-
Notifications
You must be signed in to change notification settings - Fork 356
/
Copy pathtorch_compile_advanced_usage.py
107 lines (85 loc) · 3.08 KB
/
torch_compile_advanced_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
.. _torch_compile_advanced_usage:
Torch Compile Advanced Usage
======================================================
This interactive script is intended as an overview of the process by which `torch_tensorrt.compile(..., ir="torch_compile", ...)` works, and how it integrates with the `torch.compile` API."""
# %%
# Imports and Model Definition
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
import torch
import torch_tensorrt
# %%
# We begin by defining a model
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.relu = torch.nn.ReLU()
def forward(self, x: torch.Tensor, y: torch.Tensor):
x_out = self.relu(x)
y_out = self.relu(y)
x_y_out = x_out + y_out
return torch.mean(x_y_out)
# %%
# Compilation with `torch.compile` Using Default Settings
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Define sample float inputs and initialize model
sample_inputs = [torch.rand((5, 7)).cuda(), torch.rand((5, 7)).cuda()]
model = Model().eval().cuda()
# %%
# Next, we compile the model using torch.compile
# For the default settings, we can simply call torch.compile
# with the backend "torch_tensorrt", and run the model on an
# input to cause compilation, as so:
optimized_model = torch.compile(model, backend="torch_tensorrt", dynamic=False)
optimized_model(*sample_inputs)
# %%
# Compilation with `torch.compile` Using Custom Settings
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# First, we use Torch utilities to clean up the workspace
# after the previous compile invocation
torch._dynamo.reset()
# Define sample half inputs and initialize model
sample_inputs_half = [
torch.rand((5, 7)).half().cuda(),
torch.rand((5, 7)).half().cuda(),
]
model_half = Model().eval().cuda()
# %%
# If we want to customize certain options in the backend,
# but still use the torch.compile call directly, we can provide
# custom options to the backend via the "options" keyword
# which takes in a dictionary mapping options to values.
#
# For accepted backend options, see the CompilationSettings dataclass:
# py/torch_tensorrt/dynamo/_settings.py
backend_kwargs = {
"enabled_precisions": {torch.half},
"debug": True,
"min_block_size": 2,
"torch_executed_ops": {"torch.ops.aten.sub.Tensor"},
"optimization_level": 4,
"use_python_runtime": False,
}
# Run the model on an input to cause compilation, as so:
optimized_model_custom = torch.compile(
model_half,
backend="torch_tensorrt",
options=backend_kwargs,
dynamic=False,
)
optimized_model_custom(*sample_inputs_half)
# %%
# Cleanup
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Finally, we use Torch utilities to clean up the workspace
torch._dynamo.reset()
# %%
# Cuda Driver Error Note
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Occasionally, upon exiting the Python runtime after Dynamo compilation with `torch_tensorrt`,
# one may encounter a Cuda Driver Error. This issue is related to https://github.com/NVIDIA/TensorRT/issues/2052
# and can be resolved by wrapping the compilation/inference in a function and using a scoped call, as in::
#
# if __name__ == '__main__':
# compile_engine_and_infer()