye48nHjuNfo1hd3+L97/0USqUoZVmc38eoP2T93BZf9IV38qEPPMD66jlmZ2bJ8y3e/e67yEaK5995M4tz07zhS5/Pv//Rt9Ob6vDGr3g9Z86uRl+DsHzOeh584EnaaZvfeeefoKTk7rvu4+u+4XX88R9+iNvvuJ5HP3WGF7/8Gn77d/6Mr/vGL+epIyfRKB575CQ7d+3CYzlx6gxv/LLn89u/8W5e/brX8srX3UxeOrbrEZrmw6apEFEhr0JTho7KqNpsIIyPVfL0dlm4gSh8zQtXrH3DLl+JJduouVIGK5oQv1GfGJv24nXbH+qr66rzNXA2lXzbqL5q3C2N+6s+quvqeaqorovFQpsITsVhVdjjomwSYkuqIqOBCxvnqayAS4BxZXk15g7iPTX+FfDeIT7kORCn8WUORYHPh4gPbuBJu4db2oN059E6JRVFAeA1STeNz3YoHPOdFl0zw4ncsmlbeDfCFnlMviqkOgmmw9Je4KfSbH9TncCuBmCfBnbF7/uApxvXHY/HLkACIvLNwDcD7Ni5m6/6hi9iNNTs2t1jdm6BpaW99HotejMzHOwsonSbm2+/iqwswUO7DVubGQs79rO0c4P+YIuDB/dj3RZpOkM2GHL6zDJPHz3B2vnDnD+/TOlyuuk8r/uia3nurYf4y7/4EFdcvZfSwup6zqmzW/R60yTJiAMHd3D69Dq44B8gxHRh3rN33w6OHztFWYYc8O1Oi053lqTV44qrLke1Qh4DbEk22OL0sQ0+/wteyNrGJnd94JMc2HeAJx57ins/8TFe/Io7kBhOi4tlsC/KCzc4SHG4wkXAkMgPXIycNRWCMEH6JJ53Em341TUV8ok/at1COD3/2LuZkRxV5IgrcBuPxupRTc7ib9IuJQL4BlLY/oxJ7mayL4dkQ3z/ccYKUpm8/ALRqTk3ghQjSDK6ZYnvl3SdjHUT3qPXRugtM77fe7SCjoPp/l2w59oQ9xJ1PRqP9SVSFngtYAuwRdAHiCBpGyUtfNrFpy28EqxKMF4jKgSfhUxbUBQhecr6VknuNYjHaiGzRJHNxbycjlE2ovxcBhB5772I/LVX33v/C8AvAFx7/fX+0OE9KBUSVyztnKf9Aks2gLQjWBvq6335m2+jLDxp2uM7fuBNeFJQhle/9gWISXjuHRpxhtyuU4wcxkCWlbQ7hsFghNYGj6bdDUmh/+m/+CckqceVwvPuWGHXnmm++/u/gbIckqQ9tPE4F3L9ISFN2aGDu3nPn3+KF9x5I2urOb3eDnq9Gb7je7+CdrfNf/nJP+T6267n6ufcyNrGkHZ7mmE+YHOQMbvQZv/BnTzx6FPcfufLuPq6GzCJCcrBuMB1SrWaq26w4BJYSe89wyJSpZjqaoLlr5Vf1fcmIFULQOMaopxRUTl3YR+x7xkp+Prv/CfobIj4AteZiQhokmu4WPu0aCI6zFwI4w2RZeJdGuNvvlSth7DIYAvfm0KkEnW231OJL9v6qawBo014+lPM9Fq4JMFGFt67ECxmWiHEvHqk4EmUUDjPf/qld7BFTLwa9S0qOkUZ64MeJXIaXilQbZTRuNEW7thR0u5ZdLuFthv4pAw63EIjSawupTSn1zZ48tQpVs0ufLfHxiDjxDrslhbKJMGj01pG2ZCizC+5Ln9TJHCmYvNFZA9wNh4/ARxoXLc/Hvu0TWvNXe8+wn2fvB/R59m/9yoOXbaDez7+KF/9D76At/3cuzl4uMvxpzaYnnXcfMt1fPwjj3Hoij1kw4zNlQHX3HKQ2190I5/82GM89ODj3HTjNTx99BjawK13XMMTD68yMx9ClIu8IM+HXH3tFczMzYMvKa1ia2uVHTuW0LrHow+fxCTUyT28D5GIBw4u8a9+/E0sn91ieqZHr/cSzp/fpNXpgSje+rPfQlGMeOGdd1C6DKMTBoM+oj1Gt3nBnbey1d9gaecUB684RLfTCR5gRjPKRzinana2as0AJRFBI2yWHqFRQOMCJNBsFaWO3wGR4KYquip+4S+EqWa7iB0eLxfK1E0RQqJLcCVOfKaN8LdtEbE1aHoth1/6hm1iR/NsdABSSkJFYj8WZioc6if62obB4s+QsCVwEeI8lDZGVProdKXBJHiTYOd2gRLy0iPFEJcrsOBsiZhg2nV4hnnJxmBEXnqcUqjSYocD3HwbgxBcGzzKGNqtNq20xaXa3xQJ/AHwdcCPxc/fbxz/dhF5B0EhuP6Z9AHVfF1z4wK/8esfxtoVFudTfv937uPKa/by+EOPcdONu3jt6+/gB7/vVzhy5FG+5ItezH//2UdZXT1J1k9YXj2OTYbcfucNnDu5QrY15A9+73cZbngcIxYWWjz20ClOnznLzEyPPLO8+gtvJE07iCSMhn3e+5cf42MffogDBxa57bbr+PO/eA8vf/XN1AkDhKiMS3j66Cn+zT97B7fdfohua4l7PvkJvv173szBy3dx7Mh53vsXH2dhaYFXve5m+n3PT//ku/iSL7udP/+zd/Mlb7yT++97gpnZFt6mTE1bpqbXOPLk07zkFc+PUcHR9FSbCCfz++M8W5aQiNOHykkTkznx6S9AClJRQB9TtjuHb3g3UnMf4eqL+TxU4DAGCWk+sXHVZ1z6C1QCl2yfhssY9xaAvtYAeLnA4rj9+omxbFOg1m/ox1zKpbQIFcLzqMgZVFmP3NifRMdqTyK1cxZKB0SgDJgOXpVo04ZOF2dP4FGUrkQkmCdLZ9kcDihKhysdJB7KgrZYZttttJZgHpXo9SjC6vLKJWftszER/gZBCbgkIseBf0kA/t8UkW8EjgJvipf/McE8+DjBRPgPPlP/1bQevOwg1990M3MznrmFeaxf+/+p++84yY7rvBv/VtUNnaYnz2zOEcAiB5LIIAhmgkmkKFE5J0uyZEuyLJmiLdmvopWo7JciLYoURYk5k2ICiQwQeQFsTrOTZzreUFW/P6pud8/ugtT72q8/+7sfYGem+/btG6pOnfOc5zyH0ydWuPSA4ZFHn6WTZHSzLuOTm3j8yZMMjUXsv3QHD9x3ivpYnUC53vCrrSbt5gJKxiTpAmmqieOYvZdt5mv3PMgtt1zLmeUGn/ro17j9FSV27d9OY6WDsjW+53vv5JGHnuWD7/8ESd701+/FP61FypBWo8MnP/NNXvSSncRBwr333s8b3vwyzpyZYcv2afIk4ezMUZwOgeXQ88+h85N846s5rWXN1778NU6dmkVRY+fOjXzyw88xNhlQqVW59aU3+HJX0atKHMxNgwtvVrI2qTEun1+k03qj8oXc3v4sK3IDSFz/PeNLc61wiP0FR7gYPBpFcVCPPejPoefEDE6mwfTheU++/++aL7jgH4Nr/NqDrIUlLPd9/IPc95G/Y/Hsaf7d332ByvCY29VaPv2Xv81zD95DGJd4/c+/k/W79oOFRz7/Ub76gb8G4Obv/BGuesnN5GnGn/3eH7O0tMSLX3oXL7r9TgTwT3/7P7jxZa9g256952QL+ldkTIb2LeGttQjlOkILq10DXhV4opYzBtZ1jwEpMCbFBpJcumKlwLqwT1tDnuVONs53uzI2R5gcVOx0DwOnb4hQWJOg85xS6YUZg/+a7MDbXuCtl15gXwv81Lc75rmbMRBG8G9+4e1YnaC15PaX3UpAGVVSjE6uZ3ysxs49exgeg24n4w3fcRfaJNz1mi2sWx/RbVmsCZneOEpjZYiXveZ2zp45S6edEAQRGzePcfvLXsx1Nxzg619+ltVlwac/+jCvieps3z5Japb5xEePs3NvlVfffTtfvefLCBE6tNmZAYzJmZ9bZmIq4oGHniM0CSoSPPfMcTbtGOH4sVny3OExzz93goX5FVQg6bQFq8stojAgUAKrBUeOHOHKK7cShhJjUtotQRSGdLIuQhiM6WMD/UIkqNVqVEKnnWg8+U4YP3mLCjgfHqwpRDo3DVdQdbFe/170Vq+16cNz9y+Q8aJ5yuB3DGznZBZeyBAYnfV0JN1+A79ccAUfxDXWOuO9t61g8/4r2HPgat79n//tms88/+DXWDx9nJ/5q49y6uDjfOJPf5Mf/oP/Saexwpf//i/40T/8e0Dylz/7VvYduILjTz/Jjj17uO3uN/En7/xPvOiOl3L62FGMNWzavqN/RueGYMJhBEEQ9LUxrJPFEdY4MpHsU7VRBUsTQGGlBQIXcvkeFQaDwsm+BQI63Q4on3yUEh2UyIWjJJdC317NWLI0o1wqX+hmAhcJY3B5scX8TINHHnqOF994GUoJ5uda7NpX5czpFfZfvhVMiXWbXVNHhGD3fomUAcZqrNEuz47lxTddzotvvBIpLVt3bWFQAOT1b72LICgxvXGKpLPCkeebbNg4TKlS5s3fdQd5JohLEdIK9l2+haefPgEUIiIurTQ6Uefqa7ex/6rtDNeqaAyrC01aLZifabFtZ51Xve42zpxqImWJ3Xs2c8crbmDX7o088djzHLhyOxu2nEXf5OC0l9y+n2q1xMzMHGmWoWTkMQiH5rqWYcU1aLK8Q65cK2+X/8YzzzyJRUDR5mfNFBkE+wrnwRQfEBRiImJNaIH/7t5RBjbndC+ePc3//LUfZ8OuSzhz6Gkmt+zkDb/wm4TlCqefe5LP/uXvkHbbVOqj3P3z72RobJJ3//IPsW7HXo4/+QiX3foKhifX8eW//wukVMSVKj/w2/83eZrwiT/9TU4/9xRSKV7+w7/I9iuu45HPfYSD932ZLOmyNHOCfS++g5f9wM/1ztVbMtbv3Ie4QOXcM/d9mcvveC1CCDbtu5xuq0FjcY6jjz3IjqteRHloGIFgx1Uv5rlH7qMSKLI0xXgRU2vhcx/+EK//nh86b+Jb6+oGehiExxAsnmci/DMQ0nsBwQAtuqBW+/et8WAirqhJOH2ASLpK2ShUaAwqihA2ABViVYjGIpQiDELXkdtCN0nJsotcWSjNWnzwvZ9nYfkE5ciytLDE5z7zCL/4q2/nd/+vv+bX/vPPMDoZIEyAa4nddQuL8W3GZAQ2w+gccCq3xhqCKEBrkCrD5IowctLUlXKJarnK+lsgSZ1eQbU8ia12nEquFIyMj2PNKRAaY3VPpqxSCwnDCfbuLbsOQVaxeUvOwvwSQ7URwkgyPDzEpZfHaOM+e/srrkHnkp37ttHtZmzduY3cZggRgbaEoUGJiFY39foJzuUd1CUwXmwjDCO6aUaqwXpwqbfK91D8CyyhvQHrDQcOpFII8p4hEL39zj1Cob9YeBhq4CMLJ49y98+9k82XXslHfv/XeeATH+BFr387n/qz/8p3/vofUR0e5Ykvf5ovvuePufvn3gmAzjK/6lr+7CffzNvf+S7qE9N0G27i3v/xD4AQ/OS7/pG5E0d476/9BD/zVx8BATNHDvJjf/R+gijiT37k9Vz/2rcxPDHNC6IRPVKRpbEwy/Dkut711SemaSzMutcn1vU+MjwxTWNxjgPXXMnTjz7IH/3Gf+SWV72GZx59mA1btjE8Ntb7lsF7Zaxxq3vvq0X/kRShHVDQyXtGQBa/e8+AYv9C2k0gVeDQDpMTRyFWG8IwBBtAEKBMRBjGCBX4zlcOQ0rS/BzcaO12URgBayQzZ49y9TU7eeD+x3nmmedZnl/lY//0eWZOrdJstBifGsKQI3GNG7ECW8iBWtevL1DKpfSM53N78RFXXOO78SiBtIJMp2Rtp/GPEAiZomSMV8hAyQBt1hJ4RFGQIpsEqoSVGcJIDCGTU5NOydgahAjJjVvJrZWY3J1Lu52hpCTLLLlRWJs6sEcHuGIk7dM//RoCp1DkyohdJYMkTbWrQCtYhD2+ve1N1LVbHyfohwiuHl8rAd1ikvdJQ8XAc6sSA8d14YIEz4yD+uQ6tlx6JRbB5Xe8mvs++j52XXsTs0ef572/+qP+GWtqoxO9U7n01pf3ft98yZV85A9+nUtuuov9N74UrOXEU49w/WvfhgUmNm9nZGo9CyePgxVsv+IGStU6AJNbdrAye2ZgAg+EL/9PEMpzdrUAxqBUwPf/1M/QMQKda/76d36L7/3pn+fjf/9eVpeWuP62Ozhw7fXucwKElX16cJFyBZcVUJ41aI3LyhRMRiHwUqx9Yy28kpZVvbMSVoF0hUmVuEQQSIKwjDCO0WhzTdbtEknH5FShE57Nsq5vVHvh7aIwAlIpbnvZi3nskee48bar2HfJHh596BC3vfQqZs4uUSqVESikDLEm956tV/XB5V+N8H30iqaYOJ0/a7R3jQ3WKhc6CKdEq60ThhA4so3sOXJ91WKjnbdRbKIQ5BAgUFhR9OcrrL7y51UUnHiFXuH559IVD8mCWurjciHcFC8SXOfWEQBeMNUZAackhGs8qqBHiHnBbSB2twWab72aDv3J7o0LAwN0zccLXGDgd9Fb6opdHSI+tXUnP/QHfzdwDn20PSqVe/H7a37m1zj59GM898BX+MuffZv3EM477d4WhP2KOCFdLry3nwcGXXF0n+xbnPvQ+BQrczO9z6/On2VofIqhiSmOPf4QBRaxOn+WbUXM76/zG1/8HFfdeDPHjjxPqVzm7u/5fv78t97ZMwJrMgkDMZTx5KIiu2MZuL++xqEHqA5csPH6BaJY0ITqkbiK1nyBihCm6BJtyHVOblzhk/XHSNMugX3h2oGLopR4amqMl77iRn7ul7+HF910Ja987c388ju+iyuuvZxf+82fYf2mCRer2hzEWs3AYuvJefnctBSuw41rAeVLff2Edw9i7TaoRbimfFdwwe/7125OFEQNCKf2j7+mlTdrxUUGNRPdvgqlAsDSTnTvc67T76ArLwaOeO7JQCHF1l/Z9TkTbeBYfafhvOMYax2JCsvK7BmOP/0oAI9/6ZNsvvQqJjbtoLWyxAn/us4zZo893z+Y9RPAwuLpE2zad4Db3/6TVIdHWZ2bYculV/PYlz4JCBZOHmNldobxTdu+1Z3uGfDilJUYYAj4X/becCuPffHjWGs58cxjxNUaQ+OT7LrmJRx6+Ot0mqt0Gqscfvjr7DpwdW+RabdbPPXow1z1kptJ09Sv3oIsTdecQ2/zTpkxnmEoRR8tsPTLt5UDB0WhsTi4SR/sFYK1+M5O3iMVQqJ8sx4s5HmGHgjZiqNlWfb/CW34f+vm+tIlCFsCoRE+4My1ICr58SqclrqQqjdZpNdmK7ae4u9g4Urx3sCEct/ZNwQ9WbCBv3t/rQHHB1bnc/Yvjln8PTiJB8uDGXivf/2WAsgbPKd+zUBxLAnkNLqZF66wKAuBzcmEV+Utzvk8JpxYaxusBwuNK3vp1w1cIJ6w/UO4H7582LjnML5pGw987P189A9+ncktO7nu1W9FhSFv+dXf51N//l9JWk2M1tzw+rcztXVX/6D+fn3ub36fxdPHsday/crrmd6xl4nNO/jEn/4X/uwn3oRUirt//p2+Acy325wRvO9j7+dr//ReGstL/NlPfwe7r72Ju3/2P7Hnupt5/sGv8Uc//FrCuMTdP/8bAJSHRrjlbT/GX/2sS4bd8t0/TrlaQyyvIqXk8x/+EHe89vVIKdlz2QHu/eLn+J1f/rfc9LJXrLlF7ne/ulsIvN6CGWBECiFdGm9AU2CNdkORqZHKe6O56zlhtStmsq6K1FJILEgKIxhJNeC0Ce8JpNjwYscErGV1qUu5bEnTDGMkcVkTKEWSZJRLzsWO45hONyOMBFZbhLRepNbF9tb4XncIrHWVWq7pjmtKarRrlWUxGO16thn//VKoXmsroLdy28I9ppiIMLjaFp7FC0mHFceCwtO2PpZfa0QGWYLnTn73PW4A5UYgdUJNJYQyZ0eYsD7UHEyqnNA1jHX15t9+c0bFCttbhdaoGA0aggtdljeKP/jkl/h80uKxW66FW6517z36if5+b3rt2s/d+yHe8cZXw9JBuP8gAO+46+a1+zzwYQD+y41XwY1XudeSk3D/SRgGrtkH9/+T++yr7oDuCbi/X7KyHFf449d+Jy9+6SvRtXGvbWB6K+Srf+o/9K7B3Vm3Ql991xu4+uVvcBcsLMwe89id5HXf/X2Ao21HYcyP/MKvEJVKyKJJy4C3WIwRIXDpT+tA5TAQPbFY6zUKerjLeWEXIIXPHorewiQRvu9g4dNZCkyhFAZEShGgHGCIQOc5eZ5j1EUuKqLzlN9953vZsWsDjdWcdneRHdt3MToxxGMPP8OBK7ZTr9fZsXeM559b5JZbr+TjH/0XJibKnDzZ5mWvvJ6vfOkZbr51Nw984xBxbDhwxXbOzmRs2FInCHOOHFpg7+71nJ6ZJSzHlMIKQWAp12torZHCtQwPghiE6QNz9C20q0grVkofr0nLhShp52sB+Hpy98I5nkAx8fpYwKAHIZxfiZSS1AjGbJtbaic5juT7JmZpdupMiSYf7JRJjXuka6mya8/P+pXGrT6+LVuRQizcLnv+5wY/L3xWop52masM844Xv7n3vgT2xF2mwoTnujFlK9HCMJuHbC+3WUwDKiKjHliea8d0CJkMUjpaUFWGpdyp9jbzgBxfwfftNAaKlRbLO+7/MJ6356aJKHCdQePdDx/cRNJY6/pLChH4XpEZQggCHzv1nqe1ax/5Gr6CHTAukBkQVvtWbs46B8V+4lzc5dz73y8Nk/57hDVkucuCgQKTOmOBpBQpolj1FhungwB5msHFrizU6Xa46dZLGK5PM7t4koVZePKxwwRhi5tvuZKnnnwKqSyf+uRZ9uzfx223HeALn/kqKmxz+hjs2T3FR//p02zeGvHnf/L3hFGDX/qVn+Z/vufjfNfbX8GTjx3n4LPPctvtl/GFz36d6150FY8/epKFxTO85bvv5oqr9lIfq/tGHB5AEf0HXzD33AQ9t17v/LAAGNjfXuD9vsstBjCOYpAOeiPGa+654a2JY8WsiNlfahFkkroIeHeryuWhINQJiXIFSf2vEP2fg6csRE9tV8hChmsgHLjQ/B/0dHytwbaREX7qzz/SV/GxFmlhe5wR2JwrSl2sCtAGgmbMrjjhrDRgNNtKOYe7MaE1XFtb4XRbMVyC5a4FGXLIVmn12Izn2qWByb/GAxs0CmsjmUEkyB3LdR3YrDK2VhJmk4ChwDCTWepBQDtMOAlo5TyjgidQHLFndjzeBPgKPuEWeenCTOHDVKMdfdgIOFfo9Fw8QPhrsNbF9FprpHILguumJT0OkPf0Y1XgFIxkoX7sge80TYEXJgtdFMCgUgGPffMgx08cZ3xiiqnpTSBiytUyzVabICpRGx7i9MwMKpBoA+VKlWarBRiOHZlhdASOHz7G4vxJZs4cZvbMHGGYMXP6NE998xgj9TqnT84yd3aFoWqVUycWWZxb4vSxGe7/+lMEgXT6bd7yBr7ow7X2Lsaa7Df8GcABvlUoMAjuXXg7//1BwyGl6wzk5KmKFVsz0xJcVurSsTGpFQyHCYIAaZXnvw/G9qKvzyf7A08Y61NHgyvRC5znhQbpGt2AwXddf4cWlsQEzHRCTiUlLBlnuoKDjZjj7YCnlgVJaglNSoRmMszppIYOIYkOGRE5RWzTl0MXa79sAGwdfL1nAmzvgQ2caP9/iUSJjFNtGI/aIC1loRkTLfI0dfdeK4e+UwiHnO+UFN6V+1bbO76xBbDnftfGktuBe96774PXN/CWLDovFzJ0fnFy8iVgLcoLoBapSSGlU6j2Kcrze3es3S4KT6BcLnHTLS9i36Wb0MaQpYLJdSOMT4Y8/dhpbrlzF3EYc+CKy/ESbtz5ihcTla7nxKEW1XqJG158FVEsecN33EmrtUKStdm9ex/zc01uuHEfn/38FxHBZsJSxNxCg1I1YHh0PVob6qNDPTfOFrJUAorCD4/ROi9goOlJ4apfKGlwIXWg4t/B/c/NPBSYphADIYW1CBn0RDInpWRFlZiIV8hFhRdFTZQI0SJ2DTdsCt6NPtcW9M4PgUWDNR6kv4ABeMGLK87XX+OAq96bjFaSEnEsDamLHINhycQEK4vUmvN0kowzeUJJhoRxwLPdgOmRGlZIWlYwKryX1NNmlOdNvMGtaHAien667b1W3Nc1Ho5wT1V4fHRdBRaykMRaqiLgRBaSUfSxEIORBOcaop7RHgD/8DZBSecJGGsIemBv4TEwcNDz77+QaqALVt8TEQKHgVnrtCY98G+s9QuG9A173XjRee4xsgtvF4URyDLN3ks2Mzm93mn2qy5hVGVqXZnpyc1U6wHCarrtcYKSaxJ6+10vQcocbi3alRviUkyeacLAxUXddkYQggo03/F9t4GAPNMoFfGm72qSZwkQggyxGgShE30QBYPeei3L/sNbC7CvBfIutJqfCwBCYTjsmn17x7d2zXvggE1rc5RQxHHAGQKezUdYn4c8s1Bn59AcX04mSYXF6m6fsTYYEvRPwhkVfMcd7x30iFB9C7Rmf3+ivdeKCQQ419cnGKwPoVJrOZ3FrJqQqdAghWFh9SwLS/No4wQ4jbXYpIvQMSu2TKu7SHV0jJEIAgGaMgKBkUXo0rsha7eByb7GqXFWgbUzuLAKzuPTNkDIgCPNgLawjIcZZZVzIlWk1nUQDoQLlVyH5fO//twIRcgipHJiMX3qOj2cwt3XfuOSNYZFFIiLMz7dpIvWmjRNEIFrMVYYtXaSYSMfpkjHjJDKaxj442TZ/x8YgZPHZ/iNX/0T3vk7P8vY2DhRHPO7v/lhfv23Xsbf/MU3+NGfvp5HHjzNkcPHqVZLvOEttxGGCmvdRUoVIJUT9rRYtENjkJFAYzF57HQB0EgZYXJDVKoSlWoor8WmtUXKFKE0rtuQ6PUOKFbjAh9wm/g23nPfEyj2/3bbYOhQlA+7Y/jXLeTdlOeTMs93x3h6cRRrJV9e2kCAxkjPRFt71AFXk77raRxaboVrHtJ37V/govx1rNqQd//hbyO6TVAR5tlv8O4Hj/RWv4LE9Jkwo2EETRMwLhJKusPsmTMENgcjMNI18CiuMwxC13eyUqVaq4M0nEnLJFb1mHdr7+OgO7X2F/v0V3nPPU+huk2yyvCA8vHA5wecpEmZ0jYhKbAp6FANYbaryBaO0+oahsfqLHcdH8Aa09MTC6PQ4ymF5+3cCi1CGvUtrme06ZPailtUSJhTZAguhA0U2QDhqOLFWCjezvMcsNgBQmeWZViE1y9wx2232hiT0+78L2gM/p/YrNWUSwoFrr8AAWm6ikTQ7S4TipCTx+d53etuZW521rtCGmtdUUYx0ZQqWnxb3+XKpf2QxpOIAmc4rEBK0NagrUWKEHB9DYSJeqvIICAIjhdeGIEiDTQI5H1rMtG/zhg4rgNAn1tgjGM/Cut6Gk5HGbfXZ3nMTHI6LyFIMTbo9dELLORyYJTjB1thDAQ9CcFCs6/v6b7w+QkhWN5/F8sSSnNHSKqjvONz7+c33vJqd+5KYHJHbz1lJYgOWlY4bizh4QcZXT2KDSxDQQkR1KiWqwwPVzl++jhGKVRYJR+Z5uCGW9GBJBGudZxV1tNxe2fSv6cOCu+/bC3v+PT/5L++9OeI5o7T2ngJNq66VbfXZ9BdpxCGQAuWA0PXBmTWsCo0sYBFkyPu+ygxs4xv3M7S7BLWWnSagXZhYW14CBVFaGt7RsDqjG5QY3nnS5mYfx4hhF+ZC3feGb/eCfdWkguHYxY809S5+fisUfE74FixRtJutck1rrt0UUTmF6/8hSGBiwMYrNZqXHHFlTz60NMcev4UWWYJwwZ/9a5/ZGHhFH/02+/D5G3+5A8+wtHDZxB+4huMV8XBJ4SkbwAhUUIghNMjdKxsibCOUaiUizGVCJGimHSRc5lE3nswhZ5bzxicN4HPieEGAL41oYGxvVj/Qu7+hT7bFxFxcaVUFhUJRAibymV+avw5Xl49QWgNuVCkVmGEqybUBfNQiHP+l70BZ3EegMSlnfpB/XmX1b8fvbcFmIEsiffGrX/NYtAyxVBGakNFNom7c6S02btlJ1u3bOeuu27nppuuY2J8lEq5gkktoc6IVpeI81WwxqEAViII6VG3e5Pe9r/8nPvobzpG4OvqPR178Nq8d6FlwKoRpMYQ2IB2YFgVCq2hiySQ1jUgtbpAQFxTWxjoot0P9ShGiQ+xpP+JKBiitgf2CjlomAtD0L+WIichC29DSC9RBrkxCGF9kZoXeNEGISRBWIDaxWfPASLP2S4KT2D9hnHe/v13MjuXEVUkYQD/4T/9CIgEa3KaK10mp8Y5dmKGHbu2IxAoGRGWcpJOThiUyNGY3PeSsxGWxA0e3GrnXHuDEgHW+njUOvqnsQIlAiSRi5eFe6jGGF87YHtWXMpCKsqhr9IDPBfiBUARSviJ5xHmczMF59OVz3F5rSOYFD8z0+DvZrfxgJjAyBBDjlDG5TVs6AfWOai/HPjdWkBjhELlBoH/7ADCfc4Juv97XopAag1ioMGItb79tzdkRFhhEDZl4/yTZI0TLCWWbtJCBjHdbsrZM6dpt1oUFY2tJGW0HHNddpR2eR2z0TiHsjqZMX01ZDFwTsXJFkrKQvRes54FKaRxYaAAvaYGxBF3jPEZCCEZlpqbSl02lOZ5cDZmSXToUGRblDu8tC49j+257KqYcFZghEJa69qhW4s1GXlRR2Klq0gVCisFNmft3Cy8tgJ48Jdjcu3C3gL0M2CUxE3vwEV2Srmq0MDTzP29EMrTm/9XJMf/T2yrKx1+4WfezfCk5Fd/4/s4cWyWD3/wAa64ejOPPHiYt//ALSwuzXP4uRUuOZBjbUijscxXPvIEL75lL6cOHaVcNWzeuQPQCNlBWEWaWFSYEwQRWWKJYgXCdQUKpUBrhVIhlgxLghQVtNHo3PevxNDtdHpxHViMhqSbENQkWVcQxBolHTvrXF5Af9UvJt75mzEGrS8sCb2m4o++l9BONHeOnyXvWE6s1MhCsAU3wO1O/48LFRaJnvKMQSHEC/iKL5AZcAbFo+bnvem/06selZsnCI4dpDF7htxonnj2WcqVOs8fP0ogJUoJhBIoCWhDRcXURYftUxFpV6JyQwYv2I9kLdbRN2JFvQjeePb6/vl9++XX0oGOUhCrjLrKqBjB5lKbNG/TUZAL7b1NvxD4kEL47xRCkOu8B/gWGEDv8Vl/LsY4odJA9cfFC2zO5vVlzovFxwJ4NqtUCqs1hYoBwqI8KNzLNmmNspCY7AW/66IwAkIINm2r8NKXX0+5XOOBex/h2KGTZOlZzpxZ4Qufjnny8WM8/fRJgrjFnXfdwFf/5Une955/Ymz8tdz/5WO0kg4//e82UqmUMDrk/q8/xgc/8DHWTY9z2eU7+OAH/oUf+6nv5UU376NcUbznrz/FkUOHmZ6aYHFhiWptih/+yVeQ5fDpj93Dxo1D3hUrxpdESMHxo6d48N4nuea63Xzxs4/xpu+8mekN498SICyoyZbzswIvxDNYgzOIItx1r53NJfcuj7K7nnnRkYh+M47Bo1wg2vOToZeiEpLzhsGaCeVnn7CuCMb6FTT3PRrdB/wg7JcgG5EjOm02tc5S1g1aQiOEpDpUcXwM4SjfQdhX0xmpwkhVkCwtknQtzzUqZDp1ac9zr6VY9HsegP+7MJa9fgMWgSood/3rG7ifhZ1MtSS1GZcPpzwxm5EHEpkpAmvQInOhiU/T2oEJrwsPzz+rosRaa0OeZlhtMLljDWJBh04XwK6xFAPXJYrA0+NS/jtFD8/w7FPhej9IpZyYiBQ9glIRBqRJgjaWbveFPYGLAhNIujmV8hQbtkyibcaOHZupxGVKkaLTaIMJiOOYKKjQanbpdhPWbaizfv0Ezzx+msuvvIRrX3QtSgXkmUUbsNbw/LPPMTNznEsu2cPk1DjX3LAJax1IePb0Kl/8wudJOk1MFtJszrqKLCt47uAMJ0/M0VhddY1ybdEpFyanh7n3qwdZml+m226xNLe4ZmJfiBRUOK49R7+XEuyLhqzNP/YNg6thwMW1wikNrY/gzuFZTuUxGQbBuekfsfb/wXMS/vjWgvUr3Ln01WLHQuVmMGYt/tV5zztxp9xfdd2i5LyNdtbhzIlTdJOEqFymVCpRCkNq5YjhoQr14RrVaoVKucq2sWE2lBTtbs6hpmVVZyBUvxZ+gGPvUpsDnPte6ON+SOv7BTIYYg1cD17Mo/cZhyEsZjEPrURsqXSQee4nnkIWKtBC9H4W7D9bPNPiUL4VulK+8tP2tSGsMRiPUYg1z2ntsyuMqZTSHaOwc3YQU1D+lsue86eUQvqqVWvosQdNdpF7AuOTNV79hmsYG6sjCVm3cYzX3H0zNszZtH2By67YTDtPGZ/cwP79W4miMqXKMNqE7Np7KcZYYmI+/MGvsWnbENt37CYqRbzuDS8nzTTDY3Vue+mNHD20yuFDR3jLd1+JziV79lxCbajOdS/ax9n5WZJEMj5RYt++7ZQqmrPzp102oWgRZi1RJCmXQ06fXKZaD11s6Ldzw4HBrf+4XcXY4OrvlIScEQhCx1UAKIpRhABjhWczCr7ZKPN3c1dxWlXRQmC1PN+cD8bPg8BQsbojXXwLTtzCfWH/p9UMAomDA1VYz3/3rqdzU4tAtjhmiCwLlivrKI9vxLYSou4yIm0TGEugU2IdEecVcm25ZMsGtk1YOrZK0m7yeB6hhUJb6Q1x7+T7p1qspD1X3/QuIdSZU/WWIVZorJXnXIbHOXqhkyQVEh0arpwwvG9uBCEjlLVkuXUCsFI5dQghXNxfnIc3ekKA0RqjHL/A9bLE6RoEAVbnCAtaKuiRn0TfgxswtBaB8E1HwBXEFRoVxRiTIkSgMVYRYJEq7HFEjHVguNaGIAwwF3uKMM8spXLANx88xYErt7K8vMRl106hwpjTp2ts27GefQd2gjHozJUdX3rFJt71f/8SxnTJ0wCXKtzB0UPLDA8Nse7aYa68Zi/adCjFVW65Yz9pNyTLIpJU8JbvuotW63rK5YhyNWJy4whBFJHmcODqLZRKisWlVYzWLh2JxhjNqZOL3HjbJey/ZCtf/XKbdevXrXHdzzcCAoV7qAa3ckhBjwlmjGVhucPISESoRL9TjBo0Kh4n9t5CKjKO5HUyabEyxJHRXyCuv1CYIvqTqOeSDu63xm3xPmyxj7++TBuEWjt8ejErYI1GS0VjZDftK+vI5gr1Rz5NvTmDVJooVZi2YfO2LbSabcpJg/Wlddw72+C58V2sBJuxNkWYFIuX3OqBnZJevnDNeYqeYyCFS/8ii9Zgg/u6F1wTY9szIomFJ1rD/OGJEsdyg85LTMSpA5a9t1ZkeIB+M1BREMD6HYopFIal9GB1H1MQSg1MfLnmnNY+o0FNCXptz8HhBUUFoxDC6QxY60It5TMP3vOoDVU5s7pw4fHBRWIE5ueWuf+rh7CySXt1gU987FFKcc41NxzgG994lLd9zyu5+oZL0blAkGCsBq3oZG2EcDxigescvGnrFEJmBKqE1pZQKjAhw6MjaA2jEyXyDLbsmMDYKkJE5DpnQowihCDTOTv3bKXdaiCVJMuM1xh06ZepdcPsumkbtWqNLds3US4L7yL6FXCAV1CUf+qiCIZiHvUNhTGGQAWEQYTNM//Z/rFgQI3GuiyHSbw7rwWg6Qn+/as22//X4qnIONe6N+EZ+Mk5YUJhwBRSDDAT8QalADCkAwdNPISNqsh6Sn7yCUqtGaZLNRSaxdUmm0brjG7cRKfVJWl3iITlJZtH+eJ8k66KScMyyAyZGyyqh6+c7/m48ywAP4Huxe0uxpZ9g1dgHMXJ+4mmBayIMstZGa1PYYVkQgiyvFjx1xr4gs5bhAJFpaL1oqEWekCdNtqlVZWbpM5ABOdXIw54ZcU40tp1ndLaNbE11gGBKgz6kE1xTrIfRkohEVojjSZLLvJwAAynTh/k7EyD9RvGeNEtO/nER77Bvm6Lt77tdk4eX+TFNxtaaeZvkiuxhBBjJEUfeSGVl+0KnRa7xN1MlWG0Qgj3eWMN1rosQQ/ttS4XLAOBtdKPFUtcCjHa6RNaIwiCEBFAqhNKFYchDAJ8PWNAf7XX9FcO5zR7mqewKCVI212WsoyxcdclZg1DbuDXwqg0M02uJKbQPHghL+CFNtub7khjvELQ4FI54Cb3XO3iHEAoidb9oVdgc3bQ+FmLFQYrHQmrni8yQYvlPCVKYa6xwmRtjEqlzqKwPHzsKBvycYJKnRviNm96xQRNrTixbDnZspxoZpxY7XKsZegIhR0oLhIeGbe+zRfgOAvST1KpsGbgeorbYC2D1XxCCoyn3hJIhM2RQqD9/elHRn3DQe8uOKq5Eu58BBYjbI9yjO8+jRW+0cgAs3Mww9G/0/4/0TMChdEp1IWCIOhfj3DaBUpKlM8kGOHyXrnWDB753O2iMAJxHLBt2zakOMWevdt58L7nufqa3dTrVe655yAvffnVpJkGZcBGQO6fW98NdnPP/d5LDQF9IMfSy/X2pgAI72JavGtlHHKNcHGbwFlzKQXWGC/1Kbzn4cQ/sYMU374xMNbDPwPheI+CjBtEaaqZX2qBVaS5YXp6bYoHQa+62XhXNMsVhZ60EQZhVT/ldWFIor95T8Mh5hZlDEb41UxKCm0D99IgqFZo44FVklz3V2OBQqFxUatrjSaxWGWITcJ0d4aNC8+R0+G01pxorIK1LLUbfP7RbzKybpzK9AhL3Yyp0YgwjhkONKMR7B2LGarVCIOYo8stHjre4J+f6/L4Sua/MUDiV0oZYk3X3atcuLkWRh4P6Gs59AZML3awWOkouEY6KqX0UL5UIaC9/qx7dpJ+EZjF+myoxQqNMmBE4DxUoYgD6dqHGeu+x4CNYoQI+rjGec/IH9u3HAuk7PWGMEg0hk6qXV+BzCIqshc2KAFKBg4PsIZukvLww49SKb/wVL8ojMDo+DAvfcWL6SZdhoaGuOZFlxKXArAxzcYCY+Pr0ZnwhRnGs/zWKu+cW8Bz7taf/P0JdqG0XBHXunrtIkfr68F9VWG/M5DomZOCXFQcp3hog2FC73sL9B9Jq2FpNC0qyCgPjXrjA/2QwJ2LNcIx+4REF+W/YmBynjuaxAX+WIOku+ObnphIgUgXZ0jfERhwsvE5AaGCAe9YYKRC6tRhFEgilbMjn+FAcoq67rKcLNAailkdGyJJuqBhamyEerUCVnF2boXJyUnqY+NUhmoIYZAIOp0Oy8urrJ+aZqIS87rLh7hum+UtH3iEphJglEvlaQ302TeBdUy63qUj1trHIuwavE/SW1wBbkHJkSpwdSdruBR2YKwMhG9CIIWkrlNGlw6SrpzkoDVw+ChDI5NM1mOkSQmDgI71DVyKs+oPpP7zt46lmuWZLwfWrkTYwvPPHuLE8RPo8hByPMZ0U4QUKBX4caeRwjW72b9vHydPHOGFtovCCEipKFUqlKslrFXUR8YIAovJoVRah1QWhEabCCETJ70MawzBtzIA527nV/b1fxfFqujdPm82nJUd0JNXUrqwt1D9tf3iosJIFBV1559bQQJJGRkP2B+Ok3Utldj5I0baHu5VYAEWgTUaQ0imXbfkQe/9PFeSC/zZm7VFhZrEaBBS9Vz5c+P/gTFeOD0+Hx4OLKoWqR0PQCBYzwqvLC+wO0yYW8o4dfQYabdLZg0EESUU42MjbF4/TTWOWW112Tg6BsIi44i4FJMlXVSpQqlUod1JWW41KFfKlMtltk1JfurKSX7v8aanSOc9fKN4YqFNSXvxf+H6n3NvzvEKe5bPLwAYn9sHhyn4XJC1lmL62sIoCoGyEq00o1HKyyZyPvXcWb54fI5/efBJPvOVJ/np732dj2Z978FzOjidF40VL/dSgEVoAFlu6XZzxFDoFg7rhU2k9OIjFtDUKmV2bN/GzJkTvNB2UfAEbO8BAoUeoEmRCAIZA85NlUEC1okzAX23e6A/wLkc/BcyEP0c/IX3Eb4e2x3bjwk7UNRTIMSeyilEX1XYH8GJQ/p4rti3d40iRIrINTqpl5mYGEIFAVoUw6rvsTgijpOU7nRS2u2kv3Jz7rkPxB7nX3T//549MOffn95+/tuL/oRFaGAB6fLRxf5GCrCKmm7y+okuu6MUGQkqYUQclwgE1OKYeqXM0OgQUxumkGFE1whUtcz49Bhbtm1hYnKi6JVKXCoRRRGjIyOsNJpYQkI0SZpyxXSZdeUIITI38VXo8uaFJ+DJSWuZeWLtNZ7rIdkCb3LjTVgXCjrqOK75K16mvhg39MM8YUOUFoQqQgegpUVGJUS1zFJ7ic/e8zWQyrE6BKwheInzT7MgB6mixsA6AR5niJ06kxYGIx1/ROJ6Eigl0XlGICVRGHDo0PO0Wq0LDAi3/Wsakv4P4DXArLX2Mv/aO4AfAeb8bv/BWvtJ/96vAD8EaODfWGs/8+2+o7HaYv7sEouLywwNVclTjdZdRqbGGB4fprncpN3qMLVumG43JYogzwxRKfar8VoDYK3t0XDPBewGt3MBPbFm5TC9HgFCWFw/AVe+icWrxQRYY3nf3/4VzUZj4Lh9IzHg3K29r71/BwC2vnPoP2DXfs4YpJLMnmywebXdd9EHQYfznI5zV761JyGSDHs2ZM0IPNem+JNYJWbpkrsQJndeia9RL8KbWGhePtzkyrGA5QVDKEPiOGCoWqbbbrG4tEh9qOzUctOMVq4ZHh2hWqpQiiIqpZhqqcLI8CjWWsIwRBtNXC5R6ZRpr7YYHR4haTcYCiWXjpQ4M9tFCOv6LwiwoTt55Qj1vkuTw3x6adTepRYGu6+vWIwBIQRSF9wA97YaeK69ehLvC7gFQpMjUQhCGWCNQFnX90ILw/JqG0mODIbAaGyv25Dt3+Ti+MWY9GK5hayIsY6pqbUrFhNZ6Dw6awmiEOUxKIEzYlluePbwMdaPTXByZp4Lbf+acODdwJ8A7znn9T+w1v7u4AtCiEuA7wQuBTYAnxdC7LHfStEA6LS7fOj9n+GBB+9jev1msiwF2+UVr3klt9xxFZ/68KM89eRT3P3GG7nna08yOVVhet0Ud77qOrLswpTbc1l8F+L1n7s5l9GLiXgX0qmyuH2jKOozspTqhQytZoNf/bVfx2hX4tlLYw1kCvwXDIQY52+Fe+mQbJ9BKOJNBEpYlAr4+jNzPL7U9PuLtRO9f9UDg73n056/S6eLLZXWvnnB41ne/Ye/zbJwWg0o4QBFAGGQNmRCdbihbojKJarVIXfIGoyNj9Npt+m0m8zOzbO01GBqapKxkWFCBIGwlOOI6alJxifHKVUrNJsNtNaEcYks04yPj3P27AJZlpNnGeVAc+36mK+dlXQEA6k2d79yY0C5Zh0C6+sdLnBdPV543/tznqmhSNMVnajcEQodCeH3Lei8Au2UaWh1uzQ7HdLc5e6lfz8OA5RgQF688MrWGoDeY5DS8UoCtQavGnxGhZ4BQBxFztypEKkUURwTxzGTYyOsrv4vtCa31n5FCLHt2+3nt7uB91trE+CIEOJ54HrgG9/qQyOjdVaXu8yfnSfptNmxYzejkzuY3jhJHCuuuHIH87OnkVKRJTlZVzv5ZkLnDl5g0A6u8mt0/1kbMhRxfM+N742mvkdR9CF0em9OizBQbmXpUz/XbgL/sM/1NP41m199+4xBXzDS67rkUXwvvTWA6K09lRdCn6FYVwYtVP/LBwC1C33SGIMKJHkhs4YFkTMmoaoEsQoJR0cxVtBqNdA6Y2VpkSBYTxBGdDrHOHTwMAu1IeZPL6DikN37d7P/0suoDg0RxTEjQUgQREgZEUaS8YlxFpfaBFEZWk06nYRXXLKe9z65wok8d9Lplp68WGZAxCH9FCD00xnFNRbX6b1GnG6BBJ8JciGeMdrjAMWt6pVz+UrEAotwBCUVBnSzjEw7L6Dg8YcqQArRb1paaD4M3vMBO1B4JdafcxF2rFnABrMdxTkKQRBGWAOhVNg0J/z/qO/ATwshvhd4EPgFa+0SsBG4d2Cfk/618zYhxI8CPwpQqdTZf9kexqdqGNsk60bEoSJMnFjCvfc9DAo2bZ5manIj6zaUKVfL5D0Hw6e88A+WAcAOryNHMQmFK8g41+UV4Eo9jQ9//TornMiji+eLji/4EmLPBsN/tein2NbY9EFMyp7zpAf+sr0n7nYWoog9+w6jFKLXOu1CYf/5Rx0cYAOGwnohDHPusewLexZ40o2mV9devKe1YG91iTBw6SylQuKohDGCKApIk5Q8SxkeH2dq/XqOHTnO4twCWsKuvbu55Y6XMj4xTqACAhkRxIpyuYoKyiACtBEMj07Q7eZIGdBqJ+ytBdyytc77Di84kM2I3jzPjC8lpr/S993/C21FKCgLKMTF4FJicu3LlYvDOOOgpBtLRTDnaSk+q9HtMbeFcFTjOPLNU5T3AM710PwHCmKkEY4Boo0jPhU1LNZnFhAuHWsBaS1Jt0ueZ97TkKRZxvFjJ5mZmWN8rPKCV/7/1gj8GfCf/a36z8DvAT/4/+QA1tq/BP4SYP8ll9tXveEa0uxqcg15ltNpGkbGFQbLG998O900ZWyyxqvfcC1h2bgqNStwhKGuJ1oZhJUOtMJ6jEf2YvheHN6r1/ZuPzlCxBgjMbaDFAHWapRQ6EyRZbk7Nq7RY5GqFD4nDgUXoHDr3PO0pojl/Nf1MAeLtRKLBm+8BklGeKPlikUKMQ+fIcCS+xRhb+ysubH0V5TBn+fef786SrE2TbjWM+h7Rf1/rSseEgJs0Q7NrYSX1iw6CKjWqszNr1DWkqHaMGmqGBkZo1QKabU7hFHM7j170Llh46bNTE2vo1Yfpt1sAi4NNjuzzIbNJaw0xLEiyzVBGJDnWS8NNj/f4cadw3zw2SWMMoTCkvt5brRH3oV3l9fUUhQXc45R8AbdWOvHgLME2g76e04XQgpnCKW/dwaPH2Qaa3La3QTHcZT4OlLXSdhKTChRVqAHH1DhnVj/bNz0R6AIpJPLEUI6g1CEJtbpCgjjiqVkHPVUj7MsI5IKazX1yXEm6hUOHj99/kA4/y786zZr7VlrrbbWGuCvcC4/wClg88Cum/xr33JbWWlw5PBJvnHPISrlgKPPnebQ888SKMWhZ05x/NApRkeqPPCN52h3EoaGRhkZmmZhdpW0k7E4t4LJNM2VBIygtZJgbZcsTcizjLSbIYQlzx1T0GQGrHYgipFIIoTNCQNLFJSRBEgZoYIIpVwcbrzScKBwGnmEWGkIcVz/Ah9AaGdcEN6Np2fa/81P/jgf++g/Y2wBVNGz7O6+un+KtKCUkte98uUD7r7FWtMT2RiAk3rb3//Gz/Cun3hD7+8nv/pp3vVjd/MbrzzA6WefoPAvjz/5EH/2Y6/nL37x7SycPALW0m2s8t5f+RGs1hR02IGn7j+rHZ9fBRRroLSWSdFiarhKoErU6qOMjI47vQEpybWh0WwxNj7B6NgUU1Ob2L7jEnbuuYRNW7YwOjblUG80eZbR6XZ4+uDTfO2e+3nkkadYXGoQxzFZlhKGIUmSoaSgmyXsn6yyrRwgyJFSu0kJBJlGqkFefoHRDHhI520udHB2esA/G+SjeMzAeYiib9ixRTsrhIB2kpDlGYFwQqXKQjmO3TwfiOPPA27P8RCEz8sav4gJCjKc/04/viyCuFymVC4jhHDhqhCUSyVuesmLkcH/5nBACLHeWnvG//kG4An/+0eB9wkhfh8HDO4G7v92x8uznKcef4p7753h5lt284XPPUqSLvH0E4d59uAM40PDPPrIMzz97BH27N7P23/4VoIg5P3v/TyjoxXuuecefvbnvo8//9MP8vo33MGHPvgFrnvJfs6cXuSS/Xv56hee4g1vvpGvfvVe9l26k6/fc5Arr97MzMkm23YMUx2qMjk1RnM1J8nalMujXHHdBoQ0qKBEGEdEUUSSdEhT4zTmRMrM6SUWTjsXbPbsCvV6lWajRa1eIQxCGqsN8twQl5w7bHJDs9Gh2+7QaLQZnxxxyjdmrUMuCm8Fy0c/9ZleWIMFbSEtykILoNEvJk/d83mictFkwu0/tXU3b/mPf8DH//idvbgRAd/40Lv57v/8LlaOH+GhT36Qu37k3/OV9/05N3/nj1A0tujHSb0jYvKcQOdYWYhZujBob9WV3YZRRFiqUhsJiZIuRkN9dJzFhSWCMKRWl5TLMQZJFMYgFGnaYXVlhZlTZ9BpzszsWYaGRzl2cp75hYQkgVtvvdZhC6sJ7WaDXBu61rKxFPGGKzbzO994BhNLd4OAss7piOK+2uLGnnNNxeuDE8+trK5U2t3fQi+gTzUo9neYgNC2By8YY9EFUczLyrmwC0LpvIiePVoT/tE/l96vBfbjflqvkWjXRo0ed4BSKe6R1KTXGayUyjQXF1lYfGFg8Nt6AkKIv8cBe3uFECeFED8E/LYQ4nEhxGPA7cDPA1hrnwT+AXgK+DTwU98uMwAOnOu0uySdFvNnzzI2HnPTLQc4feo0o+NjbNk+xkg95qV37qVS7SCsQIqIILB8/KP/yMhwiUPPnaRWHeLLX3iIbmeVz33usyjV5FOf/ALL7aM8+PBTELQZm6gyMqa45rrtnDm5hBKKz378AQ4/d4gvfOp+/vgP/oyvfuWrYFyhh6bjwEUMSikWFpssLiyzOpvwsQ/ezz9/5GssLzR4+P6nOX3yLA/ed5DGyirvffe7ufO2m3nVXbfy4z/8Qzzz5GFWVhp85pOf4zUvv4uX3XYj//j+fwAUrVaDt77xdbzijlu485Yb+eynPok1TsVo95aNdDop93ztq7zhNa/k+972nfzK972yX//iPYmk3eIbH34Pt3znj8HAqje5eTsTG7f1b7Y3BEoFZN0uaZoig5DFMydYnZth2+XXF4cdGJCFOyyQQjnBDtlXEzAINlVDksxipUQFEfXhMZLMGVGhIsYnx7FYmo0uC3Ntzpw6y8njszz+yPMsL65w7NhZDh1Z4KmDM7TaIXPzLYwO6HQgzRStVpc4CplfmKfdSQhChU1SEIabdo2wuTpEZgKMxz2iPO15ZH0PwGspfguHwPtwCGucu23dpHaYUuGxF6HbQMhkrW9MYgmUQnlA2ljbkyKr12vO6xsgnZ0z2fqGasDzkEL2WKtrwGXheQ0WFJZqFHoj4fZLkowjR47x2EMPk2b5C86/f0124G0XePlvvsX+vwn85rc77uBmrGF6wzpGx1b40Ae/SKfd5cyJWb7jra/lE594gEefOMmBK6Z56smUkVH4u7/5Om/9/hezbec6nnt2Jy+58SoOPXeWVnsVheLyy/ehxSrlSplXvXIfn/n0o8wunGB2psG+fU12b9/Oth1bGB3fgpRDLCyvcvLkEmnWQeeWKAQplOvmalzZqseMGR+vcuLgSRZOGYKS4fFHn2DHjiatVouzZ2dpNNrce++D/MHv/y6//dt/RZ5btu8YI8tcv4TZ2TP80R//Dx555Jv8we/9F978tu+mVC7xN+/5OyrVGrNnz/DG17ySW2+93bmzgApcp9nHH/smn/vSPTy3WuF4t+tqCoTASsO/vPdPeMnrv4cwinpe4hqU3y8fwneruek7fph//t3/QBhFvOHf/Tc++9e/xx3f97MeH+1PFJeW8iAHQBhBbhBBmaKoIVKakUqEzVeAGlYKypFiamo9J0+eQZo2p04u8MDxBkmSMjY1jskVpdg1IcmzOqdPrLLabZMLy/zxDgvLq5TLQwRBF6Njtm4us27dGOVAsrCwyvh4mTRNXdXneI1rt8SceR5S4aTBje4yEeU0tSFVwuXlbegR+XOW0mLyWXDVhy7swaZgLdrii3I0BRRS9GnQaAdQC0HgjkakAqIw8t6Aw30EECpJIiRCqH7FpXs49IEqPD4g3We9InZuXI2CRDlDJRyDEeHwCWUlkQxckZp0oKEUAYvLZ7l692YwludPFs772u2ioA1v2jzFK159G3e87CUu72kEeSIYGg255IqdRdEVC3OLlKtDIDVxSXHLbVdy5RUHqAxlXHsDjE3czamTZwkjSbk8RKPZpF6psnHrZkoVRSAjjNbE5SGgwp2v2kdtCH7kJ19PGAo67ZzbX3kV5UoNITUSSafVwuiCNWhpdDIuv/UAZSX43Oce5ZYbr6LVfZwNG9exdfskxijuf+DzvOktb2Lnnq20Gi2yPCDNO8RxmVe++mZUEHLg8iuYn5tFYDDG8t9+853c85WvYo1l5swMX7/nYSbG12GtJUtyLHDlVVezZetWnn/MkT6cjJVl5tDTLM0c57U//G+Zm3UPWloX3UqTENqMAENgM0/5FazfsZcf/d2/xVrLsacfZ2hsEovmg7/1b5FBwF0/+u+pjU4OpKP6ktnkOYFS5NYNn5IUjAYWoSUyKBMGCiEUo2NDzJ5dYnVpjtmZRc6cajC1fpgwMISlMq3VlOOnWyw0DrE4v8z8QoZQEaVyThhXERLSpMvq6gKHnk458oxm++49NJvLjIzGGA1pkhCXYm5dP8nHDx2iqL2wpGgBJha+NVtIj6GHl/by96JYfXu5f4+9CAovADDWS9QXen7CG1V3dwpiYlEaLjx4p3w7OyUUYRCSFNZG0jdGg1wBf6+BPv+g4Cz49/o/XdmyNq6mpFAbisKQPM+plyMu3X0FV7cXmUob/MM3Hrzg/LsojMCZ04v83n/9IHe+/FqazRSsYf+lG/nk+77JzTddwSc//kXWr5/i1pdew8pqxtfveYT9+7cQyojRsTIP3X+EXXs2EkUj7Ny1mSPPzrDYXGbHnikOPnWWS67cwuJCByUi1m8YRgiYn1th/4EphoYqJGmbUqmEtQHW5ghCWu1lwgjK5djrxrvnVa/FiFxgVcAtt17NzTdfwd/85VGuvn4vYRgyNj7K40/cQ6O5yuZtk2AnHU9NWMqViC3b17Pnkq0uxsM96A//4wdZmF/gQx//DN12xuteeSuVSszwiEvrqMCBQ5VKFXCT3630YKXg1NPf5MxzT/L7P/xKtNY0Vpb521/+Xv79b/wWNsuIoohIGKZlm81yha4RtIjQCBKj+cr7/4I3/crv8Kl3/Vfu+sFfZHHuFPd9+H/y0u//uf5DKr4Qi80zxuOcU8K5mBUhqEqXzlUqRKnAa98J6vUhFmY61GoRd7/xFnbu2UgYGZYWV1iYX+HeP19FLVvStmH7jmHmZtsEsszk+piJ8RKCYUpBif37NvGPH/w4R0/OML1uiqQ7jNaavNNBDteplAKUSXzVH0iTs5gHSM/Mc3oBBQDrJ3Eh6yZEP9UrAC8sW1DFLUVqFp+aK4qJ/ESXsj9RhW9C6g2E62/pJnug3OoupIDcnAu5DN5o95s3UK703WK07ukHCn8dUrleGhKNJHd1INYSKMno6AimkVHutAkrL9yQ9KIwAt12Tpa2OHbiMfLWMEGgeLyb8vfv/jSbpkc4fbTFwuwMV1/b5LmDsyycXeDDjz1Ho5Fxw4u38oXPfpP16zfygz9+FyvLOf/0gQcZmUx44olp7vmXJ9i7f5LTp7s0m/O847d+BBUqfuedH+TkiRle/dpb+OpXH+I1b7iRrVtH+fznHuCOO27iz9/1HrbtHWHT1uvdAzD9em6LRUuLiiTGU1GDMMBgCKKQl9xyCz/0Pd/Nj/7ETzM2Ns7K4gJjY+N4bNe5al7ay1jNyuoKExMTVOMy33zgAWbOnGLTlnE2b16P6O07sFLYgvtgiHSHl995G2966U1UyhFnZ2b4v97xH/nV//ROhMhRlQCjXV18ScFwaKnqnCkyBJbPfOmzXHHd9UxWS+SJa8iphCHvdqBY8eiveK7DkStyEpkbPhMKytLJaIdSYbVARAqjNbWhmDTtUqsFVGslhoerdDoNSmGVXbtHuPSyZQ4dn8HIhFtvvo6FhVVy1aG5UqGxqDl8qMWWHaMMTW3gjW//Pt79nvdRrq6yvLLIUCli/ujz/OOHPsk/sJdOVAHtQFOpNZVA0EGS2wBjnWx3T7TD3cje/SyIWcUqb13DCVfI5Vl/RQOY3tz13mGvtMIbkigIqJZLDheQ7vkJbQkDQaAt5M5gruEJCBigPYLoP/He24W7sWYTCAyx1NTjoN+UxDrDNb/a5sTsItdsqL/g/LsojECWpzz80KPsv+SV3PeNg2zdMcKnPvkwmW5x6sRx5mfnGB4bRQUhU9M1PvfJBW686RI67YDpdYqp6SpXX7uD5vIqp44tMDSW0my2SbIjTE5LGqtL7N0/zWOPLXL8xBnieIgf+onb+eaDxzlyeJZXvvpFHHziCJ//5D2s21CmVpNs3rSNPF9EBNJpt0uXFzbWgV/GSF/o4iyvsdZbbMHN997DfzpwGW99yfUoKblq3Tre/frXU376ScZ0xoZjhwAQacrGP/7v/FS7zWs//Unu/uiHuXbDBvZNTDD1t+9m/cgIIkvZ+hd/ypGjRykdPczmd/0h3/8t7uXR5WX+otvhB558GIB/fvppfuZTn2Ku3eb3f+nfcuW6dXzm7W8HoJ1l/PGH3s9n3/52wvs/xg17t/KTv/h2IqV43xvfyN5vfHDNsc0TX+Idn/jb877zm7/xxt7v7alpnvvSN1AKssSilKG52mGorPjcZz7GoWM72To1Tala48ySpl5vsG5SIqfHOHJ0Fp0rksSg8xWmp4bZvmszzz07hxWK0bFh6lsvITenWV1tcPyZo9Q7beqVaXJSsCVMEQ4Y60hKwrWrQyo/z3za0GjvjveXY2GLomlPeLLg5Mp9VagoJiLAOdR0/7+UkjiOiKMQbSyqMD4iQgaBSz8LtZaSMXiQgayBqxzFV48aUE4dqddAVvomMmlCnnTJjHVCI96INZodllYXOTI7x7D9Xygg+j+xbdg4wZve+npedNNVzMx2ueSyXdSGNrJ1x20szawyOV1i32VbiKIys7PHWFpusLzaZMvWLRx+/gTPPT/Dpi1LvOTmqymVRrnvvoPkmWDXzq18+Bv3cN31+4jjGvWhEbbv2EKtpvjCp8+wZfsk7STn+cPPEpZijNXMzjb50r88wOh4mcVmitFRrzMxeHcQl/4x3jJb38Gn0A0KVld56V+9mztlgTYJzlj49R/9aU7NN/lkogmCiE+/9ce5PwzIjOZ3fugXwBhKgeSXSopMGI4FAc/8xM9xShn2AH8OHMvhi4/PMt9aYtwuEQdOxiuMImQQYo3lN+9+G+/vNMm6KfbSa/i1V7+J0YkxSnEJi+WjBWUay0/f+jI+lOVOkeYGy6++8S0EQcQnEsE/lSbJPdpsZcC7HzzGf3nb3cTHnmbnFDwd7ib73e/gFf/tH3nbBkEnS/jxH/ou0qxD0LFkSqGNZXmlQaVe4+Fnj/Ghrz3B2HCMVFVsVGXryCa2rS8xPT5GGFVYXF1ipF4jTVKkgSsPrOP669ZTLjucaHzPDo48Okt47BTHDj7J7ukRtgzX2ZF2WaJK4GdWZHJSY33Wvz+p3Fag78USXiD8xdsO0JMeKygwgl6nH58tKKoJezqF0uXzlQqolEsooXrfLfwzyrrG9w0oqkXPSVMMLvQ+w5Alaa+WoaAN+8AMshTbbdNpt1lebRMGgSdTwczsWU7NHKIGHDp59gXn30VhBKI44q5X3QAIfvQnX0+W5dx4q0WIkCAQvJk70TYnyyy33nE1L33ZtT5XrnnJzbt509vuwAjHLKuOlPmpX/wOtxLEkutfcjnTG6qcPLHErS+7irgUkWWay6/cjYoUey/bwdHDx9mxcytxXOLs3CnKcZ2HHniCoZUQS+omvDF+RXAgoatHkK4xCYo8tczPLzA07OJ44RtBWGOwBlZaXZ556hgToyU2jdZRYYBRik5mWZxpcObkccIQwnIFGZUJ44iNk8PUKyE6z5E2o1SOyJKcsmgyqZexJkWGFaRy55F2E8rlMioMKBHTXG1SLYd0u9Btd4ijyOnUeVkqaw1ZmvpeIgYRRigTkqUZk1jy7klaiaFtJWl9nRMzyt0Sdkiu76kNbytrKpWIuVOrAHzwPe9jamyES/fvZ2zzFtqrDU48eQYpNatZm0YzJaoqtg3DpZsVzbarApQmp15TTE5DFI5RH6kSRwqdJXSNoFyOmB4d4+87JVbvu58oaNIeLhOrhB1ihYcY76XvQmloqgDTqxMRa8VJB2Nv/FT0EusCCzrvpwd9mu+8ojNBzzAU4J5EYLXu3V9rhBP9NKCEIremoDL0My8vsBWYQBRFTsuiF531y5gFBpt2yJOuq2QR/eMaoamahIlqidOrF64ghIvECCwvLvN3f/MxMt3gJbdey8EnzzA3t8TOXVuYnVtiw6YJVpe7LMyucsOLL+FrX36Mm27dw+mTXbrdFi979bUMjZQ4c3qZZ544zMTEMDq35LqL0ZKzZ8pMrauwOL/E/OwK3STnsst2cPTIGVQQcMnllyBVxuypZYaHJqkMRdzx8iv5+Efv9yquPmfrjYAQxneEwRMzLI3VJl/78oOUKhE7ga995SHGRkeo16uUyiWWVhO66RKhGqdegqFahJCCVEMlGkHJlENPPEu7eQIhBTv2bGPnFZuRQvDwY8+xtDRPELgUUBxYMilI0pzm6iq14VEASnHJK9BagqDEUH2I1eUlRkZHWF1peNzbFUIZbXosNPe7pRRBohMCpUhbHfI0QbY6DEdVqvUJNpUl+7YMc2yuzDNB7D0f0M0mB59Z4JmDhwH4yPv+hit27ODUw/ew47IrSRtzLC7MsH8oZveeCbrVKg+eWaZmJKqzyq4dOxmdqDNcH6ZcCSlVIAgCoriKMSmdVodqrUxcDhiKSnSGNzFfHmNT1qYUlgDJJE2UCMh9DwZlDE1RxsgYpV3KTwjV9wYKw4DoewPCudjCGp8iND1gsKDqFqs/eOZBwfAUnslnnSCoo6mbXm+AQEIchSBSf7y+HgS9ow3+je9EazFGOyM00PGpYC5i3HgUOiNQ0pclOA9CW82UDImV6fVPvNB2URiBbjdleXGFpZUz3P+lKoEsMxwP8dwTTxGoLnKqzF/+yfuI4i4TE9/NtdduJm0bnn7yCU6eXuTN33UHxnbAwl/8yQfZvm2Iickxlha6nJqZ5T/80vfz13/xflqdnMiEPPHUUd745js4dnSeTiL4j+98K60G/OavfohX3X0Fr7j7WjqdkIWFBmPrIj/53UNrrHZ49IEn+eKnv8bCfINtu7Zw+sRpjhw6Sau9RKPjgKnnnn2cKI4RMgCjESJAhSFLc3NMjQ1zw3XXUCpFxIFifT1gZM96Nm+c4PRCg/mFJaS0zM2tsm56hFajgbWadichiktEKiYqx+Qmp7W6ypDOiUslkB7A8rz5crVCq9Wi3U2IKzGtRou4FGOs8W2zBEGgkDKksbJC2nWMwNymZN0WCkEmLdddfwNj48N8fmyIF03XOH7VRmbve5LldTsA+NCsYPLIEYZXnXrNxqlJRocrmKTBM/d9iUxJZk7NsbTcpC4Vo6MT7BsdZSWxHD87w4GXXMnY+AhBKMizhFYjp1IbQsmcTruLEAFRrUSMA/hySsxt2se2U8vuHoqQLUHLpQJlX+MgFyFgnNCrV9pBKM/EAwfS4rIDwkmFCcCqCKG1S1HmmsC3NtfejErrm3oMgInCuJ9KgjI5SFcxaEWGMSGTw3XGh0cR8/OEJicp+jielx4EnzfEKuU6HvumqtL2RXRchyVfoZgnkKc9kpASrmGJyTW1UNNMEid4+gLbRWEEwjCkUqlSqmyjMlTj8KETPP7NR9i9ZwOtVkJlZIpavUyuE3RuOPz8HC+5+XJ2793JS19xAzNnzlKv1xgeLhNHFZ586iDXXnMt1gTEsUBEglMnTrGwOMtVl76Y/Zds5fihFrsvrbMwn6GEYnlpBRueYXZ+kjzXnDw5y5HDh9m5dwStM3RuscbSai3zuY9/iaS9SLdtOHZI024t8Mwzj5GZTi++VKEiTbsO3Q8UJs+xaZdWy9JqNNHWcMP1VzNUq6GEoBoaoppkvDqC2TKOzjWN1S7GGPIsw+oMJSyBdNryqlxBCoXONNq4SZ2nCXHs+tY5opGhUi6xOL9AvV4jCJxSbZrgVWklwnsOpUqZlaVlgkCh04w8yYhCRa06hDWGaqXM6HCFm27YRau5Ebo573rwMQBWg5DVy29nvD0PX/oE8wurlETKyNAwOvO9Fm3G6GSdoUqZsfIQmzZuoDM8wd7dm5EYjE5JtXWt6YWitdpADUtyrVm/cQNBHNHuJCx1unStJBwaJ1Ml0jyj0+1SlwFR2iSLS4DLwMlCkae3ghY8gOJXv6IXIUOhJwDecPt4X/hj+cW0+HyRIRC4OgKbO7XrTpIzu7REklrKMuLAzj287MZrGapFrveEz+uvyQ4Aa2obvGcifDajp1BVZDdVv87BIrAy6FWX9jZfadhKcjJ7kRuB8YlhvusHXk4QBeQmYXH+Ekz+cvIkpdEyDI1WueLaq1maP8vOXdu57+vPMLl+iD35FqanR3j2iQZbd1s2bR7jTW+5i0cemeDAgWuZPbvCWGeUe79xmDe+8c189Stfw5Bw9OhJ/t0vv5xPfOTrrDbmkBLmZpvIoMLMTJNc51SHKtSGYowWvbJvKaDTTglUlbgeUS4p3vY9L+dX//0v82d//t/JDSglyDtN3luqeVfb5YWVDLBCUI5icp2jc8P6devYtWsz5UqFMAxdzzosUkCaC9qdjGo15sknnyHXCVIKcm2IyjW0dQOj2+lQH6oipCDPMopy5zB0jzbLMpYWlqiUy1RrZTLXwB4p8JoIlsZqg267hZKCKI5ZXW1QK5col0sYG7JpyxcZnxhlqD5CuRRSLgXcccc13POIk4kIPvrn6GtezuKu/e47bYnZsw3ajZwokJTjCGUUygp2rRunUlZ00y7dziozc7PsGKmRpSnWFlJsOcbC8qJhbGqda8iSOObeYrNJ11qiap0sqpBmOcYahkPJuuY8h6KtgE//ex5Ar9qzmL0FN6AXk3vBUGsRRTrWuvJdbTQol1kQDptbE8fLgr1nLSowGAPrt+wmknDDlYogN9x585Xs3rXV8w/wSkVenbo40DlkIeFnu4Nr+opIwmco+mA0GBlA6Ho89qTsvNRdo9lmqdmkebG3IQvCgKGJuu8DP0S9PopUIUFQ9Fd3RRdK7EOblN37N6BzuGR0DKxl7xUwPFwjN4rXfse1vO5Nt2BYxZgIEGidEsgyt911gCyXCKsJSzEbt6wnDCVGweXXbOZnht9KuVxCSMHoeJldu3aAzZ2TaF0HismpMd76va+jm3ZQMqI+PszpBUk7WyFPU9CWd3Tm+Z3pneRpTiAgTTsEUhHWKlQiw/TEJLOzC8w8fYyl5SavuvNGNmxcx7XXX8fwyDCqVCPJA2bOLjM7M8ty29BNWiAFYalCUKliZYQ2lsWFBTaun6bb6dBut1DKZStK5SpxuYJSkrMnT7O6vMK2y/aQZppWq4vJEtJOm9WFeVqJBRsShpL6+Cjbtu1gcnKMbpozMXGA7/ie17G82CWOA7rtnDgM2DQxyfbNrmA0n32K8OPPkL/oTQDMXP0qpg5+BfQq5bSN9q2yVpZXkFIyPTTKbLfN5K4y+4brtJsd8naHJE0ol0tIqUAGhCNlhJToPCfPEpSNybVD7Y2IyMISlsTF30qwm2WeE9sBUDg0380l4anABZpfjDw/qwbANp+Q93Rf0MYgw0Jmvg/MFUpFAno1BkhFOQp47tgRXvmK29i6eydJp02lXieQIbnJQfi+BrZvk9Zsg5kK48K7QlGoL2Sr8UEIQlgnWhqWkFI64ZKe9+CsloxCAn2RYwIIZ7XTNEXJDlI6FzXLAoLAAXMCRY7CCkmuBdIIkDnGBIxNDOPVuDFGIcjQOgLrGzZKQWYMSkUEwtV351owNDIE5BgUVli27ZrCGulX1ZTA87OtLZSHNNVqjXUbJojKEXlu+MzH76HVmcEIgyXvKSGnnTYqCMi1JohL5GlC3mqSdTsszc8RRgEqDDh08hTv+cBHuGz/buYWFrnu+uvZtGU7QVxhYnyU5eVlLIY0z1BhhDKGLOkglcZaQSgtAuPkuPIUWQrBWpJOG6ylVC6zfsM0qysrdJodV7uSp9g8I2010FlCrV6l02hy9swpYqW4ct/lWHIsIdt3bWV0pMLIUJWF2SY6y2lmXcq1mImJCff8xkYwZxcQj34agMbVLyPbeRXVE48y+dinqOqc+nCd7Rs3snfLFjJhsHnOpg11dNqllbVZzTSZzhkdG8doQ6laIwwUSbeD1RakQFrDcCQpKUGuAhKpSDNDZnOQMIrpsZqc5ILyYOAgH2AQXOutuf1xiAVpEXnmPAFrUD6d2J/2XlRFiB5wiAWjUwyCg0eOkn7sC6goJFAxL9m7nqnhK13jGuU6N1mxFmDknJjdFv8qiQo8vlBcgffkvH+KEAqh3OtFiXPhLUgJpSgmqFThyEVcOyCFoF6KWWzlBHEJMOR55kg6mVf9tRmGBGEtygYIFGmmyaWB3JF5Ao1zuaTBCpfekfjijwCMjdxOVqMIHXEE5XqagBs0KkRYSywMTjxA+wVDeW8AEtPl+HMnyLqCD33gowhSTOZ61jmGCegsweiMIAwxWUapVEIIS6fZADQmD8gz527OtRXfuH+FJ596mnsf+Ca1Wp3tO/Zx3YtuQihBOY5ptX1/OSx50gWZoXNIOl2yJCVpt7A6IxAxYRgSSINJOyQmI5eKjRvWceTQIbZs3QB5SnvJSblNTE9SGx5jeXaOSAn27ruUkfFJkiyjrhStRpfmYk6prKiPRDSabYSM6OQ5u70nIOpV1HwD1Vlxz3PuBMnEFkRlFBHHdHIDWUJoK5xsN6nVaowM18mzjG6akKWpy8YLidaaLNOMlkroPCdNukgZkLRzhobqjJUjYqlYLlWZiUZpdRs4YZaQSpATmDYACon1RT6FNkARX+MRdLcNxuAeWZcgM+cBFkxCx8/vfbzH4HOrunV9Mm2ONBnGNjh17CmUgDAcYnY4oJMnDEeh0zYRDq9xTVH6ojO9zQ6eF+Q+25DlOUEgexqUPRzDU5mFChFBXwXaeFm82ugIIgxfcP5dFEbg+EyTf/Ou+4lKEZChREIoNMqGhCogUpJyKKiEikgKWlIxk3TYOzHpnl0gCAJBLAQhuJRMFLO4tEoch9TKitBqAilAhbSSjFAFVKWkFggipZFKuWo9pUDkaCtI8oxxVUHKwm20pN02ojvKxHCNL9z/ZQ4feYRcp77wyXgVYj9IjEFnOaGArJ0jAkVUqmBMjtY5SimCIAIshoDlVsZX7rkXnaZI8Skm/v7vmJicYGRyhDguE9dHCaKQMJB0Om2yzDJz8gz1apVKKWBxbokoAJtlpFhPY5VkuSE3grHRMWyW0l1dRJmEkZE6o2NjNFttRkaGuPKylzE+UqfT7jJUKZFj0KHl5Pwio0NV8tRQrpaRMqO1lHHgwF4ArhAp125eRzS9Dv7l86jFJZKxacIoJApjSpWIQLlYuJskzsU3miCMaLXaRFGAlCGlSpVqfYQ0SbEImq0WwyMl0jSlUq0ThhG1CgQ0sTLgzKarWHrmKGQ5RidYq5kSPjsgTV83cmCRHew/0FuBe4VFfcEQk2dI4ZSGnVfhGov0+UR9NSl3CIHparoixK406LbbCCmZqGfUg4gABdaiAuXamVt6hmcNaahY7v2fpshA2KIXRrFbP7xBuOakyjco7f1v3OeCagmbX+ThgArgy40mjVWJECFW57gOKrlbra0jRQRAYAUiCMFK7JETGLz2vwApbE91xeJUV90N1gRo30JMYq0hRBBlKeVcExj3gJV0hSRSBIgwY2c+y8S6LRgr0ICUluVWzj//032snj7FE/d/gXbaxNgMVbiHPpYUwhkBoy2ZtYRKoYyrXgtUgIxLZFmOMRAqQZqlvTg0jAN0mnD2zBHOzhzhiuuuodOIWVcfI81ylM7ottsYA+iMs2dOs25qBHSGzVKWGi2CMKRcLZFnhnYnp911cfWmiSrlQBAN10GFZM1V1g8NsXXzRgQQK4EqBYTCstpJyVXGylKLOHT357lnTzE1NUEcBkR+9PyH9UN0W5YvZr5OfnLSrU4ypFQeIpAJw/UyURhggdVmg1q9RlSKsEKighgpJeVqDSEV9eERyuUKYVxGhTFBWCKIy6goJIp76BitkXWcrUyipXs2oZEkvlPyGmKPBwJ7hUPQp+n3OALFvJPO9c41EkHRclEgenLja1z3gixkDVIJcmEIth7AihJTqsOLNo5y7VWXsbi0RDmeJtMu0SiV7HGX+gPGjVz3p/sOY8xAL0J3bk7puu9F9IyBJytJXAcsjCHXlkolxuj0BeffRWEENgwFvOPGUf76iQZfW9V0whJWeNqHkAijMSIgV9apvgiBMPTaRUv/BI0XWCjAHWF0jysuipiwsMLGNTQVQegINLi1wWKRJifsZEzKFOFbPktcuqYrBM/NHefY3ByLKgJjHCqbp/RbjuJYY7gHFgQOrDHWoHVOKCVJOwFrCJTrpiylRWN7jS4yr2ArraG90qBej+i0VqnIGknSJe10iOMSw8M15mZnmBqrYvKMTichSXOqtTpJN+Xo4WPo3DI6PsamiVF0d5WOgFKtSjkKMYlm++ZtEMeMjo+SZ5ak2YRyzGp7AdtN2VsLOHNmhbF6hdhKFo4vEJUiOt0u1wCfmkk42Mx4cHmFvwb08BTKCqTWVEeGkaQI5QhAeZYyPjFJfWQUGYSUSiWCMAKpXPYhLiOUJIjL1OojdJOcSq2OsJK4WqEzs0hicpQMMUIyN74TYw4jZQlhM1ZNUUqsfENS/GRxSjv9TkvQQ+j80utAaPecle5irEFqg7TWqwTZ4sh+YfIYgZ+gxkbkeUrrmjvIR9dRPfoAUbWLtjnr1m9ChYJABgRI0n6esueZuOpE68aRtRiTIYyToLdAKJyoSyAlQrh5kOP7YQqBEMa9569bGycTFwcRHd19wfl3URgBozXXbbBcvW6E9zzR4iNnDE+ugrUZRlWcmILSmMwjveRYKRFGYnHa7G4bYF0VltVbb1sozQ5WYtkiQdT3HhzMZrHCYISXEvG15SAJgChPyLSBsUns6Sqm6+JQVybqvkcKJ3gqlBefsJY8z5GBxCpFqELyLCfJukgLYRighERnXadfbx2YJZRCBQHloQrGJOSpYHVxkUq16kppc0PSSViYW3DKuF6ENE0Ssixh545tCGOIQ0m7sUCtViXPDSSaXBiuuPZFROUKOZJmamm3UjZu2s7c/AmefOgRLr/ixRy8/ymyVLMwVKZS1cRxjZnZnCR39/YTx1ZQlTLxlTfA5w5hjTNopXKJUqVGpRQgdEKkBOPjEZVKxanvKEWt7qrbwlKZ+sgo87NzjE9OMrVuHaurTcrlCkIIQhkRxSHNDBJAW42wkm5YwiQZ1hgCNHF/PUcXY0BaKAA8X8XphontZweKhrLePRc67bntReWg9JkFIQrXvN+CzoJrBoIgDyQ5km7mmn8YTy7KraYYSX0wchAQlBQaA0W3K2Osp6ZblAcHtXbZAdcR25+HFKig3w3L9UtwpcdBGPiU4oW3i8II6DTl2NNHKdcDvnvvOHfuLPEvh7p84HjIyXZOSoY1IVpZjBKItIQlRysLtmBuDfCw/Tz/FvwItwm4kAS429yqHqjQ4T4eZJESZJ5jTA6EmGgYkZ/EyBBp80KA19FJrUFal8ZxEz0kzzOSVhNhLCqKUWGMRJDpHGsN1aE6SmhWlpYcBdgatFSUq0O00y5W5+huBxPHaAlJmtBpt5idnWH//r3kVpJmyySdDuVSQJ40sHlO3tJEYeB6KAjF8bOz3HTL7ZSHJ1haWaFSKaPCiOHRGo3WKvf+y0Ocev4I1XKADUYpl8e5/bbraC7m5GRs2DZNGDoXU9ZHmJs9TXXeq9nmBsIQYwQ7d1+CEhmxMuRJmzxtY6ym1WrR7SaMjo1TqVbZsGkTwsKGzZsYm5gkSTOiqEQUhbTabSbHh4ikYjnxQquBe9pGKLCSUIXsHJUMe42DHItRyhOBihhe9SS6/SPuT0JRSNG7sCHPNcpapNFFv+o+SKgHiET+s8JanzUUWKGwvXZmhWvvRWKFRQ+GIucOSCtAOIlzoQKE6rfdK67FTfSiWtIglStnlp7Q4vApR0rKshQhy66S8gW2i8IILHcS7nvim1SVZHx8lM2bpvm+3ev5wb0h7SRnLqvz/ErC/SsRXz6V8Cw5mYHAuhvac/EGHAH300/wwRzQAOp6rpWwRUxmbc9j0NrTNH3PQYTTfLNpB5tqBBoRhMioDskKQue9wxcrB1iXLkxShDaYPEHnGSbtIFQIYeSOLxTtdpvx0Sqlckynk6JKMSNjo3Q7ba8LmBKXQirVEiIqE8clksayq1mXgjiM6HbbVKIIjKa1soISgsAzzDSGuFbn5jtvZseO3bTamVOolQqlQrrdFKlytmzdiMoWaTYD7nzjXTz66DFOzi2xa/tGDj07Qyc5xPS6cQDSbkYooH3wIQDW1xSnujk615w5M8O+PdsoR5LFuYSh4XEq5RJBoEjTBBUEjIzUSTttyuUKY+MTvUEcx2WSJGFycgIVh+jccnKhicZ4mTRDmmuWG03Gm02Gq6MMrzYB0BiUKoIz6bUH+65zf7wUC8cAXmCNE/CwhZCIKFA2lzHwcXmx9Z6z0W7SKuWQfysoFmDtm5taiWsnJ9SABzswaKU/D6MwwmWw+vQF70MU3+fVhKzRhFGMNKbXD8JYQ57lCBUSxiXfav3C20VhBOZtmb+an2bLwtNMZ08zUavwkquvY9uWDZCmjIyPcvtElavjDq9bF/Pew20+MGexJmCN2OOFtgulgnoW3PbfKWK04j1jscrHe7LQ2XOKscpkkGuszrC4TrvUx7FNiW2vgm5j89yTWEInu911GICxOcpo1+rauHSlQSNl4AaYhpXFRUQUIsox63fvYcO2HcR5TppntNttZBxjjCYUhlAZhmtlWs02jz38TTZt3UolVsRKsLyw5KjEUYiQASaz7Ni2mSuuvtbH2xnaGuJSCSkESWbJtEaZiNGpdZx89iCnjh7kG1/6LDff8XJWV9qkueTqG/bxxc/cy3LbhUHdTocwiEAoaDdYH6bMdqEkDIFSPPPkQV5y0/VcuXkzpTgkjAKwhuXFOUqhJA4iEIJ6vU6eZ2TdLuXyEFJKSuVybwK2Ox3OrDZ8vz1JLhW63eX02bOMjcSQlYg8t9fhRM5oW2QPRe8tGNAPDWXh9+PxI4PQuQ8LRd9OCEtujRf+PLfVnesS4Nx91yMAqbAm6zXMFX7i2l6/isHNDhgnZ6iklFgpCIKAMAh6KeLe/8KPYa+X4EIs0ectZDkqjJ33Iy/yFKGWAc9PX8Hx0V2sP/sU2w7fy+mTH2NyZIxQa7omY9fUZrYfuILW/Dw/8OKr+Ze5EmdU7rIEa1b+wa0H7a71+Ac9hN57g26E6cV8gfIxlhRI3yjEZJljY/mml8JajAgQlWHQGrIlRz+NhSu/tQbyDCFcgwyjFMoqtMmRQNXkBFISb92OzlPy0KCqVepBmRvufAX5ygr5ygL43gmVcg1tnLSWybWn2xqWFxYxec6VVx5w7nanSRQGrtM2gi3bd3DJ5ZczOjGOMZJOJ3WFR7hutrMLy4yOVjEZRKWIjJSDzz7K7HKbq6+9mhNHmkyMlRkqTXL9Dft591+/H4DKqKLTrBFHEpZnCVREoBOG82USkzA9PcajD3+TaiXmwGX72LRlIyvLSygJWZoQSMH41DRCSpIkoVobwlpDt5tRrlZd7YQ1Tr1YFCCcQCjJZOsE9VJM3kxRwQKqvMOPKYlFuZVXqH78PzgOitRvMSY8V1+Y3GWocJ8twEWnIeDcbim8FHlBQbY4MdBC2QdvfAqgrzAcAF4S7PyBWYw/P3q9kTFeS8DgsSZvBCz4ikdJqv3fsp9ZsMZglfdaguiFpt/FYQTAYoQhC2JObbme1ZGN7Dn0FdJ8lYpNqCWWZw8/zwMPPsCmXbsZ2ruRUG0gzEt01QUAjwuF+GtWAOg/gEGYxvYyC8VuBlys6D/i1IUcCGiN7pV3un0kNnJabsZIyAwqsAQSuuQoY5BhQCAFUuckUrCpUuLq6RFGR9dhXvNm7r3/q8zMnkJYyeTURqan1vPQwaeoZW0mxqfRpkFunLuadzNMlpJ1E3LtOgWXwoCk02F+bhZrcqQIyLKMDRu2cNmVV2FlSLPVRciAMPQrjJK02wlh6ND6THZprSasNFZIMs3eS3dQG6oQhimLCy2M1IyMDbPzumvgH2HD5mvI8hSbh3D6IIfbhoyc0aFhouYC1hg2b9kMeULa7TJ3doZyKaDRalCrVphcN42x0G63CIIIk2uyLGN0fMKRXwwImWGIuGy6zqfPLqCDgJH5o1zePMzESMhwvUp9uMRm48KxQIVo36armMTnDoVzym28jbBYm2ON60DddxxdpaCkmKb2gsV/tvcFBqwhkEEPPzhv/3PH5ZoT6Y9LW4id+kHYa4veS4cbhzvhW+Z5I6RtjggkQRgQl//3tyH737wJhC2hZYa1gqXhTTx0+Xcw3FiknneI87PsnHmK6VLA9k1TmK6hmQYYmSMKT6DIBJx7Uy/02jnvF3ZbUExmX6AhfHmp/7ws+r8NdJpBCh+3WUfI0L7BqTGEGNYN1whyy5KGLNVII4miMmZIIbuGiXIJjOLE0iIcPkyeCZI0RWSCobERjjx3kMPffIx9W9fTipapD9d8zbulubzMysoyq6srLC83SNOE0fFhlpeXWFpcJo4UAkGr1WFsYoLUGFcim6SUyxFBIJEKcp3TWG1RrUSk3TZaW9I0o9FYxWSGpx97nNM33sj+y7aAMDz71Ckmx+vMHDwCwCUvu41ON+HkqQV4ABa7Bo3g4Ik5DmwbZ9/unRw5+jx5t8XocBmThyzNL5N0O1x26aXkBqzNqdVqCCQzp0+xYeMWJ37i1ZmMAbKcbZWUoUjQyjpcMvM0ddulHNcJg4xhGXCg68BJY3ECo76H4JrwnzVk4YGh4CeqtaDzvrHwIG+PeThwrP4QLoQ+iuyDVyvWGViNkg5cHhjyfY904Bj9XwcLnAYWot4J4MFM7b7T1xlIXypdiJGGnlNQrl/kGoPusbQRnqElrCWXkrnRSRalhXwrR8cPcNvcE9y4ucw/dsZpSMgCes0x8Yo/YD01s1DzpX/TBj0A0f9baov1+nLS2l66VhapI+k/LFynFysdyoy2CBVhZeBa3JsMkbl8rBYJpQz2NJtkyiKylFIUkVpYTFa5Zmg9T+ZzqBzaqeSxhXk2zJ8lrlSQ2hLIENFJuOeLH6M1P8NJoYnDmOGJKkPjozRXGqwur9DtdBkbG0N6tDgMA06dOuOAQCVpNZosLS/z+IMPEFVrjE6sc7Xm7RZSltF56uyWzjDaIGwZoy3G5j31prOnDvPf/9vv813f94MIJcmyFkEQ8MQTXwDgU3/6R+RKku+7zV27lIhcMVaPeeihb7KycJLx8WGGhiqEkSIIFFObN7O6uEir1UYGEdVa2dFwTc7U9BS1oZpXb3KCpVYEWJuweUiyvhxwYn6Fcmueo4vLXL1tHdUoJAwV19acJ2CV7KeFL7iJHhOvCAX8qwhtnTEvsD9fiNT72Rtb/R6FwhqksC6coDiWJYpCzqx0aepZLtm5zncnKsYhazEq+t/nhEoCpMGTg4oMg/VD0YcveeYKiIRjSMqigEg4dWKkdOls+cIL4UVhBAQCZXyzBjswZzUoKTAix8ga35i8mmfnljlTqSE1xEiwqp/j9U1CHZ+o/1CLyMzBA24VtYDMDbFSbK3H7B+PqJZheWkRaVNaSc7GTGGsQUmQuFSdGkzXqAAdlhBBGQmYtIlIncSWEAE5ikmVYoXBxopZawmE4NJylaeXznLbZJWjzYSciJsnx3ng+GlG9+3DWkVYisnTFBtBPDnCfKPFpm5CliQszC8SS1dzPz4xTnWo2ksJLS0sE/rKO6sFgdWMdLtkB59mdmocdcC5i2EYoYRTIe50uiRZjgqHKJXKVMohy1IgZAkZBD222s133MzRE6f4+3/4EJ3Vk5yZmwFgdNs0rdo0S5e9GL74Z1htiExG3Sbs3rGextIcxuSUNsTey8hptJpUqhWM0ZSiECUVeZbS7XYZHhuj2W5SLtdd3YcKkFjyUDJSqbC72uH5lSqnO4rK/BItbZiOqqzkcN8TB3kNgIocLtDH+wZcdQbCBHpGoNft19chmUKj0HcyMr7JSOFV9AwArty81wRXuI7VIOgYTZZkpCpxc13K3mJ1nodanNDAYqas4wlgDI2VFTfKc9fKFCmRJkPL0K34ytGajfcajDaYMCKoDDF/8uQLzr+LwghsGCrz47fsBaxjPPnXrXUujrIaQ4oVAYEI/GosQeQo4fv++lJRoJfvFYCSgevoqvqulxSCSBoqgWB8qMx4RWCyFrlOaC4oOkmbmdOnOXXSGdms06bTCIkqVcfRLoAZIR3jMKhisy62s4LRifsOVXFAkrIMKYVODNNRTMtktIzh0rEaz7c12yfHmVtqccS0GTMxEiddFkURMlaURofI05DuwgpdnZOkKaFSJFlGrTbUc1XDMKDVbDqhSylJjSHUimolZjIuEUqwjzzOyeUVGrsvpTY2TqtWo1ytkeYZYRhh8pxWwzX/LMUhk1PTyDAGa6iUx9m2bSvV4WHiD3+BpDIDsTO+qlQh2nYJRsW9ZxqgKaUt2qJFuRyjhPD9CASVSgWsJs9TtC0hlCM3dTstwJInCZXaiMuJ9wA7gem0kVJxYMTwsZkqCxv3UT/5IIdOLRIawUJiOdJ09z9EoCW4ULOfCAB6s7fn3BevF/iO1WDytaunpd/iHr+AFwQ/URxJuHDRg3dGSCqhYc/GUYJyjDG+mE2uOYFBkMKfm1u2rE9caJ2T6wxM7oDjNFmDXfVwgh5e4MDEXGuMFLTaXZYWLnKNwfGq4geuHyMIQnpgiC1cH4sWBpuAlRkycKrASguskmicGo1zmTyYZ105JdaBKsY4BF1K115MG0GW5ehUo2ROZizt1NLtZKRkdDpNdN5EyxyTaY4fPsHZYJZLrr7E1RgInP6+EQgRQKmKXZ2BvIuVJdApUoVIUupBxIZSyFHTQWeGTbUSJzuakSikaxVKRwxvqrI6s8S4hFajxURthCCO0dqggpA0T4hqFZIsRQKVOGZhdpYk6SBkSLtpWF1ZRghBqVSi3e5QrVUYrpUZQ7Lp8g0EpYjkxGGWnn+aYyuLVDdtZ2rjZqojo8SVCrVymTgMSPOc1kqHWikiKpUIoxKdVpOkY7BaMjE2wVAc0+36WnagnbYpNeYJR4t+dwYpNLXAQmapVGpIacmyjCRJmZ+fp1oKkCanVIpdilFIlDCU4hgpIM9SEAF4yXARh9TqQwRK8qKNq5SeXGbp0uswpsmOo5/nK8+vsHfXpZweHXWnEEr6PQTwlcSD2QB6rr0ndfQXYqOdtoUIKVJ1jsEHWEvg+QcGVwMghcRkLgWMVL7ZiWts2rUZRsSMjW8gSduu9NhnlfqzHvqENz/zfbs4ay1Wa7RvItO1BmTWwwoKTkvRfswJozoj0O12QAoOHT1ONfpfaD4ihNgMvAeY9mf9l9baPxRCjAEfALYBR4G3WGuXhPPD/xB4FdAGvt9a+/C3+o65uUX+6i/+wdEbUf66nL9lUo2RCXkmwDjyjESghKWT5+gkI8sySqUyiKKFlIvNrLVkaYrJtW8oKlEFycNqYiWpVkrsvWQXu/ZspVLRdAWUxusY3eXkbIPQWs7OLTAxPkGv1z0O9nFtvrTTErAGIUKEikE3yK0lEJbdm8YJV5fZm5dZHlK0MsUrtlb4h0Oz3LlhivHtU4jRzdw8sswzmyZ55sQitdFJuo0G9foIwkAQRuSpmzCRUpw6doyZmTNIC1E0RKPRIctSyqUKaZKQZglWxphul7HSKCPrNhMLzfLhx1FBG1bmmK1WWK5UaHY7TE1MsOBTjTIqE4Qhx08e5bHHHqJcrpClOWm+yOrKEps2radernLqbMcxAwEZKCIyMlNQc9yAzpM29Xqdaq3C6EiNSrnK0FAdyDE6Jy5FVGpD1GtDpEmHOKqCNXRaDSpBCSkDAuW49koocp0TxiG7t41z23SHT82ndIY3oW2FWqxZWtEcX3+Zfz4e/jP9iR5ZSyp8yy58K7JiIrrkDlJYrMkogCElhNMTEIUNcW6+sY40po3FkqOEJBcu1ersjRu/IXU63RY661CKAscjFDjuSQ+ttN6D8GXPxvrvCwkD4engKUbk1OoTaDHrQUqD9diF1pq023UJbqOxNqCbpqQy4OCzR1k3NvL/3ggAOfAL1tqHhRBDwENCiM8B3w98wVr734QQvwz8MvBLwCtxLcl3AzcAf+Z/vuB2NoXfm1EOVBWeFw3ewgVYKmBBW8es66GqwqnQWGuQufR5XEEhJulauxfpPgtaIIx74NJqV+O+kDF99BDXPLZE1SzRWTxLs9FltdNlamqSDRs1O/btZN30OlQQ9tlbwomX0G1isoRQgY1KmKgK6bwrQjEh2gZMh/Bwq83+oXXU44xnDPzEFXs4MjKObDWZDCTx7Tdw4OHHONJYQg3FtFttjLEEQpELRRCHLK+sUkJx+uQpWq0GURgCDsUOVECe56RZQikIMe0WY0nEjr2XUqkpKkePUm0vMVcKEFmH1TOnWQ1ihsYmWQwFI0KAmSSQioWFszz52c+xeOwI9akpRkqCdjcl1xmlUDFSnyLQhtSz87AQq75IhkFSWWmwpV5DxAFRWAJigqCGzkNqQzVE1kYIS7erCaQ7dmO1Q31oCKViAiEJcISsdpKS65zWSsbZhQWeeOKbHDYTiHCCpDLE14N1iOmd6KlR5qvr/MAuBEWLBwaOYm76WMA5W494lue9cFIAwlgX7/ewJed2O8zATepAKFKEk2zz2oZOZNZLlvmBY41LHfaqVoTvW+H7yyshkEqS5pnzBExGo9FG2JAzZ1ps3TKGJHRes5VOMQlnVApVoSKrIKxhaW6O4Tgi6rWxPn/713QlPgOc8b83hBBPAxuBu4Hb/G5/C3wJZwTuBt5j3ey7VwgxIoRY749zwc2okNbwOv+HB/R6rpvpIbPWuERt4eaJHtmjaA5W/Cb6AE7vMP3A0OIkxihphLUsa8vBpsGaCFnagIkssU24JVzCKEN9ZJT68DAUeWLf+NHKDNNpIULJcCWiqSskygldSiIyOpjlZWQZXjQ9wVltmRiuMKEijqqILTbjUDMhPXuUrWmXhxtNzNICsupWRIlCRTGyk2CVYmFphVoYOZDNswZ17jwEY6GbdgkDRSdLKS3M8//j7r9jbUvT9D7s96W11o4n33xvpa7QXZ2q00xP8iSSI9K2RMM0aUEkQQmkaciWZTgAImDYgCDCpm0ahmHToEFblkDJTEOTFoZpOHmm2dPd06G6uqor3qqb7z15pxW+4D/eb+1zbnVVc2iKQsELuFXn7HP2Pnuvtb73e9/nfZ7ndTHy8GsNl8oC5Re0haHrLDPf0C0XHN+5zXhzi/FoA994Xnv1e8znc/Y2p4Rbt9kuHdev73B4N/DgoKAoSwqTePrZZ/nH//CEOJcg0K6W+Pkc1TtxKliEmtfe+j7Pffx5rly9xGQ6ZTyeMBoNGZSO9974LoWF8bBgOC5Yzg3LNvLGm3e49/ABd+884s6tfe4+OqVOgbZZsmoiqYp0Jyse/egfgo9to6sN7vz0n6LQmkhNiMKM6yyy4yuVAePEplYcEkEV+HWH6FxaDcSkoetQSZ9rKZLvLLVOv896jvJ4SonNYcXM5PkAeYqRNkZ2ZsTc9bHgo7Lt2fomzeUsCWWk7RxjoqjEheqX/8nv8t/6YxtY24OYObhohbYaV5izAajaQEjs377PqHT47r8kFaFS6kngJeCrwMVzC/s+Ui6ABIhb5552Oz/2oUEA1JnAIZtCrM9xLw/OK1rl9og8pNapXczlwxkTi3OQcP6mfzjlYJHyzHdAJU3UQhPVGnxyqJzmaSUDNqP35wZXWqIppBbzDafHh3g3RVkBxwQ01Oxc3GE8O0JtXODpgePWo0doP+fS0xPevf0ew2rC9++f8vb373JaWlbzU5qDEboakdBsXbpCfXMOStFm6qxWwo0XGXJguVjQ+shwOEKHhF4tUdFyOITdsmWxt8FBU3JyXBMmQ965+5CHcc7pwTHFnTsEVVAMBkw2Nrlx+QL18SGHi1MYFEwnQ2a7N7iwuQFJYvTTz1xhsUBaacDi9BS3taJX56UEs3nDV3/zK3z329/id65cYDicUBYDxuMRk9GI04NDUvKgHV3wLBY1R4eHHB4dMF8tKccTfBvYvHCZ1hjGzrKsYVoUtKVC33qH9MRLBJmcQkotUGB6KrjSwhZEZWvuRJXEJSpodU5GfO7oMYLQkIjo2CsLlezo5+7LlKLU7UomEaUQWXQNtfGCCxDz2u6NSOO61382Ebm/NXugMGVymrT0xFY8grZYl/gzf/bfoCzK9QwKsTqXzoFRPQFSrb0IbeFwoxEPb92kKg0fdvy+g4BSagz8HeDfTymdntkzQUopKfVD8o0Pfr0/B/w5AKZ7Zyck2fddG2nT9IhqSr07fB+8zzvE9JBtXJ98GUQJ6/HvfbBQ8ropBJLJirNkIEBUCdO3i7zQLWOQqB5SJEWP0g5MQhUD0vE+wVbEcrQGy1LpYNnx2tGKS1dv8OWf+aN0MVH96t/n5dMZWycL9gclx8enbGnPPz064I8/fYN/Mtvk9GSFNwXLxYqrTz/Dw9tv46MnKljVqzVtwVjZbboQGE/GpJAI8wU3xmPi9AIPH73Hl0ZTnnzpM5y+eZdOz9n83BcZfPVb3HnlZWzqOPr+mzw8POITn/08mwPLSLe89+5NUhtpB5HBYEIYjnjpCz/Knfdu88QTl3jh49fwjVi8gZzyNN3G55tcMt8OrwMn8znz12uUQsxCtVBzZSGI5wIaQkyi2EQTokaVI5JfkHSicCW2sqgg7baRUhSLRzzoWrpigtYNozDjGgUP8hyykLzcG6qX+xpuI1RiYhSb83P8PzKGgAIdGhIBsHmDiZh+zgCsM4KQR46REtoYOq+J/QalkrhDe4+1hsVsjtsQws660OgDQQLpS+p+bSD5bkSbSIwFiZLC9ePLIjF0EiB8ANVgVZJzq0Staoyh7lp2r+2x/94bGHvWuXn/8cPYFOtDKeWQAPDXU0q/mB9+oJS6nH9+GXiYH78DXD/39Gv5sceOlNJfTSl9IaX0BYYb+cSyXsRn/7JktI+S60fO9Vlz+4aUkDlvej1FF20yEmvyx7XyddSkqGVHj8ICVDFhrOpDNT5B0HIxxb8kYlAMDVgttZ+6cAW19zRx8zqqqFCuyG+pBGd4YaPAzmvq116hvn2Xq5/7HD9/8SKvbF9lK1icb9GrxL/1xCV+tUn84c9/lp+/comClpNH+2xtbFK4ASokYtvR1Q3j0UQA5NDleGlo25YqdHxyd5fnP/95ntqe8NTGLr9x+4C7X/kaR/6U6BLm7Vs0Oxs8f2mXrcmAU2Wwx3O+9Y2vo7/2Vaa33yXeu4c1iso4urbFFwUjI1nX3dsHbG5aqs0ba4r01vVnOZ48SVQuX9uWWA1QScxCotboYkhCBrq2oSOl7PykNFqXOCPuQdYVYBTWiBWXbwPCvFMMK0tMYMsKUw1QfplJQYagJ9w3llWQcsy5Et2DZ0oymIgSnQUQ1Rm21DMBhS3o0W0DyeSwoMQaLAeUnjBGimgVsxuUBAoV5H4zMUIykGIeXxaZHR7S1fXaBl0WlvxHGH+IaC3X8ymb5xCygM0oUgf9ktWqw/gZenWKnd9FLY9RgDGCjSUSvvXMlw3HVvPMl370Q9f3PzcIZLT/rwGvppT+8rkf/X3gT+ev/zTw9849/qeUHD8KnPwwPKA/1gsbzp0k9fi/x34/p/d9UF2/YWTmU6YT/wBjeB0dzv0g67CTykIM1Vs8sy4X1qkd4IwWXwPriK4kDDdJgwkUFanvPhiN1gPGV65RDkvUjafYrAbo4xXmqQv8N567SnPxacrJEFzk5f2aP/Gjn+PKJ57huY8/xYWQaNsFoe0Yb21Lm6xpmK8WhNhx7epllDIYpSmcQdUet6rZ95727gOqaoONK1e5Vmzwt16/x6tvHeCXiYcOJvWSu7M5Gse14QQ13eCydnz25G2athWBlILtsqDxmrSxxepUxEimVJgQ+dLPfZ5nPvspAOLFF1lNr0I2GSEk9GhAGo3AGFmMhcEMh2BdtnjLILjSmUCTsM5hi1KCOIKKN00NKVIv51ROdt3Od6TYoUOLzuKpmR6wbyZ0RoJwq8y5krL/4gygW/+ffI3PfR+8mHEYrdBG/r0/0VVKCf9E9Ir5Fkq5zleAjDFLQYbBXLxyBVuWwog9N6gWeLx92f/TIl5zKFFNpry5KVBKzERV7CjiCu1XmNhlsVtuWQYxsdk/PuLdBw9J4/EHLTvg91cO/DjwJ4GXlVLfyo/9BeB/DfxNpdS/A7wL/Hfyz34JaQ++ibQI/8zv4298wGqFD+P9p8cupDoLGn1UTYFSRZp+x1f98IY+Wpy/oAqVjBBEFFn+mdav3eMPkI0llaJWmsZaCEZagmYmQiJbkPJ4KeUU0Rvufu8d3Miy4zre9Y6pG7F38Tpf/eq3+KnPfJE3Nra488arPLEVOHn0iIHVLE5O0aEltjX7x8dMNre59f3vsuE0YdFwenTE4eExddNhreby9pTUtExtxdgZ7KjkmYvXOGgWsLPDaH+fo4N9Ol1QLJY0XcPT0wl35zO869goBky95+ntkm9WQ8oEOGhWc5bBsDveZXdryqvffY0nnrlK07TceOFTvOwr+Ge/zsH2E6QEhiafUwtmBBvbcNAAHlSimkyoF+J/l8tsVBbYdCHStB22KCTDQsq5rmtJydO2NV3XUFUFPkRi25C8hxjy/ZBAeeqMKbnkJLVP/fI/t/D67tK5jSDlLBKVSN7LraCRFqGWrlLv7GOUqAhj7jwolavNNTIPJE9MIQc0jY9Q5OcBUhL1G1lKP6hozLtbDFm6bBTG6HVZvLm5xfUnrnNyfEqMAWMLkjJrZ6kYE+PplNPVirYLPLr/kA87fj/dgd967Gw9fvzcB/x+Av7df97r/sCh1v/pX+js/z9ArzwXBM6fSIUgwd7zdJF4yyca7Nn1Pv8669n0nKG5GczpyRrnKaf50uUaUZNsSSIQrINiJK/V1ai8EBQlqMi1QcMoet756lcx0wu8M9nA/IOvMP3yZ3j47rvsmg4+9SLNK98m7Q44uH+H2+/ep5ufUmE5fu8ek60xxaLlghswmhoehcgyKQZlhTUdm1bhjOdoNWfPtNT1JjF0uEULT9zgc3t7vHzzLWbHp0xOjzlymp2RZWtjgzcOZmwWii2jSaMpdSgIXUtpNKEccKAdT06mXLq0w6O7+xw9OmJSFmxcvc6j91YAeDRKWTkXyOKJlOitS6RHd0m5n20GJW6Q6LoWazQ+CO7iO5ni6zsB1QT7AeMcoWtIUVydlqslo2pACpFuVRN9R98BUFFovTaXJJ0TFL+3/qLvBrxv8Z+/n7J6BBUEU+pvBwGSxTkoxd7M9kyDqBWolHBG5RZ2yvJy8S3s23Z92ZqCpO194vT44u/fo7gjeQRfSCkIzpDv+el0g6eefJJ3bt5k/9EBZeFEQKT1mtQUY8RZy87uHnfvncfqHz8+EoxB4GxzVh/w2Ho1Ks7GN507YYq1xlO0/wOwC1IoyDAwj9UM5wNCIk+nkZp3fa/0N0uKZ6YQSp2JRLQMfMBVpKITH4EY1pbjqaxQMXLIgFIr/slb+3TqIT92ccI3Q+Iz33iZwTPXOFaB5Stf4/bI8bn7j6ivXODZ7SnlN2/yFROYHz3AVSW67ZgMaj7+pS+w/+pdTgrNw+WCi94xPzxhMJ3yk7u77G9oJkfHnDxvaQYbXLr5Hq9vVwx0ZK8KvD2a8kkf+N1777KzucmTmyUvP5zxIxcTh4OLhNBQWktaJpR2nDKmchWXLu9hqGialhDEZi3klqDPngs9JyOAmKlMxHnIKHG6ISqcq4hFSfQeXVhUSDnVTRAioevosy5txaZbxYhG4euGFsEAmiRZgDZGdBJaQdT4PPchZkA5xpADS/qBRfa4cEehuogxHppllqPI+Dh5P5KWS/fIENHiXJS7RlobvPEkzHpakVYCQiYSRSVTqJXSKGvF//D8saYe928rkYKMY7PGiuFoFsqJl6Dj8OCULgZ8VIQYxcXamnWw08rwC7/wCwwnE/xqxq//1m9/wML7KAWBHzj6lO3895K26dwWIp6BNY9dV5V4o3Z40lmw+MBcpk8Rz/9CfiEtrSXpGp0ZTIo1uck5oEHZgmQLKCQz6F8m2hJ0R9N0LNWSZyeOO3PNdw9O+PT16/zKfuBnHh2wqI84KjU/duUyp04zLYakZcP3hjVbB4l9dUI5fsTHhkOK0YD2/iPUEBaLJU9Gz8bTT7BZ1xyeLjkajLhaK+64hvHBPtXJkjdMzdYbp7wxm1MvV/zIpcToU5/gxwt4a/8up6rkhWnBM/aIB3uXSLdnmGZOihCLkloNOfIrhqMhVQXjyQTlnNhl995Za+372fXSKZK6gEqRkBKEQLtaMJhO0MMx86MDTOEEeNGgrVoLZVS2yLJKQ0iEpqV0JU0jvgmmsBjjADGFNQZQUXr/+T31HnxKPDfO1dvnLnPsiUO562Q0GEVsYyYCSSkiGYUCJY5IVjtKV+K9/MxqgyYxUCUnyhJVJPqEDpBCxHsBI0MvJe7nIazvzfVud66yzd4AOftUuTTAGVJK+JhwxYgLlwbs7kT0cLgmDkn2o2jajjvv3cEWjkH54Uv9IxwEOKv3z9fm+TqWztIG0a2vj3wzajydSEhYj6H+gSwg8fgPzv3Ns/ph7fra4wFaqfWFQRnZZVwJySNgkLyMNhblBlwYJ3bqyINGs7c9ZR4qbt074cduXOTrtx5yIbUkV/Br3/g+L338Gr918w3a+YImaZq2g+ICB7fexC9njJPjVnfMICnMrKa6tMtUl5TjAc/t7fFwcUi9TGzqIYvTJaNUc0FFTqPnye2SO65Abe2yRccbnSKUU4btnGKouDgqeXO8RXj0Tg58Gj0cU2vHg/kCXQyYbsFy1aC1ZrWqs417f+7PncKMwtM2AvhGse72YYXe2BBkX5Ft2cUjT2vh2kuvXHZPY0RI44PYjq/qOs8XjBhr8wagIXaUOkpesuabmHO04HP3Un8DncsllVIkDYOTW2zUjxhWC+L1a3Sho5pOsUUp/P0i0TUdw3KAxVAUFqfFechaja879oaGQTplHxkqozK5LUaIwYskYJ2FPnbS3rfnqRxwIMSOGDq6doUrhmhgNl9xf/8IbEInxbSUWYRnWatmuVjw3ts36UJLUX7kJ6NdrgAAc81JREFUnYXI1+a8gyuPnZR07r9KKbzvZFqAOtfrzdE+JfFtT6r3IHx/FOh/Nz32cJ9Q9A/FlESOmU+sRqyllFZn8uVowTpIpRR7/eZYFoQQeWVR8bxe8tRTN7jXwfbhfW5vTajefpfdy1scBs3equaosHzj5ducdi13l3Oene6hq5LNEha3a4xVXJ5scLRYsegC1y/uojam6LZm79IVWhN5oavhxpSh2cJM93jznbc4fe/7bFzdAG/40QsV7d4l3nr9TYqdbY7eOqZsNFYtsA4aDPHhIYsI3ahk4+IVEomDowW37z7kpRc/xnLeCLdCWVno9Kcxrm9qoawGEVnlNFzFSFIGoxXGVmKI2nUY64Sm6yxy8hRg1t0CbYzsoErlXrzH5PRYDEQDWiWskq5+zEHA6IKzcH5+jvAaKcx5oiYqyT7Sd76Bmr/HMrUobXBGU69WjK3l0t4uSjuUUljriOSBMkrjnKPxDTO1YuJP2Hztd6hMRd0EqCSgGmvpumZ9r6V1QOrxrfxtf0vmdrTC5yDQYtcThoRJGGLC5FFrWluUsjjrxIwlC5V6MNP+kEbgRyYIKNI6/T4DSlgvKnUugopW7dyHOh9RUx4l0iM6KRsqpHOvew5jOPfENZNLpYjMtZWJRZI09DVbwitNsk7qfwtEA9GhTIFy+ffsEFPAMyPNxYVldTxnf37MVw4X/NQly1diyxe3B7y0uc2bm9t8+Tvf5tdeeRddFvz0x57nwc4OLx7VHCxP6S5tccVdxn36OZ578x6NsjwaBi4+OuL+UMOdu1wo4OHYcvWde+z+gS+gNwYsv/89fnG24PN3ExeefIH9aYH+1ndZXdxiefMm9dGcO13Hv31DYYcVs6MFqWmZaVDlgG60S90EUlvz6muvsz0oKGxBqRXv3H6Ysx9kyIvRZ+WBQmYo6ISK2VpLyQCZlECbAjeaUh88QDslE3asRqd+5FdCp0jhnIz3itIWtK6g6zqstBXQWqTXCUPrazaC5ijf0kqDSXF9L6gUSZxhPvJnAkYZJJ+0lPWc8cig4kAAuJTwMdI2HUeLlhg7mZUYgrAElRDIVErsbk5xVpOMRoWA6RqG3kMXaSMQAl2I6CgeGWdgND3yuI5P9KCkSnTNCuIEnQRrsSGf56yO1SH7GsaAcQaSjK9XBJKX8Xja6B/KBfjoBIGUMhPPrOtwYB3Dz3UBzz3pAwv9s+c+lm598O8+jgvI7yUlbaxezpzoR1pn2zEAbVkPrLdicZSSFVwAiNaSSs1ysMXuhqfUMzbDkmtTzZ0HD/jp7Sk333yLt9I7fO7pJ/iH79zj6sjw1FPPML94mSfuPOLdQcF2sYMtE0fFiGfvHnD74ohRa9lb7JM+/gwv3n3Ia4/ucXpxyhdXK+4MVkxf/j3eXS7xF8b8G+ULvLpYkFYnuIcnvGUUn249f+fOIy5sTnhqoyCmfR6UVzl5eMioUByvWjYHA04iBB9JxvM7r77DRqno5h1PPvs0s6ZGZz+/dbBdd3QgGEOy1bnrC5BvXK0ox1MWD+9CKEU3T0Rpl2/2lpCs2KBnV1/fthjr6JL08UOIKFugkyIosZ+PpsZkyH1oEk6LxbooU8/wgLR+PxqvvPAW2hXT2DAZDvAhifdBElZhGzXj6QZnWgQ5fIosl0uGZcF0XFFYR9O0aBsp65amWaKdzEuIMeC0EvA4SDaT1hnBufxzXbZonJF/SkknoZ+OhFJYk7teMRGizxWOdCPI96nvOnxTo1Sk/ag7CwHEnJ6rXBYAa6Rdjr5Oz8cP4RVoLRiCz2nk+Z89jgj3L9Vf2MeDRkQm6fS5Wu/7Zq0Rt5HUR2ULJkBy693QGkVtRvzFwy1uxIpdteCy3WbHtTx1qUKHFT9eVNiuY/b2a/zpK5t0R0ek45ss5vdIswXDG0+hjxuaumZ327N8uM8T3QUwBSeriL55k+82Lc/fuMrD/WO+pgIvbRV849bbXP3EE0y9ZT6CH3nqBXwbOe7mxJsPefnoAc9d2WNed8zqhqsFPLRTmvsPUUZTo2m04XDeZDR7xWGAX/qd3+OL167w+sE2N0+OzgCt9P46Kkpm4Cp6RVvKLMwYREZcOIsbDuhUi9YOfelpuoc3IURMQnreKWGNpQ3i/mtcgbEGZwvmbSJVVW7JlqyiZYFjamUgitfQREhaSzJpekFQOlcKajARHQPlzVcYD5DBqE7jSZhoMFg2p9s88/zzdH2pF2SD6HygbTuMThA6jG5xWoNO2NJyNFsQ8/AatKD8PQh53rWIjJs8FqVQrFrPKiZQRohUWTF7fk0opfLgEY21Vu7XnEl4H4hBDFOP64YPOz4yQUBFBO0/vyufPz4oE3j8Fc6Q+fPB430qsQ86eu+CtS9hf7P0P48x88cNxmiKwqG0kbag7nuTMhUmaTml3jp08DwYjdhvKxKb6G6F6TzmcMagg6H3TGkYq8To0TFXTGRnOcPpQ3a0Y/DW9xkaKAeW4uCIUA2ZHd5luDvAKs/DwxnP7u3QnD7Epo6Tcsjh3SOKrR3eefchO4s51XMvcO/N77Bz6RmuPv8c977xMoqSdnVKkzQPD08pdjQPzZiD2U1OvCK4AdZUHPuIcpEitiziJm2RWDnFN75/m0ctAogCIvI6d2Gkr4Uph+sGbcqZQAgB37UURYkdbtHO76EvPIn+hT+F+tv/F5gfkahlzSYwzuLnK9q6RbuCmMREJpQVFCUXlOYwKFqtscEyCaJsbPSQGPOiWV/Kcyi8TnlqkCF1p2zdf5tiXBKTRsVEMOIClDq4vHOBz7zwPCGICCjFiM6bjLKWtmu59d671H6WZyQmSt/BdETsO0kqoa1MFOpHpq8xgJ4+qSVa6PzzaAqCrUAbfBcwSRHDOQar1tl/Mbcw9VmrNgZP23Y0rWBnR43nw46PRhBISM9XmV6MevY4/OAO/lgW8P6ooPgXKR3O2oMJ0roZs/6hyuWAOBRJS8ko4QlAFLah0YBkBirl6ssaIhFUScJDivgUIGiULVh4+bwpalKI6DbiksfSwGpBmToqFSm1ojSa0hmGRUHhO3beMVwejnl2FCnuzVmmgpRgO9QMKsMgrlidLjmpa+yrrzJWLc3DY2ZvvUGgY6vzvJUczeqUp0uLGg54qAYsVOLpvQs8V0x5syxkvHmCpXIyE9pYfvW9fRbFlG44XePronrTa4xAIqmGJz+B+voYddoSEE2+j2KRlrTBVg59UqBGW6TtJ4nbl1Cnj9C6IkXpkZdVxfHRIaqCuqtRwbL0DenCLnEwYN97mUgEdCpyP09GbqKQvwTmEfPYdO6e0FkBqEJkfLrP5sDjQ8SniEmyk7YEtC65euk6l7ameJ/WJWaK8RwRKHFweMDJ/oKgBKEPyVBOJ8QgMl+VNFizpqhLC1RmKpJboopstEs2PNG5/ag0FIXwDqQfyngkRi3OJDwG5xxJS1tRxNOJpQ/MmpYayyydlWbvPz4aQYAkCg/3/nZf/7M++r1vgkx/fGi9Dz/Ye/mAHykgqfclGxJMYozrt9I/HhGbcbQBkwQYTOHc4Aky51QCRdL5DrROLMqtjKqKJKEoh0BUmiYpmmSghEV9hPZtbqMnUmyJqhGAx8DOacd//zOXeObiDt965w5/881DDmLgczdu4E7vo1THxdGEXXvM9ckAxgPUcc1zgy3unD7iRae5Q6JkwGxjE600P3H9eWYq8BtvvU148klGOjE3kVYNScaiFRx3AWxN4szHPsUuA/s9/JRIoYOd6/DZn4Xf/EXh+CMOuDEEkWWXDoUjDMYyV/Lyx1DvfA2dJnQ6EmLElaUAdCGioscpTQwF6ZMvoZKi6/0ngKQ8PZI8LLLfv2KtTegDvtJ5UcYWE2suHb5FoTqWecagz0a1KiWGxZSnn7pKVRR4dbabxhgxVkRpzho2RlPevXePEGWYbBciuJIwEA5BMprYBUnd86Y2LSpWdWRFIume3qQJuS1tlMIpjdJZym4EmI5ZtWito3AJoyzOOZx1Ge9WGGPQxlJNptRNxHzUg4DqudhKUPn3909VOrNa7kc0PX68Dy+A8/yh84/+4HPUue/T+35Vnc0cECaipFuiZszchTUJJb+vdWfDgAqIy5GX929EtYhxMoUm9lJaK/qG/rOZUkavL/dRtNlDX95vTBodC067lr/7cMjWz/9Z/tN/+r9gEQqSSiw3pjxcLDjcn5MOaga6IO1do7h+gzIEimVLNdzExBY9adgoO/5xu4MpFb/TJO6rguc/+QyvnwSM1aJVj4qUWoglk7DEU9LEuM4EpDUqtat8n1DJkuo56fmfgle+inp0SwJgjBIwvUc5gx0M6YqCFBPquc/Bb/99mS4UQo6bFqzG+5YyDVGlha2rpKeehc7nRo9kazp06Ci5ZGn1WVdIy+fo3XvyUkIZuH7/HTaWx5yEht5fQioXxbAyVG7I9WvbFFpj1dlyiTGtr79Vid2NMTEoQg89KZlYtfCBVd3y8PYdLu5dyBODBKw8XTWEpEjaCMPyPPkqwSAFSiIqG4U0saPKZq5N17FYrfA+4ZOmGk9lg1C9dDpRNzWndUOTCorRv5yA6F/9Id7Kj7Vv5HEBTWTww7lfP7/m+wt7TnkoNZUMrUzrJ/5g2XCGyH7A++lbgkoIQ73pqQCGMtaqn0/Y/1Oc87rPNFYZW6OkVIA1kSNlDAGdSCEDRPZMBq3dHrEoiPOH6K5eq+Xko7YEpZjHku1nn2YRdmjD66BgebokUdIhraHZ3lXMU59krktp12lZsDqBXgSuTBPPb2/xnUcNX7NDtIfqxFOUFbOkCDgSktEYIq3XKCJWebp80+oUJBvI8+5UTGKGaQrUyJI+819D/crfoPfESykRU0Q3CTcZsvJ5iMzlZ0if+1nCt39dZLUk2c0GA5RSBB8pqwI2NjHBEGKXvSSFK6D7eQFAyEBb6jsX78Oako5sze9z7fhN7qcFDkun4to3EK2x1rC7uc3utKRZRYK2+V4AtKTtcgkDNy5tE2MUP4EUxHtQBZK2vLV/yI8++ySutOt7QNtMQw7iD4CXobepdyIGpk4xwkPwmDxRuecTiPmpeBr0o89jTGtcACRQ+aSIyuCKDycL/b78BP6rOGTwY3EG5OR/Ok93FavgTIxAMBRNerxsyMdAiZ2UIqFUPPv5+W5M+uAAIGQNI77zKbu3nruBrNa0tkB1NbrzqHMX5twX8lqZabgeU61Nfhv5s2gtQKI1uVRwgoobjXcFjLbQ04tQTIjaZbccm9VikcOTO/zmV/4hxh7k3UWhkmc0LFFVib76LOmJFwl6ICi5NUQMSWmCinRl4v4scdIkTlcalQzRFby78GwQ2OpdlXLXBhKD2OBUZJJWWNWLpTxFqHH5XGuC7MhRMpu0c4NUjtYtMemxywBPtKWMAZtAWUv67E9jJttyroIMHykyJbuqhkTvscWIFFtSkLtBa2kvJz3ILEQ4UUNSzqxUWiNw0NfbIeDe+T5Hhw+Iq46kkoyHI+FUotCJpknsXhixWKxEM9E1xOBlorSXLgfZ2ntQGK7sbgEJoy2ls3lhBt47PGYWctYYgzgVJ1Fey4CxfI/1mUu+Xzvv87j7QNu16Jhb1jEQghevB9/RebkPnXOkFOX8Eum6jtAFfNeJG/KHHB+NTCCvzLTWfa63VskCFGKs0CP4MaK0wjpL23rWbR9ApchV2/B2UxLMOZCw/zvvrxzW35/PDM5GQMWYB05kFDelRNQKWiEsp+qsPFlnBshnWJcw/evlGKFMXvRJnI0ee5NRbgqUJiqLHmyCK1HLU9LiCFtoQhtIvqNtFjy4f5PCQa0MGk3rA9VwjHny4/jpE7KwUktC0kgxb9GQDIoAKrGxdYWfujbh9ldeYU6i3b7A/cUxP/niBr91qHnYicGGjh1DVeONFqQ7SfpvtMd6R90TdfLnTskTlYVL10hXn0Td/DaJKO7PqkWbgqAiqouEzsPAoi8/SXryJeK7X6XrGiaTCdVwSHNU08XI0Fa0W9vEzoO2KAImRQKakVWkPPdh6Yrs6NuXa3JN5EoJHfnwwQO6g0coJ8E9KiWAr5K6PQbFm++8zX/6t2ckXWCUZTCoMJl8Y7WhsE7KFuto64bTwwPZpX0nkmfJ/vmN9pv88T/849g+g4iKoNXZ1GOVvTEz81IBhI62XdHFFq3FNiz4zEOJQfgSJjtfKzEoXd9GIVHXNW3bcLSYsV1NP3T1fSSCQAKJ1jr7tp1r66TYCYGor79jzIFATBOAcxhBwpAYhyU6ucwW608unC30DwAKz9ch6exBibxiKR7zYMjWWOLGBgSP9h1h7VKjz4FjZ+9pHRv6xa61gINrmmx+POayoG+3aSelh3GYYgS2IigP6gQVW7rQoZxlPBkxX85I5ZilGjIcbKOGFxB8BZIe9lT0fG7zzhMhmoqjesyf/SO/wG987yGvnR4Qidwpxjy6P+Nnn77G//vmilVqMMZgaIgpcDs6IUwBMRU0boiJ8v2IFStlCEpMQNRgk3TtOdStlzkr3WSoakgdrJbQzFF6i6Qrit0nsW/8Or4r6TK1OCjLIPvqu+FQrN61IQaZ7KwSrIxn0mUqs3ZnGVyS63GmI4mo0EJqxSY8erqM9scQcikhXaB377zL/tEBHUAMvdMMRmt8iOs9K4REZaEcD9YdJa0UMUrwPzkd0XZ1rvcVxqg1ACheBipveCrjBomhAhUavG8orJiNkpBWZUqEEAhBsuje/MYosTohIlKWzjNwA+Yn8w9dfx+RckC2Y5W56P21U/nOFbLJ+d9FavPHyEQACqs0PhrRXof3L/YPwAc+sLFw1gqCrG5LfXqvqROoYKQroE0GBc/GofXvT2ozuQsfTz76zoKRrKDfqXpjibUFVb8raKJypOkF0vgS7DwjyPt4j0XtufL0xwnXP018+gs0G9dwhSW02fDS5AHZOQ1ROZCSZHBKp1r+6Xe/y6/99tv8zCe/DM1AdsNywLdWiUlo+PKVMVYXKByj0LJrG2Ia4XscUFmCgiuIv8BPqbfZSk0eFpsgBfR0m6gtqROMJyqFtRZnIixP0YePpBS0mm52n04Zog+0bctwMMKWFU4l7MiyqRXEldCVAZ80OsJG7PiUOQSgdb2PxJkpDJmNj0o45RnTon1AR+n/++BJKWK1wijw0ZN0ICSPVi3KRApn2N7cpKoqXOFwhcWVhqLU2MqhjNiPKZWyz6DOKveePq3BaiIerUIetS5WZT3wlaKUs1WM6K5lfnrCcj4TvCv7Beh+rkbXrTdDrTUHhwc8erQPKLqQiK6AakDzQ+YyfkSCAKQktlVrIA0FUbTlGtPbDcpF7QH4DLYRk7QRM13ykR6IhFWbM0CvP3qedkb/5bF+51XnZKcGr2Rn7kUaMUGIHmwpF9IogjKSluq8sPXZaybk40BvrBnP/rbUBcIxsDq72uRg0Jc3GYiU3EUJHmAKqMaknSfgyrPst5Ynrl+FjQtQDUhGfP/Uap79DRypn+WgElEhDjgp5vJLc8KS/+zXf5lPP3ONT1/+FApHVDCzQ371+/d5bhB4cTJEJcUqFahuJV76OQZHXaJSxGWiThE62iDqOhVB+xVp74YwOVPE48UUlSB1PC36G78BXUfqIqk9lgCmYLFYoLSiSIaoEg2OR25MYRwj5ShpeVHP+K+XD/k3R3fZUku5lLku1jHmIaFGJOhGAmv15qtcLeHy5W12dnbY2d5ke3OT6WhMVVWUZUVVjqnsgOlwxHQwZWuwwagcEnygKkqGgwGDomTgSipXUNoSiwBzVlmKZNCpgTbiDDhr1xmjyYanawwsgkkKpwKVMdjgKboFQcPq9CHz4wPhEsWEMSUxKIwyaAq0djgrWM9oOObCxT2aeoFvVvigadvE3s6FD117H4lyAIAUhDrMeXAEtLNndd16umrOHLRmPbk9p9wNmoedll0nj4he/8L69Xsg4AxL+IG3k85etO8QxHWNb/LdLeKR1KO6xmYDC854Ai5mBEiQfzKtNKVsdJHFILlyOasR4fH31uMhyE6RjMOnxKOjE7743JNodUBMkSYE7r73Hslto8abMivxfKlz9mLr00JS3G4e8jf+3q/xR3/sJ7n/G+/y0B+RNLyrd3nv3fv8sc+9xP/ze3d5lCZ4u42ig3Q2zQnrOW0kk2sitLogIXiOBsLGJVIxRXcHpADJSt2dUGirCI9eh0fvwuVnMbM5RiucdYQYaJqWYjChrmeYSUVTjoh2RBuWXFcdHy9m7KQVp6HiraXwFzQKQmI9p4KEztVXVJrm0X3uPzpgNK2I0WOzX6MtCgZWsrOiKLl+4wZbW1uSBYaARq3Vg7awxJjtv5TitG558OgBPnS5aWVIBqyyLEPHq2/cYbJ5ic1Cs99GInnasDrLdH3UVKlGqRptFBjYHY9Q81NIQpFORGzpUMZgrEI7GTqilcIU0hlLMTIsSwalZekVd2+/96FL7yMRBNb3euY80/dqc99d/Nr7/TBbief6/LFyP79QUBaxeOqAvLDWPW1Jza0SUkZMHxwIlBL2lTEmj8iW99GXBGtOgMo4gBYFF9noEised+IaK7p5OJea9u9pLYX+AJzifSfo/WO0UZp53UGCHR0YDRIHiyV7ly9xWjs6VwBa2HLnlGqPxUHyR8DwtYPX+MTRU/zU9R/hF9/5TVJc0Q08r4aKzVde5gs7l/jFNxNzVRGjAidBQKfEbtexsvL9TFVEYwVAVYmQEqmoUDc+Sfzur6CiPhNjaY1WCRNWdK/+Lurqx/FhwSCJY5A2Bt82jKcbtMsTTFGBc2gSF1LHDVVzt1Nc1x3/uL7Iyp8AUBj5kCmS6bgyIDQmhTYJVx9TOIdJEs8lfY/4KMKbAJzOG07qm6Dfk7I0qbW1qDNSoxtjsVrLYBHdp/agtCFSUxYlioa2DtzbP2K6c006Jxnj6jUVIlVPKGVoI1hbUdsG30SOjufo8RA/W1BNHSBEJVcW/Ztfl88quw9FEssuMPcw2rnI2FbcffeDnYU+GuVAjpoyRLTv6cazAPC+NdoTd9Z19Nqk8VzNn3KTsOf2w1lZkKRGe9+rnr2dXj2YAZ6zt5m/V5qElpHZxkpdb7KvQLYcxxTSN9cFylgw+uy99AFLnSsB0nkc4kPO0bq0Ufk8aNoI01HBf/NLL7HyFfPtHeJkQlkKaq3yJB75xH3gUefOm9T0SsGijPx/vv5V/vBPXOHFyRWUVRBL3mst96Li4dvfYEhA6RJHQOV2XJVWOJaQNgA41WMKm2R4R5DZkoQa9amfQJlhBlqD5GghYlMiGYv7/u+i7nwf3bV4hBcRg6drO1yhGI0GpOEmajDF+IaLaoUK0q673RnuqAEhSuD3fcsN1uVinz3qk2OGywOgk8GjKXtHZNCvd5WOscGnjmQU2imMUyQT8SbQqoamW1DXJ5zODjg+ecRsfkpKskCTSiI0C4mubul84mRxRA3UaHEGTrnMU/29LEP3vHLEkBiHFpVgurfLdGeHd95+m5P9fZL3VGVBNSgZT0aMx+M8A1FhtSWGRBcSbdIMNnZpfO56fMjx0QgCAEqGhqoewOKsdH58gfZU3vN1/vmFxVlwkPz6B/5UArokmvD1i6r3/4ZC9bbVcGY6qfoBlRLJQ/93tVCBsTkIaBGLKCuceykVcqB4rP5X6935LKs5W6Bn+IFe/0zlGwYMQWlefuMuv/nOezxIDp0cq9MjLm5NUVGhPIIJ9JgEfUl1Xu8gTLcUPPeaY/6vf/uf8K9/8Qu4+iKFsujRkG8vDAM3wA4UNmiGJglWA3hleeAnNFo++2lQtEn871XMZC/fkXZ20UMJFDH7MSbEdivEhnByjPnOP8V1C4KK+Nz/1hr8aoWtStrxJp2yxNjyhh4x1AHr4XaaQPRYL0FAx54nkvKGIaVhsgr36C42iNlproYISURBAsWkbMhhMvlGvg+thxDRSTQV2gjXPyoJOkLWEWo0MeK7gPedEIdS4PB0QZc66m6F0lDoyNgqSmCkNTp5hH4uMSvVSxLymqvVguc+/ixbeztZYg1VUVA6gytET6ASuKJAGZmi7AqhG9fzJccH/xJuw/9VHRrEQ42+Vs7p72Nhqk+d3vfYD9tBeV+w6J9y/vsPOnKqFvPO4L2XXUSJBfXZX++zDQuhO8METG4BxgjJ9Zu9vJ8Ys39C3yKURS5WVEHuqsdKhL70UGcBJO/syRgeHZ8SKiesMp2YVhscdkKLTSrhgkeHmM0+A6qXr6Y8hYmMWkdRSb47u8fi4B4/99RTfPf+m2wWhvuHrxC2LcFratXhQylUV8CnEpwmauGn31QXOBuWmdbdHpRCV0PiMmXpbH8tEgQNaYn63lcIKlGYgn6kVte1dKsVcTSh3dgm6YQPFYnEN/0EbywaTUgGovAEfJ4HAPk+yuk8QcGGI0QozrlS9W29HluSc5JIeFQSDMA4ec/9W09ZVXiWWSZ8FNxAaTmzPiEWdVrx8OCE6d0HPFm+wKFWnJiOGFdc1ANmoaFQitX6ljCELuB0QewC7XLFfHZKpSwpRSaDip3pFOsSXWTteKWy/wLeU2hFKkq2L29z+FEPAglpwWL0OXouZ6nvh5XMjwFn6oN/51/kOB8kMrW1R+tDCJgQMFpnvwL5fXF1scJxiOeClivOuhj0hqcZ1+hZQzHJ83RvStLrB1h3BtZHb2nWtyR7iaoxNN4zTNLam9YzhlXgrfmKaVwx8jOmLFGDAdpYDInSaJx2uDLbc/sWjca4ksnWiBeff4Kb3/86z166wuevPUm9POLvf/cW3XiXGEbYpLEqEsxq/d6itqgssIk6ZmJUD6RqyTgwdP1nigEVe69AaaP5kGhP54yHYzrVgcpdlxBo2sRooimHG3RonrKnhGiZaUurLKtohYGYywGUQREzHpQwWk6/TommPhEmqFKEJOPH03nzTwUKGeBRJCfKTy1CoRjTWhCWMmjce/sppc+G5qaUcYY+0UtMiyFbG1OMVoSlZxwtcxU5ii3LGJgol7O0SKE02nuU1URjGYzGuCqrK9sV01HJ5nSExlN3UWTPCJuQBMl7htWAk1v32dwbce3yDV7/1gff9h+JIABS30bdkadI5vWvPnhxfxCYl859ca699qHHh/28z5RRpCwdFScbMcOkv7n7Nub5utMY1iIQ49Y1fApeFrtxeafpA1s8+xfza/xAEpBfv09plYxV663Xo8oDKVbHbB3P2PAnHM88F+KAsfJQbTGzE9rkiF4WlF52gtzrIJ/VOjBaMrH7J3zlrd/mE1e3CIvEX/3a9+nKFjXc41K0uLCiiJ4yelzuDsiuWaB6KfHa/70/z1k/nxTKWXq9e4phvZMGggw4VT67/QxkB82LteuWhKbgKQ65z2XKsORSGfheu8EiKryKoBzK5/uHIGxMYxFtnvy8S57B/oEkapyVeIID9MFaHjdKYbUGB9XA0px6yrIQz788zuwx/CjrQs4gKOH19/flKq3wbcexUI+IBLa0pU6w0opllJmHkUQTI1ZBVTrKwZCExbgSX9eo0DIcFEw3Jhgd0ItaCGv9bZPb6Eklmqbm3q33qKrJhy6Fj0wQSERUUJCjpwp9D1Wspdeht99qM/Nq7cjSL8aUx0GHnHJj3rfYz329tpzKr631evElJQwyq0uUSsTQklJFSOBUbv/FTMvKJYAIlvpcUToUIhoXJ2IdHckolE6kVKOtJfkIVhF9DnZaUlfVv5eEdCiUJhrxPDTKE6nQwGR1yKefe467t28TqLl25UmuX3uGJ597lkFVEXykbjq0cbSNp+06fIxErejawNHRMW/ffZub9+/gj+cUuuLnfvZHOLp7F4aWdmtCdA5tR0R/k1GcA4mhb7io5GZW0YBu1jhNUuINmPL17M+t6iy6GuLpiN4SQsL03QqVZOEmCEZTONmJ+7kPbRc4OTng6VvvMN27jrMzbkTHTQNVaHiQNCvV0WZMYCt2PKKTwADCPyiXFEFRPnqIVTIPAXr45azrFHIJuLO5wWe/8Gn0xwp2L43Yf/0BX/nlt0kdpGRRpoU8c6CXSQcfMa5Xh4q2P6WIDwmvEvPlgmNl6GzHwCYumsDrqmKw1LR6TmobKhOJqWDYrkgq0S4X+FBn/AmWPqCNoypKYmwFu0pSEshkpAZbaBrfsbm1TWdLyqLk5EPW3kcmCJDXtPrAHfo8cJfOfZ9yqik3i4A/mhhkO1c5m0jvfy04e37/zfmMIwljSxu1ZmYZk2e/p4RNPps4ip68nyXXa9cBucOSpPw6WhJGkPqgUbGUkiCcoIyWG0rFdYmBQVx0yWUJEZX56jokYtOyOUxcGxU8eeMiT17b4vnr11g18LBtuTlr+N43XpbnJElF++ebLJJRKghwiMKrmukI7HRM5YYsFwciVonSnYkZXGvrDhNFGHOtmDHJQKBWc0glUffba4RQY1xJSAoVHSYmoMEbh/IF2gRSV9NpIWGpTjIDVVgx0Ww6Ir3TcxTDmZM5L3/vK2xtbPGx5z7BLHRcUYcsUkVgxB07QOddFmNxqsysTEWyRoakzmao+hhcn02d6/6khLUyTGRvb5cLe3ucHswZM+T17z7Cnxzy6S/u8sZv36JRkTaQZ2Cc3VvGiBS+v5dLZ8VNiUQboeg6dieBuhPfw1cWkekg0LqG68bxQAWsLUhtpOhmpLajWylMDNSnM4ZlwcbGJkU1oBoMKIsRPmlOli3OFrKPRUNE0XoHKhDmxxzvH33o0vvIBIHeFvoHyvrzGmIFZ9TB/ED/pJyGqQTESKFlKEUdIZ3f8d9/rB86l4MrMnItVFLIu3GQul3HAMGjtH3c5KRP5R97/URSBh2VyG2DZ5Ra9jYU7z2EoAziaCclUVIaFZ1EdyWTbl3SjDEMUktl4MaTezx1dYeqlKGo949a3tk/4t3TFfudonFDfA4oah3gEqQAXQvRo5SAWhojYCQ7aBypU7x2q+PHdwtan9tmiK1VTG3Okz2F1ywKOV8qCP25b0JpFEk5EgplEkq1mJDQwWOqgjQciB9e19KcHEqm1fncX9eEtiOGhhiFxiuuzgkdDU2zovnl/4LT4yM+f2UXkmbcBAoXWIQR3b13AVi++U3s3bewgA2B1HX42JBWHWo1g/L8fSQlwfmvN6cbKG2pY2S4jBzsz5kdHvOTH7/IvSuJB1+7y+a1JwgxyEyBGDGmV43KjmZMHm6XIs4YVIST2ZLr2wlfJkILU6NYYdFN5PrFwMMDx6LzTJLn6sTiRiNM5VDOoZTGFSVN3VKWFePJGKKnKArUqhMuS4pURcWqTsxSQTPbR9VLJlevsviQSWT/3CCglLoO/CfAxXzW/mpK6f+olPpfAX8WeJR/9S+klH4pP+c/AP4dxCX530sp/aN/3t95rKZP5x44377rcYJ10QW94k6ed/a10VK3x/hBC79HpvuWUJ49h5xE6A1PIQQxBLHGZJGGxroSbfvBJ+nsvSfWenZ8QAcPvoXVfXZWJ6iTIwrg0taQHR1p5g956soNXnzyeZZ1w/HJkYB0MSLk2khsFdubu2xsDjFqwXRgiUbz1r1D3nkYudtEZhG6WIGpxOtUVpN0D/JnksEeoJR4IcTsFJx6arUyeDQYzQqDNY6m6yGSAHSgO0xT07zxLb6TIlUGAvU3/xFWKcgKvuJX/3NUaAkqgRYSjNECzoX37uJtQbOcEbtagr8x8p69p7KOyc4ui/lKgi4ygkx1LT5GEhGvEunObd5pT3HNjGkxQHvP0wUcJaEuH3zzt6XfrrR4K2hNaQ2qNJSjMUqV9KPlYkwZZ1Xrx7S1IkCLkY7Acr5gsWx5640HXP2Rj3H7tX0s0GX+gdxOcl6dMYQoLcPGe8FsUgKVMPMFTzZLXilKVl3HuGv5RDnjn+kRNw+WTILHaMPF5oRruuEBmmgKtCsYDDaIGqBjOh4RuwZnDUcnszXOopKm8zWvv3GXeycN7sJlwTTih/MEfj+ZgAf+Jyml31NKTYBvKKX+Sf7Z/yGl9L87/8tKqU8AfwJ4EbgC/LJS6rnUT6r4kEPWczxrsSktOxdnIHOP+QkukFs6UeWKIIGKgjQnRRsSIaSzACHbe/5rsrupfuyV6WfVIb+XeQgyFiv0704QYA1OBXQIeEueVstZJyEHhMIkNppjmvvvYQ/u86UXn+DGp27wvbfeZv/gAYtywgtP7aC14u/91jdAa7rgMQQqpbm6M+X5p69w+dIey2UNynDvqOZ3bx9y97jmOBjasgJdiYmKjXn+ngGy6hJYt0+VFi1BkkEg/VuVfn3AOH3uHCmG2tIk6aPr2TEX53e4/sST7G5H6tt3Odi4xDKWwG/D3g20cTKe7Tu/yuTZzxPsgGAMwYo/Qlk5bD1jfvP/Trc8wiRFMZkSOvHYC7EjoahXK9TRARFNOZoyHE8xxjA7PqY+OmA4GGKfe4nqD/63MVsXUSGw0rCcnzIPgeZ0Br/3VZo/+OeFbegcyTmwFlVYzP67pFd+gw0r9mMxM0hTysM+ldTVRVniozhBxDaiPZjY8sar3+O55z/P3h98geINT3swJwSfs60ceHtsJApbstCW4D2WSGj3+Xj7Kl/avsYtn9jQJ+wNNc8XA+xqTh0TXoErPBcGY07LEoultJnebEpQCucsZeEonKKwpUzGspbDgxNe/s6b/Mqvf4M2aYpqgFJG/C0/5Pj9TCW+B9zLX8+UUq8CV3/IU/514P+VUmqAd5RSbwJfAr7yQ/4KooqOpL47kHdwEwQ00saI/ZjKC1fnKB6yzVXsF0AmW5DTMjKtUvXa7SQ/1Cq7uJBT5fxWVN8AkJ0zhnMsskxcMSZlgE9SX5dKvNOEdoE2crJH8zs8wy2uPDPg+uc/x5PXn+TeezV7bsBo4zl2p9vE1GKqKXcnr1GXns4qNlTipz51iadvbPP6m2/y1Ve+y7uHLUfRMPcRr0uiLklVr1NIBJUzoB47DQmdrDjjpig7MUH0DyqidMega4laFJE6QeoCFBEVDSpoVKxZLQMqBnTXMPQdA6uJRcfl4YDkPPWFjwHQPvUSrdLYzJacP/FJOtvbdCUoCkb1EbNf/8eoNMNVQ6DCjcdwekRpoe1iFh1FmsUCZSxdF6iXK/YuXsIYzfbV6xQxcfzoEcPTA7YGLUeLhqNVTeqgXXl8ttauju+TVjXUHl17TEoo26DVikGIoD1Kyaiws/h/toDJqbXKGn3tNJWzVOUmO3aLw81jVoMWaxwxJoYDK0Bovp9U3qgUeXZmlkFXrmAyKlCHj7jsO4wztA08bRpCBb6IlNZgbIlzFbcHFbPTBU3TYJ1MO1JaeCuxidTdkg6PMpIB/Md/9x/xyrfepmFOUIbx6gYbV66hisGHrr5/IUxAKfUk8BLwVeDHgf+BUupPAV9HsoUjJED8s3NPu80PDxr5kCmzvalDykBZ7F1tVMAlMX9oSFhZyQQjizPkWkypmNd53u1zqpb675NYViklem4B8M6mDqeY1nruFCMq+8r14KDKdN+krCgEU+QT2x0PFooHbU0KNQALH3l42GEa0N0J3fI1tncv8cnPbbOaLakXczY2hjjXcmXnEm27IJSW/aMjvnfzJn/3K99gv45ipFlaWVBmCKrXnEu7MCEBU1nJWnQS5x5lIkkJMagfYKkS6K6homGjOYWqYB4tJimsVRi9FIYglq4bsjqdwcMjkg54FsQUWK1mbE0tJ2+/xWRxKpfud/4WKnl8XkCrf/h/ZmCAGDG6IETN8mQfNT/BlCMGubNSL0/ZvHCJg0cPaFc1hoBzTliXPcjoO2aHh0w3NmhCoPWBnbJh9Q/+OuOnLjIxFlsZdNJYrSmsPO9PbB3jLpc4W1LZiRhxGssrt+/xO6/NsRRyjZMAeFGoqLIoigLvxb+wpxxZa5mpksXBEXYZeXHnIl/3DwmdLPiubTHaobA5K5XsU2mND0FoHsZgbSF6A6NxSTKEtvPU2RI8pUgL+O4ErQLz+QJXOKw11MsFRVFi0FijsDZQGof1no7IP/zaWzxkg+HHn8PMpEQwRBaL03WA/qDj9x0ElFJj4O8A/35K6VQp9VeA/xDZQ/9D4H8P/Nv/Aq/354A/B8B0Ny/eKPVnyi5DJDTSWzcaTAgUrqILLTujEatVw9Jo4Wq3LTG2GK2JSWez6Si7nNK5ns81f077FUlMdhLZ045cL8tFE9mtpNXee5wr826rSVqMIaNRvHbU0gWIPuAykOjLCe9tXOfu6RHqnZt8clvxB392k83LWyz9km9/5/s89/wNPvbcE7z8xsucPNzn3qzj9f0lvhySrAENGo2qBTBMpobOi++CUXJSUDnNF8qpShHVedndYpReeejQsSXFREngU09cYGvUoFQgKmnBKqVwWtN1mlhO+eTzP84TswWr2/+Am69/l8Wg5MFmRQTGgyHLdsb0VLKeK0dvYo2hqIQx+Llhg3UFZVny7nt3OJ610vWpEio6UJ7F/JSuTbjRBuV4TPQNtCusNYQE1WhEWTqcthhTyG6rNd5KBkZoaTrFFz/7CQaDkbjrWkfbyPCRpz/2wrq6Swq01SRd0Ny9Dzag8MSUS8VegIP48mmVfSpTXHeHQuidfCre+OYtBrsDOJRBdZFISOJWEFPCKDLvQK27RhEJNnXTcjKbMXKFbEIhUddNNgyRVC4mGcNmtMwg0EZmanZtC6S8ISkODg+5dGEXbR0Hp0tee/c+rUoMnWNvY4+jrsN3Dd1ylsvaDz5+X0FAKeWQAPDXU0q/CJBSenDu5/834L/I394Brp97+rX82GNHSumvAn8VoJxsp+tf+1vUbcNwOAENy86jjcUVQ4GlgmdQOWarRqyWR2OaRc2VyRifYNW02NgxHQ0IaFw1IHYdu9tbDIcDZssFx6cz7GSbe0tPNJZOKaLOhp8pS1t9IMaOwilKV1N0exlUi1mKYCkXj6huvYEPDWme8DQUJFgeYzLgVv7eLxF8Q2w6dLfi7QeOd57aoxqOICZ885BXvnVK17TM5ytm7ZKt8YDNW/fwJ/OclmpQ0qHoS5SYeesxZn+67FmfUKAt0XekIEPZe91MX+kYY1F4Np6YMC1keEYXE/NVRwgRZ0uaCKUdYNWCgen4+Z/+cb6+OaIaWL7/vW9z+eIlkjboCM1SbqwvfvnLFMZinYPXX+Mzn3mJsixxVvPEE0/wu1/7Bvfu79MuG2IXsNZQlEN0IfqK0kZapH5uuxZbDNje2mC1mJOSZzAY0XQBQkAR8b5Da8sbN2/z4qeeR2mHMwbqmjPQ2KOsXetDDNB0DavFCqcUCQsIW1CzrqbWJaZWikAebJuJR0J5Uhw+PCE+mmG0ISafM1DJPvvXEAKVTB2KGW8wRHz0jAuDKyzLVY21jtG416gIPtG1LSklXKFBg4+y8QwGI4wtMKrm6PCE+/cPeHB0ynEdePuVt1mdzigHY37muW0+8/wJ//Gv3OTNI4+tBpTDM4v49x+/n+6AAv4a8GpK6S+fe/xyxgsA/ijw3fz13wf+M6XUX0aAwWeB3/2hf2M1Q337H1CpSEziGVgEfW5AaaLUGkxiMylcnldouigJfxQ3GJXEvDIo6JDa/54SxWtCiylISmyFiDE2m4SIq4s4wEhpoKwmUBFe+Dj1i39MjDZJhNBhNAwevsHkl/4TVJrTGYM1gaqquLy7yWRrDwD9zrfQSt6fGYzY2L3My9/5Ls8+8zHqxSHDsmQ63eTbv/dNtGrY3dvgaH+GiTVWdazdlJJCx0hRVcQkHnNKyWchj9jSShSNG5s7+LalqRdYJ1OStLFZYQYYQ2hrDpaek5Xw2X2MRJyM/AoaVxSsmo6j/Tu0XaAoLQPVsjnc4IknnuXdmzcZz1bUqxWbF0dy66aC1se143iIsGo6mk4zGm3wcz/7c7z96rd59+ZNZm1ksLEnnUrrMMMBvmsJTcPp/pLReMTly1d47bXXiSFQDQY4V4g0V8n1iz7Qxo69nW22NzcprMFnF6neGmyxXBBCkPTZWOpVIACrVY01NgPMIgYz2aMixITvPNONDWkJZ5chnensQuiMhODRJpviKrX2qSE9Pu4cIHgvZSTgY+Lh0RGPHg2ZTDeYTieZNSlOT52PNF1HYS113aJ8kL+NRvcqWwIJxfdefZvX3nyXvd1tDg6PifWcJzc1n9zx/Ft/+CW2L+3x9ddPOV3c4ejkkGb+4Uv995MJ/DjwJ4GXlVLfyo/9BeC/q5T6LBJAbwL/PTkP6RWl1N8Evod0Fv7df15nwGrY3SpE2JKGoBRN22GdE7JKFMVfSAmfArYwokH3QlftW1BNm/AeRoXc1FqLHKv3AUgB2hBEq5KNG1Vugqls2ayxdNlqyibHsBnTdR1d12LLkqQVxahi99KU6WSDQmv2JhtsbE2ZDB3LTi7+sLTUXUOMkeFoyo0nr0CyfON3v8Vw6Lhz6z5P/PgVrI5sbEwYDya8dv9tVquapIIsXu2wtqCoxP66KArhsLuCajDEGMNgMOLk9BTnLNVghCJhtMqDXYXGulqtUEp2lNVyiakqtLFoLYRGpQ0KLUQirbn5zl3uP3zA9t4OTTPnyt4ms+WMjc1NtnZ2eO+tV7l4eY/BYAMA72uKwsnsR2C5Wkltj+Xb33mVzrdcnFo+9eIL7J8sOZitOFp1XH3qKY6Wc4gw3tyhXsxom45nn/4Y77z5Nk3W9t+/d4+qKmXhIT6A4+GQz3zqE+jU0dQ1IfVioy4vvo5BPkegKIuKRd0wXyzOgiI91ddkJWVAKYQa7D1EsJjsHyC06hQj1pYyDCUT1aS1mBe/LILMQJRgoDNHxVlDpQ0mBOJqyfTiNklZVvMFy1WNj1KOLBYLjNG0TSdZiRNhkJQtMsg0qEhXz7lx42NwOufPf9lRrRIn5QaTccm0WPDn/+hLfOo7e3z3jXt87827fOf/1yCQUvot1jnWY8cv/ZDn/EfAf/TPe+3+cNays7uTqb5CHAre5xQtS3eBkDTaFjhrMUYzmy/ogtgvxxgZFXKCMGktN+4poH2XcKSM2DJZSxe8sLlCVgp2Xc4+EnUX8ammUXLTOFdgtKOLLRc3NvnRT73A5kbJsLCMxlO0kwX15u19AKab2wxiwGiLHYwYDzcZji3f+sarpJT4xItPoY0FCrQZ8fobt9jY2uTylQvYQlJrcYuRtLVnpq157j2vIYrTrTGaoixksWczjp58ORgMAEWMAbW1KQsjk7Bi8OuFokjUrWdre5eHd++jgkwAWjSRFDtKV3Bxd5et6Y9QNx11K6XPaFBliUDWM4TAyre88+5dHj465MZTT8LmDrdOTzk6nTObtdTLGbfefgNTOI4e3MW3DVrBl77wRS5c3OWFjz/HK698H+8DbbOirZe4asSFK9fY29thOBxyPD8lxssUzqJ1HhVfCQq+NZ0AirqRacYx3yNt50mFMD9FWxRJUYg9KggoPD89ZbqxASHy+vdfJSkYbEwFKO7xoyCbTFKsW4soqeGtUev5gJBEspxkMyIGlos5Xb3ku9/chwSrpmG8tU0y7kzxGCMxtKwWS8ZbI0IKUh717kjRczqrsTYxmMLt2YjtUvP0i8+hFg8htTy7u8En/sizRD7B8eERH/+Tr3zg+vtIMAbrEHnzGFJ0REHyxMQzJrQ9E+WkLJbROsmwCT0SS3ANSSmaNlAWRZ71kausHJVJEKIw/kL0KK+oqg1cVWByG6iIaS37dD5x8cIVCm1RSqN0wlotLjnWMdzckXFhvqOtO7QX8G6pBBz7+Kc/I4EoJlZtza3bd/jClz7FH/qFn6JpWza2Nnjl5TfZmAxQqePa1QsUhUVbm1HrntGmRLyUyUrAWjxkrQUUY4YZ3Uzrz6K1IUQpHXRuT1lrs9NRJv4ZCaZSYwsterlqmJ16djYKbr31DhFNSI69vSGusjgbGVQVkwibWwP41u+wtbGBNhqf7bCLwnFyumS1XEKKHB7sc3p6SmxrUtdiQkdsa/Al08mYpRYy0rAa03ae77/1LtV4i63tPfb3H5GI2KJkMBoz2Zwy2dqkrmtOTk4ZDiomg6GM+gb6qb07W5torel8IKSIs5b6wSF121EMyuwd0JPJsoQ91+6nx0e09YpuuUJ5Tx0Cl0cjysLhO3H7NVa6WBJL1TrgqtwFgL5FfQYsKqXoYqIOIXNQoswwIHHnzh12LlxkMBhQFJVc2+TZP1ygUqReLhhd3sOYSO0D0QPKsj3ZZPfFId39u3zp4yMubQ8oumNsVaCUJYaW0M0xtB+6/j4SQaAaTvjsT/w8hdJrUoPc08IP6BHa85ZfGtY3NApSUrSNR2uF9w0uk0ESCd91GGNwRqM1rGYLitKxsbWF0ZblckFKidIVhBQYDEpEkakx2tI0K7738jHPvfAsSXuq0Qi7ucuqW4ntd9B0qwZtFE0mz9qyIPhAvVpR1562Dfzar/weVy7sgkqcLhaMRhUXd4ZUpaT92oh01vuwriP7FlPIfgBaaapByRlLjexOK1N0tRHPA1CPnTcxp5ASQSu9Rq9DCMTk1pOTxuMhb7/1LoPNy5iHDzm+c8SVK9tcubLHew8aXnjhKcYDh45nO//WdJQn3Mh7euraNdpmj6Fx3H/4AKU0ZVlx9dKTlE7mKcQQqJuGoihxn3qKGCL1qhHCUOc5Oj7l6oU9tsYD9g8e0XhF6gLHD/apZwuqsuATzz5FYRTBSxZRFgUqtxYHpXQUqqqkbhqUgvlikXfu3L4jE4R6sin9eVKsZqc0RyfUqxV2a5M6BApnc9tYr3d6mQSURaQZOOxHiIeU1uAtKvs5aEXTdaQgLe7FfIYPga3dHVanpxw/eshoNGIymbC7t8NwOBDxWAyE6ImxJUTF009eQdU1VYh8+qltLrygGcaaYljQ1htoY4lo8NIp2tjZ+9D195EIAkYblq2h1i1aFaByCq+ApEheeuGuEHVabCXFCiERs0eb0Srr0hWmHNGEuI72VBVdFGR2UpSMxobCGZKPdHQMBiMU0DaiyKpXHYUTIolKieg9t269yzMfexLllAhrUFTVgEE5IMRAKAu01kynUwCeuXFDxlJ5T9vWRBWzp12B1gZMQOmAVYauC/lGSngfsSOLtZa2benalkFRYZ2jzMM5e5WFcw7vPdYYnLVoLWAWILtg20oWg6ToRVHIOG2lCMju5H0Sv0A0IY/z+sIXPsX3Xn2H5z71eQ723iP6jrffO2Fzd8zu5ijX0KC04mRzk7/4v/1Lj13Pv/iX/uK/upvl8NzX3/pn8Lf+8x/4ldnWFnXdkJJieTIjpkg1qHh0cIS1JQqp061RhCAzA7oQsmhLzkVSCjuqMFHmGqTWM9yY4L10aGz2FvDeMxyNWTVNbi0qGRTiBbBNWSKuEQ5923km021c27C1tc1oJN2i+WqJtQZnDU3ToJRiNTvBtx12WDEcDkjBU1aW5vSYz12v+OM/8jkubm4xv38bv4q4ao/aH5HMkGgsbehQPqH1kNCUP3Ce+uMjEQTGg4JmtqIbKFS3Wte/fYq59hSsWxnPjKjh+kmzPfCnjc5t3z7VE+KQDwmloTKK0CwonWa6uUHXNrI7JjG3sNZSliUxhjxcQsqHsiz4mZ/5UaabA2bzBqulp47yFKWTSTxK46wV7wBgMqxk0cZE10aKwmSCn/TsfPAYYwkyHoAQPZ0P+BCIMeKcxZcF1hjatpOUPgiZRnaFgEkwGAxJKVE4h7XiOlvXQljS1q3Pg7aW1WolqDeSqobOi5mnkiEeMXS0ATq/YlxY3nvvPmUxIiXDxsTw9PU9lPfYqpCUN8H/4z/4nwsAi6IoCv78/+h/zF/7K/8nfNvRti3EmEFC2XGrqkfVBWirFwu64LFW3j9KJkxZI8sxeE/PYwgh0LSt0JNz790YB0r+trKWru1QRuO0xmnD9nBLAFKtOZ0v1lRqo4yowAGMdBVUP+ZLbj5apWnaDsOSJ65d4coTT/DVb/wenRcfBK0NMULwAecKmQEQe/NaURj20hWthVJsUUw3Nxll74XFYoazlratUbpkcTLPGa6i6xp801IMwShPPTsm1gOMTmwXnnHYx88U0Zbo8S61b2mWkaQ86ET0HYqAKd3ZTI8POD4SQWA0KLiyOeWdxQyT6/uevddf8JQXt9Zn5gmSMifBBMjpXLZvPgPPpJaP2fQBBWXhaFshFqUYsNaRgix2paKogTNDMMZEDJlliMYoTVWVjEdDjI1SmmSefvQyGutkY4P/5f/mL334B/7/4+N0c5PZ0TGxk1Tc+8SyWTIcDmmalno+lyBalXkxJlxVCHZhJPAqIxyGPvgNqpK6bmhzQCjLkvF4RK/QDDGgrZG26HgI9GxPGSBirUUZzaquhSuhZKGHdDZdSjgDuX6XsIHVlmvXrrF76SLLtuE73345D3JJFEUhgUNB5z0Yjc1yc8EOo8zRRHCKECJGK3xIHB3PKMalcD1CwseIKyq8j6BMvleFc+BjS72aMzs65u7+AzZ2L/D0sx8TaffpCa0WIdZq1VCvaharFSiw1YDhYMJ0+wrD0fCDrDbXx0ciCBhreOmZizx6rcWHZm2jFxEH1cc127lVkgMDCjGDJFcPZKGPQkZco9ZIeWUUJZGNiaT/WoEpChTSghN3GL+mkza5nkoC/GKt7OYpp40pJtH6hR6akF3vr/x7/8M1IKnVmcCpD2I9UASsqcj9FJkz8E8+c9/lUEom9nifiUNKEYMXLnnf/cg4QN9OIkkQdU4AwP5vS6egH62dPfCSWg8MVfk1YghEnwdorifupqyQi+v3F3Kp0evxfdcRfWA+79bZSU/AsVVJ29ZURmevAoXRBpM58Sb/vtZGMgnAOYc2liKXMkopOi8SWu+FN5+UwnsBAFPGTiCt31/wnmXdYKxGa6nPQ+pZqWILtvZEzAWXcYZVs+KtN95ksLHNxtY2tiwweVRZjNm0NeNXec+hdyuWuy+fp5QgKplPiGUwHNF2nXS3fMIVBaltKQqDKmW2QIoBezTHGEVRjfjMl76Mqxyth8WiJcxmLOslyRmODo84eHhM3UoW5aODCIONd9nd3ebixYsfuv4+GkFAG/7Alz/JN9+6y74eA62QdrQAgP0wxp63D2eLRI6Uh0DkRZCRdENu3yQheCilGA0rnJVU1hiDzUBa7xuo0JkZmOhO5ygElBMJrrTkClcRkgB3sWlpugarjZgNBdlV+oEUIdeEZVnmVpy4655f7OcXVP9/Y8x60bvcLvRe2lxOy/BRa91a4mwLl8elJWwpC9JojTWWonBnsxNyQOnnKQiyLQslKSX8CGckCGiFLhy+63BKyFU+RJySNFf4B2evpbU+95gihIgPnnbVMlETXOHQ1jAoHMY5QoiUtm+Bynv13mOMAJdVVaK1iGaaVjoY/XW3ztH5juF4RJO7G4KtCCLv17MiIBmYLZd0IVJYoaGHlLLoLGeMSokKMy9gQ7bp1hqjQUUZG1YWhi4KBNj7Ya4Dfp+lxj7QCmAbsow7poDSmsVqhXM7aKsx3pOilHrWWbq2QSNBsIthDfK2PuIGA0KIhBS5c6QoVgOKosBRMLh4ha3NhvlsxrJJ+KZjWsK0GhCB+erDU4GPRBBAKa4+cYV/8+e+yN/47W9xMFO0WExK64FDPZLbGwn1MUB2/rNdVinBC/o2Wr7W7GxtsDse4IQMSgyBQVVQFBark+xCWnP71j3ee+8Bm7ubXL5ylaqc4IxmUDqsTlSlwpWK4eaE4WjIbP8R1bDKc/NWhBiwRtxkQq7VY0pSfhgh/Mj7OlMmKiUprtaaqqroZ8zFGBkMBuvgMB6P1zepcNvDemHHPJevzyy01oJ35MXZm2GC8Aj8OSZbjJG2bdeLYT6brT8DKVG4gtZ7jBNj0hDF0LLIfoEhBIx1TCbiYxdjZD6bMRjY/Nm2SUBZlrRNk3fpzP0I0glpmhZVabQx2dTTYoyS8dohCvKvNF0n2YVgGZrgg4z+IusDlMrj5C0pRIqypG5q6sbjE3jf4YzFaXEStjmAxUwL712DMXnATcYnCi3y8LKwLJqGlHKHJfNKYpQsSFqEWsbV9ZSknFkao0hJ04XI9s4Oi8WCFISw5pOYN/huQNO0LJdLjk9mPNo/4NK1ITLnYkChNVHN+fqrb/Gtr36Fq3vb7FQV0Q14c/+ILhlip6nSkp/87FPErSEpBO7cv/+hy+8jEQQS0Cr43I++xNWPXee7r77DP/jqd9hfeHRl0b4TFx8tVGLOAS9KZe/4KAEj9mlZPqwRQcpqsaQzkfF0nOtCZKdRiarQzGZzDk7m7O8fUFWO8XBEvag5uH/A0YNT3n7lPXzX0jQNb735NsPxiOnmgIu7Y6G0Gk9ZWKwReme/CGOMUrOee1PVYIBWMk9eakh5z33rLgaJcn367r0XkVTK6a33kvbmFqlIhHs+RELFSLNaoXL3IAWhEIco7PYYI1ZpuqYRY8soqsl+GlNVlBS2yLuTMAFtUZAy+JcAHzpJ51PEWsk0hMQimdAoB68UE77tZDdf1UDWB5SFBCDvSd5TFg6V4roMSCTohAthjKFuGlBKdPkuD1bJu7BgO4m2azJXQRh2krJLebNc1ZIpaenpa20oXC8oExwoBPF2lJpezoXSBhPFNa5pPXGxROXgsyZxSd+R4APJ5tI08zO6rsMaQ5eNSRWJ02bFcrVEEQXkDRFtVQ7Ket152tneo/ERMeIWHoMpCopU8tKnP8u1vS0xsMXiXMVzRqNSIKqE1ZZCKYzVtHXD3ubGh66/j0QQiDGQvMfqyJW9MVd2P8PnPv4sv/udt3n5rdu8c7xPSmBVImrQGIyzGb2Xm4A8ARZyRbdedAnfBgoDe1sTBqXDh4gtC6zWrBYznnnyeR49ekTXBTY2N3j06IBb793C2RJrClaLBdWgRCuYz064dGmP3b0RO7vbLGbHjCYjouprQAlOzrlcXytiF9d8B513uX6Ba63xUcwqdb5xrJNU2jlL13UURlJnY4wg7WW5xkRilG6CD5I5EBMD5xhYIySjfKOqXLsWzqG0pnQl3ns676nKcl3jGmtBK5wraduWopRgkPJOh+q5BSVa6ccm4orldU9aEmygR+NjjBSFIwSZNByi6CB05jl0rQQTHzx102VoLtfWOduoqopBWZKAqiyzqk522qZpiD4P/fA+Bw+RFksAWomk1xUkEp330lXSkkn2YHI/c7K/NtpoQtuyahqCqRnYEl2Wgg2dw2sUah30Uy7nzmjpnOEFKbJoO9ouMihl0/C5Q9PUK+HBZNvxalCyMR1yeDQXezeVed6dZvvCNhvjElfIMButRAhljASalLO+pvUsl8vcofng4yMRBBSK1aJmlRTDqqLTHdXU8DM/+SI/++WP8VtffY2vvHqL/WYpLsBZWNQDZCoDPDHX/XYNlomLQIwt1aCgcgZnhImlQiSGyP079zg5Oubtd2/iypLT0znWFbjCMV8eY52ljS31YsbGxgZbF7a4eP0K2kTq9pStrQ0whq5pcNYRQ8g9/uaMuhx6ApQ40vY7L2RconB4H9FObKn6QRjehzVpKvhOrMC0pm2FmBS87C7OGFLfWjRG2qp5GWnjcIUEpLIoMPnnMYNso/FYOARGcICiLGUkV0pCmooSSIqqyAteYa3GaikFVArnyjOFshl30KCLs2AXgxecx4CpxC+gaVpi6KTksH3WErFGsZrN0Si8c4KJKEVY1XS5ndtlAlTXtZkIZvFEysIRrSEEn8FKSF2gni9IiAoxqTOfCWsMXfYHjDFlluUZ5qStQTvbs7IIvqMYDqmbljUQq6SVba3FFWell1aaZCQT0ZmNqJOirltefvlVPvfSJ+ialhQ9WxsbDMtSAqlSnCwWlNWAbtFy/533WH78E4S2QzuZAL1YNkyHU4qhEYPWCCRF9G0OYCbrHBzTyZT0Q9bfRyIInJ7Oee/mQy5f3qRVEe0KGZDhW5Qp+fkffZFnL27yt37jm9z34gQcYhSddV5MNn9oldPsnqYZYyQ6zaUL25RVRddKDZqUkno9Jm6+/S6LtmVaDLG2xBoN9GOcFNqe+fW50tG2S6x1hDYyKhXGSL1blWVm4XmqSsgZIQS6zFg8My6J6wDhvdiAp5SYdZ4UI1UGgPqsoSwLCutwLnMZrFljCdZaUZopRdt1Mr8pA1Fdtt9WSuODZ9V2lEr31ZQEl7aDFNFOdu4meFm4UVqkoWlwztEtl/I3Te7RR/k8hZHJvN57BoOBCHiUKOtiSIS2kR01Qd2062yti/J7vu1QiBNvz48oXUmhDc4YOu8xRlFaKwQdhJYbckfDwBpENUbGhhlr18E2JvK5PMNf+vazzu9TpSROdqpnAeZ5A4AKYgJbWJvLDgH7xJbubPlU2UsBBAi0xmRnp7QO+GJDJuDn8889gzMaWxZoU1G3HePxhJQ6bt/e5zd/++v82E9+nq1L2/zIpR+hGGsOZw/oUiOsxmHJw9MTzNJweW8T56w4MnsZkBqCz/eZZIK9sOqDjo9EEFiulvyz3/plPnbpKnY549KVq8zbls0LuxQG2pXi7UcLotGorgOl12nt2rVF9VQM2SFcrvtTikw2xgwLI/RhV1AWmnIwIMXI3oVdDo4esDyZYwtHvZJe8mKxQGdC0nA4xncewhKdDH6lGY0m7O1NGYwKYZtlog/5ordth3N2DbituxlJdp+YF5rNgyRl5p20FKtBlfn8et12kxKjkOk1VSnW2JmYEqJw2UdlKQEgSk1rc1oqYKQEIMkeEm3TYK0w/3zbolJcs+CUUmA1XdeitWQO/blQGfFHGWlrpezFqBSLZa6XY2A4GOR737BYrcStR1BIfPDSelTyuY3Wa7cna00G4gpUSjhXYJ0TXX4Q8M4WjsoY6lWD0Vr49yGg0HgiKYgK1DhD09SECMvlUjpN+VrEbFyZUsQYncFEkYyTkA4SKnsfwmq+wI7yNOvcsWm9PFf4LJq27Ygo3KBcd2p0xqyUkvZninIfVKVlWFhhLJL4p7/2m/yBP/iH2NyaMn/9PV599S2SNuxdvUiIlvrNAwajOzQp0baRbjFjdrjPwGj+yL/2E7z4wlMsFzPAslrVtHVNWRa5e6nWUusPOj4SQQDruNWV3L+zj46R8OgNtHHw5gNxCtKGJiSCslhjJb3NnqHakIE1lRcUZ0BVDAxKw6XdKdbKAhP3IotOCR8C9+4dSKR3Q6y1jCdjYXZZK4Kh2EGyDAdDNjembG1NMEpcdMqRtK5CyuKcDO4RE1UlNdh4XJKy0YhSisLYzEaM4hxks0Yg9UamMubMWNEHOGfztPaEMoa6bSislaBEFqwgdmMh9Aapcd1a61mP0Xd4L1lJNRhQViXBi4qyqCrxumvb9fOWiyWlsQJqakMX/LqmL6hwplgHOGelvdZ1HUUpGgJjDG4gQWy0sZlp3hKAerQ85s6AqB4leKhERsxTtviKeBSrVU1VDfKuqlmtmtwO1hSuQGsLCem9Z6tyOmn5WqO4cfUq+pW3qWdzytFAzrGTVlPjA15FjM+y35TwbQtG/PvPlk8idh2+aXDDET40qBwASm3BRKoiy5TXEviwlrXHiEyhInFyumCoNdqKs9Dr33udX/uNr/LCC8/zuZc+wf/0f/ZnWJ50WOPWwiyIFAOLdRZXWtqmZmM6ZvfCDqaAsRpwejJfU8SV0rhSMtLzWcsPLL//Epbwv/ShlMEMN4l5mk/oAr4f2230uj9PiGsDUBAwipSyuEbsl6wVNZmknYnDo32ee+Y60Te5Jw0qI/hlYdjd3qLtZjzaX9HUnul0IoBZWzMcDBmONlnMG6qqpCxLmsZjbaCZN3TditHlS0xGo7WHXekKoR2bs1FhIbSyq2bugELlEWBaLKZiWo85SyEAZyBiVwuPHK1pfaRphV48HFa595xRbCTF7zkFy+WSxktqv1gsATJzTnrcISRSUusbfTFbslwuGA6H2C7iygpnnQiS+owrcxX6DkGReQvaGAkASsoy6bHLDt+XPQlEK5ER85gSpqw4OT4W2S5p7QLkuw5tNCZJ6zKEgK0sXd7hV53P2VV+bZ/wfkkIXlqbXZdJVSorRxPTYcG/9uVP8+Bgxm9/9evM6iXWGYwrpfwclHRBBGs+CW6gkyhYVZT2gM5IQowRo6AqTOZXBOqwEsdlq7I/poIulwJJJho7rUldwIREOSgwzmBSx6QwlCaRYsM7b71BZQ2feP5j2M1EVVXSbs4BU+zRs9CszYS1LnK6WhK9ENfKgfAHQvAUZUnTtOj0Uc8ElEJZmdKDMbhCZZksIrDxAZV3m9BJ28k5h3U9JiB9+Bgj1liReaZAu2zZ3dpkWBWkqEkhURUlTdsSvcdVJV1TMxyIQEMbk+mdhslkgisK6roRv4IkgcNaR0rgXIFvO0aDMePhAGfdubqfNYPO+w6lNZPplLZpBTg0FpwTEkkIdF2z7vebnFG0XSddjxiF+JLVhTElSlcxPzqh6zomk4nwEcqKGCOrtsXkPnrbtrlLIV2E5WLJaDSkazvZTYoCcgZVDYdsb2+vS5d4LqNQSmGUzGT0bSd1dMYldAZgrTHrSUwkQdmFL5cw1mSSi9Bho1JrP4fBZEzjOxlHBrmLYnKmAIUtxR8iI/ZFkm5F3ch16bOfruukhFI9qUp8JjofefRon6JyRFoUDdHXJN/hQ0ezaiHBLDS0tbQYQx6WGpVQ2EeDEVt7u6iyxBZWOCGLU9577TVi0wh4qA2FK7PEWNqThS64dPkq061N5idz7t69w0//xJd47qkrjCvHo/0jth7cYqde8URR8JY3BKUgdTTLJfv7B2xsbtDUDat6xWg4QmmYzU9xpaNZtWxMdjidi/godoHCGS5c3EUbzWi6xWK+YDAartfTBx0fiSAgiH6ZjTTOxD9Ga6yzFMhJ9d5jkvRWC2soCptbWwFd9D13aJsaqzU6eqYbY2Ynx5k1l1jOl2il6HxLXa8YjQdUY0tRTTiZL2nalsl4TDUYsFwKD7tezRmPR2xsbLBYLNnY2iR0np2tbVxhsE6irvce33m8D0w3JM0XEwhFU3dr8VPdtrhz/nc2E4gWiwVFv2sqcVbWxlBaS0yRIgNnISTseCLgqBZfxJDBRWlDSUZQlTK+O4SAtRUhRKqyRBvRUigt9W3XnTEUO9+J9Vq/gycJuCihX/fpfuj8uvUHAoDOV0uGoxFGCWLe4bMrU0dVSRtysVxSViXWOrq2W7fi2ii4Qz2fMxyJH57gPWd8CfLvrlarDHaJNVcIwp1QSrN/cLg2o1ktGxarFQ8eHFC3nlt372KMZb5o2Lp0gdHGFqYcUBYlmsjh/gEHB/ssZif4xQwdPJ1v6boVXQyouiVqS2ELVFSktmZ5dIjO92dZjrBVwe6FC2xs77G5s8ulJ66hrGW722Pr2mVmPhBDoiosO09cprtxkcOu4+c//yWeeusmx8enDIZD2g6sKWlWLUVRotAMqiFlVVJVI1KErgjiPuRh1dQMqpLxeMJoNF7zTHqCWfyXNRr9V31obZhOp2Lm4SQFrZdCPxWUHwZliRkOs4+A3DDW5V64NnlXkFqobQfcfe8Ww8qwuTVhMBygFCIvVYkHDx5y9949mSVnFM4annn2KczdQ+49FGcg7zse7e9TN5HN8Ziu0JycrPChQ5+eMp/P0EpMSRUHGKXY2twkhYhzBfP5ktPTE0ajoYBHKVEU0psfVEV+35IB9RTTsqxwVrgBg+FQmI9JuPpaWZJJHJ+cSjaSL7JvhfUWOp8XqywAWxQZmGwEn0hQmj4wpXUHZTgcCkEmuy1bK+DcmvaaA/L5mYwKSM4JppCDQFlVoDXOChZiMi/CGkORORM+eKbjMT4EfNOtn1+VZSb1GAZlRexEjHF0eMh0OqWqKmJKEsDOlRij4ejcPSTA3GQ0QVvN0fEJg8pjZ0c0q5rDkzmTyQiFYjqdMh5s0EVD10ZmdY1GYd2Q6eYO4+EIE1oqpzA4ZouaZWxQyVNqzZNXtonJsvX5H2PiFKldCZkranb2tvEKFitP6y3L45a6meMKx/ZkQpVautWC69c+ngNuue4gbW9tsVqtmGyOiCissmKdlq9TP5exH3DiQ+T3vvF7PP/CU/ksCCC9/+hAJMqQS9v2fTT7x4+PRBAwRjPdmK7FLavVio2NKQpJzXVmtYlGvqEsRSnWti0pBXRM+E6yAx0Ti9NjLl3YoSwVOztbOOs4OTkRWm3hMFVBNCW/8zu/y97ONj/70y9x/fIuezublK+XHBwes2qXDKuK8VAEKbPZMWUp6XPXdsSQ2N+fsZg1XLi4w8buFrPlku2tTeEiALsXdjMDVfAJ5xxtK2izzmSaED3j0Ui6CUWBtobSOcmKlOgZ6sWSshpiNGwU26QMvIUsabVGlHRFYXNrUq9bjEUhQdVY0QAEH1BGsARtbEb+pcOw3pXbbh2A+3KgzwiWyyUpRpFJk3UQZPRbi/mFXMeI92cju7u2y205jTUCoFZVIZ0Ppddlnctt2xgjW1tbawJVT4pyTujJNkuj+/dcr1ZUVSVuSc6wMd2gbTqqwTOkFFnVDcu6ZjGbs6o9D/YPcYWh84nWB05nM7a3hFXXtS1WK5rVgnt3H7BYBe4+OmE8cVy/tMMzV65y+clrzGcLNocDRoXCOYVOltFoIH6LPjIcVazqZQaaXbYMk3Lw6HCeSUaSDVVVhdaJwcaG4BhRkbToVNrUUq/aHLjFWqzv2Lz00mepV0uMtpKp5azN55Zg3xrsM7YPOj4iQcBgjaEsC3wmblSltMNS7rl2XUdRFDRGWmygaJpmzZUfTcYZKIs46wi+4+oTN6hsAUkxHcqNc3p6wu72Nt4HvvTFzxBDpHAl77x9h2rg2NncYDAYMpudsKprdna2pNWSNPNZza1bt5lsDbnxxFXKoqCuV1irGQ4HdG0jZUu3ZDqZrskqPYBpjM6U2yA2YFqxOR5L6yt7GaxVfAh6XhYF1XAg9XYGAUMUkK9rO7qmQSWy9iBLcJuaR48OeOqpJ+nFQb3yL4ZIVZX0ppxaG9quFTks6Uyw07RrNltPb14sFms9QV3Xa8DPe0+RlYrCdBQE3FpLXdfEHExC6HBWFl4v1xbLLk8/HMZ33Tr7WC3bdZnSB5M+KLXZlrv3TmjqFePJlOFwgDKKGH32HtS0Xc10PGBjVKG2NyjKisWyoW5qjg6P2NrZZf/okJ2dqYiYQsh2ZYpbt+9x/8Ehe3fu87lPv0Azr7ly9SI7l/fQV3dJPqCTQqmULd1TLld1tg4XanvhSmaLpSgdg1DMe4xHay3n2wqfQsDNVuTIWosBDnK+nNXEKNmrmMJ4BoNhbu2Sr4HP/AghcvXB8sOOj0QQABgOxSDSZHcV+v63UsyXC5x1NG0rOuqsGquGg7yDij9AVVW0bcfpbIFLHfv3H9Isl1RlhVKK4XBAWRRsjseMho693QmuqFjMZjy8f8KFi9toW7CqO7a3BmxsTlgs5mxv7hGTGJR8/PkbWfqpmExHpATHJzNSCOzsbKNIODuga1qCD+udH9Kauae0ZlnXUpsvFmsGX3dwKPTa7FIUOnFclvWfCD6yXNY0vmG6MREPfyPnyuXFJCIW8TyYzWasVit8DNR1w3AwoF6t1jtGb7qijV6/t9h1Ql4KEd+z4UJYo+K9d0IX8oATRGItFOQu4y1RJiRFoXgnBSHI4l4uxdhjUFVSp6ZICF2mRct77/n0osaUwNBjAacnJwCMxtLKlVZYLzePksXkUrFpV2xt7gi/IoO+KXrQmsFIM5mO2N7cYDSecOXqJUCMVgpX0vqWsioYFI4vfOZTLBcLJpMhxhnp7fuWrvXYcixz3PAQsjogk4TKShyhuqaja1s2JyM679HakiL0Q4HqupZgW5TEpAhtwgdRwb5365YwVbe2sE4IUV3bZk2CXes3xB7d0DYNPrMlTaZMl1W5pnd/0PGRCAIi2Oh5NpnM0rZ431EUFlfJ0M0YIl3nAYPS0gWobElMkcGoAAXNYok1mit7F9je2STGTQaDal3TBu9pmxYfFMYMiEFhbcXWnmJZB4aVZBpVWTE7rlnVnkHZEFNkNBkzWyzY2thkvlhwfLzIQiFH17WETnryNiPnKXXZdERuwFUtO26R2W1d3eEbv5ZHG2MpizNra1AslxkEazvKsmRjc0xV7RG8Jw3OlIjei3YgxsBwUABWRmMpzcnpCSmBqSqmkwkJmRTsgyzoEFMWxMjF6IND3yVIKYic2Fl8FKTeB49RZ44/MS/i4CXLUVqtswalxXPRKelS9LLtlNLa7ahuaqqiyp2BeO5zeZSCzgeMNbLbZe2FyXZqIYY12FkNKglMzmK1lbahs6JK1IrlImV/BYWzBboQtaTKIKQylqRh6CQru3LxgizogcUmg7WOlpZkLM55nCtYLmucq/AKuraRMeRKXLSbpsYVBdVwwr37D4gxsLuzRYiSIcQQ2N3bxntPSBENNKsW4yzDquS5jz1NSkoMVZQEH5MCmIRx8plmq5qDg0NGwyHL2YLFsma6OabrEj56LuztfvSBQSDPeY9r0oxvRVSjYklbB4gNg6okaaHAtl2gwJFi1sWnyGw2+/+2dy4xkmTXef5u3HhHZj36wdZgXuIMSVGELQ3HhCHAhAwJhmVRgGnvtLIWBryRAHvhBQ1ttLUBeWHAMGDDAmTDsAA/BGtj+CEY8EIY0WOZGg4pDkXOs3umu7qq8hkR9xERV4tzq6ZFT7etAaezgM4fKFR2VqHzr5sZN8495z//4ezkLi8+e4vrx3MmNaImddl+eiEwyPOcXCkSY+TOeTATvfZyyY1bNy9bbWfzWkxLgo6mHJqprtEErh8eyod/GhnChFaZlMSmUZJ60afeWktdyviuIb6RlymaeBcDIAqOnHPSjKREMDTXDdMo66ESucvYvpdpP5OUApTWOGPl3K5TTNfF2QNKtO6ZYgqJXJzEASaJiGyc95S5+DqK/l087rI8v2h9IYSJPE1kUEcu7jnjRedh1AmERMWGo+wyGkFJSJqlGUOUMBOSS+lw/sDff3R8LJoAP3B87RrbdkOIOYA0TXHekxeilAw6YdO25CoF5DOTJAm9kbyANCvll3qJAPjBMSnF0fGhiKIUTKNntCN93zG4gaaeAYHm+JD1comaRsw44owcO12M2KSRCtJc43XKZr2NrQUjgx9kgEvXX+Y6qqpGp5rzs3O6vqPIc0JQNHXD2f1TBi98nPMyfavtCCphu9mSpWI/v9luSbTm1q1P4Y0lxKhntey4d3ourk19R98bPv9jP8YYBqwb8W7i7e+/x3K5eOi1dyU2AWctt996R6Sw40BVimz2+NoRB7WiLCoUEwcHc7FounAPjp1R0zTRtlv0M3P0F55ls1zLm85IorTIcqMV98TI6KWKMGsaUVcVBSSK44MDCbFjiY3Y6qkuHXwnZlUVa+ATOoFUZ6hpoC4LOdsj2vFMp9jRUhY5aablQ5w/sNxRsZjqRNR0k1yYVVajY52ZAGNU+I25JODGcWRSMkknT9OYWZ84nB9KGB/P9TqRv9l7z2Qty23LcS6dk0k6oZWcwjOVkmgRMBVFhjGGZlYxxd4BIEpvx8sLNgQQTVPCpmupYilyGEbGMZDnwrM1fVRuxqafwZOlkidxThyAl8slR0dHDG6QhBhQvv8Bzroo6ZWoKr+oRowjeVnQO3c5M7Dv++iCNIh7UcwhpFo6It0gZUqGiaapUCrBxk0zzSR6mYaBEWiahpBpvLGy2aYpdVUxOE/bdRwcHJClGcb0jGFC64y+N8xmDc50MYJKMNYxeEczq7FRiZnolK5tGY1n27UsV2vmsxlaJ7TbLU3TsO1btr0I1fJMGtKcH0RhCizWG+qyJFGK5WrJZtsyToqmqQk4xklzdn7C9Vsv0FrLYr3CW8t01S3HtU649akjAIYohTw7XfLC8zc4mM+o65rRezmXBlBJLfrtPJPOvWni4KAmEFgtVwzIhZLqXDT3aSZuOSqaVEyWREv/QRqVfVmW4awlKFFcXfT4i2FGHCPl5UPW9fZSDZilijJmyi8ijjTR0Z1HLtAQ5wmGkajfj8m2VO6oprcyej2M0iATrcHHYcAZA9stibowTg2oNMU6x+CcvJZOLxNkOkYT1lryPMcYR9t3DGFkuTgnUZL91/Gsn5clNl5wF2alF8kk9cAFNSEZ/ilMl8koaSSSeX6ECe/cpc4jyyXJa50jVYphGvHDGBtaND5emIlS6Dt3YZREYojNOzpJ6PoekOacRCeXHgplVWKsIc9yxnHCuQHnLWk88hljODw4kATiOBCUnLszFMccMY0Tm01LosXExVqDVgl+8HTGoNIkug4lmGGALKPvOgY7MK42ZKmWZKdWjJOjbTs601HG8jZKMYSRgYkB6P2AseZyQpMHNtst3XZDb43MmkwSNsZgvYc0ZbNY0lRiViNqS43WKa41nNw/o8hlIK4ZBtIsx08jkl4NtNuWd9+9w6Q1aZ7TmQ6dX3GxUJZlHB4ckGcpVZmxXa9Z3rccHjRcv3GdYRjZ9AbTW+bzY7bthoPDmnFU9L0ly1OM9fhhYLXpRIGmNSpNsM6xbrdUZc00weAd0yjjoAfvqZv6w4466+mNwTiRreZFQd/38gFKpF04TVOG6cOkjFKK+cEh1jk27ZYkFdnqj9y8Qdd1bHtz6SwkoWROv2lJUvn/jekxXU9Z15R1jYtlv4s7ZZ5nbNuWYQzMmkaUaEWGVil925FoTd00rNeSMHPORZ1/LtWWwQv/NGXyliwVP35vLWlR0o8dxsmchlXbxZkHKd5b6YzMM6L/Ln1v5Q0LE4vVElAUZYnpDUmiqasS4uZVliV935PnOZ33tLYnzQopnVWV2HwPgSROV15v16RaNk8IzJoZRV0zDCN2nHDGiuhJa8JqjR8Gxmjl2zQzaSO/qMBoTefF7VgEX1JSDXnOvdOFbOhxTFnbGxaLc7nRTLDctDR1TZomhCGQZAm985i2hxCdibKMLEkk15EX3D87p5pVZInGOkM9a9huDWWRg85Ytz1niyVJAk1ds1ifkOcFo1J01rLZyvs4TOJAXUSpsOktTV3jvcN6T900tF2LJon6jwLnHcMIXeekm1SnhDRj03u23So2d02xovbRuBKbACFQFBmKidPTM8Lo+MznnuLWrZssF610dWUyh++d997mrbc+YL1qefEzzzA/bDDW0m5blosFXdthnafvehkBlqao6BqT53nsNguX+vVZ09D1WzH1SMQxRiEWVwQxn6iqnME6jDEkWsLsLJNGEZ2m3Dtfyvk7Nsc4Yzk7X0hSLE0BuYtN08gwGlwYGXqLXS6oijLeLTy+7/ExQZfEELh3Hp3moCYCivV6Qz2Ti0ghrbjrVoZxXBhzhthIM0V15RQC2+2WprzO2fmSYRBrMOUHQiLjy7bbLkYPYpjRdh3GGNTRQazUhLiZebpug0aRFzlZlpOk0uE3IW3MwzSy2W5E+hum2A78Yebfx7Dexr6AQCAvCoJS+OhMdO/0TDLbRRHLl9FVKE3x1sZNZitrlUTRmE7IlZQnbdsy+pGyqllt1kzGslm3VGXJar1iPm/wowz3HINi00kZzTl3aVYTkHJdolPcMKLUwGgH/HrD/OgQ13fiozhNtCtHWRT0pmfRdSRJynrbc+fuCXmZSzlbSY/rFERjUkRzmLKsCGEkU6lI5KforzBJm3eIbe1936LUdDkwZRiH+HlxVHVDCCNVXWKdZXI9SkuU2vYt6Z8y6/3TuBKbwDRJKJlqhXOed958l+eevcWd2ye8f/s+t2+/R1mV/PgXPk8Igdk8J00D680ZfjTikWctxwdzbNfTbTqR6g4O5x06TaL7jlwkOpG78NnZGX6QoY8oMNZGhd9AmZYYYyjKgt5aTNdJEixouQsERdf3sbNOzrzDOOCcJ08zxtFRFHLnCwAqsN1sxQQjlWEhxg6MwYJOyLUmSzSr5UJEIdNImia0bct8NidJUoaxF7faWPK1zuL9SNPUGCv2WVmW4fqeQIhGnUp630NA55qgA2GccJMMRinqEuskpFVKYUyPtYaL4S9933P92jWW6w3GeE5PTzk4aGg3G6xzBJVIVBU9C2ezGmMtRS5RCCq91PbjJXRXSkVr8YQhmoJcHD2stfS9iZl1R2+MlLt0gvOW1XpJplN8TN5WVUXf95SVlOO2bUtZFuRZQZbJDAatc6bRkaSBiZGDoxnjONJbh/cyM2AcJ1AjSms66yiKUvo1QiAbJ1y7Ic3FYBYNvelk8MGFZDgv6TqDM15KcqMRkVBeMUyB+cGcwXYoRo4O59R1ie09WabJ84yyqGi7HhcjmNFLZKPCSJVnUZIuLetUkFcS0VV5zjDJUF/vB8YhUJUlvTEoleCskUlYV71EqOP5HGQI49npgs3qhGefexrrW556+iZKKe7fvxvP3ZAXUmZK1YT1hqN5Q5pqjo/mLBdbuSingSkM6DTBdp4pJBAUdrRs246iEDlqUHLez2NzkHEe50fCOOH9CCrgpw+755z3WOcwznG+XKJj63GWyYfTYmO3o8IPoxh2DA5jpb6rhwkzWXpjGbqeo6M5Y9+z2WzJUnHwmcaRTBfUZc1isaRpmug0FFgtl+jovJsmGc46NtuNbFpFQZaKoYUxcs6u05L7JwuUXpKkCpUVXLg5F0XBarmKfgXiTOy8o+8dmcrYrNcsFkvGALPmgGvXr0vZKyYkJZ8AWVEweMdmu6UsRLk3hSADQIPkMnpj8V5ESkGFaDBqUUmCdyIG63tDCFBkOVme0nYtfhjojSXPM5qmxlnPYrFEpxkBRVGIZ79zPeM40W56TCpCHe88OstIkiwelUYZMBNEUDQGWJ4uSNOUqs7Rica7gWHoCUHR255rTcWnZg15meNaz2rVUw45WapRKjA7usGbd++yGsWybCKhKnMyPeO5536C+dEhb7/9Hc7uv0GqR+7eO2d+cIz3km+a6Glm8MHdk6j8LGKbtvQYyFFH8bkXPsuP3LzBu+/f5s1376Az6UTcblu07ijLkuXZGddu3mC5WsVRfGLqakz/0OvvSmwCwzBw5877LJdnuLbHW8NRfcTgOlaLBTrTIgjqLROBvEix3lPlGUWqUJk0CyVB/OBCqHj+hc9ycu+M09P38EPHOGV88S98iW+99l1Mf5+8BOtEbpmX8oFzTjrvRHyhQG4OlI0k8JarLVWVkZBiTEdvHDpczLub6Pu1tOJmOW3XQt+LMYZSBA3zQxnAMcRsb91IY0iuE4z1dMZydFCgEbPRbdtG3f1IwDOMI6v1lsN5gw2O+eyAG8c3WK9bxmEpgiMnpdbNqiUvSm5dm/Hll17i+9ee45XXv05WKPKiYvQeYxynpyu0TijyjN56tpv7DMNA05QYu8Z7jwqi5uz7c4qqkg+vEkFP5yzr9YY8LzicZUwj3Lu3oSpSlI4JTG+YNSXL5YbD4xsYJ5ZizveoROG8kYpNllFWFcZZNq2hqRu63uHHLUmQ/EtWFqyWaw4Pj1m2W5ZbT5L0fPGlP0ddp7z69T/AOzFmLWK5sJlfg2nibLHlxRd/lFRr3nnnXVItMnSCDCQ5PdmgkoS6TqXcFxL8CCvbcjibUbqEv5QfcvP5Y0JV0WQZ7emKe92Iqo/4+mpFkil0UbHpPdNkeTrkHB0eCm+ryPMUN5WMG0tZVyyWW2bzOae373F4OGfbtqw3Mnvj5s1rJEmcC6E0379zjw/ub1i1S6qDQ4YhkOYpR9fF71GRMD8MVFVFWdWi6/AOrTOSq34c6PueV155FUXg5S/+JD/7cz/D6698h9de/Q4oOdO2fUvXbbn5qev0XceqE1vm41qsyJq65OUvvcT56QnPPvPj/MJf/yv87n95hW9/+zWmYHjuuT/PT/7Eyzz/zKf59//ut3njO68zn1cMw8DR8YGc4VZb2raNAz0yfvZn/jJvffd9nnv+Jr/3e6+Q6Iy2M4RJYU3HwXzG9XnF5z/3LN984zZv3znndNlRVjXjKC6zCWDcksDIwcGc8/NlND8JlIUk0gY/gk7pjWGz9XHYh0hCk0RTFjnjJOaUbTcxDoau79F6i/7MjLOzFavWUOYakoz7yzVpkpOgaY3j/7z+TT5YONp+ILQDSSqlyTApyXCPHqXkGGMceA8hmRinjNn8ENNKOQyV4EdF70eCF6HMFMANikRDmlUErdAukBUVJBrrFSjNGHLKpiCoUsQ+StGZDbNmRj3X2N7ImPW8QAdFXiT4IVAUJU1aE6ZB5gqguHHzpti7hUCRy1j0k/sLkkRRNUegWtJM09QFx8eHdDbABNeSY4ZhYLPe0DQNeZ5i+hQmRTPLo8w3cHQ8w7mR1kzkZcFoes77gdvGcq8YKKYMvRyZqUBeaU7SER8Kjq9dFzfnYaAsMqZJ8ebb3+LO3deom4oXnn+GotScnJzJ39UU3Lxxg7yQc3yiFc+kTwGa69eOWC4XZHmKShR1M2e5WDNrZizOzxiGgePjY4lEZjUhgHeDfK6i03NeiCuziKoeLhtWj9IUPy4ope4DLXC6ay4P4AZ7Po/CVeMDV4/TVePzfAjh/xpPfCU2AQCl1KshhC/tmscF9nwejavGB64ep6vG52FIdk1gjz322C32m8AeezzhuEqbwD/fNYEfwJ7Po3HV+MDV43TV+HwkrkxOYI899tgNrlIksMcee+wAO98ElFJ/TSn1hlLqe0qpr+2Iw9tKqW8qpb6hlHo1PndNKfXflFJ/HL8ff8IcfkMpdaKUev2B5z6SgxL8k7hmrymlXn5MfH5NKXUnrtM3lFJfeeBn/yDyeUMp9XOfAJ9nlVL/Qyn1baXUt5RSfzc+v5M1egSfna3Rx8aFd9suvgANfB94AciBPwS+sAMebwM3fuC5fwR8LT7+GvAPP2EOPw28DLz+/+IAfAX4z4g/yU8Bv/+Y+Pwa8Pc/4ne/EN+7Avh0fE/1D5nPU8DL8fEc+G583Z2s0SP47GyNPu7XriOBvwh8L4TwZgjBAb8FfHXHnC7wVeA34+PfBP7GJ/liIYT/CZz/f3L4KvCvguAV4Egp9dRj4PMwfBX4rRCCDSG8BXwPeW9/mHw+CCH8QXy8Af4IeJodrdEj+DwMn/gafVzsehN4GnjvgX/f5tEL+UkhAP9VKfW/lVJ/Jz53K4TwQXx8F7i1A14P47DLdfuVGF7/xgNHpMfKRyn1o8AXgd/nCqzRD/CBK7BGfxbsehO4KvhyCOFl4OeBX1ZK/fSDPwwSz+20jHIVOAD/DHgReAn4APj1x01AKTUD/gPw90II6wd/tos1+gg+O1+jPyt2vQncAZ594N/PxOceK0IId+L3E+C3kTDt3kX4GL+fPG5ej+Cwk3ULIdwLIYwhhAn4F3wYzj4WPkqpDLng/k0I4T/Gp3e2Rh/FZ9dr9HGw603gfwGfVUp9WimVA78I/M7jJKCUapRS84vHwF8FXo88fin+2i8B/+lx8op4GIffAf5WzID/FLB6ICT+xPADZ+q/iazTBZ9fVEoVSqlPA58Fvv5Dfm0F/Evgj0II//iBH+1kjR7GZ5dr9LGx68wkksX9LpIt/dUdvP4LSNb2D4FvXXAArgO/C/wx8N+Ba58wj3+LhI8eOS/+7YdxQDLe/zSu2TeBLz0mPv86vt5ryIf6qQd+/1cjnzeAn/8E+HwZCfVfA74Rv76yqzV6BJ+drdHH/dorBvfY4wnHro8De+yxx46x3wT22OMJx34T2GOPJxz7TWCPPZ5w7DeBPfZ4wrHfBPbY4wnHfhPYY48nHPtNYI89nnD8Ceqk7gIjZr1IAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize results with TRTorch/TensorRT\n", + "plot_results(best_results_per_input_trt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We get similar results as before!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## 6. Measuring Speedup\n", + "We can run the benchmark function again to see the speedup gained! Compare this result with the same batch-size of input in the case without TRTorch/TensorRT above." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warm up ...\n", + "Start timing ...\n", + "Iteration 100/1000, avg batch time 72.94 ms\n", + "Iteration 200/1000, avg batch time 72.95 ms\n", + "Iteration 300/1000, avg batch time 73.00 ms\n", + "Iteration 400/1000, avg batch time 73.06 ms\n", + "Iteration 500/1000, avg batch time 73.10 ms\n", + "Iteration 600/1000, avg batch time 73.14 ms\n", + "Iteration 700/1000, avg batch time 73.17 ms\n", + "Iteration 800/1000, avg batch time 73.18 ms\n", + "Iteration 900/1000, avg batch time 73.19 ms\n", + "Iteration 1000/1000, avg batch time 73.21 ms\n", + "Input shape: torch.Size([128, 3, 300, 300])\n", + "Output location prediction size: torch.Size([128, 4, 8732])\n", + "Output label prediction size: torch.Size([128, 81, 8732])\n", + "Average batch time: 73.21 ms\n" + ] + } + ], + "source": [ + "batch_size = 128\n", + "\n", + "# Recompiling with batch_size we use for evaluating performance\n", + "trt_model = trtorch.compile(traced_model, {\n", + " \"input_shapes\": [(batch_size, 3, 300, 300)],\n", + " \"op_precision\": torch.half, # Run with FP16\n", + " \"workspace_size\": 1 << 20\n", + "})\n", + "\n", + "benchmark(trt_model, input_shape=(batch_size, 3, 300, 300), nruns=1000, dtype=\"fp16\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## 7. Conclusion\n", + "\n", + "In this notebook, we have walked through the complete process of compiling a TorchScript SSD300 model with TRTorch, and tested the performance impact of the optimization. We find that using the TRTorch compiled model, we gain significant speedup in inference without any noticeable drop in performance!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Details\n", + "For detailed information on model input and output,\n", + "training recipies, inference and performance visit:\n", + "[github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD)\n", + "and/or [NGC](https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_pytorch)\n", + "\n", + "### References\n", + "\n", + " - [SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) paper\n", + " - [Speed/accuracy trade-offs for modern convolutional object detectors](https://arxiv.org/abs/1611.10012) paper\n", + " - [SSD on NGC](https://ngc.nvidia.com/catalog/model-scripts/nvidia:ssd_for_pytorch)\n", + " - [SSD on github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/v0.3.0/_sources/contributors/conversion.rst.txt b/docs/v0.3.0/_sources/contributors/conversion.rst.txt new file mode 100644 index 0000000000..155e07cbb3 --- /dev/null +++ b/docs/v0.3.0/_sources/contributors/conversion.rst.txt @@ -0,0 +1,52 @@ +.. _conversion: + +Conversion Phase +================== + +Once the graph has be simplified to a form thats easy to convert, we then set up a conversion context +to manage the construction of a TensorRT ``INetworkDefinition`` from the blocks nodes. The conversion context +records the set of converted nodes, block inputs and outputs and other information about the conversion +of the graph. This data is then used to help converters link together layers and also hold build time +information like weights required to construct the engine. After the context is created, the block +converter starts iterating through the list of nodes, for each node, the converter will look at its +inputs and assemble an array of resources to pass to the converter. Inputs can be in a couple of states: + +* The input is a block parameter + + * In this case the input should have already been stored in as an IValue in the + conversion context ``evaluated_value_map``. The conversion stage will add the IValue to the list of args for the + converter + +* The input is an output of a node that has already been converted + + * In this case the ITensor of the output has added to the to the ``value_tensor_map``, + The conversion stage will add the ITensor to the list of args for the converter + +* The input is from a node that produces a static value + + * There are nodes that produce static values, typically used to store parameters for operators, we need to + evaluate these nodes at conversion time to be able to convert a op. The conversion system will look for a node + evaluator in the evaluator registry and run it on the node. The IValue produced will be entered in the + conversion context ``evaluated_value_map`` and added to the list of args for the converter. If the node + to be evaluated takes inputs, the conversion stage will recursively resolve dependencies until the final + static value has been evaluated + +* The input is from a node that has not been converted + * TRTorch will error out here + +Node Evaluation +----------------- +There are some nodes that contain static data and are resources for operations. These can be evaluated at +conversion time so that you can use those values when doing node conversion. In theory any node kind can have +a conversion time evaluator as long as it produces a static IValue, This IValue will be stored in the conversion +context so it can be consumed by any node that takes the evaluated node as an input. Common node types are +``prim::Constant`` which emits a constant and ``prim::ListConstruct`` which makes lists. + +Node Converters +---------------- + +Node converters map JIT nodes to layers or subgraphs of layers. They then associate outputs from the JIT graph +and the TRT graph together in the conversion context. This allows the conversion stage to assemble the inputs +for the next node. There are some cases where a node produces an output that is not a Tensor but a static result +from a calculation done on inputs which need to be converted first. In this case the converter may associate the outputs in +the ``evaluated_value_map`` instead of the ``value_tensor_map``. For more information take a look at: :ref:`writing_converters` \ No newline at end of file diff --git a/docs/v0.3.0/_sources/contributors/lowering.rst.txt b/docs/v0.3.0/_sources/contributors/lowering.rst.txt new file mode 100644 index 0000000000..323b484795 --- /dev/null +++ b/docs/v0.3.0/_sources/contributors/lowering.rst.txt @@ -0,0 +1,191 @@ +.. _lowering: + +Lowering Phase +=============== + +The lowering phase is made up out of passes which are operations which map a graph from a high level representation +to a lower level one. Each pass does something specific for instance inlining method calls. The idea is to +significantly reduce what the conversion phase needs to be able to handle when actually mapping to TensorRT. +We aim for closer to 1->1 op conversion vs looking for applicable subgraphs, limiting the number of converters and +reduce the scope of each converter. + +You can see the effects of each pass by setting the log level to ``Level::kGraph`` + +Passes Used +------------- + +EliminateCommonSubexpression +*********************************** + + `torch/csrc/jit/passes/common_subexpression_elimination.h `_ + +Removes common subexpressions in the graph + + + +Eliminate Dead Code +************************** + + `torch/csrc/jit/passes/dead_code_elimination.h `_ + +Dead code elimination will check if a node has side effects and not delete it if it does. + +Eliminate Exeception Or Pass Pattern +*************************************** + + `trtorch/core/lowering/passes/exception_elimination.cpp `_ + +A common pattern in scripted modules are dimension gaurds which will throw execptions if +the input dimension is not what was expected. + +.. code-block:: none + + %1013 : bool = aten::ne(%1012, %24) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py:248:11 + = prim::If(%1013) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py:248:8 + block0(): + = prim::RaiseException(%23) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py:249:12 + -> () + block1(): + -> () + +Since we are resolving all of this at compile time and there are no execptions in the TensorRT graph, we just remove it. + +Eliminate Redundant Gaurds +*************************************** + + `torch/csrc/jit/passes/guard_elimination.h `_ + +Eliminate redundant guards for ops whose outputs are fully determined by their inputs i.e. if inputs to such ops are +guarded we are allowed to remove a guard on ops' outputs + +Freeze Module +*************************************** + + `torch/csrc/jit/passes/freeze_module.h `_ + +Freeze attributes and inline constants and modules. Propogates constants in the graph. + +Fuse AddMM Branches +*************************************** + + `trtorch/core/lowering/passes/fuse_addmm_branches.cpp `_ + +A common pattern in scripted modules is tensors of different dimensions use different constructions for implementing linear layers. We fuse these +different varients into a single one that will get caught by the Unpack AddMM pass. + +.. code-block:: none + + %ret : Tensor = prim::If(%622) + block0(): + %ret.1 : Tensor = aten::addmm(%self.fc.bias, %x9.1, %3677, %3, %3) + -> (%ret.1) + block1(): + %output.1 : Tensor = aten::matmul(%x9.1, %3677) + %output0.1 : Tensor = aten::add_(%output.1, %self.fc.bias, %3) + -> (%output0.1) + +We fuse this set of blocks into a graph like this: + +.. code-block:: none + + %ret : Tensor = aten::addmm(%self.fc.bias, %x9.1, %3677, %3, %3) + +Fuse Linear +*************************************** + + `torch/csrc/jit/passes/fuse_linear.h `_ + +Match the ``aten::linear`` pattern and fuse it into a single ``aten::linear`` +This pass fuse the addmm or matmul + add generated by JIT back to linear + +Fuse Flatten Linear +*************************************** + + `trtorch/core/lowering/passes/fuse_flatten_linear.cpp `_ + +TensorRT implicity flattens input layers into fully connected layers when they are higher than 1D. So when there is a +``aten::flatten`` -> ``aten::linear`` pattern we remove the ``aten::flatten``. + +Lower Graph +*************************************** + + `torch/csrc/jit/passes/lower_graph.h `_ + +Given a graph with of a method which first argument is %self, lower it to a graph where +all attributes accesses are replaced with explicit inputs of the graph +(rather than results of prim::GetAttr executed on %self). Returns a tuple +(graph, parameters) where the last module.parameters.size() inputs to the +graph are the trainable parameters used in this method. The remaining inputs +are the true inputs to the function. + +Lower Tuples +*************************************** + + `torch/csrc/jit/passes/lower_tuples.h `_ + +* ``LowerSimpleTuples``: + +Removes tuples where TupleConstruct and TupleUnpack are matched but leaves tuples in place across if statements, loops, and as inputs/outputs + +* ``LowerAllTuples``: + +Removes _all_ tuples and raises an error if some cannot be removed, this is used by ONNX to ensure there are not tuples before conversion, but will not work on graphs whose inputs contain tuples. + +Peephole Optimze +*************************************** + + `torch/csrc/jit/passes/peephole_optimze.h `_ + +The intent for this optimization pass is to catch all of the small, easy to catch peephole optimizations you might be interested in doing. + +Right now, it does: + - Eliminate no-op 'expand' nodes + - Simply x.t().t() to x + + +Remove Contiguous +*************************************** + + `trtorch/core/lowering/passes/remove_contiguous.cpp `_ + +Removes contiguous operators since we are doing TensorRT memory is already contiguous. + + +Remove Dropout +*************************************** + + `trtorch/core/lowering/passes/remove_dropout.cpp `_ + +Removes dropout operators since we are doing inference. + +Remove To +*************************************** + + `trtorch/core/lowering/passes/remove_to.cpp `_ + +Removes ``aten::to`` operators that do casting, since TensorRT mangages it itself. It is important that this is one of the last passes run so that +other passes have a change to move required cast operators out of the main namespace. + +Unpack AddMM +*************************************** + + `trtorch/core/lowering/passes/unpack_addmm.cpp `_ + +Unpacks ``aten::addmm`` into ``aten::matmul`` and ``aten::add_`` (with an additional ``trt::const`` +op to freeze the bias in the TensorRT graph). This lets us reuse the ``aten::matmul`` and ``aten::add_`` +converters instead of needing a dedicated converter. + +Unpack LogSoftmax +*************************************** + + `trtorch/core/lowering/passes/unpack_log_softmax.cpp `_ + +Unpacks ``aten::logsoftmax`` into ``aten::softmax`` and ``aten::log``. This lets us reuse the +``aten::softmax`` and ``aten::log`` converters instead of needing a dedicated converter. + +Unroll Loops +*************************************** + + `torch/csrc/jit/passes/loop_unrolling.h `_ + +Unrolls the operations of compatable loops (e.g. sufficently short) so that you only have to go through the loop once. \ No newline at end of file diff --git a/docs/v0.3.0/_sources/contributors/phases.rst.txt b/docs/v0.3.0/_sources/contributors/phases.rst.txt new file mode 100644 index 0000000000..09f7f7d690 --- /dev/null +++ b/docs/v0.3.0/_sources/contributors/phases.rst.txt @@ -0,0 +1,37 @@ +Compiler Phases +---------------- + +.. toctree:: + :caption: Compiler Phases + :maxdepth: 1 + :hidden: + + lowering + conversion + execution + +Lowering +^^^^^^^^^^^ +:ref:`lowering` + +The lowering is made up of a set of passes (some from PyTorch and some specific to TRTorch) +run over the graph IR to map the large PyTorch opset to a reduced opset that is easier to convert to +TensorRT. + +Conversion +^^^^^^^^^^^ +:ref:`conversion` + +In the conversion phase we traverse the lowered graph and construct an equivalent TensorRT graph. +The conversion phase is made up of three main components, a context to manage compile time data, +a evaluator library which will execute operations that can be resolved at compile time and a converter +library which maps an op from JIT to TensorRT. + +Compilation and Runtime +^^^^^^^^^^^^^^^^^^^^^^^^ +:ref:`execution` + +The final compilation phase constructs a TorchScript program to run the converted TensorRT engine. It +takes a serialized engine and instantiates it within a engine manager, then the compiler will +build out a JIT graph that references this engine and wraps it in a module to return to the user. +When the user executes the module, the JIT program run in the JIT runtime extended by TRTorch with the data providied from the user. \ No newline at end of file diff --git a/docs/v0.3.0/_sources/contributors/runtime.rst.txt b/docs/v0.3.0/_sources/contributors/runtime.rst.txt new file mode 100644 index 0000000000..ba64a9066d --- /dev/null +++ b/docs/v0.3.0/_sources/contributors/runtime.rst.txt @@ -0,0 +1,70 @@ +.. _execution: + +Runtime Phase +================ + +The Runtime phase is responsible for constructing self standing TorchScript graphs with embedded TensorRT engines and serving as the runtime +when these engines are called. The main interface accepts a serialized TensorRT engine. The execution phase +will deserialize and wrap this engine in a class which maintains a execution context for each engine +and some metadata about its inputs and outputs and is compatable with the TorchScript interpreter so that +it can be moved around and used like other TorchScript IValues. The engine is run by providing it and inputs +to the ``trt::execute_engine`` operator which will take the engine and its inputs and return the results of engine exeuction. + + +Background +------------ +PyTorch JIT's runtime is based around a stack machine, all operators pop off arguments from the stack, pass them to +some implementation of the operator then push results back onto the stack. The actual elements of the stack +are ``torch::jit::IValues``, the same type we evaluate in the conversion phase (the realization of the abstract +torch::jit::Value type). + +TensorRT Engine Executor Op +---------------------------- + +When the TRTorch is loaded, it registers an operator in the PyTorch JIT operator library called +``trt::execute_engine(Tensor[] inputs, __torch__.torch.classes.tensorrt.Engine engine) -> Tensor[]`` which takes an +instantiated engine and list of inputs. Compiled graphs store this engine in an attribute so that it is portable and serializable. +When the op is called, an instnantiated engine and input tensors are popped off the runtime stack. These inputs are passed into a generic engine execution function which +will run the tensors through the TensorRT engine and return new tensors as results. These tensors are pushed on to the +stack so that the next op whatever it is can use it. + +Constructing the Resulting Graph +----------------------------------- + +Once the engine is deserialized and instantiated, the compiler will construct a graph that will execute the engine when the module is called. +Here is an example: + +.. code-block:: + + graph(%self_1 : __torch__.torchvision.models.resnet.___torch_mangle_4847.ResNet_trt, + %input_0 : Tensor): + %1 : __torch__.torch.classes.tensorrt.Engine = prim::GetAttr[name="__torch___torchvision_models_resnet____torch_mangle_4847_ResNet_trt_engine"](%self_1) + %3 : Tensor[] = prim::ListConstruct(%input_0) + %4 : Tensor[] = trt::execute_engine(%3, %1) + %5 : Tensor = prim::ListUnpack(%4) + return (%5) + +You can see the engine attribute in the graph and the ``trt::execute_engine`` op taking a list of input tensors and an engine in +and produces a list of output tensors which is returned. When ``forward`` is called on the module this graph is executed, thereby +running the TensorRT engine. + +In the case of multiple outputs, the compiled graph may repack output tensors into a Tuple to return back to the user. + +.. code-block:: + + graph(%self_1 : __torch__.PyTorch.Detection.SSD.src.model.SSD300_trt, + %input_0 : Tensor): + %1 : __torch__.torch.classes.tensorrt.Engine = prim::GetAttr[name="__torch___PyTorch_Detection_SSD_src_model_SSD300_trt_engine"](%self_1) + %3 : Tensor[] = prim::ListConstruct(%input_0) + %4 : Tensor[] = trt::execute_engine(%3, %1) + %5 : Tensor, %6 : Tensor = prim::ListUnpack(%4) + %7 : (Tensor, Tensor) = prim::TupleConstruct(%5, %6) + return (%7) + +Serialization and Deserialization +---------------------------------- + +Serialization and deserialization of TensorRT engines embedded in TorchScript graphs are handled by the holder class for the engine and TorchBind. +When a TorchScript module is saved, the pickler will run serilization on the cuda engine and store the serialized engine in the zip file created. +When deserializing, the depickler will call a constructor for the engine holder class with the serialized engine so that it can be set up again for +execution. \ No newline at end of file diff --git a/docs/v0.3.0/_sources/contributors/system_overview.rst.txt b/docs/v0.3.0/_sources/contributors/system_overview.rst.txt new file mode 100644 index 0000000000..75c60501ab --- /dev/null +++ b/docs/v0.3.0/_sources/contributors/system_overview.rst.txt @@ -0,0 +1,29 @@ +.. _system_overview: + +System Overview +================ + +TRTorch is primarily a C++ Library with a Python API planned. We use Bazel as our build system and target Linux x86_64 and +Linux aarch64 (only natively) right now. The compiler we use is GCC 7.5.0 and the library is untested with compilers before that +version so there may be compilation errors if you try to use an older compiler. + +The repository is structured into: + +* core: Main compiler source code +* cpp: C++ API +* tests: tests of the C++ API, the core and converters +* py: Python API +* notebooks: Example applications built with TRTorch +* docs: Documentation +* docsrc: Documentation Source +* third_party: BUILD files for dependency libraries +* toolchains: Toolchains for different platforms + + +The C++ API is unstable and subject to change until the library matures, though most work is done under the hood in the core. + +The core has a couple major parts: The top level compiler interface which coordinates ingesting a module, lowering, +converting and generating a new module and returning it back to the user. The there are the three main phases of the +compiler, the lowering phase, the conversion phase, and the execution phase. + +.. include:: phases.rst \ No newline at end of file diff --git a/docs/v0.3.0/_sources/contributors/useful_links.rst.txt b/docs/v0.3.0/_sources/contributors/useful_links.rst.txt new file mode 100644 index 0000000000..fb5bfa95d9 --- /dev/null +++ b/docs/v0.3.0/_sources/contributors/useful_links.rst.txt @@ -0,0 +1,35 @@ +.. _useful_links: + +Useful Links for TRTorch Development +===================================== + +TensorRT Available Layers and Expected Dimensions +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +* https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html#layers-matrix + +TensorRT C++ Documentation +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +* https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/index.html + +TensorRT Python Documentation (Sometimes easier to read) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +* https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/index.html + +PyTorch Functional API +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +* https://pytorch.org/docs/stable/nn.functional.html + +PyTorch native_ops +^^^^^^^^^^^^^^^^^^^^^ + +* https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/native_functions.yaml + +PyTorch IR Documentation +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +* https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/OVERVIEW.md + diff --git a/docs/v0.3.0/_sources/contributors/writing_converters.rst.txt b/docs/v0.3.0/_sources/contributors/writing_converters.rst.txt new file mode 100644 index 0000000000..251f39d882 --- /dev/null +++ b/docs/v0.3.0/_sources/contributors/writing_converters.rst.txt @@ -0,0 +1,129 @@ +.. _writing_converters: + +Writing Converters +=================== + +Background +------------ + +In the JIT IR, operations are represented as nodes in a graph. A node has inputs and outputs, represented by ``torch::jit::Values`` +which are typed abstract representation of data flowing into and out of a node. TensorRT represents its graph though the +use of ``nvinfer1::ILayers`` and ``nvinfer1::ITensors`` which are its analogues to nodes and values. The goal of +converters create new ILayers and subgraphs that do operation specified by the node and associate produced ITensors +and Values together. + +Converters +------------ + +Converters should be functions which will use a list of inputs (either ``nvinfer1::ITensors`` or ``torch::jit::IValues``) to +construct an equivalent layer to the LibTorch op. + +Converters can be registered using the ``RegisterNodeConversionPatterns`` helper class where you instantiate a +RegisterNodeConversionPatterns object and call the pattern function on it (like below) which takes a string +which describes the function schema of the op that will cause the converter to be run and a lambda or function +which will do the actual conversion: + + Note the pattern function can be chained + +.. code-block:: c++ + + auto acthardtanh TRTORCH_UNUSED = RegisterNodeConversionPatterns() + .pattern({ + "aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor)", + [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool { + auto in = args[0].ITensor(); + auto min = args[1].unwrapToDouble(); + auto max = args[2].unwrapToDouble(); + + auto new_layer = ctx->net->addActivation(*in, nvinfer1::ActivationType::kCLIP); + TRTORCH_CHECK(new_layer, "Unable to create layer for aten::hardtanh"); + + new_layer->setAlpha(min); + new_layer->setBeta(max); + + new_layer->setName(util::node_info(n).c_str()); + auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], new_layer->getOutput(0)); + + LOG_DEBUG("Output shape: " << out_tensor->getDimensions()); + return true; + } + }); + + +Converter Contract +---------------------- + +What is guaranteed to converters +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +1. In the args there will be an entry for each node input value, either a ITensor or IValue +2. Inputs will be provided in order according to the function schema + +Responsibilities of a converter +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +1. Args must be guaranteed to be a type to unwrap the Arg union without checking, typically input tensor arguments can be expected to be ITensors +2. Any weights or static values must guaranteed to be valid until the end of conversion time + + a. A helpful tool is the Weights helper class described below + +3. Converters are expected to produce an IValue or ITensor for each output of a node. The compiler will check this and produce warnings if there are Values that don't have associated ITensors or IValues. +4. Outputs must be annotated + + a. There must be an association between a JIT nodes output values and the new TRT layers output tensors in the ``value_tensor_map`` in the conversion context + +5. Name your layers + + a. Its much easier to debug when we can track which layers and nodes correspond with each other. The system we are currently using is to use the "node info" of the node as the name of the layer + +6. Name your tensors + + a. Use the output value debug name as the name for the new ITensor (again for debugging) + +Conversion Context +-------------------- + +The conversion context maintains the state of conversion, it manages the Network Definition, two maps +one that stores associations between Values and IValues (the evaluated_value_map) and one that stores +associations between Values and ITensors, and any sort of memory that needs to live until the end of +conversion. The main apis that you will interface with in converters is directly accessing the network +definition to add layers ``ctx->net`` and data association functions ``ctx->AssociateValueAndTensor()`` +and ``ctx->AssociateValueAndIValue()``, which you will use to add layers to the TRT layers and log +pairs of node outputs and static values or TensorRT layer outputs. + +Args +------- + +Arguments provided to the converter are inspectable unions of ``nvinfer1::ITensors`` and ``torch::jit::IValues`` (i.e. +abstract dataflow in the TensorRT graph and static values). You are guaranteed that you will have some +argument for each input value for the node. They are provided in the order of the function schema. +It can be expected that inputs (meaning the parameters that would be passed into the forward +function of a module in PyTorch) will be ITensors but the Arg class also has mechanisms to inspect arguments safely +before unwrapping if you are unsure. Args also have deep unwrap methods that let you get straight to the +underlying data in an IValue if you know it's safe. You can also pass in a fallback value if there is a +chance the IValue is None. IValues have been extended to be able to hold a wrapper around ITensors only in the case of TensorLists. +You can get an ITensor from an IValue by a pattern similar to this: ``ivalue.toCustomClass()->tensor()``. +You can tell if an IValue contains a Tensor or an ITensor by using ``ivalue.isTensor()`` or ``ivalue.isCustomClass()``. + + +Weights +-------------- + +Weights are used during build time, so any weights need to be guaranteed to live until the end of the conversion phase. +TensorRT also uses its own weights structure to hold the weights. There is a wrapper around this class available +to converts which abstracts a lot of this. + +The weights wrapper class can accept either ``at::Tensors`` or singular values (right now). You also need to pass the +conversion context when constructing these weights because internally the weights class will allocate memory managed +by the conversion context to store a copy of the tensor data. This data gets freed when the conversion context +destructor gets destroyed so converters don't really need to think about it. + +There is metadata generated from the shape of the input data which becomes useful in interfacing with TensorRT, such +as number of input maps, number of output maps and kernel shape. + +Other advice +-------------- + +You have the benefit of the full aten library when dealing with weights and other static values. This means that you +can do quite a bit of work during conversion time to produce efficient conversion. A good example is batch_norm +converter where the converter does fusion of operations with PyTorch before creating the TensorRT layer. \ No newline at end of file diff --git a/docs/v0.3.0/_sources/index.rst.txt b/docs/v0.3.0/_sources/index.rst.txt new file mode 100644 index 0000000000..49b20d143e --- /dev/null +++ b/docs/v0.3.0/_sources/index.rst.txt @@ -0,0 +1,106 @@ +.. TRTorch documentation master file, created by + sphinx-quickstart on Mon May 4 13:43:16 2020. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +TRTorch +======== +Ahead-of-time compilation of TorchScript / PyTorch JIT for NVIDIA GPUs +----------------------------------------------------------------------- +TRTorch is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA's TensorRT Deep Learning Optimizer and Runtime. +Unlike PyTorch's Just-In-Time (JIT) compiler, TRTorch is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your +TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into an module targeting +a TensorRT engine. TRTorch operates as a PyTorch extention and compiles modules that integrate into the JIT runtime seamlessly. +After compilation using the optimized graph should feel no different than running a TorchScript module. +You also have access to TensorRT's suite of configurations at compile time, so you are able to specify +operating precision (FP32/FP16/INT8) and other settings for your module. + +More Information / System Architecture: + +* `GTC 2020 Talk `_ + +Getting Started +---------------- +* :ref:`installation` +* :ref:`getting_started` +* :ref:`ptq` +* :ref:`trtorchc` +* :ref:`use_from_pytorch` +* :ref:`runtime` +* :ref:`using_dla` + +.. toctree:: + :caption: Getting Started + :maxdepth: 1 + :hidden: + + tutorials/installation + tutorials/getting_started + tutorials/ptq + tutorials/trtorchc + tutorials/use_from_pytorch + tutorials/runtime + tutorials/using_dla + _notebooks/lenet + +.. toctree:: + :caption: Notebooks + :maxdepth: 1 + :hidden: + + _notebooks/lenet-getting-started + _notebooks/ssd-object-detection-demo + + +Python API Documenation +------------------------ +* :ref:`trtorch_py` + +.. toctree:: + :caption: Python API Documenation + :maxdepth: 0 + :hidden: + + py_api/trtorch + py_api/logging + +C++ API Documenation +---------------------- +* :ref:`namespace_trtorch` + +.. toctree:: + :caption: C++ API Documenation + :maxdepth: 1 + :hidden: + + _cpp_api/trtorch_cpp + +Contributor Documentation +-------------------------------- +* :ref:`system_overview` +* :ref:`writing_converters` +* :ref:`useful_links` + +.. toctree:: + :caption: Contributor Documentation + :maxdepth: 1 + :hidden: + + contributors/system_overview + contributors/writing_converters + contributors/useful_links + +Indices +---------------- +* :ref:`supported_ops` +* :ref:`genindex` +* :ref:`search` + +.. toctree:: + :caption: Indices + :maxdepth: 1 + :hidden: + + indices/supported_ops + + diff --git a/docs/v0.3.0/_sources/indices/supported_ops.rst.txt b/docs/v0.3.0/_sources/indices/supported_ops.rst.txt new file mode 100644 index 0000000000..0bd483297b --- /dev/null +++ b/docs/v0.3.0/_sources/indices/supported_ops.rst.txt @@ -0,0 +1,232 @@ + +.. _supported_ops: + +================================= +Operators Supported +================================= + + +Operators Currently Supported Through Converters +------------------------------------------------- + +- aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> (Tensor) +- aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> (Tensor) +- aten::abs(Tensor self) -> (Tensor) +- aten::acos(Tensor self) -> (Tensor) +- aten::acosh(Tensor self) -> (Tensor) +- aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor) +- aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor) +- aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) +- aten::add.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) +- aten::add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> (Tensor(a!)) +- aten::asin(Tensor self) -> (Tensor) +- aten::asinh(Tensor self) -> (Tensor) +- aten::atan(Tensor self) -> (Tensor) +- aten::atanh(Tensor self) -> (Tensor) +- aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], bool ceil_mode=False, bool count_include_pad=True) -> (Tensor) +- aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) +- aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) +- aten::batch_norm(Tensor input, Tensor? gamma, Tensor? beta, Tensor? mean, Tensor? var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor) +- aten::bmm(Tensor self, Tensor mat2) -> (Tensor) +- aten::cat(Tensor[] tensors, int dim=0) -> (Tensor) +- aten::ceil(Tensor self) -> (Tensor) +- aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor) +- aten::clamp_max(Tensor self, Scalar max) -> (Tensor) +- aten::clamp_min(Tensor self, Scalar min) -> (Tensor) +- aten::cos(Tensor self) -> (Tensor) +- aten::cosh(Tensor self) -> (Tensor) +- aten::cumsum(Tensor self, int dim, *, int? dtype=None) -> (Tensor) +- aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::div.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::div_.Scalar(Tensor(a!) self, Scalar other) -> (Tensor(a!)) +- aten::div_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!)) +- aten::elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> (Tensor) +- aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor) +- aten::eq.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::eq.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::erf(Tensor self) -> (Tensor) +- aten::exp(Tensor self) -> (Tensor) +- aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> (Tensor(a)) +- aten::expand_as(Tensor(a) self, Tensor other) -> (Tensor(a)) +- aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor) +- aten::floor(Tensor self) -> (Tensor) +- aten::floor_divide(Tensor self, Tensor other) -> (Tensor) +- aten::floor_divide.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::ge.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::ge.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::gelu(Tensor self) -> (Tensor) +- aten::gt.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::gt.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor) +- aten::hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor(a!)) +- aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? gamma, Tensor? beta, float eps, bool cudnn_enabled) -> (Tensor) +- aten::le.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::le.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> (Tensor) +- aten::leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> (Tensor(a!)) +- aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> (Tensor) +- aten::log(Tensor self) -> (Tensor) +- aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor) +- aten::lt.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::lt.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::matmul(Tensor self, Tensor other) -> (Tensor) +- aten::max(Tensor self) -> (Tensor) +- aten::max.other(Tensor self, Tensor other) -> (Tensor) +- aten::max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[], int[1] dilation=[], bool ceil_mode=False) -> (Tensor) +- aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor) +- aten::max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], int[3] dilation=[], bool ceil_mode=False) -> (Tensor) +- aten::mean(Tensor self, *, int? dtype=None) -> (Tensor) +- aten::mean.dim(Tensor self, int[] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) +- aten::min(Tensor self) -> (Tensor) +- aten::min.other(Tensor self, Tensor other) -> (Tensor) +- aten::mul.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::mul.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::mul_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!)) +- aten::narrow(Tensor(a) self, int dim, int start, int length) -> (Tensor(a)) +- aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> (Tensor(a)) +- aten::ne.Scalar(Tensor self, Scalar other) -> (Tensor) +- aten::ne.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::neg(Tensor self) -> (Tensor) +- aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> (Tensor) +- aten::permute(Tensor(a) self, int[] dims) -> (Tensor(a)) +- aten::pixel_shuffle(Tensor self, int upscale_factor) -> (Tensor) +- aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor) +- aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor) +- aten::prelu(Tensor self, Tensor weight) -> (Tensor) +- aten::prod(Tensor self, *, int? dtype=None) -> (Tensor) +- aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) +- aten::reciprocal(Tensor self) -> (Tensor) +- aten::relu(Tensor input) -> (Tensor) +- aten::relu_(Tensor(a!) self) -> (Tensor(a!)) +- aten::repeat(Tensor self, int[] repeats) -> (Tensor) +- aten::replication_pad1d(Tensor self, int[2] padding) -> (Tensor) +- aten::replication_pad2d(Tensor self, int[4] padding) -> (Tensor) +- aten::replication_pad3d(Tensor self, int[6] padding) -> (Tensor) +- aten::reshape(Tensor self, int[] shape) -> (Tensor) +- aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) +- aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) +- aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a)) +- aten::sigmoid(Tensor input) -> (Tensor) +- aten::sigmoid_(Tensor(a!) self) -> (Tensor(a!)) +- aten::sin(Tensor self) -> (Tensor) +- aten::sinh(Tensor self) -> (Tensor) +- aten::slice.Tensor(Tensor(a) self, int dim=0, int start=0, int end=9223372036854775807, int step=1) -> (Tensor(a)) +- aten::softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor) +- aten::split(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[]) +- aten::split.Tensor(Tensor(a) self, int split_size, int dim=0) -> (Tensor[]) +- aten::split_with_sizes(Tensor(a) self, int[] split_sizes, int dim=0) -> (Tensor[]) +- aten::sqrt(Tensor self) -> (Tensor) +- aten::squeeze.dim(Tensor(a) self, int dim) -> (Tensor(a)) +- aten::stack(Tensor[] tensors, int dim=0) -> (Tensor) +- aten::sub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) +- aten::sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> (Tensor(a!)) +- aten::sum(Tensor self, *, int? dtype=None) -> (Tensor) +- aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) +- aten::tan(Tensor self) -> (Tensor) +- aten::tanh(Tensor input) -> (Tensor) +- aten::tanh_(Tensor(a!) self) -> (Tensor(a!)) +- aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices) +- aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> (Tensor(a)) +- aten::unsqueeze(Tensor(a) self, int dim) -> (Tensor(a)) +- aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor) +- aten::upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) +- aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> (Tensor) +- aten::upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) +- aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor) +- aten::upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) +- aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor) +- aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) +- aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor) +- aten::upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) +- aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor) +- aten::upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) +- aten::view(Tensor(a) self, int[] size) -> (Tensor(a)) +- trt::const(Tensor self) -> (Tensor) + +Operators Currently Supported Through Evaluators +------------------------------------------------- + +- aten::Bool.float(float b) -> (bool) +- aten::Bool.int(int a) -> (bool) +- aten::Float.Scalar(Scalar a) -> float +- aten::Float.bool(bool a) -> float +- aten::Float.int(int a) -> float +- aten::__and__(int a, int b) -> (bool) +- aten::__getitem__.t(t[](a) list, int idx) -> (t(*)) +- aten::__is__(t1 self, t2 obj) -> bool +- aten::__isnot__(t1 self, t2 obj) -> bool +- aten::__not__(bool self) -> bool +- aten::__or__(int a, int b) -> (bool) +- aten::__round_to_zero_floordiv(int a, int b) -> (int) +- aten::__xor__(int a, int b) -> (bool) +- aten::add.float(float a, float b) -> (float) +- aten::add.int(int a, int b) -> (int) +- aten::add_.t(t[](a!) self, t[] b) -> (t[]) +- aten::append.t(t[](a!) self, t(c -> *) el) -> (t[](a!)) +- aten::arange(Scalar end, *, int? dtype=None, int? layout=None, + Device? device=None, bool? pin_memory=None) -> (Tensor) +- aten::arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, + Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) +- aten::arange.start_step(Scalar start, Scalar end, Scalar step, *, ScalarType? dtype=None, + Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) +- aten::dim(Tensor self) -> int +- aten::div.float(float a, float b) -> (float) +- aten::div.int(int a, int b) -> (float) +- aten::eq.bool(bool a, bool b) -> (bool) +- aten::eq.float(float a, float b) -> (bool) +- aten::eq.float_int(float a, int b) -> (bool) +- aten::eq.int(int a, int b) -> (bool) +- aten::eq.int_float(int a, float b) -> (bool) +- aten::floor.float(float a) -> (int) +- aten::floor.int(int a) -> (int) +- aten::floordiv.float(float a, float b) -> (int) +- aten::floordiv.int(int a, int b) -> (int) +- aten::ge.bool(bool a, bool b) -> (bool) +- aten::ge.float(float a, float b) -> (bool) +- aten::ge.float_int(float a, int b) -> (bool) +- aten::ge.int(int a, int b) -> (bool) +- aten::ge.int_float(int a, float b) -> (bool) +- aten::gt.bool(bool a, bool b) -> (bool) +- aten::gt.float(float a, float b) -> (bool) +- aten::gt.float_int(float a, int b) -> (bool) +- aten::gt.int(int a, int b) -> (bool) +- aten::gt.int_float(int a, float b) -> (bool) +- aten::le.bool(bool a, bool b) -> (bool) +- aten::le.float(float a, float b) -> (bool) +- aten::le.float_int(float a, int b) -> (bool) +- aten::le.int(int a, int b) -> (bool) +- aten::le.int_float(int a, float b) -> (bool) +- aten::len.t(t[] a) -> (int) +- aten::lt.bool(bool a, bool b) -> (bool) +- aten::lt.float(float a, float b) -> (bool) +- aten::lt.float_int(float a, int b) -> (bool) +- aten::lt.int(int a, int b) -> (bool) +- aten::lt.int_float(int a, float b) -> (bool) +- aten::mul.float(float a, float b) -> (float) +- aten::mul.int(int a, int b) -> (int) +- aten::ne.bool(bool a, bool b) -> (bool) +- aten::ne.float(float a, float b) -> (bool) +- aten::ne.float_int(float a, int b) -> (bool) +- aten::ne.int(int a, int b) -> (bool) +- aten::ne.int_float(int a, float b) -> (bool) +- aten::neg.int(int a) -> (int) +- aten::numel(Tensor self) -> int +- aten::size(Tensor self) -> (int[]) +- aten::size.int(Tensor self, int dim) -> (int) +- aten::slice.t(t[] l, int start, int end=9223372036854775807, int step=1) -> (t[]) +- aten::sub.float(float a, float b) -> (float) +- aten::sub.int(int a, int b) -> (int) +- aten::t(Tensor self) -> Tensor +- prim::max.bool(bool a, bool b) -> (bool) +- prim::max.float(float a, float b) -> (bool) +- prim::max.float_int(float a, int b) -> (bool) +- prim::max.int(int a, int b) -> (bool) +- prim::max.int_float(int a, float b) -> (bool) +- prim::max.self_int(int[] self) -> (int) +- prim::min.bool(bool a, bool b) -> (bool) +- prim::min.float(float a, float b) -> (bool) +- prim::min.float_int(float a, int b) -> (bool) +- prim::min.int(int a, int b) -> (bool) +- prim::min.int_float(int a, float b) -> (bool) +- prim::min.self_int(int[] self) -> (int) +- prim::shape(Tensor a) -> (int[]) diff --git a/docs/v0.3.0/_sources/py_api/logging.rst.txt b/docs/v0.3.0/_sources/py_api/logging.rst.txt new file mode 100644 index 0000000000..1d3fee38d1 --- /dev/null +++ b/docs/v0.3.0/_sources/py_api/logging.rst.txt @@ -0,0 +1,11 @@ +trtorch.logging +---------------------- + +.. currentmodule:: trtorch.logging + +.. automodule:: trtorch.logging + :members: + :undoc-members: + :show-inheritance: + +.. autoclass:: py trtorch.logging.Level \ No newline at end of file diff --git a/docs/v0.3.0/_sources/py_api/trtorch.rst.txt b/docs/v0.3.0/_sources/py_api/trtorch.rst.txt new file mode 100644 index 0000000000..6063b4c69c --- /dev/null +++ b/docs/v0.3.0/_sources/py_api/trtorch.rst.txt @@ -0,0 +1,44 @@ +.. _trtorch_py: + +trtorch +=============== + +.. automodule:: trtorch + :members: + :undoc-members: + :show-inheritance: + +Functions +------------ + +.. autofunction:: set_device + +.. autofunction:: compile + +.. autofunction:: convert_method_to_trt_engine + +.. autofunction:: check_method_op_support + +.. autofunction:: get_build_info + +.. autofunction:: dump_build_info + +.. autofunction:: TensorRTCompileSpec + +Enums +------- + +.. autoclass:: dtype + +.. autoclass:: DeviceType + +.. autoclass:: EngineCapability + +Submodules +---------- + +.. toctree:: + :maxdepth: 1 + + logging + diff --git a/docs/v0.3.0/_sources/tutorials/getting_started.rst.txt b/docs/v0.3.0/_sources/tutorials/getting_started.rst.txt new file mode 100644 index 0000000000..a1978927b1 --- /dev/null +++ b/docs/v0.3.0/_sources/tutorials/getting_started.rst.txt @@ -0,0 +1,531 @@ +.. _getting_started: + +Getting Started +================ + +If you haven't already, aquire a tarball of the library by following the instructions in :ref:`Installation` + +Background +********************* + +.. _creating_a_ts_mod: +Creating a TorchScript Module +------------------------------ + +Once you have a trained model you want to compile with TRTorch, you need to start by converting that model from Python code to TorchScript code. +PyTorch has detailed documentation on how to do this https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html but briefly here is the +here is key background information and the process: + +PyTorch programs are based around ``Module`` s which can be used to compose higher level modules. ``Modules`` contain a constructor to set up the modules, parameters and sub-modules +and a forward function which describes how to use the parameters and submodules when the module is invoked. + +For example, we can define a LeNet module like this: + +.. code-block:: python + :linenos: + + import torch.nn as nn + import torch.nn.functional as F + + class LeNetFeatExtractor(nn.Module): + def __init__(self): + super(LeNetFeatExtractor, self).__init__() + self.conv1 = nn.Conv2d(1, 6, 3) + self.conv2 = nn.Conv2d(6, 16, 3) + + def forward(self, x): + x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) + x = F.max_pool2d(F.relu(self.conv2(x)), 2) + return x + + class LeNetClassifier(nn.Module): + def __init__(self): + super(LeNetClassifier, self).__init__() + self.fc1 = nn.Linear(16 * 6 * 6, 120) + self.fc2 = nn.Linear(120, 84) + self.fc3 = nn.Linear(84, 10) + + def forward(self, x): + x = torch.flatten(x,1) + x = F.relu(self.fc1(x)) + x = F.relu(self.fc2(x)) + x = self.fc3(x) + return x + + class LeNet(nn.Module): + def __init__(self): + super(LeNet, self).__init__() + self.feat = LeNetFeatExtractor() + self.classifer = LeNetClassifier() + + def forward(self, x): + x = self.feat(x) + x = self.classifer(x) + return x + +. + + Obviously you may want to consolidate such a simple model into a single module but we can see the composability of PyTorch here + +From here are two pathways for going from PyTorch Python code to TorchScript code: Tracing and Scripting. + +Tracing follows the path of execution when the module is called and records what happens. +To trace an instance of our LeNet module, we can call ``torch.jit.trace`` with an example input. + +.. code-block:: python + + import torch.jit + + model = LeNet() + input_data = torch.empty([1,1,32,32]) + traced_model = torch.jit.trace(model, input_data) + +Scripting actually inspects your code with a compiler and generates an equivalent TorchScript program. The difference is that since tracing +is following the execution of your module, it cannot pick up control flow for instance. By working from the Python code, the compiler can +include these components. We can run the script compiler on our LeNet module by calling ``torch.jit.script`` + +.. code-block:: python + + import torch.jit + + model = LeNet() + script_model = torch.jit.script(model) + +There are reasons to use one path or another, the PyTorch documentation has information on how to choose. From a TRTorch prespective, there is +better support (i.e your module is more likely to compile) for traced modules because it doesn't include all the complexities of a complete +programming language, though both paths supported. + +After scripting or tracing your module, you are given back a TorchScript Module. This contains the code and parameters used to run the module stored +in a intermediate representation that TRTorch can consume. + +Here is what the LeNet traced module IR looks like: + +.. code-block:: none + + graph(%self.1 : __torch__.___torch_mangle_10.LeNet, + %input.1 : Float(1, 1, 32, 32)): + %129 : __torch__.___torch_mangle_9.LeNetClassifier = prim::GetAttr[name="classifer"](%self.1) + %119 : __torch__.___torch_mangle_5.LeNetFeatExtractor = prim::GetAttr[name="feat"](%self.1) + %137 : Tensor = prim::CallMethod[name="forward"](%119, %input.1) + %138 : Tensor = prim::CallMethod[name="forward"](%129, %137) + return (%138) + +and the LeNet scripted module IR: + +.. code-block:: none + + graph(%self : __torch__.LeNet, + %x.1 : Tensor): + %2 : __torch__.LeNetFeatExtractor = prim::GetAttr[name="feat"](%self) + %x.3 : Tensor = prim::CallMethod[name="forward"](%2, %x.1) # x.py:38:12 + %5 : __torch__.LeNetClassifier = prim::GetAttr[name="classifer"](%self) + %x.5 : Tensor = prim::CallMethod[name="forward"](%5, %x.3) # x.py:39:12 + return (%x.5) + +You can see that the IR preserves the module structure we have in our python code. + +.. _ts_in_py: + +Working with TorchScript in Python +----------------------------------- + +TorchScript Modules are run the same way you run normal PyTorch modules. You can run the forward pass using the +``forward`` method or just calling the module ``torch_scirpt_module(in_tensor)`` The JIT compiler will compile +and optimize the module on the fly and then returns the results. + +Saving TorchScript Module to Disk +----------------------------------- + +For either traced or scripted modules, you can save the module to disk with the following command + +.. code-block:: python + + import torch.jit + + model = LeNet() + script_model = torch.jit.script(model) + script_model.save("lenet_scripted.ts") + +Using TRTorch +********************* + +Now that there is some understanding of TorchScript and how to use it, we can now complete the pipeline and compile +our TorchScript into TensorRT accelerated TorchScript. Unlike the PyTorch JIT compiler, TRTorch is an Ahead-of-Time +(AOT) compiler. This means that unlike with PyTorch where the JIT compiler compiles from the high level PyTorch IR +to kernel implementation at runtime, modules that are to be compiled with TRTorch are compiled fully before runtime +(consider how you use a C compiler for an analogy). TRTorch has 3 main interfaces for using the compiler. You can +use a CLI application similar to how you may use GCC called ``trtorchc``, or you can embed the compiler in a model +freezing application / pipeline. + +.. _trtorch_quickstart: + +[TRTorch Quickstart] Compiling TorchScript Modules with ``trtorchc`` +--------------------------------------------------------------------- + +An easy way to get started with TRTorch and to check if your model can be supported without extra work is to run it through +``trtorchc``, which supports almost all features of the compiler from the command line including post training quantization +(given a previously created calibration cache). For example we can compile our lenet model by setting our preferred operating +precision and input size. This new TorchScript file can be loaded into Python (note: you need to ``import trtorch`` before loading +these compiled modules because the compiler extends the PyTorch the deserializer and runtime to execute compiled modules). + +.. code-block:: shell + + ❯ trtorchc -p f16 lenet_scripted.ts trt_lenet_scripted.ts "(1,1,32,32)" + + ❯ python3 + Python 3.6.9 (default, Apr 18 2020, 01:56:04) + [GCC 8.4.0] on linux + Type "help", "copyright", "credits" or "license" for more information. + >>> import torch + >>> import trtorch + >>> ts_model = torch.jit.load(“trt_lenet_scripted.ts”) + >>> ts_model(torch.randn((1,1,32,32)).to(“cuda”).half()) + +You can learn more about ``trtorchc`` usage here: :ref:`trtorchc` + +.. _compile_py: + +Compiling with TRTorch in Python +--------------------------------- + +To compile your TorchScript module with TRTorch embedded into Python, all you need to do is provide the module and some compiler settings +to TRTorch and you will be returned an optimized TorchScript module to run or add into another PyTorch module. The +only required setting is the input size or input range which is defined as a list of either list types like ``lists``, ``tuples`` +or PyTorch ``size`` objects or dictionaries of minimum, optimial and maximum sizes. You can also specify settings such as +operating precision for the engine or target device. After compilation you can save the module just like any other module +to load in a deployment application. In order to load a TensorRT/TorchScript module, make sure you first import ``trtorch``. + +.. code-block:: python + + import trtorch + + ... + + script_model.eval() # torch module needs to be in eval (not training) mode + + compile_settings = { + "input_shapes": [ + { + "min": [1, 1, 16, 16], + "opt": [1, 1, 32, 32], + "max": [1, 1, 64, 64] + }, + ], + "op_precision": torch.half # Run with fp16 + } + + trt_ts_module = trtorch.compile(script_model, compile_settings) + + input_data = input_data.to('cuda').half() + result = trt_ts_module(input_data) + torch.jit.save(trt_ts_module, "trt_ts_module.ts") + +.. code-block:: python + + # Deployment application + import torch + import trtorch + + trt_ts_module = torch.jit.load("trt_ts_module.ts") + input_data = input_data.to('cuda').half() + result = trt_ts_module(input_data) + +.. _ts_in_cc: + +Working with TorchScript in C++ +-------------------------------- + +If we are developing an application to deploy with C++, we can save either our traced or scripted module using ``torch.jit.save`` +which will serialize the TorchScript code, weights and other information into a package. This is also where our dependency on Python ends. + +.. code-block:: python + + torch_script_module.save("lenet.jit.pt") + +From here we can now load our TorchScript module in C++ + +.. code-block:: c++ + + #include // One-stop header. + + #include + #include + + int main(int argc, const char* argv[]) { + torch::jit::Module module; + try { + // Deserialize the ScriptModule from a file using torch::jit::load(). + module = torch::jit::load(""); + } + catch (const c10::Error& e) { + std::cerr << "error loading the model\n"; + return -1; + } + + std::cout << "ok\n"; + + +You can do full training and inference in C++ with PyTorch / LibTorch if you would like, you can even define your modules in C++ and +have access to the same powerful tensor library that backs PyTorch. (For more information: https://pytorch.org/cppdocs/). +For instance we can do inference with our LeNet module like this: + +.. code-block:: c++ + + mod.eval(); + torch::Tensor in = torch::randn({1, 1, 32, 32}); + auto out = mod.forward(in); + +and to run on the GPU: + +.. code-block:: c++ + + mod.eval(); + mod.to(torch::kCUDA); + torch::Tensor in = torch::randn({1, 1, 32, 32}, torch::kCUDA); + auto out = mod.forward(in); + +As you can see it is pretty similar to the Python API. When you call the ``forward`` method, you invoke the PyTorch JIT compiler, which will optimize and run your TorchScript code. + +.. _compile_cpp: + +Compiling with TRTorch in C++ +------------------------------ +We are also at the point were we can compile and optimize our module with TRTorch, but instead of in a JIT fashion we must do it ahead-of-time (AOT) i.e. before we start doing actual inference work +since it takes a bit of time to optimize the module, it would not make sense to do this every time you run the module or even the first time you run it. + +With out module loaded, we can feed it into the TRTorch compiler. When we do so we must provide some information on the expected input size and also configure any additional settings. + +.. code-block:: c++ + + #include "torch/script.h" + #include "trtorch/trtorch.h" + ... + + mod.to(at::kCUDA); + mod.eval(); + + auto in = torch::randn({1, 1, 32, 32}, {torch::kCUDA}); + auto trt_mod = trtorch::CompileGraph(mod, std::vector{{in.sizes()}}); + auto out = trt_mod.forward({in}); + +Thats it! Now the graph runs primarily not with the JIT compiler but using TensorRT (though we execute the graph using the JIT runtime). + +We can also set settings like operating precision to run in FP16. + +.. code-block:: c++ + + #include "torch/script.h" + #include "trtorch/trtorch.h" + ... + + mod.to(at::kCUDA); + mod.eval(); + + auto in = torch::randn({1, 1, 32, 32}, {torch::kCUDA}).to(torch::kHALF); + auto input_sizes = std::vector({in.sizes()}); + trtorch::CompileSpec info(input_sizes); + info.op_precision = torch::kHALF; + auto trt_mod = trtorch::CompileGraph(mod, info); + auto out = trt_mod.forward({in}); + +And now we are running the module in FP16 precision. You can then save the module to load later. + +.. code-block:: c++ + + trt_mod.save("") + +TRTorch compiled TorchScript modules are loaded in the same way as normal TorchScript module. Make sure your deployment application is linked against ``libtrtorch.so`` + +.. code-block:: c++ + + #include "torch/script.h" + #include "trtorch/trtorch.h" + + int main(int argc, const char* argv[]) { + torch::jit::Module module; + try { + // Deserialize the ScriptModule from a file using torch::jit::load(). + module = torch::jit::load(""); + } + catch (const c10::Error& e) { + std::cerr << "error loading the model\n"; + return -1; + } + + torch::Tensor in = torch::randn({1, 1, 32, 32}, torch::kCUDA); + auto out = mod.forward(in); + + std::cout << "ok\n"; + } + +If you want to save the engine produced by TRTorch to use in a TensorRT application you can use the ``ConvertGraphToTRTEngine`` API. + +.. code-block:: c++ + + #include "torch/script.h" + #include "trtorch/trtorch.h" + ... + + mod.to(at::kCUDA); + mod.eval(); + + auto in = torch::randn({1, 1, 32, 32}, {torch::kCUDA}).to(torch::kHALF); + auto input_sizes = std::vector({in.sizes()}); + trtorch::CompileSpec info(input_sizes); + info.op_precision = torch::kHALF; + auto trt_mod = trtorch::ConvertGraphToTRTEngine(mod, "forward", info); + std::ofstream out("/tmp/engine_converted_from_jit.trt"); + out << engine; + out.close(); + +.. _under_the_hood: + +Under The Hood +--------------- + +When a module is provided to TRTorch, the compiler starts by mapping a graph like you saw above to a graph like this: + +.. code-block:: none + + graph(%input.2 : Tensor): + %2 : Float(84, 10) = prim::Constant[value=]() + %3 : Float(120, 84) = prim::Constant[value=]() + %4 : Float(576, 120) = prim::Constant[value=]() + %5 : int = prim::Constant[value=-1]() # x.py:25:0 + %6 : int[] = prim::Constant[value=annotate(List[int], [])]() + %7 : int[] = prim::Constant[value=[2, 2]]() + %8 : int[] = prim::Constant[value=[0, 0]]() + %9 : int[] = prim::Constant[value=[1, 1]]() + %10 : bool = prim::Constant[value=1]() # ~/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py:346:0 + %11 : int = prim::Constant[value=1]() # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0 + %12 : bool = prim::Constant[value=0]() # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0 + %self.classifer.fc3.bias : Float(10) = prim::Constant[value= 0.0464 0.0383 0.0678 0.0932 0.1045 -0.0805 -0.0435 -0.0818 0.0208 -0.0358 [ CUDAFloatType{10} ]]() + %self.classifer.fc2.bias : Float(84) = prim::Constant[value=]() + %self.classifer.fc1.bias : Float(120) = prim::Constant[value=]() + %self.feat.conv2.weight : Float(16, 6, 3, 3) = prim::Constant[value=]() + %self.feat.conv2.bias : Float(16) = prim::Constant[value=]() + %self.feat.conv1.weight : Float(6, 1, 3, 3) = prim::Constant[value=]() + %self.feat.conv1.bias : Float(6) = prim::Constant[value= 0.0530 -0.1691 0.2802 0.1502 0.1056 -0.1549 [ CUDAFloatType{6} ]]() + %input0.4 : Tensor = aten::_convolution(%input.2, %self.feat.conv1.weight, %self.feat.conv1.bias, %9, %8, %9, %12, %8, %11, %12, %12, %10) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py:346:0 + %input0.5 : Tensor = aten::relu(%input0.4) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0 + %input1.2 : Tensor = aten::max_pool2d(%input0.5, %7, %6, %8, %9, %12) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0 + %input0.6 : Tensor = aten::_convolution(%input1.2, %self.feat.conv2.weight, %self.feat.conv2.bias, %9, %8, %9, %12, %8, %11, %12, %12, %10) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py:346:0 + %input2.1 : Tensor = aten::relu(%input0.6) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0 + %x.1 : Tensor = aten::max_pool2d(%input2.1, %7, %6, %8, %9, %12) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0 + %input.1 : Tensor = aten::flatten(%x.1, %11, %5) # x.py:25:0 + %27 : Tensor = aten::matmul(%input.1, %4) + %28 : Tensor = trt::const(%self.classifer.fc1.bias) + %29 : Tensor = aten::add_(%28, %27, %11) + %input0.2 : Tensor = aten::relu(%29) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0 + %31 : Tensor = aten::matmul(%input0.2, %3) + %32 : Tensor = trt::const(%self.classifer.fc2.bias) + %33 : Tensor = aten::add_(%32, %31, %11) + %input1.1 : Tensor = aten::relu(%33) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0 + %35 : Tensor = aten::matmul(%input1.1, %2) + %36 : Tensor = trt::const(%self.classifer.fc3.bias) + %37 : Tensor = aten::add_(%36, %35, %11) + return (%37) + (CompileGraph) + +The graph has now been transformed from a collection of modules, each managing their own parameters into a single graph with the parameters inlined +into the graph and all of the operations laid out. TRTorch has also executed a number of optimizations and mappings to make the graph easier to translate to TensorRT. +From here the compiler can assemble the TensorRT engine by following the dataflow through the graph. + +When the graph construction phase is complete, TRTorch produces a serialized TensorRT engine. From here depending on the API, this engine is returned +to the user or moves into the graph construction phase. Here TRTorch creates a JIT Module to execute the TensorRT engine which will be instantiated and managed +by the TRTorch runtime. + +Here is the graph that you get back after compilation is complete: + +.. code-block:: none + + graph(%self_1 : __torch__.lenet, %input_0 : Tensor): + %1 : ...trt.Engine = prim::GetAttr[name="lenet"](%self_1) + %3 : Tensor[] = prim::ListConstruct(%input_0) + %4 : Tensor[] = trt::execute_engine(%3, %1) + %5 : Tensor = prim::ListUnpack(%4) + return (%5) + + +You can see the call where the engine is executed, after extracting the attribute containing the engine and constructing a list of inputs, then returns the tensors back to the user. + +.. _unsupported_ops: + +Working with Unsupported Operators +----------------------------------- + +TRTorch is a new library and the PyTorch operator library is quite large, so there will be ops that aren't supported natively by the compiler. You can either use the composition techinques +shown above to make modules are fully TRTorch supported and ones that are not and stitch the modules together in the deployment application or you can register converters for missing ops. + + You can check support without going through the full compilation pipleine using the ``trtorch::CheckMethodOperatorSupport(const torch::jit::Module& module, std::string method_name)`` api + to see what operators are not supported. ``trtorchc`` automatically checks modules with this method before starting compilation and will print out a list of operators that are not supported. + +.. _custom_converters: + +Registering Custom Converters +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Operations are mapped to TensorRT through the use of modular converters, a function that takes a node from a the JIT graph and produces an equivalent layer or subgraph in TensorRT. +TRTorch ships with a library of these converters stored in a registry, that will be executed depending on the node being parsed. For instance a ``aten::relu(%input0.4)`` instruction will trigger +the relu converter to be run on it, producing an activation layer in the TensorRT graph. But since this library is not exhaustive you may need to write your own to get TRTorch +to support your module. + +Shipped with the TRTorch distribution are the internal core API headers. You can therefore access the converter registry and add a converter for the op you need. + +For example, if we try to compile a graph with a build of TRTorch that doesn't support the flatten operation (``aten::flatten``) you may see this error: + +.. code-block:: none + + terminate called after throwing an instance of 'trtorch::Error' + what(): [enforce fail at core/conversion/conversion.cpp:109] Expected converter to be true but got false + Unable to convert node: %input.1 : Tensor = aten::flatten(%x.1, %11, %5) # x.py:25:0 (conversion.AddLayer) + Schema: aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor) + Converter for aten::flatten requested, but no such converter was found. + If you need a converter for this operator, you can try implementing one yourself + or request a converter: https://www.github.com/NVIDIA/TRTorch/issues + +We can register a converter for this operator in our application. All of the tools required to build a converter can be imported by including ``trtorch/core/conversion/converters/converters.h``. +We start by creating an instance of the self-registering class ``trtorch::core::conversion::converters::RegisterNodeConversionPatterns()`` which will register converters +in the global converter registry, associating a function schema like ``aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor)`` with a lambda that +will take the state of the conversion, the node/operation in question to convert and all of the inputs to the node and produces as a side effect a new layer in the TensorRT network. +Arguments are passed as a vector of inspectable unions of TensorRT ``ITensors`` and Torch ``IValues`` in the order arguments are listed in the schema. + +Below is a implementation of a ``aten::flatten`` converter that we can use in our application. You have full access to the Torch and TensorRT libraries in the converter implementation. So +for example we can quickly get the output size by just running the operation in PyTorch instead of implementing the full calculation outself like we do below for this flatten converter. + +.. code-block:: c++ + + #include "torch/script.h" + #include "trtorch/trtorch.h" + #include "trtorch/core/conversion/converters/converters.h" + + static auto flatten_converter = trtorch::core::conversion::converters::RegisterNodeConversionPatterns() + .pattern({ + "aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor)", + [](trtorch::core::conversion::ConversionCtx* ctx, + const torch::jit::Node* n, + trtorch::core::conversion::converters::args& args) -> bool { + auto in = args[0].ITensor(); + auto start_dim = args[1].unwrapToInt(); + auto end_dim = args[2].unwrapToInt(); + auto in_shape = trtorch::core::util::toVec(in->getDimensions()); + auto out_shape = torch::flatten(torch::rand(in_shape), start_dim, end_dim).sizes(); + + auto shuffle = ctx->net->addShuffle(*in); + shuffle->setReshapeDimensions(trtorch::core::util::toDims(out_shape)); + shuffle->setName(trtorch::core::util::node_info(n).c_str()); + + auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0)); + return true; + } + }); + + int main() { + ... + +To use this converter in Python, it is recommended to use PyTorch's `C++ / CUDA Extention `_ +template to wrap your library of converters into a ``.so`` that you can load with ``ctypes.CDLL()`` in your Python application. + +You can find more information on all the details of writing converters in the contributors documentation (:ref:`writing_converters`). +If you find yourself with a large library of converter implementations, do consider upstreaming them, PRs are welcome and it would be great for the community to benefit as well. + diff --git a/docs/v0.3.0/_sources/tutorials/installation.rst.txt b/docs/v0.3.0/_sources/tutorials/installation.rst.txt new file mode 100644 index 0000000000..9dff97351d --- /dev/null +++ b/docs/v0.3.0/_sources/tutorials/installation.rst.txt @@ -0,0 +1,371 @@ +.. _installation: + +Installation +============= + +Precompiled Binaries +********************* + +Dependencies +--------------- + +You need to have either PyTorch or LibTorch installed based on if you are using Python or C++ +and you must have CUDA, cuDNN and TensorRT installed. + + * https://www.pytorch.org + * https://developer.nvidia.com/cuda + * https://developer.nvidia.com/cudnn + * https://developer.nvidia.com/tensorrt + + +Python Package +--------------- + +You can install the python package using + +.. code-block:: sh + + # Python 3.6 + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp36-cp36m-linux_x86_64.whl + # Python 3.7 + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp37-cp37m-linux_x86_64.whl + # Python 3.8 + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp38-cp38-linux_x86_64.whl + # Python 3.9 + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp39-cp39-linux_x86_64.whl + +.. _bin-dist: + +C++ Binary Distribution +------------------------ + +Precompiled tarballs for releases are provided here: https://github.com/NVIDIA/TRTorch/releases + +.. _compile-from-source: + +Compiling From Source +****************************************** + +.. _installing-deps: + +Dependencies for Compilation +------------------------------- + +TRTorch is built with Bazel, so begin by installing it. + + * The easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk + * Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html + * Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions + + .. code-block:: shell + + export BAZEL_VERSION=$(cat /.bazelversion) + mkdir bazel + cd bazel + curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip + unzip bazel-$BAZEL_VERSION-dist.zip + bash ./compile.sh + cp output/bazel /usr/local/bin/ + + +You will also need to have CUDA installed on the system (or if running in a container, the system must have +the CUDA driver installed and the container must have CUDA) + +The correct LibTorch version will be pulled down for you by bazel. + + NOTE: For best compatability with official PyTorch, use torch==1.8.1+cuda111, TensorRT 7.2 and cuDNN 8.1 for CUDA 11.1 however TRTorch itself supports + TensorRT and cuDNN for CUDA versions other than 11.1 for usecases such as using NVIDIA compiled distributions of PyTorch that use other versions of CUDA + e.g. aarch64 or custom compiled version of PyTorch. + +You then have two compilation options: + +.. _build-from-archive: + +**Building using cuDNN & TensorRT tarball distributions** +-------------------------------------------------------------- + + This is recommended so as to build TRTorch hermetically and insures any compilation errors are not caused by version issues + + Make sure when running TRTorch that these versions of the libraries are prioritized in your ``$LD_LIBRARY_PATH`` + +You need to download the tarball distributions of TensorRT and cuDNN from the NVIDIA website. + * https://developer.nvidia.com/cudnn + * https://developer.nvidia.com/tensorrt + +Place these files in a directory (the directories ``thrid_party/distdir/[x86_64-linux-gnu | aarch64-linux-gnu]`` exist for this purpose) + +Then compile referencing the directory with the tarballs + + If you get errors regarding the packages, check their sha256 hashes and make sure they match the ones listed in ``WORKSPACE`` + +Release Build +^^^^^^^^^^^^^^^^^^^^^^^^ + +.. code-block:: shell + + bazel build //:libtrtorch -c opt --distdir thrid_party/distdir/[x86_64-linux-gnu | aarch64-linux-gnu] + +A tarball with the include files and library can then be found in ``bazel-bin`` + +.. _build-from-archive-debug: + +Debug Build +^^^^^^^^^^^^^^^^^^^^^^^^ + +To build with debug symbols use the following command + +.. code-block:: shell + + bazel build //:libtrtorch -c dbg --distdir thrid_party/distdir/[x86_64-linux-gnu | aarch64-linux-gnu] + +A tarball with the include files and library can then be found in ``bazel-bin`` + +Pre CXX11 ABI Build +^^^^^^^^^^^^^^^^^^^^^^^^ + +To build using the pre-CXX11 ABI use the ``pre_cxx11_abi`` config + +.. code-block:: shell + + bazel build //:libtrtorch --config pre_cxx11_abi -c [dbg/opt] --distdir thrid_party/distdir/[x86_64-linux-gnu | aarch64-linux-gnu] + +A tarball with the include files and library can then be found in ``bazel-bin`` + +.. _build-from-local: + +**Building using locally installed cuDNN & TensorRT** +-------------------------------------------------------------- + + If you encounter bugs and you compiled using this method please disclose that you used local sources in the issue (an ldd dump would be nice too) + +Install TensorRT, CUDA and cuDNN on the system before starting to compile. + +In WORKSPACE comment out: + +.. code-block:: python + + # Downloaded distributions to use with --distdir + http_archive( + name = "cudnn", + urls = ["",], + + build_file = "@//third_party/cudnn/archive:BUILD", + sha256 = "", + strip_prefix = "cuda" + ) + + http_archive( + name = "tensorrt", + urls = ["",], + + build_file = "@//third_party/tensorrt/archive:BUILD", + sha256 = "", + strip_prefix = "TensorRT-" + ) + +and uncomment + +.. code-block:: python + + # Locally installed dependencies + new_local_repository( + name = "cudnn", + path = "/usr/", + build_file = "@//third_party/cudnn/local:BUILD" + ) + + new_local_repository( + name = "tensorrt", + path = "/usr/", + build_file = "@//third_party/tensorrt/local:BUILD" + ) + +Release Build +^^^^^^^^^^^^^^^^^^^^^^^^ + +Compile using: + +.. code-block:: shell + + bazel build //:libtrtorch -c opt + +A tarball with the include files and library can then be found in ``bazel-bin`` + +.. _build-from-local-debug: + +Debug Build +^^^^^^^^^^^^ + +To build with debug symbols use the following command + +.. code-block:: shell + + bazel build //:libtrtorch -c dbg + + +A tarball with the include files and library can then be found in ``bazel-bin`` + +Pre CXX11 ABI Build +^^^^^^^^^^^^^^^^^^^^^^^^ + +To build using the pre-CXX11 ABI use the ``pre_cxx11_abi`` config + +.. code-block:: shell + + bazel build //:libtrtorch --config pre_cxx11_abi -c [dbg/opt] + +**Building the Python package** +-------------------------------- + +Begin by installing ``ninja`` + +You can build the Python package using ``setup.py`` (this will also build the correct version of ``libtrtorch.so``) + +.. code-block:: shell + + python3 setup.py [install/bdist_wheel] + +Debug Build +^^^^^^^^^^^^ + +.. code-block:: shell + + python3 setup.py develop [--user] + +This also compiles a debug build of ``libtrtorch.so`` + +**Building Natively on aarch64 (Jetson)** +------------------------------------------- + +Prerequisites +^^^^^^^^^^^^^^ + +Install or compile a build of PyTorch/LibTorch for aarch64 + +NVIDIA hosts builds the latest release branch for Jetson here: + + https://forums.developer.nvidia.com/t/pytorch-for-jetson-nano-version-1-5-0-now-available/72048 + + +Enviorment Setup +^^^^^^^^^^^^^^^^^ + +To build natively on aarch64-linux-gnu platform, configure the ``WORKSPACE`` with local available dependencies. + +1. Disable the rules with ``http_archive`` for x86_64 by commenting the following rules: + +.. code-block:: shell + + #http_archive( + # name = "libtorch", + # build_file = "@//third_party/libtorch:BUILD", + # strip_prefix = "libtorch", + # urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-cxx11-abi-shared-with-deps-1.5.1.zip"], + # sha256 = "cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a" + #) + + #http_archive( + # name = "libtorch_pre_cxx11_abi", + # build_file = "@//third_party/libtorch:BUILD", + # strip_prefix = "libtorch", + # sha256 = "818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656", + # urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-shared-with-deps-1.5.1.zip"], + #) + + # Download these tarballs manually from the NVIDIA website + # Either place them in the distdir directory in third_party and use the --distdir flag + # or modify the urls to "file:////.tar.gz + + #http_archive( + # name = "cudnn", + # urls = ["https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.1.13/10.2_20200626/cudnn-10.2-linux-x64-v8.0.1.13.tgz"], + # build_file = "@//third_party/cudnn/archive:BUILD", + # sha256 = "0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db", + # strip_prefix = "cuda" + #) + + #http_archive( + # name = "tensorrt", + # urls = ["https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/7.1/tars/TensorRT-7.1.3.4.Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz"], + # build_file = "@//third_party/tensorrt/archive:BUILD", + # sha256 = "9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41", + # strip_prefix = "TensorRT-7.1.3.4" + #) + + +2. Disable Python API testing dependencies: + +.. code-block:: shell + + #pip3_import( + # name = "trtorch_py_deps", + # requirements = "//py:requirements.txt" + #) + + #load("@trtorch_py_deps//:requirements.bzl", "pip_install") + #pip_install() + + #pip3_import( + # name = "py_test_deps", + # requirements = "//tests/py:requirements.txt" + #) + + #load("@py_test_deps//:requirements.bzl", "pip_install") + #pip_install() + + +3. Configure the correct paths to directory roots containing local dependencies in the ``new_local_repository`` rules: + + NOTE: If you installed PyTorch using a pip package, the correct path is the path to the root of the python torch package. + In the case that you installed with ``sudo pip install`` this will be ``/usr/local/lib/python3.6/dist-packages/torch``. + In the case you installed with ``pip install --user`` this will be ``$HOME/.local/lib/python3.6/site-packages/torch``. + +In the case you are using NVIDIA compiled pip packages, set the path for both libtorch sources to the same path. This is because unlike +PyTorch on x86_64, NVIDIA aarch64 PyTorch uses the CXX11-ABI. If you compiled for source using the pre_cxx11_abi and only would like to +use that library, set the paths to the same path but when you compile make sure to add the flag ``--config=pre_cxx11_abi`` + +.. code-block:: shell + + new_local_repository( + name = "libtorch", + path = "/usr/local/lib/python3.6/dist-packages/torch", + build_file = "third_party/libtorch/BUILD" + ) + + new_local_repository( + name = "libtorch_pre_cxx11_abi", + path = "/usr/local/lib/python3.6/dist-packages/torch", + build_file = "third_party/libtorch/BUILD" + ) + + new_local_repository( + name = "cudnn", + path = "/usr/", + build_file = "@//third_party/cudnn/local:BUILD" + ) + + new_local_repository( + name = "tensorrt", + path = "/usr/", + build_file = "@//third_party/tensorrt/local:BUILD" + ) + +Compile C++ Library and Compiler CLI +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Compile TRTorch library using bazel command: + +.. code-block:: shell + + bazel build //:libtrtorch + +Compile Python API +^^^^^^^^^^^^^^^^^^^^ + +Compile the Python API using the following command from the ``//py`` directory: + +.. code-block:: shell + + python3 setup.py install --use-cxx11-abi + +If you have a build of PyTorch that uses Pre-CXX11 ABI drop the ``--use-cxx11-abi`` flag \ No newline at end of file diff --git a/docs/v0.3.0/_sources/tutorials/ptq.rst.txt b/docs/v0.3.0/_sources/tutorials/ptq.rst.txt new file mode 100644 index 0000000000..48f42c3604 --- /dev/null +++ b/docs/v0.3.0/_sources/tutorials/ptq.rst.txt @@ -0,0 +1,210 @@ +.. _ptq: + +Post Training Quantization (PTQ) +================================= + +Post Training Quantization (PTQ) is a technique to reduce the required computational resources for inference +while still preserving the accuracy of your model by mapping the traditional FP32 activation space to a reduced +INT8 space. TensorRT uses a calibration step which executes your model with sample data from the target domain +and track the activations in FP32 to calibrate a mapping to INT8 that minimizes the information loss between +FP32 inference and INT8 inference. + +Users writing TensorRT applications are required to setup a calibrator class which will provide sample data to +the TensorRT calibrator. With TRTorch we look to leverage existing infrastructure in PyTorch to make implementing +calibrators easier. + +LibTorch provides a ``DataLoader`` and ``Dataset`` API which steamlines preprocessing and batching input data. +These APIs are exposed via both C++ and Python interface which makes it easier for the end user. +For C++ interface, we use ``torch::Dataset`` and ``torch::data::make_data_loader`` objects to construct and perform pre-processing on datasets. +The equivalent functionality in python interface uses ``torch.utils.data.Dataset`` and ``torch.utils.data.DataLoader``. +This section of the PyTorch documentation has more information https://pytorch.org/tutorials/advanced/cpp_frontend.html#loading-data and https://pytorch.org/tutorials/recipes/recipes/loading_data_recipe.html. +TRTorch uses Dataloaders as the base of a generic calibrator implementation. So you will be able to reuse or quickly +implement a ``torch::Dataset`` for your target domain, place it in a DataLoader and create a INT8 Calibrator +which you can provide to TRTorch to run INT8 Calibration during compliation of your module. + +.. _writing_ptq_cpp: + +How to create your own PTQ application in C++ +---------------------------------------- + +Here is an example interface of a ``torch::Dataset`` class for CIFAR10: + +.. code-block:: c++ + :linenos: + + //cpp/ptq/datasets/cifar10.h + #pragma once + + #include "torch/data/datasets/base.h" + #include "torch/data/example.h" + #include "torch/types.h" + + #include + #include + + namespace datasets { + // The CIFAR10 Dataset + class CIFAR10 : public torch::data::datasets::Dataset { + public: + // The mode in which the dataset is loaded + enum class Mode { kTrain, kTest }; + + // Loads CIFAR10 from un-tarred file + // Dataset can be found https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz + // Root path should be the directory that contains the content of tarball + explicit CIFAR10(const std::string& root, Mode mode = Mode::kTrain); + + // Returns the pair at index in the dataset + torch::data::Example<> get(size_t index) override; + + // The size of the dataset + c10::optional size() const override; + + // The mode the dataset is in + bool is_train() const noexcept; + + // Returns all images stacked into a single tensor + const torch::Tensor& images() const; + + // Returns all targets stacked into a single tensor + const torch::Tensor& targets() const; + + // Trims the dataset to the first n pairs + CIFAR10&& use_subset(int64_t new_size); + + + private: + Mode mode_; + torch::Tensor images_, targets_; + }; + } // namespace datasets + + +This class's implementation reads from the binary distribution of the CIFAR10 dataset and builds two tensors which hold the images and labels. + +We use a subset of the dataset to use for calibration, since we don't need the the full dataset for effective calibration and calibration does +some take time, then define the preprocessing to apply to the images in the dataset and create a DataLoader from the dataset which will batch the data: + +.. code-block:: c++ + + auto calibration_dataset = datasets::CIFAR10(data_dir, datasets::CIFAR10::Mode::kTest) + .use_subset(320) + .map(torch::data::transforms::Normalize<>({0.4914, 0.4822, 0.4465}, + {0.2023, 0.1994, 0.2010})) + .map(torch::data::transforms::Stack<>()); + auto calibration_dataloader = torch::data::make_data_loader(std::move(calibration_dataset), + torch::data::DataLoaderOptions().batch_size(32) + .workers(2)); + + +Next we create a calibrator from the ``calibration_dataloader`` using the calibrator factory (found in ``trtorch/ptq.h``): + +.. code-block:: c++ + + #include "trtorch/ptq.h" + ... + + auto calibrator = trtorch::ptq::make_int8_calibrator(std::move(calibration_dataloader), calibration_cache_file, true); + +Here we also define a location to write a calibration cache file to which we can use to reuse the calibration data without needing the dataset and whether or not +we should use the cache file if it exists. There also exists a ``trtorch::ptq::make_int8_cache_calibrator`` factory which creates a calibrator that uses the cache +only for cases where you may do engine building on a machine that has limited storage (i.e. no space for a full dataset) or to have a simpiler deployment application. + +The calibrator factories create a calibrator that inherits from a ``nvinfer1::IInt8Calibrator`` virtual class (``nvinfer1::IInt8EntropyCalibrator2`` by default) which +defines the calibration algorithm used when calibrating. You can explicitly make the selection of calibration algorithm like this: + +.. code-block:: c++ + + // MinMax Calibrator is geared more towards NLP tasks + auto calibrator = trtorch::ptq::make_int8_calibrator(std::move(calibration_dataloader), calibration_cache_file, true); + +Then all thats required to setup the module for INT8 calibration is to set the following compile settings in the `trtorch::CompileSpec` struct and compiling the module: + +.. code-block:: c++ + + std::vector> input_shape = {{32, 3, 32, 32}}; + /// Configure settings for compilation + auto compile_spec = trtorch::CompileSpec({input_shape}); + /// Set operating precision to INT8 + compile_spec.op_precision = torch::kI8; + /// Use the TensorRT Entropy Calibrator + compile_spec.ptq_calibrator = calibrator; + /// Set a larger workspace (you may get better performace from doing so) + compile_spec.workspace_size = 1 << 28; + + auto trt_mod = trtorch::CompileGraph(mod, compile_spec); + +If you have an existing Calibrator implementation for TensorRT you may directly set the ``ptq_calibrator`` field with a pointer to your calibrator and it will work as well. +From here not much changes in terms of how to execution works. You are still able to fully use LibTorch as the sole interface for inference. Data should remain +in FP32 precision when it's passed into `trt_mod.forward`. There exists an example application in the TRTorch demo that takes you from training a VGG16 network on +CIFAR10 to deploying in INT8 with TRTorch here: https://github.com/NVIDIA/TRTorch/tree/master/cpp/ptq + +.. _writing_ptq_python: + +How to create your own PTQ application in Python +---------------------------------------- + +TRTorch Python API provides an easy and convenient way to use pytorch dataloaders with TensorRT calibrators. ``DataLoaderCalibrator`` class can be used to create +a TensorRT calibrator by providing desired configuration. The following code demonstrates an example on how to use it + +.. code-block:: python + + testing_dataset = torchvision.datasets.CIFAR10(root='./data', + train=False, + download=True, + transform=transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize((0.4914, 0.4822, 0.4465), + (0.2023, 0.1994, 0.2010)) + ])) + + testing_dataloader = torch.utils.data.DataLoader(testing_dataset, + batch_size=1, + shuffle=False, + num_workers=1) + calibrator = trtorch.ptq.DataLoaderCalibrator(testing_dataloader, + cache_file='./calibration.cache', + use_cache=False, + algo_type=trtorch.ptq.CalibrationAlgo.ENTROPY_CALIBRATION_2, + device=torch.device('cuda:0')) + + compile_spec = { + "input_shapes": [[1, 3, 32, 32]], + "op_precision": torch.int8, + "calibrator": calibrator, + "device": { + "device_type": trtorch.DeviceType.GPU, + "gpu_id": 0, + "dla_core": 0, + "allow_gpu_fallback": False, + "disable_tf32": False + } + } + trt_mod = trtorch.compile(model, compile_spec) + +In the cases where there is a pre-existing calibration cache file that users want to use, ``CacheCalibrator`` can be used without any dataloaders. The following example demonstrates how +to use ``CacheCalibrator`` to use in INT8 mode. + +.. code-block:: python + + calibrator = trtorch.ptq.CacheCalibrator("./calibration.cache") + + compile_settings = { + "input_shapes": [[1, 3, 32, 32]], + "op_precision": torch.int8, + "calibrator": calibrator, + "max_batch_size": 32, + } + + trt_mod = trtorch.compile(model, compile_settings) + +If you already have an existing calibrator class (implemented directly using TensorRT API), you can directly set the calibrator field to your class which can be very convenient. +For a demo on how PTQ can be performed on a VGG network using TRTorch API, you can refer to https://github.com/NVIDIA/TRTorch/blob/master/tests/py/test_ptq_dataloader_calibrator.py +and https://github.com/NVIDIA/TRTorch/blob/master/tests/py/test_ptq_trt_calibrator.py + +Citations +^^^^^^^^^^^ + +Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. + +Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. \ No newline at end of file diff --git a/docs/v0.3.0/_sources/tutorials/runtime.rst.txt b/docs/v0.3.0/_sources/tutorials/runtime.rst.txt new file mode 100644 index 0000000000..8ef57f298c --- /dev/null +++ b/docs/v0.3.0/_sources/tutorials/runtime.rst.txt @@ -0,0 +1,25 @@ +.. _runtime: + +Deploying TRTorch Programs +=========================== + +After compiling and saving TRTorch programs there is no longer a strict dependency on the full +TRTorch library. All that is required to run a compiled program is the runtime. There are therfore a couple +options to deploy your programs other than shipping the full trtorch compiler with your applications. + +TRTorch package / libtrtorch.so +--------------------------------- + +Once a program is compiled, you run it using the standard PyTorch APIs. All that is required is that the package +must be imported in python or linked in C++. + +Runtime Library +----------------- + +Distributed with the C++ distribution is ``libtrtorchrt.so``. This library only contains the components +necessary to run TRTorch programs. Instead of linking ``libtrtorch.so`` or importing ``trtorch`` you can +link ``libtrtorchrt.so`` in your deployment programs or use ``DL_OPEN`` or ``LD_PRELOAD``. For python +you can load the runtime with ``torch.ops.load_library("libtrtorchrt.so")``. You can then continue to use +programs just as you would otherwise via PyTorch API. + +.. note:: If you are using the standard distribution of PyTorch in Python on x86, likely you will need the pre-cxx11-abi variant of ``libtrtorchrt.so``, check :ref:`Installation` documentation for more details. \ No newline at end of file diff --git a/docs/v0.3.0/_sources/tutorials/trtorchc.rst.txt b/docs/v0.3.0/_sources/tutorials/trtorchc.rst.txt new file mode 100644 index 0000000000..295932b24a --- /dev/null +++ b/docs/v0.3.0/_sources/tutorials/trtorchc.rst.txt @@ -0,0 +1,91 @@ +.. _trtorchc: + +trtorchc +================================= + +``trtorchc`` is a CLI application for using the TRTorch compiler. It serves as an easy way to compile a +TorchScript Module with TRTorch from the command-line to quickly check support or as part of +a deployment pipeline. All basic features of the compiler are supported including post training +quantization (though you must already have a calibration cache file to use the PTQ feature). The compiler can +output two formats, either a TorchScript program with the TensorRT engine embedded or +the TensorRT engine itself as a PLAN file. + +All that is required to run the program after compilation is for C++ linking against ``libtrtorch.so`` +or in Python importing the trtorch package. All other aspects of using compiled modules are identical +to standard TorchScript. Load with ``torch.jit.load()`` and run like you would run any other module. + +.. code-block:: txt + + trtorchc [input_file_path] [output_file_path] + [input_shapes...] {OPTIONS} + + TRTorch is a compiler for TorchScript, it will compile and optimize + TorchScript programs to run on NVIDIA GPUs using TensorRT + + OPTIONS: + + -h, --help Display this help menu + Verbiosity of the compiler + -v, --verbose Dumps debugging information about the + compilation process onto the console + -w, --warnings Disables warnings generated during + compilation onto the console (warnings + are on by default) + --info Dumps info messages generated during + compilation onto the console + --build-debuggable-engine Creates a debuggable engine + --use-strict-types Restrict operating type to only use set + default operation precision + (op_precision) + --allow-gpu-fallback (Only used when targeting DLA + (device-type)) Lets engine run layers on + GPU if they are not supported on DLA + -p[precision], + --default-op-precision=[precision] + Default operating precision for the + engine (Int8 requires a + calibration-cache argument) [ float | + float32 | f32 | half | float16 | f16 | + int8 | i8 ] (default: float) + -d[type], --device-type=[type] The type of device the engine should be + built for [ gpu | dla ] (default: gpu) + --engine-capability=[capability] The type of device the engine should be + built for [ default | safe_gpu | + safe_dla ] + --calibration-cache-file=[file_path] + Path to calibration cache file to use + for post training quantization + --num-min-timing-iter=[num_iters] Number of minimization timing iterations + used to select kernels + --num-avg-timing-iters=[num_iters] + Number of averaging timing iterations + used to select kernels + --workspace-size=[workspace_size] Maximum size of workspace given to + TensorRT + --max-batch-size=[max_batch_size] Maximum batch size (must be >= 1 to be + set, 0 means not set) + -t[threshold], + --threshold=[threshold] Maximum acceptable numerical deviation + from standard torchscript output + (default 2e-5) + --save-engine Instead of compiling a full a + TorchScript program, save the created + engine to the path specified as the + output path + input_file_path Path to input TorchScript file + output_file_path Path for compiled TorchScript (or + TensorRT engine) file + input_shapes... Sizes for inputs to engine, can either + be a single size or a range defined by + Min, Optimal, Max sizes, e.g. + "(N,..,C,H,W)" + "[(MIN_N,..,MIN_C,MIN_H,MIN_W);(OPT_N,..,OPT_C,OPT_H,OPT_W);(MAX_N,..,MAX_C,MAX_H,MAX_W)]" + "--" can be used to terminate flag options and force all following + arguments to be treated as positional options + + +e.g. + +.. code-block:: shell + + trtorchc tests/modules/ssd_traced.jit.pt ssd_trt.ts "[(1,3,300,300); (1,3,512,512); (1, 3, 1024, 1024)]" -p f16 diff --git a/docs/v0.3.0/_sources/tutorials/use_from_pytorch.rst.txt b/docs/v0.3.0/_sources/tutorials/use_from_pytorch.rst.txt new file mode 100644 index 0000000000..96794534b2 --- /dev/null +++ b/docs/v0.3.0/_sources/tutorials/use_from_pytorch.rst.txt @@ -0,0 +1,67 @@ +.. _use_from_pytorch: + +Using TRTorch Directly From PyTorch +==================================== + +Starting in TRTorch 0.1.0, you will now be able to directly access TensorRT from PyTorch APIs. The process to use this feature +is very similar to the compilation workflow described in :ref:`getting_started` + +Start by loading ``trtorch`` into your application. + +.. code-block:: python + + import torch + import trtorch + + +Then given a TorchScript module, you can compile it with TensorRT using the ``torch._C._jit_to_backend("tensorrt", ...)`` API. + +.. code-block:: python + + import torchvision.models as models + + model = models.mobilenet_v2(pretrained=True) + script_model = torch.jit.script(model) + +Unlike the ``compile`` API in TRTorch which assumes you are trying to compile the ``forward`` function of a module +or the ``convert_method_to_trt_engine`` which converts a specified function to a TensorRT engine, the backend API +will take a dictionary which maps names of functions to compile to Compilation Spec objects which wrap the same +sort of dictionary you would provide to ``compile``. For more information on the compile spec dictionary take a look +at the documentation for the TRTorch ``TensorRTCompileSpec`` API. + +.. code-block:: python + + spec = { + "forward": + trtorch.TensorRTCompileSpec({ + "input_shapes": [[1, 3, 300, 300]], + "op_precision": torch.half, + "refit": False, + "debug": False, + "strict_types": False, + "device": { + "device_type": trtorch.DeviceType.GPU, + "gpu_id": 0, + "dla_core": 0, + "allow_gpu_fallback": True + }, + "capability": trtorch.EngineCapability.default, + "num_min_timing_iters": 2, + "num_avg_timing_iters": 1, + "max_batch_size": 0, + }) + } + +Now to compile with TRTorch, provide the target module objects and the spec dictionary to ``torch._C._jit_to_backend("tensorrt", ...)`` + +.. code-block:: python + + trt_model = torch._C._jit_to_backend("tensorrt", script_model, spec) + +To run explicitly call the function of the method you want to run (vs. how you can just call on the module itself in standard PyTorch) + +.. code-block:: python + + input = torch.randn((1, 3, 300, 300)).to("cuda").to(torch.half) + print(trt_model.forward(input)) + diff --git a/docs/v0.3.0/_sources/tutorials/using_dla.rst.txt b/docs/v0.3.0/_sources/tutorials/using_dla.rst.txt new file mode 100644 index 0000000000..2a48dac3d5 --- /dev/null +++ b/docs/v0.3.0/_sources/tutorials/using_dla.rst.txt @@ -0,0 +1,55 @@ +.. _using_dla: + +DLA +================================= + +``DLA`` NVIDIA Deep Learning Accelerator is a fixed-function accelerator engine targeted for deep learning operations. DLA is designed to do full hardware acceleration of convolutional neural networks. DLA supports various layers such as convolution, deconvolution, fully-connected, activation, pooling, batch normalization, etc. ``trtorch`` supports compilation of TorchScript Module and deployment pipeline on the DLA hardware available on NVIDIA embedded platforms. + +NOTE: DLA supports fp16 and int8 precision only. + +Using DLA with trtorchc + +.. code-block:: shell + + trtorchc [input_file_path] [output_file_path] [input_shapes...] -p f16 -d dla {OPTIONS} + +Using DLA in a C++ application + +.. code-block:: shell + + std::vector> input_shape = {{32, 3, 32, 32}}; + auto compile_spec = trtorch::CompileSpec({input_shape}); + + # Set a precision. DLA supports fp16 or int8 only + compile_spec.op_precision = torch::kF16; + compile_spec.device.device_type = trtorch::CompileSpec::DeviceType::kDLA; + + # Make sure the gpu id is set to Xavier id for DLA + compile_spec.device.gpu_id = 0; + + # Set the DLA core id + compile_spec.device.dla_core = 1; + + # If a layer fails to run on DLA it will fallback to GPU + compile_spec.device.allow_gpu_fallback = true; + + # Set the workspace size + compile_spec.workspace_size = 1 << 28; + + +Using DLA in a python application + +.. code-block:: shell + + compile_spec = { + "input_shapes": [self.input.shape], + "device": { + "device_type": trtorch.DeviceType.DLA, + "gpu_id": 0, + "dla_core": 0, + "allow_gpu_fallback": True + }, + "op_precision": torch.half + } + + trt_mod = trtorch.compile(self.scripted_model, compile_spec) diff --git a/docs/v0.3.0/_static/basic.css b/docs/v0.3.0/_static/basic.css new file mode 100644 index 0000000000..7630a0c5ee --- /dev/null +++ b/docs/v0.3.0/_static/basic.css @@ -0,0 +1 @@ +@charset "utf-8"; div.clearer{clear:both}div.section::after{display:block;content:'';clear:left}div.related{width:100%;font-size:90%}div.related h3{display:none}div.related ul{margin:0;padding:0 0 0 10px;list-style:none}div.related li{display:inline}div.related li.right{float:right;margin-right:5px}div.sphinxsidebarwrapper{padding:10px 5px 0 10px}div.sphinxsidebar{float:left;width:230px;margin-left:-100%;font-size:90%;word-wrap:break-word;overflow-wrap:break-word}div.sphinxsidebar ul{list-style:none}div.sphinxsidebar ul ul,div.sphinxsidebar ul.want-points{margin-left:20px;list-style:square}div.sphinxsidebar ul ul{margin-top:0;margin-bottom:0}div.sphinxsidebar form{margin-top:10px}div.sphinxsidebar input{border:1px solid #98dbcc;font-family:sans-serif;font-size:1em}div.sphinxsidebar #searchbox form.search{overflow:hidden}div.sphinxsidebar #searchbox input[type=text]{float:left;width:80%;padding:.25em;box-sizing:border-box}div.sphinxsidebar #searchbox input[type=submit]{float:left;width:20%;border-left:none;padding:.25em;box-sizing:border-box}img{border:0;max-width:100%}ul.search{margin:10px 0 0 20px;padding:0}ul.search li{padding:5px 0 5px 20px;background-image:url(file.png);background-repeat:no-repeat;background-position:0 7px}ul.search li a{font-weight:bold}ul.search li div.context{color:#888;margin:2px 0 0 30px;text-align:left}ul.keywordmatches li.goodmatch a{font-weight:bold}table.contentstable{width:90%;margin-left:auto;margin-right:auto}table.contentstable p.biglink{line-height:150%}a.biglink{font-size:1.3em}span.linkdescr{font-style:italic;padding-top:5px;font-size:90%}table.indextable{width:100%}table.indextable td{text-align:left;vertical-align:top}table.indextable ul{margin-top:0;margin-bottom:0;list-style-type:none}table.indextable>tbody>tr>td>ul{padding-left:0}table.indextable tr.pcap{height:10px}table.indextable tr.cap{margin-top:10px;background-color:#f2f2f2}img.toggler{margin-right:3px;margin-top:3px;cursor:pointer}div.modindex-jumpbox{border-top:1px solid #ddd;border-bottom:1px solid #ddd;margin:1em 0 1em 0;padding:.4em}div.genindex-jumpbox{border-top:1px solid #ddd;border-bottom:1px solid #ddd;margin:1em 0 1em 0;padding:.4em}table.modindextable td{padding:2px;border-collapse:collapse}div.body{min-width:450px;max-width:800px}div.body p,div.body dd,div.body li,div.body blockquote{-moz-hyphens:auto;-ms-hyphens:auto;-webkit-hyphens:auto;hyphens:auto}a.headerlink{visibility:hidden}a.brackets:before,span.brackets>a:before{content:"["}a.brackets:after,span.brackets>a:after{content:"]"}h1:hover>a.headerlink,h2:hover>a.headerlink,h3:hover>a.headerlink,h4:hover>a.headerlink,h5:hover>a.headerlink,h6:hover>a.headerlink,dt:hover>a.headerlink,caption:hover>a.headerlink,p.caption:hover>a.headerlink,div.code-block-caption:hover>a.headerlink{visibility:visible}div.body p.caption{text-align:inherit}div.body td{text-align:left}.first{margin-top:0 !important}p.rubric{margin-top:30px;font-weight:bold}img.align-left,.figure.align-left,object.align-left{clear:left;float:left;margin-right:1em}img.align-right,.figure.align-right,object.align-right{clear:right;float:right;margin-left:1em}img.align-center,.figure.align-center,object.align-center{display:block;margin-left:auto;margin-right:auto}img.align-default,.figure.align-default{display:block;margin-left:auto;margin-right:auto}.align-left{text-align:left}.align-center{text-align:center}.align-default{text-align:center}.align-right{text-align:right}div.sidebar{margin:0 0 .5em 1em;border:1px solid #ddb;padding:7px;background-color:#ffe;width:40%;float:right;clear:right;overflow-x:auto}p.sidebar-title{font-weight:bold}div.admonition,div.topic,blockquote{clear:left}div.topic{border:1px solid #ccc;padding:7px;margin:10px 0 10px 0}p.topic-title{font-size:1.1em;font-weight:bold;margin-top:10px}div.admonition{margin-top:10px;margin-bottom:10px;padding:7px}div.admonition dt{font-weight:bold}p.admonition-title{margin:0 10px 5px 0;font-weight:bold}div.body p.centered{text-align:center;margin-top:25px}div.sidebar>:last-child,div.topic>:last-child,div.admonition>:last-child{margin-bottom:0}div.sidebar::after,div.topic::after,div.admonition::after,blockquote::after{display:block;content:'';clear:both}table.docutils{margin-top:10px;margin-bottom:10px;border:0;border-collapse:collapse}table.align-center{margin-left:auto;margin-right:auto}table.align-default{margin-left:auto;margin-right:auto}table caption span.caption-number{font-style:italic}table caption span.caption-text{}table.docutils td,table.docutils th{padding:1px 8px 1px 5px;border-top:0;border-left:0;border-right:0;border-bottom:1px solid #aaa}table.footnote td,table.footnote th{border:0 !important}th{text-align:left;padding-right:5px}table.citation{border-left:solid 1px gray;margin-left:1px}table.citation td{border-bottom:none}th>:first-child,td>:first-child{margin-top:0}th>:last-child,td>:last-child{margin-bottom:0}div.figure{margin:.5em;padding:.5em}div.figure p.caption{padding:.3em}div.figure p.caption span.caption-number{font-style:italic}div.figure p.caption span.caption-text{}table.field-list td,table.field-list th{border:0 !important}.field-list ul{margin:0;padding-left:1em}.field-list p{margin:0}.field-name{-moz-hyphens:manual;-ms-hyphens:manual;-webkit-hyphens:manual;hyphens:manual}table.hlist{margin:1em 0}table.hlist td{vertical-align:top}ol.arabic{list-style:decimal}ol.loweralpha{list-style:lower-alpha}ol.upperalpha{list-style:upper-alpha}ol.lowerroman{list-style:lower-roman}ol.upperroman{list-style:upper-roman}:not(li)>ol>li:first-child>:first-child,:not(li)>ul>li:first-child>:first-child{margin-top:0}:not(li)>ol>li:last-child>:last-child,:not(li)>ul>li:last-child>:last-child{margin-bottom:0}ol.simple ol p,ol.simple ul p,ul.simple ol p,ul.simple ul p{margin-top:0}ol.simple>li:not(:first-child)>p,ul.simple>li:not(:first-child)>p{margin-top:0}ol.simple p,ul.simple p{margin-bottom:0}dl.footnote>dt,dl.citation>dt{float:left;margin-right:.5em}dl.footnote>dd,dl.citation>dd{margin-bottom:0}dl.footnote>dd:after,dl.citation>dd:after{content:"";clear:both}dl.field-list{display:grid;grid-template-columns:fit-content(30%) auto}dl.field-list>dt{font-weight:bold;word-break:break-word;padding-left:.5em;padding-right:5px}dl.field-list>dt:after{content:":"}dl.field-list>dd{padding-left:.5em;margin-top:0;margin-left:0;margin-bottom:0}dl{margin-bottom:15px}dd>:first-child{margin-top:0}dd ul,dd table{margin-bottom:10px}dd{margin-top:3px;margin-bottom:10px;margin-left:30px}dl>dd:last-child,dl>dd:last-child>:last-child{margin-bottom:0}dt:target,span.highlighted{background-color:#fbe54e}rect.highlighted{fill:#fbe54e}dl.glossary dt{font-weight:bold;font-size:1.1em}.optional{font-size:1.3em}.sig-paren{font-size:larger}.versionmodified{font-style:italic}.system-message{background-color:#fda;padding:5px;border:3px solid red}.footnote:target{background-color:#ffa}.line-block{display:block;margin-top:1em;margin-bottom:1em}.line-block .line-block{margin-top:0;margin-bottom:0;margin-left:1.5em}.guilabel,.menuselection{font-family:sans-serif}.accelerator{text-decoration:underline}.classifier{font-style:oblique}.classifier:before{font-style:normal;margin:.5em;content:":"}abbr,acronym{border-bottom:dotted 1px;cursor:help}pre{overflow:auto;overflow-y:hidden}pre,div[class|="highlight"]{clear:both}span.pre{-moz-hyphens:none;-ms-hyphens:none;-webkit-hyphens:none;hyphens:none}div[class^="highlight-"]{margin:1em 0}td.linenos pre{border:0;background-color:transparent;color:#aaa}table.highlighttable{display:block}table.highlighttable tbody{display:block}table.highlighttable tr{display:flex}table.highlighttable td{margin:0;padding:0}table.highlighttable td.linenos{padding-right:.5em}table.highlighttable td.code{flex:1;overflow:hidden}.highlight .hll{display:block}div.highlight pre,table.highlighttable pre{margin:0}div.code-block-caption + div{margin-top:0}div.code-block-caption{margin-top:1em;padding:2px 5px;font-size:small}div.code-block-caption code{background-color:transparent}table.highlighttable td.linenos,div.doctest>div.highlight span.gp{user-select:none}div.code-block-caption span.caption-number{padding:.1em .3em;font-style:italic}div.code-block-caption span.caption-text{}div.literal-block-wrapper{margin:1em 0}code.descname{background-color:transparent;font-weight:bold;font-size:1.2em}code.descclassname{background-color:transparent}code.xref,a code{background-color:transparent;font-weight:bold}h1 code,h2 code,h3 code,h4 code,h5 code,h6 code{background-color:transparent}.viewcode-link{float:right}.viewcode-back{float:right;font-family:sans-serif}div.viewcode-block:target{margin:-1px -10px;padding:0 10px}img.math{vertical-align:middle}div.body div.math p{text-align:center}span.eqno{float:right}span.eqno a.headerlink{position:absolute;z-index:1}div.math:hover a.headerlink{visibility:visible}@media print{div.document,div.documentwrapper,div.bodywrapper{margin:0 !important;width:100%}div.sphinxsidebar,div.related,div.footer,#top-link{display:none}} \ No newline at end of file diff --git a/docs/v0.3.0/_static/collapsible-lists/LICENSE.md b/docs/v0.3.0/_static/collapsible-lists/LICENSE.md new file mode 100644 index 0000000000..ef81a64535 --- /dev/null +++ b/docs/v0.3.0/_static/collapsible-lists/LICENSE.md @@ -0,0 +1,7 @@ +This code is the fruit of Kate Morley's labor, taken from here: + +- http://code.iamkate.com/javascript/collapsible-lists/ + +She includes a generous CC0 1.0 license for all materials on her site: + +- http://code.iamkate.com/ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/button-closed.png b/docs/v0.3.0/_static/collapsible-lists/css/button-closed.png new file mode 100644 index 0000000000..417eb2fc40 Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/button-closed.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/button-open.png b/docs/v0.3.0/_static/collapsible-lists/css/button-open.png new file mode 100644 index 0000000000..ac4a6ef32a Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/button-open.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/button.png b/docs/v0.3.0/_static/collapsible-lists/css/button.png new file mode 100644 index 0000000000..631d734d13 Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/button.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/list-item-contents.png b/docs/v0.3.0/_static/collapsible-lists/css/list-item-contents.png new file mode 100644 index 0000000000..bc082929dc Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/list-item-contents.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/list-item-last-open.png b/docs/v0.3.0/_static/collapsible-lists/css/list-item-last-open.png new file mode 100644 index 0000000000..cf4cf9bdb9 Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/list-item-last-open.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/list-item-last.png b/docs/v0.3.0/_static/collapsible-lists/css/list-item-last.png new file mode 100644 index 0000000000..1eb1c64a25 Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/list-item-last.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/list-item-open.png b/docs/v0.3.0/_static/collapsible-lists/css/list-item-open.png new file mode 100644 index 0000000000..0889c801a9 Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/list-item-open.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/list-item-root.png b/docs/v0.3.0/_static/collapsible-lists/css/list-item-root.png new file mode 100644 index 0000000000..874417106a Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/list-item-root.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/list-item.png b/docs/v0.3.0/_static/collapsible-lists/css/list-item.png new file mode 100644 index 0000000000..81934f9b82 Binary files /dev/null and b/docs/v0.3.0/_static/collapsible-lists/css/list-item.png differ diff --git a/docs/v0.3.0/_static/collapsible-lists/css/tree_view.css b/docs/v0.3.0/_static/collapsible-lists/css/tree_view.css new file mode 100644 index 0000000000..03fb9d19e4 --- /dev/null +++ b/docs/v0.3.0/_static/collapsible-lists/css/tree_view.css @@ -0,0 +1 @@ +@charset "utf-8"; .treeView{-moz-user-select:none;position:relative}.treeView ul{margin:0 0 0 -1.5em !important;padding:0 0 0 1.5em !important}.treeView ul ul{background:url(list-item-contents.png) repeat-y left !important}.treeView li.lastChild>ul{background-image:none !important}.treeView li{margin:0 !important;padding:0 !important;background:url(list-item-root.png) no-repeat top left !important;list-style-position:inside !important;list-style-image:url(button.png) !important;cursor:auto}.treeView li.collapsibleListOpen{list-style-image:url(button-open.png) !important;cursor:pointer}.treeView li.collapsibleListClosed{list-style-image:url(button-closed.png) !important;cursor:pointer}.treeView li li{background-image:url(list-item.png) !important;padding-left:1.5em !important}.treeView li.lastChild{background-image:url(list-item-last.png) !important}.treeView li.collapsibleListOpen{background-image:url(list-item-open.png) !important}.treeView li.collapsibleListOpen.lastChild{background-image:url(list-item-last-open.png) !important} \ No newline at end of file diff --git a/docs/v0.3.0/_static/collapsible-lists/js/CollapsibleLists.compressed.js b/docs/v0.3.0/_static/collapsible-lists/js/CollapsibleLists.compressed.js new file mode 100644 index 0000000000..429406cf39 --- /dev/null +++ b/docs/v0.3.0/_static/collapsible-lists/js/CollapsibleLists.compressed.js @@ -0,0 +1,83 @@ +/* + +CollapsibleLists.js + +An object allowing lists to dynamically expand and collapse + +Created by Kate Morley - http://code.iamkate.com/ - and released under +the terms of the CC0 1.0 Universal legal code: + +http://creativecommons.org/publicdomain/zero/1.0/legalcode + +*/ + +var CollapsibleLists=new function(){ +this.apply=function(_1){ +var _2=document.getElementsByTagName("ul"); +for(var _3=0;_3<_2.length;_3++){ +if(_2[_3].className.match(/(^| )collapsibleList( |$)/)){ +this.applyTo(_2[_3],true); +if(!_1){ +var _4=_2[_3].getElementsByTagName("ul"); +for(var _5=0;_5<_4.length;_5++){ +_4[_5].className+=" collapsibleList"; +} +} +} +} +}; +this.applyTo=function(_6,_7){ +var _8=_6.getElementsByTagName("li"); +for(var _9=0;_9<_8.length;_9++){ +if(!_7||_6==_8[_9].parentNode){ +if(_8[_9].addEventListener){ +_8[_9].addEventListener("mousedown",function(e){ +e.preventDefault(); +},false); +}else{ +_8[_9].attachEvent("onselectstart",function(){ +event.returnValue=false; +}); +} +if(_8[_9].addEventListener){ +_8[_9].addEventListener("click",_a(_8[_9]),false); +}else{ +_8[_9].attachEvent("onclick",_a(_8[_9])); +} +_b(_8[_9]); +} +} +}; +function _a(_c){ +return function(e){ +if(!e){ +e=window.event; +} +var _d=(e.target?e.target:e.srcElement); +while(_d.nodeName!="LI"){ +_d=_d.parentNode; +} +if(_d==_c){ +_b(_c); +} +}; +}; +function _b(_e){ +var _f=_e.className.match(/(^| )collapsibleListClosed( |$)/); +var uls=_e.getElementsByTagName("ul"); +for(var _10=0;_100){ +_e.className+=" collapsibleList"+(_f?"Open":"Closed"); +} +}; +}(); + diff --git a/docs/v0.3.0/_static/collapsible-lists/js/apply-collapsible-lists.js b/docs/v0.3.0/_static/collapsible-lists/js/apply-collapsible-lists.js new file mode 100644 index 0000000000..e848bb9811 --- /dev/null +++ b/docs/v0.3.0/_static/collapsible-lists/js/apply-collapsible-lists.js @@ -0,0 +1,3 @@ +$(document).ready(function() { + CollapsibleLists.apply(); +}); diff --git a/docs/v0.3.0/_static/doctools.js b/docs/v0.3.0/_static/doctools.js new file mode 100644 index 0000000000..daccd209da --- /dev/null +++ b/docs/v0.3.0/_static/doctools.js @@ -0,0 +1,315 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for all documentation. + * + * :copyright: Copyright 2007-2020 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + +/** + * make the code below compatible with browsers without + * an installed firebug like debugger +if (!window.console || !console.firebug) { + var names = ["log", "debug", "info", "warn", "error", "assert", "dir", + "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", + "profile", "profileEnd"]; + window.console = {}; + for (var i = 0; i < names.length; ++i) + window.console[names[i]] = function() {}; +} + */ + +/** + * small helper function to urldecode strings + */ +jQuery.urldecode = function(x) { + return decodeURIComponent(x).replace(/\+/g, ' '); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} + +/** + * Small JavaScript module for the documentation. + */ +var Documentation = { + + init : function() { + this.fixFirefoxAnchorBug(); + this.highlightSearchWords(); + this.initIndexTable(); + if (DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) { + this.initOnKeyListeners(); + } + }, + + /** + * i18n support + */ + TRANSLATIONS : {}, + PLURAL_EXPR : function(n) { return n === 1 ? 0 : 1; }, + LOCALE : 'unknown', + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext : function(string) { + var translated = Documentation.TRANSLATIONS[string]; + if (typeof translated === 'undefined') + return string; + return (typeof translated === 'string') ? translated : translated[0]; + }, + + ngettext : function(singular, plural, n) { + var translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated === 'undefined') + return (n == 1) ? singular : plural; + return translated[Documentation.PLURALEXPR(n)]; + }, + + addTranslations : function(catalog) { + for (var key in catalog.messages) + this.TRANSLATIONS[key] = catalog.messages[key]; + this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); + this.LOCALE = catalog.locale; + }, + + /** + * add context elements like header anchor links + */ + addContextElements : function() { + $('div[id] > :header:first').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this headline')). + appendTo(this); + }); + $('dt[id]').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this definition')). + appendTo(this); + }); + }, + + /** + * workaround a firefox stupidity + * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 + */ + fixFirefoxAnchorBug : function() { + if (document.location.hash && $.browser.mozilla) + window.setTimeout(function() { + document.location.href += ''; + }, 10); + }, + + /** + * highlight the search words provided in the url in the text + */ + highlightSearchWords : function() { + var params = $.getQueryParameters(); + var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; + if (terms.length) { + var body = $('div.body'); + if (!body.length) { + body = $('body'); + } + window.setTimeout(function() { + $.each(terms, function() { + body.highlightText(this.toLowerCase(), 'highlighted'); + }); + }, 10); + $('') + .appendTo($('#searchbox')); + } + }, + + /** + * init the domain index toggle buttons + */ + initIndexTable : function() { + var togglers = $('img.toggler').click(function() { + var src = $(this).attr('src'); + var idnum = $(this).attr('id').substr(7); + $('tr.cg-' + idnum).toggle(); + if (src.substr(-9) === 'minus.png') + $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); + else + $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); + }).css('display', ''); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { + togglers.click(); + } + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords : function() { + $('#searchbox .highlight-link').fadeOut(300); + $('span.highlighted').removeClass('highlighted'); + }, + + /** + * make the url absolute + */ + makeURL : function(relativeURL) { + return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; + }, + + /** + * get the current relative url + */ + getCurrentURL : function() { + var path = document.location.pathname; + var parts = path.split(/\//); + $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { + if (this === '..') + parts.pop(); + }); + var url = parts.join('/'); + return path.substring(url.lastIndexOf('/') + 1, path.length - 1); + }, + + initOnKeyListeners: function() { + $(document).keydown(function(event) { + var activeElementType = document.activeElement.tagName; + // don't navigate when in search box or textarea + if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT' + && !event.altKey && !event.ctrlKey && !event.metaKey && !event.shiftKey) { + switch (event.keyCode) { + case 37: // left + var prevHref = $('link[rel="prev"]').prop('href'); + if (prevHref) { + window.location.href = prevHref; + return false; + } + case 39: // right + var nextHref = $('link[rel="next"]').prop('href'); + if (nextHref) { + window.location.href = nextHref; + return false; + } + } + } + }); + } +}; + +// quick alias for translations +_ = Documentation.gettext; + +$(document).ready(function() { + Documentation.init(); +}); diff --git a/docs/v0.3.0/_static/documentation_options.js b/docs/v0.3.0/_static/documentation_options.js new file mode 100644 index 0000000000..7d800e6a33 --- /dev/null +++ b/docs/v0.3.0/_static/documentation_options.js @@ -0,0 +1,12 @@ +var DOCUMENTATION_OPTIONS = { + URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), + VERSION: 'v0.3.0', + LANGUAGE: 'None', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false +}; \ No newline at end of file diff --git a/docs/v0.3.0/_static/file.png b/docs/v0.3.0/_static/file.png new file mode 100644 index 0000000000..a858a410e4 Binary files /dev/null and b/docs/v0.3.0/_static/file.png differ diff --git a/docs/v0.3.0/_static/fonts/font-awesome.css b/docs/v0.3.0/_static/fonts/font-awesome.css new file mode 100644 index 0000000000..e7dcefb822 --- /dev/null +++ b/docs/v0.3.0/_static/fonts/font-awesome.css @@ -0,0 +1 @@ +@charset "utf-8";/*!* Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome * License - http://fontawesome.io/license(Font:SIL OFL 1.1,CSS:MIT License) */@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(specimen/FontAwesome.woff2) format("woff2"),url(specimen/FontAwesome.woff) format("woff"),url(specimen/FontAwesome.ttf) format("truetype")}.fa{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571429em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14285714em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14285714em;width:2.14285714em;top:.14285714em;text-align:center}.fa-li.fa-lg{left:-1.85714286em}.fa-border{padding:.2em .25em .15em;border:solid .08em #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa.fa-pull-left{margin-right:.3em}.fa.fa-pull-right{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left{margin-right:.3em}.fa.pull-right{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear}.fa-pulse{-webkit-animation:fa-spin 1s infinite steps(8);animation:fa-spin 1s infinite steps(8)}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0,mirror=1)";-webkit-transform:scale(-1,1);-ms-transform:scale(-1,1);transform:scale(-1,1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2,mirror=1)";-webkit-transform:scale(1,-1);-ms-transform:scale(1,-1);transform:scale(1,-1)}:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:"\f000"}.fa-music:before{content:"\f001"}.fa-search:before{content:"\f002"}.fa-envelope-o:before{content:"\f003"}.fa-heart:before{content:"\f004"}.fa-star:before{content:"\f005"}.fa-star-o:before{content:"\f006"}.fa-user:before{content:"\f007"}.fa-film:before{content:"\f008"}.fa-th-large:before{content:"\f009"}.fa-th:before{content:"\f00a"}.fa-th-list:before{content:"\f00b"}.fa-check:before{content:"\f00c"}.fa-remove:before,.fa-close:before,.fa-times:before{content:"\f00d"}.fa-search-plus:before{content:"\f00e"}.fa-search-minus:before{content:"\f010"}.fa-power-off:before{content:"\f011"}.fa-signal:before{content:"\f012"}.fa-gear:before,.fa-cog:before{content:"\f013"}.fa-trash-o:before{content:"\f014"}.fa-home:before{content:"\f015"}.fa-file-o:before{content:"\f016"}.fa-clock-o:before{content:"\f017"}.fa-road:before{content:"\f018"}.fa-download:before{content:"\f019"}.fa-arrow-circle-o-down:before{content:"\f01a"}.fa-arrow-circle-o-up:before{content:"\f01b"}.fa-inbox:before{content:"\f01c"}.fa-play-circle-o:before{content:"\f01d"}.fa-rotate-right:before,.fa-repeat:before{content:"\f01e"}.fa-refresh:before{content:"\f021"}.fa-list-alt:before{content:"\f022"}.fa-lock:before{content:"\f023"}.fa-flag:before{content:"\f024"}.fa-headphones:before{content:"\f025"}.fa-volume-off:before{content:"\f026"}.fa-volume-down:before{content:"\f027"}.fa-volume-up:before{content:"\f028"}.fa-qrcode:before{content:"\f029"}.fa-barcode:before{content:"\f02a"}.fa-tag:before{content:"\f02b"}.fa-tags:before{content:"\f02c"}.fa-book:before{content:"\f02d"}.fa-bookmark:before{content:"\f02e"}.fa-print:before{content:"\f02f"}.fa-camera:before{content:"\f030"}.fa-font:before{content:"\f031"}.fa-bold:before{content:"\f032"}.fa-italic:before{content:"\f033"}.fa-text-height:before{content:"\f034"}.fa-text-width:before{content:"\f035"}.fa-align-left:before{content:"\f036"}.fa-align-center:before{content:"\f037"}.fa-align-right:before{content:"\f038"}.fa-align-justify:before{content:"\f039"}.fa-list:before{content:"\f03a"}.fa-dedent:before,.fa-outdent:before{content:"\f03b"}.fa-indent:before{content:"\f03c"}.fa-video-camera:before{content:"\f03d"}.fa-photo:before,.fa-image:before,.fa-picture-o:before{content:"\f03e"}.fa-pencil:before{content:"\f040"}.fa-map-marker:before{content:"\f041"}.fa-adjust:before{content:"\f042"}.fa-tint:before{content:"\f043"}.fa-edit:before,.fa-pencil-square-o:before{content:"\f044"}.fa-share-square-o:before{content:"\f045"}.fa-check-square-o:before{content:"\f046"}.fa-arrows:before{content:"\f047"}.fa-step-backward:before{content:"\f048"}.fa-fast-backward:before{content:"\f049"}.fa-backward:before{content:"\f04a"}.fa-play:before{content:"\f04b"}.fa-pause:before{content:"\f04c"}.fa-stop:before{content:"\f04d"}.fa-forward:before{content:"\f04e"}.fa-fast-forward:before{content:"\f050"}.fa-step-forward:before{content:"\f051"}.fa-eject:before{content:"\f052"}.fa-chevron-left:before{content:"\f053"}.fa-chevron-right:before{content:"\f054"}.fa-plus-circle:before{content:"\f055"}.fa-minus-circle:before{content:"\f056"}.fa-times-circle:before{content:"\f057"}.fa-check-circle:before{content:"\f058"}.fa-question-circle:before{content:"\f059"}.fa-info-circle:before{content:"\f05a"}.fa-crosshairs:before{content:"\f05b"}.fa-times-circle-o:before{content:"\f05c"}.fa-check-circle-o:before{content:"\f05d"}.fa-ban:before{content:"\f05e"}.fa-arrow-left:before{content:"\f060"}.fa-arrow-right:before{content:"\f061"}.fa-arrow-up:before{content:"\f062"}.fa-arrow-down:before{content:"\f063"}.fa-mail-forward:before,.fa-share:before{content:"\f064"}.fa-expand:before{content:"\f065"}.fa-compress:before{content:"\f066"}.fa-plus:before{content:"\f067"}.fa-minus:before{content:"\f068"}.fa-asterisk:before{content:"\f069"}.fa-exclamation-circle:before{content:"\f06a"}.fa-gift:before{content:"\f06b"}.fa-leaf:before{content:"\f06c"}.fa-fire:before{content:"\f06d"}.fa-eye:before{content:"\f06e"}.fa-eye-slash:before{content:"\f070"}.fa-warning:before,.fa-exclamation-triangle:before{content:"\f071"}.fa-plane:before{content:"\f072"}.fa-calendar:before{content:"\f073"}.fa-random:before{content:"\f074"}.fa-comment:before{content:"\f075"}.fa-magnet:before{content:"\f076"}.fa-chevron-up:before{content:"\f077"}.fa-chevron-down:before{content:"\f078"}.fa-retweet:before{content:"\f079"}.fa-shopping-cart:before{content:"\f07a"}.fa-folder:before{content:"\f07b"}.fa-folder-open:before{content:"\f07c"}.fa-arrows-v:before{content:"\f07d"}.fa-arrows-h:before{content:"\f07e"}.fa-bar-chart-o:before,.fa-bar-chart:before{content:"\f080"}.fa-twitter-square:before{content:"\f081"}.fa-facebook-square:before{content:"\f082"}.fa-camera-retro:before{content:"\f083"}.fa-key:before{content:"\f084"}.fa-gears:before,.fa-cogs:before{content:"\f085"}.fa-comments:before{content:"\f086"}.fa-thumbs-o-up:before{content:"\f087"}.fa-thumbs-o-down:before{content:"\f088"}.fa-star-half:before{content:"\f089"}.fa-heart-o:before{content:"\f08a"}.fa-sign-out:before{content:"\f08b"}.fa-linkedin-square:before{content:"\f08c"}.fa-thumb-tack:before{content:"\f08d"}.fa-external-link:before{content:"\f08e"}.fa-sign-in:before{content:"\f090"}.fa-trophy:before{content:"\f091"}.fa-github-square:before{content:"\f092"}.fa-upload:before{content:"\f093"}.fa-lemon-o:before{content:"\f094"}.fa-phone:before{content:"\f095"}.fa-square-o:before{content:"\f096"}.fa-bookmark-o:before{content:"\f097"}.fa-phone-square:before{content:"\f098"}.fa-twitter:before{content:"\f099"}.fa-facebook-f:before,.fa-facebook:before{content:"\f09a"}.fa-github:before{content:"\f09b"}.fa-unlock:before{content:"\f09c"}.fa-credit-card:before{content:"\f09d"}.fa-feed:before,.fa-rss:before{content:"\f09e"}.fa-hdd-o:before{content:"\f0a0"}.fa-bullhorn:before{content:"\f0a1"}.fa-bell:before{content:"\f0f3"}.fa-certificate:before{content:"\f0a3"}.fa-hand-o-right:before{content:"\f0a4"}.fa-hand-o-left:before{content:"\f0a5"}.fa-hand-o-up:before{content:"\f0a6"}.fa-hand-o-down:before{content:"\f0a7"}.fa-arrow-circle-left:before{content:"\f0a8"}.fa-arrow-circle-right:before{content:"\f0a9"}.fa-arrow-circle-up:before{content:"\f0aa"}.fa-arrow-circle-down:before{content:"\f0ab"}.fa-globe:before{content:"\f0ac"}.fa-wrench:before{content:"\f0ad"}.fa-tasks:before{content:"\f0ae"}.fa-filter:before{content:"\f0b0"}.fa-briefcase:before{content:"\f0b1"}.fa-arrows-alt:before{content:"\f0b2"}.fa-group:before,.fa-users:before{content:"\f0c0"}.fa-chain:before,.fa-link:before{content:"\f0c1"}.fa-cloud:before{content:"\f0c2"}.fa-flask:before{content:"\f0c3"}.fa-cut:before,.fa-scissors:before{content:"\f0c4"}.fa-copy:before,.fa-files-o:before{content:"\f0c5"}.fa-paperclip:before{content:"\f0c6"}.fa-save:before,.fa-floppy-o:before{content:"\f0c7"}.fa-square:before{content:"\f0c8"}.fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:"\f0c9"}.fa-list-ul:before{content:"\f0ca"}.fa-list-ol:before{content:"\f0cb"}.fa-strikethrough:before{content:"\f0cc"}.fa-underline:before{content:"\f0cd"}.fa-table:before{content:"\f0ce"}.fa-magic:before{content:"\f0d0"}.fa-truck:before{content:"\f0d1"}.fa-pinterest:before{content:"\f0d2"}.fa-pinterest-square:before{content:"\f0d3"}.fa-google-plus-square:before{content:"\f0d4"}.fa-google-plus:before{content:"\f0d5"}.fa-money:before{content:"\f0d6"}.fa-caret-down:before{content:"\f0d7"}.fa-caret-up:before{content:"\f0d8"}.fa-caret-left:before{content:"\f0d9"}.fa-caret-right:before{content:"\f0da"}.fa-columns:before{content:"\f0db"}.fa-unsorted:before,.fa-sort:before{content:"\f0dc"}.fa-sort-down:before,.fa-sort-desc:before{content:"\f0dd"}.fa-sort-up:before,.fa-sort-asc:before{content:"\f0de"}.fa-envelope:before{content:"\f0e0"}.fa-linkedin:before{content:"\f0e1"}.fa-rotate-left:before,.fa-undo:before{content:"\f0e2"}.fa-legal:before,.fa-gavel:before{content:"\f0e3"}.fa-dashboard:before,.fa-tachometer:before{content:"\f0e4"}.fa-comment-o:before{content:"\f0e5"}.fa-comments-o:before{content:"\f0e6"}.fa-flash:before,.fa-bolt:before{content:"\f0e7"}.fa-sitemap:before{content:"\f0e8"}.fa-umbrella:before{content:"\f0e9"}.fa-paste:before,.fa-clipboard:before{content:"\f0ea"}.fa-lightbulb-o:before{content:"\f0eb"}.fa-exchange:before{content:"\f0ec"}.fa-cloud-download:before{content:"\f0ed"}.fa-cloud-upload:before{content:"\f0ee"}.fa-user-md:before{content:"\f0f0"}.fa-stethoscope:before{content:"\f0f1"}.fa-suitcase:before{content:"\f0f2"}.fa-bell-o:before{content:"\f0a2"}.fa-coffee:before{content:"\f0f4"}.fa-cutlery:before{content:"\f0f5"}.fa-file-text-o:before{content:"\f0f6"}.fa-building-o:before{content:"\f0f7"}.fa-hospital-o:before{content:"\f0f8"}.fa-ambulance:before{content:"\f0f9"}.fa-medkit:before{content:"\f0fa"}.fa-fighter-jet:before{content:"\f0fb"}.fa-beer:before{content:"\f0fc"}.fa-h-square:before{content:"\f0fd"}.fa-plus-square:before{content:"\f0fe"}.fa-angle-double-left:before{content:"\f100"}.fa-angle-double-right:before{content:"\f101"}.fa-angle-double-up:before{content:"\f102"}.fa-angle-double-down:before{content:"\f103"}.fa-angle-left:before{content:"\f104"}.fa-angle-right:before{content:"\f105"}.fa-angle-up:before{content:"\f106"}.fa-angle-down:before{content:"\f107"}.fa-desktop:before{content:"\f108"}.fa-laptop:before{content:"\f109"}.fa-tablet:before{content:"\f10a"}.fa-mobile-phone:before,.fa-mobile:before{content:"\f10b"}.fa-circle-o:before{content:"\f10c"}.fa-quote-left:before{content:"\f10d"}.fa-quote-right:before{content:"\f10e"}.fa-spinner:before{content:"\f110"}.fa-circle:before{content:"\f111"}.fa-mail-reply:before,.fa-reply:before{content:"\f112"}.fa-github-alt:before{content:"\f113"}.fa-folder-o:before{content:"\f114"}.fa-folder-open-o:before{content:"\f115"}.fa-smile-o:before{content:"\f118"}.fa-frown-o:before{content:"\f119"}.fa-meh-o:before{content:"\f11a"}.fa-gamepad:before{content:"\f11b"}.fa-keyboard-o:before{content:"\f11c"}.fa-flag-o:before{content:"\f11d"}.fa-flag-checkered:before{content:"\f11e"}.fa-terminal:before{content:"\f120"}.fa-code:before{content:"\f121"}.fa-mail-reply-all:before,.fa-reply-all:before{content:"\f122"}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:"\f123"}.fa-location-arrow:before{content:"\f124"}.fa-crop:before{content:"\f125"}.fa-code-fork:before{content:"\f126"}.fa-unlink:before,.fa-chain-broken:before{content:"\f127"}.fa-question:before{content:"\f128"}.fa-info:before{content:"\f129"}.fa-exclamation:before{content:"\f12a"}.fa-superscript:before{content:"\f12b"}.fa-subscript:before{content:"\f12c"}.fa-eraser:before{content:"\f12d"}.fa-puzzle-piece:before{content:"\f12e"}.fa-microphone:before{content:"\f130"}.fa-microphone-slash:before{content:"\f131"}.fa-shield:before{content:"\f132"}.fa-calendar-o:before{content:"\f133"}.fa-fire-extinguisher:before{content:"\f134"}.fa-rocket:before{content:"\f135"}.fa-maxcdn:before{content:"\f136"}.fa-chevron-circle-left:before{content:"\f137"}.fa-chevron-circle-right:before{content:"\f138"}.fa-chevron-circle-up:before{content:"\f139"}.fa-chevron-circle-down:before{content:"\f13a"}.fa-html5:before{content:"\f13b"}.fa-css3:before{content:"\f13c"}.fa-anchor:before{content:"\f13d"}.fa-unlock-alt:before{content:"\f13e"}.fa-bullseye:before{content:"\f140"}.fa-ellipsis-h:before{content:"\f141"}.fa-ellipsis-v:before{content:"\f142"}.fa-rss-square:before{content:"\f143"}.fa-play-circle:before{content:"\f144"}.fa-ticket:before{content:"\f145"}.fa-minus-square:before{content:"\f146"}.fa-minus-square-o:before{content:"\f147"}.fa-level-up:before{content:"\f148"}.fa-level-down:before{content:"\f149"}.fa-check-square:before{content:"\f14a"}.fa-pencil-square:before{content:"\f14b"}.fa-external-link-square:before{content:"\f14c"}.fa-share-square:before{content:"\f14d"}.fa-compass:before{content:"\f14e"}.fa-toggle-down:before,.fa-caret-square-o-down:before{content:"\f150"}.fa-toggle-up:before,.fa-caret-square-o-up:before{content:"\f151"}.fa-toggle-right:before,.fa-caret-square-o-right:before{content:"\f152"}.fa-euro:before,.fa-eur:before{content:"\f153"}.fa-gbp:before{content:"\f154"}.fa-dollar:before,.fa-usd:before{content:"\f155"}.fa-rupee:before,.fa-inr:before{content:"\f156"}.fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:"\f157"}.fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:"\f158"}.fa-won:before,.fa-krw:before{content:"\f159"}.fa-bitcoin:before,.fa-btc:before{content:"\f15a"}.fa-file:before{content:"\f15b"}.fa-file-text:before{content:"\f15c"}.fa-sort-alpha-asc:before{content:"\f15d"}.fa-sort-alpha-desc:before{content:"\f15e"}.fa-sort-amount-asc:before{content:"\f160"}.fa-sort-amount-desc:before{content:"\f161"}.fa-sort-numeric-asc:before{content:"\f162"}.fa-sort-numeric-desc:before{content:"\f163"}.fa-thumbs-up:before{content:"\f164"}.fa-thumbs-down:before{content:"\f165"}.fa-youtube-square:before{content:"\f166"}.fa-youtube:before{content:"\f167"}.fa-xing:before{content:"\f168"}.fa-xing-square:before{content:"\f169"}.fa-youtube-play:before{content:"\f16a"}.fa-dropbox:before{content:"\f16b"}.fa-stack-overflow:before{content:"\f16c"}.fa-instagram:before{content:"\f16d"}.fa-flickr:before{content:"\f16e"}.fa-adn:before{content:"\f170"}.fa-bitbucket:before{content:"\f171"}.fa-bitbucket-square:before{content:"\f172"}.fa-tumblr:before{content:"\f173"}.fa-tumblr-square:before{content:"\f174"}.fa-long-arrow-down:before{content:"\f175"}.fa-long-arrow-up:before{content:"\f176"}.fa-long-arrow-left:before{content:"\f177"}.fa-long-arrow-right:before{content:"\f178"}.fa-apple:before{content:"\f179"}.fa-windows:before{content:"\f17a"}.fa-android:before{content:"\f17b"}.fa-linux:before{content:"\f17c"}.fa-dribbble:before{content:"\f17d"}.fa-skype:before{content:"\f17e"}.fa-foursquare:before{content:"\f180"}.fa-trello:before{content:"\f181"}.fa-female:before{content:"\f182"}.fa-male:before{content:"\f183"}.fa-gittip:before,.fa-gratipay:before{content:"\f184"}.fa-sun-o:before{content:"\f185"}.fa-moon-o:before{content:"\f186"}.fa-archive:before{content:"\f187"}.fa-bug:before{content:"\f188"}.fa-vk:before{content:"\f189"}.fa-weibo:before{content:"\f18a"}.fa-renren:before{content:"\f18b"}.fa-pagelines:before{content:"\f18c"}.fa-stack-exchange:before{content:"\f18d"}.fa-arrow-circle-o-right:before{content:"\f18e"}.fa-arrow-circle-o-left:before{content:"\f190"}.fa-toggle-left:before,.fa-caret-square-o-left:before{content:"\f191"}.fa-dot-circle-o:before{content:"\f192"}.fa-wheelchair:before{content:"\f193"}.fa-vimeo-square:before{content:"\f194"}.fa-turkish-lira:before,.fa-try:before{content:"\f195"}.fa-plus-square-o:before{content:"\f196"}.fa-space-shuttle:before{content:"\f197"}.fa-slack:before{content:"\f198"}.fa-envelope-square:before{content:"\f199"}.fa-wordpress:before{content:"\f19a"}.fa-openid:before{content:"\f19b"}.fa-institution:before,.fa-bank:before,.fa-university:before{content:"\f19c"}.fa-mortar-board:before,.fa-graduation-cap:before{content:"\f19d"}.fa-yahoo:before{content:"\f19e"}.fa-google:before{content:"\f1a0"}.fa-reddit:before{content:"\f1a1"}.fa-reddit-square:before{content:"\f1a2"}.fa-stumbleupon-circle:before{content:"\f1a3"}.fa-stumbleupon:before{content:"\f1a4"}.fa-delicious:before{content:"\f1a5"}.fa-digg:before{content:"\f1a6"}.fa-pied-piper-pp:before{content:"\f1a7"}.fa-pied-piper-alt:before{content:"\f1a8"}.fa-drupal:before{content:"\f1a9"}.fa-joomla:before{content:"\f1aa"}.fa-language:before{content:"\f1ab"}.fa-fax:before{content:"\f1ac"}.fa-building:before{content:"\f1ad"}.fa-child:before{content:"\f1ae"}.fa-paw:before{content:"\f1b0"}.fa-spoon:before{content:"\f1b1"}.fa-cube:before{content:"\f1b2"}.fa-cubes:before{content:"\f1b3"}.fa-behance:before{content:"\f1b4"}.fa-behance-square:before{content:"\f1b5"}.fa-steam:before{content:"\f1b6"}.fa-steam-square:before{content:"\f1b7"}.fa-recycle:before{content:"\f1b8"}.fa-automobile:before,.fa-car:before{content:"\f1b9"}.fa-cab:before,.fa-taxi:before{content:"\f1ba"}.fa-tree:before{content:"\f1bb"}.fa-spotify:before{content:"\f1bc"}.fa-deviantart:before{content:"\f1bd"}.fa-soundcloud:before{content:"\f1be"}.fa-database:before{content:"\f1c0"}.fa-file-pdf-o:before{content:"\f1c1"}.fa-file-word-o:before{content:"\f1c2"}.fa-file-excel-o:before{content:"\f1c3"}.fa-file-powerpoint-o:before{content:"\f1c4"}.fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:"\f1c5"}.fa-file-zip-o:before,.fa-file-archive-o:before{content:"\f1c6"}.fa-file-sound-o:before,.fa-file-audio-o:before{content:"\f1c7"}.fa-file-movie-o:before,.fa-file-video-o:before{content:"\f1c8"}.fa-file-code-o:before{content:"\f1c9"}.fa-vine:before{content:"\f1ca"}.fa-codepen:before{content:"\f1cb"}.fa-jsfiddle:before{content:"\f1cc"}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:"\f1cd"}.fa-circle-o-notch:before{content:"\f1ce"}.fa-ra:before,.fa-resistance:before,.fa-rebel:before{content:"\f1d0"}.fa-ge:before,.fa-empire:before{content:"\f1d1"}.fa-git-square:before{content:"\f1d2"}.fa-git:before{content:"\f1d3"}.fa-y-combinator-square:before,.fa-yc-square:before,.fa-hacker-news:before{content:"\f1d4"}.fa-tencent-weibo:before{content:"\f1d5"}.fa-qq:before{content:"\f1d6"}.fa-wechat:before,.fa-weixin:before{content:"\f1d7"}.fa-send:before,.fa-paper-plane:before{content:"\f1d8"}.fa-send-o:before,.fa-paper-plane-o:before{content:"\f1d9"}.fa-history:before{content:"\f1da"}.fa-circle-thin:before{content:"\f1db"}.fa-header:before{content:"\f1dc"}.fa-paragraph:before{content:"\f1dd"}.fa-sliders:before{content:"\f1de"}.fa-share-alt:before{content:"\f1e0"}.fa-share-alt-square:before{content:"\f1e1"}.fa-bomb:before{content:"\f1e2"}.fa-soccer-ball-o:before,.fa-futbol-o:before{content:"\f1e3"}.fa-tty:before{content:"\f1e4"}.fa-binoculars:before{content:"\f1e5"}.fa-plug:before{content:"\f1e6"}.fa-slideshare:before{content:"\f1e7"}.fa-twitch:before{content:"\f1e8"}.fa-yelp:before{content:"\f1e9"}.fa-newspaper-o:before{content:"\f1ea"}.fa-wifi:before{content:"\f1eb"}.fa-calculator:before{content:"\f1ec"}.fa-paypal:before{content:"\f1ed"}.fa-google-wallet:before{content:"\f1ee"}.fa-cc-visa:before{content:"\f1f0"}.fa-cc-mastercard:before{content:"\f1f1"}.fa-cc-discover:before{content:"\f1f2"}.fa-cc-amex:before{content:"\f1f3"}.fa-cc-paypal:before{content:"\f1f4"}.fa-cc-stripe:before{content:"\f1f5"}.fa-bell-slash:before{content:"\f1f6"}.fa-bell-slash-o:before{content:"\f1f7"}.fa-trash:before{content:"\f1f8"}.fa-copyright:before{content:"\f1f9"}.fa-at:before{content:"\f1fa"}.fa-eyedropper:before{content:"\f1fb"}.fa-paint-brush:before{content:"\f1fc"}.fa-birthday-cake:before{content:"\f1fd"}.fa-area-chart:before{content:"\f1fe"}.fa-pie-chart:before{content:"\f200"}.fa-line-chart:before{content:"\f201"}.fa-lastfm:before{content:"\f202"}.fa-lastfm-square:before{content:"\f203"}.fa-toggle-off:before{content:"\f204"}.fa-toggle-on:before{content:"\f205"}.fa-bicycle:before{content:"\f206"}.fa-bus:before{content:"\f207"}.fa-ioxhost:before{content:"\f208"}.fa-angellist:before{content:"\f209"}.fa-cc:before{content:"\f20a"}.fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:"\f20b"}.fa-meanpath:before{content:"\f20c"}.fa-buysellads:before{content:"\f20d"}.fa-connectdevelop:before{content:"\f20e"}.fa-dashcube:before{content:"\f210"}.fa-forumbee:before{content:"\f211"}.fa-leanpub:before{content:"\f212"}.fa-sellsy:before{content:"\f213"}.fa-shirtsinbulk:before{content:"\f214"}.fa-simplybuilt:before{content:"\f215"}.fa-skyatlas:before{content:"\f216"}.fa-cart-plus:before{content:"\f217"}.fa-cart-arrow-down:before{content:"\f218"}.fa-diamond:before{content:"\f219"}.fa-ship:before{content:"\f21a"}.fa-user-secret:before{content:"\f21b"}.fa-motorcycle:before{content:"\f21c"}.fa-street-view:before{content:"\f21d"}.fa-heartbeat:before{content:"\f21e"}.fa-venus:before{content:"\f221"}.fa-mars:before{content:"\f222"}.fa-mercury:before{content:"\f223"}.fa-intersex:before,.fa-transgender:before{content:"\f224"}.fa-transgender-alt:before{content:"\f225"}.fa-venus-double:before{content:"\f226"}.fa-mars-double:before{content:"\f227"}.fa-venus-mars:before{content:"\f228"}.fa-mars-stroke:before{content:"\f229"}.fa-mars-stroke-v:before{content:"\f22a"}.fa-mars-stroke-h:before{content:"\f22b"}.fa-neuter:before{content:"\f22c"}.fa-genderless:before{content:"\f22d"}.fa-facebook-official:before{content:"\f230"}.fa-pinterest-p:before{content:"\f231"}.fa-whatsapp:before{content:"\f232"}.fa-server:before{content:"\f233"}.fa-user-plus:before{content:"\f234"}.fa-user-times:before{content:"\f235"}.fa-hotel:before,.fa-bed:before{content:"\f236"}.fa-viacoin:before{content:"\f237"}.fa-train:before{content:"\f238"}.fa-subway:before{content:"\f239"}.fa-medium:before{content:"\f23a"}.fa-yc:before,.fa-y-combinator:before{content:"\f23b"}.fa-optin-monster:before{content:"\f23c"}.fa-opencart:before{content:"\f23d"}.fa-expeditedssl:before{content:"\f23e"}.fa-battery-4:before,.fa-battery:before,.fa-battery-full:before{content:"\f240"}.fa-battery-3:before,.fa-battery-three-quarters:before{content:"\f241"}.fa-battery-2:before,.fa-battery-half:before{content:"\f242"}.fa-battery-1:before,.fa-battery-quarter:before{content:"\f243"}.fa-battery-0:before,.fa-battery-empty:before{content:"\f244"}.fa-mouse-pointer:before{content:"\f245"}.fa-i-cursor:before{content:"\f246"}.fa-object-group:before{content:"\f247"}.fa-object-ungroup:before{content:"\f248"}.fa-sticky-note:before{content:"\f249"}.fa-sticky-note-o:before{content:"\f24a"}.fa-cc-jcb:before{content:"\f24b"}.fa-cc-diners-club:before{content:"\f24c"}.fa-clone:before{content:"\f24d"}.fa-balance-scale:before{content:"\f24e"}.fa-hourglass-o:before{content:"\f250"}.fa-hourglass-1:before,.fa-hourglass-start:before{content:"\f251"}.fa-hourglass-2:before,.fa-hourglass-half:before{content:"\f252"}.fa-hourglass-3:before,.fa-hourglass-end:before{content:"\f253"}.fa-hourglass:before{content:"\f254"}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:"\f255"}.fa-hand-stop-o:before,.fa-hand-paper-o:before{content:"\f256"}.fa-hand-scissors-o:before{content:"\f257"}.fa-hand-lizard-o:before{content:"\f258"}.fa-hand-spock-o:before{content:"\f259"}.fa-hand-pointer-o:before{content:"\f25a"}.fa-hand-peace-o:before{content:"\f25b"}.fa-trademark:before{content:"\f25c"}.fa-registered:before{content:"\f25d"}.fa-creative-commons:before{content:"\f25e"}.fa-gg:before{content:"\f260"}.fa-gg-circle:before{content:"\f261"}.fa-tripadvisor:before{content:"\f262"}.fa-odnoklassniki:before{content:"\f263"}.fa-odnoklassniki-square:before{content:"\f264"}.fa-get-pocket:before{content:"\f265"}.fa-wikipedia-w:before{content:"\f266"}.fa-safari:before{content:"\f267"}.fa-chrome:before{content:"\f268"}.fa-firefox:before{content:"\f269"}.fa-opera:before{content:"\f26a"}.fa-internet-explorer:before{content:"\f26b"}.fa-tv:before,.fa-television:before{content:"\f26c"}.fa-contao:before{content:"\f26d"}.fa-500px:before{content:"\f26e"}.fa-amazon:before{content:"\f270"}.fa-calendar-plus-o:before{content:"\f271"}.fa-calendar-minus-o:before{content:"\f272"}.fa-calendar-times-o:before{content:"\f273"}.fa-calendar-check-o:before{content:"\f274"}.fa-industry:before{content:"\f275"}.fa-map-pin:before{content:"\f276"}.fa-map-signs:before{content:"\f277"}.fa-map-o:before{content:"\f278"}.fa-map:before{content:"\f279"}.fa-commenting:before{content:"\f27a"}.fa-commenting-o:before{content:"\f27b"}.fa-houzz:before{content:"\f27c"}.fa-vimeo:before{content:"\f27d"}.fa-black-tie:before{content:"\f27e"}.fa-fonticons:before{content:"\f280"}.fa-reddit-alien:before{content:"\f281"}.fa-edge:before{content:"\f282"}.fa-credit-card-alt:before{content:"\f283"}.fa-codiepie:before{content:"\f284"}.fa-modx:before{content:"\f285"}.fa-fort-awesome:before{content:"\f286"}.fa-usb:before{content:"\f287"}.fa-product-hunt:before{content:"\f288"}.fa-mixcloud:before{content:"\f289"}.fa-scribd:before{content:"\f28a"}.fa-pause-circle:before{content:"\f28b"}.fa-pause-circle-o:before{content:"\f28c"}.fa-stop-circle:before{content:"\f28d"}.fa-stop-circle-o:before{content:"\f28e"}.fa-shopping-bag:before{content:"\f290"}.fa-shopping-basket:before{content:"\f291"}.fa-hashtag:before{content:"\f292"}.fa-bluetooth:before{content:"\f293"}.fa-bluetooth-b:before{content:"\f294"}.fa-percent:before{content:"\f295"}.fa-gitlab:before{content:"\f296"}.fa-wpbeginner:before{content:"\f297"}.fa-wpforms:before{content:"\f298"}.fa-envira:before{content:"\f299"}.fa-universal-access:before{content:"\f29a"}.fa-wheelchair-alt:before{content:"\f29b"}.fa-question-circle-o:before{content:"\f29c"}.fa-blind:before{content:"\f29d"}.fa-audio-description:before{content:"\f29e"}.fa-volume-control-phone:before{content:"\f2a0"}.fa-braille:before{content:"\f2a1"}.fa-assistive-listening-systems:before{content:"\f2a2"}.fa-asl-interpreting:before,.fa-american-sign-language-interpreting:before{content:"\f2a3"}.fa-deafness:before,.fa-hard-of-hearing:before,.fa-deaf:before{content:"\f2a4"}.fa-glide:before{content:"\f2a5"}.fa-glide-g:before{content:"\f2a6"}.fa-signing:before,.fa-sign-language:before{content:"\f2a7"}.fa-low-vision:before{content:"\f2a8"}.fa-viadeo:before{content:"\f2a9"}.fa-viadeo-square:before{content:"\f2aa"}.fa-snapchat:before{content:"\f2ab"}.fa-snapchat-ghost:before{content:"\f2ac"}.fa-snapchat-square:before{content:"\f2ad"}.fa-pied-piper:before{content:"\f2ae"}.fa-first-order:before{content:"\f2b0"}.fa-yoast:before{content:"\f2b1"}.fa-themeisle:before{content:"\f2b2"}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:"\f2b3"}.fa-fa:before,.fa-font-awesome:before{content:"\f2b4"}.fa-handshake-o:before{content:"\f2b5"}.fa-envelope-open:before{content:"\f2b6"}.fa-envelope-open-o:before{content:"\f2b7"}.fa-linode:before{content:"\f2b8"}.fa-address-book:before{content:"\f2b9"}.fa-address-book-o:before{content:"\f2ba"}.fa-vcard:before,.fa-address-card:before{content:"\f2bb"}.fa-vcard-o:before,.fa-address-card-o:before{content:"\f2bc"}.fa-user-circle:before{content:"\f2bd"}.fa-user-circle-o:before{content:"\f2be"}.fa-user-o:before{content:"\f2c0"}.fa-id-badge:before{content:"\f2c1"}.fa-drivers-license:before,.fa-id-card:before{content:"\f2c2"}.fa-drivers-license-o:before,.fa-id-card-o:before{content:"\f2c3"}.fa-quora:before{content:"\f2c4"}.fa-free-code-camp:before{content:"\f2c5"}.fa-telegram:before{content:"\f2c6"}.fa-thermometer-4:before,.fa-thermometer:before,.fa-thermometer-full:before{content:"\f2c7"}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:"\f2c8"}.fa-thermometer-2:before,.fa-thermometer-half:before{content:"\f2c9"}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:"\f2ca"}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:"\f2cb"}.fa-shower:before{content:"\f2cc"}.fa-bathtub:before,.fa-s15:before,.fa-bath:before{content:"\f2cd"}.fa-podcast:before{content:"\f2ce"}.fa-window-maximize:before{content:"\f2d0"}.fa-window-minimize:before{content:"\f2d1"}.fa-window-restore:before{content:"\f2d2"}.fa-times-rectangle:before,.fa-window-close:before{content:"\f2d3"}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:"\f2d4"}.fa-bandcamp:before{content:"\f2d5"}.fa-grav:before{content:"\f2d6"}.fa-etsy:before{content:"\f2d7"}.fa-imdb:before{content:"\f2d8"}.fa-ravelry:before{content:"\f2d9"}.fa-eercast:before{content:"\f2da"}.fa-microchip:before{content:"\f2db"}.fa-snowflake-o:before{content:"\f2dc"}.fa-superpowers:before{content:"\f2dd"}.fa-wpexplorer:before{content:"\f2de"}.fa-meetup:before{content:"\f2e0"}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto} \ No newline at end of file diff --git a/docs/v0.3.0/_static/fonts/material-icons.css b/docs/v0.3.0/_static/fonts/material-icons.css new file mode 100644 index 0000000000..76de20cb10 --- /dev/null +++ b/docs/v0.3.0/_static/fonts/material-icons.css @@ -0,0 +1 @@ +@charset "utf-8";/*!* Licensed under the Apache License,Version 2.0(the "License");you may not * use this file except in compliance with the License. You may obtain a copy * of the License at:* * http://www.apache.org/licenses/LICENSE-2.0 * * UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING,SOFTWARE * DISTRIBUTED UNDER THE LICENSE IS DISTRIBUTED ON AN "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,EITHER EXPRESS OR IMPLIED. * SEE THE LICENSE FOR THE SPECIFIC LANGUAGE GOVERNING PERMISSIONS AND * LIMITATIONS UNDER THE LICENSE. */@font-face{font-display:swap;font-family:"Material Icons";font-style:normal;font-weight:400;src:local("Material Icons"),local("MaterialIcons-Regular"),url(specimen/MaterialIcons-Regular.woff2) format("woff2"),url(specimen/MaterialIcons-Regular.woff) format("woff"),url(specimen/MaterialIcons-Regular.ttf) format("truetype")} \ No newline at end of file diff --git a/docs/v0.3.0/_static/fonts/specimen/FontAwesome.ttf b/docs/v0.3.0/_static/fonts/specimen/FontAwesome.ttf new file mode 100644 index 0000000000..35acda2fa1 Binary files /dev/null and b/docs/v0.3.0/_static/fonts/specimen/FontAwesome.ttf differ diff --git a/docs/v0.3.0/_static/fonts/specimen/FontAwesome.woff b/docs/v0.3.0/_static/fonts/specimen/FontAwesome.woff new file mode 100644 index 0000000000..400014a4b0 Binary files /dev/null and b/docs/v0.3.0/_static/fonts/specimen/FontAwesome.woff differ diff --git a/docs/v0.3.0/_static/fonts/specimen/FontAwesome.woff2 b/docs/v0.3.0/_static/fonts/specimen/FontAwesome.woff2 new file mode 100644 index 0000000000..4d13fc6040 Binary files /dev/null and b/docs/v0.3.0/_static/fonts/specimen/FontAwesome.woff2 differ diff --git a/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.ttf b/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.ttf new file mode 100644 index 0000000000..7015564ad1 Binary files /dev/null and b/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.ttf differ diff --git a/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.woff b/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.woff new file mode 100644 index 0000000000..b648a3eea2 Binary files /dev/null and b/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.woff differ diff --git a/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.woff2 b/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.woff2 new file mode 100644 index 0000000000..9fa2112520 Binary files /dev/null and b/docs/v0.3.0/_static/fonts/specimen/MaterialIcons-Regular.woff2 differ diff --git a/docs/v0.3.0/_static/images/favicon.png b/docs/v0.3.0/_static/images/favicon.png new file mode 100644 index 0000000000..76d17f57ad Binary files /dev/null and b/docs/v0.3.0/_static/images/favicon.png differ diff --git a/docs/v0.3.0/_static/images/icons/bitbucket.1b09e088.svg b/docs/v0.3.0/_static/images/icons/bitbucket.1b09e088.svg new file mode 100644 index 0000000000..cf58c14fbc --- /dev/null +++ b/docs/v0.3.0/_static/images/icons/bitbucket.1b09e088.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/v0.3.0/_static/images/icons/bitbucket.svg b/docs/v0.3.0/_static/images/icons/bitbucket.svg new file mode 100644 index 0000000000..cf58c14fbc --- /dev/null +++ b/docs/v0.3.0/_static/images/icons/bitbucket.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/v0.3.0/_static/images/icons/github.f0b8504a.svg b/docs/v0.3.0/_static/images/icons/github.f0b8504a.svg new file mode 100644 index 0000000000..3d13b19751 --- /dev/null +++ b/docs/v0.3.0/_static/images/icons/github.f0b8504a.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/v0.3.0/_static/images/icons/github.svg b/docs/v0.3.0/_static/images/icons/github.svg new file mode 100644 index 0000000000..3d13b19751 --- /dev/null +++ b/docs/v0.3.0/_static/images/icons/github.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/v0.3.0/_static/images/icons/gitlab.6dd19c00.svg b/docs/v0.3.0/_static/images/icons/gitlab.6dd19c00.svg new file mode 100644 index 0000000000..1d9fffa74f --- /dev/null +++ b/docs/v0.3.0/_static/images/icons/gitlab.6dd19c00.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/v0.3.0/_static/images/icons/gitlab.svg b/docs/v0.3.0/_static/images/icons/gitlab.svg new file mode 100644 index 0000000000..1d9fffa74f --- /dev/null +++ b/docs/v0.3.0/_static/images/icons/gitlab.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/application.js b/docs/v0.3.0/_static/javascripts/application.js new file mode 100644 index 0000000000..7c724d2e4f --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/application.js @@ -0,0 +1,2540 @@ +! function(e, t) { + for (var n in t) e[n] = t[n] +}(window, function(n) { + var r = {}; + + function i(e) { + if (r[e]) return r[e].exports; + var t = r[e] = { + i: e, + l: !1, + exports: {} + }; + return n[e].call(t.exports, t, t.exports, i), t.l = !0, t.exports + } + return i.m = n, i.c = r, i.d = function(e, t, n) { + i.o(e, t) || Object.defineProperty(e, t, { + enumerable: !0, + get: n + }) + }, i.r = function(e) { + "undefined" != typeof Symbol && Symbol.toStringTag && Object.defineProperty(e, Symbol.toStringTag, { + value: "Module" + }), Object.defineProperty(e, "__esModule", { + value: !0 + }) + }, i.t = function(t, e) { + if (1 & e && (t = i(t)), 8 & e) return t; + if (4 & e && "object" == typeof t && t && t.__esModule) return t; + var n = Object.create(null); + if (i.r(n), Object.defineProperty(n, "default", { + enumerable: !0, + value: t + }), 2 & e && "string" != typeof t) + for (var r in t) i.d(n, r, function(e) { + return t[e] + }.bind(null, r)); + return n + }, i.n = function(e) { + var t = e && e.__esModule ? function() { + return e.default + } : function() { + return e + }; + return i.d(t, "a", t), t + }, i.o = function(e, t) { + return Object.prototype.hasOwnProperty.call(e, t) + }, i.p = "", i(i.s = 13) +}([function(e, t, n) { + "use strict"; + var r = { + Listener: function() { + function e(e, t, n) { + var r = this; + this.els_ = Array.prototype.slice.call("string" == typeof e ? document.querySelectorAll(e) : [].concat(e)), this.handler_ = "function" == typeof n ? { + update: n + } : n, this.events_ = [].concat(t), this.update_ = function(e) { + return r.handler_.update(e) + } + } + var t = e.prototype; + return t.listen = function() { + var n = this; + this.els_.forEach(function(t) { + n.events_.forEach(function(e) { + t.addEventListener(e, n.update_, !1) + }) + }), "function" == typeof this.handler_.setup && this.handler_.setup() + }, t.unlisten = function() { + var n = this; + this.els_.forEach(function(t) { + n.events_.forEach(function(e) { + t.removeEventListener(e, n.update_) + }) + }), "function" == typeof this.handler_.reset && this.handler_.reset() + }, e + }(), + MatchMedia: function(e, t) { + this.handler_ = function(e) { + e.matches ? t.listen() : t.unlisten() + }; + var n = window.matchMedia(e); + n.addListener(this.handler_), this.handler_(n) + } + }, + i = { + Shadow: function() { + function e(e, t) { + var n = "string" == typeof e ? document.querySelector(e) : e; + if (!(n instanceof HTMLElement && n.parentNode instanceof HTMLElement)) throw new ReferenceError; + if (this.el_ = n.parentNode, !((n = "string" == typeof t ? document.querySelector(t) : t) instanceof HTMLElement)) throw new ReferenceError; + this.header_ = n, this.height_ = 0, this.active_ = !1 + } + var t = e.prototype; + return t.setup = function() { + for (var e = this.el_; e = e.previousElementSibling;) { + if (!(e instanceof HTMLElement)) throw new ReferenceError; + this.height_ += e.offsetHeight + } + this.update() + }, t.update = function(e) { + if (!e || "resize" !== e.type && "orientationchange" !== e.type) { + var t = window.pageYOffset >= this.height_; + t !== this.active_ && (this.header_.dataset.mdState = (this.active_ = t) ? "shadow" : "") + } else this.height_ = 0, this.setup() + }, t.reset = function() { + this.header_.dataset.mdState = "", this.height_ = 0, this.active_ = !1 + }, e + }(), + Title: function() { + function e(e, t) { + var n = "string" == typeof e ? document.querySelector(e) : e; + if (!(n instanceof HTMLElement)) throw new ReferenceError; + if (this.el_ = n, !((n = "string" == typeof t ? document.querySelector(t) : t) instanceof HTMLHeadingElement)) throw new ReferenceError; + this.header_ = n, this.active_ = !1 + } + var t = e.prototype; + return t.setup = function() { + var t = this; + Array.prototype.forEach.call(this.el_.children, function(e) { + e.style.width = t.el_.offsetWidth - 20 + "px" + }) + }, t.update = function(e) { + var t = this, + n = window.pageYOffset >= this.header_.offsetTop; + n !== this.active_ && (this.el_.dataset.mdState = (this.active_ = n) ? "active" : ""), "resize" !== e.type && "orientationchange" !== e.type || Array.prototype.forEach.call(this.el_.children, function(e) { + e.style.width = t.el_.offsetWidth - 20 + "px" + }) + }, t.reset = function() { + this.el_.dataset.mdState = "", this.el_.style.width = "", this.active_ = !1 + }, e + }() + }, + o = { + Blur: function() { + function e(e) { + this.els_ = "string" == typeof e ? document.querySelectorAll(e) : e, this.index_ = 0, this.offset_ = window.pageYOffset, this.dir_ = !1, this.anchors_ = [].reduce.call(this.els_, function(e, t) { + var n = decodeURIComponent(t.hash); + return e.concat(document.getElementById(n.substring(1)) || []) + }, []) + } + var t = e.prototype; + return t.setup = function() { + this.update() + }, t.update = function() { + var e = window.pageYOffset, + t = this.offset_ - e < 0; + if (this.dir_ !== t && (this.index_ = this.index_ = t ? 0 : this.els_.length - 1), 0 !== this.anchors_.length) { + if (this.offset_ <= e) + for (var n = this.index_ + 1; n < this.els_.length && this.anchors_[n].offsetTop - 80 <= e; n++) 0 < n && (this.els_[n - 1].dataset.mdState = "blur"), this.index_ = n; + else + for (var r = this.index_; 0 <= r; r--) { + if (!(this.anchors_[r].offsetTop - 80 > e)) { + this.index_ = r; + break + } + 0 < r && (this.els_[r - 1].dataset.mdState = "") + } + this.offset_ = e, this.dir_ = t + } + }, t.reset = function() { + Array.prototype.forEach.call(this.els_, function(e) { + e.dataset.mdState = "" + }), this.index_ = 0, this.offset_ = window.pageYOffset + }, e + }(), + Collapse: function() { + function e(e) { + var t = "string" == typeof e ? document.querySelector(e) : e; + if (!(t instanceof HTMLElement)) throw new ReferenceError; + this.el_ = t + } + var t = e.prototype; + return t.setup = function() { + var e = this.el_.getBoundingClientRect().height; + this.el_.style.display = e ? "block" : "none", this.el_.style.overflow = e ? "visible" : "hidden" + }, t.update = function() { + var e = this, + t = this.el_.getBoundingClientRect().height; + this.el_.style.display = "block", this.el_.style.overflow = ""; + var r = this.el_.previousElementSibling.previousElementSibling.checked; + if (r) this.el_.style.maxHeight = t + "px", requestAnimationFrame(function() { + e.el_.setAttribute("data-md-state", "animate"), e.el_.style.maxHeight = "0px" + }); + else { + this.el_.setAttribute("data-md-state", "expand"), this.el_.style.maxHeight = ""; + var n = this.el_.getBoundingClientRect().height; + this.el_.removeAttribute("data-md-state"), this.el_.style.maxHeight = "0px", requestAnimationFrame(function() { + e.el_.setAttribute("data-md-state", "animate"), e.el_.style.maxHeight = n + "px" + }) + } + this.el_.addEventListener("transitionend", function e(t) { + var n = t.target; + if (!(n instanceof HTMLElement)) throw new ReferenceError; + n.removeAttribute("data-md-state"), n.style.maxHeight = "", n.style.display = r ? "none" : "block", n.style.overflow = r ? "hidden" : "visible", n.removeEventListener("transitionend", e) + }, !1) + }, t.reset = function() { + this.el_.dataset.mdState = "", this.el_.style.maxHeight = "", this.el_.style.display = "", this.el_.style.overflow = "" + }, e + }(), + Scrolling: function() { + function e(e) { + var t = "string" == typeof e ? document.querySelector(e) : e; + if (!(t instanceof HTMLElement)) throw new ReferenceError; + this.el_ = t + } + var t = e.prototype; + return t.setup = function() { + this.el_.children[this.el_.children.length - 1].style.webkitOverflowScrolling = "touch"; + var e = this.el_.querySelectorAll("[data-md-toggle]"); + Array.prototype.forEach.call(e, function(e) { + if (!(e instanceof HTMLInputElement)) throw new ReferenceError; + if (e.checked) { + var t = e.nextElementSibling; + if (!(t instanceof HTMLElement)) throw new ReferenceError; + for (; + "NAV" !== t.tagName && t.nextElementSibling;) t = t.nextElementSibling; + if (!(e.parentNode instanceof HTMLElement && e.parentNode.parentNode instanceof HTMLElement)) throw new ReferenceError; + var n = e.parentNode.parentNode, + r = t.children[t.children.length - 1]; + n.style.webkitOverflowScrolling = "", r.style.webkitOverflowScrolling = "touch" + } + }) + }, t.update = function(e) { + var t = e.target; + if (!(t instanceof HTMLElement)) throw new ReferenceError; + var n = t.nextElementSibling; + if (!(n instanceof HTMLElement)) throw new ReferenceError; + for (; + "NAV" !== n.tagName && n.nextElementSibling;) n = n.nextElementSibling; + if (!(t.parentNode instanceof HTMLElement && t.parentNode.parentNode instanceof HTMLElement)) throw new ReferenceError; + var r = t.parentNode.parentNode, + i = n.children[n.children.length - 1]; + if (r.style.webkitOverflowScrolling = "", i.style.webkitOverflowScrolling = "", !t.checked) { + n.addEventListener("transitionend", function e() { + n instanceof HTMLElement && (r.style.webkitOverflowScrolling = "touch", n.removeEventListener("transitionend", e)) + }, !1) + } + if (t.checked) { + n.addEventListener("transitionend", function e() { + n instanceof HTMLElement && (i.style.webkitOverflowScrolling = "touch", n.removeEventListener("transitionend", e)) + }, !1) + } + }, t.reset = function() { + this.el_.children[1].style.webkitOverflowScrolling = ""; + var e = this.el_.querySelectorAll("[data-md-toggle]"); + Array.prototype.forEach.call(e, function(e) { + if (!(e instanceof HTMLInputElement)) throw new ReferenceError; + if (e.checked) { + var t = e.nextElementSibling; + if (!(t instanceof HTMLElement)) throw new ReferenceError; + for (; + "NAV" !== t.tagName && t.nextElementSibling;) t = t.nextElementSibling; + if (!(e.parentNode instanceof HTMLElement && e.parentNode.parentNode instanceof HTMLElement)) throw new ReferenceError; + var n = e.parentNode.parentNode, + r = t.children[t.children.length - 1]; + n.style.webkitOverflowScrolling = "", r.style.webkitOverflowScrolling = "" + } + }) + }, e + }() + }, + a = { + Lock: function() { + function e(e) { + var t = "string" == typeof e ? document.querySelector(e) : e; + if (!(t instanceof HTMLInputElement)) throw new ReferenceError; + if (this.el_ = t, !document.body) throw new ReferenceError; + this.lock_ = document.body + } + var t = e.prototype; + return t.setup = function() { + this.update() + }, t.update = function() { + var e = this; + this.el_.checked ? (this.offset_ = window.pageYOffset, setTimeout(function() { + window.scrollTo(0, 0), e.el_.checked && (e.lock_.dataset.mdState = "lock") + }, 400)) : (this.lock_.dataset.mdState = "", setTimeout(function() { + void 0 !== e.offset_ && window.scrollTo(0, e.offset_) + }, 100)) + }, t.reset = function() { + "lock" === this.lock_.dataset.mdState && window.scrollTo(0, this.offset_), this.lock_.dataset.mdState = "" + }, e + }(), + Result: n(9).a + }, + s = { + Position: function() { + function e(e, t) { + var n = "string" == typeof e ? document.querySelector(e) : e; + if (!(n instanceof HTMLElement && n.parentNode instanceof HTMLElement)) throw new ReferenceError; + if (this.el_ = n, this.parent_ = n.parentNode, !((n = "string" == typeof t ? document.querySelector(t) : t) instanceof HTMLElement)) throw new ReferenceError; + this.header_ = n, this.height_ = 0, this.pad_ = "fixed" === window.getComputedStyle(this.header_).position + } + var t = e.prototype; + return t.setup = function() { + var e = Array.prototype.reduce.call(this.parent_.children, function(e, t) { + return Math.max(e, t.offsetTop) + }, 0); + this.offset_ = e - (this.pad_ ? this.header_.offsetHeight : 0), this.update() + }, t.update = function(e) { + var t = window.pageYOffset, + n = window.innerHeight; + e && "resize" === e.type && this.setup(); + var r = this.pad_ ? this.header_.offsetHeight : 0, + i = this.parent_.offsetTop + this.parent_.offsetHeight, + o = n - r - Math.max(0, this.offset_ - t) - Math.max(0, t + n - i); + o !== this.height_ && (this.el_.style.height = (this.height_ = o) + "px"), t >= this.offset_ ? "lock" !== this.el_.dataset.mdState && (this.el_.dataset.mdState = "lock") : "lock" === this.el_.dataset.mdState && (this.el_.dataset.mdState = "") + }, t.reset = function() { + this.el_.dataset.mdState = "", this.el_.style.height = "", this.height_ = 0 + }, e + }() + }, + c = n(6), + l = n.n(c); + var u = { + Adapter: { + GitHub: function(o) { + var e, t; + + function n(e) { + var t; + t = o.call(this, e) || this; + var n = /^.+github\.com\/([^/]+)\/?([^/]+)?.*$/.exec(t.base_); + if (n && 3 === n.length) { + var r = n[1], + i = n[2]; + t.base_ = "https://api.github.com/users/" + r + "/repos", t.name_ = i + } + return t + } + return t = o, (e = n).prototype = Object.create(t.prototype), (e.prototype.constructor = e).__proto__ = t, n.prototype.fetch_ = function() { + var i = this; + return function n(r) { + return void 0 === r && (r = 0), fetch(i.base_ + "?per_page=30&page=" + r).then(function(e) { + return e.json() + }).then(function(e) { + if (!(e instanceof Array)) throw new TypeError; + if (i.name_) { + var t = e.find(function(e) { + return e.name === i.name_ + }); + return t || 30 !== e.length ? t ? [i.format_(t.stargazers_count) + " Stars", i.format_(t.forks_count) + " Forks"] : [] : n(r + 1) + } + return [e.length + " Repositories"] + }) + }() + }, n + }(function() { + function e(e) { + var t = "string" == typeof e ? document.querySelector(e) : e; + if (!(t instanceof HTMLAnchorElement)) throw new ReferenceError; + this.el_ = t, this.base_ = this.el_.href, this.salt_ = this.hash_(this.base_) + } + var t = e.prototype; + return t.fetch = function() { + var n = this; + return new Promise(function(t) { + var e = l.a.getJSON(n.salt_ + ".cache-source"); + void 0 !== e ? t(e) : n.fetch_().then(function(e) { + l.a.set(n.salt_ + ".cache-source", e, { + expires: 1 / 96 + }), t(e) + }) + }) + }, t.fetch_ = function() { + throw new Error("fetch_(): Not implemented") + }, t.format_ = function(e) { + return 1e4 < e ? (e / 1e3).toFixed(0) + "k" : 1e3 < e ? (e / 1e3).toFixed(1) + "k" : "" + e + }, t.hash_ = function(e) { + var t = 0; + if (0 === e.length) return t; + for (var n = 0, r = e.length; n < r; n++) t = (t << 5) - t + e.charCodeAt(n), t |= 0; + return t + }, e + }()) + }, + Repository: n(10).a + }, + f = { + Toggle: function() { + function e(e) { + var t = "string" == typeof e ? document.querySelector(e) : e; + if (!(t instanceof Node)) throw new ReferenceError; + this.el_ = t; + var n = document.querySelector("[data-md-component=header]"); + this.height_ = n.offsetHeight, this.active_ = !1 + } + var t = e.prototype; + return t.update = function() { + var e = window.pageYOffset >= this.el_.children[0].offsetTop + (5 - this.height_); + e !== this.active_ && (this.el_.dataset.mdState = (this.active_ = e) ? "hidden" : "") + }, t.reset = function() { + this.el_.dataset.mdState = "", this.active_ = !1 + }, e + }() + }; + t.a = { + Event: r, + Header: i, + Nav: o, + Search: a, + Sidebar: s, + Source: u, + Tabs: f + } +}, function(t, e, n) { + (function(e) { + t.exports = e.lunr = n(24) + }).call(this, n(4)) +}, function(e, f, d) { + "use strict"; + (function(t) { + var e = d(8), + n = setTimeout; + + function r() {} + + function o(e) { + if (!(this instanceof o)) throw new TypeError("Promises must be constructed via new"); + if ("function" != typeof e) throw new TypeError("not a function"); + this._state = 0, this._handled = !1, this._value = void 0, this._deferreds = [], u(e, this) + } + + function i(n, r) { + for (; 3 === n._state;) n = n._value; + 0 !== n._state ? (n._handled = !0, o._immediateFn(function() { + var e = 1 === n._state ? r.onFulfilled : r.onRejected; + if (null !== e) { + var t; + try { + t = e(n._value) + } catch (e) { + return void s(r.promise, e) + } + a(r.promise, t) + } else(1 === n._state ? a : s)(r.promise, n._value) + })) : n._deferreds.push(r) + } + + function a(t, e) { + try { + if (e === t) throw new TypeError("A promise cannot be resolved with itself."); + if (e && ("object" == typeof e || "function" == typeof e)) { + var n = e.then; + if (e instanceof o) return t._state = 3, t._value = e, void c(t); + if ("function" == typeof n) return void u((r = n, i = e, function() { + r.apply(i, arguments) + }), t) + } + t._state = 1, t._value = e, c(t) + } catch (e) { + s(t, e) + } + var r, i + } + + function s(e, t) { + e._state = 2, e._value = t, c(e) + } + + function c(e) { + 2 === e._state && 0 === e._deferreds.length && o._immediateFn(function() { + e._handled || o._unhandledRejectionFn(e._value) + }); + for (var t = 0, n = e._deferreds.length; t < n; t++) i(e, e._deferreds[t]); + e._deferreds = null + } + + function l(e, t, n) { + this.onFulfilled = "function" == typeof e ? e : null, this.onRejected = "function" == typeof t ? t : null, this.promise = n + } + + function u(e, t) { + var n = !1; + try { + e(function(e) { + n || (n = !0, a(t, e)) + }, function(e) { + n || (n = !0, s(t, e)) + }) + } catch (e) { + if (n) return; + n = !0, s(t, e) + } + } + o.prototype.catch = function(e) { + return this.then(null, e) + }, o.prototype.then = function(e, t) { + var n = new this.constructor(r); + return i(this, new l(e, t, n)), n + }, o.prototype.finally = e.a, o.all = function(t) { + return new o(function(r, i) { + if (!t || void 0 === t.length) throw new TypeError("Promise.all accepts an array"); + var o = Array.prototype.slice.call(t); + if (0 === o.length) return r([]); + var a = o.length; + + function s(t, e) { + try { + if (e && ("object" == typeof e || "function" == typeof e)) { + var n = e.then; + if ("function" == typeof n) return void n.call(e, function(e) { + s(t, e) + }, i) + } + o[t] = e, 0 == --a && r(o) + } catch (e) { + i(e) + } + } + for (var e = 0; e < o.length; e++) s(e, o[e]) + }) + }, o.resolve = function(t) { + return t && "object" == typeof t && t.constructor === o ? t : new o(function(e) { + e(t) + }) + }, o.reject = function(n) { + return new o(function(e, t) { + t(n) + }) + }, o.race = function(i) { + return new o(function(e, t) { + for (var n = 0, r = i.length; n < r; n++) i[n].then(e, t) + }) + }, o._immediateFn = "function" == typeof t && function(e) { + t(e) + } || function(e) { + n(e, 0) + }, o._unhandledRejectionFn = function(e) { + "undefined" != typeof console && console && console.warn("Possible Unhandled Promise Rejection:", e) + }, f.a = o + }).call(this, d(21).setImmediate) +}, function(e, t, n) { + "use strict"; + + function r(e, t) { + var n = document.createElement(e); + t && Array.prototype.forEach.call(Object.keys(t), function(e) { + n.setAttribute(e, t[e]) + }); + for (var r = arguments.length, i = new Array(2 < r ? r - 2 : 0), o = 2; o < r; o++) i[o - 2] = arguments[o]; + return function t(e) { + Array.prototype.forEach.call(e, function(e) { + "string" == typeof e || "number" == typeof e ? n.textContent += e : Array.isArray(e) ? t(e) : void 0 !== e.__html ? n.innerHTML += e.__html : e instanceof Node && n.appendChild(e) + }) + }(i), n + } + n.r(t), n.d(t, "createElement", function() { + return r + }) +}, function(e, t) { + var n; + n = function() { + return this + }(); + try { + n = n || new Function("return this")() + } catch (e) { + "object" == typeof window && (n = window) + } + e.exports = n +}, function(e, t, n) { + var r; + r = function() { + return function(n) { + var r = {}; + + function i(e) { + if (r[e]) return r[e].exports; + var t = r[e] = { + i: e, + l: !1, + exports: {} + }; + return n[e].call(t.exports, t, t.exports, i), t.l = !0, t.exports + } + return i.m = n, i.c = r, i.d = function(e, t, n) { + i.o(e, t) || Object.defineProperty(e, t, { + enumerable: !0, + get: n + }) + }, i.r = function(e) { + "undefined" != typeof Symbol && Symbol.toStringTag && Object.defineProperty(e, Symbol.toStringTag, { + value: "Module" + }), Object.defineProperty(e, "__esModule", { + value: !0 + }) + }, i.t = function(t, e) { + if (1 & e && (t = i(t)), 8 & e) return t; + if (4 & e && "object" == typeof t && t && t.__esModule) return t; + var n = Object.create(null); + if (i.r(n), Object.defineProperty(n, "default", { + enumerable: !0, + value: t + }), 2 & e && "string" != typeof t) + for (var r in t) i.d(n, r, function(e) { + return t[e] + }.bind(null, r)); + return n + }, i.n = function(e) { + var t = e && e.__esModule ? function() { + return e.default + } : function() { + return e + }; + return i.d(t, "a", t), t + }, i.o = function(e, t) { + return Object.prototype.hasOwnProperty.call(e, t) + }, i.p = "", i(i.s = 0) + }([function(e, t, n) { + "use strict"; + var i = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function(e) { + return typeof e + } : function(e) { + return e && "function" == typeof Symbol && e.constructor === Symbol && e !== Symbol.prototype ? "symbol" : typeof e + }, + o = function() { + function r(e, t) { + for (var n = 0; n < t.length; n++) { + var r = t[n]; + r.enumerable = r.enumerable || !1, r.configurable = !0, "value" in r && (r.writable = !0), Object.defineProperty(e, r.key, r) + } + } + return function(e, t, n) { + return t && r(e.prototype, t), n && r(e, n), e + } + }(), + a = r(n(1)), + s = r(n(3)), + c = r(n(4)); + + function r(e) { + return e && e.__esModule ? e : { + default: e + } + } + var l = function(e) { + function r(e, t) { + ! function(e, t) { + if (!(e instanceof t)) throw new TypeError("Cannot call a class as a function") + }(this, r); + var n = function(e, t) { + if (!e) throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); + return !t || "object" != typeof t && "function" != typeof t ? e : t + }(this, (r.__proto__ || Object.getPrototypeOf(r)).call(this)); + return n.resolveOptions(t), n.listenClick(e), n + } + return function(e, t) { + if ("function" != typeof t && null !== t) throw new TypeError("Super expression must either be null or a function, not " + typeof t); + e.prototype = Object.create(t && t.prototype, { + constructor: { + value: e, + enumerable: !1, + writable: !0, + configurable: !0 + } + }), t && (Object.setPrototypeOf ? Object.setPrototypeOf(e, t) : e.__proto__ = t) + }(r, s.default), o(r, [{ + key: "resolveOptions", + value: function() { + var e = 0 < arguments.length && void 0 !== arguments[0] ? arguments[0] : {}; + this.action = "function" == typeof e.action ? e.action : this.defaultAction, this.target = "function" == typeof e.target ? e.target : this.defaultTarget, this.text = "function" == typeof e.text ? e.text : this.defaultText, this.container = "object" === i(e.container) ? e.container : document.body + } + }, { + key: "listenClick", + value: function(e) { + var t = this; + this.listener = (0, c.default)(e, "click", function(e) { + return t.onClick(e) + }) + } + }, { + key: "onClick", + value: function(e) { + var t = e.delegateTarget || e.currentTarget; + this.clipboardAction && (this.clipboardAction = null), this.clipboardAction = new a.default({ + action: this.action(t), + target: this.target(t), + text: this.text(t), + container: this.container, + trigger: t, + emitter: this + }) + } + }, { + key: "defaultAction", + value: function(e) { + return u("action", e) + } + }, { + key: "defaultTarget", + value: function(e) { + var t = u("target", e); + if (t) return document.querySelector(t) + } + }, { + key: "defaultText", + value: function(e) { + return u("text", e) + } + }, { + key: "destroy", + value: function() { + this.listener.destroy(), this.clipboardAction && (this.clipboardAction.destroy(), this.clipboardAction = null) + } + }], [{ + key: "isSupported", + value: function() { + var e = 0 < arguments.length && void 0 !== arguments[0] ? arguments[0] : ["copy", "cut"], + t = "string" == typeof e ? [e] : e, + n = !!document.queryCommandSupported; + return t.forEach(function(e) { + n = n && !!document.queryCommandSupported(e) + }), n + } + }]), r + }(); + + function u(e, t) { + var n = "data-clipboard-" + e; + if (t.hasAttribute(n)) return t.getAttribute(n) + } + e.exports = l + }, function(e, t, n) { + "use strict"; + var r, i = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function(e) { + return typeof e + } : function(e) { + return e && "function" == typeof Symbol && e.constructor === Symbol && e !== Symbol.prototype ? "symbol" : typeof e + }, + o = function() { + function r(e, t) { + for (var n = 0; n < t.length; n++) { + var r = t[n]; + r.enumerable = r.enumerable || !1, r.configurable = !0, "value" in r && (r.writable = !0), Object.defineProperty(e, r.key, r) + } + } + return function(e, t, n) { + return t && r(e.prototype, t), n && r(e, n), e + } + }(), + a = n(2), + s = (r = a) && r.__esModule ? r : { + default: r + }; + var c = function() { + function t(e) { + ! function(e, t) { + if (!(e instanceof t)) throw new TypeError("Cannot call a class as a function") + }(this, t), this.resolveOptions(e), this.initSelection() + } + return o(t, [{ + key: "resolveOptions", + value: function() { + var e = 0 < arguments.length && void 0 !== arguments[0] ? arguments[0] : {}; + this.action = e.action, this.container = e.container, this.emitter = e.emitter, this.target = e.target, this.text = e.text, this.trigger = e.trigger, this.selectedText = "" + } + }, { + key: "initSelection", + value: function() { + this.text ? this.selectFake() : this.target && this.selectTarget() + } + }, { + key: "selectFake", + value: function() { + var e = this, + t = "rtl" == document.documentElement.getAttribute("dir"); + this.removeFake(), this.fakeHandlerCallback = function() { + return e.removeFake() + }, this.fakeHandler = this.container.addEventListener("click", this.fakeHandlerCallback) || !0, this.fakeElem = document.createElement("textarea"), this.fakeElem.style.fontSize = "12pt", this.fakeElem.style.border = "0", this.fakeElem.style.padding = "0", this.fakeElem.style.margin = "0", this.fakeElem.style.position = "absolute", this.fakeElem.style[t ? "right" : "left"] = "-9999px"; + var n = window.pageYOffset || document.documentElement.scrollTop; + this.fakeElem.style.top = n + "px", this.fakeElem.setAttribute("readonly", ""), this.fakeElem.value = this.text, this.container.appendChild(this.fakeElem), this.selectedText = (0, s.default)(this.fakeElem), this.copyText() + } + }, { + key: "removeFake", + value: function() { + this.fakeHandler && (this.container.removeEventListener("click", this.fakeHandlerCallback), this.fakeHandler = null, this.fakeHandlerCallback = null), this.fakeElem && (this.container.removeChild(this.fakeElem), this.fakeElem = null) + } + }, { + key: "selectTarget", + value: function() { + this.selectedText = (0, s.default)(this.target), this.copyText() + } + }, { + key: "copyText", + value: function() { + var t = void 0; + try { + t = document.execCommand(this.action) + } catch (e) { + t = !1 + } + this.handleResult(t) + } + }, { + key: "handleResult", + value: function(e) { + this.emitter.emit(e ? "success" : "error", { + action: this.action, + text: this.selectedText, + trigger: this.trigger, + clearSelection: this.clearSelection.bind(this) + }) + } + }, { + key: "clearSelection", + value: function() { + this.trigger && this.trigger.focus(), window.getSelection().removeAllRanges() + } + }, { + key: "destroy", + value: function() { + this.removeFake() + } + }, { + key: "action", + set: function() { + var e = 0 < arguments.length && void 0 !== arguments[0] ? arguments[0] : "copy"; + if (this._action = e, "copy" !== this._action && "cut" !== this._action) throw new Error('Invalid "action" value, use either "copy" or "cut"') + }, + get: function() { + return this._action + } + }, { + key: "target", + set: function(e) { + if (void 0 !== e) { + if (!e || "object" !== (void 0 === e ? "undefined" : i(e)) || 1 !== e.nodeType) throw new Error('Invalid "target" value, use a valid Element'); + if ("copy" === this.action && e.hasAttribute("disabled")) throw new Error('Invalid "target" attribute. Please use "readonly" instead of "disabled" attribute'); + if ("cut" === this.action && (e.hasAttribute("readonly") || e.hasAttribute("disabled"))) throw new Error('Invalid "target" attribute. You can\'t cut text from elements with "readonly" or "disabled" attributes'); + this._target = e + } + }, + get: function() { + return this._target + } + }]), t + }(); + e.exports = c + }, function(e, t) { + e.exports = function(e) { + var t; + if ("SELECT" === e.nodeName) e.focus(), t = e.value; + else if ("INPUT" === e.nodeName || "TEXTAREA" === e.nodeName) { + var n = e.hasAttribute("readonly"); + n || e.setAttribute("readonly", ""), e.select(), e.setSelectionRange(0, e.value.length), n || e.removeAttribute("readonly"), t = e.value + } else { + e.hasAttribute("contenteditable") && e.focus(); + var r = window.getSelection(), + i = document.createRange(); + i.selectNodeContents(e), r.removeAllRanges(), r.addRange(i), t = r.toString() + } + return t + } + }, function(e, t) { + function n() {} + n.prototype = { + on: function(e, t, n) { + var r = this.e || (this.e = {}); + return (r[e] || (r[e] = [])).push({ + fn: t, + ctx: n + }), this + }, + once: function(e, t, n) { + var r = this; + + function i() { + r.off(e, i), t.apply(n, arguments) + } + return i._ = t, this.on(e, i, n) + }, + emit: function(e) { + for (var t = [].slice.call(arguments, 1), n = ((this.e || (this.e = {}))[e] || []).slice(), r = 0, i = n.length; r < i; r++) n[r].fn.apply(n[r].ctx, t); + return this + }, + off: function(e, t) { + var n = this.e || (this.e = {}), + r = n[e], + i = []; + if (r && t) + for (var o = 0, a = r.length; o < a; o++) r[o].fn !== t && r[o].fn._ !== t && i.push(r[o]); + return i.length ? n[e] = i : delete n[e], this + } + }, e.exports = n + }, function(e, t, n) { + var d = n(5), + h = n(6); + e.exports = function(e, t, n) { + if (!e && !t && !n) throw new Error("Missing required arguments"); + if (!d.string(t)) throw new TypeError("Second argument must be a String"); + if (!d.fn(n)) throw new TypeError("Third argument must be a Function"); + if (d.node(e)) return u = t, f = n, (l = e).addEventListener(u, f), { + destroy: function() { + l.removeEventListener(u, f) + } + }; + if (d.nodeList(e)) return a = e, s = t, c = n, Array.prototype.forEach.call(a, function(e) { + e.addEventListener(s, c) + }), { + destroy: function() { + Array.prototype.forEach.call(a, function(e) { + e.removeEventListener(s, c) + }) + } + }; + if (d.string(e)) return r = e, i = t, o = n, h(document.body, r, i, o); + throw new TypeError("First argument must be a String, HTMLElement, HTMLCollection, or NodeList"); + var r, i, o, a, s, c, l, u, f + } + }, function(e, n) { + n.node = function(e) { + return void 0 !== e && e instanceof HTMLElement && 1 === e.nodeType + }, n.nodeList = function(e) { + var t = Object.prototype.toString.call(e); + return void 0 !== e && ("[object NodeList]" === t || "[object HTMLCollection]" === t) && "length" in e && (0 === e.length || n.node(e[0])) + }, n.string = function(e) { + return "string" == typeof e || e instanceof String + }, n.fn = function(e) { + return "[object Function]" === Object.prototype.toString.call(e) + } + }, function(e, t, n) { + var a = n(7); + + function o(e, t, n, r, i) { + var o = function(t, n, e, r) { + return function(e) { + e.delegateTarget = a(e.target, n), e.delegateTarget && r.call(t, e) + } + }.apply(this, arguments); + return e.addEventListener(n, o, i), { + destroy: function() { + e.removeEventListener(n, o, i) + } + } + } + e.exports = function(e, t, n, r, i) { + return "function" == typeof e.addEventListener ? o.apply(null, arguments) : "function" == typeof n ? o.bind(null, document).apply(null, arguments) : ("string" == typeof e && (e = document.querySelectorAll(e)), Array.prototype.map.call(e, function(e) { + return o(e, t, n, r, i) + })) + } + }, function(e, t) { + if ("undefined" != typeof Element && !Element.prototype.matches) { + var n = Element.prototype; + n.matches = n.matchesSelector || n.mozMatchesSelector || n.msMatchesSelector || n.oMatchesSelector || n.webkitMatchesSelector + } + e.exports = function(e, t) { + for (; e && 9 !== e.nodeType;) { + if ("function" == typeof e.matches && e.matches(t)) return e; + e = e.parentNode + } + } + }]) + }, e.exports = r() +}, function(r, i, o) { + var a, s; + ! function(e) { + if (void 0 === (s = "function" == typeof(a = e) ? a.call(i, o, i, r) : a) || (r.exports = s), !0, r.exports = e(), !!0) { + var t = window.Cookies, + n = window.Cookies = e(); + n.noConflict = function() { + return window.Cookies = t, n + } + } + }(function() { + function m() { + for (var e = 0, t = {}; e < arguments.length; e++) { + var n = arguments[e]; + for (var r in n) t[r] = n[r] + } + return t + } + return function e(h) { + function p(e, t, n) { + var r; + if ("undefined" != typeof document) { + if (1 < arguments.length) { + if ("number" == typeof(n = m({ + path: "/" + }, p.defaults, n)).expires) { + var i = new Date; + i.setMilliseconds(i.getMilliseconds() + 864e5 * n.expires), n.expires = i + } + n.expires = n.expires ? n.expires.toUTCString() : ""; + try { + r = JSON.stringify(t), /^[\{\[]/.test(r) && (t = r) + } catch (e) {} + t = h.write ? h.write(t, e) : encodeURIComponent(String(t)).replace(/%(23|24|26|2B|3A|3C|3E|3D|2F|3F|40|5B|5D|5E|60|7B|7D|7C)/g, decodeURIComponent), e = (e = (e = encodeURIComponent(String(e))).replace(/%(23|24|26|2B|5E|60|7C)/g, decodeURIComponent)).replace(/[\(\)]/g, escape); + var o = ""; + for (var a in n) n[a] && (o += "; " + a, !0 !== n[a] && (o += "=" + n[a])); + return document.cookie = e + "=" + t + o + } + e || (r = {}); + for (var s = document.cookie ? document.cookie.split("; ") : [], c = /(%[0-9A-Z]{2})+/g, l = 0; l < s.length; l++) { + var u = s[l].split("="), + f = u.slice(1).join("="); + this.json || '"' !== f.charAt(0) || (f = f.slice(1, -1)); + try { + var d = u[0].replace(c, decodeURIComponent); + if (f = h.read ? h.read(f, d) : h(f, d) || f.replace(c, decodeURIComponent), this.json) try { + f = JSON.parse(f) + } catch (e) {} + if (e === d) { + r = f; + break + } + e || (r[d] = f) + } catch (e) {} + } + return r + } + } + return (p.set = p).get = function(e) { + return p.call(p, e) + }, p.getJSON = function() { + return p.apply({ + json: !0 + }, [].slice.call(arguments)) + }, p.defaults = {}, p.remove = function(e, t) { + p(e, "", m(t, { + expires: -1 + })) + }, p.withConverter = e, p + }(function() {}) + }) +}, function(e, t, n) { + "use strict"; + n.r(t); + var r = "function" == typeof fetch ? fetch.bind() : function(i, o) { + return o = o || {}, new Promise(function(e, t) { + var n = new XMLHttpRequest; + for (var r in n.open(o.method || "get", i, !0), o.headers) n.setRequestHeader(r, o.headers[r]); + + function s() { + var r, i = [], + o = [], + a = {}; + return n.getAllResponseHeaders().replace(/^(.*?):[^\S\n]*([\s\S]*?)$/gm, function(e, t, n) { + i.push(t = t.toLowerCase()), o.push([t, n]), r = a[t], a[t] = r ? r + "," + n : n + }), { + ok: 2 == (n.status / 100 | 0), + status: n.status, + statusText: n.statusText, + url: n.responseURL, + clone: s, + text: function() { + return Promise.resolve(n.responseText) + }, + json: function() { + return Promise.resolve(n.responseText).then(JSON.parse) + }, + blob: function() { + return Promise.resolve(new Blob([n.response])) + }, + headers: { + keys: function() { + return i + }, + entries: function() { + return o + }, + get: function(e) { + return a[e.toLowerCase()] + }, + has: function(e) { + return e.toLowerCase() in a + } + } + } + } + n.withCredentials = "include" == o.credentials, n.onload = function() { + e(s()) + }, n.onerror = t, n.send(o.body || null) + }) + }; + t.default = r +}, function(e, t, n) { + "use strict"; + t.a = function(t) { + var n = this.constructor; + return this.then(function(e) { + return n.resolve(t()).then(function() { + return e + }) + }, function(e) { + return n.resolve(t()).then(function() { + return n.reject(e) + }) + }) + } +}, function(e, n, r) { + "use strict"; + (function(f) { + r.d(n, "a", function() { + return t + }); + var e = r(1), + d = r.n(e), + h = function(e) { + var t = document.getElementsByName("lang:" + e)[0]; + if (!(t instanceof HTMLMetaElement)) throw new ReferenceError; + return t.content + }, + t = function() { + function e(e, t) { + var n = "string" == typeof e ? document.querySelector(e) : e; + if (!(n instanceof HTMLElement)) throw new ReferenceError; + this.el_ = n; + var r = Array.prototype.slice.call(this.el_.children), + i = r[0], + o = r[1]; + this.data_ = t, this.meta_ = i, this.list_ = o, this.message_ = { + placeholder: this.meta_.textContent, + none: h("search.result.none"), + one: h("search.result.one"), + other: h("search.result.other") + }; + var a = h("search.tokenizer"); + a.length && (d.a.tokenizer.separator = a), this.lang_ = h("search.language").split(",").filter(Boolean).map(function(e) { + return e.trim() + }) + } + return e.prototype.update = function(e) { + var t, a = this; + if ("focus" !== e.type || this.index_) { + if ("focus" === e.type || "keyup" === e.type) { + var n = e.target; + if (!(n instanceof HTMLInputElement)) throw new ReferenceError; + if (!this.index_ || n.value === this.value_) return; + for (; this.list_.firstChild;) this.list_.removeChild(this.list_.firstChild); + if (this.value_ = n.value, 0 === this.value_.length) return void(this.meta_.textContent = this.message_.placeholder); + var r = this.index_.query(function(t) { + a.value_.toLowerCase().split(" ").filter(Boolean).forEach(function(e) { + t.term(e, { + wildcard: d.a.Query.wildcard.TRAILING + }) + }) + }).reduce(function(e, t) { + var n = a.docs_.get(t.ref); + if (n.parent) { + var r = n.parent.location; + e.set(r, (e.get(r) || []).concat(t)) + } else { + var i = n.location; + e.set(i, e.get(i) || []) + } + return e + }, new Map), + i = (t = this.value_.trim(), t.replace(/[|\\{}()[\]^$+*?.-]/g, "\\$&")).replace(new RegExp(d.a.tokenizer.separator, "img"), "|"), + s = new RegExp("(^|" + d.a.tokenizer.separator + ")(" + i + ")", "img"), + c = function(e, t, n) { + return t + "" + n + "" + }; + this.stack_ = [], r.forEach(function(e, t) { + var n, r = a.docs_.get(t), + i = f.createElement("li", { + class: "md-search-result__item" + }, f.createElement("a", { + href: r.location, + title: r.title, + class: "md-search-result__link", + tabindex: "-1" + }, f.createElement("article", { + class: "md-search-result__article md-search-result__article--document" + }, f.createElement("h1", { + class: "md-search-result__title" + }, { + __html: r.title.replace(s, c) + }), r.text.length ? f.createElement("p", { + class: "md-search-result__teaser" + }, { + __html: r.text.replace(s, c) + }) : {}))), + o = e.map(function(t) { + return function() { + var e = a.docs_.get(t.ref); + i.appendChild(f.createElement("a", { + href: e.location, + title: e.title, + class: "md-search-result__link", + "data-md-rel": "anchor", + tabindex: "-1" + }, f.createElement("article", { + class: "md-search-result__article" + }, f.createElement("h1", { + class: "md-search-result__title" + }, { + __html: e.title.replace(s, c) + }), e.text.length ? f.createElement("p", { + class: "md-search-result__teaser" + }, { + __html: function(e, t) { + var n = t; + if (e.length > n) { + for (; + " " !== e[n] && 0 < --n;); + return e.substring(0, n) + "..." + } + return e + }(e.text.replace(s, c), 400) + }) : {}))) + } + }); + (n = a.stack_).push.apply(n, [function() { + return a.list_.appendChild(i) + }].concat(o)) + }); + var o = this.el_.parentNode; + if (!(o instanceof HTMLElement)) throw new ReferenceError; + for (; this.stack_.length && o.offsetHeight >= o.scrollHeight - 16;) this.stack_.shift()(); + var l = this.list_.querySelectorAll("[data-md-rel=anchor]"); + switch (Array.prototype.forEach.call(l, function(r) { + ["click", "keydown"].forEach(function(n) { + r.addEventListener(n, function(e) { + if ("keydown" !== n || 13 === e.keyCode) { + var t = document.querySelector("[data-md-toggle=search]"); + if (!(t instanceof HTMLInputElement)) throw new ReferenceError; + t.checked && (t.checked = !1, t.dispatchEvent(new CustomEvent("change"))), e.preventDefault(), setTimeout(function() { + document.location.href = r.href + }, 100) + } + }) + }) + }), r.size) { + case 0: + this.meta_.textContent = this.message_.none; + break; + case 1: + this.meta_.textContent = this.message_.one; + break; + default: + this.meta_.textContent = this.message_.other.replace("#", r.size) + } + } + } else { + var u = function(e) { + a.docs_ = e.reduce(function(e, t) { + var n, r, i, o = t.location.split("#"), + a = o[0], + s = o[1]; + return t.text = (n = t.text, r = document.createTextNode(n), (i = document.createElement("p")).appendChild(r), i.innerHTML), s && (t.parent = e.get(a), t.parent && !t.parent.done && (t.parent.title = t.title, t.parent.text = t.text, t.parent.done = !0)), t.text = t.text.replace(/\n/g, " ").replace(/\s+/g, " ").replace(/\s+([,.:;!?])/g, function(e, t) { + return t + }), t.parent && t.parent.title === t.title || e.set(t.location, t), e + }, new Map); + var i = a.docs_, + o = a.lang_; + a.stack_ = [], a.index_ = d()(function() { + var e, t = this, + n = { + "search.pipeline.trimmer": d.a.trimmer, + "search.pipeline.stopwords": d.a.stopWordFilter + }, + r = Object.keys(n).reduce(function(e, t) { + return h(t).match(/^false$/i) || e.push(n[t]), e + }, []); + this.pipeline.reset(), r && (e = this.pipeline).add.apply(e, r), 1 === o.length && "en" !== o[0] && d.a[o[0]] ? this.use(d.a[o[0]]) : 1 < o.length && this.use(d.a.multiLanguage.apply(d.a, o)), this.field("title", { + boost: 10 + }), this.field("text"), this.ref("location"), i.forEach(function(e) { + return t.add(e) + }) + }); + var t = a.el_.parentNode; + if (!(t instanceof HTMLElement)) throw new ReferenceError; + t.addEventListener("scroll", function() { + for (; a.stack_.length && t.scrollTop + t.offsetHeight >= t.scrollHeight - 16;) a.stack_.splice(0, 10).forEach(function(e) { + return e() + }) + }) + }; + setTimeout(function() { + return "function" == typeof a.data_ ? a.data_().then(u) : u(a.data_) + }, 250) + } + }, e + }() + }).call(this, r(3)) +}, function(e, n, r) { + "use strict"; + (function(t) { + r.d(n, "a", function() { + return e + }); + var e = function() { + function e(e) { + var t = "string" == typeof e ? document.querySelector(e) : e; + if (!(t instanceof HTMLElement)) throw new ReferenceError; + this.el_ = t + } + return e.prototype.initialize = function(e) { + e.length && this.el_.children.length && this.el_.children[this.el_.children.length - 1].appendChild(t.createElement("ul", { + class: "md-source__facts" + }, e.map(function(e) { + return t.createElement("li", { + class: "md-source__fact" + }, e) + }))), this.el_.dataset.mdState = "done" + }, e + }() + }).call(this, r(3)) +}, , , function(e, n, c) { + "use strict"; + c.r(n), + function(o) { + c.d(n, "app", function() { + return t + }); + c(14), c(15), c(16), c(17), c(18), c(19), c(20); + var r = c(2), + e = c(5), + a = c.n(e), + i = c(0); + window.Promise = window.Promise || r.a; + var s = function(e) { + var t = document.getElementsByName("lang:" + e)[0]; + if (!(t instanceof HTMLMetaElement)) throw new ReferenceError; + return t.content + }; + var t = { + initialize: function(t) { + new i.a.Event.Listener(document, "DOMContentLoaded", function() { + if (!(document.body instanceof HTMLElement)) throw new ReferenceError; + Modernizr.addTest("ios", function() { + return !!navigator.userAgent.match(/(iPad|iPhone|iPod)/g) + }); + var e = document.querySelectorAll("table:not([class])"); + if (Array.prototype.forEach.call(e, function(e) { + var t = o.createElement("div", { + class: "md-typeset__scrollwrap" + }, o.createElement("div", { + class: "md-typeset__table" + })); + e.nextSibling ? e.parentNode.insertBefore(t, e.nextSibling) : e.parentNode.appendChild(t), t.children[0].appendChild(e) + }), a.a.isSupported()) { + var t = document.querySelectorAll(".codehilite > pre, pre > code"); + Array.prototype.forEach.call(t, function(e, t) { + var n = "__code_" + t, + r = o.createElement("button", { + class: "md-clipboard", + title: s("clipboard.copy"), + "data-clipboard-target": "#" + n + " pre, #" + n + " code" + }, o.createElement("span", { + class: "md-clipboard__message" + })), + i = e.parentNode; + i.id = n, i.insertBefore(r, e) + }), new a.a(".md-clipboard").on("success", function(e) { + var t = e.trigger.querySelector(".md-clipboard__message"); + if (!(t instanceof HTMLElement)) throw new ReferenceError; + e.clearSelection(), t.dataset.mdTimer && clearTimeout(parseInt(t.dataset.mdTimer, 10)), t.classList.add("md-clipboard__message--active"), t.innerHTML = s("clipboard.copied"), t.dataset.mdTimer = setTimeout(function() { + t.classList.remove("md-clipboard__message--active"), t.dataset.mdTimer = "" + }, 2e3).toString() + }) + } + if (!Modernizr.details) { + var n = document.querySelectorAll("details > summary"); + Array.prototype.forEach.call(n, function(e) { + e.addEventListener("click", function(e) { + var t = e.target.parentNode; + t.hasAttribute("open") ? t.removeAttribute("open") : t.setAttribute("open", "") + }) + }) + } + var r = function() { + if (document.location.hash) { + var e = document.getElementById(document.location.hash.substring(1)); + if (!e) return; + for (var t = e.parentNode; t && !(t instanceof HTMLDetailsElement);) t = t.parentNode; + if (t && !t.open) { + t.open = !0; + var n = location.hash; + location.hash = " ", location.hash = n + } + } + }; + if (window.addEventListener("hashchange", r), r(), Modernizr.ios) { + var i = document.querySelectorAll("[data-md-scrollfix]"); + Array.prototype.forEach.call(i, function(t) { + t.addEventListener("touchstart", function() { + var e = t.scrollTop; + 0 === e ? t.scrollTop = 1 : e + t.offsetHeight === t.scrollHeight && (t.scrollTop = e - 1) + }) + }) + } + }).listen(), new i.a.Event.Listener(window, ["scroll", "resize", "orientationchange"], new i.a.Header.Shadow("[data-md-component=container]", "[data-md-component=header]")).listen(), new i.a.Event.Listener(window, ["scroll", "resize", "orientationchange"], new i.a.Header.Title("[data-md-component=title]", ".md-typeset h1")).listen(), document.querySelector("[data-md-component=hero]") && new i.a.Event.Listener(window, ["scroll", "resize", "orientationchange"], new i.a.Tabs.Toggle("[data-md-component=hero]")).listen(), document.querySelector("[data-md-component=tabs]") && new i.a.Event.Listener(window, ["scroll", "resize", "orientationchange"], new i.a.Tabs.Toggle("[data-md-component=tabs]")).listen(), new i.a.Event.MatchMedia("(min-width: 1220px)", new i.a.Event.Listener(window, ["scroll", "resize", "orientationchange"], new i.a.Sidebar.Position("[data-md-component=navigation]", "[data-md-component=header]"))), document.querySelector("[data-md-component=toc]") && new i.a.Event.MatchMedia("(min-width: 960px)", new i.a.Event.Listener(window, ["scroll", "resize", "orientationchange"], new i.a.Sidebar.Position("[data-md-component=toc]", "[data-md-component=header]"))), new i.a.Event.MatchMedia("(min-width: 960px)", new i.a.Event.Listener(window, "scroll", new i.a.Nav.Blur("[data-md-component=toc] .md-nav__link"))); + var e = document.querySelectorAll("[data-md-component=collapsible]"); + Array.prototype.forEach.call(e, function(e) { + new i.a.Event.MatchMedia("(min-width: 1220px)", new i.a.Event.Listener(e.previousElementSibling, "click", new i.a.Nav.Collapse(e))) + }), new i.a.Event.MatchMedia("(max-width: 1219px)", new i.a.Event.Listener("[data-md-component=navigation] [data-md-toggle]", "change", new i.a.Nav.Scrolling("[data-md-component=navigation] nav"))), document.querySelector("[data-md-component=search]") && (new i.a.Event.MatchMedia("(max-width: 959px)", new i.a.Event.Listener("[data-md-toggle=search]", "change", new i.a.Search.Lock("[data-md-toggle=search]")))), + new i.a.Event.Listener(document.body, "keydown", function(e) { + if (9 === e.keyCode) { + var t = document.querySelectorAll("[data-md-component=navigation] .md-nav__link[for]:not([tabindex])"); + Array.prototype.forEach.call(t, function(e) { + e.offsetHeight && (e.tabIndex = 0) + }) + } + }).listen(), new i.a.Event.Listener(document.body, "mousedown", function() { + var e = document.querySelectorAll("[data-md-component=navigation] .md-nav__link[tabindex]"); + Array.prototype.forEach.call(e, function(e) { + e.removeAttribute("tabIndex") + }) + }).listen(), document.body.addEventListener("click", function() { + "tabbing" === document.body.dataset.mdState && (document.body.dataset.mdState = "") + }), new i.a.Event.MatchMedia("(max-width: 959px)", new i.a.Event.Listener("[data-md-component=navigation] [href^='#']", "click", function() { + var e = document.querySelector("[data-md-toggle=drawer]"); + if (!(e instanceof HTMLInputElement)) throw new ReferenceError; + e.checked && (e.checked = !1, e.dispatchEvent(new CustomEvent("change"))) + })), + function() { + var e = document.querySelector("[data-md-source]"); + if (!e) return r.a.resolve([]); + if (!(e instanceof HTMLAnchorElement)) throw new ReferenceError; + switch (e.dataset.mdSource) { + case "github": + return new i.a.Source.Adapter.GitHub(e).fetch(); + default: + return r.a.resolve([]) + } + }().then(function(t) { + var e = document.querySelectorAll("[data-md-source]"); + Array.prototype.forEach.call(e, function(e) { + new i.a.Source.Repository(e).initialize(t) + }) + }); + var n = function() { + var e = document.querySelectorAll("details"); + Array.prototype.forEach.call(e, function(e) { + e.setAttribute("open", "") + }) + }; + new i.a.Event.MatchMedia("print", { + listen: n, + unlisten: function() {} + }), window.onbeforeprint = n + } + } + }.call(this, c(3)) +}, function(e, t, n) { + e.exports = n.p + "assets/images/icons/bitbucket.1b09e088.svg" +}, function(e, t, n) { + e.exports = n.p + "assets/images/icons/github.f0b8504a.svg" +}, function(e, t, n) { + e.exports = n.p + "assets/images/icons/gitlab.6dd19c00.svg" +}, function(e, t) { + e.exports = "/Users/squidfunk/Desktop/General/Sources/mkdocs-material/material/application.4031d38b.css" +}, function(e, t) { + e.exports = "/Users/squidfunk/Desktop/General/Sources/mkdocs-material/material/application-palette.224b79ff.css" +}, function(e, t) { + ! function() { + if ("undefined" != typeof window) try { + var e = new window.CustomEvent("test", { + cancelable: !0 + }); + if (e.preventDefault(), !0 !== e.defaultPrevented) throw new Error("Could not prevent default") + } catch (e) { + var t = function(e, t) { + var n, r; + return (t = t || {}).bubbles = !!t.bubbles, t.cancelable = !!t.cancelable, (n = document.createEvent("CustomEvent")).initCustomEvent(e, t.bubbles, t.cancelable, t.detail), r = n.preventDefault, n.preventDefault = function() { + r.call(this); + try { + Object.defineProperty(this, "defaultPrevented", { + get: function() { + return !0 + } + }) + } catch (e) { + this.defaultPrevented = !0 + } + }, n + }; + t.prototype = window.Event.prototype, window.CustomEvent = t + } + }() +}, function(e, t, n) { + window.fetch || (window.fetch = n(7).default || n(7)) +}, function(e, i, o) { + (function(e) { + var t = void 0 !== e && e || "undefined" != typeof self && self || window, + n = Function.prototype.apply; + + function r(e, t) { + this._id = e, this._clearFn = t + } + i.setTimeout = function() { + return new r(n.call(setTimeout, t, arguments), clearTimeout) + }, i.setInterval = function() { + return new r(n.call(setInterval, t, arguments), clearInterval) + }, i.clearTimeout = i.clearInterval = function(e) { + e && e.close() + }, r.prototype.unref = r.prototype.ref = function() {}, r.prototype.close = function() { + this._clearFn.call(t, this._id) + }, i.enroll = function(e, t) { + clearTimeout(e._idleTimeoutId), e._idleTimeout = t + }, i.unenroll = function(e) { + clearTimeout(e._idleTimeoutId), e._idleTimeout = -1 + }, i._unrefActive = i.active = function(e) { + clearTimeout(e._idleTimeoutId); + var t = e._idleTimeout; + 0 <= t && (e._idleTimeoutId = setTimeout(function() { + e._onTimeout && e._onTimeout() + }, t)) + }, o(22), i.setImmediate = "undefined" != typeof self && self.setImmediate || void 0 !== e && e.setImmediate || this && this.setImmediate, i.clearImmediate = "undefined" != typeof self && self.clearImmediate || void 0 !== e && e.clearImmediate || this && this.clearImmediate + }).call(this, o(4)) +}, function(e, t, n) { + (function(e, p) { + ! function(n, r) { + "use strict"; + if (!n.setImmediate) { + var i, o, t, a, e, s = 1, + c = {}, + l = !1, + u = n.document, + f = Object.getPrototypeOf && Object.getPrototypeOf(n); + f = f && f.setTimeout ? f : n, i = "[object process]" === {}.toString.call(n.process) ? function(e) { + p.nextTick(function() { + h(e) + }) + } : function() { + if (n.postMessage && !n.importScripts) { + var e = !0, + t = n.onmessage; + return n.onmessage = function() { + e = !1 + }, n.postMessage("", "*"), n.onmessage = t, e + } + }() ? (a = "setImmediate$" + Math.random() + "$", e = function(e) { + e.source === n && "string" == typeof e.data && 0 === e.data.indexOf(a) && h(+e.data.slice(a.length)) + }, n.addEventListener ? n.addEventListener("message", e, !1) : n.attachEvent("onmessage", e), function(e) { + n.postMessage(a + e, "*") + }) : n.MessageChannel ? ((t = new MessageChannel).port1.onmessage = function(e) { + h(e.data) + }, function(e) { + t.port2.postMessage(e) + }) : u && "onreadystatechange" in u.createElement("script") ? (o = u.documentElement, function(e) { + var t = u.createElement("script"); + t.onreadystatechange = function() { + h(e), t.onreadystatechange = null, o.removeChild(t), t = null + }, o.appendChild(t) + }) : function(e) { + setTimeout(h, 0, e) + }, f.setImmediate = function(e) { + "function" != typeof e && (e = new Function("" + e)); + for (var t = new Array(arguments.length - 1), n = 0; n < t.length; n++) t[n] = arguments[n + 1]; + var r = { + callback: e, + args: t + }; + return c[s] = r, i(s), s++ + }, f.clearImmediate = d + } + + function d(e) { + delete c[e] + } + + function h(e) { + if (l) setTimeout(h, 0, e); + else { + var t = c[e]; + if (t) { + l = !0; + try { + ! function(e) { + var t = e.callback, + n = e.args; + switch (n.length) { + case 0: + t(); + break; + case 1: + t(n[0]); + break; + case 2: + t(n[0], n[1]); + break; + case 3: + t(n[0], n[1], n[2]); + break; + default: + t.apply(r, n) + } + }(t) + } finally { + d(e), l = !1 + } + } + } + } + }("undefined" == typeof self ? void 0 === e ? this : e : self) + }).call(this, n(4), n(23)) +}, function(e, t) { + var n, r, i = e.exports = {}; + + function o() { + throw new Error("setTimeout has not been defined") + } + + function a() { + throw new Error("clearTimeout has not been defined") + } + + function s(t) { + if (n === setTimeout) return setTimeout(t, 0); + if ((n === o || !n) && setTimeout) return n = setTimeout, setTimeout(t, 0); + try { + return n(t, 0) + } catch (e) { + try { + return n.call(null, t, 0) + } catch (e) { + return n.call(this, t, 0) + } + } + }! function() { + try { + n = "function" == typeof setTimeout ? setTimeout : o + } catch (e) { + n = o + } + try { + r = "function" == typeof clearTimeout ? clearTimeout : a + } catch (e) { + r = a + } + }(); + var c, l = [], + u = !1, + f = -1; + + function d() { + u && c && (u = !1, c.length ? l = c.concat(l) : f = -1, l.length && h()) + } + + function h() { + if (!u) { + var e = s(d); + u = !0; + for (var t = l.length; t;) { + for (c = l, l = []; ++f < t;) c && c[f].run(); + f = -1, t = l.length + } + c = null, u = !1, + function(t) { + if (r === clearTimeout) return clearTimeout(t); + if ((r === a || !r) && clearTimeout) return r = clearTimeout, clearTimeout(t); + try { + r(t) + } catch (e) { + try { + return r.call(null, t) + } catch (e) { + return r.call(this, t) + } + } + }(e) + } + } + + function p(e, t) { + this.fun = e, this.array = t + } + + function m() {} + i.nextTick = function(e) { + var t = new Array(arguments.length - 1); + if (1 < arguments.length) + for (var n = 1; n < arguments.length; n++) t[n - 1] = arguments[n]; + l.push(new p(e, t)), 1 !== l.length || u || s(h) + }, p.prototype.run = function() { + this.fun.apply(null, this.array) + }, i.title = "browser", i.browser = !0, i.env = {}, i.argv = [], i.version = "", i.versions = {}, i.on = m, i.addListener = m, i.once = m, i.off = m, i.removeListener = m, i.removeAllListeners = m, i.emit = m, i.prependListener = m, i.prependOnceListener = m, i.listeners = function(e) { + return [] + }, i.binding = function(e) { + throw new Error("process.binding is not supported") + }, i.cwd = function() { + return "/" + }, i.chdir = function(e) { + throw new Error("process.chdir is not supported") + }, i.umask = function() { + return 0 + } +}, function(i, o, a) { + var s, c; + /** + * lunr - http://lunrjs.com - A bit like Solr, but much smaller and not as bright - 2.3.6 + * Copyright (C) 2019 Oliver Nightingale + * @license MIT + */ + ! function() { + var t, l, u, e, n, f, d, h, p, m, y, v, g, w, _, E, x, b, k, S, T, L, R, O, C, r, D = function(e) { + var t = new D.Builder; + return t.pipeline.add(D.trimmer, D.stopWordFilter, D.stemmer), t.searchPipeline.add(D.stemmer), e.call(t, t), t.build() + }; + D.version = "2.3.6", D.utils = {}, D.utils.warn = (t = this, function(e) { + t.console && console.warn && console.warn(e) + }), D.utils.asString = function(e) { + return null == e ? "" : e.toString() + }, D.utils.clone = function(e) { + if (null == e) return e; + for (var t = Object.create(null), n = Object.keys(e), r = 0; r < n.length; r++) { + var i = n[r], + o = e[i]; + if (Array.isArray(o)) t[i] = o.slice(); + else { + if ("string" != typeof o && "number" != typeof o && "boolean" != typeof o) throw new TypeError("clone is not deep and does not support nested objects"); + t[i] = o + } + } + return t + }, D.FieldRef = function(e, t, n) { + this.docRef = e, this.fieldName = t, this._stringValue = n + }, D.FieldRef.joiner = "/", D.FieldRef.fromString = function(e) { + var t = e.indexOf(D.FieldRef.joiner); + if (-1 === t) throw "malformed field ref string"; + var n = e.slice(0, t), + r = e.slice(t + 1); + return new D.FieldRef(r, n, e) + }, D.FieldRef.prototype.toString = function() { + return null == this._stringValue && (this._stringValue = this.fieldName + D.FieldRef.joiner + this.docRef), this._stringValue + }, D.Set = function(e) { + if (this.elements = Object.create(null), e) { + this.length = e.length; + for (var t = 0; t < this.length; t++) this.elements[e[t]] = !0 + } else this.length = 0 + }, D.Set.complete = { + intersect: function(e) { + return e + }, + union: function(e) { + return e + }, + contains: function() { + return !0 + } + }, D.Set.empty = { + intersect: function() { + return this + }, + union: function(e) { + return e + }, + contains: function() { + return !1 + } + }, D.Set.prototype.contains = function(e) { + return !!this.elements[e] + }, D.Set.prototype.intersect = function(e) { + var t, n, r, i = []; + if (e === D.Set.complete) return this; + if (e === D.Set.empty) return e; + n = this.length < e.length ? (t = this, e) : (t = e, this), r = Object.keys(t.elements); + for (var o = 0; o < r.length; o++) { + var a = r[o]; + a in n.elements && i.push(a) + } + return new D.Set(i) + }, D.Set.prototype.union = function(e) { + return e === D.Set.complete ? D.Set.complete : e === D.Set.empty ? this : new D.Set(Object.keys(this.elements).concat(Object.keys(e.elements))) + }, D.idf = function(e, t) { + var n = 0; + for (var r in e) "_index" != r && (n += Object.keys(e[r]).length); + var i = (t - n + .5) / (n + .5); + return Math.log(1 + Math.abs(i)) + }, D.Token = function(e, t) { + this.str = e || "", this.metadata = t || {} + }, D.Token.prototype.toString = function() { + return this.str + }, D.Token.prototype.update = function(e) { + return this.str = e(this.str, this.metadata), this + }, D.Token.prototype.clone = function(e) { + return e = e || function(e) { + return e + }, new D.Token(e(this.str, this.metadata), this.metadata) + }, D.tokenizer = function(e, t) { + if (null == e || null == e) return []; + if (Array.isArray(e)) return e.map(function(e) { + return new D.Token(D.utils.asString(e).toLowerCase(), D.utils.clone(t)) + }); + for (var n = e.toString().trim().toLowerCase(), r = n.length, i = [], o = 0, a = 0; o <= r; o++) { + var s = o - a; + if (n.charAt(o).match(D.tokenizer.separator) || o == r) { + if (0 < s) { + var c = D.utils.clone(t) || {}; + c.position = [a, s], c.index = i.length, i.push(new D.Token(n.slice(a, o), c)) + } + a = o + 1 + } + } + return i + }, D.tokenizer.separator = /[\s\-]+/, D.Pipeline = function() { + this._stack = [] + }, D.Pipeline.registeredFunctions = Object.create(null), D.Pipeline.registerFunction = function(e, t) { + t in this.registeredFunctions && D.utils.warn("Overwriting existing registered function: " + t), e.label = t, D.Pipeline.registeredFunctions[e.label] = e + }, D.Pipeline.warnIfFunctionNotRegistered = function(e) { + e.label && e.label in this.registeredFunctions || D.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n", e) + }, D.Pipeline.load = function(e) { + var n = new D.Pipeline; + return e.forEach(function(e) { + var t = D.Pipeline.registeredFunctions[e]; + if (!t) throw new Error("Cannot load unregistered function: " + e); + n.add(t) + }), n + }, D.Pipeline.prototype.add = function() { + Array.prototype.slice.call(arguments).forEach(function(e) { + D.Pipeline.warnIfFunctionNotRegistered(e), this._stack.push(e) + }, this) + }, D.Pipeline.prototype.after = function(e, t) { + D.Pipeline.warnIfFunctionNotRegistered(t); + var n = this._stack.indexOf(e); + if (-1 == n) throw new Error("Cannot find existingFn"); + n += 1, this._stack.splice(n, 0, t) + }, D.Pipeline.prototype.before = function(e, t) { + D.Pipeline.warnIfFunctionNotRegistered(t); + var n = this._stack.indexOf(e); + if (-1 == n) throw new Error("Cannot find existingFn"); + this._stack.splice(n, 0, t) + }, D.Pipeline.prototype.remove = function(e) { + var t = this._stack.indexOf(e); - 1 != t && this._stack.splice(t, 1) + }, D.Pipeline.prototype.run = function(e) { + for (var t = this._stack.length, n = 0; n < t; n++) { + for (var r = this._stack[n], i = [], o = 0; o < e.length; o++) { + var a = r(e[o], o, e); + if (void 0 !== a && "" !== a) + if (Array.isArray(a)) + for (var s = 0; s < a.length; s++) i.push(a[s]); + else i.push(a) + } + e = i + } + return e + }, D.Pipeline.prototype.runString = function(e, t) { + var n = new D.Token(e, t); + return this.run([n]).map(function(e) { + return e.toString() + }) + }, D.Pipeline.prototype.reset = function() { + this._stack = [] + }, D.Pipeline.prototype.toJSON = function() { + return this._stack.map(function(e) { + return D.Pipeline.warnIfFunctionNotRegistered(e), e.label + }) + }, D.Vector = function(e) { + this._magnitude = 0, this.elements = e || [] + }, D.Vector.prototype.positionForIndex = function(e) { + if (0 == this.elements.length) return 0; + for (var t = 0, n = this.elements.length / 2, r = n - t, i = Math.floor(r / 2), o = this.elements[2 * i]; 1 < r && (o < e && (t = i), e < o && (n = i), o != e);) r = n - t, i = t + Math.floor(r / 2), o = this.elements[2 * i]; + return o == e ? 2 * i : e < o ? 2 * i : o < e ? 2 * (i + 1) : void 0 + }, D.Vector.prototype.insert = function(e, t) { + this.upsert(e, t, function() { + throw "duplicate index" + }) + }, D.Vector.prototype.upsert = function(e, t, n) { + this._magnitude = 0; + var r = this.positionForIndex(e); + this.elements[r] == e ? this.elements[r + 1] = n(this.elements[r + 1], t) : this.elements.splice(r, 0, e, t) + }, D.Vector.prototype.magnitude = function() { + if (this._magnitude) return this._magnitude; + for (var e = 0, t = this.elements.length, n = 1; n < t; n += 2) { + var r = this.elements[n]; + e += r * r + } + return this._magnitude = Math.sqrt(e) + }, D.Vector.prototype.dot = function(e) { + for (var t = 0, n = this.elements, r = e.elements, i = n.length, o = r.length, a = 0, s = 0, c = 0, l = 0; c < i && l < o;)(a = n[c]) < (s = r[l]) ? c += 2 : s < a ? l += 2 : a == s && (t += n[c + 1] * r[l + 1], c += 2, l += 2); + return t + }, D.Vector.prototype.similarity = function(e) { + return this.dot(e) / this.magnitude() || 0 + }, D.Vector.prototype.toArray = function() { + for (var e = new Array(this.elements.length / 2), t = 1, n = 0; t < this.elements.length; t += 2, n++) e[n] = this.elements[t]; + return e + }, D.Vector.prototype.toJSON = function() { + return this.elements + }, D.stemmer = (l = { + ational: "ate", + tional: "tion", + enci: "ence", + anci: "ance", + izer: "ize", + bli: "ble", + alli: "al", + entli: "ent", + eli: "e", + ousli: "ous", + ization: "ize", + ation: "ate", + ator: "ate", + alism: "al", + iveness: "ive", + fulness: "ful", + ousness: "ous", + aliti: "al", + iviti: "ive", + biliti: "ble", + logi: "log" + }, u = { + icate: "ic", + ative: "", + alize: "al", + iciti: "ic", + ical: "ic", + ful: "", + ness: "" + }, e = "[aeiouy]", n = "[^aeiou][^aeiouy]*", f = new RegExp("^([^aeiou][^aeiouy]*)?[aeiouy][aeiou]*[^aeiou][^aeiouy]*"), d = new RegExp("^([^aeiou][^aeiouy]*)?[aeiouy][aeiou]*[^aeiou][^aeiouy]*[aeiouy][aeiou]*[^aeiou][^aeiouy]*"), h = new RegExp("^([^aeiou][^aeiouy]*)?[aeiouy][aeiou]*[^aeiou][^aeiouy]*([aeiouy][aeiou]*)?$"), p = new RegExp("^([^aeiou][^aeiouy]*)?[aeiouy]"), m = /^(.+?)(ss|i)es$/, y = /^(.+?)([^s])s$/, v = /^(.+?)eed$/, g = /^(.+?)(ed|ing)$/, w = /.$/, _ = /(at|bl|iz)$/, E = new RegExp("([^aeiouylsz])\\1$"), x = new RegExp("^" + n + e + "[^aeiouwxy]$"), b = /^(.+?[^aeiou])y$/, k = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/, S = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/, T = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/, L = /^(.+?)(s|t)(ion)$/, R = /^(.+?)e$/, O = /ll$/, C = new RegExp("^" + n + e + "[^aeiouwxy]$"), r = function(e) { + var t, n, r, i, o, a, s; + if (e.length < 3) return e; + if ("y" == (r = e.substr(0, 1)) && (e = r.toUpperCase() + e.substr(1)), o = y, (i = m).test(e) ? e = e.replace(i, "$1$2") : o.test(e) && (e = e.replace(o, "$1$2")), o = g, (i = v).test(e)) { + var c = i.exec(e); + (i = f).test(c[1]) && (i = w, e = e.replace(i, "")) + } else if (o.test(e)) { + t = (c = o.exec(e))[1], (o = p).test(t) && (a = E, s = x, (o = _).test(e = t) ? e += "e" : a.test(e) ? (i = w, e = e.replace(i, "")) : s.test(e) && (e += "e")) + }(i = b).test(e) && (e = (t = (c = i.exec(e))[1]) + "i"); + (i = k).test(e) && (t = (c = i.exec(e))[1], n = c[2], (i = f).test(t) && (e = t + l[n])); + (i = S).test(e) && (t = (c = i.exec(e))[1], n = c[2], (i = f).test(t) && (e = t + u[n])); + if (o = L, (i = T).test(e)) t = (c = i.exec(e))[1], (i = d).test(t) && (e = t); + else if (o.test(e)) { + t = (c = o.exec(e))[1] + c[2], (o = d).test(t) && (e = t) + }(i = R).test(e) && (t = (c = i.exec(e))[1], o = h, a = C, ((i = d).test(t) || o.test(t) && !a.test(t)) && (e = t)); + return o = d, (i = O).test(e) && o.test(e) && (i = w, e = e.replace(i, "")), "y" == r && (e = r.toLowerCase() + e.substr(1)), e + }, function(e) { + return e.update(r) + }), D.Pipeline.registerFunction(D.stemmer, "stemmer"), D.generateStopWordFilter = function(e) { + var t = e.reduce(function(e, t) { + return e[t] = t, e + }, {}); + return function(e) { + if (e && t[e.toString()] !== e.toString()) return e + } + }, D.stopWordFilter = D.generateStopWordFilter(["a", "able", "about", "across", "after", "all", "almost", "also", "am", "among", "an", "and", "any", "are", "as", "at", "be", "because", "been", "but", "by", "can", "cannot", "could", "dear", "did", "do", "does", "either", "else", "ever", "every", "for", "from", "get", "got", "had", "has", "have", "he", "her", "hers", "him", "his", "how", "however", "i", "if", "in", "into", "is", "it", "its", "just", "least", "let", "like", "likely", "may", "me", "might", "most", "must", "my", "neither", "no", "nor", "not", "of", "off", "often", "on", "only", "or", "other", "our", "own", "rather", "said", "say", "says", "she", "should", "since", "so", "some", "than", "that", "the", "their", "them", "then", "there", "these", "they", "this", "tis", "to", "too", "twas", "us", "wants", "was", "we", "were", "what", "when", "where", "which", "while", "who", "whom", "why", "will", "with", "would", "yet", "you", "your"]), D.Pipeline.registerFunction(D.stopWordFilter, "stopWordFilter"), D.trimmer = function(e) { + return e.update(function(e) { + return e.replace(/^\W+/, "").replace(/\W+$/, "") + }) + }, D.Pipeline.registerFunction(D.trimmer, "trimmer"), D.TokenSet = function() { + this.final = !1, this.edges = {}, this.id = D.TokenSet._nextId, D.TokenSet._nextId += 1 + }, D.TokenSet._nextId = 1, D.TokenSet.fromArray = function(e) { + for (var t = new D.TokenSet.Builder, n = 0, r = e.length; n < r; n++) t.insert(e[n]); + return t.finish(), t.root + }, D.TokenSet.fromClause = function(e) { + return "editDistance" in e ? D.TokenSet.fromFuzzyString(e.term, e.editDistance) : D.TokenSet.fromString(e.term) + }, D.TokenSet.fromFuzzyString = function(e, t) { + for (var n = new D.TokenSet, r = [{ + node: n, + editsRemaining: t, + str: e + }]; r.length;) { + var i = r.pop(); + if (0 < i.str.length) { + var o, a = i.str.charAt(0); + a in i.node.edges ? o = i.node.edges[a] : (o = new D.TokenSet, i.node.edges[a] = o), 1 == i.str.length && (o.final = !0), r.push({ + node: o, + editsRemaining: i.editsRemaining, + str: i.str.slice(1) + }) + } + if (0 != i.editsRemaining) { + if ("*" in i.node.edges) var s = i.node.edges["*"]; + else { + s = new D.TokenSet; + i.node.edges["*"] = s + } + if (0 == i.str.length && (s.final = !0), r.push({ + node: s, + editsRemaining: i.editsRemaining - 1, + str: i.str + }), 1 < i.str.length && r.push({ + node: i.node, + editsRemaining: i.editsRemaining - 1, + str: i.str.slice(1) + }), 1 == i.str.length && (i.node.final = !0), 1 <= i.str.length) { + if ("*" in i.node.edges) var c = i.node.edges["*"]; + else { + c = new D.TokenSet; + i.node.edges["*"] = c + } + 1 == i.str.length && (c.final = !0), r.push({ + node: c, + editsRemaining: i.editsRemaining - 1, + str: i.str.slice(1) + }) + } + if (1 < i.str.length) { + var l, u = i.str.charAt(0), + f = i.str.charAt(1); + f in i.node.edges ? l = i.node.edges[f] : (l = new D.TokenSet, i.node.edges[f] = l), 1 == i.str.length && (l.final = !0), r.push({ + node: l, + editsRemaining: i.editsRemaining - 1, + str: u + i.str.slice(2) + }) + } + } + } + return n + }, D.TokenSet.fromString = function(e) { + for (var t = new D.TokenSet, n = t, r = 0, i = e.length; r < i; r++) { + var o = e[r], + a = r == i - 1; + if ("*" == o)(t.edges[o] = t).final = a; + else { + var s = new D.TokenSet; + s.final = a, t.edges[o] = s, t = s + } + } + return n + }, D.TokenSet.prototype.toArray = function() { + for (var e = [], t = [{ + prefix: "", + node: this + }]; t.length;) { + var n = t.pop(), + r = Object.keys(n.node.edges), + i = r.length; + n.node.final && (n.prefix.charAt(0), e.push(n.prefix)); + for (var o = 0; o < i; o++) { + var a = r[o]; + t.push({ + prefix: n.prefix.concat(a), + node: n.node.edges[a] + }) + } + } + return e + }, D.TokenSet.prototype.toString = function() { + if (this._str) return this._str; + for (var e = this.final ? "1" : "0", t = Object.keys(this.edges).sort(), n = t.length, r = 0; r < n; r++) { + var i = t[r]; + e = e + i + this.edges[i].id + } + return e + }, D.TokenSet.prototype.intersect = function(e) { + for (var t = new D.TokenSet, n = void 0, r = [{ + qNode: e, + output: t, + node: this + }]; r.length;) { + n = r.pop(); + for (var i = Object.keys(n.qNode.edges), o = i.length, a = Object.keys(n.node.edges), s = a.length, c = 0; c < o; c++) + for (var l = i[c], u = 0; u < s; u++) { + var f = a[u]; + if (f == l || "*" == l) { + var d = n.node.edges[f], + h = n.qNode.edges[l], + p = d.final && h.final, + m = void 0; + f in n.output.edges ? (m = n.output.edges[f]).final = m.final || p : ((m = new D.TokenSet).final = p, n.output.edges[f] = m), r.push({ + qNode: h, + output: m, + node: d + }) + } + } + } + return t + }, D.TokenSet.Builder = function() { + this.previousWord = "", this.root = new D.TokenSet, this.uncheckedNodes = [], this.minimizedNodes = {} + }, D.TokenSet.Builder.prototype.insert = function(e) { + var t, n = 0; + if (e < this.previousWord) throw new Error("Out of order word insertion"); + for (var r = 0; r < e.length && r < this.previousWord.length && e[r] == this.previousWord[r]; r++) n++; + this.minimize(n), t = 0 == this.uncheckedNodes.length ? this.root : this.uncheckedNodes[this.uncheckedNodes.length - 1].child; + for (r = n; r < e.length; r++) { + var i = new D.TokenSet, + o = e[r]; + t.edges[o] = i, this.uncheckedNodes.push({ + parent: t, + char: o, + child: i + }), t = i + } + t.final = !0, this.previousWord = e + }, D.TokenSet.Builder.prototype.finish = function() { + this.minimize(0) + }, D.TokenSet.Builder.prototype.minimize = function(e) { + for (var t = this.uncheckedNodes.length - 1; e <= t; t--) { + var n = this.uncheckedNodes[t], + r = n.child.toString(); + r in this.minimizedNodes ? n.parent.edges[n.char] = this.minimizedNodes[r] : (n.child._str = r, this.minimizedNodes[r] = n.child), this.uncheckedNodes.pop() + } + }, D.Index = function(e) { + this.invertedIndex = e.invertedIndex, this.fieldVectors = e.fieldVectors, this.tokenSet = e.tokenSet, this.fields = e.fields, this.pipeline = e.pipeline + }, D.Index.prototype.search = function(t) { + return this.query(function(e) { + new D.QueryParser(t, e).parse() + }) + }, D.Index.prototype.query = function(e) { + for (var t = new D.Query(this.fields), n = Object.create(null), r = Object.create(null), i = Object.create(null), o = Object.create(null), a = Object.create(null), s = 0; s < this.fields.length; s++) r[this.fields[s]] = new D.Vector; + e.call(t, t); + for (s = 0; s < t.clauses.length; s++) { + var c = t.clauses[s], + l = null, + u = D.Set.complete; + l = c.usePipeline ? this.pipeline.runString(c.term, { + fields: c.fields + }) : [c.term]; + for (var f = 0; f < l.length; f++) { + var d = l[f]; + c.term = d; + var h = D.TokenSet.fromClause(c), + p = this.tokenSet.intersect(h).toArray(); + if (0 === p.length && c.presence === D.Query.presence.REQUIRED) { + for (var m = 0; m < c.fields.length; m++) { + o[Q = c.fields[m]] = D.Set.empty + } + break + } + for (var y = 0; y < p.length; y++) { + var v = p[y], + g = this.invertedIndex[v], + w = g._index; + for (m = 0; m < c.fields.length; m++) { + var _ = g[Q = c.fields[m]], + E = Object.keys(_), + x = v + "/" + Q, + b = new D.Set(E); + if (c.presence == D.Query.presence.REQUIRED && (u = u.union(b), void 0 === o[Q] && (o[Q] = D.Set.complete)), c.presence != D.Query.presence.PROHIBITED) { + if (r[Q].upsert(w, c.boost, function(e, t) { + return e + t + }), !i[x]) { + for (var k = 0; k < E.length; k++) { + var S, T = E[k], + L = new D.FieldRef(T, Q), + R = _[T]; + void 0 === (S = n[L]) ? n[L] = new D.MatchData(v, Q, R) : S.add(v, Q, R) + } + i[x] = !0 + } + } else void 0 === a[Q] && (a[Q] = D.Set.empty), a[Q] = a[Q].union(b) + } + } + } + if (c.presence === D.Query.presence.REQUIRED) + for (m = 0; m < c.fields.length; m++) { + o[Q = c.fields[m]] = o[Q].intersect(u) + } + } + var O = D.Set.complete, + C = D.Set.empty; + for (s = 0; s < this.fields.length; s++) { + var Q; + o[Q = this.fields[s]] && (O = O.intersect(o[Q])), a[Q] && (C = C.union(a[Q])) + } + var P = Object.keys(n), + A = [], + I = Object.create(null); + if (t.isNegated()) { + P = Object.keys(this.fieldVectors); + for (s = 0; s < P.length; s++) { + L = P[s]; + var M = D.FieldRef.fromString(L); + n[L] = new D.MatchData + } + } + for (s = 0; s < P.length; s++) { + var N = (M = D.FieldRef.fromString(P[s])).docRef; + if (O.contains(N) && !C.contains(N)) { + var j, F = this.fieldVectors[M], + H = r[M.fieldName].similarity(F); + if (void 0 !== (j = I[N])) j.score += H, j.matchData.combine(n[M]); + else { + var q = { + ref: N, + score: H, + matchData: n[M] + }; + I[N] = q, A.push(q) + } + } + } + return A.sort(function(e, t) { + return t.score - e.score + }) + }, D.Index.prototype.toJSON = function() { + var e = Object.keys(this.invertedIndex).sort().map(function(e) { + return [e, this.invertedIndex[e]] + }, this), + t = Object.keys(this.fieldVectors).map(function(e) { + return [e, this.fieldVectors[e].toJSON()] + }, this); + return { + version: D.version, + fields: this.fields, + fieldVectors: t, + invertedIndex: e, + pipeline: this.pipeline.toJSON() + } + }, D.Index.load = function(e) { + var t = {}, + n = {}, + r = e.fieldVectors, + i = Object.create(null), + o = e.invertedIndex, + a = new D.TokenSet.Builder, + s = D.Pipeline.load(e.pipeline); + e.version != D.version && D.utils.warn("Version mismatch when loading serialised index. Current version of lunr '" + D.version + "' does not match serialized index '" + e.version + "'"); + for (var c = 0; c < r.length; c++) { + var l = (f = r[c])[0], + u = f[1]; + n[l] = new D.Vector(u) + } + for (c = 0; c < o.length; c++) { + var f, d = (f = o[c])[0], + h = f[1]; + a.insert(d), i[d] = h + } + return a.finish(), t.fields = e.fields, t.fieldVectors = n, t.invertedIndex = i, t.tokenSet = a.root, t.pipeline = s, new D.Index(t) + }, D.Builder = function() { + this._ref = "id", this._fields = Object.create(null), this._documents = Object.create(null), this.invertedIndex = Object.create(null), this.fieldTermFrequencies = {}, this.fieldLengths = {}, this.tokenizer = D.tokenizer, this.pipeline = new D.Pipeline, this.searchPipeline = new D.Pipeline, this.documentCount = 0, this._b = .75, this._k1 = 1.2, this.termIndex = 0, this.metadataWhitelist = [] + }, D.Builder.prototype.ref = function(e) { + this._ref = e + }, D.Builder.prototype.field = function(e, t) { + if (/\//.test(e)) throw new RangeError("Field '" + e + "' contains illegal character '/'"); + this._fields[e] = t || {} + }, D.Builder.prototype.b = function(e) { + this._b = e < 0 ? 0 : 1 < e ? 1 : e + }, D.Builder.prototype.k1 = function(e) { + this._k1 = e + }, D.Builder.prototype.add = function(e, t) { + var n = e[this._ref], + r = Object.keys(this._fields); + this._documents[n] = t || {}, this.documentCount += 1; + for (var i = 0; i < r.length; i++) { + var o = r[i], + a = this._fields[o].extractor, + s = a ? a(e) : e[o], + c = this.tokenizer(s, { + fields: [o] + }), + l = this.pipeline.run(c), + u = new D.FieldRef(n, o), + f = Object.create(null); + this.fieldTermFrequencies[u] = f, this.fieldLengths[u] = 0, this.fieldLengths[u] += l.length; + for (var d = 0; d < l.length; d++) { + var h = l[d]; + if (null == f[h] && (f[h] = 0), f[h] += 1, null == this.invertedIndex[h]) { + var p = Object.create(null); + p._index = this.termIndex, this.termIndex += 1; + for (var m = 0; m < r.length; m++) p[r[m]] = Object.create(null); + this.invertedIndex[h] = p + } + null == this.invertedIndex[h][o][n] && (this.invertedIndex[h][o][n] = Object.create(null)); + for (var y = 0; y < this.metadataWhitelist.length; y++) { + var v = this.metadataWhitelist[y], + g = h.metadata[v]; + null == this.invertedIndex[h][o][n][v] && (this.invertedIndex[h][o][n][v] = []), this.invertedIndex[h][o][n][v].push(g) + } + } + } + }, D.Builder.prototype.calculateAverageFieldLengths = function() { + for (var e = Object.keys(this.fieldLengths), t = e.length, n = {}, r = {}, i = 0; i < t; i++) { + var o = D.FieldRef.fromString(e[i]), + a = o.fieldName; + r[a] || (r[a] = 0), r[a] += 1, n[a] || (n[a] = 0), n[a] += this.fieldLengths[o] + } + var s = Object.keys(this._fields); + for (i = 0; i < s.length; i++) { + var c = s[i]; + n[c] = n[c] / r[c] + } + this.averageFieldLength = n + }, D.Builder.prototype.createFieldVectors = function() { + for (var e = {}, t = Object.keys(this.fieldTermFrequencies), n = t.length, r = Object.create(null), i = 0; i < n; i++) { + for (var o = D.FieldRef.fromString(t[i]), a = o.fieldName, s = this.fieldLengths[o], c = new D.Vector, l = this.fieldTermFrequencies[o], u = Object.keys(l), f = u.length, d = this._fields[a].boost || 1, h = this._documents[o.docRef].boost || 1, p = 0; p < f; p++) { + var m, y, v, g = u[p], + w = l[g], + _ = this.invertedIndex[g]._index; + void 0 === r[g] ? (m = D.idf(this.invertedIndex[g], this.documentCount), r[g] = m) : m = r[g], y = m * ((this._k1 + 1) * w) / (this._k1 * (1 - this._b + this._b * (s / this.averageFieldLength[a])) + w), y *= d, y *= h, v = Math.round(1e3 * y) / 1e3, c.insert(_, v) + } + e[o] = c + } + this.fieldVectors = e + }, D.Builder.prototype.createTokenSet = function() { + this.tokenSet = D.TokenSet.fromArray(Object.keys(this.invertedIndex).sort()) + }, D.Builder.prototype.build = function() { + return this.calculateAverageFieldLengths(), this.createFieldVectors(), this.createTokenSet(), new D.Index({ + invertedIndex: this.invertedIndex, + fieldVectors: this.fieldVectors, + tokenSet: this.tokenSet, + fields: Object.keys(this._fields), + pipeline: this.searchPipeline + }) + }, D.Builder.prototype.use = function(e) { + var t = Array.prototype.slice.call(arguments, 1); + t.unshift(this), e.apply(this, t) + }, D.MatchData = function(e, t, n) { + for (var r = Object.create(null), i = Object.keys(n || {}), o = 0; o < i.length; o++) { + var a = i[o]; + r[a] = n[a].slice() + } + this.metadata = Object.create(null), void 0 !== e && (this.metadata[e] = Object.create(null), this.metadata[e][t] = r) + }, D.MatchData.prototype.combine = function(e) { + for (var t = Object.keys(e.metadata), n = 0; n < t.length; n++) { + var r = t[n], + i = Object.keys(e.metadata[r]); + null == this.metadata[r] && (this.metadata[r] = Object.create(null)); + for (var o = 0; o < i.length; o++) { + var a = i[o], + s = Object.keys(e.metadata[r][a]); + null == this.metadata[r][a] && (this.metadata[r][a] = Object.create(null)); + for (var c = 0; c < s.length; c++) { + var l = s[c]; + null == this.metadata[r][a][l] ? this.metadata[r][a][l] = e.metadata[r][a][l] : this.metadata[r][a][l] = this.metadata[r][a][l].concat(e.metadata[r][a][l]) + } + } + } + }, D.MatchData.prototype.add = function(e, t, n) { + if (!(e in this.metadata)) return this.metadata[e] = Object.create(null), void(this.metadata[e][t] = n); + if (t in this.metadata[e]) + for (var r = Object.keys(n), i = 0; i < r.length; i++) { + var o = r[i]; + o in this.metadata[e][t] ? this.metadata[e][t][o] = this.metadata[e][t][o].concat(n[o]) : this.metadata[e][t][o] = n[o] + } else this.metadata[e][t] = n + }, D.Query = function(e) { + this.clauses = [], this.allFields = e + }, D.Query.wildcard = new String("*"), D.Query.wildcard.NONE = 0, D.Query.wildcard.LEADING = 1, D.Query.wildcard.TRAILING = 2, D.Query.presence = { + OPTIONAL: 1, + REQUIRED: 2, + PROHIBITED: 3 + }, D.Query.prototype.clause = function(e) { + return "fields" in e || (e.fields = this.allFields), "boost" in e || (e.boost = 1), "usePipeline" in e || (e.usePipeline = !0), "wildcard" in e || (e.wildcard = D.Query.wildcard.NONE), e.wildcard & D.Query.wildcard.LEADING && e.term.charAt(0) != D.Query.wildcard && (e.term = "*" + e.term), e.wildcard & D.Query.wildcard.TRAILING && e.term.slice(-1) != D.Query.wildcard && (e.term = e.term + "*"), "presence" in e || (e.presence = D.Query.presence.OPTIONAL), this.clauses.push(e), this + }, D.Query.prototype.isNegated = function() { + for (var e = 0; e < this.clauses.length; e++) + if (this.clauses[e].presence != D.Query.presence.PROHIBITED) return !1; + return !0 + }, D.Query.prototype.term = function(e, t) { + if (Array.isArray(e)) return e.forEach(function(e) { + this.term(e, D.utils.clone(t)) + }, this), this; + var n = t || {}; + return n.term = e.toString(), this.clause(n), this + }, D.QueryParseError = function(e, t, n) { + this.name = "QueryParseError", this.message = e, this.start = t, this.end = n + }, D.QueryParseError.prototype = new Error, D.QueryLexer = function(e) { + this.lexemes = [], this.str = e, this.length = e.length, this.pos = 0, this.start = 0, this.escapeCharPositions = [] + }, D.QueryLexer.prototype.run = function() { + for (var e = D.QueryLexer.lexText; e;) e = e(this) + }, D.QueryLexer.prototype.sliceString = function() { + for (var e = [], t = this.start, n = this.pos, r = 0; r < this.escapeCharPositions.length; r++) n = this.escapeCharPositions[r], e.push(this.str.slice(t, n)), t = n + 1; + return e.push(this.str.slice(t, this.pos)), this.escapeCharPositions.length = 0, e.join("") + }, D.QueryLexer.prototype.emit = function(e) { + this.lexemes.push({ + type: e, + str: this.sliceString(), + start: this.start, + end: this.pos + }), this.start = this.pos + }, D.QueryLexer.prototype.escapeCharacter = function() { + this.escapeCharPositions.push(this.pos - 1), this.pos += 1 + }, D.QueryLexer.prototype.next = function() { + if (this.pos >= this.length) return D.QueryLexer.EOS; + var e = this.str.charAt(this.pos); + return this.pos += 1, e + }, D.QueryLexer.prototype.width = function() { + return this.pos - this.start + }, D.QueryLexer.prototype.ignore = function() { + this.start == this.pos && (this.pos += 1), this.start = this.pos + }, D.QueryLexer.prototype.backup = function() { + this.pos -= 1 + }, D.QueryLexer.prototype.acceptDigitRun = function() { + for (var e, t; 47 < (t = (e = this.next()).charCodeAt(0)) && t < 58;); + e != D.QueryLexer.EOS && this.backup() + }, D.QueryLexer.prototype.more = function() { + return this.pos < this.length + }, D.QueryLexer.EOS = "EOS", D.QueryLexer.FIELD = "FIELD", D.QueryLexer.TERM = "TERM", D.QueryLexer.EDIT_DISTANCE = "EDIT_DISTANCE", D.QueryLexer.BOOST = "BOOST", D.QueryLexer.PRESENCE = "PRESENCE", D.QueryLexer.lexField = function(e) { + return e.backup(), e.emit(D.QueryLexer.FIELD), e.ignore(), D.QueryLexer.lexText + }, D.QueryLexer.lexTerm = function(e) { + if (1 < e.width() && (e.backup(), e.emit(D.QueryLexer.TERM)), e.ignore(), e.more()) return D.QueryLexer.lexText + }, D.QueryLexer.lexEditDistance = function(e) { + return e.ignore(), e.acceptDigitRun(), e.emit(D.QueryLexer.EDIT_DISTANCE), D.QueryLexer.lexText + }, D.QueryLexer.lexBoost = function(e) { + return e.ignore(), e.acceptDigitRun(), e.emit(D.QueryLexer.BOOST), D.QueryLexer.lexText + }, D.QueryLexer.lexEOS = function(e) { + 0 < e.width() && e.emit(D.QueryLexer.TERM) + }, D.QueryLexer.termSeparator = D.tokenizer.separator, D.QueryLexer.lexText = function(e) { + for (;;) { + var t = e.next(); + if (t == D.QueryLexer.EOS) return D.QueryLexer.lexEOS; + if (92 != t.charCodeAt(0)) { + if (":" == t) return D.QueryLexer.lexField; + if ("~" == t) return e.backup(), 0 < e.width() && e.emit(D.QueryLexer.TERM), D.QueryLexer.lexEditDistance; + if ("^" == t) return e.backup(), 0 < e.width() && e.emit(D.QueryLexer.TERM), D.QueryLexer.lexBoost; + if ("+" == t && 1 === e.width()) return e.emit(D.QueryLexer.PRESENCE), D.QueryLexer.lexText; + if ("-" == t && 1 === e.width()) return e.emit(D.QueryLexer.PRESENCE), D.QueryLexer.lexText; + if (t.match(D.QueryLexer.termSeparator)) return D.QueryLexer.lexTerm + } else e.escapeCharacter() + } + }, D.QueryParser = function(e, t) { + this.lexer = new D.QueryLexer(e), this.query = t, this.currentClause = {}, this.lexemeIdx = 0 + }, D.QueryParser.prototype.parse = function() { + this.lexer.run(), this.lexemes = this.lexer.lexemes; + for (var e = D.QueryParser.parseClause; e;) e = e(this); + return this.query + }, D.QueryParser.prototype.peekLexeme = function() { + return this.lexemes[this.lexemeIdx] + }, D.QueryParser.prototype.consumeLexeme = function() { + var e = this.peekLexeme(); + return this.lexemeIdx += 1, e + }, D.QueryParser.prototype.nextClause = function() { + var e = this.currentClause; + this.query.clause(e), this.currentClause = {} + }, D.QueryParser.parseClause = function(e) { + var t = e.peekLexeme(); + if (null != t) switch (t.type) { + case D.QueryLexer.PRESENCE: + return D.QueryParser.parsePresence; + case D.QueryLexer.FIELD: + return D.QueryParser.parseField; + case D.QueryLexer.TERM: + return D.QueryParser.parseTerm; + default: + var n = "expected either a field or a term, found " + t.type; + throw 1 <= t.str.length && (n += " with value '" + t.str + "'"), new D.QueryParseError(n, t.start, t.end) + } + }, D.QueryParser.parsePresence = function(e) { + var t = e.consumeLexeme(); + if (null != t) { + switch (t.str) { + case "-": + e.currentClause.presence = D.Query.presence.PROHIBITED; + break; + case "+": + e.currentClause.presence = D.Query.presence.REQUIRED; + break; + default: + var n = "unrecognised presence operator'" + t.str + "'"; + throw new D.QueryParseError(n, t.start, t.end) + } + var r = e.peekLexeme(); + if (null == r) { + n = "expecting term or field, found nothing"; + throw new D.QueryParseError(n, t.start, t.end) + } + switch (r.type) { + case D.QueryLexer.FIELD: + return D.QueryParser.parseField; + case D.QueryLexer.TERM: + return D.QueryParser.parseTerm; + default: + n = "expecting term or field, found '" + r.type + "'"; + throw new D.QueryParseError(n, r.start, r.end) + } + } + }, D.QueryParser.parseField = function(e) { + var t = e.consumeLexeme(); + if (null != t) { + if (-1 == e.query.allFields.indexOf(t.str)) { + var n = e.query.allFields.map(function(e) { + return "'" + e + "'" + }).join(", "), + r = "unrecognised field '" + t.str + "', possible fields: " + n; + throw new D.QueryParseError(r, t.start, t.end) + } + e.currentClause.fields = [t.str]; + var i = e.peekLexeme(); + if (null == i) { + r = "expecting term, found nothing"; + throw new D.QueryParseError(r, t.start, t.end) + } + switch (i.type) { + case D.QueryLexer.TERM: + return D.QueryParser.parseTerm; + default: + r = "expecting term, found '" + i.type + "'"; + throw new D.QueryParseError(r, i.start, i.end) + } + } + }, D.QueryParser.parseTerm = function(e) { + var t = e.consumeLexeme(); + if (null != t) { + e.currentClause.term = t.str.toLowerCase(), -1 != t.str.indexOf("*") && (e.currentClause.usePipeline = !1); + var n = e.peekLexeme(); + if (null != n) switch (n.type) { + case D.QueryLexer.TERM: + return e.nextClause(), D.QueryParser.parseTerm; + case D.QueryLexer.FIELD: + return e.nextClause(), D.QueryParser.parseField; + case D.QueryLexer.EDIT_DISTANCE: + return D.QueryParser.parseEditDistance; + case D.QueryLexer.BOOST: + return D.QueryParser.parseBoost; + case D.QueryLexer.PRESENCE: + return e.nextClause(), D.QueryParser.parsePresence; + default: + var r = "Unexpected lexeme type '" + n.type + "'"; + throw new D.QueryParseError(r, n.start, n.end) + } else e.nextClause() + } + }, D.QueryParser.parseEditDistance = function(e) { + var t = e.consumeLexeme(); + if (null != t) { + var n = parseInt(t.str, 10); + if (isNaN(n)) { + var r = "edit distance must be numeric"; + throw new D.QueryParseError(r, t.start, t.end) + } + e.currentClause.editDistance = n; + var i = e.peekLexeme(); + if (null != i) switch (i.type) { + case D.QueryLexer.TERM: + return e.nextClause(), D.QueryParser.parseTerm; + case D.QueryLexer.FIELD: + return e.nextClause(), D.QueryParser.parseField; + case D.QueryLexer.EDIT_DISTANCE: + return D.QueryParser.parseEditDistance; + case D.QueryLexer.BOOST: + return D.QueryParser.parseBoost; + case D.QueryLexer.PRESENCE: + return e.nextClause(), D.QueryParser.parsePresence; + default: + r = "Unexpected lexeme type '" + i.type + "'"; + throw new D.QueryParseError(r, i.start, i.end) + } else e.nextClause() + } + }, D.QueryParser.parseBoost = function(e) { + var t = e.consumeLexeme(); + if (null != t) { + var n = parseInt(t.str, 10); + if (isNaN(n)) { + var r = "boost must be numeric"; + throw new D.QueryParseError(r, t.start, t.end) + } + e.currentClause.boost = n; + var i = e.peekLexeme(); + if (null != i) switch (i.type) { + case D.QueryLexer.TERM: + return e.nextClause(), D.QueryParser.parseTerm; + case D.QueryLexer.FIELD: + return e.nextClause(), D.QueryParser.parseField; + case D.QueryLexer.EDIT_DISTANCE: + return D.QueryParser.parseEditDistance; + case D.QueryLexer.BOOST: + return D.QueryParser.parseBoost; + case D.QueryLexer.PRESENCE: + return e.nextClause(), D.QueryParser.parsePresence; + default: + r = "Unexpected lexeme type '" + i.type + "'"; + throw new D.QueryParseError(r, i.start, i.end) + } else e.nextClause() + } + }, void 0 === (c = "function" == typeof(s = function() { + return D + }) ? s.call(o, a, o, i) : s) || (i.exports = c) + }() +}])); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.da.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.da.js new file mode 100644 index 0000000000..34910dfe5f --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.da.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var r,m,i;e.da=function(){this.pipeline.reset(),this.pipeline.add(e.da.trimmer,e.da.stopWordFilter,e.da.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.da.stemmer))},e.da.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.da.trimmer=e.trimmerSupport.generateTrimmer(e.da.wordCharacters),e.Pipeline.registerFunction(e.da.trimmer,"trimmer-da"),e.da.stemmer=(r=e.stemmerSupport.Among,m=e.stemmerSupport.SnowballProgram,i=new function(){var i,t,n,s=[new r("hed",-1,1),new r("ethed",0,1),new r("ered",-1,1),new r("e",-1,1),new r("erede",3,1),new r("ende",3,1),new r("erende",5,1),new r("ene",3,1),new r("erne",3,1),new r("ere",3,1),new r("en",-1,1),new r("heden",10,1),new r("eren",10,1),new r("er",-1,1),new r("heder",13,1),new r("erer",13,1),new r("s",-1,2),new r("heds",16,1),new r("es",16,1),new r("endes",18,1),new r("erendes",19,1),new r("enes",18,1),new r("ernes",18,1),new r("eres",18,1),new r("ens",16,1),new r("hedens",24,1),new r("erens",24,1),new r("ers",16,1),new r("ets",16,1),new r("erets",28,1),new r("et",-1,1),new r("eret",30,1)],o=[new r("gd",-1,-1),new r("dt",-1,-1),new r("gt",-1,-1),new r("kt",-1,-1)],a=[new r("ig",-1,1),new r("lig",0,1),new r("elig",1,1),new r("els",-1,1),new r("løst",-1,2)],d=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,48,0,128],u=[239,254,42,3,0,0,0,0,0,0,0,0,0,0,0,0,16],c=new m;function l(){var e,r=c.limit-c.cursor;c.cursor>=t&&(e=c.limit_backward,c.limit_backward=t,c.ket=c.cursor,c.find_among_b(o,4)?(c.bra=c.cursor,c.limit_backward=e,c.cursor=c.limit-r,c.cursor>c.limit_backward&&(c.cursor--,c.bra=c.cursor,c.slice_del())):c.limit_backward=e)}this.setCurrent=function(e){c.setCurrent(e)},this.getCurrent=function(){return c.getCurrent()},this.stem=function(){var e,r=c.cursor;return function(){var e,r=c.cursor+3;if(t=c.limit,0<=r&&r<=c.limit){for(i=r;;){if(e=c.cursor,c.in_grouping(d,97,248)){c.cursor=e;break}if((c.cursor=e)>=c.limit)return;c.cursor++}for(;!c.out_grouping(d,97,248);){if(c.cursor>=c.limit)return;c.cursor++}(t=c.cursor)=t&&(r=c.limit_backward,c.limit_backward=t,c.ket=c.cursor,e=c.find_among_b(s,32),c.limit_backward=r,e))switch(c.bra=c.cursor,e){case 1:c.slice_del();break;case 2:c.in_grouping_b(u,97,229)&&c.slice_del()}}(),c.cursor=c.limit,l(),c.cursor=c.limit,function(){var e,r,i,n=c.limit-c.cursor;if(c.ket=c.cursor,c.eq_s_b(2,"st")&&(c.bra=c.cursor,c.eq_s_b(2,"ig")&&c.slice_del()),c.cursor=c.limit-n,c.cursor>=t&&(r=c.limit_backward,c.limit_backward=t,c.ket=c.cursor,e=c.find_among_b(a,5),c.limit_backward=r,e))switch(c.bra=c.cursor,e){case 1:c.slice_del(),i=c.limit-c.cursor,l(),c.cursor=c.limit-i;break;case 2:c.slice_from("løs")}}(),c.cursor=c.limit,c.cursor>=t&&(e=c.limit_backward,c.limit_backward=t,c.ket=c.cursor,c.out_grouping_b(d,97,248)?(c.bra=c.cursor,n=c.slice_to(n),c.limit_backward=e,c.eq_v_b(n)&&c.slice_del()):c.limit_backward=e),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}),e.Pipeline.registerFunction(e.da.stemmer,"stemmer-da"),e.da.stopWordFilter=e.generateStopWordFilter("ad af alle alt anden at blev blive bliver da de dem den denne der deres det dette dig din disse dog du efter eller en end er et for fra ham han hans har havde have hende hendes her hos hun hvad hvis hvor i ikke ind jeg jer jo kunne man mange med meget men mig min mine mit mod ned noget nogle nu når og også om op os over på selv sig sin sine sit skal skulle som sådan thi til ud under var vi vil ville vor være været".split(" ")),e.Pipeline.registerFunction(e.da.stopWordFilter,"stopWordFilter-da")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.de.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.de.js new file mode 100644 index 0000000000..1529892c82 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.de.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var _,p,r;e.de=function(){this.pipeline.reset(),this.pipeline.add(e.de.trimmer,e.de.stopWordFilter,e.de.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.de.stemmer))},e.de.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.de.trimmer=e.trimmerSupport.generateTrimmer(e.de.wordCharacters),e.Pipeline.registerFunction(e.de.trimmer,"trimmer-de"),e.de.stemmer=(_=e.stemmerSupport.Among,p=e.stemmerSupport.SnowballProgram,r=new function(){var r,n,i,s=[new _("",-1,6),new _("U",0,2),new _("Y",0,1),new _("ä",0,3),new _("ö",0,4),new _("ü",0,5)],o=[new _("e",-1,2),new _("em",-1,1),new _("en",-1,2),new _("ern",-1,1),new _("er",-1,1),new _("s",-1,3),new _("es",5,2)],c=[new _("en",-1,1),new _("er",-1,1),new _("st",-1,2),new _("est",2,1)],u=[new _("ig",-1,1),new _("lich",-1,1)],a=[new _("end",-1,1),new _("ig",-1,2),new _("ung",-1,1),new _("lich",-1,3),new _("isch",-1,2),new _("ik",-1,2),new _("heit",-1,3),new _("keit",-1,4)],t=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32,8],d=[117,30,5],l=[117,30,4],m=new p;function h(e,r,n){return!(!m.eq_s(1,e)||(m.ket=m.cursor,!m.in_grouping(t,97,252)))&&(m.slice_from(r),m.cursor=n,!0)}function w(){for(;!m.in_grouping(t,97,252);){if(m.cursor>=m.limit)return!0;m.cursor++}for(;!m.out_grouping(t,97,252);){if(m.cursor>=m.limit)return!0;m.cursor++}return!1}function f(){return i<=m.cursor}function b(){return n<=m.cursor}this.setCurrent=function(e){m.setCurrent(e)},this.getCurrent=function(){return m.getCurrent()},this.stem=function(){var e=m.cursor;return function(){for(var e,r,n,i,s=m.cursor;;)if(e=m.cursor,m.bra=e,m.eq_s(1,"ß"))m.ket=m.cursor,m.slice_from("ss");else{if(e>=m.limit)break;m.cursor=e+1}for(m.cursor=s;;)for(r=m.cursor;;){if(n=m.cursor,m.in_grouping(t,97,252)){if(i=m.cursor,m.bra=i,h("u","U",n))break;if(m.cursor=i,h("y","Y",n))break}if(n>=m.limit)return m.cursor=r;m.cursor=n+1}}(),m.cursor=e,function(){i=m.limit,n=i;var e=m.cursor+3;0<=e&&e<=m.limit&&(r=e,w()||((i=m.cursor)=m.limit)return;m.cursor++}}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return r.setCurrent(e),r.stem(),r.getCurrent()}):(r.setCurrent(e),r.stem(),r.getCurrent())}),e.Pipeline.registerFunction(e.de.stemmer,"stemmer-de"),e.de.stopWordFilter=e.generateStopWordFilter("aber alle allem allen aller alles als also am an ander andere anderem anderen anderer anderes anderm andern anderr anders auch auf aus bei bin bis bist da damit dann das dasselbe dazu daß dein deine deinem deinen deiner deines dem demselben den denn denselben der derer derselbe derselben des desselben dessen dich die dies diese dieselbe dieselben diesem diesen dieser dieses dir doch dort du durch ein eine einem einen einer eines einig einige einigem einigen einiger einiges einmal er es etwas euch euer eure eurem euren eurer eures für gegen gewesen hab habe haben hat hatte hatten hier hin hinter ich ihm ihn ihnen ihr ihre ihrem ihren ihrer ihres im in indem ins ist jede jedem jeden jeder jedes jene jenem jenen jener jenes jetzt kann kein keine keinem keinen keiner keines können könnte machen man manche manchem manchen mancher manches mein meine meinem meinen meiner meines mich mir mit muss musste nach nicht nichts noch nun nur ob oder ohne sehr sein seine seinem seinen seiner seines selbst sich sie sind so solche solchem solchen solcher solches soll sollte sondern sonst um und uns unse unsem unsen unser unses unter viel vom von vor war waren warst was weg weil weiter welche welchem welchen welcher welches wenn werde werden wie wieder will wir wird wirst wo wollen wollte während würde würden zu zum zur zwar zwischen über".split(" ")),e.Pipeline.registerFunction(e.de.stopWordFilter,"stopWordFilter-de")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.du.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.du.js new file mode 100644 index 0000000000..52632004a2 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.du.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var v,q,r;console.warn('[Lunr Languages] Please use the "nl" instead of the "du". The "nl" code is the standard code for Dutch language, and "du" will be removed in the next major versions.'),e.du=function(){this.pipeline.reset(),this.pipeline.add(e.du.trimmer,e.du.stopWordFilter,e.du.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.du.stemmer))},e.du.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.du.trimmer=e.trimmerSupport.generateTrimmer(e.du.wordCharacters),e.Pipeline.registerFunction(e.du.trimmer,"trimmer-du"),e.du.stemmer=(v=e.stemmerSupport.Among,q=e.stemmerSupport.SnowballProgram,r=new function(){var r,i,u,o=[new v("",-1,6),new v("á",0,1),new v("ä",0,1),new v("é",0,2),new v("ë",0,2),new v("í",0,3),new v("ï",0,3),new v("ó",0,4),new v("ö",0,4),new v("ú",0,5),new v("ü",0,5)],n=[new v("",-1,3),new v("I",0,2),new v("Y",0,1)],t=[new v("dd",-1,-1),new v("kk",-1,-1),new v("tt",-1,-1)],c=[new v("ene",-1,2),new v("se",-1,3),new v("en",-1,2),new v("heden",2,1),new v("s",-1,3)],a=[new v("end",-1,1),new v("ig",-1,2),new v("ing",-1,1),new v("lijk",-1,3),new v("baar",-1,4),new v("bar",-1,5)],l=[new v("aa",-1,-1),new v("ee",-1,-1),new v("oo",-1,-1),new v("uu",-1,-1)],m=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],d=[1,0,0,17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],f=[17,67,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],_=new q;function s(e){return(_.cursor=e)>=_.limit||(_.cursor++,!1)}function w(){for(;!_.in_grouping(m,97,232);){if(_.cursor>=_.limit)return!0;_.cursor++}for(;!_.out_grouping(m,97,232);){if(_.cursor>=_.limit)return!0;_.cursor++}return!1}function b(){return i<=_.cursor}function p(){return r<=_.cursor}function g(){var e=_.limit-_.cursor;_.find_among_b(t,3)&&(_.cursor=_.limit-e,_.ket=_.cursor,_.cursor>_.limit_backward&&(_.cursor--,_.bra=_.cursor,_.slice_del()))}function h(){var e;u=!1,_.ket=_.cursor,_.eq_s_b(1,"e")&&(_.bra=_.cursor,b()&&(e=_.limit-_.cursor,_.out_grouping_b(m,97,232)&&(_.cursor=_.limit-e,_.slice_del(),u=!0,g())))}function k(){var e;b()&&(e=_.limit-_.cursor,_.out_grouping_b(m,97,232)&&(_.cursor=_.limit-e,_.eq_s_b(3,"gem")||(_.cursor=_.limit-e,_.slice_del(),g())))}this.setCurrent=function(e){_.setCurrent(e)},this.getCurrent=function(){return _.getCurrent()},this.stem=function(){var e=_.cursor;return function(){for(var e,r,i,n=_.cursor;;){if(_.bra=_.cursor,e=_.find_among(o,11))switch(_.ket=_.cursor,e){case 1:_.slice_from("a");continue;case 2:_.slice_from("e");continue;case 3:_.slice_from("i");continue;case 4:_.slice_from("o");continue;case 5:_.slice_from("u");continue;case 6:if(_.cursor>=_.limit)break;_.cursor++;continue}break}for(_.cursor=n,_.bra=n,_.eq_s(1,"y")?(_.ket=_.cursor,_.slice_from("Y")):_.cursor=n;;)if(r=_.cursor,_.in_grouping(m,97,232)){if(i=_.cursor,_.bra=i,_.eq_s(1,"i"))_.ket=_.cursor,_.in_grouping(m,97,232)&&(_.slice_from("I"),_.cursor=r);else if(_.cursor=i,_.eq_s(1,"y"))_.ket=_.cursor,_.slice_from("Y"),_.cursor=r;else if(s(r))break}else if(s(r))break}(),_.cursor=e,i=_.limit,r=i,w()||((i=_.cursor)<3&&(i=3),w()||(r=_.cursor)),_.limit_backward=e,_.cursor=_.limit,function(){var e,r,i,n,o,t,s=_.limit-_.cursor;if(_.ket=_.cursor,e=_.find_among_b(c,5))switch(_.bra=_.cursor,e){case 1:b()&&_.slice_from("heid");break;case 2:k();break;case 3:b()&&_.out_grouping_b(f,97,232)&&_.slice_del()}if(_.cursor=_.limit-s,h(),_.cursor=_.limit-s,_.ket=_.cursor,_.eq_s_b(4,"heid")&&(_.bra=_.cursor,p()&&(r=_.limit-_.cursor,_.eq_s_b(1,"c")||(_.cursor=_.limit-r,_.slice_del(),_.ket=_.cursor,_.eq_s_b(2,"en")&&(_.bra=_.cursor,k())))),_.cursor=_.limit-s,_.ket=_.cursor,e=_.find_among_b(a,6))switch(_.bra=_.cursor,e){case 1:if(p()){if(_.slice_del(),i=_.limit-_.cursor,_.ket=_.cursor,_.eq_s_b(2,"ig")&&(_.bra=_.cursor,p()&&(n=_.limit-_.cursor,!_.eq_s_b(1,"e")))){_.cursor=_.limit-n,_.slice_del();break}_.cursor=_.limit-i,g()}break;case 2:p()&&(o=_.limit-_.cursor,_.eq_s_b(1,"e")||(_.cursor=_.limit-o,_.slice_del()));break;case 3:p()&&(_.slice_del(),h());break;case 4:p()&&_.slice_del();break;case 5:p()&&u&&_.slice_del()}_.cursor=_.limit-s,_.out_grouping_b(d,73,232)&&(t=_.limit-_.cursor,_.find_among_b(l,4)&&_.out_grouping_b(m,97,232)&&(_.cursor=_.limit-t,_.ket=_.cursor,_.cursor>_.limit_backward&&(_.cursor--,_.bra=_.cursor,_.slice_del())))}(),_.cursor=_.limit_backward,function(){for(var e;;)if(_.bra=_.cursor,e=_.find_among(n,3))switch(_.ket=_.cursor,e){case 1:_.slice_from("y");break;case 2:_.slice_from("i");break;case 3:if(_.cursor>=_.limit)return;_.cursor++}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return r.setCurrent(e),r.stem(),r.getCurrent()}):(r.setCurrent(e),r.stem(),r.getCurrent())}),e.Pipeline.registerFunction(e.du.stemmer,"stemmer-du"),e.du.stopWordFilter=e.generateStopWordFilter(" aan al alles als altijd andere ben bij daar dan dat de der deze die dit doch doen door dus een eens en er ge geen geweest haar had heb hebben heeft hem het hier hij hoe hun iemand iets ik in is ja je kan kon kunnen maar me meer men met mij mijn moet na naar niet niets nog nu of om omdat onder ons ook op over reeds te tegen toch toen tot u uit uw van veel voor want waren was wat werd wezen wie wil worden wordt zal ze zelf zich zij zijn zo zonder zou".split(" ")),e.Pipeline.registerFunction(e.du.stopWordFilter,"stopWordFilter-du")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.es.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.es.js new file mode 100644 index 0000000000..9de6c09cb4 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.es.js @@ -0,0 +1 @@ +!function(e,s){"function"==typeof define&&define.amd?define(s):"object"==typeof exports?module.exports=s():s()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var C,P,s;e.es=function(){this.pipeline.reset(),this.pipeline.add(e.es.trimmer,e.es.stopWordFilter,e.es.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.es.stemmer))},e.es.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.es.trimmer=e.trimmerSupport.generateTrimmer(e.es.wordCharacters),e.Pipeline.registerFunction(e.es.trimmer,"trimmer-es"),e.es.stemmer=(C=e.stemmerSupport.Among,P=e.stemmerSupport.SnowballProgram,s=new function(){var r,n,i,a=[new C("",-1,6),new C("á",0,1),new C("é",0,2),new C("í",0,3),new C("ó",0,4),new C("ú",0,5)],t=[new C("la",-1,-1),new C("sela",0,-1),new C("le",-1,-1),new C("me",-1,-1),new C("se",-1,-1),new C("lo",-1,-1),new C("selo",5,-1),new C("las",-1,-1),new C("selas",7,-1),new C("les",-1,-1),new C("los",-1,-1),new C("selos",10,-1),new C("nos",-1,-1)],o=[new C("ando",-1,6),new C("iendo",-1,6),new C("yendo",-1,7),new C("ándo",-1,2),new C("iéndo",-1,1),new C("ar",-1,6),new C("er",-1,6),new C("ir",-1,6),new C("ár",-1,3),new C("ér",-1,4),new C("ír",-1,5)],s=[new C("ic",-1,-1),new C("ad",-1,-1),new C("os",-1,-1),new C("iv",-1,1)],u=[new C("able",-1,1),new C("ible",-1,1),new C("ante",-1,1)],w=[new C("ic",-1,1),new C("abil",-1,1),new C("iv",-1,1)],c=[new C("ica",-1,1),new C("ancia",-1,2),new C("encia",-1,5),new C("adora",-1,2),new C("osa",-1,1),new C("ista",-1,1),new C("iva",-1,9),new C("anza",-1,1),new C("logía",-1,3),new C("idad",-1,8),new C("able",-1,1),new C("ible",-1,1),new C("ante",-1,2),new C("mente",-1,7),new C("amente",13,6),new C("ación",-1,2),new C("ución",-1,4),new C("ico",-1,1),new C("ismo",-1,1),new C("oso",-1,1),new C("amiento",-1,1),new C("imiento",-1,1),new C("ivo",-1,9),new C("ador",-1,2),new C("icas",-1,1),new C("ancias",-1,2),new C("encias",-1,5),new C("adoras",-1,2),new C("osas",-1,1),new C("istas",-1,1),new C("ivas",-1,9),new C("anzas",-1,1),new C("logías",-1,3),new C("idades",-1,8),new C("ables",-1,1),new C("ibles",-1,1),new C("aciones",-1,2),new C("uciones",-1,4),new C("adores",-1,2),new C("antes",-1,2),new C("icos",-1,1),new C("ismos",-1,1),new C("osos",-1,1),new C("amientos",-1,1),new C("imientos",-1,1),new C("ivos",-1,9)],m=[new C("ya",-1,1),new C("ye",-1,1),new C("yan",-1,1),new C("yen",-1,1),new C("yeron",-1,1),new C("yendo",-1,1),new C("yo",-1,1),new C("yas",-1,1),new C("yes",-1,1),new C("yais",-1,1),new C("yamos",-1,1),new C("yó",-1,1)],l=[new C("aba",-1,2),new C("ada",-1,2),new C("ida",-1,2),new C("ara",-1,2),new C("iera",-1,2),new C("ía",-1,2),new C("aría",5,2),new C("ería",5,2),new C("iría",5,2),new C("ad",-1,2),new C("ed",-1,2),new C("id",-1,2),new C("ase",-1,2),new C("iese",-1,2),new C("aste",-1,2),new C("iste",-1,2),new C("an",-1,2),new C("aban",16,2),new C("aran",16,2),new C("ieran",16,2),new C("ían",16,2),new C("arían",20,2),new C("erían",20,2),new C("irían",20,2),new C("en",-1,1),new C("asen",24,2),new C("iesen",24,2),new C("aron",-1,2),new C("ieron",-1,2),new C("arán",-1,2),new C("erán",-1,2),new C("irán",-1,2),new C("ado",-1,2),new C("ido",-1,2),new C("ando",-1,2),new C("iendo",-1,2),new C("ar",-1,2),new C("er",-1,2),new C("ir",-1,2),new C("as",-1,2),new C("abas",39,2),new C("adas",39,2),new C("idas",39,2),new C("aras",39,2),new C("ieras",39,2),new C("ías",39,2),new C("arías",45,2),new C("erías",45,2),new C("irías",45,2),new C("es",-1,1),new C("ases",49,2),new C("ieses",49,2),new C("abais",-1,2),new C("arais",-1,2),new C("ierais",-1,2),new C("íais",-1,2),new C("aríais",55,2),new C("eríais",55,2),new C("iríais",55,2),new C("aseis",-1,2),new C("ieseis",-1,2),new C("asteis",-1,2),new C("isteis",-1,2),new C("áis",-1,2),new C("éis",-1,1),new C("aréis",64,2),new C("eréis",64,2),new C("iréis",64,2),new C("ados",-1,2),new C("idos",-1,2),new C("amos",-1,2),new C("ábamos",70,2),new C("áramos",70,2),new C("iéramos",70,2),new C("íamos",70,2),new C("aríamos",74,2),new C("eríamos",74,2),new C("iríamos",74,2),new C("emos",-1,1),new C("aremos",78,2),new C("eremos",78,2),new C("iremos",78,2),new C("ásemos",78,2),new C("iésemos",78,2),new C("imos",-1,2),new C("arás",-1,2),new C("erás",-1,2),new C("irás",-1,2),new C("ís",-1,2),new C("ará",-1,2),new C("erá",-1,2),new C("irá",-1,2),new C("aré",-1,2),new C("eré",-1,2),new C("iré",-1,2),new C("ió",-1,2)],d=[new C("a",-1,1),new C("e",-1,2),new C("o",-1,1),new C("os",-1,1),new C("á",-1,1),new C("é",-1,2),new C("í",-1,1),new C("ó",-1,1)],b=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,1,17,4,10],f=new P;function _(){if(f.out_grouping(b,97,252)){for(;!f.in_grouping(b,97,252);){if(f.cursor>=f.limit)return!0;f.cursor++}return!1}return!0}function h(){var e,s=f.cursor;if(function(){if(f.in_grouping(b,97,252)){var e=f.cursor;if(_()){if(f.cursor=e,!f.in_grouping(b,97,252))return!0;for(;!f.out_grouping(b,97,252);){if(f.cursor>=f.limit)return!0;f.cursor++}}return!1}return!0}()){if(f.cursor=s,!f.out_grouping(b,97,252))return;if(e=f.cursor,_()){if(f.cursor=e,!f.in_grouping(b,97,252)||f.cursor>=f.limit)return;f.cursor++}}i=f.cursor}function v(){for(;!f.in_grouping(b,97,252);){if(f.cursor>=f.limit)return!1;f.cursor++}for(;!f.out_grouping(b,97,252);){if(f.cursor>=f.limit)return!1;f.cursor++}return!0}function p(){return i<=f.cursor}function g(){return r<=f.cursor}function k(e,s){if(!g())return!0;f.slice_del(),f.ket=f.cursor;var r=f.find_among_b(e,s);return r&&(f.bra=f.cursor,1==r&&g()&&f.slice_del()),!1}function y(e){return!g()||(f.slice_del(),f.ket=f.cursor,f.eq_s_b(2,e)&&(f.bra=f.cursor,g()&&f.slice_del()),!1)}function q(){var e;if(f.ket=f.cursor,e=f.find_among_b(c,46)){switch(f.bra=f.cursor,e){case 1:if(!g())return!1;f.slice_del();break;case 2:if(y("ic"))return!1;break;case 3:if(!g())return!1;f.slice_from("log");break;case 4:if(!g())return!1;f.slice_from("u");break;case 5:if(!g())return!1;f.slice_from("ente");break;case 6:if(!(n<=f.cursor))return!1;f.slice_del(),f.ket=f.cursor,(e=f.find_among_b(s,4))&&(f.bra=f.cursor,g()&&(f.slice_del(),1==e&&(f.ket=f.cursor,f.eq_s_b(2,"at")&&(f.bra=f.cursor,g()&&f.slice_del()))));break;case 7:if(k(u,3))return!1;break;case 8:if(k(w,3))return!1;break;case 9:if(y("at"))return!1}return!0}return!1}this.setCurrent=function(e){f.setCurrent(e)},this.getCurrent=function(){return f.getCurrent()},this.stem=function(){var e,s=f.cursor;return e=f.cursor,i=f.limit,r=n=i,h(),f.cursor=e,v()&&(n=f.cursor,v()&&(r=f.cursor)),f.limit_backward=s,f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,f.find_among_b(t,13)&&(f.bra=f.cursor,(e=f.find_among_b(o,11))&&p()))switch(e){case 1:f.bra=f.cursor,f.slice_from("iendo");break;case 2:f.bra=f.cursor,f.slice_from("ando");break;case 3:f.bra=f.cursor,f.slice_from("ar");break;case 4:f.bra=f.cursor,f.slice_from("er");break;case 5:f.bra=f.cursor,f.slice_from("ir");break;case 6:f.slice_del();break;case 7:f.eq_s_b(1,"u")&&f.slice_del()}}(),f.cursor=f.limit,q()||(f.cursor=f.limit,function(){var e,s;if(f.cursor>=i&&(s=f.limit_backward,f.limit_backward=i,f.ket=f.cursor,e=f.find_among_b(m,12),f.limit_backward=s,e)){if(f.bra=f.cursor,1==e){if(!f.eq_s_b(1,"u"))return!1;f.slice_del()}return!0}return!1}()||(f.cursor=f.limit,function(){var e,s,r,n;if(f.cursor>=i&&(s=f.limit_backward,f.limit_backward=i,f.ket=f.cursor,e=f.find_among_b(l,96),f.limit_backward=s,e))switch(f.bra=f.cursor,e){case 1:r=f.limit-f.cursor,f.eq_s_b(1,"u")?(n=f.limit-f.cursor,f.eq_s_b(1,"g")?f.cursor=f.limit-n:f.cursor=f.limit-r):f.cursor=f.limit-r,f.bra=f.cursor;case 2:f.slice_del()}}())),f.cursor=f.limit,function(){var e,s;if(f.ket=f.cursor,e=f.find_among_b(d,8))switch(f.bra=f.cursor,e){case 1:p()&&f.slice_del();break;case 2:p()&&(f.slice_del(),f.ket=f.cursor,f.eq_s_b(1,"u")&&(f.bra=f.cursor,s=f.limit-f.cursor,f.eq_s_b(1,"g")&&(f.cursor=f.limit-s,p()&&f.slice_del())))}}(),f.cursor=f.limit_backward,function(){for(var e;;){if(f.bra=f.cursor,e=f.find_among(a,6))switch(f.ket=f.cursor,e){case 1:f.slice_from("a");continue;case 2:f.slice_from("e");continue;case 3:f.slice_from("i");continue;case 4:f.slice_from("o");continue;case 5:f.slice_from("u");continue;case 6:if(f.cursor>=f.limit)break;f.cursor++;continue}break}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return s.setCurrent(e),s.stem(),s.getCurrent()}):(s.setCurrent(e),s.stem(),s.getCurrent())}),e.Pipeline.registerFunction(e.es.stemmer,"stemmer-es"),e.es.stopWordFilter=e.generateStopWordFilter("a al algo algunas algunos ante antes como con contra cual cuando de del desde donde durante e el ella ellas ellos en entre era erais eran eras eres es esa esas ese eso esos esta estaba estabais estaban estabas estad estada estadas estado estados estamos estando estar estaremos estará estarán estarás estaré estaréis estaría estaríais estaríamos estarían estarías estas este estemos esto estos estoy estuve estuviera estuvierais estuvieran estuvieras estuvieron estuviese estuvieseis estuviesen estuvieses estuvimos estuviste estuvisteis estuviéramos estuviésemos estuvo está estábamos estáis están estás esté estéis estén estés fue fuera fuerais fueran fueras fueron fuese fueseis fuesen fueses fui fuimos fuiste fuisteis fuéramos fuésemos ha habida habidas habido habidos habiendo habremos habrá habrán habrás habré habréis habría habríais habríamos habrían habrías habéis había habíais habíamos habían habías han has hasta hay haya hayamos hayan hayas hayáis he hemos hube hubiera hubierais hubieran hubieras hubieron hubiese hubieseis hubiesen hubieses hubimos hubiste hubisteis hubiéramos hubiésemos hubo la las le les lo los me mi mis mucho muchos muy más mí mía mías mío míos nada ni no nos nosotras nosotros nuestra nuestras nuestro nuestros o os otra otras otro otros para pero poco por porque que quien quienes qué se sea seamos sean seas seremos será serán serás seré seréis sería seríais seríamos serían serías seáis sido siendo sin sobre sois somos son soy su sus suya suyas suyo suyos sí también tanto te tendremos tendrá tendrán tendrás tendré tendréis tendría tendríais tendríamos tendrían tendrías tened tenemos tenga tengamos tengan tengas tengo tengáis tenida tenidas tenido tenidos teniendo tenéis tenía teníais teníamos tenían tenías ti tiene tienen tienes todo todos tu tus tuve tuviera tuvierais tuvieran tuvieras tuvieron tuviese tuvieseis tuviesen tuvieses tuvimos tuviste tuvisteis tuviéramos tuviésemos tuvo tuya tuyas tuyo tuyos tú un una uno unos vosotras vosotros vuestra vuestras vuestro vuestros y ya yo él éramos".split(" ")),e.Pipeline.registerFunction(e.es.stopWordFilter,"stopWordFilter-es")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.fi.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.fi.js new file mode 100644 index 0000000000..2f9bf5aebd --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.fi.js @@ -0,0 +1 @@ +!function(i,e){"function"==typeof define&&define.amd?define(e):"object"==typeof exports?module.exports=e():e()(i.lunr)}(this,function(){return function(i){if(void 0===i)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===i.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var v,C,e;i.fi=function(){this.pipeline.reset(),this.pipeline.add(i.fi.trimmer,i.fi.stopWordFilter,i.fi.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(i.fi.stemmer))},i.fi.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",i.fi.trimmer=i.trimmerSupport.generateTrimmer(i.fi.wordCharacters),i.Pipeline.registerFunction(i.fi.trimmer,"trimmer-fi"),i.fi.stemmer=(v=i.stemmerSupport.Among,C=i.stemmerSupport.SnowballProgram,e=new function(){var n,t,l,o,r=[new v("pa",-1,1),new v("sti",-1,2),new v("kaan",-1,1),new v("han",-1,1),new v("kin",-1,1),new v("hän",-1,1),new v("kään",-1,1),new v("ko",-1,1),new v("pä",-1,1),new v("kö",-1,1)],s=[new v("lla",-1,-1),new v("na",-1,-1),new v("ssa",-1,-1),new v("ta",-1,-1),new v("lta",3,-1),new v("sta",3,-1)],a=[new v("llä",-1,-1),new v("nä",-1,-1),new v("ssä",-1,-1),new v("tä",-1,-1),new v("ltä",3,-1),new v("stä",3,-1)],u=[new v("lle",-1,-1),new v("ine",-1,-1)],c=[new v("nsa",-1,3),new v("mme",-1,3),new v("nne",-1,3),new v("ni",-1,2),new v("si",-1,1),new v("an",-1,4),new v("en",-1,6),new v("än",-1,5),new v("nsä",-1,3)],i=[new v("aa",-1,-1),new v("ee",-1,-1),new v("ii",-1,-1),new v("oo",-1,-1),new v("uu",-1,-1),new v("ää",-1,-1),new v("öö",-1,-1)],m=[new v("a",-1,8),new v("lla",0,-1),new v("na",0,-1),new v("ssa",0,-1),new v("ta",0,-1),new v("lta",4,-1),new v("sta",4,-1),new v("tta",4,9),new v("lle",-1,-1),new v("ine",-1,-1),new v("ksi",-1,-1),new v("n",-1,7),new v("han",11,1),new v("den",11,-1,q),new v("seen",11,-1,j),new v("hen",11,2),new v("tten",11,-1,q),new v("hin",11,3),new v("siin",11,-1,q),new v("hon",11,4),new v("hän",11,5),new v("hön",11,6),new v("ä",-1,8),new v("llä",22,-1),new v("nä",22,-1),new v("ssä",22,-1),new v("tä",22,-1),new v("ltä",26,-1),new v("stä",26,-1),new v("ttä",26,9)],w=[new v("eja",-1,-1),new v("mma",-1,1),new v("imma",1,-1),new v("mpa",-1,1),new v("impa",3,-1),new v("mmi",-1,1),new v("immi",5,-1),new v("mpi",-1,1),new v("impi",7,-1),new v("ejä",-1,-1),new v("mmä",-1,1),new v("immä",10,-1),new v("mpä",-1,1),new v("impä",12,-1)],_=[new v("i",-1,-1),new v("j",-1,-1)],k=[new v("mma",-1,1),new v("imma",0,-1)],b=[17,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8],d=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32],e=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32],f=[17,97,24,1,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32],h=new C;function p(){for(var i;i=h.cursor,!h.in_grouping(d,97,246);){if((h.cursor=i)>=h.limit)return!0;h.cursor++}for(h.cursor=i;!h.out_grouping(d,97,246);){if(h.cursor>=h.limit)return!0;h.cursor++}return!1}function g(){var i,e;if(h.cursor>=o)if(e=h.limit_backward,h.limit_backward=o,h.ket=h.cursor,i=h.find_among_b(r,10)){switch(h.bra=h.cursor,h.limit_backward=e,i){case 1:if(!h.in_grouping_b(f,97,246))return;break;case 2:if(!(l<=h.cursor))return}h.slice_del()}else h.limit_backward=e}function j(){return h.find_among_b(i,7)}function q(){return h.eq_s_b(1,"i")&&h.in_grouping_b(e,97,246)}this.setCurrent=function(i){h.setCurrent(i)},this.getCurrent=function(){return h.getCurrent()},this.stem=function(){var i,e=h.cursor;return o=h.limit,l=o,p()||(o=h.cursor,p()||(l=h.cursor)),n=!1,h.limit_backward=e,h.cursor=h.limit,g(),h.cursor=h.limit,function(){var i,e,r;if(h.cursor>=o)if(e=h.limit_backward,h.limit_backward=o,h.ket=h.cursor,i=h.find_among_b(c,9))switch(h.bra=h.cursor,h.limit_backward=e,i){case 1:r=h.limit-h.cursor,h.eq_s_b(1,"k")||(h.cursor=h.limit-r,h.slice_del());break;case 2:h.slice_del(),h.ket=h.cursor,h.eq_s_b(3,"kse")&&(h.bra=h.cursor,h.slice_from("ksi"));break;case 3:h.slice_del();break;case 4:h.find_among_b(s,6)&&h.slice_del();break;case 5:h.find_among_b(a,6)&&h.slice_del();break;case 6:h.find_among_b(u,2)&&h.slice_del()}else h.limit_backward=e}(),h.cursor=h.limit,function(){var i,e,r;if(h.cursor>=o)if(e=h.limit_backward,h.limit_backward=o,h.ket=h.cursor,i=h.find_among_b(m,30)){switch(h.bra=h.cursor,h.limit_backward=e,i){case 1:if(!h.eq_s_b(1,"a"))return;break;case 2:case 9:if(!h.eq_s_b(1,"e"))return;break;case 3:if(!h.eq_s_b(1,"i"))return;break;case 4:if(!h.eq_s_b(1,"o"))return;break;case 5:if(!h.eq_s_b(1,"ä"))return;break;case 6:if(!h.eq_s_b(1,"ö"))return;break;case 7:if(r=h.limit-h.cursor,!j()&&(h.cursor=h.limit-r,!h.eq_s_b(2,"ie"))){h.cursor=h.limit-r;break}if(h.cursor=h.limit-r,h.cursor<=h.limit_backward){h.cursor=h.limit-r;break}h.cursor--,h.bra=h.cursor;break;case 8:if(!h.in_grouping_b(d,97,246)||!h.out_grouping_b(d,97,246))return}h.slice_del(),n=!0}else h.limit_backward=e}(),h.cursor=h.limit,function(){var i,e,r;if(h.cursor>=l)if(e=h.limit_backward,h.limit_backward=l,h.ket=h.cursor,i=h.find_among_b(w,14)){if(h.bra=h.cursor,h.limit_backward=e,1==i){if(r=h.limit-h.cursor,h.eq_s_b(2,"po"))return;h.cursor=h.limit-r}h.slice_del()}else h.limit_backward=e}(),h.cursor=h.limit,h.cursor=(n?h.cursor>=o&&(i=h.limit_backward,h.limit_backward=o,h.ket=h.cursor,h.find_among_b(_,2)?(h.bra=h.cursor,h.limit_backward=i,h.slice_del()):h.limit_backward=i):(h.cursor=h.limit,function(){var i,e,r,n,t,s;if(h.cursor>=o){if(e=h.limit_backward,h.limit_backward=o,h.ket=h.cursor,h.eq_s_b(1,"t")&&(h.bra=h.cursor,r=h.limit-h.cursor,h.in_grouping_b(d,97,246)&&(h.cursor=h.limit-r,h.slice_del(),h.limit_backward=e,n=h.limit-h.cursor,h.cursor>=l&&(h.cursor=l,t=h.limit_backward,h.limit_backward=h.cursor,h.cursor=h.limit-n,h.ket=h.cursor,i=h.find_among_b(k,2))))){if(h.bra=h.cursor,h.limit_backward=t,1==i){if(s=h.limit-h.cursor,h.eq_s_b(2,"po"))return;h.cursor=h.limit-s}return h.slice_del()}h.limit_backward=e}}()),h.limit),function(){var i,e,r,n;if(h.cursor>=o){for(i=h.limit_backward,h.limit_backward=o,e=h.limit-h.cursor,j()&&(h.cursor=h.limit-e,h.ket=h.cursor,h.cursor>h.limit_backward&&(h.cursor--,h.bra=h.cursor,h.slice_del())),h.cursor=h.limit-e,h.ket=h.cursor,h.in_grouping_b(b,97,228)&&(h.bra=h.cursor,h.out_grouping_b(d,97,246)&&h.slice_del()),h.cursor=h.limit-e,h.ket=h.cursor,h.eq_s_b(1,"j")&&(h.bra=h.cursor,r=h.limit-h.cursor,h.eq_s_b(1,"o")?h.slice_del():(h.cursor=h.limit-r,h.eq_s_b(1,"u")&&h.slice_del())),h.cursor=h.limit-e,h.ket=h.cursor,h.eq_s_b(1,"o")&&(h.bra=h.cursor,h.eq_s_b(1,"j")&&h.slice_del()),h.cursor=h.limit-e,h.limit_backward=i;;){if(n=h.limit-h.cursor,h.out_grouping_b(d,97,246)){h.cursor=h.limit-n;break}if(h.cursor=h.limit-n,h.cursor<=h.limit_backward)return;h.cursor--}h.ket=h.cursor,h.cursor>h.limit_backward&&(h.cursor--,h.bra=h.cursor,t=h.slice_to(),h.eq_v_b(t)&&h.slice_del())}}(),!0}},function(i){return"function"==typeof i.update?i.update(function(i){return e.setCurrent(i),e.stem(),e.getCurrent()}):(e.setCurrent(i),e.stem(),e.getCurrent())}),i.Pipeline.registerFunction(i.fi.stemmer,"stemmer-fi"),i.fi.stopWordFilter=i.generateStopWordFilter("ei eivät emme en et ette että he heidän heidät heihin heille heillä heiltä heissä heistä heitä hän häneen hänelle hänellä häneltä hänen hänessä hänestä hänet häntä itse ja johon joiden joihin joiksi joilla joille joilta joina joissa joista joita joka joksi jolla jolle jolta jona jonka jos jossa josta jota jotka kanssa keiden keihin keiksi keille keillä keiltä keinä keissä keistä keitä keneen keneksi kenelle kenellä keneltä kenen kenenä kenessä kenestä kenet ketkä ketkä ketä koska kuin kuka kun me meidän meidät meihin meille meillä meiltä meissä meistä meitä mihin miksi mikä mille millä miltä minkä minkä minua minulla minulle minulta minun minussa minusta minut minuun minä minä missä mistä mitkä mitä mukaan mutta ne niiden niihin niiksi niille niillä niiltä niin niin niinä niissä niistä niitä noiden noihin noiksi noilla noille noilta noin noina noissa noista noita nuo nyt näiden näihin näiksi näille näillä näiltä näinä näissä näistä näitä nämä ole olemme olen olet olette oli olimme olin olisi olisimme olisin olisit olisitte olisivat olit olitte olivat olla olleet ollut on ovat poikki se sekä sen siihen siinä siitä siksi sille sillä sillä siltä sinua sinulla sinulle sinulta sinun sinussa sinusta sinut sinuun sinä sinä sitä tai te teidän teidät teihin teille teillä teiltä teissä teistä teitä tuo tuohon tuoksi tuolla tuolle tuolta tuon tuona tuossa tuosta tuota tähän täksi tälle tällä tältä tämä tämän tänä tässä tästä tätä vaan vai vaikka yli".split(" ")),i.Pipeline.registerFunction(i.fi.stopWordFilter,"stopWordFilter-fi")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.fr.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.fr.js new file mode 100644 index 0000000000..078d0cab70 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.fr.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var r,y,s;e.fr=function(){this.pipeline.reset(),this.pipeline.add(e.fr.trimmer,e.fr.stopWordFilter,e.fr.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.fr.stemmer))},e.fr.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.fr.trimmer=e.trimmerSupport.generateTrimmer(e.fr.wordCharacters),e.Pipeline.registerFunction(e.fr.trimmer,"trimmer-fr"),e.fr.stemmer=(r=e.stemmerSupport.Among,y=e.stemmerSupport.SnowballProgram,s=new function(){var s,i,t,n=[new r("col",-1,-1),new r("par",-1,-1),new r("tap",-1,-1)],u=[new r("",-1,4),new r("I",0,1),new r("U",0,2),new r("Y",0,3)],o=[new r("iqU",-1,3),new r("abl",-1,3),new r("Ièr",-1,4),new r("ièr",-1,4),new r("eus",-1,2),new r("iv",-1,1)],c=[new r("ic",-1,2),new r("abil",-1,1),new r("iv",-1,3)],a=[new r("iqUe",-1,1),new r("atrice",-1,2),new r("ance",-1,1),new r("ence",-1,5),new r("logie",-1,3),new r("able",-1,1),new r("isme",-1,1),new r("euse",-1,11),new r("iste",-1,1),new r("ive",-1,8),new r("if",-1,8),new r("usion",-1,4),new r("ation",-1,2),new r("ution",-1,4),new r("ateur",-1,2),new r("iqUes",-1,1),new r("atrices",-1,2),new r("ances",-1,1),new r("ences",-1,5),new r("logies",-1,3),new r("ables",-1,1),new r("ismes",-1,1),new r("euses",-1,11),new r("istes",-1,1),new r("ives",-1,8),new r("ifs",-1,8),new r("usions",-1,4),new r("ations",-1,2),new r("utions",-1,4),new r("ateurs",-1,2),new r("ments",-1,15),new r("ements",30,6),new r("issements",31,12),new r("ités",-1,7),new r("ment",-1,15),new r("ement",34,6),new r("issement",35,12),new r("amment",34,13),new r("emment",34,14),new r("aux",-1,10),new r("eaux",39,9),new r("eux",-1,1),new r("ité",-1,7)],l=[new r("ira",-1,1),new r("ie",-1,1),new r("isse",-1,1),new r("issante",-1,1),new r("i",-1,1),new r("irai",4,1),new r("ir",-1,1),new r("iras",-1,1),new r("ies",-1,1),new r("îmes",-1,1),new r("isses",-1,1),new r("issantes",-1,1),new r("îtes",-1,1),new r("is",-1,1),new r("irais",13,1),new r("issais",13,1),new r("irions",-1,1),new r("issions",-1,1),new r("irons",-1,1),new r("issons",-1,1),new r("issants",-1,1),new r("it",-1,1),new r("irait",21,1),new r("issait",21,1),new r("issant",-1,1),new r("iraIent",-1,1),new r("issaIent",-1,1),new r("irent",-1,1),new r("issent",-1,1),new r("iront",-1,1),new r("ît",-1,1),new r("iriez",-1,1),new r("issiez",-1,1),new r("irez",-1,1),new r("issez",-1,1)],w=[new r("a",-1,3),new r("era",0,2),new r("asse",-1,3),new r("ante",-1,3),new r("ée",-1,2),new r("ai",-1,3),new r("erai",5,2),new r("er",-1,2),new r("as",-1,3),new r("eras",8,2),new r("âmes",-1,3),new r("asses",-1,3),new r("antes",-1,3),new r("âtes",-1,3),new r("ées",-1,2),new r("ais",-1,3),new r("erais",15,2),new r("ions",-1,1),new r("erions",17,2),new r("assions",17,3),new r("erons",-1,2),new r("ants",-1,3),new r("és",-1,2),new r("ait",-1,3),new r("erait",23,2),new r("ant",-1,3),new r("aIent",-1,3),new r("eraIent",26,2),new r("èrent",-1,2),new r("assent",-1,3),new r("eront",-1,2),new r("ât",-1,3),new r("ez",-1,2),new r("iez",32,2),new r("eriez",33,2),new r("assiez",33,3),new r("erez",32,2),new r("é",-1,2)],f=[new r("e",-1,3),new r("Ière",0,2),new r("ière",0,2),new r("ion",-1,1),new r("Ier",-1,2),new r("ier",-1,2),new r("ë",-1,4)],m=[new r("ell",-1,-1),new r("eill",-1,-1),new r("enn",-1,-1),new r("onn",-1,-1),new r("ett",-1,-1)],_=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,128,130,103,8,5],b=[1,65,20,0,0,0,0,0,0,0,0,0,0,0,0,0,128],d=new y;function k(e,r,s){return!(!d.eq_s(1,e)||(d.ket=d.cursor,!d.in_grouping(_,97,251)))&&(d.slice_from(r),d.cursor=s,!0)}function p(e,r,s){return!!d.eq_s(1,e)&&(d.ket=d.cursor,d.slice_from(r),d.cursor=s,!0)}function g(){for(;!d.in_grouping(_,97,251);){if(d.cursor>=d.limit)return!0;d.cursor++}for(;!d.out_grouping(_,97,251);){if(d.cursor>=d.limit)return!0;d.cursor++}return!1}function q(){return t<=d.cursor}function v(){return i<=d.cursor}function h(){return s<=d.cursor}function z(){if(!function(){var e,r;if(d.ket=d.cursor,e=d.find_among_b(a,43)){switch(d.bra=d.cursor,e){case 1:if(!h())return!1;d.slice_del();break;case 2:if(!h())return!1;d.slice_del(),d.ket=d.cursor,d.eq_s_b(2,"ic")&&(d.bra=d.cursor,h()?d.slice_del():d.slice_from("iqU"));break;case 3:if(!h())return!1;d.slice_from("log");break;case 4:if(!h())return!1;d.slice_from("u");break;case 5:if(!h())return!1;d.slice_from("ent");break;case 6:if(!q())return!1;if(d.slice_del(),d.ket=d.cursor,e=d.find_among_b(o,6))switch(d.bra=d.cursor,e){case 1:h()&&(d.slice_del(),d.ket=d.cursor,d.eq_s_b(2,"at")&&(d.bra=d.cursor,h()&&d.slice_del()));break;case 2:h()?d.slice_del():v()&&d.slice_from("eux");break;case 3:h()&&d.slice_del();break;case 4:q()&&d.slice_from("i")}break;case 7:if(!h())return!1;if(d.slice_del(),d.ket=d.cursor,e=d.find_among_b(c,3))switch(d.bra=d.cursor,e){case 1:h()?d.slice_del():d.slice_from("abl");break;case 2:h()?d.slice_del():d.slice_from("iqU");break;case 3:h()&&d.slice_del()}break;case 8:if(!h())return!1;if(d.slice_del(),d.ket=d.cursor,d.eq_s_b(2,"at")&&(d.bra=d.cursor,h()&&(d.slice_del(),d.ket=d.cursor,d.eq_s_b(2,"ic")))){d.bra=d.cursor,h()?d.slice_del():d.slice_from("iqU");break}break;case 9:d.slice_from("eau");break;case 10:if(!v())return!1;d.slice_from("al");break;case 11:if(h())d.slice_del();else{if(!v())return!1;d.slice_from("eux")}break;case 12:if(!v()||!d.out_grouping_b(_,97,251))return!1;d.slice_del();break;case 13:return q()&&d.slice_from("ant"),!1;case 14:return q()&&d.slice_from("ent"),!1;case 15:return r=d.limit-d.cursor,d.in_grouping_b(_,97,251)&&q()&&(d.cursor=d.limit-r,d.slice_del()),!1}return!0}return!1}()&&(d.cursor=d.limit,!function(){var e,r;if(d.cursor=t){if(s=d.limit_backward,d.limit_backward=t,d.ket=d.cursor,e=d.find_among_b(f,7))switch(d.bra=d.cursor,e){case 1:if(h()){if(i=d.limit-d.cursor,!d.eq_s_b(1,"s")&&(d.cursor=d.limit-i,!d.eq_s_b(1,"t")))break;d.slice_del()}break;case 2:d.slice_from("i");break;case 3:d.slice_del();break;case 4:d.eq_s_b(2,"gu")&&d.slice_del()}d.limit_backward=s}}();d.cursor=d.limit,d.ket=d.cursor,d.eq_s_b(1,"Y")?(d.bra=d.cursor,d.slice_from("i")):(d.cursor=d.limit,d.eq_s_b(1,"ç")&&(d.bra=d.cursor,d.slice_from("c")))}this.setCurrent=function(e){d.setCurrent(e)},this.getCurrent=function(){return d.getCurrent()},this.stem=function(){var e,r=d.cursor;return function(){for(var e,r;;){if(e=d.cursor,d.in_grouping(_,97,251)){if(d.bra=d.cursor,r=d.cursor,k("u","U",e))continue;if(d.cursor=r,k("i","I",e))continue;if(d.cursor=r,p("y","Y",e))continue}if(d.cursor=e,!k("y","Y",d.bra=e)){if(d.cursor=e,d.eq_s(1,"q")&&(d.bra=d.cursor,p("u","U",e)))continue;if((d.cursor=e)>=d.limit)return;d.cursor++}}}(),d.cursor=r,function(){var e=d.cursor;if(t=d.limit,s=i=t,d.in_grouping(_,97,251)&&d.in_grouping(_,97,251)&&d.cursor=d.limit){d.cursor=t;break}d.cursor++}while(!d.in_grouping(_,97,251))}t=d.cursor,d.cursor=e,g()||(i=d.cursor,g()||(s=d.cursor))}(),d.limit_backward=r,d.cursor=d.limit,z(),d.cursor=d.limit,e=d.limit-d.cursor,d.find_among_b(m,5)&&(d.cursor=d.limit-e,d.ket=d.cursor,d.cursor>d.limit_backward&&(d.cursor--,d.bra=d.cursor,d.slice_del())),d.cursor=d.limit,function(){for(var e,r=1;d.out_grouping_b(_,97,251);)r--;if(r<=0){if(d.ket=d.cursor,e=d.limit-d.cursor,!d.eq_s_b(1,"é")&&(d.cursor=d.limit-e,!d.eq_s_b(1,"è")))return;d.bra=d.cursor,d.slice_from("e")}}(),d.cursor=d.limit_backward,function(){for(var e,r;r=d.cursor,d.bra=r,e=d.find_among(u,4);)switch(d.ket=d.cursor,e){case 1:d.slice_from("i");break;case 2:d.slice_from("u");break;case 3:d.slice_from("y");break;case 4:if(d.cursor>=d.limit)return;d.cursor++}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return s.setCurrent(e),s.stem(),s.getCurrent()}):(s.setCurrent(e),s.stem(),s.getCurrent())}),e.Pipeline.registerFunction(e.fr.stemmer,"stemmer-fr"),e.fr.stopWordFilter=e.generateStopWordFilter("ai aie aient aies ait as au aura aurai auraient aurais aurait auras aurez auriez aurions aurons auront aux avaient avais avait avec avez aviez avions avons ayant ayez ayons c ce ceci celà ces cet cette d dans de des du elle en es est et eu eue eues eurent eus eusse eussent eusses eussiez eussions eut eux eûmes eût eûtes furent fus fusse fussent fusses fussiez fussions fut fûmes fût fûtes ici il ils j je l la le les leur leurs lui m ma mais me mes moi mon même n ne nos notre nous on ont ou par pas pour qu que quel quelle quelles quels qui s sa sans se sera serai seraient serais serait seras serez seriez serions serons seront ses soi soient sois soit sommes son sont soyez soyons suis sur t ta te tes toi ton tu un une vos votre vous y à étaient étais était étant étiez étions été étée étées étés êtes".split(" ")),e.Pipeline.registerFunction(e.fr.stopWordFilter,"stopWordFilter-fr")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.hu.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.hu.js new file mode 100644 index 0000000000..56a4b0dc19 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.hu.js @@ -0,0 +1 @@ +!function(e,n){"function"==typeof define&&define.amd?define(n):"object"==typeof exports?module.exports=n():n()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var p,_,n;e.hu=function(){this.pipeline.reset(),this.pipeline.add(e.hu.trimmer,e.hu.stopWordFilter,e.hu.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.hu.stemmer))},e.hu.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.hu.trimmer=e.trimmerSupport.generateTrimmer(e.hu.wordCharacters),e.Pipeline.registerFunction(e.hu.trimmer,"trimmer-hu"),e.hu.stemmer=(p=e.stemmerSupport.Among,_=e.stemmerSupport.SnowballProgram,n=new function(){var r,i=[new p("cs",-1,-1),new p("dzs",-1,-1),new p("gy",-1,-1),new p("ly",-1,-1),new p("ny",-1,-1),new p("sz",-1,-1),new p("ty",-1,-1),new p("zs",-1,-1)],n=[new p("á",-1,1),new p("é",-1,2)],a=[new p("bb",-1,-1),new p("cc",-1,-1),new p("dd",-1,-1),new p("ff",-1,-1),new p("gg",-1,-1),new p("jj",-1,-1),new p("kk",-1,-1),new p("ll",-1,-1),new p("mm",-1,-1),new p("nn",-1,-1),new p("pp",-1,-1),new p("rr",-1,-1),new p("ccs",-1,-1),new p("ss",-1,-1),new p("zzs",-1,-1),new p("tt",-1,-1),new p("vv",-1,-1),new p("ggy",-1,-1),new p("lly",-1,-1),new p("nny",-1,-1),new p("tty",-1,-1),new p("ssz",-1,-1),new p("zz",-1,-1)],t=[new p("al",-1,1),new p("el",-1,2)],e=[new p("ba",-1,-1),new p("ra",-1,-1),new p("be",-1,-1),new p("re",-1,-1),new p("ig",-1,-1),new p("nak",-1,-1),new p("nek",-1,-1),new p("val",-1,-1),new p("vel",-1,-1),new p("ul",-1,-1),new p("nál",-1,-1),new p("nél",-1,-1),new p("ból",-1,-1),new p("ról",-1,-1),new p("tól",-1,-1),new p("bõl",-1,-1),new p("rõl",-1,-1),new p("tõl",-1,-1),new p("ül",-1,-1),new p("n",-1,-1),new p("an",19,-1),new p("ban",20,-1),new p("en",19,-1),new p("ben",22,-1),new p("képpen",22,-1),new p("on",19,-1),new p("ön",19,-1),new p("képp",-1,-1),new p("kor",-1,-1),new p("t",-1,-1),new p("at",29,-1),new p("et",29,-1),new p("ként",29,-1),new p("anként",32,-1),new p("enként",32,-1),new p("onként",32,-1),new p("ot",29,-1),new p("ért",29,-1),new p("öt",29,-1),new p("hez",-1,-1),new p("hoz",-1,-1),new p("höz",-1,-1),new p("vá",-1,-1),new p("vé",-1,-1)],s=[new p("án",-1,2),new p("én",-1,1),new p("ánként",-1,3)],c=[new p("stul",-1,2),new p("astul",0,1),new p("ástul",0,3),new p("stül",-1,2),new p("estül",3,1),new p("éstül",3,4)],w=[new p("á",-1,1),new p("é",-1,2)],o=[new p("k",-1,7),new p("ak",0,4),new p("ek",0,6),new p("ok",0,5),new p("ák",0,1),new p("ék",0,2),new p("ök",0,3)],l=[new p("éi",-1,7),new p("áéi",0,6),new p("ééi",0,5),new p("é",-1,9),new p("ké",3,4),new p("aké",4,1),new p("eké",4,1),new p("oké",4,1),new p("áké",4,3),new p("éké",4,2),new p("öké",4,1),new p("éé",3,8)],u=[new p("a",-1,18),new p("ja",0,17),new p("d",-1,16),new p("ad",2,13),new p("ed",2,13),new p("od",2,13),new p("ád",2,14),new p("éd",2,15),new p("öd",2,13),new p("e",-1,18),new p("je",9,17),new p("nk",-1,4),new p("unk",11,1),new p("ánk",11,2),new p("énk",11,3),new p("ünk",11,1),new p("uk",-1,8),new p("juk",16,7),new p("ájuk",17,5),new p("ük",-1,8),new p("jük",19,7),new p("éjük",20,6),new p("m",-1,12),new p("am",22,9),new p("em",22,9),new p("om",22,9),new p("ám",22,10),new p("ém",22,11),new p("o",-1,18),new p("á",-1,19),new p("é",-1,20)],m=[new p("id",-1,10),new p("aid",0,9),new p("jaid",1,6),new p("eid",0,9),new p("jeid",3,6),new p("áid",0,7),new p("éid",0,8),new p("i",-1,15),new p("ai",7,14),new p("jai",8,11),new p("ei",7,14),new p("jei",10,11),new p("ái",7,12),new p("éi",7,13),new p("itek",-1,24),new p("eitek",14,21),new p("jeitek",15,20),new p("éitek",14,23),new p("ik",-1,29),new p("aik",18,26),new p("jaik",19,25),new p("eik",18,26),new p("jeik",21,25),new p("áik",18,27),new p("éik",18,28),new p("ink",-1,20),new p("aink",25,17),new p("jaink",26,16),new p("eink",25,17),new p("jeink",28,16),new p("áink",25,18),new p("éink",25,19),new p("aitok",-1,21),new p("jaitok",32,20),new p("áitok",-1,22),new p("im",-1,5),new p("aim",35,4),new p("jaim",36,1),new p("eim",35,4),new p("jeim",38,1),new p("áim",35,2),new p("éim",35,3)],k=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,1,17,52,14],f=new _;function b(){return r<=f.cursor}function d(){var e=f.limit-f.cursor;return!!f.find_among_b(a,23)&&(f.cursor=f.limit-e,!0)}function g(){if(f.cursor>f.limit_backward){f.cursor--,f.ket=f.cursor;var e=f.cursor-1;f.limit_backward<=e&&e<=f.limit&&(f.cursor=e,f.bra=e,f.slice_del())}}function h(){f.ket=f.cursor,f.find_among_b(e,44)&&(f.bra=f.cursor,b()&&(f.slice_del(),function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(n,2))&&(f.bra=f.cursor,b()))switch(e){case 1:f.slice_from("a");break;case 2:f.slice_from("e")}}()))}this.setCurrent=function(e){f.setCurrent(e)},this.getCurrent=function(){return f.getCurrent()},this.stem=function(){var e=f.cursor;return function(){var e,n=f.cursor;if(r=f.limit,f.in_grouping(k,97,252))for(;;){if(e=f.cursor,f.out_grouping(k,97,252))return f.cursor=e,f.find_among(i,8)||(f.cursor=e)=f.limit)return r=e;f.cursor++}if(f.cursor=n,f.out_grouping(k,97,252)){for(;!f.in_grouping(k,97,252);){if(f.cursor>=f.limit)return;f.cursor++}r=f.cursor}}(),f.limit_backward=e,f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(t,2))&&(f.bra=f.cursor,b())){if((1==e||2==e)&&!d())return;f.slice_del(),g()}}(),f.cursor=f.limit,h(),f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(s,3))&&(f.bra=f.cursor,b()))switch(e){case 1:f.slice_from("e");break;case 2:case 3:f.slice_from("a")}}(),f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(c,6))&&(f.bra=f.cursor,b()))switch(e){case 1:case 2:f.slice_del();break;case 3:f.slice_from("a");break;case 4:f.slice_from("e")}}(),f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(w,2))&&(f.bra=f.cursor,b())){if((1==e||2==e)&&!d())return;f.slice_del(),g()}}(),f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(l,12))&&(f.bra=f.cursor,b()))switch(e){case 1:case 4:case 7:case 9:f.slice_del();break;case 2:case 5:case 8:f.slice_from("e");break;case 3:case 6:f.slice_from("a")}}(),f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(u,31))&&(f.bra=f.cursor,b()))switch(e){case 1:case 4:case 7:case 8:case 9:case 12:case 13:case 16:case 17:case 18:f.slice_del();break;case 2:case 5:case 10:case 14:case 19:f.slice_from("a");break;case 3:case 6:case 11:case 15:case 20:f.slice_from("e")}}(),f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(m,42))&&(f.bra=f.cursor,b()))switch(e){case 1:case 4:case 5:case 6:case 9:case 10:case 11:case 14:case 15:case 16:case 17:case 20:case 21:case 24:case 25:case 26:case 29:f.slice_del();break;case 2:case 7:case 12:case 18:case 22:case 27:f.slice_from("a");break;case 3:case 8:case 13:case 19:case 23:case 28:f.slice_from("e")}}(),f.cursor=f.limit,function(){var e;if(f.ket=f.cursor,(e=f.find_among_b(o,7))&&(f.bra=f.cursor,b()))switch(e){case 1:f.slice_from("a");break;case 2:f.slice_from("e");break;case 3:case 4:case 5:case 6:case 7:f.slice_del()}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return n.setCurrent(e),n.stem(),n.getCurrent()}):(n.setCurrent(e),n.stem(),n.getCurrent())}),e.Pipeline.registerFunction(e.hu.stemmer,"stemmer-hu"),e.hu.stopWordFilter=e.generateStopWordFilter("a abban ahhoz ahogy ahol aki akik akkor alatt amely amelyek amelyekben amelyeket amelyet amelynek ami amikor amit amolyan amíg annak arra arról az azok azon azonban azt aztán azután azzal azért be belül benne bár cikk cikkek cikkeket csak de e ebben eddig egy egyes egyetlen egyik egyre egyéb egész ehhez ekkor el ellen elsõ elég elõ elõször elõtt emilyen ennek erre ez ezek ezen ezt ezzel ezért fel felé hanem hiszen hogy hogyan igen ill ill. illetve ilyen ilyenkor ismét ison itt jobban jó jól kell kellett keressünk keresztül ki kívül között közül legalább legyen lehet lehetett lenne lenni lesz lett maga magát majd majd meg mellett mely melyek mert mi mikor milyen minden mindenki mindent mindig mint mintha mit mivel miért most már más másik még míg nagy nagyobb nagyon ne nekem neki nem nincs néha néhány nélkül olyan ott pedig persze rá s saját sem semmi sok sokat sokkal szemben szerint szinte számára talán tehát teljes tovább továbbá több ugyanis utolsó után utána vagy vagyis vagyok valaki valami valamint való van vannak vele vissza viszont volna volt voltak voltam voltunk által általában át én éppen és így õ õk õket össze úgy új újabb újra".split(" ")),e.Pipeline.registerFunction(e.hu.stopWordFilter,"stopWordFilter-hu")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.it.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.it.js new file mode 100644 index 0000000000..50dddaa04b --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.it.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var z,P,r;e.it=function(){this.pipeline.reset(),this.pipeline.add(e.it.trimmer,e.it.stopWordFilter,e.it.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.it.stemmer))},e.it.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.it.trimmer=e.trimmerSupport.generateTrimmer(e.it.wordCharacters),e.Pipeline.registerFunction(e.it.trimmer,"trimmer-it"),e.it.stemmer=(z=e.stemmerSupport.Among,P=e.stemmerSupport.SnowballProgram,r=new function(){var o,t,s,a=[new z("",-1,7),new z("qu",0,6),new z("á",0,1),new z("é",0,2),new z("í",0,3),new z("ó",0,4),new z("ú",0,5)],u=[new z("",-1,3),new z("I",0,1),new z("U",0,2)],c=[new z("la",-1,-1),new z("cela",0,-1),new z("gliela",0,-1),new z("mela",0,-1),new z("tela",0,-1),new z("vela",0,-1),new z("le",-1,-1),new z("cele",6,-1),new z("gliele",6,-1),new z("mele",6,-1),new z("tele",6,-1),new z("vele",6,-1),new z("ne",-1,-1),new z("cene",12,-1),new z("gliene",12,-1),new z("mene",12,-1),new z("sene",12,-1),new z("tene",12,-1),new z("vene",12,-1),new z("ci",-1,-1),new z("li",-1,-1),new z("celi",20,-1),new z("glieli",20,-1),new z("meli",20,-1),new z("teli",20,-1),new z("veli",20,-1),new z("gli",20,-1),new z("mi",-1,-1),new z("si",-1,-1),new z("ti",-1,-1),new z("vi",-1,-1),new z("lo",-1,-1),new z("celo",31,-1),new z("glielo",31,-1),new z("melo",31,-1),new z("telo",31,-1),new z("velo",31,-1)],w=[new z("ando",-1,1),new z("endo",-1,1),new z("ar",-1,2),new z("er",-1,2),new z("ir",-1,2)],r=[new z("ic",-1,-1),new z("abil",-1,-1),new z("os",-1,-1),new z("iv",-1,1)],n=[new z("ic",-1,1),new z("abil",-1,1),new z("iv",-1,1)],i=[new z("ica",-1,1),new z("logia",-1,3),new z("osa",-1,1),new z("ista",-1,1),new z("iva",-1,9),new z("anza",-1,1),new z("enza",-1,5),new z("ice",-1,1),new z("atrice",7,1),new z("iche",-1,1),new z("logie",-1,3),new z("abile",-1,1),new z("ibile",-1,1),new z("usione",-1,4),new z("azione",-1,2),new z("uzione",-1,4),new z("atore",-1,2),new z("ose",-1,1),new z("ante",-1,1),new z("mente",-1,1),new z("amente",19,7),new z("iste",-1,1),new z("ive",-1,9),new z("anze",-1,1),new z("enze",-1,5),new z("ici",-1,1),new z("atrici",25,1),new z("ichi",-1,1),new z("abili",-1,1),new z("ibili",-1,1),new z("ismi",-1,1),new z("usioni",-1,4),new z("azioni",-1,2),new z("uzioni",-1,4),new z("atori",-1,2),new z("osi",-1,1),new z("anti",-1,1),new z("amenti",-1,6),new z("imenti",-1,6),new z("isti",-1,1),new z("ivi",-1,9),new z("ico",-1,1),new z("ismo",-1,1),new z("oso",-1,1),new z("amento",-1,6),new z("imento",-1,6),new z("ivo",-1,9),new z("ità",-1,8),new z("istà",-1,1),new z("istè",-1,1),new z("istì",-1,1)],l=[new z("isca",-1,1),new z("enda",-1,1),new z("ata",-1,1),new z("ita",-1,1),new z("uta",-1,1),new z("ava",-1,1),new z("eva",-1,1),new z("iva",-1,1),new z("erebbe",-1,1),new z("irebbe",-1,1),new z("isce",-1,1),new z("ende",-1,1),new z("are",-1,1),new z("ere",-1,1),new z("ire",-1,1),new z("asse",-1,1),new z("ate",-1,1),new z("avate",16,1),new z("evate",16,1),new z("ivate",16,1),new z("ete",-1,1),new z("erete",20,1),new z("irete",20,1),new z("ite",-1,1),new z("ereste",-1,1),new z("ireste",-1,1),new z("ute",-1,1),new z("erai",-1,1),new z("irai",-1,1),new z("isci",-1,1),new z("endi",-1,1),new z("erei",-1,1),new z("irei",-1,1),new z("assi",-1,1),new z("ati",-1,1),new z("iti",-1,1),new z("eresti",-1,1),new z("iresti",-1,1),new z("uti",-1,1),new z("avi",-1,1),new z("evi",-1,1),new z("ivi",-1,1),new z("isco",-1,1),new z("ando",-1,1),new z("endo",-1,1),new z("Yamo",-1,1),new z("iamo",-1,1),new z("avamo",-1,1),new z("evamo",-1,1),new z("ivamo",-1,1),new z("eremo",-1,1),new z("iremo",-1,1),new z("assimo",-1,1),new z("ammo",-1,1),new z("emmo",-1,1),new z("eremmo",54,1),new z("iremmo",54,1),new z("immo",-1,1),new z("ano",-1,1),new z("iscano",58,1),new z("avano",58,1),new z("evano",58,1),new z("ivano",58,1),new z("eranno",-1,1),new z("iranno",-1,1),new z("ono",-1,1),new z("iscono",65,1),new z("arono",65,1),new z("erono",65,1),new z("irono",65,1),new z("erebbero",-1,1),new z("irebbero",-1,1),new z("assero",-1,1),new z("essero",-1,1),new z("issero",-1,1),new z("ato",-1,1),new z("ito",-1,1),new z("uto",-1,1),new z("avo",-1,1),new z("evo",-1,1),new z("ivo",-1,1),new z("ar",-1,1),new z("ir",-1,1),new z("erà",-1,1),new z("irà",-1,1),new z("erò",-1,1),new z("irò",-1,1)],m=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,128,128,8,2,1],f=[17,65,0,0,0,0,0,0,0,0,0,0,0,0,0,128,128,8,2],v=[17],b=new P;function d(e,r,n){return!(!b.eq_s(1,e)||(b.ket=b.cursor,!b.in_grouping(m,97,249)))&&(b.slice_from(r),b.cursor=n,!0)}function _(e){if(b.cursor=e,!b.in_grouping(m,97,249))return!1;for(;!b.out_grouping(m,97,249);){if(b.cursor>=b.limit)return!1;b.cursor++}return!0}function g(){var e,r=b.cursor;if(!function(){if(b.in_grouping(m,97,249)){var e=b.cursor;if(b.out_grouping(m,97,249)){for(;!b.in_grouping(m,97,249);){if(b.cursor>=b.limit)return _(e);b.cursor++}return!0}return _(e)}return!1}()){if(b.cursor=r,!b.out_grouping(m,97,249))return;if(e=b.cursor,b.out_grouping(m,97,249)){for(;!b.in_grouping(m,97,249);){if(b.cursor>=b.limit)return b.cursor=e,void(b.in_grouping(m,97,249)&&b.cursor=b.limit)return;b.cursor++}s=b.cursor}function p(){for(;!b.in_grouping(m,97,249);){if(b.cursor>=b.limit)return!1;b.cursor++}for(;!b.out_grouping(m,97,249);){if(b.cursor>=b.limit)return!1;b.cursor++}return!0}function k(){return s<=b.cursor}function h(){return o<=b.cursor}function q(){var e;if(b.ket=b.cursor,!(e=b.find_among_b(i,51)))return!1;switch(b.bra=b.cursor,e){case 1:if(!h())return!1;b.slice_del();break;case 2:if(!h())return!1;b.slice_del(),b.ket=b.cursor,b.eq_s_b(2,"ic")&&(b.bra=b.cursor,h()&&b.slice_del());break;case 3:if(!h())return!1;b.slice_from("log");break;case 4:if(!h())return!1;b.slice_from("u");break;case 5:if(!h())return!1;b.slice_from("ente");break;case 6:if(!k())return!1;b.slice_del();break;case 7:if(!(t<=b.cursor))return!1;b.slice_del(),b.ket=b.cursor,(e=b.find_among_b(r,4))&&(b.bra=b.cursor,h()&&(b.slice_del(),1==e&&(b.ket=b.cursor,b.eq_s_b(2,"at")&&(b.bra=b.cursor,h()&&b.slice_del()))));break;case 8:if(!h())return!1;b.slice_del(),b.ket=b.cursor,(e=b.find_among_b(n,3))&&(b.bra=b.cursor,1==e&&h()&&b.slice_del());break;case 9:if(!h())return!1;b.slice_del(),b.ket=b.cursor,b.eq_s_b(2,"at")&&(b.bra=b.cursor,h()&&(b.slice_del(),b.ket=b.cursor,b.eq_s_b(2,"ic")&&(b.bra=b.cursor,h()&&b.slice_del())))}return!0}function C(){var e;e=b.limit-b.cursor,b.ket=b.cursor,b.in_grouping_b(f,97,242)&&(b.bra=b.cursor,k()&&(b.slice_del(),b.ket=b.cursor,b.eq_s_b(1,"i")&&(b.bra=b.cursor,k())))?b.slice_del():b.cursor=b.limit-e,b.ket=b.cursor,b.eq_s_b(1,"h")&&(b.bra=b.cursor,b.in_grouping_b(v,99,103)&&k()&&b.slice_del())}this.setCurrent=function(e){b.setCurrent(e)},this.getCurrent=function(){return b.getCurrent()},this.stem=function(){var e,r,n,i=b.cursor;return function(){for(var e,r,n,i,o=b.cursor;;){if(b.bra=b.cursor,e=b.find_among(a,7))switch(b.ket=b.cursor,e){case 1:b.slice_from("à");continue;case 2:b.slice_from("è");continue;case 3:b.slice_from("ì");continue;case 4:b.slice_from("ò");continue;case 5:b.slice_from("ù");continue;case 6:b.slice_from("qU");continue;case 7:if(b.cursor>=b.limit)break;b.cursor++;continue}break}for(b.cursor=o;;)for(r=b.cursor;;){if(n=b.cursor,b.in_grouping(m,97,249)){if(b.bra=b.cursor,i=b.cursor,d("u","U",n))break;if(b.cursor=i,d("i","I",n))break}if(b.cursor=n,b.cursor>=b.limit)return b.cursor=r;b.cursor++}}(),b.cursor=i,e=b.cursor,s=b.limit,o=t=s,g(),b.cursor=e,p()&&(t=b.cursor,p()&&(o=b.cursor)),b.limit_backward=i,b.cursor=b.limit,function(){var e;if(b.ket=b.cursor,b.find_among_b(c,37)&&(b.bra=b.cursor,(e=b.find_among_b(w,5))&&k()))switch(e){case 1:b.slice_del();break;case 2:b.slice_from("e")}}(),b.cursor=b.limit,q()||(b.cursor=b.limit,b.cursor>=s&&(n=b.limit_backward,b.limit_backward=s,b.ket=b.cursor,(r=b.find_among_b(l,87))&&(b.bra=b.cursor,1==r&&b.slice_del()),b.limit_backward=n)),b.cursor=b.limit,C(),b.cursor=b.limit_backward,function(){for(var e;b.bra=b.cursor,e=b.find_among(u,3);)switch(b.ket=b.cursor,e){case 1:b.slice_from("i");break;case 2:b.slice_from("u");break;case 3:if(b.cursor>=b.limit)return;b.cursor++}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return r.setCurrent(e),r.stem(),r.getCurrent()}):(r.setCurrent(e),r.stem(),r.getCurrent())}),e.Pipeline.registerFunction(e.it.stemmer,"stemmer-it"),e.it.stopWordFilter=e.generateStopWordFilter("a abbia abbiamo abbiano abbiate ad agl agli ai al all alla alle allo anche avemmo avendo avesse avessero avessi avessimo aveste avesti avete aveva avevamo avevano avevate avevi avevo avrai avranno avrebbe avrebbero avrei avremmo avremo avreste avresti avrete avrà avrò avuta avute avuti avuto c che chi ci coi col come con contro cui da dagl dagli dai dal dall dalla dalle dallo degl degli dei del dell della delle dello di dov dove e ebbe ebbero ebbi ed era erano eravamo eravate eri ero essendo faccia facciamo facciano facciate faccio facemmo facendo facesse facessero facessi facessimo faceste facesti faceva facevamo facevano facevate facevi facevo fai fanno farai faranno farebbe farebbero farei faremmo faremo fareste faresti farete farà farò fece fecero feci fosse fossero fossi fossimo foste fosti fu fui fummo furono gli ha hai hanno ho i il in io l la le lei li lo loro lui ma mi mia mie miei mio ne negl negli nei nel nell nella nelle nello noi non nostra nostre nostri nostro o per perché più quale quanta quante quanti quanto quella quelle quelli quello questa queste questi questo sarai saranno sarebbe sarebbero sarei saremmo saremo sareste saresti sarete sarà sarò se sei si sia siamo siano siate siete sono sta stai stando stanno starai staranno starebbe starebbero starei staremmo staremo stareste staresti starete starà starò stava stavamo stavano stavate stavi stavo stemmo stesse stessero stessi stessimo steste stesti stette stettero stetti stia stiamo stiano stiate sto su sua sue sugl sugli sui sul sull sulla sulle sullo suo suoi ti tra tu tua tue tuo tuoi tutti tutto un una uno vi voi vostra vostre vostri vostro è".split(" ")),e.Pipeline.registerFunction(e.it.stopWordFilter,"stopWordFilter-it")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.ja.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.ja.js new file mode 100644 index 0000000000..69f620250d --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.ja.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(m){if(void 0===m)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===m.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var l="2"==m.version[0];m.ja=function(){this.pipeline.reset(),this.pipeline.add(m.ja.trimmer,m.ja.stopWordFilter,m.ja.stemmer),l?this.tokenizer=m.ja.tokenizer:(m.tokenizer&&(m.tokenizer=m.ja.tokenizer),this.tokenizerFn&&(this.tokenizerFn=m.ja.tokenizer))};var j=new m.TinySegmenter;m.ja.tokenizer=function(e){var r,t,i,n,o,s,p,a,u;if(!arguments.length||null==e||null==e)return[];if(Array.isArray(e))return e.map(function(e){return l?new m.Token(e.toLowerCase()):e.toLowerCase()});for(r=(t=e.toString().toLowerCase().replace(/^\s+/,"")).length-1;0<=r;r--)if(/\S/.test(t.charAt(r))){t=t.substring(0,r+1);break}for(o=[],i=t.length,p=a=0;a<=i;a++)if(s=a-p,t.charAt(a).match(/\s/)||a==i){if(0=_.limit||(_.cursor++,!1)}function w(){for(;!_.in_grouping(m,97,232);){if(_.cursor>=_.limit)return!0;_.cursor++}for(;!_.out_grouping(m,97,232);){if(_.cursor>=_.limit)return!0;_.cursor++}return!1}function b(){return i<=_.cursor}function p(){return e<=_.cursor}function g(){var r=_.limit-_.cursor;_.find_among_b(t,3)&&(_.cursor=_.limit-r,_.ket=_.cursor,_.cursor>_.limit_backward&&(_.cursor--,_.bra=_.cursor,_.slice_del()))}function h(){var r;u=!1,_.ket=_.cursor,_.eq_s_b(1,"e")&&(_.bra=_.cursor,b()&&(r=_.limit-_.cursor,_.out_grouping_b(m,97,232)&&(_.cursor=_.limit-r,_.slice_del(),u=!0,g())))}function k(){var r;b()&&(r=_.limit-_.cursor,_.out_grouping_b(m,97,232)&&(_.cursor=_.limit-r,_.eq_s_b(3,"gem")||(_.cursor=_.limit-r,_.slice_del(),g())))}this.setCurrent=function(r){_.setCurrent(r)},this.getCurrent=function(){return _.getCurrent()},this.stem=function(){var r=_.cursor;return function(){for(var r,e,i,n=_.cursor;;){if(_.bra=_.cursor,r=_.find_among(o,11))switch(_.ket=_.cursor,r){case 1:_.slice_from("a");continue;case 2:_.slice_from("e");continue;case 3:_.slice_from("i");continue;case 4:_.slice_from("o");continue;case 5:_.slice_from("u");continue;case 6:if(_.cursor>=_.limit)break;_.cursor++;continue}break}for(_.cursor=n,_.bra=n,_.eq_s(1,"y")?(_.ket=_.cursor,_.slice_from("Y")):_.cursor=n;;)if(e=_.cursor,_.in_grouping(m,97,232)){if(i=_.cursor,_.bra=i,_.eq_s(1,"i"))_.ket=_.cursor,_.in_grouping(m,97,232)&&(_.slice_from("I"),_.cursor=e);else if(_.cursor=i,_.eq_s(1,"y"))_.ket=_.cursor,_.slice_from("Y"),_.cursor=e;else if(s(e))break}else if(s(e))break}(),_.cursor=r,i=_.limit,e=i,w()||((i=_.cursor)<3&&(i=3),w()||(e=_.cursor)),_.limit_backward=r,_.cursor=_.limit,function(){var r,e,i,n,o,t,s=_.limit-_.cursor;if(_.ket=_.cursor,r=_.find_among_b(c,5))switch(_.bra=_.cursor,r){case 1:b()&&_.slice_from("heid");break;case 2:k();break;case 3:b()&&_.out_grouping_b(f,97,232)&&_.slice_del()}if(_.cursor=_.limit-s,h(),_.cursor=_.limit-s,_.ket=_.cursor,_.eq_s_b(4,"heid")&&(_.bra=_.cursor,p()&&(e=_.limit-_.cursor,_.eq_s_b(1,"c")||(_.cursor=_.limit-e,_.slice_del(),_.ket=_.cursor,_.eq_s_b(2,"en")&&(_.bra=_.cursor,k())))),_.cursor=_.limit-s,_.ket=_.cursor,r=_.find_among_b(a,6))switch(_.bra=_.cursor,r){case 1:if(p()){if(_.slice_del(),i=_.limit-_.cursor,_.ket=_.cursor,_.eq_s_b(2,"ig")&&(_.bra=_.cursor,p()&&(n=_.limit-_.cursor,!_.eq_s_b(1,"e")))){_.cursor=_.limit-n,_.slice_del();break}_.cursor=_.limit-i,g()}break;case 2:p()&&(o=_.limit-_.cursor,_.eq_s_b(1,"e")||(_.cursor=_.limit-o,_.slice_del()));break;case 3:p()&&(_.slice_del(),h());break;case 4:p()&&_.slice_del();break;case 5:p()&&u&&_.slice_del()}_.cursor=_.limit-s,_.out_grouping_b(d,73,232)&&(t=_.limit-_.cursor,_.find_among_b(l,4)&&_.out_grouping_b(m,97,232)&&(_.cursor=_.limit-t,_.ket=_.cursor,_.cursor>_.limit_backward&&(_.cursor--,_.bra=_.cursor,_.slice_del())))}(),_.cursor=_.limit_backward,function(){for(var r;;)if(_.bra=_.cursor,r=_.find_among(n,3))switch(_.ket=_.cursor,r){case 1:_.slice_from("y");break;case 2:_.slice_from("i");break;case 3:if(_.cursor>=_.limit)return;_.cursor++}}(),!0}},function(r){return"function"==typeof r.update?r.update(function(r){return e.setCurrent(r),e.stem(),e.getCurrent()}):(e.setCurrent(r),e.stem(),e.getCurrent())}),r.Pipeline.registerFunction(r.nl.stemmer,"stemmer-nl"),r.nl.stopWordFilter=r.generateStopWordFilter(" aan al alles als altijd andere ben bij daar dan dat de der deze die dit doch doen door dus een eens en er ge geen geweest haar had heb hebben heeft hem het hier hij hoe hun iemand iets ik in is ja je kan kon kunnen maar me meer men met mij mijn moet na naar niet niets nog nu of om omdat onder ons ook op over reeds te tegen toch toen tot u uit uw van veel voor want waren was wat werd wezen wie wil worden wordt zal ze zelf zich zij zijn zo zonder zou".split(" ")),r.Pipeline.registerFunction(r.nl.stopWordFilter,"stopWordFilter-nl")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.no.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.no.js new file mode 100644 index 0000000000..3d156b9c19 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.no.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var r,n,i;e.no=function(){this.pipeline.reset(),this.pipeline.add(e.no.trimmer,e.no.stopWordFilter,e.no.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.no.stemmer))},e.no.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.no.trimmer=e.trimmerSupport.generateTrimmer(e.no.wordCharacters),e.Pipeline.registerFunction(e.no.trimmer,"trimmer-no"),e.no.stemmer=(r=e.stemmerSupport.Among,n=e.stemmerSupport.SnowballProgram,i=new function(){var o,s,a=[new r("a",-1,1),new r("e",-1,1),new r("ede",1,1),new r("ande",1,1),new r("ende",1,1),new r("ane",1,1),new r("ene",1,1),new r("hetene",6,1),new r("erte",1,3),new r("en",-1,1),new r("heten",9,1),new r("ar",-1,1),new r("er",-1,1),new r("heter",12,1),new r("s",-1,2),new r("as",14,1),new r("es",14,1),new r("edes",16,1),new r("endes",16,1),new r("enes",16,1),new r("hetenes",19,1),new r("ens",14,1),new r("hetens",21,1),new r("ers",14,1),new r("ets",14,1),new r("et",-1,1),new r("het",25,1),new r("ert",-1,3),new r("ast",-1,1)],m=[new r("dt",-1,-1),new r("vt",-1,-1)],l=[new r("leg",-1,1),new r("eleg",0,1),new r("ig",-1,1),new r("eig",2,1),new r("lig",2,1),new r("elig",4,1),new r("els",-1,1),new r("lov",-1,1),new r("elov",7,1),new r("slov",7,1),new r("hetslov",9,1)],u=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,48,0,128],d=[119,125,149,1],c=new n;this.setCurrent=function(e){c.setCurrent(e)},this.getCurrent=function(){return c.getCurrent()},this.stem=function(){var e,r,n,i,t=c.cursor;return function(){var e,r=c.cursor+3;if(s=c.limit,0<=r||r<=c.limit){for(o=r;;){if(e=c.cursor,c.in_grouping(u,97,248)){c.cursor=e;break}if(e>=c.limit)return;c.cursor=e+1}for(;!c.out_grouping(u,97,248);){if(c.cursor>=c.limit)return;c.cursor++}(s=c.cursor)=s&&(r=c.limit_backward,c.limit_backward=s,c.ket=c.cursor,e=c.find_among_b(a,29),c.limit_backward=r,e))switch(c.bra=c.cursor,e){case 1:c.slice_del();break;case 2:n=c.limit-c.cursor,c.in_grouping_b(d,98,122)?c.slice_del():(c.cursor=c.limit-n,c.eq_s_b(1,"k")&&c.out_grouping_b(u,97,248)&&c.slice_del());break;case 3:c.slice_from("er")}}(),c.cursor=c.limit,r=c.limit-c.cursor,c.cursor>=s&&(e=c.limit_backward,c.limit_backward=s,c.ket=c.cursor,c.find_among_b(m,2)?(c.bra=c.cursor,c.limit_backward=e,c.cursor=c.limit-r,c.cursor>c.limit_backward&&(c.cursor--,c.bra=c.cursor,c.slice_del())):c.limit_backward=e),c.cursor=c.limit,c.cursor>=s&&(i=c.limit_backward,c.limit_backward=s,c.ket=c.cursor,(n=c.find_among_b(l,11))?(c.bra=c.cursor,c.limit_backward=i,1==n&&c.slice_del()):c.limit_backward=i),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}),e.Pipeline.registerFunction(e.no.stemmer,"stemmer-no"),e.no.stopWordFilter=e.generateStopWordFilter("alle at av bare begge ble blei bli blir blitt både båe da de deg dei deim deira deires dem den denne der dere deres det dette di din disse ditt du dykk dykkar då eg ein eit eitt eller elles en enn er et ett etter for fordi fra før ha hadde han hans har hennar henne hennes her hjå ho hoe honom hoss hossen hun hva hvem hver hvilke hvilken hvis hvor hvordan hvorfor i ikke ikkje ikkje ingen ingi inkje inn inni ja jeg kan kom korleis korso kun kunne kva kvar kvarhelst kven kvi kvifor man mange me med medan meg meget mellom men mi min mine mitt mot mykje ned no noe noen noka noko nokon nokor nokre nå når og også om opp oss over på samme seg selv si si sia sidan siden sin sine sitt sjøl skal skulle slik so som som somme somt så sånn til um upp ut uten var vart varte ved vere verte vi vil ville vore vors vort vår være være vært å".split(" ")),e.Pipeline.registerFunction(e.no.stopWordFilter,"stopWordFilter-no")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.pt.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.pt.js new file mode 100644 index 0000000000..f50fc9fa6d --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.pt.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var j,C,r;e.pt=function(){this.pipeline.reset(),this.pipeline.add(e.pt.trimmer,e.pt.stopWordFilter,e.pt.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.pt.stemmer))},e.pt.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.pt.trimmer=e.trimmerSupport.generateTrimmer(e.pt.wordCharacters),e.Pipeline.registerFunction(e.pt.trimmer,"trimmer-pt"),e.pt.stemmer=(j=e.stemmerSupport.Among,C=e.stemmerSupport.SnowballProgram,r=new function(){var s,n,i,o=[new j("",-1,3),new j("ã",0,1),new j("õ",0,2)],a=[new j("",-1,3),new j("a~",0,1),new j("o~",0,2)],r=[new j("ic",-1,-1),new j("ad",-1,-1),new j("os",-1,-1),new j("iv",-1,1)],t=[new j("ante",-1,1),new j("avel",-1,1),new j("ível",-1,1)],u=[new j("ic",-1,1),new j("abil",-1,1),new j("iv",-1,1)],w=[new j("ica",-1,1),new j("ância",-1,1),new j("ência",-1,4),new j("ira",-1,9),new j("adora",-1,1),new j("osa",-1,1),new j("ista",-1,1),new j("iva",-1,8),new j("eza",-1,1),new j("logía",-1,2),new j("idade",-1,7),new j("ante",-1,1),new j("mente",-1,6),new j("amente",12,5),new j("ável",-1,1),new j("ível",-1,1),new j("ución",-1,3),new j("ico",-1,1),new j("ismo",-1,1),new j("oso",-1,1),new j("amento",-1,1),new j("imento",-1,1),new j("ivo",-1,8),new j("aça~o",-1,1),new j("ador",-1,1),new j("icas",-1,1),new j("ências",-1,4),new j("iras",-1,9),new j("adoras",-1,1),new j("osas",-1,1),new j("istas",-1,1),new j("ivas",-1,8),new j("ezas",-1,1),new j("logías",-1,2),new j("idades",-1,7),new j("uciones",-1,3),new j("adores",-1,1),new j("antes",-1,1),new j("aço~es",-1,1),new j("icos",-1,1),new j("ismos",-1,1),new j("osos",-1,1),new j("amentos",-1,1),new j("imentos",-1,1),new j("ivos",-1,8)],m=[new j("ada",-1,1),new j("ida",-1,1),new j("ia",-1,1),new j("aria",2,1),new j("eria",2,1),new j("iria",2,1),new j("ara",-1,1),new j("era",-1,1),new j("ira",-1,1),new j("ava",-1,1),new j("asse",-1,1),new j("esse",-1,1),new j("isse",-1,1),new j("aste",-1,1),new j("este",-1,1),new j("iste",-1,1),new j("ei",-1,1),new j("arei",16,1),new j("erei",16,1),new j("irei",16,1),new j("am",-1,1),new j("iam",20,1),new j("ariam",21,1),new j("eriam",21,1),new j("iriam",21,1),new j("aram",20,1),new j("eram",20,1),new j("iram",20,1),new j("avam",20,1),new j("em",-1,1),new j("arem",29,1),new j("erem",29,1),new j("irem",29,1),new j("assem",29,1),new j("essem",29,1),new j("issem",29,1),new j("ado",-1,1),new j("ido",-1,1),new j("ando",-1,1),new j("endo",-1,1),new j("indo",-1,1),new j("ara~o",-1,1),new j("era~o",-1,1),new j("ira~o",-1,1),new j("ar",-1,1),new j("er",-1,1),new j("ir",-1,1),new j("as",-1,1),new j("adas",47,1),new j("idas",47,1),new j("ias",47,1),new j("arias",50,1),new j("erias",50,1),new j("irias",50,1),new j("aras",47,1),new j("eras",47,1),new j("iras",47,1),new j("avas",47,1),new j("es",-1,1),new j("ardes",58,1),new j("erdes",58,1),new j("irdes",58,1),new j("ares",58,1),new j("eres",58,1),new j("ires",58,1),new j("asses",58,1),new j("esses",58,1),new j("isses",58,1),new j("astes",58,1),new j("estes",58,1),new j("istes",58,1),new j("is",-1,1),new j("ais",71,1),new j("eis",71,1),new j("areis",73,1),new j("ereis",73,1),new j("ireis",73,1),new j("áreis",73,1),new j("éreis",73,1),new j("íreis",73,1),new j("ásseis",73,1),new j("ésseis",73,1),new j("ísseis",73,1),new j("áveis",73,1),new j("íeis",73,1),new j("aríeis",84,1),new j("eríeis",84,1),new j("iríeis",84,1),new j("ados",-1,1),new j("idos",-1,1),new j("amos",-1,1),new j("áramos",90,1),new j("éramos",90,1),new j("íramos",90,1),new j("ávamos",90,1),new j("íamos",90,1),new j("aríamos",95,1),new j("eríamos",95,1),new j("iríamos",95,1),new j("emos",-1,1),new j("aremos",99,1),new j("eremos",99,1),new j("iremos",99,1),new j("ássemos",99,1),new j("êssemos",99,1),new j("íssemos",99,1),new j("imos",-1,1),new j("armos",-1,1),new j("ermos",-1,1),new j("irmos",-1,1),new j("ámos",-1,1),new j("arás",-1,1),new j("erás",-1,1),new j("irás",-1,1),new j("eu",-1,1),new j("iu",-1,1),new j("ou",-1,1),new j("ará",-1,1),new j("erá",-1,1),new j("irá",-1,1)],c=[new j("a",-1,1),new j("i",-1,1),new j("o",-1,1),new j("os",-1,1),new j("á",-1,1),new j("í",-1,1),new j("ó",-1,1)],l=[new j("e",-1,1),new j("ç",-1,2),new j("é",-1,1),new j("ê",-1,1)],f=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,3,19,12,2],d=new C;function v(){if(d.out_grouping(f,97,250)){for(;!d.in_grouping(f,97,250);){if(d.cursor>=d.limit)return!0;d.cursor++}return!1}return!0}function p(){var e,r,s=d.cursor;if(d.in_grouping(f,97,250))if(e=d.cursor,v()){if(d.cursor=e,function(){if(d.in_grouping(f,97,250))for(;!d.out_grouping(f,97,250);){if(d.cursor>=d.limit)return!1;d.cursor++}return i=d.cursor,!0}())return}else i=d.cursor;if(d.cursor=s,d.out_grouping(f,97,250)){if(r=d.cursor,v()){if(d.cursor=r,!d.in_grouping(f,97,250)||d.cursor>=d.limit)return;d.cursor++}i=d.cursor}}function _(){for(;!d.in_grouping(f,97,250);){if(d.cursor>=d.limit)return!1;d.cursor++}for(;!d.out_grouping(f,97,250);){if(d.cursor>=d.limit)return!1;d.cursor++}return!0}function h(){return i<=d.cursor}function b(){return s<=d.cursor}function g(){var e;if(d.ket=d.cursor,!(e=d.find_among_b(w,45)))return!1;switch(d.bra=d.cursor,e){case 1:if(!b())return!1;d.slice_del();break;case 2:if(!b())return!1;d.slice_from("log");break;case 3:if(!b())return!1;d.slice_from("u");break;case 4:if(!b())return!1;d.slice_from("ente");break;case 5:if(!(n<=d.cursor))return!1;d.slice_del(),d.ket=d.cursor,(e=d.find_among_b(r,4))&&(d.bra=d.cursor,b()&&(d.slice_del(),1==e&&(d.ket=d.cursor,d.eq_s_b(2,"at")&&(d.bra=d.cursor,b()&&d.slice_del()))));break;case 6:if(!b())return!1;d.slice_del(),d.ket=d.cursor,(e=d.find_among_b(t,3))&&(d.bra=d.cursor,1==e&&b()&&d.slice_del());break;case 7:if(!b())return!1;d.slice_del(),d.ket=d.cursor,(e=d.find_among_b(u,3))&&(d.bra=d.cursor,1==e&&b()&&d.slice_del());break;case 8:if(!b())return!1;d.slice_del(),d.ket=d.cursor,d.eq_s_b(2,"at")&&(d.bra=d.cursor,b()&&d.slice_del());break;case 9:if(!h()||!d.eq_s_b(1,"e"))return!1;d.slice_from("ir")}return!0}function k(e,r){if(d.eq_s_b(1,e)){d.bra=d.cursor;var s=d.limit-d.cursor;if(d.eq_s_b(1,r))return d.cursor=d.limit-s,h()&&d.slice_del(),!1}return!0}function q(){if(!g()&&(d.cursor=d.limit,!function(){var e,r;if(d.cursor>=i){if(r=d.limit_backward,d.limit_backward=i,d.ket=d.cursor,e=d.find_among_b(m,120))return d.bra=d.cursor,1==e&&d.slice_del(),d.limit_backward=r,!0;d.limit_backward=r}return!1}()))return d.cursor=d.limit,d.ket=d.cursor,void((e=d.find_among_b(c,7))&&(d.bra=d.cursor,1==e&&h()&&d.slice_del()));var e;d.cursor=d.limit,d.ket=d.cursor,d.eq_s_b(1,"i")&&(d.bra=d.cursor,d.eq_s_b(1,"c")&&(d.cursor=d.limit,h()&&d.slice_del()))}this.setCurrent=function(e){d.setCurrent(e)},this.getCurrent=function(){return d.getCurrent()},this.stem=function(){var e,r=d.cursor;return function(){for(var e;;){if(d.bra=d.cursor,e=d.find_among(o,3))switch(d.ket=d.cursor,e){case 1:d.slice_from("a~");continue;case 2:d.slice_from("o~");continue;case 3:if(d.cursor>=d.limit)break;d.cursor++;continue}break}}(),d.cursor=r,e=d.cursor,i=d.limit,s=n=i,p(),d.cursor=e,_()&&(n=d.cursor,_()&&(s=d.cursor)),d.limit_backward=r,d.cursor=d.limit,q(),d.cursor=d.limit,function(){var e;if(d.ket=d.cursor,e=d.find_among_b(l,4))switch(d.bra=d.cursor,e){case 1:h()&&(d.slice_del(),d.ket=d.cursor,d.limit,d.cursor,k("u","g")&&k("i","c"));break;case 2:d.slice_from("c")}}(),d.cursor=d.limit_backward,function(){for(var e;;){if(d.bra=d.cursor,e=d.find_among(a,3))switch(d.ket=d.cursor,e){case 1:d.slice_from("ã");continue;case 2:d.slice_from("õ");continue;case 3:if(d.cursor>=d.limit)break;d.cursor++;continue}break}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return r.setCurrent(e),r.stem(),r.getCurrent()}):(r.setCurrent(e),r.stem(),r.getCurrent())}),e.Pipeline.registerFunction(e.pt.stemmer,"stemmer-pt"),e.pt.stopWordFilter=e.generateStopWordFilter("a ao aos aquela aquelas aquele aqueles aquilo as até com como da das de dela delas dele deles depois do dos e ela elas ele eles em entre era eram essa essas esse esses esta estamos estas estava estavam este esteja estejam estejamos estes esteve estive estivemos estiver estivera estiveram estiverem estivermos estivesse estivessem estivéramos estivéssemos estou está estávamos estão eu foi fomos for fora foram forem formos fosse fossem fui fôramos fôssemos haja hajam hajamos havemos hei houve houvemos houver houvera houveram houverei houverem houveremos houveria houveriam houvermos houverá houverão houveríamos houvesse houvessem houvéramos houvéssemos há hão isso isto já lhe lhes mais mas me mesmo meu meus minha minhas muito na nas nem no nos nossa nossas nosso nossos num numa não nós o os ou para pela pelas pelo pelos por qual quando que quem se seja sejam sejamos sem serei seremos seria seriam será serão seríamos seu seus somos sou sua suas são só também te tem temos tenha tenham tenhamos tenho terei teremos teria teriam terá terão teríamos teu teus teve tinha tinham tive tivemos tiver tivera tiveram tiverem tivermos tivesse tivessem tivéramos tivéssemos tu tua tuas tém tínhamos um uma você vocês vos à às éramos".split(" ")),e.Pipeline.registerFunction(e.pt.stopWordFilter,"stopWordFilter-pt")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.ro.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.ro.js new file mode 100644 index 0000000000..b19627e1b3 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.ro.js @@ -0,0 +1 @@ +!function(e,i){"function"==typeof define&&define.amd?define(i):"object"==typeof exports?module.exports=i():i()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var h,z,i;e.ro=function(){this.pipeline.reset(),this.pipeline.add(e.ro.trimmer,e.ro.stopWordFilter,e.ro.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.ro.stemmer))},e.ro.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.ro.trimmer=e.trimmerSupport.generateTrimmer(e.ro.wordCharacters),e.Pipeline.registerFunction(e.ro.trimmer,"trimmer-ro"),e.ro.stemmer=(h=e.stemmerSupport.Among,z=e.stemmerSupport.SnowballProgram,i=new function(){var r,n,t,a,o=[new h("",-1,3),new h("I",0,1),new h("U",0,2)],s=[new h("ea",-1,3),new h("aţia",-1,7),new h("aua",-1,2),new h("iua",-1,4),new h("aţie",-1,7),new h("ele",-1,3),new h("ile",-1,5),new h("iile",6,4),new h("iei",-1,4),new h("atei",-1,6),new h("ii",-1,4),new h("ului",-1,1),new h("ul",-1,1),new h("elor",-1,3),new h("ilor",-1,4),new h("iilor",14,4)],c=[new h("icala",-1,4),new h("iciva",-1,4),new h("ativa",-1,5),new h("itiva",-1,6),new h("icale",-1,4),new h("aţiune",-1,5),new h("iţiune",-1,6),new h("atoare",-1,5),new h("itoare",-1,6),new h("ătoare",-1,5),new h("icitate",-1,4),new h("abilitate",-1,1),new h("ibilitate",-1,2),new h("ivitate",-1,3),new h("icive",-1,4),new h("ative",-1,5),new h("itive",-1,6),new h("icali",-1,4),new h("atori",-1,5),new h("icatori",18,4),new h("itori",-1,6),new h("ători",-1,5),new h("icitati",-1,4),new h("abilitati",-1,1),new h("ivitati",-1,3),new h("icivi",-1,4),new h("ativi",-1,5),new h("itivi",-1,6),new h("icităi",-1,4),new h("abilităi",-1,1),new h("ivităi",-1,3),new h("icităţi",-1,4),new h("abilităţi",-1,1),new h("ivităţi",-1,3),new h("ical",-1,4),new h("ator",-1,5),new h("icator",35,4),new h("itor",-1,6),new h("ător",-1,5),new h("iciv",-1,4),new h("ativ",-1,5),new h("itiv",-1,6),new h("icală",-1,4),new h("icivă",-1,4),new h("ativă",-1,5),new h("itivă",-1,6)],u=[new h("ica",-1,1),new h("abila",-1,1),new h("ibila",-1,1),new h("oasa",-1,1),new h("ata",-1,1),new h("ita",-1,1),new h("anta",-1,1),new h("ista",-1,3),new h("uta",-1,1),new h("iva",-1,1),new h("ic",-1,1),new h("ice",-1,1),new h("abile",-1,1),new h("ibile",-1,1),new h("isme",-1,3),new h("iune",-1,2),new h("oase",-1,1),new h("ate",-1,1),new h("itate",17,1),new h("ite",-1,1),new h("ante",-1,1),new h("iste",-1,3),new h("ute",-1,1),new h("ive",-1,1),new h("ici",-1,1),new h("abili",-1,1),new h("ibili",-1,1),new h("iuni",-1,2),new h("atori",-1,1),new h("osi",-1,1),new h("ati",-1,1),new h("itati",30,1),new h("iti",-1,1),new h("anti",-1,1),new h("isti",-1,3),new h("uti",-1,1),new h("işti",-1,3),new h("ivi",-1,1),new h("ităi",-1,1),new h("oşi",-1,1),new h("ităţi",-1,1),new h("abil",-1,1),new h("ibil",-1,1),new h("ism",-1,3),new h("ator",-1,1),new h("os",-1,1),new h("at",-1,1),new h("it",-1,1),new h("ant",-1,1),new h("ist",-1,3),new h("ut",-1,1),new h("iv",-1,1),new h("ică",-1,1),new h("abilă",-1,1),new h("ibilă",-1,1),new h("oasă",-1,1),new h("ată",-1,1),new h("ită",-1,1),new h("antă",-1,1),new h("istă",-1,3),new h("ută",-1,1),new h("ivă",-1,1)],w=[new h("ea",-1,1),new h("ia",-1,1),new h("esc",-1,1),new h("ăsc",-1,1),new h("ind",-1,1),new h("ând",-1,1),new h("are",-1,1),new h("ere",-1,1),new h("ire",-1,1),new h("âre",-1,1),new h("se",-1,2),new h("ase",10,1),new h("sese",10,2),new h("ise",10,1),new h("use",10,1),new h("âse",10,1),new h("eşte",-1,1),new h("ăşte",-1,1),new h("eze",-1,1),new h("ai",-1,1),new h("eai",19,1),new h("iai",19,1),new h("sei",-1,2),new h("eşti",-1,1),new h("ăşti",-1,1),new h("ui",-1,1),new h("ezi",-1,1),new h("âi",-1,1),new h("aşi",-1,1),new h("seşi",-1,2),new h("aseşi",29,1),new h("seseşi",29,2),new h("iseşi",29,1),new h("useşi",29,1),new h("âseşi",29,1),new h("işi",-1,1),new h("uşi",-1,1),new h("âşi",-1,1),new h("aţi",-1,2),new h("eaţi",38,1),new h("iaţi",38,1),new h("eţi",-1,2),new h("iţi",-1,2),new h("âţi",-1,2),new h("arăţi",-1,1),new h("serăţi",-1,2),new h("aserăţi",45,1),new h("seserăţi",45,2),new h("iserăţi",45,1),new h("userăţi",45,1),new h("âserăţi",45,1),new h("irăţi",-1,1),new h("urăţi",-1,1),new h("ârăţi",-1,1),new h("am",-1,1),new h("eam",54,1),new h("iam",54,1),new h("em",-1,2),new h("asem",57,1),new h("sesem",57,2),new h("isem",57,1),new h("usem",57,1),new h("âsem",57,1),new h("im",-1,2),new h("âm",-1,2),new h("ăm",-1,2),new h("arăm",65,1),new h("serăm",65,2),new h("aserăm",67,1),new h("seserăm",67,2),new h("iserăm",67,1),new h("userăm",67,1),new h("âserăm",67,1),new h("irăm",65,1),new h("urăm",65,1),new h("ârăm",65,1),new h("au",-1,1),new h("eau",76,1),new h("iau",76,1),new h("indu",-1,1),new h("ându",-1,1),new h("ez",-1,1),new h("ească",-1,1),new h("ară",-1,1),new h("seră",-1,2),new h("aseră",84,1),new h("seseră",84,2),new h("iseră",84,1),new h("useră",84,1),new h("âseră",84,1),new h("iră",-1,1),new h("ură",-1,1),new h("âră",-1,1),new h("ează",-1,1)],i=[new h("a",-1,1),new h("e",-1,1),new h("ie",1,1),new h("i",-1,1),new h("ă",-1,1)],m=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,2,32,0,0,4],l=new z;function f(e,i){l.eq_s(1,e)&&(l.ket=l.cursor,l.in_grouping(m,97,259)&&l.slice_from(i))}function p(){if(l.out_grouping(m,97,259)){for(;!l.in_grouping(m,97,259);){if(l.cursor>=l.limit)return!0;l.cursor++}return!1}return!0}function d(){var e,i,r=l.cursor;if(l.in_grouping(m,97,259)){if(e=l.cursor,!p())return void(a=l.cursor);if(l.cursor=e,!function(){if(l.in_grouping(m,97,259))for(;!l.out_grouping(m,97,259);){if(l.cursor>=l.limit)return!0;l.cursor++}return!1}())return void(a=l.cursor)}l.cursor=r,l.out_grouping(m,97,259)&&(i=l.cursor,p()&&(l.cursor=i,l.in_grouping(m,97,259)&&l.cursor=l.limit)return!1;l.cursor++}for(;!l.out_grouping(m,97,259);){if(l.cursor>=l.limit)return!1;l.cursor++}return!0}function v(){return t<=l.cursor}function _(){var e,i=l.limit-l.cursor;if(l.ket=l.cursor,(e=l.find_among_b(c,46))&&(l.bra=l.cursor,v())){switch(e){case 1:l.slice_from("abil");break;case 2:l.slice_from("ibil");break;case 3:l.slice_from("iv");break;case 4:l.slice_from("ic");break;case 5:l.slice_from("at");break;case 6:l.slice_from("it")}return r=!0,l.cursor=l.limit-i,!0}return!1}function g(){var e,i;for(r=!1;;)if(i=l.limit-l.cursor,!_()){l.cursor=l.limit-i;break}if(l.ket=l.cursor,(e=l.find_among_b(u,62))&&(l.bra=l.cursor,n<=l.cursor)){switch(e){case 1:l.slice_del();break;case 2:l.eq_s_b(1,"ţ")&&(l.bra=l.cursor,l.slice_from("t"));break;case 3:l.slice_from("ist")}r=!0}}function k(){var e;l.ket=l.cursor,(e=l.find_among_b(i,5))&&(l.bra=l.cursor,a<=l.cursor&&1==e&&l.slice_del())}this.setCurrent=function(e){l.setCurrent(e)},this.getCurrent=function(){return l.getCurrent()},this.stem=function(){var e,i=l.cursor;return function(){for(var e,i;e=l.cursor,l.in_grouping(m,97,259)&&(i=l.cursor,l.bra=i,f("u","U"),l.cursor=i,f("i","I")),l.cursor=e,!(l.cursor>=l.limit);)l.cursor++}(),l.cursor=i,e=l.cursor,a=l.limit,n=t=a,d(),l.cursor=e,b()&&(t=l.cursor,b()&&(n=l.cursor)),l.limit_backward=i,l.cursor=l.limit,function(){var e,i;if(l.ket=l.cursor,(e=l.find_among_b(s,16))&&(l.bra=l.cursor,v()))switch(e){case 1:l.slice_del();break;case 2:l.slice_from("a");break;case 3:l.slice_from("e");break;case 4:l.slice_from("i");break;case 5:i=l.limit-l.cursor,l.eq_s_b(2,"ab")||(l.cursor=l.limit-i,l.slice_from("i"));break;case 6:l.slice_from("at");break;case 7:l.slice_from("aţi")}}(),l.cursor=l.limit,g(),l.cursor=l.limit,r||(l.cursor=l.limit,function(){var e,i,r;if(l.cursor>=a){if(i=l.limit_backward,l.limit_backward=a,l.ket=l.cursor,e=l.find_among_b(w,94))switch(l.bra=l.cursor,e){case 1:if(r=l.limit-l.cursor,!l.out_grouping_b(m,97,259)&&(l.cursor=l.limit-r,!l.eq_s_b(1,"u")))break;case 2:l.slice_del()}l.limit_backward=i}}(),l.cursor=l.limit),k(),l.cursor=l.limit_backward,function(){for(var e;;){if(l.bra=l.cursor,e=l.find_among(o,3))switch(l.ket=l.cursor,e){case 1:l.slice_from("i");continue;case 2:l.slice_from("u");continue;case 3:if(l.cursor>=l.limit)break;l.cursor++;continue}break}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}),e.Pipeline.registerFunction(e.ro.stemmer,"stemmer-ro"),e.ro.stopWordFilter=e.generateStopWordFilter("acea aceasta această aceea acei aceia acel acela acele acelea acest acesta aceste acestea aceşti aceştia acolo acord acum ai aia aibă aici al ale alea altceva altcineva am ar are asemenea asta astea astăzi asupra au avea avem aveţi azi aş aşadar aţi bine bucur bună ca care caut ce cel ceva chiar cinci cine cineva contra cu cum cumva curând curînd când cât câte câtva câţi cînd cît cîte cîtva cîţi că căci cărei căror cărui către da dacă dar datorită dată dau de deci deja deoarece departe deşi din dinaintea dintr- dintre doi doilea două drept după dă ea ei el ele eram este eu eşti face fata fi fie fiecare fii fim fiu fiţi frumos fără graţie halbă iar ieri la le li lor lui lângă lîngă mai mea mei mele mereu meu mi mie mine mult multă mulţi mulţumesc mâine mîine mă ne nevoie nici nicăieri nimeni nimeri nimic nişte noastre noastră noi noroc nostru nouă noştri nu opt ori oricare orice oricine oricum oricând oricât oricînd oricît oriunde patra patru patrulea pe pentru peste pic poate pot prea prima primul prin puţin puţina puţină până pînă rog sa sale sau se spate spre sub sunt suntem sunteţi sută sînt sîntem sînteţi să săi său ta tale te timp tine toate toată tot totuşi toţi trei treia treilea tu tăi tău un una unde undeva unei uneia unele uneori unii unor unora unu unui unuia unul vi voastre voastră voi vostru vouă voştri vreme vreo vreun vă zece zero zi zice îi îl îmi împotriva în înainte înaintea încotro încât încît între întrucât întrucît îţi ăla ălea ăsta ăstea ăştia şapte şase şi ştiu ţi ţie".split(" ")),e.Pipeline.registerFunction(e.ro.stopWordFilter,"stopWordFilter-ro")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.ru.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.ru.js new file mode 100644 index 0000000000..ac99248044 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.ru.js @@ -0,0 +1 @@ +!function(e,n){"function"==typeof define&&define.amd?define(n):"object"==typeof exports?module.exports=n():n()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var h,g,n;e.ru=function(){this.pipeline.reset(),this.pipeline.add(e.ru.trimmer,e.ru.stopWordFilter,e.ru.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.ru.stemmer))},e.ru.wordCharacters="Ѐ-҄҇-ԯᴫᵸⷠ-ⷿꙀ-ꚟ︮︯",e.ru.trimmer=e.trimmerSupport.generateTrimmer(e.ru.wordCharacters),e.Pipeline.registerFunction(e.ru.trimmer,"trimmer-ru"),e.ru.stemmer=(h=e.stemmerSupport.Among,g=e.stemmerSupport.SnowballProgram,n=new function(){var n,e,r=[new h("в",-1,1),new h("ив",0,2),new h("ыв",0,2),new h("вши",-1,1),new h("ивши",3,2),new h("ывши",3,2),new h("вшись",-1,1),new h("ившись",6,2),new h("ывшись",6,2)],t=[new h("ее",-1,1),new h("ие",-1,1),new h("ое",-1,1),new h("ые",-1,1),new h("ими",-1,1),new h("ыми",-1,1),new h("ей",-1,1),new h("ий",-1,1),new h("ой",-1,1),new h("ый",-1,1),new h("ем",-1,1),new h("им",-1,1),new h("ом",-1,1),new h("ым",-1,1),new h("его",-1,1),new h("ого",-1,1),new h("ему",-1,1),new h("ому",-1,1),new h("их",-1,1),new h("ых",-1,1),new h("ею",-1,1),new h("ою",-1,1),new h("ую",-1,1),new h("юю",-1,1),new h("ая",-1,1),new h("яя",-1,1)],w=[new h("ем",-1,1),new h("нн",-1,1),new h("вш",-1,1),new h("ивш",2,2),new h("ывш",2,2),new h("щ",-1,1),new h("ющ",5,1),new h("ующ",6,2)],i=[new h("сь",-1,1),new h("ся",-1,1)],u=[new h("ла",-1,1),new h("ила",0,2),new h("ыла",0,2),new h("на",-1,1),new h("ена",3,2),new h("ете",-1,1),new h("ите",-1,2),new h("йте",-1,1),new h("ейте",7,2),new h("уйте",7,2),new h("ли",-1,1),new h("или",10,2),new h("ыли",10,2),new h("й",-1,1),new h("ей",13,2),new h("уй",13,2),new h("л",-1,1),new h("ил",16,2),new h("ыл",16,2),new h("ем",-1,1),new h("им",-1,2),new h("ым",-1,2),new h("н",-1,1),new h("ен",22,2),new h("ло",-1,1),new h("ило",24,2),new h("ыло",24,2),new h("но",-1,1),new h("ено",27,2),new h("нно",27,1),new h("ет",-1,1),new h("ует",30,2),new h("ит",-1,2),new h("ыт",-1,2),new h("ют",-1,1),new h("уют",34,2),new h("ят",-1,2),new h("ны",-1,1),new h("ены",37,2),new h("ть",-1,1),new h("ить",39,2),new h("ыть",39,2),new h("ешь",-1,1),new h("ишь",-1,2),new h("ю",-1,2),new h("ую",44,2)],s=[new h("а",-1,1),new h("ев",-1,1),new h("ов",-1,1),new h("е",-1,1),new h("ие",3,1),new h("ье",3,1),new h("и",-1,1),new h("еи",6,1),new h("ии",6,1),new h("ами",6,1),new h("ями",6,1),new h("иями",10,1),new h("й",-1,1),new h("ей",12,1),new h("ией",13,1),new h("ий",12,1),new h("ой",12,1),new h("ам",-1,1),new h("ем",-1,1),new h("ием",18,1),new h("ом",-1,1),new h("ям",-1,1),new h("иям",21,1),new h("о",-1,1),new h("у",-1,1),new h("ах",-1,1),new h("ях",-1,1),new h("иях",26,1),new h("ы",-1,1),new h("ь",-1,1),new h("ю",-1,1),new h("ию",30,1),new h("ью",30,1),new h("я",-1,1),new h("ия",33,1),new h("ья",33,1)],o=[new h("ост",-1,1),new h("ость",-1,1)],c=[new h("ейше",-1,1),new h("н",-1,2),new h("ейш",-1,1),new h("ь",-1,3)],m=[33,65,8,232],l=new g;function f(){for(;!l.in_grouping(m,1072,1103);){if(l.cursor>=l.limit)return!1;l.cursor++}return!0}function a(){for(;!l.out_grouping(m,1072,1103);){if(l.cursor>=l.limit)return!1;l.cursor++}return!0}function p(e,n){var r,t;if(l.ket=l.cursor,r=l.find_among_b(e,n)){switch(l.bra=l.cursor,r){case 1:if(t=l.limit-l.cursor,!l.eq_s_b(1,"а")&&(l.cursor=l.limit-t,!l.eq_s_b(1,"я")))return!1;case 2:l.slice_del()}return!0}return!1}function d(e,n){var r;return l.ket=l.cursor,!!(r=l.find_among_b(e,n))&&(l.bra=l.cursor,1==r&&l.slice_del(),!0)}function _(){return!!d(t,26)&&(p(w,8),!0)}function b(){var e;l.ket=l.cursor,(e=l.find_among_b(o,2))&&(l.bra=l.cursor,n<=l.cursor&&1==e&&l.slice_del())}this.setCurrent=function(e){l.setCurrent(e)},this.getCurrent=function(){return l.getCurrent()},this.stem=function(){return e=l.limit,n=e,f()&&(e=l.cursor,a()&&f()&&a()&&(n=l.cursor)),l.cursor=l.limit,!(l.cursor>3]&1<<(7&s))return this.cursor++,!0}return!1},in_grouping_b:function(r,t,i){if(this.cursor>this.limit_backward){var s=b.charCodeAt(this.cursor-1);if(s<=i&&t<=s&&r[(s-=t)>>3]&1<<(7&s))return this.cursor--,!0}return!1},out_grouping:function(r,t,i){if(this.cursor>3]&1<<(7&s)))return this.cursor++,!0}return!1},out_grouping_b:function(r,t,i){if(this.cursor>this.limit_backward){var s=b.charCodeAt(this.cursor-1);if(i>3]&1<<(7&s)))return this.cursor--,!0}return!1},eq_s:function(r,t){if(this.limit-this.cursor>1),a=0,f=u=(l=r[i]).s_size){if(this.cursor=e+l.s_size,!l.method)return l.result;var m=l.method();if(this.cursor=e+l.s_size,m)return l.result}if((i=l.substring_i)<0)return 0}},find_among_b:function(r,t){for(var i=0,s=t,e=this.cursor,n=this.limit_backward,u=0,o=0,h=!1;;){for(var c=i+(s-i>>1),a=0,f=u=(_=r[i]).s_size){if(this.cursor=e-_.s_size,!_.method)return _.result;var m=_.method();if(this.cursor=e-_.s_size,m)return _.result}if((i=_.substring_i)<0)return 0}},replace_s:function(r,t,i){var s=i.length-(t-r);return b=b.substring(0,r)+i+b.substring(t),this.limit+=s,this.cursor>=t?this.cursor+=s:this.cursor>r&&(this.cursor=r),s},slice_check:function(){if(this.bra<0||this.bra>this.ket||this.ket>this.limit||this.limit>b.length)throw"faulty slice operation"},slice_from:function(r){this.slice_check(),this.replace_s(this.bra,this.ket,r)},slice_del:function(){this.slice_from("")},insert:function(r,t,i){var s=this.replace_s(r,t,i);r<=this.bra&&(this.bra+=s),r<=this.ket&&(this.ket+=s)},slice_to:function(){return this.slice_check(),b.substring(this.bra,this.ket)},eq_v_b:function(r){return this.eq_s_b(r.length,r)}}}},r.trimmerSupport={generateTrimmer:function(r){var t=new RegExp("^[^"+r+"]+"),i=new RegExp("[^"+r+"]+$");return function(r){return"function"==typeof r.update?r.update(function(r){return r.replace(t,"").replace(i,"")}):r.replace(t,"").replace(i,"")}}}}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.sv.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.sv.js new file mode 100644 index 0000000000..6daf5f9d80 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.sv.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var r,l,n;e.sv=function(){this.pipeline.reset(),this.pipeline.add(e.sv.trimmer,e.sv.stopWordFilter,e.sv.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.sv.stemmer))},e.sv.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.sv.trimmer=e.trimmerSupport.generateTrimmer(e.sv.wordCharacters),e.Pipeline.registerFunction(e.sv.trimmer,"trimmer-sv"),e.sv.stemmer=(r=e.stemmerSupport.Among,l=e.stemmerSupport.SnowballProgram,n=new function(){var n,t,i=[new r("a",-1,1),new r("arna",0,1),new r("erna",0,1),new r("heterna",2,1),new r("orna",0,1),new r("ad",-1,1),new r("e",-1,1),new r("ade",6,1),new r("ande",6,1),new r("arne",6,1),new r("are",6,1),new r("aste",6,1),new r("en",-1,1),new r("anden",12,1),new r("aren",12,1),new r("heten",12,1),new r("ern",-1,1),new r("ar",-1,1),new r("er",-1,1),new r("heter",18,1),new r("or",-1,1),new r("s",-1,2),new r("as",21,1),new r("arnas",22,1),new r("ernas",22,1),new r("ornas",22,1),new r("es",21,1),new r("ades",26,1),new r("andes",26,1),new r("ens",21,1),new r("arens",29,1),new r("hetens",29,1),new r("erns",21,1),new r("at",-1,1),new r("andet",-1,1),new r("het",-1,1),new r("ast",-1,1)],s=[new r("dd",-1,-1),new r("gd",-1,-1),new r("nn",-1,-1),new r("dt",-1,-1),new r("gt",-1,-1),new r("kt",-1,-1),new r("tt",-1,-1)],a=[new r("ig",-1,1),new r("lig",0,1),new r("els",-1,1),new r("fullt",-1,3),new r("löst",-1,2)],o=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,24,0,32],u=[119,127,149],m=new l;this.setCurrent=function(e){m.setCurrent(e)},this.getCurrent=function(){return m.getCurrent()},this.stem=function(){var e,r=m.cursor;return function(){var e,r=m.cursor+3;if(t=m.limit,0<=r||r<=m.limit){for(n=r;;){if(e=m.cursor,m.in_grouping(o,97,246)){m.cursor=e;break}if(m.cursor=e,m.cursor>=m.limit)return;m.cursor++}for(;!m.out_grouping(o,97,246);){if(m.cursor>=m.limit)return;m.cursor++}(t=m.cursor)=t&&(m.limit_backward=t,m.cursor=m.limit,m.ket=m.cursor,e=m.find_among_b(i,37),m.limit_backward=r,e))switch(m.bra=m.cursor,e){case 1:m.slice_del();break;case 2:m.in_grouping_b(u,98,121)&&m.slice_del()}}(),m.cursor=m.limit,e=m.limit_backward,m.cursor>=t&&(m.limit_backward=t,m.cursor=m.limit,m.find_among_b(s,7)&&(m.cursor=m.limit,m.ket=m.cursor,m.cursor>m.limit_backward&&(m.bra=--m.cursor,m.slice_del())),m.limit_backward=e),m.cursor=m.limit,function(){var e,r;if(m.cursor>=t){if(r=m.limit_backward,m.limit_backward=t,m.cursor=m.limit,m.ket=m.cursor,e=m.find_among_b(a,5))switch(m.bra=m.cursor,e){case 1:m.slice_del();break;case 2:m.slice_from("lös");break;case 3:m.slice_from("full")}m.limit_backward=r}}(),!0}},function(e){return"function"==typeof e.update?e.update(function(e){return n.setCurrent(e),n.stem(),n.getCurrent()}):(n.setCurrent(e),n.stem(),n.getCurrent())}),e.Pipeline.registerFunction(e.sv.stemmer,"stemmer-sv"),e.sv.stopWordFilter=e.generateStopWordFilter("alla allt att av blev bli blir blivit de dem den denna deras dess dessa det detta dig din dina ditt du där då efter ej eller en er era ert ett från för ha hade han hans har henne hennes hon honom hur här i icke ingen inom inte jag ju kan kunde man med mellan men mig min mina mitt mot mycket ni nu när någon något några och om oss på samma sedan sig sin sina sitta själv skulle som så sådan sådana sådant till under upp ut utan vad var vara varför varit varje vars vart vem vi vid vilka vilkas vilken vilket vår våra vårt än är åt över".split(" ")),e.Pipeline.registerFunction(e.sv.stopWordFilter,"stopWordFilter-sv")}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.th.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.th.js new file mode 100644 index 0000000000..ee8ef373a0 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.th.js @@ -0,0 +1 @@ +!function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(t){if(void 0===t)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===t.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var i="2"==t.version[0];t.th=function(){this.pipeline.reset(),this.pipeline.add(t.th.trimmer),i?this.tokenizer=t.th.tokenizer:(t.tokenizer&&(t.tokenizer=t.th.tokenizer),this.tokenizerFn&&(this.tokenizerFn=t.th.tokenizer))},t.th.wordCharacters="[฀-๿]",t.th.trimmer=t.trimmerSupport.generateTrimmer(t.th.wordCharacters),t.Pipeline.registerFunction(t.th.trimmer,"trimmer-th");var n=t.wordcut;n.init(),t.th.tokenizer=function(e){if(!arguments.length||null==e||null==e)return[];if(Array.isArray(e))return e.map(function(e){return i?new t.Token(e):e});var r=e.toString().replace(/^\s+/,"");return n.cut(r).split("|")}}}); \ No newline at end of file diff --git a/docs/v0.3.0/_static/javascripts/lunr/lunr.tr.js b/docs/v0.3.0/_static/javascripts/lunr/lunr.tr.js new file mode 100644 index 0000000000..e8fb5a7df6 --- /dev/null +++ b/docs/v0.3.0/_static/javascripts/lunr/lunr.tr.js @@ -0,0 +1 @@ +!function(r,i){"function"==typeof define&&define.amd?define(i):"object"==typeof exports?module.exports=i():i()(r.lunr)}(this,function(){return function(r){if(void 0===r)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===r.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");var mr,dr,i;r.tr=function(){this.pipeline.reset(),this.pipeline.add(r.tr.trimmer,r.tr.stopWordFilter,r.tr.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(r.tr.stemmer))},r.tr.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",r.tr.trimmer=r.trimmerSupport.generateTrimmer(r.tr.wordCharacters),r.Pipeline.registerFunction(r.tr.trimmer,"trimmer-tr"),r.tr.stemmer=(mr=r.stemmerSupport.Among,dr=r.stemmerSupport.SnowballProgram,i=new function(){var t,r=[new mr("m",-1,-1),new mr("n",-1,-1),new mr("miz",-1,-1),new mr("niz",-1,-1),new mr("muz",-1,-1),new mr("nuz",-1,-1),new mr("müz",-1,-1),new mr("nüz",-1,-1),new mr("mız",-1,-1),new mr("nız",-1,-1)],i=[new mr("leri",-1,-1),new mr("ları",-1,-1)],e=[new mr("ni",-1,-1),new mr("nu",-1,-1),new mr("nü",-1,-1),new mr("nı",-1,-1)],n=[new mr("in",-1,-1),new mr("un",-1,-1),new mr("ün",-1,-1),new mr("ın",-1,-1)],u=[new mr("a",-1,-1),new mr("e",-1,-1)],o=[new mr("na",-1,-1),new mr("ne",-1,-1)],s=[new mr("da",-1,-1),new mr("ta",-1,-1),new mr("de",-1,-1),new mr("te",-1,-1)],c=[new mr("nda",-1,-1),new mr("nde",-1,-1)],l=[new mr("dan",-1,-1),new mr("tan",-1,-1),new mr("den",-1,-1),new mr("ten",-1,-1)],a=[new mr("ndan",-1,-1),new mr("nden",-1,-1)],m=[new mr("la",-1,-1),new mr("le",-1,-1)],d=[new mr("ca",-1,-1),new mr("ce",-1,-1)],f=[new mr("im",-1,-1),new mr("um",-1,-1),new mr("üm",-1,-1),new mr("ım",-1,-1)],b=[new mr("sin",-1,-1),new mr("sun",-1,-1),new mr("sün",-1,-1),new mr("sın",-1,-1)],w=[new mr("iz",-1,-1),new mr("uz",-1,-1),new mr("üz",-1,-1),new mr("ız",-1,-1)],_=[new mr("siniz",-1,-1),new mr("sunuz",-1,-1),new mr("sünüz",-1,-1),new mr("sınız",-1,-1)],k=[new mr("lar",-1,-1),new mr("ler",-1,-1)],p=[new mr("niz",-1,-1),new mr("nuz",-1,-1),new mr("nüz",-1,-1),new mr("nız",-1,-1)],g=[new mr("dir",-1,-1),new mr("tir",-1,-1),new mr("dur",-1,-1),new mr("tur",-1,-1),new mr("dür",-1,-1),new mr("tür",-1,-1),new mr("dır",-1,-1),new mr("tır",-1,-1)],y=[new mr("casına",-1,-1),new mr("cesine",-1,-1)],z=[new mr("di",-1,-1),new mr("ti",-1,-1),new mr("dik",-1,-1),new mr("tik",-1,-1),new mr("duk",-1,-1),new mr("tuk",-1,-1),new mr("dük",-1,-1),new mr("tük",-1,-1),new mr("dık",-1,-1),new mr("tık",-1,-1),new mr("dim",-1,-1),new mr("tim",-1,-1),new mr("dum",-1,-1),new mr("tum",-1,-1),new mr("düm",-1,-1),new mr("tüm",-1,-1),new mr("dım",-1,-1),new mr("tım",-1,-1),new mr("din",-1,-1),new mr("tin",-1,-1),new mr("dun",-1,-1),new mr("tun",-1,-1),new mr("dün",-1,-1),new mr("tün",-1,-1),new mr("dın",-1,-1),new mr("tın",-1,-1),new mr("du",-1,-1),new mr("tu",-1,-1),new mr("dü",-1,-1),new mr("tü",-1,-1),new mr("dı",-1,-1),new mr("tı",-1,-1)],h=[new mr("sa",-1,-1),new mr("se",-1,-1),new mr("sak",-1,-1),new mr("sek",-1,-1),new mr("sam",-1,-1),new mr("sem",-1,-1),new mr("san",-1,-1),new mr("sen",-1,-1)],v=[new mr("miş",-1,-1),new mr("muş",-1,-1),new mr("müş",-1,-1),new mr("mış",-1,-1)],q=[new mr("b",-1,1),new mr("c",-1,2),new mr("d",-1,3),new mr("ğ",-1,4)],C=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,8,0,0,0,0,0,0,1],P=[1,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,1],F=[65],S=[65],W=[["a",[1,64,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],97,305],["e",[17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,130],101,252],["ı",[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],97,305],["i",[17],101,105],["o",F,111,117],["ö",S,246,252],["u",F,111,117]],L=new dr;function x(r,i,e){for(;;){var n=L.limit-L.cursor;if(L.in_grouping_b(r,i,e)){L.cursor=L.limit-n;break}if(L.cursor=L.limit-n,L.cursor<=L.limit_backward)return!1;L.cursor--}return!0}function A(){var r,i;r=L.limit-L.cursor,x(C,97,305);for(var e=0;eL.limit_backward&&(L.cursor--,e=L.limit-L.cursor,i()))?(L.cursor=L.limit-e,!0):(L.cursor=L.limit-n,r()?(L.cursor=L.limit-n,!1):(L.cursor=L.limit-n,!(L.cursor<=L.limit_backward)&&(L.cursor--,!!i()&&(L.cursor=L.limit-n,!0))))}function j(r){return E(r,function(){return L.in_grouping_b(C,97,305)})}function T(){return j(function(){return L.eq_s_b(1,"n")})}function Z(){return j(function(){return L.eq_s_b(1,"y")})}function B(){return L.find_among_b(r,10)&&E(function(){return L.in_grouping_b(P,105,305)},function(){return L.out_grouping_b(C,97,305)})}function D(){return A()&&L.in_grouping_b(P,105,305)&&j(function(){return L.eq_s_b(1,"s")})}function G(){return L.find_among_b(i,2)}function H(){return A()&&L.find_among_b(n,4)&&T()}function I(){return A()&&L.find_among_b(s,4)}function J(){return A()&&L.find_among_b(c,2)}function K(){return A()&&L.find_among_b(f,4)&&Z()}function M(){return A()&&L.find_among_b(b,4)}function N(){return A()&&L.find_among_b(w,4)&&Z()}function O(){return L.find_among_b(_,4)}function Q(){return A()&&L.find_among_b(k,2)}function R(){return A()&&L.find_among_b(g,8)}function U(){return A()&&L.find_among_b(z,32)&&Z()}function V(){return L.find_among_b(h,8)&&Z()}function X(){return A()&&L.find_among_b(v,4)&&Z()}function Y(){var r=L.limit-L.cursor;return!(X()||(L.cursor=L.limit-r,U()||(L.cursor=L.limit-r,V()||(L.cursor=L.limit-r,L.eq_s_b(3,"ken")&&Z()))))}function $(){if(L.find_among_b(y,2)){var r=L.limit-L.cursor;if(O()||(L.cursor=L.limit-r,Q()||(L.cursor=L.limit-r,K()||(L.cursor=L.limit-r,M()||(L.cursor=L.limit-r,N()||(L.cursor=L.limit-r))))),X())return!1}return!0}function rr(){if(!A()||!L.find_among_b(p,4))return!0;var r=L.limit-L.cursor;return!U()&&(L.cursor=L.limit-r,!V())}function ir(){var r,i,e,n=L.limit-L.cursor;if(L.ket=L.cursor,t=!0,Y()&&(L.cursor=L.limit-n,$()&&(L.cursor=L.limit-n,function(){if(Q()){L.bra=L.cursor,L.slice_del();var r=L.limit-L.cursor;return L.ket=L.cursor,R()||(L.cursor=L.limit-r,U()||(L.cursor=L.limit-r,V()||(L.cursor=L.limit-r,X()||(L.cursor=L.limit-r)))),t=!1}return!0}()&&(L.cursor=L.limit-n,rr()&&(L.cursor=L.limit-n,e=L.limit-L.cursor,!(O()||(L.cursor=L.limit-e,N()||(L.cursor=L.limit-e,M()||(L.cursor=L.limit-e,K()))))||(L.bra=L.cursor,L.slice_del(),i=L.limit-L.cursor,L.ket=L.cursor,X()||(L.cursor=L.limit-i),0)))))){if(L.cursor=L.limit-n,!R())return;L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,r=L.limit-L.cursor,O()||(L.cursor=L.limit-r,Q()||(L.cursor=L.limit-r,K()||(L.cursor=L.limit-r,M()||(L.cursor=L.limit-r,N()||(L.cursor=L.limit-r))))),X()||(L.cursor=L.limit-r)}L.bra=L.cursor,L.slice_del()}function er(){var r,i,e,n;if(L.ket=L.cursor,L.eq_s_b(2,"ki")){if(r=L.limit-L.cursor,I())return L.bra=L.cursor,L.slice_del(),i=L.limit-L.cursor,L.ket=L.cursor,Q()?(L.bra=L.cursor,L.slice_del(),er()):(L.cursor=L.limit-i,B()&&(L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er()))),!0;if(L.cursor=L.limit-r,H()){if(L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,e=L.limit-L.cursor,G())L.bra=L.cursor,L.slice_del();else{if(L.cursor=L.limit-e,L.ket=L.cursor,!B()&&(L.cursor=L.limit-e,!D()&&(L.cursor=L.limit-e,!er())))return!0;L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er())}return!0}if(L.cursor=L.limit-r,J()){if(n=L.limit-L.cursor,G())L.bra=L.cursor,L.slice_del();else if(L.cursor=L.limit-n,D())L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er());else if(L.cursor=L.limit-n,!er())return!1;return!0}}return!1}function nr(r){if(L.ket=L.cursor,!J()&&(L.cursor=L.limit-r,!A()||!L.find_among_b(o,2)))return!1;var i=L.limit-L.cursor;if(G())L.bra=L.cursor,L.slice_del();else if(L.cursor=L.limit-i,D())L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er());else if(L.cursor=L.limit-i,!er())return!1;return!0}function tr(r){if(L.ket=L.cursor,!(A()&&L.find_among_b(a,2)||(L.cursor=L.limit-r,A()&&L.find_among_b(e,4))))return!1;var i=L.limit-L.cursor;return!(!D()&&(L.cursor=L.limit-i,!G()))&&(L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er()),!0)}function ur(){var r,i=L.limit-L.cursor;return L.ket=L.cursor,!!(H()||(L.cursor=L.limit-i,A()&&L.find_among_b(m,2)&&Z()))&&(L.bra=L.cursor,L.slice_del(),r=L.limit-L.cursor,L.ket=L.cursor,!(!Q()||(L.bra=L.cursor,L.slice_del(),!er()))||(L.cursor=L.limit-r,L.ket=L.cursor,(B()||(L.cursor=L.limit-r,D()||(L.cursor=L.limit-r,er())))&&(L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er())),!0))}function or(){var r,i,e=L.limit-L.cursor;if(L.ket=L.cursor,!(I()||(L.cursor=L.limit-e,A()&&L.in_grouping_b(P,105,305)&&Z()||(L.cursor=L.limit-e,A()&&L.find_among_b(u,2)&&Z()))))return!1;if(L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,r=L.limit-L.cursor,B())L.bra=L.cursor,L.slice_del(),i=L.limit-L.cursor,L.ket=L.cursor,Q()||(L.cursor=L.limit-i);else if(L.cursor=L.limit-r,!Q())return!0;return L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,er(),!0}function sr(){var r,i,e=L.limit-L.cursor;if(L.ket=L.cursor,Q())return L.bra=L.cursor,L.slice_del(),void er();if(L.cursor=L.limit-e,L.ket=L.cursor,A()&&L.find_among_b(d,2)&&T())if(L.bra=L.cursor,L.slice_del(),r=L.limit-L.cursor,L.ket=L.cursor,G())L.bra=L.cursor,L.slice_del();else{if(L.cursor=L.limit-r,L.ket=L.cursor,!B()&&(L.cursor=L.limit-r,!D())){if(L.cursor=L.limit-r,L.ket=L.cursor,!Q())return;if(L.bra=L.cursor,L.slice_del(),!er())return}L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er())}else if(L.cursor=L.limit-e,!nr(e)&&(L.cursor=L.limit-e,!tr(e))){if(L.cursor=L.limit-e,L.ket=L.cursor,A()&&L.find_among_b(l,4))return L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,i=L.limit-L.cursor,void(B()?(L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er())):(L.cursor=L.limit-i,Q()?(L.bra=L.cursor,L.slice_del()):L.cursor=L.limit-i,er()));if(L.cursor=L.limit-e,!ur()){if(L.cursor=L.limit-e,G())return L.bra=L.cursor,void L.slice_del();L.cursor=L.limit-e,er()||(L.cursor=L.limit-e,or()||(L.cursor=L.limit-e,L.ket=L.cursor,(B()||(L.cursor=L.limit-e,D()))&&(L.bra=L.cursor,L.slice_del(),L.ket=L.cursor,Q()&&(L.bra=L.cursor,L.slice_del(),er()))))}}}function cr(r,i,e){if(L.cursor=L.limit-r,function(){for(;;){var r=L.limit-L.cursor;if(L.in_grouping_b(C,97,305)){L.cursor=L.limit-r;break}if(L.cursor=L.limit-r,L.cursor<=L.limit_backward)return!1;L.cursor--}return!0}()){var n=L.limit-L.cursor;if(!L.eq_s_b(1,i)&&(L.cursor=L.limit-n,!L.eq_s_b(1,e)))return!0;L.cursor=L.limit-r;var t=L.cursor;return L.insert(L.cursor,L.cursor,e),L.cursor=t,!1}return!0}function lr(r,i,e){for(;!L.eq_s(i,e);){if(L.cursor>=L.limit)return!0;L.cursor++}return i!=L.limit||(L.cursor=r,!1)}function ar(){var r,i,e=L.cursor;return!(!lr(r=L.cursor,2,"ad")||!lr(L.cursor=r,5,"soyad"))&&(L.limit_backward=e,L.cursor=L.limit,i=L.limit-L.cursor,(L.eq_s_b(1,"d")||(L.cursor=L.limit-i,L.eq_s_b(1,"g")))&&cr(i,"a","ı")&&cr(i,"e","i")&&cr(i,"o","u")&&cr(i,"ö","ü"),L.cursor=L.limit,function(){var r;if(L.ket=L.cursor,r=L.find_among_b(q,4))switch(L.bra=L.cursor,r){case 1:L.slice_from("p");break;case 2:L.slice_from("ç");break;case 3:L.slice_from("t");break;case 4:L.slice_from("k")}}(),!0)}this.setCurrent=function(r){L.setCurrent(r)},this.getCurrent=function(){return L.getCurrent()},this.stem=function(){return!!(function(){for(var r,i=L.cursor,e=2;;){for(r=L.cursor;!L.in_grouping(C,97,305);){if(L.cursor>=L.limit)return L.cursor=r,!(0e&&(this._events[n].warned=!0,console.error("(node) warning: possible EventEmitter memory leak detected. %d listeners added. Use emitter.setMaxListeners() to increase limit.",this._events[n].length),"function"==typeof console.trace&&console.trace()));return this},r.prototype.once=function(n,t){if(!a(t))throw TypeError("listener must be a function");var e=!1;function r(){this.removeListener(n,r),e||(e=!0,t.apply(this,arguments))}return r.listener=t,this.on(n,r),this},r.prototype.removeListener=function(n,t){var e,r,i,o;if(!a(t))throw TypeError("listener must be a function");if(!this._events||!this._events[n])return this;if(i=(e=this._events[n]).length,r=-1,e===t||a(e.listener)&&e.listener===t)delete this._events[n],this._events.removeListener&&this.emit("removeListener",n,t);else if(c(e)){for(o=i;0this.maxLength)return i();if(!this.stat&&p(this.cache,o)){var t=this.cache[o];if(Array.isArray(t)&&(t="DIR"),!n||"DIR"===t)return i(null,t);if(n&&"FILE"===t)return i()}var e=this.statCache[o];if(void 0!==e){if(!1===e)return i(null,e);var s=e.isDirectory()?"DIR":"FILE";return n&&"FILE"===s?i():i(null,s,e)}var a=this,c=d("stat\0"+o,function(n,e){{if(e&&e.isSymbolicLink())return u.stat(o,function(n,t){n?a._stat2(r,o,null,e,i):a._stat2(r,o,n,t,i)});a._stat2(r,o,n,e,i)}});c&&u.lstat(o,c)},b.prototype._stat2=function(n,t,e,r,i){if(e)return this.statCache[t]=!1,i();var o="/"===n.slice(-1);if(this.statCache[t]=r,"/"===t.slice(-1)&&!r.isDirectory())return i(null,!1,r);var s=r.isDirectory()?"DIR":"FILE";return this.cache[t]=this.cache[t]||s,o&&"DIR"!==s?i():i(null,s,r)}}).call(this,_("_process"))},{"./common.js":15,"./sync.js":17,_process:24,assert:9,events:14,fs:12,inflight:18,inherits:19,minimatch:20,once:21,path:22,"path-is-absolute":23,util:28}],17:[function(e,r,n){(function(i){(r.exports=n).GlobSync=h;var s=e("fs"),c=e("minimatch"),g=(c.Minimatch,e("./glob.js").Glob,e("util"),e("path")),u=e("assert"),l=e("path-is-absolute"),t=e("./common.js"),o=(t.alphasort,t.alphasorti,t.setopts),a=t.ownProp,f=t.childrenIgnored;function n(n,t){if("function"==typeof t||3===arguments.length)throw new TypeError("callback provided to sync glob\nSee: https://github.com/isaacs/node-glob/issues/167");return new h(n,t).found}function h(n,t){if(!n)throw new Error("must provide pattern");if("function"==typeof t||3===arguments.length)throw new TypeError("callback provided to sync glob\nSee: https://github.com/isaacs/node-glob/issues/167");if(!(this instanceof h))return new h(n,t);if(o(this,n,t),this.noprocess)return this;var e=this.minimatch.set.length;this.matches=new Array(e);for(var r=0;rthis.maxLength)return!1;if(!this.stat&&a(this.cache,t)){var r=this.cache[t];if(Array.isArray(r)&&(r="DIR"),!e||"DIR"===r)return r;if(e&&"FILE"===r)return!1}var i=this.statCache[t];if(!i){var o;try{o=s.lstatSync(t)}catch(n){return!1}if(o.isSymbolicLink())try{i=s.statSync(t)}catch(n){i=o}else i=o}r=(this.statCache[t]=i).isDirectory()?"DIR":"FILE";return this.cache[t]=this.cache[t]||r,(!e||"DIR"===r)&&r},h.prototype._mark=function(n){return t.mark(this,n)},h.prototype._makeAbs=function(n){return t.makeAbs(this,n)}}).call(this,e("_process"))},{"./common.js":15,"./glob.js":16,_process:24,assert:9,fs:12,minimatch:20,path:22,"path-is-absolute":23,util:28}],18:[function(t,r,n){(function(s){var n=t("wrappy"),a=Object.create(null),e=t("once");r.exports=n(function(n,t){return a[n]?(a[n].push(t),null):(a[n]=[t],o=n,e(function n(){var t=a[o],e=t.length,r=function(n){for(var t=n.length,e=[],r=0;re?(t.splice(0,e),s.nextTick(function(){n.apply(null,r)})):delete a[o]}}));var o})}).call(this,t("_process"))},{_process:24,once:21,wrappy:29}],19:[function(n,t,e){"function"==typeof Object.create?t.exports=function(n,t){n.super_=t,n.prototype=Object.create(t.prototype,{constructor:{value:n,enumerable:!1,writable:!0,configurable:!0}})}:t.exports=function(n,t){n.super_=t;var e=function(){};e.prototype=t.prototype,n.prototype=new e,n.prototype.constructor=n}},{}],20:[function(n,t,e){(t.exports=s).Minimatch=i;var u={sep:"/"};try{u=n("path")}catch(n){}var M=s.GLOBSTAR=i.GLOBSTAR={},r=n("brace-expansion"),C={"!":{open:"(?:(?!(?:",close:"))[^/]*?)"},"?":{open:"(?:",close:")?"},"+":{open:"(?:",close:")+"},"*":{open:"(?:",close:")*"},"@":{open:"(?:",close:")"}},P="[^/]",z=P+"*?",B="().*{}+?[]^$\\!".split("").reduce(function(n,t){return n[t]=!0,n},{});var l=/\/+/;function o(t,e){t=t||{},e=e||{};var r={};return Object.keys(e).forEach(function(n){r[n]=e[n]}),Object.keys(t).forEach(function(n){r[n]=t[n]}),r}function s(n,t,e){if("string"!=typeof t)throw new TypeError("glob pattern string required");return e||(e={}),!(!e.nocomment&&"#"===t.charAt(0))&&(""===t.trim()?""===n:new i(t,e).match(n))}function i(n,t){if(!(this instanceof i))return new i(n,t);if("string"!=typeof n)throw new TypeError("glob pattern string required");t||(t={}),n=n.trim(),"/"!==u.sep&&(n=n.split(u.sep).join("/")),this.options=t,this.set=[],this.pattern=n,this.regexp=null,this.negate=!1,this.comment=!1,this.empty=!1,this.make()}function a(n,t){if(t||(t=this instanceof i?this.options:{}),void 0===(n=void 0===n?this.pattern:n))throw new TypeError("undefined pattern");return t.nobrace||!n.match(/\{.*\}/)?[n]:r(n)}s.filter=function(r,i){return i=i||{},function(n,t,e){return s(n,r,i)}},s.defaults=function(r){if(!r||!Object.keys(r).length)return s;var i=s,n=function(n,t,e){return i.minimatch(n,t,o(r,e))};return n.Minimatch=function(n,t){return new i.Minimatch(n,o(r,t))},n},i.defaults=function(n){return n&&Object.keys(n).length?s.defaults(n).Minimatch:i},i.prototype.debug=function(){},i.prototype.make=function(){if(this._made)return;var n=this.pattern,t=this.options;if(!t.nocomment&&"#"===n.charAt(0))return void(this.comment=!0);if(!n)return void(this.empty=!0);this.parseNegate();var e=this.globSet=this.braceExpand();t.debug&&(this.debug=console.error);this.debug(this.pattern,e),e=this.globParts=e.map(function(n){return n.split(l)}),this.debug(this.pattern,e),e=e.map(function(n,t,e){return n.map(this.parse,this)},this),this.debug(this.pattern,e),e=e.filter(function(n){return-1===n.indexOf(!1)}),this.debug(this.pattern,e),this.set=e},i.prototype.parseNegate=function(){var n=this.pattern,t=!1,e=this.options,r=0;if(e.nonegate)return;for(var i=0,o=n.length;i>> no match, partial?",n,f,t,h),f!==s))}if("string"==typeof u?(c=r.nocase?l.toLowerCase()===u.toLowerCase():l===u,this.debug("string match",u,l,c)):(c=l.match(u),this.debug("pattern match",u,l,c)),!c)return!1}if(i===s&&o===a)return!0;if(i===s)return e;if(o===a)return i===s-1&&""===n[i];throw new Error("wtf?")}},{"brace-expansion":11,path:22}],21:[function(n,t,e){var r=n("wrappy");function i(n){var t=function(){return t.called?t.value:(t.called=!0,t.value=n.apply(this,arguments))};return t.called=!1,t}function o(n){var t=function(){if(t.called)throw new Error(t.onceError);return t.called=!0,t.value=n.apply(this,arguments)},e=n.name||"Function wrapped with `once`";return t.onceError=e+" shouldn't be called more than once",t.called=!1,t}t.exports=r(i),t.exports.strict=r(o),i.proto=i(function(){Object.defineProperty(Function.prototype,"once",{value:function(){return i(this)},configurable:!0}),Object.defineProperty(Function.prototype,"onceStrict",{value:function(){return o(this)},configurable:!0})})},{wrappy:29}],22:[function(n,t,u){(function(i){function o(n,t){for(var e=0,r=n.length-1;0<=r;r--){var i=n[r];"."===i?n.splice(r,1):".."===i?(n.splice(r,1),e++):e&&(n.splice(r,1),e--)}if(t)for(;e--;e)n.unshift("..");return n}var t=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/,s=function(n){return t.exec(n).slice(1)};function a(n,t){if(n.filter)return n.filter(t);for(var e=[],r=0;r":">",'"':""","'":"'","`":"`"},D=d.invert(N),F=function(t){var e=function(n){return t[n]},n="(?:"+d.keys(t).join("|")+")",r=RegExp(n),i=RegExp(n,"g");return function(n){return n=null==n?"":""+n,r.test(n)?n.replace(i,e):n}};d.escape=F(N),d.unescape=F(D),d.result=function(n,t,e){var r=null==n?void 0:n[t];return void 0===r&&(r=e),d.isFunction(r)?r.call(n):r};var M=0;d.uniqueId=function(n){var t=++M+"";return n?n+t:t},d.templateSettings={evaluate:/<%([\s\S]+?)%>/g,interpolate:/<%=([\s\S]+?)%>/g,escape:/<%-([\s\S]+?)%>/g};var C=/(.)^/,P={"'":"'","\\":"\\","\r":"r","\n":"n","\u2028":"u2028","\u2029":"u2029"},z=/\\|'|\r|\n|\u2028|\u2029/g,B=function(n){return"\\"+P[n]};d.template=function(o,n,t){!n&&t&&(n=t),n=d.defaults({},n,d.templateSettings);var e=RegExp([(n.escape||C).source,(n.interpolate||C).source,(n.evaluate||C).source].join("|")+"|$","g"),s=0,a="__p+='";o.replace(e,function(n,t,e,r,i){return a+=o.slice(s,i).replace(z,B),s=i+n.length,t?a+="'+\n((__t=("+t+"))==null?'':_.escape(__t))+\n'":e?a+="'+\n((__t=("+e+"))==null?'':__t)+\n'":r&&(a+="';\n"+r+"\n__p+='"),n}),a+="';\n",n.variable||(a="with(obj||{}){\n"+a+"}\n"),a="var __t,__p='',__j=Array.prototype.join,print=function(){__p+=__j.call(arguments,'');};\n"+a+"return __p;\n";try{var r=new Function(n.variable||"obj","_",a)}catch(n){throw n.source=a,n}var i=function(n){return r.call(this,n,d)},c=n.variable||"obj";return i.source="function("+c+"){\n"+a+"}",i},d.chain=function(n){var t=d(n);return t._chain=!0,t};var U=function(n,t){return n._chain?d(t).chain():t};d.mixin=function(e){d.each(d.functions(e),function(n){var t=d[n]=e[n];d.prototype[n]=function(){var n=[this._wrapped];return i.apply(n,arguments),U(this,t.apply(d,n))}})},d.mixin(d),d.each(["pop","push","reverse","shift","sort","splice","unshift"],function(t){var e=r[t];d.prototype[t]=function(){var n=this._wrapped;return e.apply(n,arguments),"shift"!==t&&"splice"!==t||0!==n.length||delete n[0],U(this,n)}}),d.each(["concat","join","slice"],function(n){var t=r[n];d.prototype[n]=function(){return U(this,t.apply(this._wrapped,arguments))}}),d.prototype.value=function(){return this._wrapped},d.prototype.valueOf=d.prototype.toJSON=d.prototype.value,d.prototype.toString=function(){return""+this._wrapped}}).call(this)},{}],26:[function(n,t,e){arguments[4][19][0].apply(e,arguments)},{dup:19}],27:[function(n,t,e){t.exports=function(n){return n&&"object"==typeof n&&"function"==typeof n.copy&&"function"==typeof n.fill&&"function"==typeof n.readUInt8}},{}],28:[function(h,n,k){(function(r,i){var a=/%[sdj%]/g;k.format=function(n){if(!_(n)){for(var t=[],e=0;e elements + // (i.e., `typeof document.createElement( "object" ) === "function"`). + // We don't want to classify *any* DOM node as a function. + return typeof obj === "function" && typeof obj.nodeType !== "number"; + }; + + +var isWindow = function isWindow( obj ) { + return obj != null && obj === obj.window; + }; + + +var document = window.document; + + + + var preservedScriptAttributes = { + type: true, + src: true, + nonce: true, + noModule: true + }; + + function DOMEval( code, node, doc ) { + doc = doc || document; + + var i, val, + script = doc.createElement( "script" ); + + script.text = code; + if ( node ) { + for ( i in preservedScriptAttributes ) { + + // Support: Firefox 64+, Edge 18+ + // Some browsers don't support the "nonce" property on scripts. + // On the other hand, just using `getAttribute` is not enough as + // the `nonce` attribute is reset to an empty string whenever it + // becomes browsing-context connected. + // See https://github.com/whatwg/html/issues/2369 + // See https://html.spec.whatwg.org/#nonce-attributes + // The `node.getAttribute` check was added for the sake of + // `jQuery.globalEval` so that it can fake a nonce-containing node + // via an object. + val = node[ i ] || node.getAttribute && node.getAttribute( i ); + if ( val ) { + script.setAttribute( i, val ); + } + } + } + doc.head.appendChild( script ).parentNode.removeChild( script ); + } + + +function toType( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; +} +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.5.1", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + even: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return ( i + 1 ) % 2; + } ) ); + }, + + odd: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return i % 2; + } ) ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + copy = options[ name ]; + + // Prevent Object.prototype pollution + // Prevent never-ending loop + if ( name === "__proto__" || target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + src = target[ name ]; + + // Ensure proper type for the source value + if ( copyIsArray && !Array.isArray( src ) ) { + clone = []; + } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { + clone = {}; + } else { + clone = src; + } + copyIsArray = false; + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + // Evaluates a script in a provided context; falls back to the global one + // if not specified. + globalEval: function( code, options, doc ) { + DOMEval( code, { nonce: options && options.nonce }, doc ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return flat( ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), +function( _i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); +} ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = toType( obj ); + + if ( isFunction( obj ) || isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.5 + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://js.foundation/ + * + * Date: 2020-03-14 + */ +( function( window ) { +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + nonnativeSelectorCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ( {} ).hasOwnProperty, + arr = [], + pop = arr.pop, + pushNative = arr.push, + push = arr.push, + slice = arr.slice, + + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[ i ] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + + "ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram + identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + + "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + + // "Attribute values must be CSS identifiers [capture 5] + // or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + + whitespace + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + + "*" ), + rdescend = new RegExp( whitespace + "|>" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + + whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + + whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rhtml = /HTML$/i, + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), + funescape = function( escape, nonHex ) { + var high = "0x" + escape.slice( 1 ) - 0x10000; + + return nonHex ? + + // Strip the backslash prefix from a non-hex escape sequence + nonHex : + + // Replace a hexadecimal escape sequence with the encoded Unicode code point + // Support: IE <=11+ + // For values outside the Basic Multilingual Plane (BMP), manually construct a + // surrogate pair + high < 0 ? + String.fromCharCode( high + 0x10000 ) : + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + inDisabledFieldset = addCombinator( + function( elem ) { + return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + ( arr = slice.call( preferredDoc.childNodes ) ), + preferredDoc.childNodes + ); + + // Support: Android<4.0 + // Detect silently failing push.apply + // eslint-disable-next-line no-unused-expressions + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + pushNative.apply( target, slice.call( els ) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + + // Can't trust NodeList.length + while ( ( target[ j++ ] = els[ i++ ] ) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + setDocument( context ); + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { + + // ID selector + if ( ( m = match[ 1 ] ) ) { + + // Document context + if ( nodeType === 9 ) { + if ( ( elem = context.getElementById( m ) ) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && ( elem = newContext.getElementById( m ) ) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[ 2 ] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !nonnativeSelectorCache[ selector + " " ] && + ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && + + // Support: IE 8 only + // Exclude object elements + ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { + + newSelector = selector; + newContext = context; + + // qSA considers elements outside a scoping root when evaluating child or + // descendant combinators, which is not what we want. + // In such cases, we work around the behavior by prefixing every selector in the + // list with an ID selector referencing the scope context. + // The technique has to be used as well when a leading combinator is used + // as such selectors are not recognized by querySelectorAll. + // Thanks to Andrew Dupont for this technique. + if ( nodeType === 1 && + ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + + // We can use :scope instead of the ID hack if the browser + // supports it & if we're not changing the context. + if ( newContext !== context || !support.scope ) { + + // Capture the context ID, setting it first if necessary + if ( ( nid = context.getAttribute( "id" ) ) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", ( nid = expando ) ); + } + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + + toSelector( groups[ i ] ); + } + newSelector = groups.join( "," ); + } + + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + nonnativeSelectorCache( selector, true ); + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return ( cache[ key + " " ] = value ); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement( "fieldset" ); + + try { + return !!fn( el ); + } catch ( e ) { + return false; + } finally { + + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split( "|" ), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[ i ] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( ( cur = cur.nextSibling ) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return ( name === "input" || name === "button" ) && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + inDisabledFieldset( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction( function( argument ) { + argument = +argument; + return markFunction( function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ ( j = matchIndexes[ i ] ) ] ) { + seed[ j ] = !( matches[ j ] = seed[ j ] ); + } + } + } ); + } ); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + var namespace = elem.namespaceURI, + docElem = ( elem.ownerDocument || elem ).documentElement; + + // Support: IE <=8 + // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes + // https://bugs.jquery.com/ticket/4833 + return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9 - 11+, Edge 12 - 18+ + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( preferredDoc != document && + ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, + // Safari 4 - 5 only, Opera <=11.6 - 12.x only + // IE/Edge & older browsers don't support the :scope pseudo-class. + // Support: Safari 6.0 only + // Safari 6.0 supports :scope but it's an alias of :root there. + support.scope = assert( function( el ) { + docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); + return typeof el.querySelectorAll !== "undefined" && + !el.querySelectorAll( ":scope fieldset div" ).length; + } ); + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert( function( el ) { + el.className = "i"; + return !el.getAttribute( "className" ); + } ); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert( function( el ) { + el.appendChild( document.createComment( "" ) ); + return !el.getElementsByTagName( "*" ).length; + } ); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert( function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + } ); + + // ID filter and find + if ( support.getById ) { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute( "id" ) === attrId; + }; + }; + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode( "id" ); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( ( elem = elems[ i++ ] ) ) { + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find[ "TAG" ] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { + + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert( function( el ) { + + var input; + + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll( "[selected]" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push( "~=" ); + } + + // Support: IE 11+, Edge 15 - 18+ + // IE 11/Edge don't find elements on a `[name='']` query in some cases. + // Adding a temporary attribute to the document before the selection works + // around the issue. + // Interestingly, IE 10 & older don't seem to have the issue. + input = document.createElement( "input" ); + input.setAttribute( "name", "" ); + el.appendChild( input ); + if ( !el.querySelectorAll( "[name='']" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + + whitespace + "*(?:''|\"\")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll( ":checked" ).length ) { + rbuggyQSA.push( ":checked" ); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push( ".#.+[+~]" ); + } + + // Support: Firefox <=3.6 - 5 only + // Old Firefox doesn't throw on a badly-escaped identifier. + el.querySelectorAll( "\\\f" ); + rbuggyQSA.push( "[\\r\\n\\f]" ); + } ); + + assert( function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement( "input" ); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll( "[name=d]" ).length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: Opera 10 - 11 only + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll( "*,:x" ); + rbuggyQSA.push( ",.*:" ); + } ); + } + + if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector ) ) ) ) { + + assert( function( el ) { + + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + } ); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + ) ); + } : + function( a, b ) { + if ( b ) { + while ( ( b = b.parentNode ) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { + + // Choose the first element that is related to our preferred document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( a == document || a.ownerDocument == preferredDoc && + contains( preferredDoc, a ) ) { + return -1; + } + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( b == document || b.ownerDocument == preferredDoc && + contains( preferredDoc, b ) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + return a == document ? -1 : + b == document ? 1 : + /* eslint-enable eqeqeq */ + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( ( cur = cur.parentNode ) ) { + ap.unshift( cur ); + } + cur = b; + while ( ( cur = cur.parentNode ) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[ i ] === bp[ i ] ) { + i++; + } + + return i ? + + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[ i ], bp[ i ] ) : + + // Otherwise nodes in our document sort first + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + ap[ i ] == preferredDoc ? -1 : + bp[ i ] == preferredDoc ? 1 : + /* eslint-enable eqeqeq */ + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + setDocument( elem ); + + if ( support.matchesSelector && documentIsHTML && + !nonnativeSelectorCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch ( e ) { + nonnativeSelectorCache( expr, true ); + } + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( context.ownerDocument || context ) != document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( elem.ownerDocument || elem ) != document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return ( sel + "" ).replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + + // If no nodeType, this is expected to be an array + while ( ( node = elem[ i++ ] ) ) { + + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[ 1 ] = match[ 1 ].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[ 3 ] = ( match[ 3 ] || match[ 4 ] || + match[ 5 ] || "" ).replace( runescape, funescape ); + + if ( match[ 2 ] === "~=" ) { + match[ 3 ] = " " + match[ 3 ] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[ 1 ] = match[ 1 ].toLowerCase(); + + if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { + + // nth-* requires argument + if ( !match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[ 4 ] = +( match[ 4 ] ? + match[ 5 ] + ( match[ 6 ] || 1 ) : + 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); + match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); + + // other types prohibit arguments + } else if ( match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[ 6 ] && match[ 2 ]; + + if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[ 3 ] ) { + match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + + // Get excess from tokenize (recursively) + ( excess = tokenize( unquoted, true ) ) && + + // advance to the next closing parenthesis + ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { + + // excess is a negative index + match[ 0 ] = match[ 0 ].slice( 0, excess ); + match[ 2 ] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { + return true; + } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + ( pattern = new RegExp( "(^|" + whitespace + + ")" + className + "(" + whitespace + "|$)" ) ) && classCache( + className, function( elem ) { + return pattern.test( + typeof elem.className === "string" && elem.className || + typeof elem.getAttribute !== "undefined" && + elem.getAttribute( "class" ) || + "" + ); + } ); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + /* eslint-disable max-len */ + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + /* eslint-enable max-len */ + + }; + }, + + "CHILD": function( type, what, _argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, _context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( ( node = node[ dir ] ) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( ( node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + + // Use previously-cached element index if available + if ( useCache ) { + + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + + // Use the same loop as above to seek `elem` from the start + while ( ( node = ++nodeIndex && node && node[ dir ] || + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || + ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction( function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[ i ] ); + seed[ idx ] = !( matches[ idx ] = matched[ i ] ); + } + } ) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + + // Potentially complex pseudos + "not": markFunction( function( selector ) { + + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction( function( seed, matches, _context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( ( elem = unmatched[ i ] ) ) { + seed[ i ] = !( matches[ i ] = elem ); + } + } + } ) : + function( elem, _context, xml ) { + input[ 0 ] = elem; + matcher( input, null, xml, results ); + + // Don't keep the element (issue #299) + input[ 0 ] = null; + return !results.pop(); + }; + } ), + + "has": markFunction( function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + } ), + + "contains": markFunction( function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; + }; + } ), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + + // lang value must be a valid identifier + if ( !ridentifier.test( lang || "" ) ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( ( elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); + return false; + }; + } ), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && + ( !document.hasFocus || document.hasFocus() ) && + !!( elem.type || elem.href || ~elem.tabIndex ); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return ( nodeName === "input" && !!elem.checked ) || + ( nodeName === "option" && !!elem.selected ); + }, + + "selected": function( elem ) { + + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + // eslint-disable-next-line no-unused-expressions + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos[ "empty" ]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( ( attr = elem.getAttribute( "type" ) ) == null || + attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo( function() { + return [ 0 ]; + } ), + + "last": createPositionalPseudo( function( _matchIndexes, length ) { + return [ length - 1 ]; + } ), + + "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + } ), + + "even": createPositionalPseudo( function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "odd": createPositionalPseudo( function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? + argument + length : + argument > length ? + length : + argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ) + } +}; + +Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || ( match = rcomma.exec( soFar ) ) ) { + if ( match ) { + + // Don't consume trailing commas as valid + soFar = soFar.slice( match[ 0 ].length ) || soFar; + } + groups.push( ( tokens = [] ) ); + } + + matched = false; + + // Combinators + if ( ( match = rcombinators.exec( soFar ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + + // Cast descendant combinators to space + type: match[ 0 ].replace( rtrim, " " ) + } ); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || + ( match = preFilters[ type ]( match ) ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + type: type, + matches: match + } ); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[ i ].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || ( elem[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || + ( outerCache[ elem.uniqueID ] = {} ); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( ( oldCache = uniqueCache[ key ] ) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return ( newCache[ 2 ] = oldCache[ 2 ] ); + } else { + + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[ i ]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[ 0 ]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[ i ], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( ( elem = unmatched[ i ] ) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction( function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( + selector || "*", + context.nodeType ? [ context ] : context, + [] + ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( ( elem = temp[ i ] ) ) { + matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) ) { + + // Restore matcherIn since elem is not yet a final match + temp.push( ( matcherIn[ i ] = elem ) ); + } + } + postFinder( null, ( matcherOut = [] ), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) && + ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { + + seed[ temp ] = !( results[ temp ] = elem ); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + } ); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[ 0 ].type ], + implicitRelative = leadingRelative || Expr.relative[ " " ], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + ( checkContext = context ).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { + matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; + } else { + matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[ j ].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens + .slice( 0, i - 1 ) + .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), + + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), + len = elems.length; + + if ( outermost ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + outermostContext = context == document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( !context && elem.ownerDocument != document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( ( matcher = elementMatchers[ j++ ] ) ) { + if ( matcher( elem, context || document, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + + // They will have gone through all possible matchers + if ( ( elem = !matcher && elem ) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( ( matcher = setMatchers[ j++ ] ) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !( unmatched[ i ] || setMatched[ i ] ) ) { + setMatched[ i ] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[ i ] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( + selector, + matcherFromGroupMatchers( elementMatchers, setMatchers ) + ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( ( selector = compiled.selector || selector ) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[ 0 ] = match[ 0 ].slice( 0 ); + if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { + + context = ( Expr.find[ "ID" ]( token.matches[ 0 ] + .replace( runescape, funescape ), context ) || [] )[ 0 ]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[ i ]; + + // Abort if we hit a combinator + if ( Expr.relative[ ( type = token.type ) ] ) { + break; + } + if ( ( find = Expr.find[ type ] ) ) { + + // Search, expanding context for leading sibling combinators + if ( ( seed = find( + token.matches[ 0 ].replace( runescape, funescape ), + rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || + context + ) ) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert( function( el ) { + + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; +} ); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert( function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute( "href" ) === "#"; +} ) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + } ); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert( function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +} ) ) { + addHandle( "value", function( elem, _name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + } ); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert( function( el ) { + return el.getAttribute( "disabled" ) == null; +} ) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; + } + } ); +} + +return Sizzle; + +} )( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +}; +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Filtered directly for both simple and complex selectors + return jQuery.filter( qualifier, elements, not ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, _i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, _i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, _i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( elem.contentDocument != null && + + // Support: IE 11+ + // elements with no `data` attribute has an object + // `contentDocument` with a `null` prototype. + getProto( elem.contentDocument ) ) { + + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && toType( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( _i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // rejected_handlers.disable + // fulfilled_handlers.disable + tuples[ 3 - i ][ 3 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock, + + // progress_handlers.lock + tuples[ 0 ][ 3 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the master Deferred + master = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + master.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, master.done( updateFunc( i ) ).resolve, master.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( master.state() === "pending" || + isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return master.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), master.reject ); + } + + return master.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( toType( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, _key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; + + +// Matches dashed string for camelizing +var rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g; + +// Used by camelCase as callback to replace() +function fcamelCase( _all, letter ) { + return letter.toUpperCase(); +} + +// Convert dashed to camelCase; used by the css and data modules +// Support: IE <=9 - 11, Edge 12 - 15 +// Microsoft forgot to hump their vendor prefix (#9572) +function camelCase( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); +} +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( camelCase ); + } else { + key = camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var documentElement = document.documentElement; + + + + var isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ); + }, + composed = { composed: true }; + + // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only + // Check attachment across shadow DOM boundaries when possible (gh-3504) + // Support: iOS 10.0-10.2 only + // Early iOS 10 versions support `attachShadow` but not `getRootNode`, + // leading to errors. We need to check for `getRootNode`. + if ( documentElement.getRootNode ) { + isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ) || + elem.getRootNode( composed ) === elem.ownerDocument; + }; + } +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + isAttached( elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, scale, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = elem.nodeType && + ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Support: Firefox <=54 + // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) + initial = initial / 2; + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + while ( maxIterations-- ) { + + // Evaluate and update our best guess (doubling guesses that zero out). + // Finish if the scale equals or crosses 1 (making the old*new product non-positive). + jQuery.style( elem, prop, initialInUnit + unit ); + if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { + maxIterations = 0; + } + initialInUnit = initialInUnit / scale; + + } + + initialInUnit = initialInUnit * 2; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); + +var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); + + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // Support: IE <=9 only + // IE <=9 replaces "; + support.option = !!div.lastChild; +} )(); + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
" ], + col: [ 2, "", "
" ], + tr: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + _default: [ 0, "", "" ] +}; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +// Support: IE <=9 only +if ( !support.option ) { + wrapMap.optgroup = wrapMap.option = [ 1, "" ]; +} + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, attached, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( toType( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + attached = isAttached( elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( attached ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +var + rkeyEvent = /^key/, + rmouseEvent = /^(?:mouse|pointer|contextmenu|drag|drop)|click/, + rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 - 11+ +// focus() and blur() are asynchronous, except when they are no-op. +// So expect focus to be synchronous when the element is already active, +// and blur to be synchronous when the element is not already active. +// (focus and blur are always synchronous in other supported browsers, +// this just defines when we can count on it). +function expectSync( elem, type ) { + return ( elem === safeActiveElement() ) === ( type === "focus" ); +} + +// Support: IE <=9 only +// Accessing document.activeElement can throw unexpectedly +// https://bugs.jquery.com/ticket/13393 +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Only attach events to objects that accept data + if ( !acceptData( elem ) ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = Object.create( null ); + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( nativeEvent ), + + handlers = ( + dataPriv.get( this, "events" ) || Object.create( null ) + )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // If the event is namespaced, then each handler is only invoked if it is + // specially universal or its namespaces are a superset of the event's. + if ( !event.rnamespace || handleObj.namespace === false || + event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + click: { + + // Utilize native event to ensure correct state for checkable inputs + setup: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Claim the first handler + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + // dataPriv.set( el, "click", ... ) + leverageNative( el, "click", returnTrue ); + } + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Force setup before triggering a click + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + leverageNative( el, "click" ); + } + + // Return non-false to allow normal event-path propagation + return true; + }, + + // For cross-browser consistency, suppress native .click() on links + // Also prevent it if we're currently inside a leveraged native-event stack + _default: function( event ) { + var target = event.target; + return rcheckableType.test( target.type ) && + target.click && nodeName( target, "input" ) && + dataPriv.get( target, "click" ) || + nodeName( target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +// Ensure the presence of an event listener that handles manually-triggered +// synthetic events by interrupting progress until reinvoked in response to +// *native* events that it fires directly, ensuring that state changes have +// already occurred before other listeners are invoked. +function leverageNative( el, type, expectSync ) { + + // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add + if ( !expectSync ) { + if ( dataPriv.get( el, type ) === undefined ) { + jQuery.event.add( el, type, returnTrue ); + } + return; + } + + // Register the controller as a special universal handler for all event namespaces + dataPriv.set( el, type, false ); + jQuery.event.add( el, type, { + namespace: false, + handler: function( event ) { + var notAsync, result, + saved = dataPriv.get( this, type ); + + if ( ( event.isTrigger & 1 ) && this[ type ] ) { + + // Interrupt processing of the outer synthetic .trigger()ed event + // Saved data should be false in such cases, but might be a leftover capture object + // from an async native handler (gh-4350) + if ( !saved.length ) { + + // Store arguments for use when handling the inner native event + // There will always be at least one argument (an event object), so this array + // will not be confused with a leftover capture object. + saved = slice.call( arguments ); + dataPriv.set( this, type, saved ); + + // Trigger the native event and capture its result + // Support: IE <=9 - 11+ + // focus() and blur() are asynchronous + notAsync = expectSync( this, type ); + this[ type ](); + result = dataPriv.get( this, type ); + if ( saved !== result || notAsync ) { + dataPriv.set( this, type, false ); + } else { + result = {}; + } + if ( saved !== result ) { + + // Cancel the outer synthetic event + event.stopImmediatePropagation(); + event.preventDefault(); + return result.value; + } + + // If this is an inner synthetic event for an event with a bubbling surrogate + // (focus or blur), assume that the surrogate already propagated from triggering the + // native event and prevent that from happening again here. + // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the + // bubbling surrogate propagates *after* the non-bubbling base), but that seems + // less bad than duplication. + } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { + event.stopPropagation(); + } + + // If this is a native event triggered above, everything is now in order + // Fire an inner synthetic event with the original arguments + } else if ( saved.length ) { + + // ...and capture the result + dataPriv.set( this, type, { + value: jQuery.event.trigger( + + // Support: IE <=9 - 11+ + // Extend with the prototype to reset the above stopImmediatePropagation() + jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), + saved.slice( 1 ), + this + ) + } ); + + // Abort handling of the native event + event.stopImmediatePropagation(); + } + } + } ); +} + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || Date.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + code: true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + + which: function( event ) { + var button = event.button; + + // Add which for key events + if ( event.which == null && rkeyEvent.test( event.type ) ) { + return event.charCode != null ? event.charCode : event.keyCode; + } + + // Add which for click: 1 === left; 2 === middle; 3 === right + if ( !event.which && button !== undefined && rmouseEvent.test( event.type ) ) { + if ( button & 1 ) { + return 1; + } + + if ( button & 2 ) { + return 3; + } + + if ( button & 4 ) { + return 2; + } + + return 0; + } + + return event.which; + } +}, jQuery.event.addProp ); + +jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { + jQuery.event.special[ type ] = { + + // Utilize native event if possible so blur/focus sequence is correct + setup: function() { + + // Claim the first handler + // dataPriv.set( this, "focus", ... ) + // dataPriv.set( this, "blur", ... ) + leverageNative( this, type, expectSync ); + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function() { + + // Force setup before trigger + leverageNative( this, type ); + + // Return non-false to allow normal event-path propagation + return true; + }, + + delegateType: delegateType + }; +} ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + // Support: IE <=10 - 11, Edge 12 - 13 only + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( elem ).children( "tbody" )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { + elem.type = elem.type.slice( 5 ); + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.get( src ); + events = pdataOld.events; + + if ( events ) { + dataPriv.remove( dest, "handle events" ); + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = flat( args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + valueIsFunction = isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( valueIsFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( valueIsFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl && !node.noModule ) { + jQuery._evalUrl( node.src, { + nonce: node.nonce || node.getAttribute( "nonce" ) + }, doc ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && isAttached( node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html; + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = isAttached( elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + +var swap = function( elem, options, callback ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.call( elem ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + +var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + container.style.cssText = "position:absolute;left:-11111px;width:60px;" + + "margin-top:1px;padding:0;border:0"; + div.style.cssText = + "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + + "margin:auto;border:1px;padding:1px;" + + "width:60%;top:1%"; + documentElement.appendChild( container ).appendChild( div ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; + + // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 + // Some styles come back with percentage values, even though they shouldn't + div.style.right = "60%"; + pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; + + // Support: IE 9 - 11 only + // Detect misreporting of content dimensions for box-sizing:border-box elements + boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; + + // Support: IE 9 only + // Detect overflow:scroll screwiness (gh-3699) + // Support: Chrome <=64 + // Don't get tricked when zoom affects offsetWidth (gh-4029) + div.style.position = "absolute"; + scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + function roundPixelMeasures( measure ) { + return Math.round( parseFloat( measure ) ); + } + + var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, + reliableTrDimensionsVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + jQuery.extend( support, { + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelBoxStyles: function() { + computeStyleTests(); + return pixelBoxStylesVal; + }, + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + }, + scrollboxSize: function() { + computeStyleTests(); + return scrollboxSizeVal; + }, + + // Support: IE 9 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Behavior in IE 9 is more subtle than in newer versions & it passes + // some versions of this test; make sure not to make it pass there! + reliableTrDimensions: function() { + var table, tr, trChild, trStyle; + if ( reliableTrDimensionsVal == null ) { + table = document.createElement( "table" ); + tr = document.createElement( "tr" ); + trChild = document.createElement( "div" ); + + table.style.cssText = "position:absolute;left:-11111px"; + tr.style.height = "1px"; + trChild.style.height = "9px"; + + documentElement + .appendChild( table ) + .appendChild( tr ) + .appendChild( trChild ); + + trStyle = window.getComputedStyle( tr ); + reliableTrDimensionsVal = parseInt( trStyle.height ) > 3; + + documentElement.removeChild( table ); + } + return reliableTrDimensionsVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !isAttached( elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style, + vendorProps = {}; + +// Return a vendor-prefixed property or undefined +function vendorPropName( name ) { + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a potentially-mapped jQuery.cssProps or vendor prefixed property +function finalPropName( name ) { + var final = jQuery.cssProps[ name ] || vendorProps[ name ]; + + if ( final ) { + return final; + } + if ( name in emptyStyle ) { + return name; + } + return vendorProps[ name ] = vendorPropName( name ) || name; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }; + +function setPositiveNumber( _elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { + var i = dimension === "width" ? 1 : 0, + extra = 0, + delta = 0; + + // Adjustment may not be necessary + if ( box === ( isBorderBox ? "border" : "content" ) ) { + return 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin + if ( box === "margin" ) { + delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); + } + + // If we get here with a content-box, we're seeking "padding" or "border" or "margin" + if ( !isBorderBox ) { + + // Add padding + delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // For "border" or "margin", add border + if ( box !== "padding" ) { + delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + + // But still keep track of it otherwise + } else { + extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + + // If we get here with a border-box (content + padding + border), we're seeking "content" or + // "padding" or "margin" + } else { + + // For "content", subtract padding + if ( box === "content" ) { + delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // For "content" or "padding", subtract border + if ( box !== "margin" ) { + delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + // Account for positive content-box scroll gutter when requested by providing computedVal + if ( !isBorderBox && computedVal >= 0 ) { + + // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border + // Assuming integer scroll gutter, subtract the rest and round down + delta += Math.max( 0, Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + computedVal - + delta - + extra - + 0.5 + + // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter + // Use an explicit zero to avoid NaN (gh-3964) + ) ) || 0; + } + + return delta; +} + +function getWidthOrHeight( elem, dimension, extra ) { + + // Start with computed style + var styles = getStyles( elem ), + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). + // Fake content-box until we know it's needed to know the true value. + boxSizingNeeded = !support.boxSizingReliable() || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + valueIsBorderBox = isBorderBox, + + val = curCSS( elem, dimension, styles ), + offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); + + // Support: Firefox <=54 + // Return a confounding non-pixel value or feign ignorance, as appropriate. + if ( rnumnonpx.test( val ) ) { + if ( !extra ) { + return val; + } + val = "auto"; + } + + + // Support: IE 9 - 11 only + // Use offsetWidth/offsetHeight for when box sizing is unreliable. + // In those cases, the computed value can be trusted to be border-box. + if ( ( !support.boxSizingReliable() && isBorderBox || + + // Support: IE 10 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Interestingly, in some cases IE 9 doesn't suffer from this issue. + !support.reliableTrDimensions() && nodeName( elem, "tr" ) || + + // Fall back to offsetWidth/offsetHeight when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + val === "auto" || + + // Support: Android <=4.1 - 4.3 only + // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) + !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && + + // Make sure the element is visible & connected + elem.getClientRects().length ) { + + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Where available, offsetWidth/offsetHeight approximate border box dimensions. + // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the + // retrieved value as a content box dimension. + valueIsBorderBox = offsetProp in elem; + if ( valueIsBorderBox ) { + val = elem[ offsetProp ]; + } + } + + // Normalize "" and auto + val = parseFloat( val ) || 0; + + // Adjust for the element's box model + return ( val + + boxModelAdjustment( + elem, + dimension, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles, + + // Provide the current computed size to request scroll gutter calculation (gh-3589) + val + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "gridArea": true, + "gridColumn": true, + "gridColumnEnd": true, + "gridColumnStart": true, + "gridRow": true, + "gridRowEnd": true, + "gridRowStart": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: {}, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append + // "px" to a few hardcoded values. + if ( type === "number" && !isCustomProp ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( _i, dimension ) { + jQuery.cssHooks[ dimension ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, dimension, extra ); + } ) : + getWidthOrHeight( elem, dimension, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = getStyles( elem ), + + // Only read styles.position if the test has a chance to fail + // to avoid forcing a reflow. + scrollboxSizeBuggy = !support.scrollboxSize() && + styles.position === "absolute", + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) + boxSizingNeeded = scrollboxSizeBuggy || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + subtract = extra ? + boxModelAdjustment( + elem, + dimension, + extra, + isBorderBox, + styles + ) : + 0; + + // Account for unreliable border-box dimensions by comparing offset* to computed and + // faking a content-box to get border and padding (gh-3699) + if ( isBorderBox && scrollboxSizeBuggy ) { + subtract -= Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + parseFloat( styles[ dimension ] ) - + boxModelAdjustment( elem, dimension, "border", false, styles ) - + 0.5 + ); + } + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ dimension ] = value; + value = jQuery.css( elem, dimension ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( prefix !== "margin" ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && ( + jQuery.cssHooks[ tween.prop ] || + tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = Date.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 15 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY and Edge just mirrors + // the overflowX value there. + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + result.stop.bind( result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = Date.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +function classesToArray( value ) { + if ( Array.isArray( value ) ) { + return value; + } + if ( typeof value === "string" ) { + return value.match( rnothtmlwhite ) || []; + } + return []; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value, + isValidValue = type === "string" || Array.isArray( value ); + + if ( typeof stateVal === "boolean" && isValidValue ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( isValidValue ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = classesToArray( value ); + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, valueIsFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + valueIsFunction = isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( valueIsFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +support.focusin = "onfocusin" in window; + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + stopPropagationCallback = function( e ) { + e.stopPropagation(); + }; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = lastElement = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + lastElement = cur; + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( + dataPriv.get( cur, "events" ) || Object.create( null ) + )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + + if ( event.isPropagationStopped() ) { + lastElement.addEventListener( type, stopPropagationCallback ); + } + + elem[ type ](); + + if ( event.isPropagationStopped() ) { + lastElement.removeEventListener( type, stopPropagationCallback ); + } + + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + + // Handle: regular nodes (via `this.ownerDocument`), window + // (via `this.document`) & document (via `this`). + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = { guid: Date.now() }; + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) { + xml = undefined; + } + + if ( !xml || xml.getElementsByTagName( "parsererror" ).length ) { + jQuery.error( "Invalid XML: " + data ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && toType( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + if ( a == null ) { + return ""; + } + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ) + .filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ) + .map( function( _i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() + " " ] = + ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) + .concat( match[ 2 ] ); + } + } + match = responseHeaders[ key.toLowerCase() + " " ]; + } + return match == null ? null : match.join( ", " ); + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 15 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available and should be processed, append data to url + if ( s.data && ( s.processData || typeof s.data === "string" ) ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Use a noop converter for missing script + if ( !isSuccess && jQuery.inArray( "script", s.dataTypes ) > -1 ) { + s.converters[ "text script" ] = function() {}; + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( _i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + +jQuery.ajaxPrefilter( function( s ) { + var i; + for ( i in s.headers ) { + if ( i.toLowerCase() === "content-type" ) { + s.contentType = s.headers[ i ] || ""; + } + } +} ); + + +jQuery._evalUrl = function( url, options, doc ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + + // Only evaluate the response if it is successful (gh-4126) + // dataFilter is not invoked for failure responses, so using it instead + // of the default converter is kludgy but it works. + converters: { + "text script": function() {} + }, + dataFilter: function( response ) { + jQuery.globalEval( response, options, doc ); + } + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var htmlIsFunction = isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.ontimeout = + xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain or forced-by-attrs requests + if ( s.crossDomain || s.scriptAttrs ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( " + + Conversion Phase — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ Conversion Phase + + ¶ + +

+

+ Once the graph has be simplified to a form thats easy to convert, we then set up a conversion context +to manage the construction of a TensorRT + + + INetworkDefinition + + + from the blocks nodes. The conversion context +records the set of converted nodes, block inputs and outputs and other information about the conversion +of the graph. This data is then used to help converters link together layers and also hold build time +information like weights required to construct the engine. After the context is created, the block +converter starts iterating through the list of nodes, for each node, the converter will look at its +inputs and assemble an array of resources to pass to the converter. Inputs can be in a couple of states: +

+
    +
  • +

    + The input is a block parameter +

    +
      +
    • +

      + In this case the input should have already been stored in as an IValue in the +conversion context + + + evaluated_value_map + + + . The conversion stage will add the IValue to the list of args for the +converter +

      +
    • +
    +
  • +
  • +

    + The input is an output of a node that has already been converted +

    +
      +
    • +

      + In this case the ITensor of the output has added to the to the + + + value_tensor_map + + + , +The conversion stage will add the ITensor to the list of args for the converter +

      +
    • +
    +
  • +
  • +

    + The input is from a node that produces a static value +

    +
      +
    • +

      + There are nodes that produce static values, typically used to store parameters for operators, we need to +evaluate these nodes at conversion time to be able to convert a op. The conversion system will look for a node +evaluator in the evaluator registry and run it on the node. The IValue produced will be entered in the +conversion context + + + evaluated_value_map + + + and added to the list of args for the converter. If the node +to be evaluated takes inputs, the conversion stage will recursively resolve dependencies until the final +static value has been evaluated +

      +
    • +
    +
  • +
  • +

    + The input is from a node that has not been converted +* TRTorch will error out here +

    +
  • +
+

+ Node Evaluation + + ¶ + +

+

+ There are some nodes that contain static data and are resources for operations. These can be evaluated at +conversion time so that you can use those values when doing node conversion. In theory any node kind can have +a conversion time evaluator as long as it produces a static IValue, This IValue will be stored in the conversion +context so it can be consumed by any node that takes the evaluated node as an input. Common node types are + + + prim::Constant + + + which emits a constant and + + + prim::ListConstruct + + + which makes lists. +

+

+ Node Converters + + ¶ + +

+

+ Node converters map JIT nodes to layers or subgraphs of layers. They then associate outputs from the JIT graph +and the TRT graph together in the conversion context. This allows the conversion stage to assemble the inputs +for the next node. There are some cases where a node produces an output that is not a Tensor but a static result +from a calculation done on inputs which need to be converted first. In this case the converter may associate the outputs in +the + + + evaluated_value_map + + + instead of the + + + value_tensor_map + + + . For more information take a look at: + + + Writing Converters + + +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/contributors/lowering.html b/docs/v0.3.0/contributors/lowering.html new file mode 100644 index 0000000000..7de3ca071a --- /dev/null +++ b/docs/v0.3.0/contributors/lowering.html @@ -0,0 +1,1072 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Lowering Phase — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Lowering Phase + + ¶ + +

+

+ The lowering phase is made up out of passes which are operations which map a graph from a high level representation +to a lower level one. Each pass does something specific for instance inlining method calls. The idea is to +significantly reduce what the conversion phase needs to be able to handle when actually mapping to TensorRT. +We aim for closer to 1->1 op conversion vs looking for applicable subgraphs, limiting the number of converters and +reduce the scope of each converter. +

+

+ You can see the effects of each pass by setting the log level to + + + Level::kGraph + + +

+

+ Passes Used + + ¶ + +

+

+ EliminateCommonSubexpression + + ¶ + +

+
+ +
+

+ Removes common subexpressions in the graph +

+

+ Eliminate Dead Code + + ¶ + +

+
+ +
+

+ Dead code elimination will check if a node has side effects and not delete it if it does. +

+

+ Eliminate Exeception Or Pass Pattern + + ¶ + +

+
+ +
+

+ A common pattern in scripted modules are dimension gaurds which will throw execptions if +the input dimension is not what was expected. +

+
+
+
%1013 : bool = aten::ne(%1012, %24) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py:248:11
+    = prim::If(%1013) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py:248:8
+    block0():
+        = prim::RaiseException(%23) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py:249:12
+    -> ()
+    block1():
+    -> ()
+
+
+
+

+ Since we are resolving all of this at compile time and there are no execptions in the TensorRT graph, we just remove it. +

+

+ Eliminate Redundant Gaurds + + ¶ + +

+
+ +
+

+ Eliminate redundant guards for ops whose outputs are fully determined by their inputs i.e. if inputs to such ops are +guarded we are allowed to remove a guard on ops’ outputs +

+

+ Freeze Module + + ¶ + +

+
+ +
+

+ Freeze attributes and inline constants and modules. Propogates constants in the graph. +

+

+ Fuse AddMM Branches + + ¶ + +

+
+ +
+

+ A common pattern in scripted modules is tensors of different dimensions use different constructions for implementing linear layers. We fuse these +different varients into a single one that will get caught by the Unpack AddMM pass. +

+
+
+
%ret : Tensor = prim::If(%622)
+block0():
+  %ret.1 : Tensor = aten::addmm(%self.fc.bias, %x9.1, %3677, %3, %3)
+  -> (%ret.1)
+block1():
+  %output.1 : Tensor = aten::matmul(%x9.1, %3677)
+  %output0.1 : Tensor = aten::add_(%output.1, %self.fc.bias, %3)
+  -> (%output0.1)
+
+
+
+

+ We fuse this set of blocks into a graph like this: +

+
+
+
%ret : Tensor = aten::addmm(%self.fc.bias, %x9.1, %3677, %3, %3)
+
+
+
+

+ Fuse Linear + + ¶ + +

+
+ +
+

+ Match the + + + aten::linear + + + pattern and fuse it into a single + + + aten::linear + + + This pass fuse the addmm or matmul + add generated by JIT back to linear +

+

+ Fuse Flatten Linear + + ¶ + +

+
+ +
+

+ TensorRT implicity flattens input layers into fully connected layers when they are higher than 1D. So when there is a + + + aten::flatten + + + -> + + + aten::linear + + + pattern we remove the + + + aten::flatten + + + . +

+

+ Lower Graph + + ¶ + +

+
+ +
+

+ Given a graph with of a method which first argument is %self, lower it to a graph where +all attributes accesses are replaced with explicit inputs of the graph +(rather than results of prim::GetAttr executed on %self). Returns a tuple +(graph, parameters) where the last module.parameters.size() inputs to the +graph are the trainable parameters used in this method. The remaining inputs +are the true inputs to the function. +

+

+ Lower Tuples + + ¶ + +

+
+ +
+
    +
  • +

    + + + LowerSimpleTuples + + + : +

    +
  • +
+

+ Removes tuples where TupleConstruct and TupleUnpack are matched but leaves tuples in place across if statements, loops, and as inputs/outputs +

+
    +
  • +

    + + + LowerAllTuples + + + : +

    +
  • +
+

+ Removes _all_ tuples and raises an error if some cannot be removed, this is used by ONNX to ensure there are not tuples before conversion, but will not work on graphs whose inputs contain tuples. +

+

+ Peephole Optimze + + ¶ + +

+
+ +
+

+ The intent for this optimization pass is to catch all of the small, easy to catch peephole optimizations you might be interested in doing. +

+
+
+ Right now, it does: +
+
+
    +
  • +

    + Eliminate no-op ‘expand’ nodes +

    +
  • +
  • +

    + Simply x.t().t() to x +

    +
  • +
+
+
+

+ Remove Contiguous + + ¶ + +

+
+ +
+

+ Removes contiguous operators since we are doing TensorRT memory is already contiguous. +

+

+ Remove Dropout + + ¶ + +

+
+ +
+

+ Removes dropout operators since we are doing inference. +

+

+ Remove To + + ¶ + +

+
+ +
+

+ Removes + + + aten::to + + + operators that do casting, since TensorRT mangages it itself. It is important that this is one of the last passes run so that +other passes have a change to move required cast operators out of the main namespace. +

+

+ Unpack AddMM + + ¶ + +

+
+ +
+

+ Unpacks + + + aten::addmm + + + into + + + aten::matmul + + + and + + + aten::add_ + + + (with an additional + + + trt::const + + + op to freeze the bias in the TensorRT graph). This lets us reuse the + + + aten::matmul + + + and + + + aten::add_ + + + converters instead of needing a dedicated converter. +

+

+ Unpack LogSoftmax + + ¶ + +

+
+ +
+

+ Unpacks + + + aten::logsoftmax + + + into + + + aten::softmax + + + and + + + aten::log + + + . This lets us reuse the + + + aten::softmax + + + and + + + aten::log + + + converters instead of needing a dedicated converter. +

+

+ Unroll Loops + + ¶ + +

+
+ +
+

+ Unrolls the operations of compatable loops (e.g. sufficently short) so that you only have to go through the loop once. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/contributors/phases.html b/docs/v0.3.0/contributors/phases.html new file mode 100644 index 0000000000..96f352d6ea --- /dev/null +++ b/docs/v0.3.0/contributors/phases.html @@ -0,0 +1,493 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Compiler Phases — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+

+ Compiler Phases + + ¶ + +

+
+
+

+ Lowering + + ¶ + +

+

+ + + Lowering Phase + + +

+

+ The lowering is made up of a set of passes (some from PyTorch and some specific to TRTorch) +run over the graph IR to map the large PyTorch opset to a reduced opset that is easier to convert to +TensorRT. +

+

+ Conversion + + ¶ + +

+

+ + + Conversion Phase + + +

+

+ In the conversion phase we traverse the lowered graph and construct an equivalent TensorRT graph. +The conversion phase is made up of three main components, a context to manage compile time data, +a evaluator library which will execute operations that can be resolved at compile time and a converter +library which maps an op from JIT to TensorRT. +

+

+ Compilation and Runtime + + ¶ + +

+

+ + + Runtime Phase + + +

+

+ The final compilation phase constructs a TorchScript program to run the converted TensorRT engine. It +takes a serialized engine and instantiates it within a engine manager, then the compiler will +build out a JIT graph that references this engine and wraps it in a module to return to the user. +When the user executes the module, the JIT program run in the JIT runtime extended by TRTorch with the data providied from the user. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/contributors/runtime.html b/docs/v0.3.0/contributors/runtime.html new file mode 100644 index 0000000000..7b76846f53 --- /dev/null +++ b/docs/v0.3.0/contributors/runtime.html @@ -0,0 +1,575 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Runtime Phase — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Runtime Phase + + ¶ + +

+

+ The Runtime phase is responsible for constructing self standing TorchScript graphs with embedded TensorRT engines and serving as the runtime +when these engines are called. The main interface accepts a serialized TensorRT engine. The execution phase +will deserialize and wrap this engine in a class which maintains a execution context for each engine +and some metadata about its inputs and outputs and is compatable with the TorchScript interpreter so that +it can be moved around and used like other TorchScript IValues. The engine is run by providing it and inputs +to the + + + trt::execute_engine + + + operator which will take the engine and its inputs and return the results of engine exeuction. +

+

+ Background + + ¶ + +

+

+ PyTorch JIT’s runtime is based around a stack machine, all operators pop off arguments from the stack, pass them to +some implementation of the operator then push results back onto the stack. The actual elements of the stack +are + + + torch::jit::IValues + + + , the same type we evaluate in the conversion phase (the realization of the abstract +torch::jit::Value type). +

+

+ TensorRT Engine Executor Op + + ¶ + +

+

+ When the TRTorch is loaded, it registers an operator in the PyTorch JIT operator library called + + + trt::execute_engine(Tensor[] + + + inputs, + + + __torch__.torch.classes.tensorrt.Engine + + + engine) + + + -> + + + Tensor[] + + + which takes an +instantiated engine and list of inputs. Compiled graphs store this engine in an attribute so that it is portable and serializable. +When the op is called, an instnantiated engine and input tensors are popped off the runtime stack. These inputs are passed into a generic engine execution function which +will run the tensors through the TensorRT engine and return new tensors as results. These tensors are pushed on to the +stack so that the next op whatever it is can use it. +

+

+ Constructing the Resulting Graph + + ¶ + +

+

+ Once the engine is deserialized and instantiated, the compiler will construct a graph that will execute the engine when the module is called. +Here is an example: +

+
+
+
graph(%self_1 : __torch__.torchvision.models.resnet.___torch_mangle_4847.ResNet_trt,
+  %input_0 : Tensor):
+    %1 : __torch__.torch.classes.tensorrt.Engine = prim::GetAttr[name="__torch___torchvision_models_resnet____torch_mangle_4847_ResNet_trt_engine"](%self_1)
+    %3 : Tensor[] = prim::ListConstruct(%input_0)
+    %4 : Tensor[] = trt::execute_engine(%3, %1)
+    %5 : Tensor = prim::ListUnpack(%4)
+return (%5)
+
+
+
+

+ You can see the engine attribute in the graph and the + + + trt::execute_engine + + + op taking a list of input tensors and an engine in +and produces a list of output tensors which is returned. When + + + forward + + + is called on the module this graph is executed, thereby +running the TensorRT engine. +

+

+ In the case of multiple outputs, the compiled graph may repack output tensors into a Tuple to return back to the user. +

+
+
+
graph(%self_1 : __torch__.PyTorch.Detection.SSD.src.model.SSD300_trt,
+  %input_0 : Tensor):
+    %1 : __torch__.torch.classes.tensorrt.Engine = prim::GetAttr[name="__torch___PyTorch_Detection_SSD_src_model_SSD300_trt_engine"](%self_1)
+    %3 : Tensor[] = prim::ListConstruct(%input_0)
+    %4 : Tensor[] = trt::execute_engine(%3, %1)
+    %5 : Tensor, %6 : Tensor = prim::ListUnpack(%4)
+    %7 : (Tensor, Tensor) = prim::TupleConstruct(%5, %6)
+return (%7)
+
+
+
+

+ Serialization and Deserialization + + ¶ + +

+

+ Serialization and deserialization of TensorRT engines embedded in TorchScript graphs are handled by the holder class for the engine and TorchBind. +When a TorchScript module is saved, the pickler will run serilization on the cuda engine and store the serialized engine in the zip file created. +When deserializing, the depickler will call a constructor for the engine holder class with the serialized engine so that it can be set up again for +execution. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/contributors/system_overview.html b/docs/v0.3.0/contributors/system_overview.html new file mode 100644 index 0000000000..970b86d8e5 --- /dev/null +++ b/docs/v0.3.0/contributors/system_overview.html @@ -0,0 +1,652 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + System Overview — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+ +
+
+
+
+ + +

+ System Overview + + ¶ + +

+

+ TRTorch is primarily a C++ Library with a Python API planned. We use Bazel as our build system and target Linux x86_64 and +Linux aarch64 (only natively) right now. The compiler we use is GCC 7.5.0 and the library is untested with compilers before that +version so there may be compilation errors if you try to use an older compiler. +

+

+ The repository is structured into: +

+
    +
  • +

    + core: Main compiler source code +

    +
  • +
  • +

    + cpp: C++ API +

    +
  • +
  • +

    + tests: tests of the C++ API, the core and converters +

    +
  • +
  • +

    + py: Python API +

    +
  • +
  • +

    + notebooks: Example applications built with TRTorch +

    +
  • +
  • +

    + docs: Documentation +

    +
  • +
  • +

    + docsrc: Documentation Source +

    +
  • +
  • +

    + third_party: BUILD files for dependency libraries +

    +
  • +
  • +

    + toolchains: Toolchains for different platforms +

    +
  • +
+

+ The C++ API is unstable and subject to change until the library matures, though most work is done under the hood in the core. +

+

+ The core has a couple major parts: The top level compiler interface which coordinates ingesting a module, lowering, +converting and generating a new module and returning it back to the user. The there are the three main phases of the +compiler, the lowering phase, the conversion phase, and the execution phase. +

+

+ Compiler Phases + + ¶ + +

+
+
+

+ Lowering + + ¶ + +

+

+ + + Lowering Phase + + +

+

+ The lowering is made up of a set of passes (some from PyTorch and some specific to TRTorch) +run over the graph IR to map the large PyTorch opset to a reduced opset that is easier to convert to +TensorRT. +

+

+ Conversion + + ¶ + +

+

+ + + Conversion Phase + + +

+

+ In the conversion phase we traverse the lowered graph and construct an equivalent TensorRT graph. +The conversion phase is made up of three main components, a context to manage compile time data, +a evaluator library which will execute operations that can be resolved at compile time and a converter +library which maps an op from JIT to TensorRT. +

+

+ Compilation and Runtime + + ¶ + +

+

+ + + Runtime Phase + + +

+

+ The final compilation phase constructs a TorchScript program to run the converted TensorRT engine. It +takes a serialized engine and instantiates it within a engine manager, then the compiler will +build out a JIT graph that references this engine and wraps it in a module to return to the user. +When the user executes the module, the JIT program run in the JIT runtime extended by TRTorch with the data providied from the user. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/contributors/useful_links.html b/docs/v0.3.0/contributors/useful_links.html new file mode 100644 index 0000000000..e6972d4b6f --- /dev/null +++ b/docs/v0.3.0/contributors/useful_links.html @@ -0,0 +1,627 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Useful Links for TRTorch Development — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Useful Links for TRTorch Development + + ¶ + +

+

+ TensorRT Available Layers and Expected Dimensions + + ¶ + +

+ +

+ TensorRT C++ Documentation + + ¶ + +

+ +

+ TensorRT Python Documentation (Sometimes easier to read) + + ¶ + +

+ +

+ PyTorch Functional API + + ¶ + +

+ +

+ PyTorch native_ops + + ¶ + +

+ +

+ PyTorch IR Documentation + + ¶ + +

+ +
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/contributors/writing_converters.html b/docs/v0.3.0/contributors/writing_converters.html new file mode 100644 index 0000000000..1eeac50dfc --- /dev/null +++ b/docs/v0.3.0/contributors/writing_converters.html @@ -0,0 +1,886 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Writing Converters — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Writing Converters + + ¶ + +

+

+ Background + + ¶ + +

+

+ In the JIT IR, operations are represented as nodes in a graph. A node has inputs and outputs, represented by + + + torch::jit::Values + + + which are typed abstract representation of data flowing into and out of a node. TensorRT represents its graph though the +use of + + + nvinfer1::ILayers + + + and + + + nvinfer1::ITensors + + + which are its analogues to nodes and values. The goal of +converters create new ILayers and subgraphs that do operation specified by the node and associate produced ITensors +and Values together. +

+

+ Converters + + ¶ + +

+

+ Converters should be functions which will use a list of inputs (either + + + nvinfer1::ITensors + + + or + + + torch::jit::IValues + + + ) to +construct an equivalent layer to the LibTorch op. +

+

+ Converters can be registered using the + + + RegisterNodeConversionPatterns + + + helper class where you instantiate a +RegisterNodeConversionPatterns object and call the pattern function on it (like below) which takes a string +which describes the function schema of the op that will cause the converter to be run and a lambda or function +which will do the actual conversion: +

+
+
+

+ Note the pattern function can be chained +

+
+
+
+
+
auto acthardtanh TRTORCH_UNUSED = RegisterNodeConversionPatterns()
+    .pattern({
+        "aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor)",
+        [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+            auto in = args[0].ITensor();
+            auto min = args[1].unwrapToDouble();
+            auto max = args[2].unwrapToDouble();
+
+            auto new_layer = ctx->net->addActivation(*in, nvinfer1::ActivationType::kCLIP);
+            TRTORCH_CHECK(new_layer, "Unable to create layer for aten::hardtanh");
+
+            new_layer->setAlpha(min);
+            new_layer->setBeta(max);
+
+            new_layer->setName(util::node_info(n).c_str());
+            auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], new_layer->getOutput(0));
+
+            LOG_DEBUG("Output shape: " << out_tensor->getDimensions());
+            return true;
+        }
+    });
+
+
+
+

+ Converter Contract + + ¶ + +

+

+ What is guaranteed to converters + + ¶ + +

+
    +
  1. +

    + In the args there will be an entry for each node input value, either a ITensor or IValue +

    +
  2. +
  3. +

    + Inputs will be provided in order according to the function schema +

    +
  4. +
+

+ Responsibilities of a converter + + ¶ + +

+
    +
  1. +

    + Args must be guaranteed to be a type to unwrap the Arg union without checking, typically input tensor arguments can be expected to be ITensors +

    +
  2. +
  3. +

    + Any weights or static values must guaranteed to be valid until the end of conversion time +

    +
      +
    1. +

      + A helpful tool is the Weights helper class described below +

      +
    2. +
    +
  4. +
  5. +

    + Converters are expected to produce an IValue or ITensor for each output of a node. The compiler will check this and produce warnings if there are Values that don’t have associated ITensors or IValues. +

    +
  6. +
  7. +

    + Outputs must be annotated +

    +
      +
    1. +

      + There must be an association between a JIT nodes output values and the new TRT layers output tensors in the + + + value_tensor_map + + + in the conversion context +

      +
    2. +
    +
  8. +
  9. +

    + Name your layers +

    +
      +
    1. +

      + Its much easier to debug when we can track which layers and nodes correspond with each other. The system we are currently using is to use the “node info” of the node as the name of the layer +

      +
    2. +
    +
  10. +
  11. +

    + Name your tensors +

    +
      +
    1. +

      + Use the output value debug name as the name for the new ITensor (again for debugging) +

      +
    2. +
    +
  12. +
+

+ Conversion Context + + ¶ + +

+

+ The conversion context maintains the state of conversion, it manages the Network Definition, two maps +one that stores associations between Values and IValues (the evaluated_value_map) and one that stores +associations between Values and ITensors, and any sort of memory that needs to live until the end of +conversion. The main apis that you will interface with in converters is directly accessing the network +definition to add layers + + + ctx->net + + + and data association functions + + + ctx->AssociateValueAndTensor() + + + and + + + ctx->AssociateValueAndIValue() + + + , which you will use to add layers to the TRT layers and log +pairs of node outputs and static values or TensorRT layer outputs. +

+

+ Args + + ¶ + +

+

+ Arguments provided to the converter are inspectable unions of + + + nvinfer1::ITensors + + + and + + + torch::jit::IValues + + + (i.e. +abstract dataflow in the TensorRT graph and static values). You are guaranteed that you will have some +argument for each input value for the node. They are provided in the order of the function schema. +It can be expected that inputs (meaning the parameters that would be passed into the forward +function of a module in PyTorch) will be ITensors but the Arg class also has mechanisms to inspect arguments safely +before unwrapping if you are unsure. Args also have deep unwrap methods that let you get straight to the +underlying data in an IValue if you know it’s safe. You can also pass in a fallback value if there is a +chance the IValue is None. IValues have been extended to be able to hold a wrapper around ITensors only in the case of TensorLists. +You can get an ITensor from an IValue by a pattern similar to this: + + + ivalue.toCustomClass<TensorContainer>()->tensor() + + + . +You can tell if an IValue contains a Tensor or an ITensor by using + + + ivalue.isTensor() + + + or + + + ivalue.isCustomClass() + + + . +

+

+ Weights + + ¶ + +

+

+ Weights are used during build time, so any weights need to be guaranteed to live until the end of the conversion phase. +TensorRT also uses its own weights structure to hold the weights. There is a wrapper around this class available +to converts which abstracts a lot of this. +

+

+ The weights wrapper class can accept either + + + at::Tensors + + + or singular values (right now). You also need to pass the +conversion context when constructing these weights because internally the weights class will allocate memory managed +by the conversion context to store a copy of the tensor data. This data gets freed when the conversion context +destructor gets destroyed so converters don’t really need to think about it. +

+

+ There is metadata generated from the shape of the input data which becomes useful in interfacing with TensorRT, such +as number of input maps, number of output maps and kernel shape. +

+

+ Other advice + + ¶ + +

+

+ You have the benefit of the full aten library when dealing with weights and other static values. This means that you +can do quite a bit of work during conversion time to produce efficient conversion. A good example is batch_norm +converter where the converter does fusion of operations with PyTorch before creating the TensorRT layer. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/genindex.html b/docs/v0.3.0/genindex.html new file mode 100644 index 0000000000..1d7552d6fa --- /dev/null +++ b/docs/v0.3.0/genindex.html @@ -0,0 +1,1241 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Index — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+

+ Index +

+ +

+ S +

+ + + + +
+ +
+

+ T +

+ + + + + +
+ + + +
+

+ X +

+ + + + +
+ +
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/index.html b/docs/v0.3.0/index.html new file mode 100644 index 0000000000..adcb2c311a --- /dev/null +++ b/docs/v0.3.0/index.html @@ -0,0 +1,679 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + TRTorch — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+

+ TRTorch + + ¶ + +

+

+ Ahead-of-time compilation of TorchScript / PyTorch JIT for NVIDIA GPUs + + ¶ + +

+

+ TRTorch is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. +Unlike PyTorch’s Just-In-Time (JIT) compiler, TRTorch is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your +TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into an module targeting +a TensorRT engine. TRTorch operates as a PyTorch extention and compiles modules that integrate into the JIT runtime seamlessly. +After compilation using the optimized graph should feel no different than running a TorchScript module. +You also have access to TensorRT’s suite of configurations at compile time, so you are able to specify +operating precision (FP32/FP16/INT8) and other settings for your module. +

+

+ More Information / System Architecture: +

+ +

+ Getting Started + + ¶ + +

+ +
+
+
+
+

+ Python API Documenation + + ¶ + +

+ +
+
+

+ C++ API Documenation + + ¶ + +

+ +
+
+

+ Contributor Documentation + + ¶ + +

+ +
+
+

+ Indices + + ¶ + +

+ +
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/indices/supported_ops.html b/docs/v0.3.0/indices/supported_ops.html new file mode 100644 index 0000000000..1efea0412b --- /dev/null +++ b/docs/v0.3.0/indices/supported_ops.html @@ -0,0 +1,1709 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Operators Supported — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Operators Supported + + ¶ + +

+

+ Operators Currently Supported Through Converters + + ¶ + +

+
    +
  • +

    + aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> (Tensor) +

    +
  • +
  • +

    + aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> (Tensor) +

    +
  • +
  • +

    + aten::abs(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::acos(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::acosh(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor) +

    +
  • +
  • +

    + aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor) +

    +
  • +
  • +

    + aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) +

    +
  • +
  • +

    + aten::add.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) +

    +
  • +
  • +

    + aten:: + + + add_ + + + .Tensor(Tensor(a!) self, Tensor other, + + + * + + + , Scalar alpha=1) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::asin(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::asinh(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::atan(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::atanh(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], bool ceil_mode=False, bool count_include_pad=True) -> (Tensor) +

    +
  • +
  • +

    + aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) +

    +
  • +
  • +

    + aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) +

    +
  • +
  • +

    + aten::batch_norm(Tensor input, Tensor? gamma, Tensor? beta, Tensor? mean, Tensor? var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor) +

    +
  • +
  • +

    + aten::bmm(Tensor self, Tensor mat2) -> (Tensor) +

    +
  • +
  • +

    + aten::cat(Tensor[] tensors, int dim=0) -> (Tensor) +

    +
  • +
  • +

    + aten::ceil(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor) +

    +
  • +
  • +

    + aten::clamp_max(Tensor self, Scalar max) -> (Tensor) +

    +
  • +
  • +

    + aten::clamp_min(Tensor self, Scalar min) -> (Tensor) +

    +
  • +
  • +

    + aten::cos(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::cosh(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::cumsum(Tensor self, int dim, + + + * + + + , int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::div.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten:: + + + div_ + + + .Scalar(Tensor(a!) self, Scalar other) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten:: + + + div_ + + + .Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> (Tensor) +

    +
  • +
  • +

    + aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor) +

    +
  • +
  • +

    + aten::eq.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::eq.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::erf(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::exp(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::expand(Tensor(a) self, int[] size, + + + * + + + , bool implicit=False) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::expand_as(Tensor(a) self, Tensor other) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor) +

    +
  • +
  • +

    + aten::floor(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::floor_divide(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::floor_divide.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::ge.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::ge.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::gelu(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::gt.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::gt.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor) +

    +
  • +
  • +

    + aten::hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? gamma, Tensor? beta, float eps, bool cudnn_enabled) -> (Tensor) +

    +
  • +
  • +

    + aten::le.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::le.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> (Tensor) +

    +
  • +
  • +

    + aten::leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> (Tensor) +

    +
  • +
  • +

    + aten::log(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor) +

    +
  • +
  • +

    + aten::lt.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::lt.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::matmul(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::max(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::max.other(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[], int[1] dilation=[], bool ceil_mode=False) -> (Tensor) +

    +
  • +
  • +

    + aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor) +

    +
  • +
  • +

    + aten::max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], int[3] dilation=[], bool ceil_mode=False) -> (Tensor) +

    +
  • +
  • +

    + aten::mean(Tensor self, + + + * + + + , int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::mean.dim(Tensor self, int[] dim, bool keepdim=False, + + + * + + + , int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::min(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::min.other(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::mul.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::mul.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten:: + + + mul_ + + + .Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::narrow(Tensor(a) self, int dim, int start, int length) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::ne.Scalar(Tensor self, Scalar other) -> (Tensor) +

    +
  • +
  • +

    + aten::ne.Tensor(Tensor self, Tensor other) -> (Tensor) +

    +
  • +
  • +

    + aten::neg(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> (Tensor) +

    +
  • +
  • +

    + aten::permute(Tensor(a) self, int[] dims) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::pixel_shuffle(Tensor self, int upscale_factor) -> (Tensor) +

    +
  • +
  • +

    + aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor) +

    +
  • +
  • +

    + aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor) +

    +
  • +
  • +

    + aten::prelu(Tensor self, Tensor weight) -> (Tensor) +

    +
  • +
  • +

    + aten::prod(Tensor self, + + + * + + + , int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, + + + * + + + , int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::reciprocal(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::relu(Tensor input) -> (Tensor) +

    +
  • +
  • +

    + aten::relu_(Tensor(a!) self) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::repeat(Tensor self, int[] repeats) -> (Tensor) +

    +
  • +
  • +

    + aten::replication_pad1d(Tensor self, int[2] padding) -> (Tensor) +

    +
  • +
  • +

    + aten::replication_pad2d(Tensor self, int[4] padding) -> (Tensor) +

    +
  • +
  • +

    + aten::replication_pad3d(Tensor self, int[6] padding) -> (Tensor) +

    +
  • +
  • +

    + aten::reshape(Tensor self, int[] shape) -> (Tensor) +

    +
  • +
  • +

    + aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) +

    +
  • +
  • +

    + aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) +

    +
  • +
  • +

    + aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::sigmoid(Tensor input) -> (Tensor) +

    +
  • +
  • +

    + aten::sigmoid_(Tensor(a!) self) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::sin(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::sinh(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::slice.Tensor(Tensor(a) self, int dim=0, int start=0, int end=9223372036854775807, int step=1) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::split(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[]) +

    +
  • +
  • +

    + aten::split.Tensor(Tensor(a) self, int split_size, int dim=0) -> (Tensor[]) +

    +
  • +
  • +

    + aten::split_with_sizes(Tensor(a) self, int[] split_sizes, int dim=0) -> (Tensor[]) +

    +
  • +
  • +

    + aten::sqrt(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::squeeze.dim(Tensor(a) self, int dim) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::stack(Tensor[] tensors, int dim=0) -> (Tensor) +

    +
  • +
  • +

    + aten::sub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) +

    +
  • +
  • +

    + aten:: + + + sub_ + + + .Tensor(Tensor(a!) self, Tensor other, + + + * + + + , Scalar alpha=1) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::sum(Tensor self, + + + * + + + , int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, + + + * + + + , int? dtype=None) -> (Tensor) +

    +
  • +
  • +

    + aten::tan(Tensor self) -> (Tensor) +

    +
  • +
  • +

    + aten::tanh(Tensor input) -> (Tensor) +

    +
  • +
  • +

    + aten::tanh_(Tensor(a!) self) -> (Tensor(a!)) +

    +
  • +
  • +

    + aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices) +

    +
  • +
  • +

    + aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::unsqueeze(Tensor(a) self, int dim) -> (Tensor(a)) +

    +
  • +
  • +

    + aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor) +

    +
  • +
  • +

    + aten::upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) +

    +
  • +
  • +

    + aten::view(Tensor(a) self, int[] size) -> (Tensor(a)) +

    +
  • +
  • +

    + trt::const(Tensor self) -> (Tensor) +

    +
  • +
+

+ Operators Currently Supported Through Evaluators + + ¶ + +

+
    +
  • +

    + aten::Bool.float(float b) -> (bool) +

    +
  • +
  • +

    + aten::Bool.int(int a) -> (bool) +

    +
  • +
  • +

    + aten::Float.Scalar(Scalar a) -> float +

    +
  • +
  • +

    + aten::Float.bool(bool a) -> float +

    +
  • +
  • +

    + aten::Float.int(int a) -> float +

    +
  • +
  • +

    + aten::__and__(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::__getitem__.t(t[](a) list, int idx) -> (t(*)) +

    +
  • +
  • +

    + aten::__is__(t1 self, t2 obj) -> bool +

    +
  • +
  • +

    + aten::__isnot__(t1 self, t2 obj) -> bool +

    +
  • +
  • +

    + aten::__not__(bool self) -> bool +

    +
  • +
  • +

    + aten::__or__(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::__round_to_zero_floordiv(int a, int b) -> (int) +

    +
  • +
  • +

    + aten::__xor__(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::add.float(float a, float b) -> (float) +

    +
  • +
  • +

    + aten::add.int(int a, int b) -> (int) +

    +
  • +
  • +

    + aten:: + + + add_ + + + .t(t[](a!) self, t[] b) -> (t[]) +

    +
  • +
  • +

    + aten::append.t(t[](a!) self, t(c -> + + + * + + + ) el) -> (t[](a!)) +

    +
  • +
  • +
    +
    + aten::arange(Scalar end, + + + * + + + , int? dtype=None, int? layout=None, +
    +
    +

    + Device? device=None, bool? pin_memory=None) -> (Tensor) +

    +
    +
    +
  • +
  • +
    +
    + aten::arange.start(Scalar start, Scalar end, + + + * + + + , ScalarType? dtype=None, +
    +
    +

    + Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) +

    +
    +
    +
  • +
  • +
    +
    + aten::arange.start_step(Scalar start, Scalar end, Scalar step, + + + * + + + , ScalarType? dtype=None, +
    +
    +

    + Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) +

    +
    +
    +
  • +
  • +

    + aten::dim(Tensor self) -> int +

    +
  • +
  • +

    + aten::div.float(float a, float b) -> (float) +

    +
  • +
  • +

    + aten::div.int(int a, int b) -> (float) +

    +
  • +
  • +

    + aten::eq.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + aten::eq.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + aten::eq.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + aten::eq.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::eq.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + aten::floor.float(float a) -> (int) +

    +
  • +
  • +

    + aten::floor.int(int a) -> (int) +

    +
  • +
  • +

    + aten::floordiv.float(float a, float b) -> (int) +

    +
  • +
  • +

    + aten::floordiv.int(int a, int b) -> (int) +

    +
  • +
  • +

    + aten::ge.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + aten::ge.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + aten::ge.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + aten::ge.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::ge.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + aten::gt.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + aten::gt.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + aten::gt.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + aten::gt.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::gt.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + aten::le.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + aten::le.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + aten::le.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + aten::le.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::le.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + aten::len.t(t[] a) -> (int) +

    +
  • +
  • +

    + aten::lt.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + aten::lt.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + aten::lt.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + aten::lt.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::lt.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + aten::mul.float(float a, float b) -> (float) +

    +
  • +
  • +

    + aten::mul.int(int a, int b) -> (int) +

    +
  • +
  • +

    + aten::ne.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + aten::ne.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + aten::ne.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + aten::ne.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + aten::ne.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + aten::neg.int(int a) -> (int) +

    +
  • +
  • +

    + aten::numel(Tensor self) -> int +

    +
  • +
  • +

    + aten::size(Tensor self) -> (int[]) +

    +
  • +
  • +

    + aten::size.int(Tensor self, int dim) -> (int) +

    +
  • +
  • +

    + aten::slice.t(t[] l, int start, int end=9223372036854775807, int step=1) -> (t[]) +

    +
  • +
  • +

    + aten::sub.float(float a, float b) -> (float) +

    +
  • +
  • +

    + aten::sub.int(int a, int b) -> (int) +

    +
  • +
  • +

    + aten::t(Tensor self) -> Tensor +

    +
  • +
  • +

    + prim::max.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + prim::max.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + prim::max.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + prim::max.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + prim::max.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + prim::max.self_int(int[] self) -> (int) +

    +
  • +
  • +

    + prim::min.bool(bool a, bool b) -> (bool) +

    +
  • +
  • +

    + prim::min.float(float a, float b) -> (bool) +

    +
  • +
  • +

    + prim::min.float_int(float a, int b) -> (bool) +

    +
  • +
  • +

    + prim::min.int(int a, int b) -> (bool) +

    +
  • +
  • +

    + prim::min.int_float(int a, float b) -> (bool) +

    +
  • +
  • +

    + prim::min.self_int(int[] self) -> (int) +

    +
  • +
  • +

    + prim::shape(Tensor a) -> (int[]) +

    +
  • +
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/objects.inv b/docs/v0.3.0/objects.inv new file mode 100644 index 0000000000..8537c7a70b Binary files /dev/null and b/docs/v0.3.0/objects.inv differ diff --git a/docs/v0.3.0/py-modindex.html b/docs/v0.3.0/py-modindex.html new file mode 100644 index 0000000000..f8ebe2361e --- /dev/null +++ b/docs/v0.3.0/py-modindex.html @@ -0,0 +1,456 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Python Module Index — TRTorch master documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/py_api/logging.html b/docs/v0.3.0/py_api/logging.html new file mode 100644 index 0000000000..c32bedf364 --- /dev/null +++ b/docs/v0.3.0/py_api/logging.html @@ -0,0 +1,456 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + trtorch.logging — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+
+
+
+ +
+
+
+
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/py_api/trtorch.html b/docs/v0.3.0/py_api/trtorch.html new file mode 100644 index 0000000000..0e8b712127 --- /dev/null +++ b/docs/v0.3.0/py_api/trtorch.html @@ -0,0 +1,534 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + trtorch — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+
+
+ +
+
+
+
+
+ +
+
+
+
+ +
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/search.html b/docs/v0.3.0/search.html new file mode 100644 index 0000000000..31d18a417c --- /dev/null +++ b/docs/v0.3.0/search.html @@ -0,0 +1,415 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Search — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+

+ Search +

+
+ +

+ Please activate JavaScript to enable the search + functionality. +

+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/searchindex.js b/docs/v0.3.0/searchindex.js new file mode 100644 index 0000000000..b3beefeb7e --- /dev/null +++ b/docs/v0.3.0/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({docnames:["_cpp_api/class_view_hierarchy","_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType","_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType","_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator","_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502","_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f","_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055","_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba","_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f","_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da","_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84","_cpp_api/dir_cpp","_cpp_api/dir_cpp_api","_cpp_api/dir_cpp_api_include","_cpp_api/dir_cpp_api_include_trtorch","_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4","_cpp_api/file_cpp_api_include_trtorch_logging.h","_cpp_api/file_cpp_api_include_trtorch_macros.h","_cpp_api/file_cpp_api_include_trtorch_ptq.h","_cpp_api/file_cpp_api_include_trtorch_trtorch.h","_cpp_api/file_view_hierarchy","_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb","_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb","_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949","_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f","_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad","_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b","_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a","_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247","_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31","_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447","_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a","_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e","_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10","_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25","_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08","_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65","_cpp_api/namespace_trtorch","_cpp_api/namespace_trtorch__logging","_cpp_api/namespace_trtorch__ptq","_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h","_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h","_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h","_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h","_cpp_api/structtrtorch_1_1CompileSpec","_cpp_api/structtrtorch_1_1CompileSpec_1_1Device","_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange","_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback","_cpp_api/trtorch_cpp","_cpp_api/unabridged_api","_cpp_api/unabridged_orphan","_notebooks/Resnet50-example","_notebooks/lenet-getting-started","_notebooks/ssd-object-detection-demo","contributors/conversion","contributors/lowering","contributors/phases","contributors/runtime","contributors/system_overview","contributors/useful_links","contributors/writing_converters","index","indices/supported_ops","py_api/logging","py_api/trtorch","tutorials/getting_started","tutorials/installation","tutorials/ptq","tutorials/runtime","tutorials/trtorchc","tutorials/use_from_pytorch","tutorials/using_dla"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,nbsphinx:3,sphinx:56},filenames:["_cpp_api/class_view_hierarchy.rst","_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.rst","_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.rst","_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.rst","_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.rst","_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst","_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.rst","_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.rst","_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.rst","_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.rst","_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.rst","_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst","_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.rst","_cpp_api/dir_cpp.rst","_cpp_api/dir_cpp_api.rst","_cpp_api/dir_cpp_api_include.rst","_cpp_api/dir_cpp_api_include_trtorch.rst","_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.rst","_cpp_api/file_cpp_api_include_trtorch_logging.h.rst","_cpp_api/file_cpp_api_include_trtorch_macros.h.rst","_cpp_api/file_cpp_api_include_trtorch_ptq.h.rst","_cpp_api/file_cpp_api_include_trtorch_trtorch.h.rst","_cpp_api/file_view_hierarchy.rst","_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.rst","_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.rst","_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.rst","_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.rst","_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.rst","_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.rst","_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.rst","_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.rst","_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.rst","_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.rst","_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.rst","_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.rst","_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.rst","_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.rst","_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.rst","_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.rst","_cpp_api/namespace_trtorch.rst","_cpp_api/namespace_trtorch__logging.rst","_cpp_api/namespace_trtorch__ptq.rst","_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.rst","_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.rst","_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.rst","_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.rst","_cpp_api/structtrtorch_1_1CompileSpec.rst","_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.rst","_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.rst","_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.rst","_cpp_api/trtorch_cpp.rst","_cpp_api/unabridged_api.rst","_cpp_api/unabridged_orphan.rst","_notebooks/Resnet50-example.ipynb","_notebooks/lenet-getting-started.ipynb","_notebooks/ssd-object-detection-demo.ipynb","contributors/conversion.rst","contributors/lowering.rst","contributors/phases.rst","contributors/runtime.rst","contributors/system_overview.rst","contributors/useful_links.rst","contributors/writing_converters.rst","index.rst","indices/supported_ops.rst","py_api/logging.rst","py_api/trtorch.rst","tutorials/getting_started.rst","tutorials/installation.rst","tutorials/ptq.rst","tutorials/runtime.rst","tutorials/trtorchc.rst","tutorials/use_from_pytorch.rst","tutorials/using_dla.rst"],objects:{"":{"trtorch::CheckMethodOperatorSupport":[36,1,1,"_CPPv4N7trtorch26CheckMethodOperatorSupportERKN5torch3jit6ModuleENSt6stringE"],"trtorch::CheckMethodOperatorSupport::method_name":[36,2,1,"_CPPv4N7trtorch26CheckMethodOperatorSupportERKN5torch3jit6ModuleENSt6stringE"],"trtorch::CheckMethodOperatorSupport::module":[36,2,1,"_CPPv4N7trtorch26CheckMethodOperatorSupportERKN5torch3jit6ModuleENSt6stringE"],"trtorch::CompileGraph":[33,1,1,"_CPPv4N7trtorch12CompileGraphERKN5torch3jit6ModuleE11CompileSpec"],"trtorch::CompileGraph::info":[33,2,1,"_CPPv4N7trtorch12CompileGraphERKN5torch3jit6ModuleE11CompileSpec"],"trtorch::CompileGraph::module":[33,2,1,"_CPPv4N7trtorch12CompileGraphERKN5torch3jit6ModuleE11CompileSpec"],"trtorch::CompileSpec":[46,3,1,"_CPPv4N7trtorch11CompileSpecE"],"trtorch::CompileSpec::CompileSpec":[46,1,1,"_CPPv4N7trtorch11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE"],"trtorch::CompileSpec::CompileSpec::fixed_sizes":[46,2,1,"_CPPv4N7trtorch11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE"],"trtorch::CompileSpec::CompileSpec::input_ranges":[46,2,1,"_CPPv4N7trtorch11CompileSpec11CompileSpecENSt6vectorI10InputRangeEE"],"trtorch::CompileSpec::DataType":[46,3,1,"_CPPv4N7trtorch11CompileSpec8DataTypeE"],"trtorch::CompileSpec::DataType::DataType":[46,1,1,"_CPPv4N7trtorch11CompileSpec8DataType8DataTypeEv"],"trtorch::CompileSpec::DataType::DataType::t":[46,2,1,"_CPPv4N7trtorch11CompileSpec8DataType8DataTypeEN3c1010ScalarTypeE"],"trtorch::CompileSpec::DataType::Value":[46,4,1,"_CPPv4N7trtorch11CompileSpec8DataType5ValueE"],"trtorch::CompileSpec::DataType::Value::kChar":[46,5,1,"_CPPv4N7trtorch11CompileSpec8DataType5Value5kCharE"],"trtorch::CompileSpec::DataType::Value::kFloat":[46,5,1,"_CPPv4N7trtorch11CompileSpec8DataType5Value6kFloatE"],"trtorch::CompileSpec::DataType::Value::kHalf":[46,5,1,"_CPPv4N7trtorch11CompileSpec8DataType5Value5kHalfE"],"trtorch::CompileSpec::DataType::operator Value":[46,1,1,"_CPPv4NK7trtorch11CompileSpec8DataTypecv5ValueEv"],"trtorch::CompileSpec::DataType::operator bool":[46,1,1,"_CPPv4N7trtorch11CompileSpec8DataTypecvbEv"],"trtorch::CompileSpec::DataType::operator!=":[46,1,1,"_CPPv4NK7trtorch11CompileSpec8DataTypeneEN8DataType5ValueE"],"trtorch::CompileSpec::DataType::operator!=::other":[46,2,1,"_CPPv4NK7trtorch11CompileSpec8DataTypeneEN8DataType5ValueE"],"trtorch::CompileSpec::DataType::operator==":[46,1,1,"_CPPv4NK7trtorch11CompileSpec8DataTypeeqEN8DataType5ValueE"],"trtorch::CompileSpec::DataType::operator==::other":[46,2,1,"_CPPv4NK7trtorch11CompileSpec8DataTypeeqEN8DataType5ValueE"],"trtorch::CompileSpec::Device":[47,3,1,"_CPPv4N7trtorch11CompileSpec6DeviceE"],"trtorch::CompileSpec::Device::Device":[47,1,1,"_CPPv4N7trtorch11CompileSpec6Device6DeviceEv"],"trtorch::CompileSpec::Device::DeviceType":[47,3,1,"_CPPv4N7trtorch11CompileSpec6Device10DeviceTypeE"],"trtorch::CompileSpec::Device::DeviceType::DeviceType":[47,1,1,"_CPPv4N7trtorch11CompileSpec6Device10DeviceType10DeviceTypeEv"],"trtorch::CompileSpec::Device::DeviceType::DeviceType::t":[47,2,1,"_CPPv4N7trtorch11CompileSpec6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE"],"trtorch::CompileSpec::Device::DeviceType::Value":[47,4,1,"_CPPv4N7trtorch11CompileSpec6Device10DeviceType5ValueE"],"trtorch::CompileSpec::Device::DeviceType::Value::kDLA":[47,5,1,"_CPPv4N7trtorch11CompileSpec6Device10DeviceType5Value4kDLAE"],"trtorch::CompileSpec::Device::DeviceType::Value::kGPU":[47,5,1,"_CPPv4N7trtorch11CompileSpec6Device10DeviceType5Value4kGPUE"],"trtorch::CompileSpec::Device::DeviceType::operator Value":[47,1,1,"_CPPv4NK7trtorch11CompileSpec6Device10DeviceTypecv5ValueEv"],"trtorch::CompileSpec::Device::DeviceType::operator bool":[47,1,1,"_CPPv4N7trtorch11CompileSpec6Device10DeviceTypecvbEv"],"trtorch::CompileSpec::Device::DeviceType::operator!=":[47,1,1,"_CPPv4NK7trtorch11CompileSpec6Device10DeviceTypeneE10DeviceType"],"trtorch::CompileSpec::Device::DeviceType::operator!=::other":[47,2,1,"_CPPv4NK7trtorch11CompileSpec6Device10DeviceTypeneE10DeviceType"],"trtorch::CompileSpec::Device::DeviceType::operator==":[47,1,1,"_CPPv4NK7trtorch11CompileSpec6Device10DeviceTypeeqE10DeviceType"],"trtorch::CompileSpec::Device::DeviceType::operator==::other":[47,2,1,"_CPPv4NK7trtorch11CompileSpec6Device10DeviceTypeeqE10DeviceType"],"trtorch::CompileSpec::Device::allow_gpu_fallback":[47,6,1,"_CPPv4N7trtorch11CompileSpec6Device18allow_gpu_fallbackE"],"trtorch::CompileSpec::Device::device_type":[47,6,1,"_CPPv4N7trtorch11CompileSpec6Device11device_typeE"],"trtorch::CompileSpec::Device::dla_core":[47,6,1,"_CPPv4N7trtorch11CompileSpec6Device8dla_coreE"],"trtorch::CompileSpec::Device::gpu_id":[47,6,1,"_CPPv4N7trtorch11CompileSpec6Device6gpu_idE"],"trtorch::CompileSpec::EngineCapability":[46,4,1,"_CPPv4N7trtorch11CompileSpec16EngineCapabilityE"],"trtorch::CompileSpec::EngineCapability::kDEFAULT":[46,5,1,"_CPPv4N7trtorch11CompileSpec16EngineCapability8kDEFAULTE"],"trtorch::CompileSpec::EngineCapability::kSAFE_DLA":[46,5,1,"_CPPv4N7trtorch11CompileSpec16EngineCapability9kSAFE_DLAE"],"trtorch::CompileSpec::EngineCapability::kSAFE_GPU":[46,5,1,"_CPPv4N7trtorch11CompileSpec16EngineCapability9kSAFE_GPUE"],"trtorch::CompileSpec::InputRange":[48,3,1,"_CPPv4N7trtorch11CompileSpec10InputRangeE"],"trtorch::CompileSpec::InputRange::InputRange":[48,1,1,"_CPPv4N7trtorch11CompileSpec10InputRange10InputRangeENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE"],"trtorch::CompileSpec::InputRange::InputRange::max":[48,2,1,"_CPPv4N7trtorch11CompileSpec10InputRange10InputRangeENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE"],"trtorch::CompileSpec::InputRange::InputRange::min":[48,2,1,"_CPPv4N7trtorch11CompileSpec10InputRange10InputRangeENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE"],"trtorch::CompileSpec::InputRange::InputRange::opt":[48,2,1,"_CPPv4N7trtorch11CompileSpec10InputRange10InputRangeENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE"],"trtorch::CompileSpec::InputRange::max":[48,6,1,"_CPPv4N7trtorch11CompileSpec10InputRange3maxE"],"trtorch::CompileSpec::InputRange::min":[48,6,1,"_CPPv4N7trtorch11CompileSpec10InputRange3minE"],"trtorch::CompileSpec::InputRange::opt":[48,6,1,"_CPPv4N7trtorch11CompileSpec10InputRange3optE"],"trtorch::CompileSpec::TorchFallback":[49,3,1,"_CPPv4N7trtorch11CompileSpec13TorchFallbackE"],"trtorch::CompileSpec::TorchFallback::TorchFallback":[49,1,1,"_CPPv4N7trtorch11CompileSpec13TorchFallback13TorchFallbackEv"],"trtorch::CompileSpec::TorchFallback::TorchFallback::enabled":[49,2,1,"_CPPv4N7trtorch11CompileSpec13TorchFallback13TorchFallbackEb8uint64_t"],"trtorch::CompileSpec::TorchFallback::TorchFallback::min_size":[49,2,1,"_CPPv4N7trtorch11CompileSpec13TorchFallback13TorchFallbackEb8uint64_t"],"trtorch::CompileSpec::TorchFallback::enabled":[49,6,1,"_CPPv4N7trtorch11CompileSpec13TorchFallback7enabledE"],"trtorch::CompileSpec::TorchFallback::forced_fallback_ops":[49,6,1,"_CPPv4N7trtorch11CompileSpec13TorchFallback19forced_fallback_opsE"],"trtorch::CompileSpec::TorchFallback::min_block_size":[49,6,1,"_CPPv4N7trtorch11CompileSpec13TorchFallback14min_block_sizeE"],"trtorch::CompileSpec::capability":[46,6,1,"_CPPv4N7trtorch11CompileSpec10capabilityE"],"trtorch::CompileSpec::debug":[46,6,1,"_CPPv4N7trtorch11CompileSpec5debugE"],"trtorch::CompileSpec::device":[46,6,1,"_CPPv4N7trtorch11CompileSpec6deviceE"],"trtorch::CompileSpec::disable_tf32":[46,6,1,"_CPPv4N7trtorch11CompileSpec12disable_tf32E"],"trtorch::CompileSpec::input_ranges":[46,6,1,"_CPPv4N7trtorch11CompileSpec12input_rangesE"],"trtorch::CompileSpec::max_batch_size":[46,6,1,"_CPPv4N7trtorch11CompileSpec14max_batch_sizeE"],"trtorch::CompileSpec::num_avg_timing_iters":[46,6,1,"_CPPv4N7trtorch11CompileSpec20num_avg_timing_itersE"],"trtorch::CompileSpec::num_min_timing_iters":[46,6,1,"_CPPv4N7trtorch11CompileSpec20num_min_timing_itersE"],"trtorch::CompileSpec::op_precision":[46,6,1,"_CPPv4N7trtorch11CompileSpec12op_precisionE"],"trtorch::CompileSpec::ptq_calibrator":[46,6,1,"_CPPv4N7trtorch11CompileSpec14ptq_calibratorE"],"trtorch::CompileSpec::refit":[46,6,1,"_CPPv4N7trtorch11CompileSpec5refitE"],"trtorch::CompileSpec::strict_types":[46,6,1,"_CPPv4N7trtorch11CompileSpec12strict_typesE"],"trtorch::CompileSpec::torch_fallback":[46,6,1,"_CPPv4N7trtorch11CompileSpec14torch_fallbackE"],"trtorch::CompileSpec::truncate_long_and_double":[46,6,1,"_CPPv4N7trtorch11CompileSpec24truncate_long_and_doubleE"],"trtorch::CompileSpec::workspace_size":[46,6,1,"_CPPv4N7trtorch11CompileSpec14workspace_sizeE"],"trtorch::ConvertGraphToTRTEngine":[38,1,1,"_CPPv4N7trtorch23ConvertGraphToTRTEngineERKN5torch3jit6ModuleENSt6stringE11CompileSpec"],"trtorch::ConvertGraphToTRTEngine::info":[38,2,1,"_CPPv4N7trtorch23ConvertGraphToTRTEngineERKN5torch3jit6ModuleENSt6stringE11CompileSpec"],"trtorch::ConvertGraphToTRTEngine::method_name":[38,2,1,"_CPPv4N7trtorch23ConvertGraphToTRTEngineERKN5torch3jit6ModuleENSt6stringE11CompileSpec"],"trtorch::ConvertGraphToTRTEngine::module":[38,2,1,"_CPPv4N7trtorch23ConvertGraphToTRTEngineERKN5torch3jit6ModuleENSt6stringE11CompileSpec"],"trtorch::EmbedEngineInNewModule":[37,1,1,"_CPPv4N7trtorch22EmbedEngineInNewModuleERKNSt6stringE"],"trtorch::EmbedEngineInNewModule::engine":[37,2,1,"_CPPv4N7trtorch22EmbedEngineInNewModuleERKNSt6stringE"],"trtorch::dump_build_info":[35,1,1,"_CPPv4N7trtorch15dump_build_infoEv"],"trtorch::get_build_info":[32,1,1,"_CPPv4N7trtorch14get_build_infoEv"],"trtorch::logging::Level":[17,4,1,"_CPPv4N7trtorch7logging5LevelE"],"trtorch::logging::Level::kDEBUG":[17,5,1,"_CPPv4N7trtorch7logging5Level6kDEBUGE"],"trtorch::logging::Level::kERROR":[17,5,1,"_CPPv4N7trtorch7logging5Level6kERRORE"],"trtorch::logging::Level::kGRAPH":[17,5,1,"_CPPv4N7trtorch7logging5Level6kGRAPHE"],"trtorch::logging::Level::kINFO":[17,5,1,"_CPPv4N7trtorch7logging5Level5kINFOE"],"trtorch::logging::Level::kINTERNAL_ERROR":[17,5,1,"_CPPv4N7trtorch7logging5Level15kINTERNAL_ERRORE"],"trtorch::logging::Level::kWARNING":[17,5,1,"_CPPv4N7trtorch7logging5Level8kWARNINGE"],"trtorch::logging::get_is_colored_output_on":[25,1,1,"_CPPv4N7trtorch7logging24get_is_colored_output_onEv"],"trtorch::logging::get_logging_prefix":[29,1,1,"_CPPv4N7trtorch7logging18get_logging_prefixEv"],"trtorch::logging::get_reportable_log_level":[23,1,1,"_CPPv4N7trtorch7logging24get_reportable_log_levelEv"],"trtorch::logging::log":[27,1,1,"_CPPv4N7trtorch7logging3logE5LevelNSt6stringE"],"trtorch::logging::log::lvl":[27,2,1,"_CPPv4N7trtorch7logging3logE5LevelNSt6stringE"],"trtorch::logging::log::msg":[27,2,1,"_CPPv4N7trtorch7logging3logE5LevelNSt6stringE"],"trtorch::logging::set_is_colored_output_on":[26,1,1,"_CPPv4N7trtorch7logging24set_is_colored_output_onEb"],"trtorch::logging::set_is_colored_output_on::colored_output_on":[26,2,1,"_CPPv4N7trtorch7logging24set_is_colored_output_onEb"],"trtorch::logging::set_logging_prefix":[24,1,1,"_CPPv4N7trtorch7logging18set_logging_prefixENSt6stringE"],"trtorch::logging::set_logging_prefix::prefix":[24,2,1,"_CPPv4N7trtorch7logging18set_logging_prefixENSt6stringE"],"trtorch::logging::set_reportable_log_level":[28,1,1,"_CPPv4N7trtorch7logging24set_reportable_log_levelE5Level"],"trtorch::logging::set_reportable_log_level::lvl":[28,2,1,"_CPPv4N7trtorch7logging24set_reportable_log_levelE5Level"],"trtorch::ptq::Int8CacheCalibrator":[3,3,1,"_CPPv4I0EN7trtorch3ptq19Int8CacheCalibratorE"],"trtorch::ptq::Int8CacheCalibrator::Algorithm":[3,7,1,"_CPPv4I0EN7trtorch3ptq19Int8CacheCalibratorE"],"trtorch::ptq::Int8CacheCalibrator::Int8CacheCalibrator":[3,1,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE"],"trtorch::ptq::Int8CacheCalibrator::Int8CacheCalibrator::cache_file_path":[3,2,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE"],"trtorch::ptq::Int8CacheCalibrator::getBatch":[3,1,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8CacheCalibrator::getBatch::bindings":[3,2,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8CacheCalibrator::getBatch::names":[3,2,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8CacheCalibrator::getBatch::nbBindings":[3,2,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8CacheCalibrator::getBatchSize":[3,1,1,"_CPPv4NK7trtorch3ptq19Int8CacheCalibrator12getBatchSizeEv"],"trtorch::ptq::Int8CacheCalibrator::operator nvinfer1::IInt8Calibrator*":[3,1,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibratorcvPN8nvinfer115IInt8CalibratorEEv"],"trtorch::ptq::Int8CacheCalibrator::readCalibrationCache":[3,1,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t"],"trtorch::ptq::Int8CacheCalibrator::readCalibrationCache::length":[3,2,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t"],"trtorch::ptq::Int8CacheCalibrator::writeCalibrationCache":[3,1,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t"],"trtorch::ptq::Int8CacheCalibrator::writeCalibrationCache::cache":[3,2,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t"],"trtorch::ptq::Int8CacheCalibrator::writeCalibrationCache::length":[3,2,1,"_CPPv4N7trtorch3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t"],"trtorch::ptq::Int8Calibrator":[4,3,1,"_CPPv4I00EN7trtorch3ptq14Int8CalibratorE"],"trtorch::ptq::Int8Calibrator::Algorithm":[4,7,1,"_CPPv4I00EN7trtorch3ptq14Int8CalibratorE"],"trtorch::ptq::Int8Calibrator::DataLoaderUniquePtr":[4,7,1,"_CPPv4I00EN7trtorch3ptq14Int8CalibratorE"],"trtorch::ptq::Int8Calibrator::Int8Calibrator":[4,1,1,"_CPPv4N7trtorch3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb"],"trtorch::ptq::Int8Calibrator::Int8Calibrator::cache_file_path":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb"],"trtorch::ptq::Int8Calibrator::Int8Calibrator::dataloader":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb"],"trtorch::ptq::Int8Calibrator::Int8Calibrator::use_cache":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb"],"trtorch::ptq::Int8Calibrator::getBatch":[4,1,1,"_CPPv4N7trtorch3ptq14Int8Calibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8Calibrator::getBatch::bindings":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8Calibrator::getBatch::names":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8Calibrator::getBatch::nbBindings":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator8getBatchEA_PvA_PKci"],"trtorch::ptq::Int8Calibrator::getBatchSize":[4,1,1,"_CPPv4NK7trtorch3ptq14Int8Calibrator12getBatchSizeEv"],"trtorch::ptq::Int8Calibrator::operator nvinfer1::IInt8Calibrator*":[4,1,1,"_CPPv4N7trtorch3ptq14Int8CalibratorcvPN8nvinfer115IInt8CalibratorEEv"],"trtorch::ptq::Int8Calibrator::readCalibrationCache":[4,1,1,"_CPPv4N7trtorch3ptq14Int8Calibrator20readCalibrationCacheER6size_t"],"trtorch::ptq::Int8Calibrator::readCalibrationCache::length":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator20readCalibrationCacheER6size_t"],"trtorch::ptq::Int8Calibrator::writeCalibrationCache":[4,1,1,"_CPPv4N7trtorch3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t"],"trtorch::ptq::Int8Calibrator::writeCalibrationCache::cache":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t"],"trtorch::ptq::Int8Calibrator::writeCalibrationCache::length":[4,2,1,"_CPPv4N7trtorch3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t"],"trtorch::ptq::make_int8_cache_calibrator":[31,1,1,"_CPPv4I0EN7trtorch3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE"],"trtorch::ptq::make_int8_cache_calibrator::Algorithm":[31,7,1,"_CPPv4I0EN7trtorch3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE"],"trtorch::ptq::make_int8_cache_calibrator::cache_file_path":[31,2,1,"_CPPv4I0EN7trtorch3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE"],"trtorch::ptq::make_int8_calibrator":[30,1,1,"_CPPv4I00EN7trtorch3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb"],"trtorch::ptq::make_int8_calibrator::Algorithm":[30,7,1,"_CPPv4I00EN7trtorch3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb"],"trtorch::ptq::make_int8_calibrator::DataLoader":[30,7,1,"_CPPv4I00EN7trtorch3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb"],"trtorch::ptq::make_int8_calibrator::cache_file_path":[30,2,1,"_CPPv4I00EN7trtorch3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb"],"trtorch::ptq::make_int8_calibrator::dataloader":[30,2,1,"_CPPv4I00EN7trtorch3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb"],"trtorch::ptq::make_int8_calibrator::use_cache":[30,2,1,"_CPPv4I00EN7trtorch3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb"],"trtorch::set_device":[34,1,1,"_CPPv4N7trtorch10set_deviceEKi"],"trtorch::set_device::gpu_id":[34,2,1,"_CPPv4N7trtorch10set_deviceEKi"],STR:[5,0,1,"c.STR"],TRTORCH_API:[6,0,1,"c.TRTORCH_API"],TRTORCH_HIDDEN:[7,0,1,"c.TRTORCH_HIDDEN"],TRTORCH_MAJOR_VERSION:[8,0,1,"c.TRTORCH_MAJOR_VERSION"],TRTORCH_MINOR_VERSION:[12,0,1,"c.TRTORCH_MINOR_VERSION"],TRTORCH_PATCH_VERSION:[9,0,1,"c.TRTORCH_PATCH_VERSION"],TRTORCH_VERSION:[10,0,1,"c.TRTORCH_VERSION"],XSTR:[11,0,1,"c.XSTR"]}},objnames:{"0":["c","macro","C macro"],"1":["cpp","function","C++ function"],"2":["cpp","functionParam","functionParam"],"3":["cpp","class","C++ class"],"4":["cpp","enum","C++ enum"],"5":["cpp","enumerator","C++ enumerator"],"6":["cpp","member","C++ member"],"7":["cpp","templateParam","templateParam"]},objtypes:{"0":"c:macro","1":"cpp:function","2":"cpp:functionParam","3":"cpp:class","4":"cpp:enum","5":"cpp:enumerator","6":"cpp:member","7":"cpp:templateParam"},terms:{"001s":53,"00f1b6db":53,"01s":53,"04s":53,"07s":53,"0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db":68,"0x7efed6e50f10":[],"11k":53,"12a":53,"16280mib":53,"1x1":55,"24k":53,"2_20200626":68,"2c365_subsampl":53,"2mib":53,"300w":53,"300x300":55,"31c":53,"32w":53,"32x32":53,"33c":53,"33w":53,"34c":53,"34w":53,"353k":53,"35c":53,"35k":53,"35w":53,"36c":53,"37c":53,"43w":53,"442k":53,"4fef":53,"53k":53,"55k":53,"774kb":53,"818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656":68,"81k":53,"84e944ff11f8":53,"891mib":53,"9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41":68,"94k":53,"9ab0":53,"abstract":[59,62],"byte":[],"case":[1,2,46,47,54,55,56,59,62,68,69],"catch":[57,67],"char":[3,4,44,67],"class":[30,31,44,45,46,47,52,53,54,55,59,62,67,69],"const":[1,2,3,4,30,31,33,34,36,37,38,44,45,46,47,57,62,64,67,69],"default":[1,2,3,4,17,30,31,43,45,46,47,49,53,55,67,69,71,72],"enum":[1,2,42,45,46,47,52,69],"export":68,"final":[56,58,60,68],"float":[46,64,67,71],"function":[1,2,3,4,46,47,48,49,52,53,54,55,57,59,62,67,69,72,73],"import":[53,54,55,57,67,70,71,72],"int":[3,4,34,44,45,46,64,67],"long":[46,56],"new":[1,2,3,4,33,37,46,47,48,53,54,59,60,62,67],"public":[1,2,3,4,44,45,46,47,48,49,69],"return":[1,2,3,4,23,25,30,31,32,33,36,37,38,42,43,44,45,46,47,53,54,57,58,59,60,62,67,69],"short":57,"static":[46,48,56,62,67],"super":[44,54,67],"throw":[57,67],"true":[1,2,4,46,47,53,54,55,57,62,64,67,69,72,73],"try":[53,54,60,67,72],"var":64,"void":[3,4,24,26,27,28,34,35,42,44,45],"while":69,And:67,Are:42,Bus:53,But:67,For:[53,54,55,56,67,68,69,70,72],IDs:55,Its:62,Not:3,One:67,PRs:67,Thats:67,The:[2,46,47,53,54,55,56,57,58,59,60,62,68,69,71,72],Then:[68,69,72],There:[4,53,55,56,62,67,69,70],These:[56,59,69],Use:[46,62,69],Useful:63,Using:[4,53,55,63,73],Will:36,With:[53,67,69],___torch_mangle_10:67,___torch_mangle_4847:59,___torch_mangle_5:67,___torch_mangle_9:67,__and__:64,__attribute__:43,__getitem__:64,__gnuc__:43,__init__:[54,67],__is__:64,__isnot__:64,__not__:64,__or__:64,__round_to_zero_floordiv:64,__torch__:[59,67],__torch___pytorch_detection_ssd_src_model_ssd300_trt_engin:59,__torch___torchvision_models_resnet____torch_mangle_4847_resnet_trt_engin:59,__visibility__:43,__xor__:64,_all_:57,_convolut:[64,67],_jit_to_backend:72,_jit_to_tensorrt:[],_script:[],a100:[53,54],aarch64:60,abi:70,abl:[53,54,56,57,62,63,69,72],about:[55,56,59,62,67,71],abov:[28,55,67],abs:64,acceler:[53,54,67,73],accept:[46,48,59,62,71],access:[55,57,62,63,67,72],accord:62,accumul:46,accuraci:[55,69],achiev:[53,54],aco:64,acosh:64,across:57,acthardtanh:62,activ:[67,69,73],activationtyp:62,actual:[54,57,59,62,67],adaptive_avg_pool1d:64,adaptive_avg_pool2d:64,adaptiveavgpool2d:53,add:[27,56,57,62,64,67,68],add_:[57,64,67],add_patch:55,addactiv:62,added:[28,56],addit:[55,57,67],addlay:67,addshuffl:67,advanc:69,affin:53,after:[55,56,63,67,70,71],again:[44,55,59,62],against:[67,71],agre:[53,54,55],agx:45,ahead:67,aim:57,algo_typ:69,algorithm:[3,4,30,31,44,69],align_corn:64,all:[17,42,43,44,45,53,54,55,57,59,67,69,70,71],alloc:62,allow:[46,48,53,54,55,56,57,71],allow_gpu_fallback:[45,46,47,69,72,73],allow_tf32:64,almost:67,alpha:[55,64],alreadi:[53,56,57,67,69,71],also:[31,53,54,55,56,62,63,67,68,69],alwai:[3,4,26],amazonaw:53,amp:53,analog:67,analogu:62,analysi:[53,55],ani:[53,54,55,56,62,67,68,69,71],annot:[55,62,67],anoth:67,aot:[63,67],apach:[53,54,55],apex:55,api:[13,15,16,42,43,44,45,60,62,67,69,70,72],apidirectori:[22,50],append:[53,54,55,64],appli:69,applic:[2,31,46,47,53,54,55,57,60,67,70,71,72,73],approach:[53,54],apr:67,aquir:67,arang:64,architectur:[55,63,68],archiv:68,aren:67,arg:[56,67],argc:67,argmax:53,argument:[57,59,62,67,71],argv:67,around:[59,62,67],arrai:[3,4,56],arrayref:[45,46,48],arti:53,arxiv:69,asin:64,asinh:64,aspect:71,assembl:[56,67],assign:[3,4],associ:[56,62,67],associatevalueandivalu:62,associatevalueandtensor:[62,67],assum:72,atan:64,atanh:64,aten:[57,61,62,64,67],attach:55,attribut:[57,59,67],aug:53,auto:[44,62,67,69,73],automat:[46,49,53,54,67],avail:[53,54,55,62,68,73],ave:[53,54],averag:[46,53,54,55,71],avg:[55,71],avg_pool1d:64,avg_pool2d:64,avg_pool3d:64,avgpool:[53,55],avoid:53,await:53,axes:53,axi:53,b_hh:64,b_ih:64,back:[57,59,60,67],back_insert:44,backbon:55,backend:[53,54,55,72],background:55,base:[35,50,51,53,54,55,59,67,68,69],bash:[55,68],basi:[53,54,55],basic:71,batch:[3,4,44,46,53,54,55,69,71,73],batch_norm:[62,64],batch_siz:[44,55,69],batched_data_:44,batchnorm2d:53,batchnorm:[55,57],batchtyp:44,bazel:[60,68],bazel_vers:68,bazelbuild:68,bazelisk:68,bazelvers:68,bbox:55,bdist_wheel:68,becaus:[62,67,68],becom:62,been:[56,62,67],befor:[46,55,57,60,62,63,67,68],begin:[44,68],beginn:67,behav:[53,55],behavior:46,being:67,below:[55,62,67],benchmark:[54,64],benefit:[62,67],best:[46,48,53,54,68],best_result:55,best_results_per_input:55,best_results_per_input_trt:55,beta:64,better:[53,54,55,67,69],between:[55,62,69],bia:[53,54,57,64,67],bin:[53,68],binari:[44,69],bind:[3,4,44],bird:53,bit:[46,62,67],blob:[61,69],block0:57,block1:57,block:[56,57],bmm:64,bn1:53,bn2:53,bn3:53,bool:[1,2,3,4,25,26,30,36,42,44,45,46,47,49,57,62,64,67,69],bot:55,both:[53,54,55,67,68,69],bottleneck:53,bound:55,box:55,branch:68,breed:53,briefli:67,bsd:[42,43,44,45],buffer:[3,4],bug:68,build:[30,31,32,46,56,58,60,62,67,69,71],build_fil:68,builderconfig:45,built:[37,60,68,71],bust:53,bzl:68,c10:[1,2,45,46,47,48,67,69],c96b:53,c_api:61,c_str:[62,67],cach:[3,4,30,31,44,53,55,67,69,71],cache_:44,cache_fil:[44,69],cache_file_path:[3,4,30,31,44],cache_file_path_:44,cache_size_:44,cachecalibr:69,calcul:[56,67],calibr:[3,4,30,31,44,46,67,69,71],calibration_cache_fil:[30,31,69],calibration_dataload:[30,69],calibration_dataset:69,calibrationalgo:69,call:[30,31,33,46,53,54,55,57,59,62,67,72],callmethod:67,can:[1,2,4,30,31,38,46,47,48,53,54,55,56,57,58,59,60,62,67,68,69,70,71,72],cannot:[53,54,55,57,67],cap:53,capabl:[45,46,71,72],captur:55,cast:[3,4,57],cat:[64,68],caught:57,caus:[62,68],cdll:67,ceil:64,ceil_mod:[53,64],cell:55,centercrop:53,cerr:67,certifi:53,cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a:68,chain:62,chanc:62,chang:[31,53,54,57,60,69],channel:53,check:[1,2,36,46,47,55,57,62,67,68,70,71],check_method_op_support:[],checkmethodoperatorsupport:[21,39,45,50,51,67],checkpoint:55,checkpoint_from_distribut:55,chimpansee_amber_r_1920x1080:53,chimpanze:53,choos:[67,68],cifar10:69,cifar:69,clamp:64,clamp_max:64,clamp_min:64,classes_to_label:55,classif:[54,55,67],classifi:54,clear:44,cli:[67,71],close:67,closer:57,cloudfront:53,coco:55,cocodataset:55,code:[53,54,55,60,63,67,69],collect:67,color:[25,26],colored_output_on:[26,42],com:[53,54,61,67,68,69],come:[53,54],command:[53,67,68,71],comment:68,common:[53,55,56,57],common_subexpression_elimin:57,commun:67,compar:55,comparis:[1,46],comparison:[2,46,47],compat:[1,2,46,47,57,59,68],compil:[33,36,38,46,53,54,55,57,59,62,69,70,71,72,73],compile_set:[54,67,69],compile_spec:[69,73],compilegraph:[21,39,45,50,51,67,69],compilespec:[0,2,3,4,21,33,38,39,45,50,51,67,69,73],compilespecstruct:[0,50],complet:[53,54,55,67],complex:67,compli:55,complianc:[53,54,55],compliat:69,compon:[54,58,60,67,70],compos:[53,54,55,67,69],composit:67,comprehens:55,comput:[46,53,54,55,68,69],conclus:53,condit:[53,54,55],confid:[53,55],config:68,configur:[33,38,63,67,68,69],connect:[53,57,73],consecut:[46,49],consid:[53,67],consol:71,consolid:67,constant:[56,57,67],constexpr:[1,2,45,46,47],construct:[1,2,3,4,46,47,48,49,56,57,58,60,62,67,69],constructor:[1,46,47,49,59,67],consum:[4,56,67],contain:[30,36,53,54,55,56,57,62,67,68,69,70],content:69,context:[56,58,59,60],continu:[53,54,55,70],contributor:67,control:[53,54,55,67],conv1:[53,54,67],conv2:[53,54,67],conv2d:[53,54,67],conv3:53,conv4_x:55,conv5_x:55,conv:67,conveni:[55,69],convers:[53,55,57,59,67],conversionctx:[62,67],convert:[3,4,33,36,38,46,49,54,55,57,58,60,63,72],convert_method_to_trt_engin:72,convertgraphtotrtengin:[21,39,45,50,51,67],convien:46,convienc:[3,4],convolut:[55,69,73],coordin:60,copi:[44,53,54,55,62],copyright:[42,43,44,45,53,54,55,67],core:[45,53,54,55,57,60,67,73],corpor:[42,43,44,45,53,54,55],correct:68,correspond:[53,55,62],cos:64,cosh:64,count_include_pad:64,coupl:[53,54,56,60,70],cout:67,cp36:68,cp36m:68,cp37:68,cp37m:68,cp38:68,cp39:68,cpp:[14,15,16,42,43,44,45,52,57,60,67,69],cpp_frontend:69,cppdirectori:[22,50],cppdoc:67,creat:[30,31,37,53,54,55,56,59,62,71],credit:67,csrc:[57,61],cstddef:69,ctx:[62,67],ctype:67,cu102:68,cuda111:68,cuda:[46,53,54,55,59,67,68,69,72],cuda_runtim:[21,45],cudafloattyp:67,cudasetdevic:34,cudnn8:68,cudnn:[53,54,55],cudnn_en:64,cumsum:64,curl:68,current:[23,62],custom:68,cxx11:70,cycler:53,d17fnq9dkz9hgj:53,data:[1,3,4,30,31,44,45,46,47,53,54,55,56,58,60,62,69],data_dir:69,dataflow:[62,67],dataload:[4,30,31,44,46,69],dataloader_:44,dataloadercalibr:69,dataloaderopt:69,dataloaderuniqueptr:[4,44],dataset:[31,55,69],datatyp:[0,2,21,39,45,46,47,50,51],dateutil:53,dbg:68,dead_code_elimin:57,deal:62,debug:[17,26,45,46,62,71,72],debugg:71,decid:54,decod:53,decode_result:55,deconvolut:73,dedic:57,deep:[53,54,55,62,63,69,73],deeplearn:61,deeplearningexampl:55,def:[53,54,55,67],defin:[1,2,3,4,17,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,43,46,47,48,49,52,53,54,67,69,71],definit:[52,62],delet:[1,2,45,46,47,57],demo:[53,55,69],demonstr:[53,54,55,69],denorm:55,dep:68,depend:[31,32,53,55,56,60,67,70],depickl:59,deploi:[53,54,63,67,69],deploy:[53,54,67,69,70,71,73],deprec:64,describ:[46,53,54,55,62,67,72],deseri:67,design:[53,54,73],desir:69,destroi:62,destructor:62,detail:[53,67,70],detect:[53,59],detections_batch:55,determin:57,determinist:64,develop:[53,54,63,67,68],deviat:71,devic:[0,21,34,39,45,46,50,51,53,54,64,67,69,71,72,73],device_typ:[45,46,47,69,72,73],deviceclass:[0,50],devicetyp:[21,39,45,46,47,50,51,69,72,73],devicetypestruct:[0,50],dict:55,dictionari:[67,72],differ:[31,54,55,57,60,63,67],differenti:[53,54],dilat:[53,64],dim0:64,dim1:64,dim:[53,64],dim_int:64,dim_intlist:64,dimens:57,directli:[62,63,69],directori:[18,19,20,21,22,42,43,44,45,50,53,68,69],disabl:[68,71],disable_tf32:[45,46,69],disclos:68,disp:53,displai:71,dist:[53,68],distdir:68,distribut:[53,54,55,67,69,70],div:64,div_:64,divisor_overrid:64,dl_open:70,dla:[2,45,46,47,63,71],dla_cor:[45,46,47,69,72,73],doc:[60,61,68],docker:[53,54,55],docsrc:60,document:[42,43,44,45,50,51,60,67,69,70,72],doe:[43,44,53,55,57,62,69],doesn:67,doing:[55,56,57,67,69],domain:69,don:[54,62,69],done:[53,55,56,60],dont:42,doubl:46,down:[53,54,68],download:[55,68,69],downsampl:53,doxygen_should_skip_thi:[44,45],driver:[53,68],drop:[55,68],dtype:[53,54,55,64],due:[3,4,53,55],dump:[35,68,71],dump_build_info:[21,39,45,50,51],dure:[62,69,71],dynam:[46,48],each:[3,4,46,55,56,57,59,62,67],eager:[53,54],earlier:53,easi:[56,57,67,69,71],easier:[58,60,62,67,69],easiest:68,easili:[3,4],ecc:53,ecosystem:[53,54,55],edgecolor:55,edu:69,effect:[57,67,69],effici:62,either:[46,48,53,54,55,62,67,68,71],element:59,element_typ:44,els:[43,44],elu:64,emb:[37,67],embed:[59,64,67,71,73],embedengineinnewmodul:[21,39,45,50,51],emit:56,empti:[54,67],emum:[17,46],enabl:[3,4,25,45,46,49,53,54,55],encount:68,end:[44,62,64,67,69],end_dim:[64,67],end_tim:[53,54,55],endif:[43,44,45],enforc:67,engin:[1,2,33,37,38,45,46,47,48,56,58,60,63,67,69,71,72,73],engine_converted_from_jit:67,enginecap:[45,46,72],enhanc:55,ensur:[31,57],enter:56,entri:[46,62],entropi:[30,31,69],entropy_calibration_2:69,enumer:[1,2,17,46,47],eps:[53,64],equival:[33,53,54,55,58,60,62,67,69],equivil:38,erf:64,error:[17,56,57,60,67,68],etc:73,eval:[53,54,55,67],evalu:[55,58,59,60],evaluated_value_map:[56,62],even:67,everi:67,everyth:17,exactli:55,exampl:[53,54,55,59,60,62,67,69],except:[53,54,55],exception_elimin:57,execpt:57,execut:[37,53,54,55,57,58,59,60,67,69],execute_engin:[59,67],exeuct:59,exhaust:67,exist:[4,33,36,38,53,68,69],exp:64,expand:[57,64],expand_a:64,expect:[53,57,62,67],experi:[53,54],explic:44,explicit:[3,4,45,57,63,69],explicitli:[46,49,69,72],explict:44,explictli:[1,46],expon:64,expos:69,express:[53,54,55],extend:[58,60,62,67],extent:[63,67],extra:[46,67],extract:67,extractor:54,f16:[67,71,73],f32:71,facecolor:55,factori:[4,30,31,69],fail:[67,73],fallback:[46,49,62,71,73],fals:[1,2,3,4,44,45,46,47,49,53,55,64,67,69,72],famili:[53,54,55],familyhandyman:53,fan:53,fashion:67,fbed:53,fc1:[54,67],fc2:[54,67],fc3:[54,67],feat:[54,67],featur:[46,49,53,54,55,67,69,71,72],fed:[3,4],feed:[30,31,67],feel:63,few:[53,54],field:[3,4,69],fig:[53,55],file:[1,2,3,4,5,6,7,8,9,10,11,12,17,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,46,47,48,49,53,54,55,59,60,67,68,69,71],file_path:71,filer_publ:53,filer_public_thumbnail:53,fill:[53,54],filter:55,find:[4,55,67],finish:55,first:[53,54,55,56,57,67,69],five:55,fix:[46,53,55,73],fixed_s:[45,46],flag:[68,71],flatten:[54,64,67],flatten_convert:67,flexibl:[53,54,55],float16:71,float32:[46,53,71],float_int:64,floor:64,floor_divid:64,floordiv:64,flow:[53,54,55,62,67],fly:67,follow:[53,54,55,67,68,69,71],footprint:[53,54],forc:71,forced_fallback_op:[45,46,49],form:56,format:[46,53,54,55,71],forum:68,forward:[30,31,33,37,54,59,62,67,69,72],found:[42,43,44,45,53,55,67,68,69],fp16:[1,46,54,55,63,67,73],fp32:[1,46,54,55,63,69],framework:[53,54,55],freed:62,freez:67,freeze_modul:57,from:[1,2,3,4,30,31,44,46,47,48,49,53,54,55,56,57,58,59,60,62,63,67,69,71],fssl:68,fstream:[20,44],full:[62,67,69,70,71,73],fulli:[36,57,67,69,73],fuse:[53,54],fuse_addmm_branch:57,fuse_flatten_linear:57,fuse_linear:57,fusion:62,futur:[53,54],gain:55,gamma:64,gaurd:43,gcc:[60,67],gear:69,gelu:64,gener:[3,4,31,53,54,55,57,59,60,62,67,69,71],get:[1,2,3,4,23,32,44,46,47,48,55,57,62,68,69,72],get_batch_impl:44,get_build_info:[21,39,45,50,51],get_coco_object_dictionari:55,get_is_colored_output_on:[18,40,42,50,51],get_logging_prefix:[18,40,42,50,51],get_reportable_log_level:[18,40,42,50,51],getattr:[57,59,67],getbatch:[3,4,44],getbatchs:[3,4,44],getdimens:[62,67],getoutput:[62,67],github:[53,54,55,61,67,68,69],give:54,given:[46,53,55,57,67,71,72],global:[27,67],gnu:68,goal:62,going:[44,67],good:[44,62],got:67,govern:[53,54,55],gpu:[2,33,34,38,45,46,47,53,54,67,69,71,72,73],gpu_id:[34,45,46,47,69,72,73],granular:54,graph:[17,33,36,38,45,53,54,55,56,58,60,62,63,67],great:[53,54,55,67],green_mamba:53,group:64,gtc:63,guard:57,guard_elimin:57,gulf:53,hack:44,hakaimagazin:53,half:[54,55,67,71,72,73],handl:[55,57,59],happen:[53,54,67],hardtanh:[62,64],hardtanh_:64,hardwar:[53,54,55,73],has:[53,54,55,56,57,60,62,67,69],hash:68,have:[31,44,53,54,55,56,57,62,63,67,68,69,71],haven:67,head:55,header:[53,67],help:[26,53,54,56,62,67,71],helper:[53,54,55,62],here:[44,53,54,55,56,59,67,68,69],hermet:68,hfile:[22,50],hidden:43,high:[53,55,57,67],higher:[57,67],hinton:69,hold:[46,47,48,49,56,62,69],holder:59,home:68,hood:60,host:68,how:[3,4,53,55,67,72],howev:[31,53,54,55,68],html:[61,67,68,69],http:[53,54,55,61,67,68,69],http_archiv:68,hub:[53,55],huski:53,idea:57,ident:71,idx:[55,64],ifndef:[44,45],ifstream:44,iint8calibr:[3,4,30,31,44,45,46,69],iint8entropycalibrator2:[3,4,30,31,44,69],iint8minmaxcalibr:[30,31,69],ilay:62,imag:[53,55,69],image_idx:55,imagenet:53,imagenet_cla:53,imagenet_class_index:53,images_:69,img0:53,img1:53,img2:53,img3:53,img:53,img_path:53,impact:[53,54,55],implement:[3,4,53,54,55,57,59,67,69],impli:[53,54,55],implic:57,implicit:64,imshow:[53,55],in_featur:[53,54],in_shap:67,in_tensor:67,incas:44,includ:[14,16,17,32,35,42,43,44,45,52,53,54,55,67,68,69,71],includedirectori:[22,50],ind:53,independ:[53,55],index:[61,63,64,69],indic:64,inetworkdefinit:56,infer:[53,54,57,67,69],info:[17,33,38,45,46,49,62,67,71],inform:[28,32,35,55,56,63,67,69,71,72],infrastructur:69,ingest:60,inherit:[50,51,69],inlin:[44,57,67],inner:46,inplac:53,input0:67,input1:67,input2:67,input:[3,4,31,44,46,48,53,54,55,56,57,59,62,64,67,69,71,72,73],input_0:[59,67],input_batch:53,input_data:[53,54,55,67],input_file_path:[71,73],input_rang:[45,46],input_s:67,input_scal:64,input_shap:[53,54,55,67,69,71,72,73],input_tensor:53,inputrang:[21,39,45,46,50,51,67],inputrangeclass:[],inputrangestruct:[0,50],inspect:[54,62,67],instal:[53,55,63,67,70],instanc:[53,54,57,67],instanti:[58,59,60,62,67],instatin:[1,2,46,47],instead:[56,57,67,70,71],instnanti:59,instruct:[67,68],insur:68,int16_t:[],int64_t:[45,46,47,48,69,73],int8:[1,44,46,63,69,71,73],int8_t:45,int8cachecalibr:[20,31,41,44,50,51],int8cachecalibratortempl:[0,50],int8calibr:[3,20,30,41,44,50,51],int8calibratorstruct:[0,50],int_float:64,integ:[],integr:[53,54,63],intent:57,intercompat:[53,55],interest:57,interfac:[1,2,46,47,59,60,62,67,69],intermedi:[17,53,54,67],intern:[2,17,46,47,53,54,55,62,67],internal_error:[],internalerror:[],interpret:[53,54,59],intro_to_torchscript_tutori:67,introduc:[53,54,55],invok:67,involv:[53,54],ios:44,iostream:[20,44,67],is_avail:53,is_train:69,iscustomclass:62,issu:[3,4,53,54,67,68],istensor:62,istream_iter:44,it_:44,item:53,itensor:[56,62,67],iter:[20,44,46,53,54,55,56,71],its:[31,53,54,55,56,59,62],itself:[1,2,46,47,57,68,71,72],ivalu:[56,59,62,67],jetson:[53,54],jit:[33,36,37,38,45,53,54,55,56,57,58,59,60,61,62,67,71,72],jpeg:53,jpg:[53,55],jpg__1920x1080_q85_subject_loc:53,json:53,json_fil:53,just:[44,45,53,55,57,63,67,70,72],kchar:[1,45,46],kclip:62,kcpu:[2,46,47],kcuda:[2,46,47,67],kdebug:[17,42,44],kdefault:[45,46],kdla:[2,45,46,47,73],keepdim:64,kei:67,kernel:[46,53,54,62,67,71],kernel_s:[53,54,64],kerror:[17,42],kf16:73,kfloat:[1,45,46],kgpu:[2,45,46,47],kgraph:[17,42,57],khalf:[1,45,46,67],ki8:69,kind:[53,54,55,56],kinfo:[17,42,44],kinternal_error:[17,42],kiwisolv:53,know:[42,62],known:55,kriz:69,krizhevski:69,ksafe_dla:[45,46],ksafe_gpu:[45,46],ktest:69,ktrain:69,kwarn:[17,42],label:[55,69],laid:67,lambda:[62,67],languag:[53,54,55,67],larg:[53,54,58,60,67,69],larger:69,largest:64,last:[55,57],later:[31,67],latest:68,law:[53,54,55],layer1:53,layer2:53,layer3:53,layer4:53,layer:[46,47,53,54,55,56,57,62,67,69,71,73],layer_norm:64,layout:64,ld_library_path:68,ld_preload:70,ldd:68,leaky_relu:64,leaky_relu_:64,learn:[63,67,68,69,73],least:53,leav:[54,57],left:55,len:[53,55,64],lenet:[55,67],lenet_script:67,lenetclassifi:[54,67],lenetfeatextractor:[54,67],length:[3,4,44,53,64],let:[46,47,53,54,55,57,62,71],level:[18,23,27,28,40,42,44,50,51,53,54,57,60,67],levelnamespac:[0,50],leverag:[53,54,55,69],lib:[53,57,67,68],librari:[32,42,43,44,45,53,54,55,58,59,60,62,67],libtorch:[4,35,53,54,55,62,67,68,69],libtorch_pre_cxx11_abi:68,libtrtorch:[67,68,71],libtrtorchrt:70,licens:[42,43,44,45,53,54,55,67],like:[53,54,55,56,57,59,62,67,68,69,70,71],limit:[53,54,55,57,69],line:[67,71],linear:[53,54,64,67],linewidth:55,link:[56,63,67,70,71],linux:[60,67,68],linux_x86_64:68,list:[18,19,20,21,36,46,49,52,55,56,59,62,64,67,68],listconstruct:[56,59,67],listunpack:[59,67],live:62,load:[53,55,59,67,68,69,70,71,72],load_librari:70,loader:[53,54,55],loading_data_recip:69,local:[53,55,57,67],locat:[55,69],log:[16,17,19,20,22,39,44,50,51,52,57,62,64,66],log_debug:62,logger:[],loggingenum:[0,50],loglevel:[],longer:[53,54,70],look:[56,57,67,69,72],loop_unrol:57,lorikeet:53,loss:69,lot:62,lower:17,lower_graph:57,lower_tupl:57,loweralltupl:57,lowersimpletupl:57,lstm_cell:64,lvl:[27,28,42],machin:[53,54,59,68,69],macro:[5,6,7,8,9,10,11,12,16,18,21,22,42,45,50,52],made:[55,57,58,60],mai:[53,54,55,56,59,60,67,69],main:[55,57,58,59,60,62,67],maintain:[59,62],major:[53,54,55,60],make:[53,54,55,56,67,68,69,73],make_data_load:[4,69],make_int8_cache_calibr:[20,41,44,50,51,69],make_int8_calibr:[20,31,41,44,50,51,69],manag:[56,58,60,62,67],mangag:57,mantissa:46,manual:68,map:[2,46,47,56,57,58,60,62,67,69,72],master:[61,68,69],mat2:64,match:[46,57,68],matmul:[57,64,67],matplotlib:[53,55],matrix:61,matur:60,max:[45,46,48,54,62,64,67,71],max_batch_s:[45,46,69,71,72],max_c:71,max_h:71,max_n:71,max_pool1d:64,max_pool2d:[54,64,67],max_pool3d:64,max_val:[62,64],max_w:71,maximum:[46,48,67,71],maxpool2d:53,maxpool:53,mean:[46,53,54,55,62,63,64,67,71],mechan:62,media:53,meet:[],member:[46,47,48,49],memori:[20,21,44,45,53,54,57,62,67],mention:53,menu:71,messag:[17,27,28,71],metadata:[59,62],method:[33,36,37,38,53,54,55,57,62,67,68,72],method_nam:[36,38,45,67],mig:53,might:57,min:[45,46,48,54,62,64,67,71],min_block_s:[45,46,49],min_c:71,min_h:71,min_n:71,min_siz:[45,46,49],min_val:[62,64],min_w:71,mini:53,minim:[46,69,71],minimum:[46,48,49,67],minmax:[30,31,69],miss:67,mix:55,mkdir:[53,68],mobilenet_v2:72,mod:[67,69],mode:[67,69],mode_:69,model:[59,67,69,72],model_math:55,modern:55,modifi:68,modul:[33,36,37,38,45,53,54,55,58,59,60,62,63,69,71,72,73],modular:67,momentum:[53,64],more:[53,54,55,56,63,67,69,70,72],most:60,move:[30,44,45,53,54,57,59,67,69],msg:[27,42],much:[62,69],mul:64,mul_:64,multipl:[59,69],multipli:46,must:[46,53,55,62,67,68,70,71],n01749939:53,n01820546:53,n02110185:53,n02481823:53,name:[3,4,36,38,44,46,49,53,55,59,62,67,68,72],namespac:[0,42,44,45,52,57,63,69],nano:68,narrow:64,nativ:[60,61,67],native_funct:61,nbbind:[3,4,44],ncol:53,necessari:[42,70],need:[1,2,28,31,43,46,47,49,55,56,57,62,67,68,69,70],neg:64,negative_slop:64,nest:[50,51],net:[53,62,67],network:[30,31,53,54,55,62,67,69,73],neural:[53,55,73],new_lay:62,new_local_repositori:68,new_siz:69,newer:[53,54],next:[3,4,55,56,59,69],ngc:55,nice:68,ninja:68,nlp:[30,31,69],no_grad:[53,54,55],node:[57,62,67],node_info:[62,67],noexcept:69,none:[55,62,64],norm:64,normal:[1,2,46,47,53,54,55,67,69,73],normalized_shap:64,noskipw:44,note:[2,46,47,53,62,67,68,73],notebook:[53,54,55,60],notic:[54,55],now:[53,54,55,57,60,62,67,68,72],nrow:53,nrun:[53,54,55],nullptr:[44,45,46],num:71,num_avg_timing_it:[45,46,72],num_it:71,num_min_timing_it:[45,46,72],num_work:69,number:[3,4,46,49,53,57,62,67,71],numel:64,numer:71,numpi:[53,54,55],nvidia:[33,38,42,43,44,45,53,54,55,61,67,68,69,71,73],nvidia_deeplearningexamples_torchhub:55,nvidia_ncf:55,nvidia_ssd:55,nvidia_ssd_processing_util:55,nvidia_tacotron2:55,nvidia_waveglow:55,nvinfer1:[3,4,30,31,44,45,46,62,69],nvinfer:[20,44],nwarmup:[53,54,55],obj:64,object:[1,2,3,4,46,47,48,49,62,67,69,72],observ:53,obsolet:55,obtain:[53,54,55],obvious:67,octet:53,off:[46,49,53,55,59],offici:68,ofstream:[44,67],older:60,olefil:53,onc:[42,43,44,45,56,57,59,67,69,70],one:[55,57,62,67],ones:[42,53,54,55,67,68],onli:[2,3,4,17,31,44,46,47,54,55,57,60,62,67,68,69,70,71,73],onnx:57,onto:[59,71],op_precis:[45,46,53,54,55,67,69,71,72,73],open:[53,54],oper:[1,2,3,4,36,44,45,46,47,49,53,54,56,57,58,59,60,62,63,69,71,73],ops:[53,55,57,67,70],opset:[58,60],opt:[45,46,48,54,67,68],opt_c:71,opt_h:71,opt_n:71,opt_w:71,optim:[46,48,53,54,55,57,63,67,71],optimi:67,optimin:[46,48],optimiz:[53,54,55],option:[44,68,69,70,71,73],order:[46,55,62,67],org:[53,54,55,61,67,68,69],origin:55,original_nam:54,other:[1,2,45,46,47,53,54,55,56,57,59,63,64,67,68,70,71],otherwis:[68,70],our:[53,54,55,60,67],out:[36,44,53,54,56,57,58,60,62,67,68],out_featur:[53,54],out_shap:67,out_tensor:[62,67],output0:57,output:[25,26,46,53,54,55,56,57,59,62,67,68,71],output_file_path:[71,73],output_pad:64,output_s:[53,64],outself:67,over:[53,54,58,60],overkil:54,overrid:[3,4,30,31,44,69],overview:[61,63],own:[53,54,62,67],p100:53,packag:[53,57,67,71],pad:[53,64],padding_idx:64,page:63,pair:[62,69],paper:[53,55],paramet:[1,2,3,4,26,27,28,30,31,33,34,36,37,38,46,47,48,56,57,62,67],parent:[14,15,16,18,19,20,21],pars:67,part:[60,71],particular:54,pass:[56,58,59,60,62,67,69],patch:55,path:[4,13,14,15,16,30,31,53,54,55,67,68,69,71],path_to_trtorch_root:68,pathwai:67,pattern:[62,67],peephole_optimz:57,per:55,perf:53,perform:[30,31,53,54,55,69],performac:[46,48,69],permiss:[53,54,55],permut:64,persist:53,phase:[17,62,67],pick:[54,67],pick_best:55,pickler:59,pid:53,pil:53,pillow:[53,55],pin_memori:64,pip3:68,pip3_import:68,pip:[53,55,68],pip_instal:68,pipelin:[67,71,73],piplein:67,pixel_shuffl:64,place:[57,68,69],plan:[60,71],platform:[45,53,54,60,68,73],pleas:68,plot:55,plot_result:55,plt:[53,55],point:67,pointer:[3,4,69],pool:73,pop:59,portabl:[53,54,55,59],posit:71,possibl:[53,54],post:[30,31,46,63,67,71],pow:64,power:[53,54,67],practic:[53,54],pragma:[42,43,44,45,69],pre:[37,53,69,70],pre_cxx11_abi:68,precis:[46,54,55,63,67,69,71,73],pred:53,pred_label:55,pred_loc:55,predict:[53,55],prefer:67,prefix:[24,26,42],prelu:64,prepar:[53,54,55],prepare_input:55,prepare_tensor:55,preprint:69,preprocess:[53,69],preserv:[67,69],prespect:67,pretrain:[53,55,72],pretti:67,prevent:46,previous:[31,37,67],prim:[56,57,59,64,67],primarili:[60,67],primer:55,print:[17,36,44,53,54,55,67,72],priorit:68,privat:[3,4,44,45,69],prob:53,probabl:[53,55],probablil:53,process:[53,54,55,67,69,71,72],prod:64,produc:[46,48,56,59,62,67],product:[46,53,54],profil:[46,48],program:[18,19,20,21,31,52,53,54,55,58,60,63,67,71],propog:57,provid:[3,4,46,59,62,67,68,69,72],providi:[58,60],ptq:[3,4,16,18,22,39,50,51,52,63,71],ptq_calibr:[3,4,45,46,69],ptqtemplat:[0,50],pull:68,pure:36,purpos:[53,55,68],push:59,push_back:44,pwr:53,py_test_dep:68,pypars:53,pyplot:[53,55],python3:[53,57,67,68],python:[53,54,55,60,70,71,73],python_api:61,pytorch:[46,49,53,55,58,59,60,62,67,68,69,70],pytorch_vision_v0:53,qualiti:[53,55],quantiz:[30,31,63,67,71],quantizatiom:46,question:67,quickli:[67,69,71],quit:[62,67],rais:57,raiseexcept:57,rand:67,randn:[53,54,55,67,72],rang:[46,48,53,54,55,67,71],rather:57,raw:55,read:[3,4,30,31,44,69],readcalibrationcach:[3,4,44],readm:[53,54,55],realiz:59,realli:62,reason:[1,46,55,67],recalibr:31,recip:69,recipi:55,reciproc:64,recognit:[53,69],recomend:[30,31],recommend:[30,31,67,68],recompil:55,record:[53,54,56,67],rect:55,rectangl:55,recurs:56,recursivescriptmodul:54,reduc:[53,54,57,58,60,69],refer:[58,60,69],referenc:[55,68],refit:[45,46,72],reflect:45,regard:68,regist:[37,59,62],registernodeconversionpattern:[62,67],registri:[56,67],reinterpret_cast:44,relat:[46,47],relationship:[50,51],relu:[53,54,64,67],relu_:64,remain:[53,54,55,57,69],remov:[53,55],remove_contigu:57,remove_dropout:57,remove_to:57,repack:59,repeat:64,replac:[55,57],replication_pad1d:64,replication_pad2d:64,replication_pad3d:64,report:[23,44],reportable_log_level:[],repositori:[53,55,60],repres:[46,48,62],represent:[53,54,57,62,67],request:[53,67],requir:[31,53,54,55,56,57,67,68,69,70,71],research:[53,54],reserv:[42,43,44,45,53,54,55],reset:44,reshap:64,residu:53,resiz:53,resnet50:53,resnet50_model:53,resnet:[55,59],resnet_50_trac:53,resnet_trt:59,resolv:[53,56,57,58,60],resourc:[56,69],respons:[31,53,59],restrict:[46,71],result:[53,54,56,57,67],results_per_input:55,ret:57,reus:[57,69],rgb:53,right:[42,43,44,45,53,54,55,57,60,62],rn50_preprocess:53,root:[42,43,44,45,53,55,68,69],round:46,rsub:64,rule:68,run:[2,38,46,47,49,53,54,55,56,57,58,59,60,62,63,67,68,69,70,71,72,73],runtim:[53,54,55,63,67],safe:62,safe_dla:71,safe_gpu:71,safeti:46,same:[53,55,59,67,68,72],sampl:[53,69],satisfi:[46,49,53],save:[31,44,53,54,55,59,70,71],saw:67,scalar:[62,64],scalaropt_dim:64,scalartyp:[1,45,46,64],scale:[64,69],scale_factor:64,scale_grad_by_freq:64,scales_d:64,scales_h:64,scales_w:64,schema:[62,67],scikit:55,scipi:55,scope:57,score:[53,55],scratch:31,script:[36,53,55,57,67,72],script_model:[54,67,72],scriptclass:[],scripted_model:73,scriptmodul:67,sdk:[53,54,55,61],seamlessli:63,search:63,section:69,secur:68,see:[36,53,54,55,57,59,67],select:[30,31,38,46,53,54,64,69,71],self:[54,57,59,62,64,67,73],self_1:[59,67],self_int:64,sens:67,sent:53,separ:[53,54,55],sequenti:53,serial:[37,38,58,60,67],serializ:59,seril:59,serv:[59,71],set:[3,4,17,26,28,31,33,34,38,45,46,47,48,49,53,54,55,56,57,58,59,60,63,67,68,69,71,73],set_devic:[21,39,45,50,51],set_is_colored_output_on:[18,40,42,50,51],set_logging_prefix:[18,40,42,50,51],set_reportable_log_level:[18,40,42,50,51],setalpha:62,setbeta:62,setnam:[62,67],setreshapedimens:67,setup:69,sever:[17,27],sha256:68,shape:[46,48,53,54,55,62,64,73],share:68,ship:[67,70],should:[1,3,4,31,45,46,53,56,62,63,69,71],show:[53,55],shown:67,shuffl:[67,69],shutterstock_780480850:53,siberian:53,siberian_huski:53,side:[57,67],sigmoid:64,sigmoid_:64,signifi:[46,48],signific:55,significantli:57,similar:[55,62,67,72],simonyan:69,simpil:69,simpl:[54,67],simpli:[54,57],simplic:[53,55],simplifi:56,sin:64,sinc:[54,57,67,69],singl:[46,48,54,57,67,69,71],singular:62,sinh:64,site:[57,67,68],six:53,size:[3,4,44,46,48,53,54,55,57,64,67,69,71,73],size_t:[3,4,44,69],slice:64,slither:53,sm_output:53,small:57,smi:53,snake:53,softmax:[53,55,57,64],softwar:[53,54,55],sole:69,some:[56,57,58,59,60,62,67,69],someth:[43,57],sort:[62,64,72],sourc:[42,43,44,45,53,55,60],space:69,spars:64,spec:72,specif:[33,53,54,55,57,58,60],specifi:[3,4,53,55,62,63,67,71,72],specifii:[],speed:[53,55],speedup:53,split:64,split_siz:64,split_with_s:64,sqrt:64,squeez:64,src:[59,61],ssd300:55,ssd300_trt:59,ssd:59,ssd_300_trace:55,ssd_trace:71,ssd_trt:71,sstream:[20,44],stabl:61,stack:[59,64,69],stage:56,stand:59,standard:[53,54,55,63,70,71,72],start:[55,56,64,68,72],start_dim:[64,67],start_step:64,start_tim:[53,54,55],state:[56,62,67],statement:57,static_cast:44,statu:44,std:[3,4,24,27,29,30,31,32,36,37,38,42,44,45,46,48,49,53,67,69,73],stdout:35,steamlin:69,step:[53,54,55,63,64,69],still:[44,53,55,69],stitch:[54,67],stop:67,storag:69,store:[4,56,59,62,67],str:[19,43,44,50,51,53],straight:62,stream:53,strict:[70,71],strict_typ:[45,46,72],strictli:[],stride:[53,54,55,64],string:[3,4,18,20,21,24,27,29,30,31,32,36,37,38,42,44,45,46,49,62,67,69],stringstream:44,strip_prefix:68,strong:[53,54],struct:[1,2,21,39,45,69],structur:[31,45,46,47,53,54,60,62,67],style:[42,43,44,45],sub:[64,67],sub_:64,subdirectori:52,subexpress:57,subgraph:[56,57,62,67],subject:60,submodul:[54,67],subplot:[53,55],subset:69,successfulli:[53,55],sudo:68,suffic:57,suggest:55,suit:63,sum:[46,64],support:[1,2,26,36,46,47,48,53,54,55,61,63,67,68,71,73],sure:[67,68,73],sxm2:53,symbol:68,synchron:[53,54,55],system:[53,55,56,62,63,68],take:[33,36,37,38,53,54,55,56,58,59,60,62,67,69,72],taken:[53,55],talk:63,tan:64,tanh:64,tanh_:64,tar:[68,69],tarbal:[67,69],target:[2,45,46,47,53,54,55,60,63,67,69,71,72,73],targets_:69,task:[30,31,69],techinqu:67,techniqu:69,tell:62,temp:53,templat:[20,41,44,45,50,51,67],tensor:[37,44,46,48,53,54,55,56,57,59,62,64,67,69],tensor_scalar:64,tensor_tensor:64,tensorcontain:62,tensorlist:62,tensorrt:[1,2,3,4,30,31,33,35,37,38,45,46,47,48,49,53,54,55,56,57,58,60,62,63,67,69,71,72],tensorrtcompilespec:72,term:69,termin:[26,67,71],tesla:53,test:[53,54,55,60,68,69,71],test_ptq_dataloader_calibr:69,test_ptq_trt_calibr:69,testing_dataload:69,testing_dataset:69,text:55,tf32:46,tgz:68,than:[57,63,68,70],thats:[56,69],thei:[46,47,55,56,57,62,68,71],them:[53,54,55,59,67,68],theori:56,therebi:59,therefor:[31,67],therfor:70,thi:[1,2,30,31,42,43,44,45,46,47,48,49,53,54,55,56,57,58,59,60,62,67,68,69,70,71,72],thing:54,think:62,third_parti:[60,68],those:56,though:[53,55,60,62,67,71],three:[46,48,58,60],threshold:71,thrid_parti:68,through:[53,54,55,56,57,59,63,67],time:[46,53,54,55,56,57,58,60,62,67,69,71],tini:69,titan:[53,54],titl:53,tmp:67,tocustomclass:62,todim:67,togeth:[54,56,62,67],toilet:53,too:68,tool:[53,54,62,67],toolchain:60,top:[55,60],topk:64,torch:[1,2,4,20,30,31,33,36,37,38,44,45,46,47,49,53,54,55,57,59,61,62,67,68,69,70,71,72,73],torch_fallback:[45,46],torch_scirpt_modul:67,torch_script_modul:67,torchbind:59,torchfallback:[21,39,45,46,50,51],torchfallbackclass:[0,50],torchhub:55,torchscript:[33,36,37,38,53,55,58,59,60,71,72,73],torchvis:[53,59,69,72],toronto:69,totensor:[53,69],tovec:67,toward:69,trace:[55,67],traced_model:[53,54,55,67],track:[62,69],track_running_stat:53,trade:55,tradit:69,traget:[33,37],train:[30,31,46,53,55,63,64,67,71],trainabl:57,transform:[53,54,67,69],translat:[55,67],transpos:64,travers:[58,60],treat:71,tree:[42,43,44,45,69],trigger:[54,67],trim:69,trt:[1,2,3,4,46,47,56,57,59,62,64,67],trt_lenet_script:67,trt_mod:[67,69,73],trt_model:[53,55,72],trt_model_fp32:53,trt_script_modul:54,trt_ts_modul:[54,67],trtorch:[0,1,2,3,4,15,17,22,42,43,44,46,47,48,49,51,52,56,57,58,59,60,68,69,71,73],trtorch_api:[19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,42,43,44,45,50,51],trtorch_check:62,trtorch_hidden:[19,43,50,51],trtorch_major_vers:[19,43,50,51],trtorch_minor_vers:[19,43,50,51],trtorch_patch_vers:[19,43,50,51],trtorch_py_dep:68,trtorch_unus:62,trtorch_vers:[19,43,50,51],trtorchc:[63,73],trtorchfil:[22,50],trtorchnamespac:[0,50],truncat:46,truncate_long_and_doubl:[45,46],ts_model:67,tue:53,tune:[53,54,55],tupl:[59,67],tupleconstruct:[57,59],tupleunpack:57,tutori:[67,69],two:[53,54,55,62,67,68,69,71],txt:68,type:[1,2,30,48,49,50,51,53,56,59,62,67,69,71],typenam:[3,4,30,31,44],typic:[56,62],ubuntu:68,uint64_t:[45,46,49],unabl:[62,67],uncom:68,uncorr:53,under:[42,43,44,45,53,54,55,60],underli:[1,2,46,47,62],understand:67,union:[62,67],uniqu:4,unique_ptr:[4,30],unit:54,unless:[53,54,55],unlik:[63,67,68,72],unpack_addmm:57,unpack_log_softmax:57,unqiue_ptr:4,unsqueez:[53,64],unstabl:60,unsupport:36,unsur:62,untest:60,until:[56,60,62,68],unwrap:62,unwrap_distribut:55,unwraptodoubl:62,unwraptoint:67,unzip:68,upgrad:53,upload:53,upsample_bilinear2d:64,upsample_linear1d:64,upsample_nearest1d:64,upsample_nearest2d:64,upsample_nearest3d:64,upsample_trilinear3d:64,upscale_factor:64,upstream:67,uri:55,url:68,usag:[53,67],use:[1,2,3,4,30,31,46,47,53,54,55,56,57,59,60,62,67,68,69,70,71,72],use_cach:[3,4,30,44,69],use_cache_:44,use_subset:69,usecas:68,used:[1,2,3,4,44,46,47,48,53,55,56,57,59,62,67,68,69,71],useful:62,user:[42,53,54,58,59,60,67,68,69],uses:[30,31,44,53,54,55,62,68,69],using:[1,2,33,34,38,44,45,46,47,53,54,55,62,63,67,69,70,71,72],using_int:[64,67],usr:[53,68],usual:55,util:[62,67,69],val2017:55,val:55,valid:[2,46,47,55,62],valu:[1,2,17,45,46,47,56,59,62,64,67],value_tensor_map:[56,62],variant:70,varient:57,variou:73,vec:64,vector:[20,21,44,45,46,48,49,67,69,73],verbios:71,verbos:71,veri:[69,72],version:[32,35,53,54,55,60,68],vgg16:69,vgg:[55,69],via:[53,55,63,69,70],view:64,virtual:69,vision:53,visit:55,volatil:53,volta:[53,54],w_hh:64,w_ih:64,wai:[53,67,68,69,71],walk:[53,54,55],want:[42,46,53,54,67,69,72],warm:[53,54,55],warn:[17,44,53,62,71],warranti:[53,54,55],websit:68,weight:[56,64,67],welcom:67,well:[53,54,55,67,69],were:[55,67],wget:53,what:[4,55,57,67],whatev:59,when:[26,44,45,46,47,53,54,56,57,58,59,60,62,67,68,69,71],where:[53,54,56,57,62,67,69],whether:[4,69],which:[2,31,33,38,46,47,53,54,55,56,57,58,59,60,62,67,69,72],whilst:55,white:55,whl:68,whole:[53,54],whose:57,width:53,within:[53,54,55,58,60],without:[53,54,55,62,67,69],work:[44,54,55,57,60,62,69],worker:69,workflow:72,workspac:[46,68,69,71,73],workspace_s:[45,46,53,55,69,71,73],world:[53,54],would:[62,67,68,70,71,72],wrap:[58,59,60,67,72],wrapper:62,write:[3,4,30,31,44,53,54,55,56,63,67,69],writecalibrationcach:[3,4,44],www:[53,54,55,67,68,69],x64:68,x86:70,x86_64:[60,68],xavier:[45,53,54,73],xstr:[19,43,50,51],yaml:61,you:[1,2,30,31,46,47,53,54,55,56,57,59,60,62,63,67,68,69,70,71,72],your:[53,54,55,62,63,67,68,70,72],yourself:67,zip:[59,68],zisserman:69},titles:["Class Hierarchy","Class CompileSpec::DataType","Class Device::DeviceType","Template Class Int8CacheCalibrator","Template Class Int8Calibrator","Define STR","Define TRTORCH_API","Define TRTORCH_HIDDEN","Define TRTORCH_MAJOR_VERSION","Define TRTORCH_PATCH_VERSION","Define TRTORCH_VERSION","Define XSTR","Define TRTORCH_MINOR_VERSION","Directory cpp","Directory api","Directory include","Directory trtorch","Enum Level","File logging.h","File macros.h","File ptq.h","File trtorch.h","File Hierarchy","Function trtorch::logging::get_reportable_log_level","Function trtorch::logging::set_logging_prefix","Function trtorch::logging::get_is_colored_output_on","Function trtorch::logging::set_is_colored_output_on","Function trtorch::logging::log","Function trtorch::logging::set_reportable_log_level","Function trtorch::logging::get_logging_prefix","Template Function trtorch::ptq::make_int8_calibrator","Template Function trtorch::ptq::make_int8_cache_calibrator","Function trtorch::get_build_info","Function trtorch::CompileGraph","Function trtorch::set_device","Function trtorch::dump_build_info","Function trtorch::CheckMethodOperatorSupport","Function trtorch::EmbedEngineInNewModule","Function trtorch::ConvertGraphToTRTEngine","Namespace trtorch","Namespace trtorch::logging","Namespace trtorch::ptq","Program Listing for File logging.h","Program Listing for File macros.h","Program Listing for File ptq.h","Program Listing for File trtorch.h","Struct CompileSpec","Struct CompileSpec::Device","Struct CompileSpec::InputRange","Struct CompileSpec::TorchFallback","TRTorch C++ API","Full API","Full API","TRTorch Getting Started - ResNet 50","TRTorch Getting Started - LeNet","Object Detection with TRTorch (SSD)","Conversion Phase","Lowering Phase","Compiler Phases","Runtime Phase","System Overview","Useful Links for TRTorch Development","Writing Converters","TRTorch","Operators Supported","trtorch.logging","trtorch","Getting Started","Installation","Post Training Quantization (PTQ)","Deploying TRTorch Programs","trtorchc","Using TRTorch Directly From PyTorch","DLA"],titleterms:{"class":[0,1,2,3,4,20,21,39,41,50,51],"enum":[17,18,40,50,51,66],"function":[18,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,50,51,61,66],The:67,Used:57,Useful:61,Using:[67,72],aarch64:68,abi:68,addmm:57,advic:62,ahead:63,api:[14,18,19,20,21,50,51,52,61,63,68],applic:69,arg:62,avail:61,background:[59,62,67],base:[3,4],benchmark:[53,55],binari:68,branch:57,build:68,checkmethodoperatorsupport:36,citat:69,cli:68,code:57,compil:[58,60,63,67,68],compilegraph:33,compilespec:[1,46,47,48,49],conclus:[54,55],construct:59,content:[18,19,20,21,39,40,41,53,54,55],context:62,contigu:57,contract:62,contributor:63,convers:[56,58,60,62],convert:[56,62,64,67],convertgraphtotrtengin:38,cpp:[13,18,19,20,21],creat:[67,69],cudnn:68,current:64,custom:67,cxx11:68,datatyp:1,dead:57,debug:68,defin:[5,6,7,8,9,10,11,12,19,50,51],definit:[18,19,20,21],depend:68,deploi:70,descript:[53,55],deseri:59,detail:55,detect:55,detector:55,develop:61,devic:[2,47],devicetyp:2,dimens:61,directli:72,directori:[13,14,15,16,52],disk:67,distribut:68,dla:73,documen:63,document:[1,2,3,4,5,6,7,8,9,10,11,12,17,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,46,47,48,49,61,63],dropout:57,dump_build_info:35,easier:61,elimin:57,eliminatecommonsubexpress:57,embedengineinnewmodul:37,engin:59,envior:68,evalu:[56,64],execept:57,executor:59,expect:61,file:[16,18,19,20,21,22,42,43,44,45,50,52],flatten:57,fp16:53,fp32:53,freez:57,from:[68,72],full:[50,51,52],fuse:57,gaurd:57,get:[53,54,63,67],get_build_info:32,get_is_colored_output_on:25,get_logging_prefix:29,get_reportable_log_level:23,gpu:63,graph:[57,59],guarante:62,half:53,hierarchi:[0,22,50],hood:67,how:69,includ:[15,18,19,20,21],indic:63,infer:55,inherit:[3,4],inputrang:48,instal:68,int8cachecalibr:3,int8calibr:4,jetson:68,jit:63,layer:61,learn:[53,54,55],lenet:54,level:17,librari:[68,70],libtrtorch:70,linear:57,link:61,list:[42,43,44,45],local:68,log:[18,23,24,25,26,27,28,29,40,42,65],logsoftmax:57,loop:57,lower:[57,58,60],macro:[19,43],make_int8_cache_calibr:31,make_int8_calibr:30,measur:55,model:[53,54,55],modul:[57,67],multibox:55,namespac:[18,20,21,39,40,41,50,51],nativ:68,native_op:61,nest:[1,2,46,47,48,49],next:[53,54],node:56,nvidia:63,object:[53,54,55],oper:[64,67],optimz:57,other:62,overview:[53,54,55,60],own:69,packag:[68,70],pass:57,pattern:57,peephol:57,phase:[56,57,58,59,60],post:69,pre:68,precis:53,precompil:68,prerequisit:68,program:[42,43,44,45,70],ptq:[20,30,31,41,44,69],python:[61,63,67,68,69],pytorch:[54,61,63,72],quantiz:69,quickstart:67,read:61,redund:57,refer:55,regist:67,relationship:[1,2,3,4,46,47,48,49],releas:68,remov:57,resnet:53,respons:62,result:[55,59],runtim:[58,59,60,70],sampl:55,save:67,script:54,serial:59,set_devic:34,set_is_colored_output_on:26,set_logging_prefix:24,set_reportable_log_level:28,setup:68,shot:55,singl:[53,55],sometim:61,sourc:68,speedup:55,ssd:55,start:[53,54,63,67],str:5,struct:[46,47,48,49,50,51],subdirectori:[13,14,15],submodul:66,support:64,system:60,tarbal:68,templat:[3,4,30,31],tensorrt:[59,61,68],through:64,time:63,torchfallback:49,torchscript:[54,63,67],trace:[53,54],train:69,trtorch:[16,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,45,50,53,54,55,61,63,65,66,67,70,72],trtorch_api:6,trtorch_hidden:7,trtorch_major_vers:8,trtorch_minor_vers:12,trtorch_patch_vers:9,trtorch_vers:10,trtorchc:[67,71],tupl:57,type:[3,4,46,47],under:67,unpack:57,unrol:57,unsupport:67,using:68,util:[53,55],visual:55,weight:62,what:[53,54,62],work:67,write:62,xstr:11,your:69}}) \ No newline at end of file diff --git a/docs/v0.3.0/sitemap.xml b/docs/v0.3.0/sitemap.xml new file mode 100644 index 0000000000..ae3af0e200 --- /dev/null +++ b/docs/v0.3.0/sitemap.xml @@ -0,0 +1 @@ +https://nvidia.github.io/TRTorch/_cpp_api/class_view_hierarchy.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1CompileSpec_1_1DataType.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1CompileSpec_1_1Device_1_1DeviceType.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/dir_cpp.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include_trtorch.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_logging.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_macros.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_ptq.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/file_view_hierarchy.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_ptq_8h_1a4422781719d7befedb364cacd91c6247.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_ptq_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a3eace458ae9122f571fabfc9ef1b9e3a.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a589ea96d16e2df44146ad0919424e00e.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ac4ead1d30e521d581462bb51e283be08.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1af19cb866b0520fc84b69a1cf25a52b65.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__logging.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__ptq.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1CompileSpec.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1CompileSpec_1_1Device.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1CompileSpec_1_1InputRange.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1CompileSpec_1_1TorchFallback.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/trtorch_cpp.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/unabridged_api.htmlhttps://nvidia.github.io/TRTorch/_cpp_api/unabridged_orphan.htmlhttps://nvidia.github.io/TRTorch/_notebooks/Resnet50-example.htmlhttps://nvidia.github.io/TRTorch/_notebooks/lenet-getting-started.htmlhttps://nvidia.github.io/TRTorch/_notebooks/ssd-object-detection-demo.htmlhttps://nvidia.github.io/TRTorch/contributors/phases.htmlhttps://nvidia.github.io/TRTorch/contributors/system_overview.htmlhttps://nvidia.github.io/TRTorch/index.htmlhttps://nvidia.github.io/TRTorch/py_api/logging.htmlhttps://nvidia.github.io/TRTorch/py_api/trtorch.htmlhttps://nvidia.github.io/TRTorch/tutorials/installation.htmlhttps://nvidia.github.io/TRTorch/genindex.htmlhttps://nvidia.github.io/TRTorch/search.html \ No newline at end of file diff --git a/docs/v0.3.0/tutorials/getting_started.html b/docs/v0.3.0/tutorials/getting_started.html new file mode 100644 index 0000000000..4db7c6af8b --- /dev/null +++ b/docs/v0.3.0/tutorials/getting_started.html @@ -0,0 +1,1578 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Getting Started — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Getting Started + + ¶ + +

+

+ If you haven’t already, aquire a tarball of the library by following the instructions in + + + Installation + + +

+

+ Background + + ¶ + +

+

+ Creating a TorchScript Module + + ¶ + +

+

+ Once you have a trained model you want to compile with TRTorch, you need to start by converting that model from Python code to TorchScript code. +PyTorch has detailed documentation on how to do this + + https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html + + but briefly here is the +here is key background information and the process: +

+

+ PyTorch programs are based around + + + Module + + + s which can be used to compose higher level modules. + + + Modules + + + contain a constructor to set up the modules, parameters and sub-modules +and a forward function which describes how to use the parameters and submodules when the module is invoked. +

+

+ For example, we can define a LeNet module like this: +

+
+ + + + + +
+
+
 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+
+
+
+
import torch.nn as nn
+import torch.nn.functional as F
+
+class LeNetFeatExtractor(nn.Module):
+    def __init__(self):
+        super(LeNetFeatExtractor, self).__init__()
+        self.conv1 = nn.Conv2d(1, 6, 3)
+        self.conv2 = nn.Conv2d(6, 16, 3)
+
+    def forward(self, x):
+        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
+        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
+        return x
+
+class LeNetClassifier(nn.Module):
+    def __init__(self):
+        super(LeNetClassifier, self).__init__()
+        self.fc1 = nn.Linear(16 * 6 * 6, 120)
+        self.fc2 = nn.Linear(120, 84)
+        self.fc3 = nn.Linear(84, 10)
+
+    def forward(self, x):
+        x = torch.flatten(x,1)
+        x = F.relu(self.fc1(x))
+        x = F.relu(self.fc2(x))
+        x = self.fc3(x)
+        return x
+
+class LeNet(nn.Module):
+    def __init__(self):
+        super(LeNet, self).__init__()
+        self.feat = LeNetFeatExtractor()
+        self.classifer = LeNetClassifier()
+
+    def forward(self, x):
+        x = self.feat(x)
+        x = self.classifer(x)
+        return x
+
+
+
+
+

+ . +

+
+
+

+ Obviously you may want to consolidate such a simple model into a single module but we can see the composability of PyTorch here +

+
+
+

+ From here are two pathways for going from PyTorch Python code to TorchScript code: Tracing and Scripting. +

+

+ Tracing follows the path of execution when the module is called and records what happens. +To trace an instance of our LeNet module, we can call + + + torch.jit.trace + + + with an example input. +

+
+
+
import torch.jit
+
+model = LeNet()
+input_data = torch.empty([1,1,32,32])
+traced_model = torch.jit.trace(model, input_data)
+
+
+
+

+ Scripting actually inspects your code with a compiler and generates an equivalent TorchScript program. The difference is that since tracing +is following the execution of your module, it cannot pick up control flow for instance. By working from the Python code, the compiler can +include these components. We can run the script compiler on our LeNet module by calling + + + torch.jit.script + + +

+
+
+
import torch.jit
+
+model = LeNet()
+script_model = torch.jit.script(model)
+
+
+
+

+ There are reasons to use one path or another, the PyTorch documentation has information on how to choose. From a TRTorch prespective, there is +better support (i.e your module is more likely to compile) for traced modules because it doesn’t include all the complexities of a complete +programming language, though both paths supported. +

+

+ After scripting or tracing your module, you are given back a TorchScript Module. This contains the code and parameters used to run the module stored +in a intermediate representation that TRTorch can consume. +

+

+ Here is what the LeNet traced module IR looks like: +

+
+
+
graph(%self.1 : __torch__.___torch_mangle_10.LeNet,
+    %input.1 : Float(1, 1, 32, 32)):
+    %129 : __torch__.___torch_mangle_9.LeNetClassifier = prim::GetAttr[name="classifer"](%self.1)
+    %119 : __torch__.___torch_mangle_5.LeNetFeatExtractor = prim::GetAttr[name="feat"](%self.1)
+    %137 : Tensor = prim::CallMethod[name="forward"](%119, %input.1)
+    %138 : Tensor = prim::CallMethod[name="forward"](%129, %137)
+    return (%138)
+
+
+
+

+ and the LeNet scripted module IR: +

+
+
+
graph(%self : __torch__.LeNet,
+    %x.1 : Tensor):
+    %2 : __torch__.LeNetFeatExtractor = prim::GetAttr[name="feat"](%self)
+    %x.3 : Tensor = prim::CallMethod[name="forward"](%2, %x.1) # x.py:38:12
+    %5 : __torch__.LeNetClassifier = prim::GetAttr[name="classifer"](%self)
+    %x.5 : Tensor = prim::CallMethod[name="forward"](%5, %x.3) # x.py:39:12
+    return (%x.5)
+
+
+
+

+ You can see that the IR preserves the module structure we have in our python code. +

+ + +

+ Working with TorchScript in Python + + ¶ + +

+

+ TorchScript Modules are run the same way you run normal PyTorch modules. You can run the forward pass using the + + + forward + + + method or just calling the module + + + torch_scirpt_module(in_tensor) + + + The JIT compiler will compile +and optimize the module on the fly and then returns the results. +

+

+ Saving TorchScript Module to Disk + + ¶ + +

+

+ For either traced or scripted modules, you can save the module to disk with the following command +

+
+
+
import torch.jit
+
+model = LeNet()
+script_model = torch.jit.script(model)
+script_model.save("lenet_scripted.ts")
+
+
+
+

+ Using TRTorch + + ¶ + +

+

+ Now that there is some understanding of TorchScript and how to use it, we can now complete the pipeline and compile +our TorchScript into TensorRT accelerated TorchScript. Unlike the PyTorch JIT compiler, TRTorch is an Ahead-of-Time +(AOT) compiler. This means that unlike with PyTorch where the JIT compiler compiles from the high level PyTorch IR +to kernel implementation at runtime, modules that are to be compiled with TRTorch are compiled fully before runtime +(consider how you use a C compiler for an analogy). TRTorch has 3 main interfaces for using the compiler. You can +use a CLI application similar to how you may use GCC called + + + trtorchc + + + , or you can embed the compiler in a model +freezing application / pipeline. +

+ + +

+ [TRTorch Quickstart] Compiling TorchScript Modules with + + + trtorchc + + + + ¶ + +

+

+ An easy way to get started with TRTorch and to check if your model can be supported without extra work is to run it through + + + trtorchc + + + , which supports almost all features of the compiler from the command line including post training quantization +(given a previously created calibration cache). For example we can compile our lenet model by setting our preferred operating +precision and input size. This new TorchScript file can be loaded into Python (note: you need to + + + import + + + trtorch + + + before loading +these compiled modules because the compiler extends the PyTorch the deserializer and runtime to execute compiled modules). +

+
+
+
❯ trtorchc -p f16 lenet_scripted.ts trt_lenet_scripted.ts "(1,1,32,32)"
+
+❯ python3
+Python 3.6.9 (default, Apr 18 2020, 01:56:04)
+[GCC 8.4.0] on linux
+Type "help", "copyright", "credits" or "license" for more information.
+>>> import torch
+>>> import trtorch
+>>> ts_model = torch.jit.load(“trt_lenet_scripted.ts”)
+>>> ts_model(torch.randn((1,1,32,32)).to(“cuda”).half())
+
+
+
+

+ You can learn more about + + + trtorchc + + + usage here: + + + trtorchc + + +

+ + +

+ Compiling with TRTorch in Python + + ¶ + +

+

+ To compile your TorchScript module with TRTorch embedded into Python, all you need to do is provide the module and some compiler settings +to TRTorch and you will be returned an optimized TorchScript module to run or add into another PyTorch module. The +only required setting is the input size or input range which is defined as a list of either list types like + + + lists + + + , + + + tuples + + + or PyTorch + + + size + + + objects or dictionaries of minimum, optimial and maximum sizes. You can also specify settings such as +operating precision for the engine or target device. After compilation you can save the module just like any other module +to load in a deployment application. In order to load a TensorRT/TorchScript module, make sure you first import + + + trtorch + + + . +

+
+
+
import trtorch
+
+...
+
+script_model.eval() # torch module needs to be in eval (not training) mode
+
+compile_settings = {
+    "input_shapes": [
+        {
+            "min": [1, 1, 16, 16],
+            "opt": [1, 1, 32, 32],
+            "max": [1, 1, 64, 64]
+        },
+    ],
+    "op_precision": torch.half # Run with fp16
+}
+
+trt_ts_module = trtorch.compile(script_model, compile_settings)
+
+input_data = input_data.to('cuda').half()
+result = trt_ts_module(input_data)
+torch.jit.save(trt_ts_module, "trt_ts_module.ts")
+
+
+
+
+
+
# Deployment application
+import torch
+import trtorch
+
+trt_ts_module = torch.jit.load("trt_ts_module.ts")
+input_data = input_data.to('cuda').half()
+result = trt_ts_module(input_data)
+
+
+
+ + +

+ Working with TorchScript in C++ + + ¶ + +

+

+ If we are developing an application to deploy with C++, we can save either our traced or scripted module using + + + torch.jit.save + + + which will serialize the TorchScript code, weights and other information into a package. This is also where our dependency on Python ends. +

+
+
+
torch_script_module.save("lenet.jit.pt")
+
+
+
+

+ From here we can now load our TorchScript module in C++ +

+
+
+
#include <torch/script.h> // One-stop header.
+
+#include <iostream>
+#include <memory>
+
+int main(int argc, const char* argv[]) {
+    torch::jit::Module module;
+    try {
+        // Deserialize the ScriptModule from a file using torch::jit::load().
+        module = torch::jit::load("<PATH TO SAVED TS MOD>");
+    }
+    catch (const c10::Error& e) {
+        std::cerr << "error loading the model\n";
+        return -1;
+    }
+
+    std::cout << "ok\n";
+
+
+
+

+ You can do full training and inference in C++ with PyTorch / LibTorch if you would like, you can even define your modules in C++ and +have access to the same powerful tensor library that backs PyTorch. (For more information: + + https://pytorch.org/cppdocs/ + + ). +For instance we can do inference with our LeNet module like this: +

+
+
+
mod.eval();
+torch::Tensor in = torch::randn({1, 1, 32, 32});
+auto out = mod.forward(in);
+
+
+
+

+ and to run on the GPU: +

+
+
+
mod.eval();
+mod.to(torch::kCUDA);
+torch::Tensor in = torch::randn({1, 1, 32, 32}, torch::kCUDA);
+auto out = mod.forward(in);
+
+
+
+

+ As you can see it is pretty similar to the Python API. When you call the + + + forward + + + method, you invoke the PyTorch JIT compiler, which will optimize and run your TorchScript code. +

+ + +

+ Compiling with TRTorch in C++ + + ¶ + +

+

+ We are also at the point were we can compile and optimize our module with TRTorch, but instead of in a JIT fashion we must do it ahead-of-time (AOT) i.e. before we start doing actual inference work +since it takes a bit of time to optimize the module, it would not make sense to do this every time you run the module or even the first time you run it. +

+

+ With out module loaded, we can feed it into the TRTorch compiler. When we do so we must provide some information on the expected input size and also configure any additional settings. +

+
+
+
#include "torch/script.h"
+#include "trtorch/trtorch.h"
+...
+
+    mod.to(at::kCUDA);
+    mod.eval();
+
+    auto in = torch::randn({1, 1, 32, 32}, {torch::kCUDA});
+    auto trt_mod = trtorch::CompileGraph(mod, std::vector<trtorch::CompileSpec::InputRange>{{in.sizes()}});
+    auto out = trt_mod.forward({in});
+
+
+
+

+ Thats it! Now the graph runs primarily not with the JIT compiler but using TensorRT (though we execute the graph using the JIT runtime). +

+

+ We can also set settings like operating precision to run in FP16. +

+
+
+
#include "torch/script.h"
+#include "trtorch/trtorch.h"
+...
+
+    mod.to(at::kCUDA);
+    mod.eval();
+
+    auto in = torch::randn({1, 1, 32, 32}, {torch::kCUDA}).to(torch::kHALF);
+    auto input_sizes = std::vector<trtorch::CompileSpec::InputRange>({in.sizes()});
+    trtorch::CompileSpec info(input_sizes);
+    info.op_precision = torch::kHALF;
+    auto trt_mod = trtorch::CompileGraph(mod, info);
+    auto out = trt_mod.forward({in});
+
+
+
+

+ And now we are running the module in FP16 precision. You can then save the module to load later. +

+
+
+
trt_mod.save("<PATH TO SAVED TRT/TS MOD>")
+
+
+
+

+ TRTorch compiled TorchScript modules are loaded in the same way as normal TorchScript module. Make sure your deployment application is linked against + + + libtrtorch.so + + +

+
+
+
#include "torch/script.h"
+#include "trtorch/trtorch.h"
+
+int main(int argc, const char* argv[]) {
+    torch::jit::Module module;
+    try {
+        // Deserialize the ScriptModule from a file using torch::jit::load().
+        module = torch::jit::load("<PATH TO SAVED TRT/TS MOD>");
+    }
+    catch (const c10::Error& e) {
+        std::cerr << "error loading the model\n";
+        return -1;
+    }
+
+    torch::Tensor in = torch::randn({1, 1, 32, 32}, torch::kCUDA);
+    auto out = mod.forward(in);
+
+    std::cout << "ok\n";
+}
+
+
+
+

+ If you want to save the engine produced by TRTorch to use in a TensorRT application you can use the + + + ConvertGraphToTRTEngine + + + API. +

+
+
+
#include "torch/script.h"
+#include "trtorch/trtorch.h"
+...
+
+    mod.to(at::kCUDA);
+    mod.eval();
+
+    auto in = torch::randn({1, 1, 32, 32}, {torch::kCUDA}).to(torch::kHALF);
+    auto input_sizes = std::vector<trtorch::CompileSpec::InputRange>({in.sizes()});
+    trtorch::CompileSpec info(input_sizes);
+    info.op_precision = torch::kHALF;
+    auto trt_mod = trtorch::ConvertGraphToTRTEngine(mod, "forward", info);
+    std::ofstream out("/tmp/engine_converted_from_jit.trt");
+    out << engine;
+    out.close();
+
+
+
+ + +

+ Under The Hood + + ¶ + +

+

+ When a module is provided to TRTorch, the compiler starts by mapping a graph like you saw above to a graph like this: +

+
+
+
graph(%input.2 : Tensor):
+    %2 : Float(84, 10) = prim::Constant[value=<Tensor>]()
+    %3 : Float(120, 84) = prim::Constant[value=<Tensor>]()
+    %4 : Float(576, 120) = prim::Constant[value=<Tensor>]()
+    %5 : int = prim::Constant[value=-1]() # x.py:25:0
+    %6 : int[] = prim::Constant[value=annotate(List[int], [])]()
+    %7 : int[] = prim::Constant[value=[2, 2]]()
+    %8 : int[] = prim::Constant[value=[0, 0]]()
+    %9 : int[] = prim::Constant[value=[1, 1]]()
+    %10 : bool = prim::Constant[value=1]() # ~/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py:346:0
+    %11 : int = prim::Constant[value=1]() # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0
+    %12 : bool = prim::Constant[value=0]() # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0
+    %self.classifer.fc3.bias : Float(10) = prim::Constant[value= 0.0464  0.0383  0.0678  0.0932  0.1045 -0.0805 -0.0435 -0.0818  0.0208 -0.0358 [ CUDAFloatType{10} ]]()
+    %self.classifer.fc2.bias : Float(84) = prim::Constant[value=<Tensor>]()
+    %self.classifer.fc1.bias : Float(120) = prim::Constant[value=<Tensor>]()
+    %self.feat.conv2.weight : Float(16, 6, 3, 3) = prim::Constant[value=<Tensor>]()
+    %self.feat.conv2.bias : Float(16) = prim::Constant[value=<Tensor>]()
+    %self.feat.conv1.weight : Float(6, 1, 3, 3) = prim::Constant[value=<Tensor>]()
+    %self.feat.conv1.bias : Float(6) = prim::Constant[value= 0.0530 -0.1691  0.2802  0.1502  0.1056 -0.1549 [ CUDAFloatType{6} ]]()
+    %input0.4 : Tensor = aten::_convolution(%input.2, %self.feat.conv1.weight, %self.feat.conv1.bias, %9, %8, %9, %12, %8, %11, %12, %12, %10) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py:346:0
+    %input0.5 : Tensor = aten::relu(%input0.4) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0
+    %input1.2 : Tensor = aten::max_pool2d(%input0.5, %7, %6, %8, %9, %12) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0
+    %input0.6 : Tensor = aten::_convolution(%input1.2, %self.feat.conv2.weight, %self.feat.conv2.bias, %9, %8, %9, %12, %8, %11, %12, %12, %10) # ~/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py:346:0
+    %input2.1 : Tensor = aten::relu(%input0.6) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0
+    %x.1 : Tensor = aten::max_pool2d(%input2.1, %7, %6, %8, %9, %12) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:539:0
+    %input.1 : Tensor = aten::flatten(%x.1, %11, %5) # x.py:25:0
+    %27 : Tensor = aten::matmul(%input.1, %4)
+    %28 : Tensor = trt::const(%self.classifer.fc1.bias)
+    %29 : Tensor = aten::add_(%28, %27, %11)
+    %input0.2 : Tensor = aten::relu(%29) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0
+    %31 : Tensor = aten::matmul(%input0.2, %3)
+    %32 : Tensor = trt::const(%self.classifer.fc2.bias)
+    %33 : Tensor = aten::add_(%32, %31, %11)
+    %input1.1 : Tensor = aten::relu(%33) # ~/.local/lib/python3.6/site-packages/torch/nn/functional.py:1063:0
+    %35 : Tensor = aten::matmul(%input1.1, %2)
+    %36 : Tensor = trt::const(%self.classifer.fc3.bias)
+    %37 : Tensor = aten::add_(%36, %35, %11)
+    return (%37)
+(CompileGraph)
+
+
+
+

+ The graph has now been transformed from a collection of modules, each managing their own parameters into a single graph with the parameters inlined +into the graph and all of the operations laid out. TRTorch has also executed a number of optimizations and mappings to make the graph easier to translate to TensorRT. +From here the compiler can assemble the TensorRT engine by following the dataflow through the graph. +

+

+ When the graph construction phase is complete, TRTorch produces a serialized TensorRT engine. From here depending on the API, this engine is returned +to the user or moves into the graph construction phase. Here TRTorch creates a JIT Module to execute the TensorRT engine which will be instantiated and managed +by the TRTorch runtime. +

+

+ Here is the graph that you get back after compilation is complete: +

+
+
+
graph(%self_1 : __torch__.lenet, %input_0 : Tensor):
+    %1 : ...trt.Engine = prim::GetAttr[name="lenet"](%self_1)
+    %3 : Tensor[] = prim::ListConstruct(%input_0)
+    %4 : Tensor[] = trt::execute_engine(%3, %1)
+    %5 : Tensor = prim::ListUnpack(%4)
+    return (%5)
+
+
+
+

+ You can see the call where the engine is executed, after extracting the attribute containing the engine and constructing a list of inputs, then returns the tensors back to the user. +

+ + +

+ Working with Unsupported Operators + + ¶ + +

+

+ TRTorch is a new library and the PyTorch operator library is quite large, so there will be ops that aren’t supported natively by the compiler. You can either use the composition techinques +shown above to make modules are fully TRTorch supported and ones that are not and stitch the modules together in the deployment application or you can register converters for missing ops. +

+
+
+

+ You can check support without going through the full compilation pipleine using the + + + trtorch::CheckMethodOperatorSupport(const + + + torch::jit::Module& + + + module, + + + std::string + + + method_name) + + + api +to see what operators are not supported. + + + trtorchc + + + automatically checks modules with this method before starting compilation and will print out a list of operators that are not supported. +

+
+
+ + +

+ Registering Custom Converters + + ¶ + +

+

+ Operations are mapped to TensorRT through the use of modular converters, a function that takes a node from a the JIT graph and produces an equivalent layer or subgraph in TensorRT. +TRTorch ships with a library of these converters stored in a registry, that will be executed depending on the node being parsed. For instance a + + + aten::relu(%input0.4) + + + instruction will trigger +the relu converter to be run on it, producing an activation layer in the TensorRT graph. But since this library is not exhaustive you may need to write your own to get TRTorch +to support your module. +

+

+ Shipped with the TRTorch distribution are the internal core API headers. You can therefore access the converter registry and add a converter for the op you need. +

+

+ For example, if we try to compile a graph with a build of TRTorch that doesn’t support the flatten operation ( + + + aten::flatten + + + ) you may see this error: +

+
+
+
terminate called after throwing an instance of 'trtorch::Error'
+what():  [enforce fail at core/conversion/conversion.cpp:109] Expected converter to be true but got false
+Unable to convert node: %input.1 : Tensor = aten::flatten(%x.1, %11, %5) # x.py:25:0 (conversion.AddLayer)
+Schema: aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor)
+Converter for aten::flatten requested, but no such converter was found.
+If you need a converter for this operator, you can try implementing one yourself
+or request a converter: https://www.github.com/NVIDIA/TRTorch/issues
+
+
+
+

+ We can register a converter for this operator in our application. All of the tools required to build a converter can be imported by including + + + trtorch/core/conversion/converters/converters.h + + + . +We start by creating an instance of the self-registering class + + + trtorch::core::conversion::converters::RegisterNodeConversionPatterns() + + + which will register converters +in the global converter registry, associating a function schema like + + + aten::flatten.using_ints(Tensor + + + self, + + + int + + + start_dim=0, + + + int + + + end_dim=-1) + + + -> + + + (Tensor) + + + with a lambda that +will take the state of the conversion, the node/operation in question to convert and all of the inputs to the node and produces as a side effect a new layer in the TensorRT network. +Arguments are passed as a vector of inspectable unions of TensorRT + + + ITensors + + + and Torch + + + IValues + + + in the order arguments are listed in the schema. +

+

+ Below is a implementation of a + + + aten::flatten + + + converter that we can use in our application. You have full access to the Torch and TensorRT libraries in the converter implementation. So +for example we can quickly get the output size by just running the operation in PyTorch instead of implementing the full calculation outself like we do below for this flatten converter. +

+
+
+
#include "torch/script.h"
+#include "trtorch/trtorch.h"
+#include "trtorch/core/conversion/converters/converters.h"
+
+static auto flatten_converter = trtorch::core::conversion::converters::RegisterNodeConversionPatterns()
+    .pattern({
+        "aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor)",
+        [](trtorch::core::conversion::ConversionCtx* ctx,
+           const torch::jit::Node* n,
+           trtorch::core::conversion::converters::args& args) -> bool {
+            auto in = args[0].ITensor();
+            auto start_dim = args[1].unwrapToInt();
+            auto end_dim = args[2].unwrapToInt();
+            auto in_shape = trtorch::core::util::toVec(in->getDimensions());
+            auto out_shape = torch::flatten(torch::rand(in_shape), start_dim, end_dim).sizes();
+
+            auto shuffle = ctx->net->addShuffle(*in);
+            shuffle->setReshapeDimensions(trtorch::core::util::toDims(out_shape));
+            shuffle->setName(trtorch::core::util::node_info(n).c_str());
+
+            auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0));
+            return true;
+        }
+    });
+
+int main() {
+    ...
+
+
+
+

+ To use this converter in Python, it is recommended to use PyTorch’s + + C++ / CUDA Extention + + template to wrap your library of converters into a + + + .so + + + that you can load with + + + ctypes.CDLL() + + + in your Python application. +

+

+ You can find more information on all the details of writing converters in the contributors documentation ( + + + Writing Converters + + + ). +If you find yourself with a large library of converter implementations, do consider upstreaming them, PRs are welcome and it would be great for the community to benefit as well. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/tutorials/installation.html b/docs/v0.3.0/tutorials/installation.html new file mode 100644 index 0000000000..eea16f1977 --- /dev/null +++ b/docs/v0.3.0/tutorials/installation.html @@ -0,0 +1,1523 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Installation — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+
+
+
+ +
+
+
+ +
+
+ + +

+ Installation + + ¶ + +

+

+ Precompiled Binaries + + ¶ + +

+

+ Dependencies + + ¶ + +

+

+ You need to have either PyTorch or LibTorch installed based on if you are using Python or C++ +and you must have CUDA, cuDNN and TensorRT installed. +

+
+ +
+

+ Python Package + + ¶ + +

+

+ You can install the python package using +

+
+
+
# Python 3.6
+pip3 install  https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp36-cp36m-linux_x86_64.whl
+# Python 3.7
+pip3 install  https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp37-cp37m-linux_x86_64.whl
+# Python 3.8
+pip3 install  https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp38-cp38-linux_x86_64.whl
+# Python 3.9
+pip3 install  https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp39-cp39-linux_x86_64.whl
+
+
+
+ + +

+ C++ Binary Distribution + + ¶ + +

+

+ Precompiled tarballs for releases are provided here: + + https://github.com/NVIDIA/TRTorch/releases + +

+ + +

+ Compiling From Source + + ¶ + +

+ + +

+ Dependencies for Compilation + + ¶ + +

+

+ TRTorch is built with Bazel, so begin by installing it. +

+
+
+ +
+
+
export BAZEL_VERSION=$(cat <PATH_TO_TRTORCH_ROOT>/.bazelversion)
+mkdir bazel
+cd bazel
+curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
+unzip bazel-$BAZEL_VERSION-dist.zip
+bash ./compile.sh
+cp output/bazel /usr/local/bin/
+
+
+
+
+
+

+ You will also need to have CUDA installed on the system (or if running in a container, the system must have +the CUDA driver installed and the container must have CUDA) +

+

+ The correct LibTorch version will be pulled down for you by bazel. +

+
+
+

+ NOTE: For best compatability with official PyTorch, use torch==1.8.1+cuda111, TensorRT 7.2 and cuDNN 8.1 for CUDA 11.1 however TRTorch itself supports +TensorRT and cuDNN for CUDA versions other than 11.1 for usecases such as using NVIDIA compiled distributions of PyTorch that use other versions of CUDA +e.g. aarch64 or custom compiled version of PyTorch. +

+
+
+

+ You then have two compilation options: +

+ + +

+ + Building using cuDNN & TensorRT tarball distributions + + + ¶ + +

+
+
+

+ This is recommended so as to build TRTorch hermetically and insures any compilation errors are not caused by version issues +

+

+ Make sure when running TRTorch that these versions of the libraries are prioritized in your + + + $LD_LIBRARY_PATH + + +

+
+
+
+
+ You need to download the tarball distributions of TensorRT and cuDNN from the NVIDIA website. +
+
+ +
+
+

+ Place these files in a directory (the directories + + + thrid_party/distdir/[x86_64-linux-gnu + + + | + + + aarch64-linux-gnu] + + + exist for this purpose) +

+

+ Then compile referencing the directory with the tarballs +

+
+
+

+ If you get errors regarding the packages, check their sha256 hashes and make sure they match the ones listed in + + + WORKSPACE + + +

+
+
+

+ Release Build + + ¶ + +

+
+
+
bazel build //:libtrtorch -c opt --distdir thrid_party/distdir/[x86_64-linux-gnu | aarch64-linux-gnu]
+
+
+
+

+ A tarball with the include files and library can then be found in + + + bazel-bin + + +

+ + +

+ Debug Build + + ¶ + +

+

+ To build with debug symbols use the following command +

+
+
+
bazel build //:libtrtorch -c dbg --distdir thrid_party/distdir/[x86_64-linux-gnu | aarch64-linux-gnu]
+
+
+
+

+ A tarball with the include files and library can then be found in + + + bazel-bin + + +

+

+ Pre CXX11 ABI Build + + ¶ + +

+

+ To build using the pre-CXX11 ABI use the + + + pre_cxx11_abi + + + config +

+
+
+
bazel build //:libtrtorch --config pre_cxx11_abi -c [dbg/opt] --distdir thrid_party/distdir/[x86_64-linux-gnu | aarch64-linux-gnu]
+
+
+
+

+ A tarball with the include files and library can then be found in + + + bazel-bin + + +

+ + +

+ + Building using locally installed cuDNN & TensorRT + + + ¶ + +

+
+
+

+ If you encounter bugs and you compiled using this method please disclose that you used local sources in the issue (an ldd dump would be nice too) +

+
+
+

+ Install TensorRT, CUDA and cuDNN on the system before starting to compile. +

+

+ In WORKSPACE comment out: +

+
+
+
# Downloaded distributions to use with --distdir
+http_archive(
+    name = "cudnn",
+    urls = ["<URL>",],
+
+    build_file = "@//third_party/cudnn/archive:BUILD",
+    sha256 = "<TAR SHA256>",
+    strip_prefix = "cuda"
+)
+
+http_archive(
+    name = "tensorrt",
+    urls = ["<URL>",],
+
+    build_file = "@//third_party/tensorrt/archive:BUILD",
+    sha256 = "<TAR SHA256>",
+    strip_prefix = "TensorRT-<VERSION>"
+)
+
+
+
+

+ and uncomment +

+
+
+
# Locally installed dependencies
+new_local_repository(
+    name = "cudnn",
+    path = "/usr/",
+    build_file = "@//third_party/cudnn/local:BUILD"
+)
+
+new_local_repository(
+name = "tensorrt",
+path = "/usr/",
+build_file = "@//third_party/tensorrt/local:BUILD"
+)
+
+
+
+

+ Release Build + + ¶ + +

+

+ Compile using: +

+
+
+
bazel build //:libtrtorch -c opt
+
+
+
+

+ A tarball with the include files and library can then be found in + + + bazel-bin + + +

+ + +

+ Debug Build + + ¶ + +

+

+ To build with debug symbols use the following command +

+
+
+
bazel build //:libtrtorch -c dbg
+
+
+
+

+ A tarball with the include files and library can then be found in + + + bazel-bin + + +

+

+ Pre CXX11 ABI Build + + ¶ + +

+

+ To build using the pre-CXX11 ABI use the + + + pre_cxx11_abi + + + config +

+
+
+
bazel build //:libtrtorch --config pre_cxx11_abi -c [dbg/opt]
+
+
+
+

+ + Building the Python package + + + ¶ + +

+

+ Begin by installing + + + ninja + + +

+

+ You can build the Python package using + + + setup.py + + + (this will also build the correct version of + + + libtrtorch.so + + + ) +

+
+
+
python3 setup.py [install/bdist_wheel]
+
+
+
+

+ Debug Build + + ¶ + +

+
+
+
python3 setup.py develop [--user]
+
+
+
+

+ This also compiles a debug build of + + + libtrtorch.so + + +

+

+ + Building Natively on aarch64 (Jetson) + + + ¶ + +

+

+ Prerequisites + + ¶ + +

+

+ Install or compile a build of PyTorch/LibTorch for aarch64 +

+

+ NVIDIA hosts builds the latest release branch for Jetson here: +

+
+ +
+

+ Enviorment Setup + + ¶ + +

+

+ To build natively on aarch64-linux-gnu platform, configure the + + + WORKSPACE + + + with local available dependencies. +

+
    +
  1. +

    + Disable the rules with + + + http_archive + + + for x86_64 by commenting the following rules: +

    +
  2. +
+
+
+
#http_archive(
+#    name = "libtorch",
+#    build_file = "@//third_party/libtorch:BUILD",
+#    strip_prefix = "libtorch",
+#    urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-cxx11-abi-shared-with-deps-1.5.1.zip"],
+#    sha256 = "cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a"
+#)
+
+#http_archive(
+#    name = "libtorch_pre_cxx11_abi",
+#    build_file = "@//third_party/libtorch:BUILD",
+#    strip_prefix = "libtorch",
+#    sha256 = "818977576572eadaf62c80434a25afe44dbaa32ebda3a0919e389dcbe74f8656",
+#    urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-shared-with-deps-1.5.1.zip"],
+#)
+
+# Download these tarballs manually from the NVIDIA website
+# Either place them in the distdir directory in third_party and use the --distdir flag
+# or modify the urls to "file:///<PATH TO TARBALL>/<TARBALL NAME>.tar.gz
+
+#http_archive(
+#    name = "cudnn",
+#    urls = ["https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.1.13/10.2_20200626/cudnn-10.2-linux-x64-v8.0.1.13.tgz"],
+#    build_file = "@//third_party/cudnn/archive:BUILD",
+#    sha256 = "0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db",
+#    strip_prefix = "cuda"
+#)
+
+#http_archive(
+#    name = "tensorrt",
+#    urls = ["https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/7.1/tars/TensorRT-7.1.3.4.Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz"],
+#    build_file = "@//third_party/tensorrt/archive:BUILD",
+#    sha256 = "9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41",
+#    strip_prefix = "TensorRT-7.1.3.4"
+#)
+
+
+
+
    +
  1. +

    + Disable Python API testing dependencies: +

    +
  2. +
+
+
+
#pip3_import(
+#    name = "trtorch_py_deps",
+#    requirements = "//py:requirements.txt"
+#)
+
+#load("@trtorch_py_deps//:requirements.bzl", "pip_install")
+#pip_install()
+
+#pip3_import(
+#   name = "py_test_deps",
+#   requirements = "//tests/py:requirements.txt"
+#)
+
+#load("@py_test_deps//:requirements.bzl", "pip_install")
+#pip_install()
+
+
+
+
    +
  1. +

    + Configure the correct paths to directory roots containing local dependencies in the + + + new_local_repository + + + rules: +

    +
    +
    +

    + NOTE: If you installed PyTorch using a pip package, the correct path is the path to the root of the python torch package. +In the case that you installed with + + + sudo + + + pip + + + install + + + this will be + + + /usr/local/lib/python3.6/dist-packages/torch + + + . +In the case you installed with + + + pip + + + install + + + --user + + + this will be + + + $HOME/.local/lib/python3.6/site-packages/torch + + + . +

    +
    +
    +
  2. +
+

+ In the case you are using NVIDIA compiled pip packages, set the path for both libtorch sources to the same path. This is because unlike +PyTorch on x86_64, NVIDIA aarch64 PyTorch uses the CXX11-ABI. If you compiled for source using the pre_cxx11_abi and only would like to +use that library, set the paths to the same path but when you compile make sure to add the flag + + + --config=pre_cxx11_abi + + +

+
+
+
new_local_repository(
+    name = "libtorch",
+    path = "/usr/local/lib/python3.6/dist-packages/torch",
+    build_file = "third_party/libtorch/BUILD"
+)
+
+new_local_repository(
+    name = "libtorch_pre_cxx11_abi",
+    path = "/usr/local/lib/python3.6/dist-packages/torch",
+    build_file = "third_party/libtorch/BUILD"
+)
+
+new_local_repository(
+    name = "cudnn",
+    path = "/usr/",
+    build_file = "@//third_party/cudnn/local:BUILD"
+)
+
+new_local_repository(
+    name = "tensorrt",
+    path = "/usr/",
+    build_file = "@//third_party/tensorrt/local:BUILD"
+)
+
+
+
+

+ Compile C++ Library and Compiler CLI + + ¶ + +

+

+ Compile TRTorch library using bazel command: +

+
+
+
bazel build //:libtrtorch
+
+
+
+

+ Compile Python API + + ¶ + +

+

+ Compile the Python API using the following command from the + + + //py + + + directory: +

+
+
+
python3 setup.py install --use-cxx11-abi
+
+
+
+

+ If you have a build of PyTorch that uses Pre-CXX11 ABI drop the + + + --use-cxx11-abi + + + flag +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/tutorials/ptq.html b/docs/v0.3.0/tutorials/ptq.html new file mode 100644 index 0000000000..bfc16ca5d5 --- /dev/null +++ b/docs/v0.3.0/tutorials/ptq.html @@ -0,0 +1,940 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Post Training Quantization (PTQ) — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Post Training Quantization (PTQ) + + ¶ + +

+

+ Post Training Quantization (PTQ) is a technique to reduce the required computational resources for inference +while still preserving the accuracy of your model by mapping the traditional FP32 activation space to a reduced +INT8 space. TensorRT uses a calibration step which executes your model with sample data from the target domain +and track the activations in FP32 to calibrate a mapping to INT8 that minimizes the information loss between +FP32 inference and INT8 inference. +

+

+ Users writing TensorRT applications are required to setup a calibrator class which will provide sample data to +the TensorRT calibrator. With TRTorch we look to leverage existing infrastructure in PyTorch to make implementing +calibrators easier. +

+

+ LibTorch provides a + + + DataLoader + + + and + + + Dataset + + + API which steamlines preprocessing and batching input data. +These APIs are exposed via both C++ and Python interface which makes it easier for the end user. +For C++ interface, we use + + + torch::Dataset + + + and + + + torch::data::make_data_loader + + + objects to construct and perform pre-processing on datasets. +The equivalent functionality in python interface uses + + + torch.utils.data.Dataset + + + and + + + torch.utils.data.DataLoader + + + . +This section of the PyTorch documentation has more information + + https://pytorch.org/tutorials/advanced/cpp_frontend.html#loading-data + + and + + https://pytorch.org/tutorials/recipes/recipes/loading_data_recipe.html + + . +TRTorch uses Dataloaders as the base of a generic calibrator implementation. So you will be able to reuse or quickly +implement a + + + torch::Dataset + + + for your target domain, place it in a DataLoader and create a INT8 Calibrator +which you can provide to TRTorch to run INT8 Calibration during compliation of your module. +

+ + +

+ How to create your own PTQ application in C++ + + ¶ + +

+

+ Here is an example interface of a + + + torch::Dataset + + + class for CIFAR10: +

+
+ + + + + +
+
+
 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
+46
+
+
+
+
//cpp/ptq/datasets/cifar10.h
+#pragma once
+
+#include "torch/data/datasets/base.h"
+#include "torch/data/example.h"
+#include "torch/types.h"
+
+#include <cstddef>
+#include <string>
+
+namespace datasets {
+// The CIFAR10 Dataset
+class CIFAR10 : public torch::data::datasets::Dataset<CIFAR10> {
+public:
+    // The mode in which the dataset is loaded
+    enum class Mode { kTrain, kTest };
+
+    // Loads CIFAR10 from un-tarred file
+    // Dataset can be found https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
+    // Root path should be the directory that contains the content of tarball
+    explicit CIFAR10(const std::string& root, Mode mode = Mode::kTrain);
+
+    // Returns the pair at index in the dataset
+    torch::data::Example<> get(size_t index) override;
+
+    // The size of the dataset
+    c10::optional<size_t> size() const override;
+
+    // The mode the dataset is in
+    bool is_train() const noexcept;
+
+    // Returns all images stacked into a single tensor
+    const torch::Tensor& images() const;
+
+    // Returns all targets stacked into a single tensor
+    const torch::Tensor& targets() const;
+
+    // Trims the dataset to the first n pairs
+    CIFAR10&& use_subset(int64_t new_size);
+
+
+private:
+    Mode mode_;
+    torch::Tensor images_, targets_;
+};
+} // namespace datasets
+
+
+
+
+

+ This class’s implementation reads from the binary distribution of the CIFAR10 dataset and builds two tensors which hold the images and labels. +

+

+ We use a subset of the dataset to use for calibration, since we don’t need the the full dataset for effective calibration and calibration does +some take time, then define the preprocessing to apply to the images in the dataset and create a DataLoader from the dataset which will batch the data: +

+
+
+
auto calibration_dataset = datasets::CIFAR10(data_dir, datasets::CIFAR10::Mode::kTest)
+                                    .use_subset(320)
+                                    .map(torch::data::transforms::Normalize<>({0.4914, 0.4822, 0.4465},
+                                                                            {0.2023, 0.1994, 0.2010}))
+                                    .map(torch::data::transforms::Stack<>());
+auto calibration_dataloader = torch::data::make_data_loader(std::move(calibration_dataset),
+                                                            torch::data::DataLoaderOptions().batch_size(32)
+                                                                                            .workers(2));
+
+
+
+

+ Next we create a calibrator from the + + + calibration_dataloader + + + using the calibrator factory (found in + + + trtorch/ptq.h + + + ): +

+
+
+
#include "trtorch/ptq.h"
+...
+
+auto calibrator = trtorch::ptq::make_int8_calibrator(std::move(calibration_dataloader), calibration_cache_file, true);
+
+
+
+

+ Here we also define a location to write a calibration cache file to which we can use to reuse the calibration data without needing the dataset and whether or not +we should use the cache file if it exists. There also exists a + + + trtorch::ptq::make_int8_cache_calibrator + + + factory which creates a calibrator that uses the cache +only for cases where you may do engine building on a machine that has limited storage (i.e. no space for a full dataset) or to have a simpiler deployment application. +

+

+ The calibrator factories create a calibrator that inherits from a + + + nvinfer1::IInt8Calibrator + + + virtual class ( + + + nvinfer1::IInt8EntropyCalibrator2 + + + by default) which +defines the calibration algorithm used when calibrating. You can explicitly make the selection of calibration algorithm like this: +

+
+
+
// MinMax Calibrator is geared more towards NLP tasks
+auto calibrator = trtorch::ptq::make_int8_calibrator<nvinfer1::IInt8MinMaxCalibrator>(std::move(calibration_dataloader), calibration_cache_file, true);
+
+
+
+

+ Then all thats required to setup the module for INT8 calibration is to set the following compile settings in the + + trtorch::CompileSpec + + struct and compiling the module: +

+
+
+
std::vector<std::vector<int64_t>> input_shape = {{32, 3, 32, 32}};
+/// Configure settings for compilation
+auto compile_spec = trtorch::CompileSpec({input_shape});
+/// Set operating precision to INT8
+compile_spec.op_precision = torch::kI8;
+/// Use the TensorRT Entropy Calibrator
+compile_spec.ptq_calibrator = calibrator;
+/// Set a larger workspace (you may get better performace from doing so)
+compile_spec.workspace_size = 1 << 28;
+
+auto trt_mod = trtorch::CompileGraph(mod, compile_spec);
+
+
+
+

+ If you have an existing Calibrator implementation for TensorRT you may directly set the + + + ptq_calibrator + + + field with a pointer to your calibrator and it will work as well. +From here not much changes in terms of how to execution works. You are still able to fully use LibTorch as the sole interface for inference. Data should remain +in FP32 precision when it’s passed into + + trt_mod.forward + + . There exists an example application in the TRTorch demo that takes you from training a VGG16 network on +CIFAR10 to deploying in INT8 with TRTorch here: + + https://github.com/NVIDIA/TRTorch/tree/master/cpp/ptq + +

+ + +

+ How to create your own PTQ application in Python + + ¶ + +

+

+ TRTorch Python API provides an easy and convenient way to use pytorch dataloaders with TensorRT calibrators. + + + DataLoaderCalibrator + + + class can be used to create +a TensorRT calibrator by providing desired configuration. The following code demonstrates an example on how to use it +

+
+
+
testing_dataset = torchvision.datasets.CIFAR10(root='./data',
+                                                        train=False,
+                                                        download=True,
+                                                        transform=transforms.Compose([
+                                                            transforms.ToTensor(),
+                                                            transforms.Normalize((0.4914, 0.4822, 0.4465),
+                                                                                 (0.2023, 0.1994, 0.2010))
+                                                        ]))
+
+testing_dataloader = torch.utils.data.DataLoader(testing_dataset,
+                                                      batch_size=1,
+                                                      shuffle=False,
+                                                      num_workers=1)
+calibrator = trtorch.ptq.DataLoaderCalibrator(testing_dataloader,
+                                              cache_file='./calibration.cache',
+                                              use_cache=False,
+                                              algo_type=trtorch.ptq.CalibrationAlgo.ENTROPY_CALIBRATION_2,
+                                              device=torch.device('cuda:0'))
+
+compile_spec = {
+         "input_shapes": [[1, 3, 32, 32]],
+         "op_precision": torch.int8,
+         "calibrator": calibrator,
+         "device": {
+             "device_type": trtorch.DeviceType.GPU,
+             "gpu_id": 0,
+             "dla_core": 0,
+             "allow_gpu_fallback": False,
+             "disable_tf32": False
+         }
+     }
+trt_mod = trtorch.compile(model, compile_spec)
+
+
+
+

+ In the cases where there is a pre-existing calibration cache file that users want to use, + + + CacheCalibrator + + + can be used without any dataloaders. The following example demonstrates how +to use + + + CacheCalibrator + + + to use in INT8 mode. +

+
+
+
calibrator = trtorch.ptq.CacheCalibrator("./calibration.cache")
+
+compile_settings = {
+      "input_shapes": [[1, 3, 32, 32]],
+      "op_precision": torch.int8,
+      "calibrator": calibrator,
+      "max_batch_size": 32,
+  }
+
+trt_mod = trtorch.compile(model, compile_settings)
+
+
+
+

+ If you already have an existing calibrator class (implemented directly using TensorRT API), you can directly set the calibrator field to your class which can be very convenient. +For a demo on how PTQ can be performed on a VGG network using TRTorch API, you can refer to + + https://github.com/NVIDIA/TRTorch/blob/master/tests/py/test_ptq_dataloader_calibrator.py + + and + + https://github.com/NVIDIA/TRTorch/blob/master/tests/py/test_ptq_trt_calibrator.py + +

+

+ Citations + + ¶ + +

+

+ Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. +

+

+ Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. +

+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/tutorials/runtime.html b/docs/v0.3.0/tutorials/runtime.html new file mode 100644 index 0000000000..4b633973cb --- /dev/null +++ b/docs/v0.3.0/tutorials/runtime.html @@ -0,0 +1,587 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Deploying TRTorch Programs — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ + +
+
+ + +

+ Deploying TRTorch Programs + + ¶ + +

+

+ After compiling and saving TRTorch programs there is no longer a strict dependency on the full +TRTorch library. All that is required to run a compiled program is the runtime. There are therfore a couple +options to deploy your programs other than shipping the full trtorch compiler with your applications. +

+

+ TRTorch package / libtrtorch.so + + ¶ + +

+

+ Once a program is compiled, you run it using the standard PyTorch APIs. All that is required is that the package +must be imported in python or linked in C++. +

+

+ Runtime Library + + ¶ + +

+

+ Distributed with the C++ distribution is + + + libtrtorchrt.so + + + . This library only contains the components +necessary to run TRTorch programs. Instead of linking + + + libtrtorch.so + + + or importing + + + trtorch + + + you can +link + + + libtrtorchrt.so + + + in your deployment programs or use + + + DL_OPEN + + + or + + + LD_PRELOAD + + + . For python +you can load the runtime with + + + torch.ops.load_library("libtrtorchrt.so") + + + . You can then continue to use +programs just as you would otherwise via PyTorch API. +

+
+

+ Note +

+

+ If you are using the standard distribution of PyTorch in Python on x86, likely you will need the pre-cxx11-abi variant of + + + libtrtorchrt.so + + + , check + + + Installation + + + documentation for more details. +

+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/tutorials/trtorchc.html b/docs/v0.3.0/tutorials/trtorchc.html new file mode 100644 index 0000000000..293362360e --- /dev/null +++ b/docs/v0.3.0/tutorials/trtorchc.html @@ -0,0 +1,562 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + trtorchc — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+
+ +
+
+
+
+ +
+
+
+
+
+ + +

+ trtorchc + + ¶ + +

+

+ + + trtorchc + + + is a CLI application for using the TRTorch compiler. It serves as an easy way to compile a +TorchScript Module with TRTorch from the command-line to quickly check support or as part of +a deployment pipeline. All basic features of the compiler are supported including post training +quantization (though you must already have a calibration cache file to use the PTQ feature). The compiler can +output two formats, either a TorchScript program with the TensorRT engine embedded or +the TensorRT engine itself as a PLAN file. +

+

+ All that is required to run the program after compilation is for C++ linking against + + + libtrtorch.so + + + or in Python importing the trtorch package. All other aspects of using compiled modules are identical +to standard TorchScript. Load with + + + torch.jit.load() + + + and run like you would run any other module. +

+
+
+
trtorchc [input_file_path] [output_file_path]
+    [input_shapes...] {OPTIONS}
+
+    TRTorch is a compiler for TorchScript, it will compile and optimize
+    TorchScript programs to run on NVIDIA GPUs using TensorRT
+
+OPTIONS:
+
+    -h, --help                        Display this help menu
+    Verbiosity of the compiler
+        -v, --verbose                     Dumps debugging information about the
+                                        compilation process onto the console
+        -w, --warnings                    Disables warnings generated during
+                                        compilation onto the console (warnings
+                                        are on by default)
+        --info                            Dumps info messages generated during
+                                        compilation onto the console
+    --build-debuggable-engine         Creates a debuggable engine
+    --use-strict-types                Restrict operating type to only use set
+                                        default operation precision
+                                        (op_precision)
+    --allow-gpu-fallback              (Only used when targeting DLA
+                                        (device-type)) Lets engine run layers on
+                                        GPU if they are not supported on DLA
+    -p[precision],
+    --default-op-precision=[precision]
+                                        Default operating precision for the
+                                        engine (Int8 requires a
+                                        calibration-cache argument) [ float |
+                                        float32 | f32 | half | float16 | f16 |
+                                        int8 | i8 ] (default: float)
+    -d[type], --device-type=[type]    The type of device the engine should be
+                                        built for [ gpu | dla ] (default: gpu)
+    --engine-capability=[capability]  The type of device the engine should be
+                                        built for [ default | safe_gpu |
+                                        safe_dla ]
+    --calibration-cache-file=[file_path]
+                                        Path to calibration cache file to use
+                                        for post training quantization
+    --num-min-timing-iter=[num_iters] Number of minimization timing iterations
+                                        used to select kernels
+    --num-avg-timing-iters=[num_iters]
+                                        Number of averaging timing iterations
+                                        used to select kernels
+    --workspace-size=[workspace_size] Maximum size of workspace given to
+                                        TensorRT
+    --max-batch-size=[max_batch_size] Maximum batch size (must be >= 1 to be
+                                        set, 0 means not set)
+    -t[threshold],
+    --threshold=[threshold]           Maximum acceptable numerical deviation
+                                        from standard torchscript output
+                                        (default 2e-5)
+    --save-engine                     Instead of compiling a full a
+                                        TorchScript program, save the created
+                                        engine to the path specified as the
+                                        output path
+    input_file_path                   Path to input TorchScript file
+    output_file_path                  Path for compiled TorchScript (or
+                                        TensorRT engine) file
+    input_shapes...                   Sizes for inputs to engine, can either
+                                        be a single size or a range defined by
+                                        Min, Optimal, Max sizes, e.g.
+                                        "(N,..,C,H,W)"
+                                        "[(MIN_N,..,MIN_C,MIN_H,MIN_W);(OPT_N,..,OPT_C,OPT_H,OPT_W);(MAX_N,..,MAX_C,MAX_H,MAX_W)]"
+    "--" can be used to terminate flag options and force all following
+    arguments to be treated as positional options
+
+
+
+

+ e.g. +

+
+
+
trtorchc tests/modules/ssd_traced.jit.pt ssd_trt.ts "[(1,3,300,300); (1,3,512,512); (1, 3, 1024, 1024)]" -p f16
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/tutorials/use_from_pytorch.html b/docs/v0.3.0/tutorials/use_from_pytorch.html new file mode 100644 index 0000000000..f5c83fa486 --- /dev/null +++ b/docs/v0.3.0/tutorials/use_from_pytorch.html @@ -0,0 +1,588 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + Using TRTorch Directly From PyTorch — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+
+
+
+ +
+
+
+
+
+
+ +
+
+
+
+
+ + +

+ Using TRTorch Directly From PyTorch + + ¶ + +

+

+ Starting in TRTorch 0.1.0, you will now be able to directly access TensorRT from PyTorch APIs. The process to use this feature +is very similar to the compilation workflow described in + + + Getting Started + + +

+

+ Start by loading + + + trtorch + + + into your application. +

+
+
+
import torch
+import trtorch
+
+
+
+

+ Then given a TorchScript module, you can compile it with TensorRT using the + + + torch._C._jit_to_backend("tensorrt", + + + ...) + + + API. +

+
+
+
import torchvision.models as models
+
+model = models.mobilenet_v2(pretrained=True)
+script_model = torch.jit.script(model)
+
+
+
+

+ Unlike the + + + compile + + + API in TRTorch which assumes you are trying to compile the + + + forward + + + function of a module +or the + + + convert_method_to_trt_engine + + + which converts a specified function to a TensorRT engine, the backend API +will take a dictionary which maps names of functions to compile to Compilation Spec objects which wrap the same +sort of dictionary you would provide to + + + compile + + + . For more information on the compile spec dictionary take a look +at the documentation for the TRTorch + + + TensorRTCompileSpec + + + API. +

+
+
+
spec = {
+    "forward":
+        trtorch.TensorRTCompileSpec({
+            "input_shapes": [[1, 3, 300, 300]],
+            "op_precision": torch.half,
+            "refit": False,
+            "debug": False,
+            "strict_types": False,
+            "device": {
+                "device_type": trtorch.DeviceType.GPU,
+                "gpu_id": 0,
+                "dla_core": 0,
+                "allow_gpu_fallback": True
+            },
+            "capability": trtorch.EngineCapability.default,
+            "num_min_timing_iters": 2,
+            "num_avg_timing_iters": 1,
+            "max_batch_size": 0,
+        })
+    }
+
+
+
+

+ Now to compile with TRTorch, provide the target module objects and the spec dictionary to + + + torch._C._jit_to_backend("tensorrt", + + + ...) + + +

+
+
+
trt_model = torch._C._jit_to_backend("tensorrt", script_model, spec)
+
+
+
+

+ To run explicitly call the function of the method you want to run (vs. how you can just call on the module itself in standard PyTorch) +

+
+
+
input = torch.randn((1, 3, 300, 300)).to("cuda").to(torch.half)
+print(trt_model.forward(input))
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docs/v0.3.0/tutorials/using_dla.html b/docs/v0.3.0/tutorials/using_dla.html new file mode 100644 index 0000000000..62717046e4 --- /dev/null +++ b/docs/v0.3.0/tutorials/using_dla.html @@ -0,0 +1,525 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + DLA — TRTorch v0.3.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Skip to content + +
+ +
+
+ +
+
+ +
+
+
+ +
+
+
+
+
+ + +

+ DLA + + ¶ + +

+

+ + + DLA + + + NVIDIA Deep Learning Accelerator is a fixed-function accelerator engine targeted for deep learning operations. DLA is designed to do full hardware acceleration of convolutional neural networks. DLA supports various layers such as convolution, deconvolution, fully-connected, activation, pooling, batch normalization, etc. + + + trtorch + + + supports compilation of TorchScript Module and deployment pipeline on the DLA hardware available on NVIDIA embedded platforms. +

+

+ NOTE: DLA supports fp16 and int8 precision only. +

+

+ Using DLA with trtorchc +

+
+
+
trtorchc [input_file_path] [output_file_path] [input_shapes...] -p f16 -d dla {OPTIONS}
+
+
+
+

+ Using DLA in a C++ application +

+
+
+
std::vector<std::vector<int64_t>> input_shape = {{32, 3, 32, 32}};
+auto compile_spec = trtorch::CompileSpec({input_shape});
+
+# Set a precision. DLA supports fp16 or int8 only
+compile_spec.op_precision = torch::kF16;
+compile_spec.device.device_type = trtorch::CompileSpec::DeviceType::kDLA;
+
+# Make sure the gpu id is set to Xavier id for DLA
+compile_spec.device.gpu_id = 0;
+
+# Set the DLA core id
+compile_spec.device.dla_core = 1;
+
+# If a layer fails to run on DLA it will fallback to GPU
+compile_spec.device.allow_gpu_fallback = true;
+
+# Set the workspace size
+compile_spec.workspace_size = 1 << 28;
+
+
+
+

+ Using DLA in a python application +

+
+
+
compile_spec = {
+        "input_shapes": [self.input.shape],
+        "device": {
+            "device_type": trtorch.DeviceType.DLA,
+            "gpu_id": 0,
+            "dla_core": 0,
+            "allow_gpu_fallback": True
+        },
+        "op_precision": torch.half
+}
+
+trt_mod = trtorch.compile(self.scripted_model, compile_spec)
+
+
+
+
+
+
+
+
+ + + + + \ No newline at end of file diff --git a/docsrc/RELEASE_CHECKLIST.md b/docsrc/RELEASE_CHECKLIST.md index f4ceab3552..1cb574a9bf 100644 --- a/docsrc/RELEASE_CHECKLIST.md +++ b/docsrc/RELEASE_CHECKLIST.md @@ -19,6 +19,8 @@ will result in a minor version bump and sigificant bug fixes will result in a pa 2. Release Testing - Required, Python API and Optional Tests should pass on both x86_64 and aarch64 - All checked in applications (cpp and python) should compile and work +3. Generate new index of converters and evalutators + - `bazel run //tools/supportedops -- /docsrc/indices/supported_ops.rst` 3. Version bump PR - There should be a PR which will be the PR that bumps the actual version of the library, this PR should contain the following - Bump version in `py/setup.py` diff --git a/docsrc/conf.py b/docsrc/conf.py index 505fd6d942..7279fae2f3 100644 --- a/docsrc/conf.py +++ b/docsrc/conf.py @@ -119,6 +119,7 @@ 'master_doc': True, "version_info": { "master": "https://nvidia.github.io/TRTorch/", + "v0.3.0": "https://nvidia.github.io/TRTorch/v0.3.0/", "v0.2.0": "https://nvidia.github.io/TRTorch/v0.2.0/", "v0.1.0": "https://nvidia.github.io/TRTorch/v0.1.0/", "v0.0.3": "https://nvidia.github.io/TRTorch/v0.0.3/", diff --git a/docsrc/indices/supported_ops.rst b/docsrc/indices/supported_ops.rst index 255c3e3035..0bd483297b 100644 --- a/docsrc/indices/supported_ops.rst +++ b/docsrc/indices/supported_ops.rst @@ -14,6 +14,7 @@ Operators Currently Supported Through Converters - aten::abs(Tensor self) -> (Tensor) - aten::acos(Tensor self) -> (Tensor) - aten::acosh(Tensor self) -> (Tensor) +- aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor) - aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor) - aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) - aten::add.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) @@ -26,11 +27,15 @@ Operators Currently Supported Through Converters - aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) - aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) - aten::batch_norm(Tensor input, Tensor? gamma, Tensor? beta, Tensor? mean, Tensor? var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor) +- aten::bmm(Tensor self, Tensor mat2) -> (Tensor) - aten::cat(Tensor[] tensors, int dim=0) -> (Tensor) - aten::ceil(Tensor self) -> (Tensor) - aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor) +- aten::clamp_max(Tensor self, Scalar max) -> (Tensor) +- aten::clamp_min(Tensor self, Scalar min) -> (Tensor) - aten::cos(Tensor self) -> (Tensor) - aten::cosh(Tensor self) -> (Tensor) +- aten::cumsum(Tensor self, int dim, *, int? dtype=None) -> (Tensor) - aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) - aten::div.Tensor(Tensor self, Tensor other) -> (Tensor) - aten::div_.Scalar(Tensor(a!) self, Scalar other) -> (Tensor(a!)) @@ -49,10 +54,12 @@ Operators Currently Supported Through Converters - aten::floor_divide.Scalar(Tensor self, Scalar other) -> (Tensor) - aten::ge.Scalar(Tensor self, Scalar other) -> (Tensor) - aten::ge.Tensor(Tensor self, Tensor other) -> (Tensor) +- aten::gelu(Tensor self) -> (Tensor) - aten::gt.Scalar(Tensor self, Scalar other) -> (Tensor) - aten::gt.Tensor(Tensor self, Tensor other) -> (Tensor) - aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor) - aten::hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor(a!)) +- aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? gamma, Tensor? beta, float eps, bool cudnn_enabled) -> (Tensor) - aten::le.Scalar(Tensor self, Scalar other) -> (Tensor) - aten::le.Tensor(Tensor self, Tensor other) -> (Tensor) - aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> (Tensor) @@ -80,7 +87,9 @@ Operators Currently Supported Through Converters - aten::ne.Scalar(Tensor self, Scalar other) -> (Tensor) - aten::ne.Tensor(Tensor self, Tensor other) -> (Tensor) - aten::neg(Tensor self) -> (Tensor) +- aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> (Tensor) - aten::permute(Tensor(a) self, int[] dims) -> (Tensor(a)) +- aten::pixel_shuffle(Tensor self, int upscale_factor) -> (Tensor) - aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor) - aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor) - aten::prelu(Tensor self, Tensor weight) -> (Tensor) @@ -90,6 +99,9 @@ Operators Currently Supported Through Converters - aten::relu(Tensor input) -> (Tensor) - aten::relu_(Tensor(a!) self) -> (Tensor(a!)) - aten::repeat(Tensor self, int[] repeats) -> (Tensor) +- aten::replication_pad1d(Tensor self, int[2] padding) -> (Tensor) +- aten::replication_pad2d(Tensor self, int[4] padding) -> (Tensor) +- aten::replication_pad3d(Tensor self, int[6] padding) -> (Tensor) - aten::reshape(Tensor self, int[] shape) -> (Tensor) - aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) - aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) @@ -151,6 +163,12 @@ Operators Currently Supported Through Evaluators - aten::add.int(int a, int b) -> (int) - aten::add_.t(t[](a!) self, t[] b) -> (t[]) - aten::append.t(t[](a!) self, t(c -> *) el) -> (t[](a!)) +- aten::arange(Scalar end, *, int? dtype=None, int? layout=None, + Device? device=None, bool? pin_memory=None) -> (Tensor) +- aten::arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, + Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) +- aten::arange.start_step(Scalar start, Scalar end, Scalar step, *, ScalarType? dtype=None, + Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor) - aten::dim(Tensor self) -> int - aten::div.float(float a, float b) -> (float) - aten::div.int(int a, int b) -> (float) @@ -160,6 +178,7 @@ Operators Currently Supported Through Evaluators - aten::eq.int(int a, int b) -> (bool) - aten::eq.int_float(int a, float b) -> (bool) - aten::floor.float(float a) -> (int) +- aten::floor.int(int a) -> (int) - aten::floordiv.float(float a, float b) -> (int) - aten::floordiv.int(int a, int b) -> (int) - aten::ge.bool(bool a, bool b) -> (bool) @@ -197,6 +216,7 @@ Operators Currently Supported Through Evaluators - aten::slice.t(t[] l, int start, int end=9223372036854775807, int step=1) -> (t[]) - aten::sub.float(float a, float b) -> (float) - aten::sub.int(int a, int b) -> (int) +- aten::t(Tensor self) -> Tensor - prim::max.bool(bool a, bool b) -> (bool) - prim::max.float(float a, float b) -> (bool) - prim::max.float_int(float a, int b) -> (bool) diff --git a/docsrc/tutorials/installation.rst b/docsrc/tutorials/installation.rst index 2084c0c1ce..9dff97351d 100644 --- a/docsrc/tutorials/installation.rst +++ b/docsrc/tutorials/installation.rst @@ -26,13 +26,13 @@ You can install the python package using .. code-block:: sh # Python 3.6 - pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.2.0/trtorch-0.2.0-cp36-cp36m-linux_x86_64.whl + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp36-cp36m-linux_x86_64.whl # Python 3.7 - pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.2.0/trtorch-0.2.0-cp37-cp37m-linux_x86_64.whl + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp37-cp37m-linux_x86_64.whl # Python 3.8 - pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.2.0/trtorch-0.2.0-cp38-cp38-linux_x86_64.whl + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp38-cp38-linux_x86_64.whl # Python 3.9 - pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.2.0/trtorch-0.2.0-cp39-cp39-linux_x86_64.whl + pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.3.0/trtorch-0.3.0-cp39-cp39-linux_x86_64.whl .. _bin-dist: @@ -73,8 +73,8 @@ the CUDA driver installed and the container must have CUDA) The correct LibTorch version will be pulled down for you by bazel. - NOTE: For best compatability with official PyTorch, use TensorRT 7.2 and cuDNN 8.0 for CUDA 11.0 however TRTorch itself supports - TensorRT and cuDNN for CUDA versions other than 11.0 for usecases such as using NVIDIA compiled distributions of PyTorch that use other versions of CUDA + NOTE: For best compatability with official PyTorch, use torch==1.8.1+cuda111, TensorRT 7.2 and cuDNN 8.1 for CUDA 11.1 however TRTorch itself supports + TensorRT and cuDNN for CUDA versions other than 11.1 for usecases such as using NVIDIA compiled distributions of PyTorch that use other versions of CUDA e.g. aarch64 or custom compiled version of PyTorch. You then have two compilation options: @@ -136,7 +136,7 @@ A tarball with the include files and library can then be found in ``bazel-bin`` **Building using locally installed cuDNN & TensorRT** -------------------------------------------------------------- - If you encounter bugs and you compiled using this method please disclose it in the issue (an ldd dump would be nice too) + If you encounter bugs and you compiled using this method please disclose that you used local sources in the issue (an ldd dump would be nice too) Install TensorRT, CUDA and cuDNN on the system before starting to compile. diff --git a/py/Dockerfile b/py/Dockerfile index 384f41ee39..9685ee91aa 100644 --- a/py/Dockerfile +++ b/py/Dockerfile @@ -1,4 +1,4 @@ -FROM pytorch/manylinux-cuda110 +FROM pytorch/manylinux-cuda111 RUN yum install -y ninja-build diff --git a/py/setup.py b/py/setup.py index 3cd247bd65..0d265c815e 100644 --- a/py/setup.py +++ b/py/setup.py @@ -16,7 +16,7 @@ dir_path = os.path.dirname(os.path.realpath(__file__)) -__version__ = '0.3.0a0' +__version__ = '0.3.0' CXX11_ABI = False diff --git a/cpp/supportedops/BUILD b/tools/supportedops/BUILD similarity index 100% rename from cpp/supportedops/BUILD rename to tools/supportedops/BUILD diff --git a/cpp/supportedops/main.cpp b/tools/supportedops/main.cpp similarity index 100% rename from cpp/supportedops/main.cpp rename to tools/supportedops/main.cpp