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Abstract 

This report outlines the utility of computational methods such as autoregression (AR(p)), vector 

autoregression (VAR), Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition 

(DMD) in the context of the cylinder wake problem and for ink-jet print zone simulation. It was found that 

the Dynamic Mode Decompsition Method was severely limited by its inherent usage of one lag to 

reconstruct dynamics whereas methods such as VAR which use multiple lags can successfully reconstruct 

more complex dynamics associated with the high order modes. A generalized framework for identifying 

the bifurcation point is also proposed with respect to usage of these different algorithms. 
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Chapter 1 - Introduction 

Understanding the structures in unsteady flow conditions provides insights into their behaviour. This 

provides a pathway to controlling the flows in these conditions which has wide applications in many 

relevant systems and processes such as ink-jet printers. The computational methods discussed in this report 

are modal analysis algorithms applied to unsteady flows. There is significant interest in the snapshot-

method variants of these techniques using discretised data. Problems with large spatio-temporal data sets 

in fluid dynamics are defined commonly through numerical or experimental data consisting of a set of flow-

field values, such as velocity, pressure, and / or vorticity, mapped to a series of points over multiple time 

snapshots. 

 

Measurements of velocity in highly complex fluid flows require experimental techniques such as Particle 

Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). A key issue of analysing experimental 

data in comparison to direct numerical simulation (DNS) is that the system’s matrix of partial differential 

equations (PDEs) is unknown for experimental data, thus a statistical technique is required to analyse 

stochastic fluid flow phenomenon to permit the determination of localised temporal coherencies. An 

example of such a statistical technique proper orthogonal decomposition (POD) is depicted visually in 

Figure 1.The identification of coherent flow structures allows a high-order data set to be represented by 

the superposition of a low-order dominant mode and other coherent features such as a Kármán vortex street.  

An unsteady flow can be separated into its mean and modal components whereby each modal component 

may be represented by an eigenfunction which denotes a coherent flow structure that is largely time 

invariant. 

 
Figure 1. Modal decomposition of 2-D flat-plate wing Re=100 α=30° [1] 

POD was established in the fluid dynamics community by Lumley [2]. He proposed a means of analysing 

turbulence through maximising a deterministic projection upon the velocity field. POD is an effective 

algorithm for obtaining the most energetic modes to identify dominant features and fluid events (coherent 

structures) for experimental data and numerical simulations.   
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POD is also known as Principal Component Analysis (PCA), singular system analysis, singular value 

decomposition (SVD), the Hotelling transform and was largely derived from Karhunen-Loève 

decomposition (KLD) [3]. POD analysis employs the use of the SVD, which was established by the Eckart-

Young theorem to determine eigenvalues and eigenvectors or POD modes [4]. Velocity-state vectors are 

represented generally by an 𝑛 × 𝑚 matrix where 𝑛 represents the degrees of freedom related to the 

dimension of the vector space and 𝑚 represents the number of time snapshots, as shown in equation (2).  

 

Lumley’s definition of POD employs a model-based approach and considers an 𝑛 × 𝑛 eigenvalue problem 

(EVP); it is referred to as classical POD. Sirovich suggested a method, commonly called snapshot POD, 

where this problem can be reduced to an 𝑚 × 𝑚 eigenvalue problem, whereby 𝑛 >>  𝑚 [5]. The 

snapshot method does not involve the covariance matrix and uses what is referred to as the economy-sized 

SVD (equivalent to an 𝑛 × 𝑛 EVP) instead of an 𝑚 × 𝑚 eigen-decomposition to achieve a matrix reduction. 

Coding Sirovich’s snapshot method is simple and is less computationally costly than classical POD as it 

involves solving a singular value decomposition [6, 7, 4].  

  

The SVD method to find the modes of the complete 𝑋 matrix is shown in the following equations, noting 

that the economy SVD (using the truncated 𝑋 matrix) method is faster than considering the full matrix. The 

inputs of each time snapshot components can be described by equation (1) where 𝑞(𝜉, 𝑡𝑖) can either 

represent a scalar (e.g. temperature or pressure) or vector field (e.g. velocity, vorticity) defined at a set of  

spatial points related to the term 𝜉,  over one, two or three dimensional space at a discretized time, 𝑡𝑖 . The 

temporal average of these scalars or vector is represented by 𝑞̅(𝜉), thus by subtracting the mean (average) 

from the scalar or vector field the variation (perturbation), 𝑥(𝜉, 𝑡𝑖)  can be resolved. 

𝑥(𝜉, 𝑡𝑖) = 𝑞(𝜉, 𝑡𝑖) − 𝑞̅(𝜉) (1) 

 

The perturbation term can be considered a stacked column vector, as the spatial points are synonymous to 

grid points which do not move but the scalar or vector values at the spatial points vary, hence the column 

vectors can be represented by the following matrix 𝑋. 

 

𝑋 = [ 𝑥(𝑡1) 𝑥(𝑡2)…   𝑥(𝑡𝑚)] ∈ ℝ𝑛×𝑚 (2) 

 

 

The complete matrix can be decomposed using a singular value decomposition where U ∈ ℝ𝑛×𝑛  ,  
Σ ∈ ℝ𝑛×𝑚  and V ∈ ℝ𝑚×𝑚 [1]. 

 

Χ = 𝑈Σ𝑉∗ 

 
(3) 

The spatial modes can be represented by left-singular vectors in U and time coefficients by ΣV [8]. A more 

complete overview of POD analysis can be found in Taira et al [1]. It is also important to note that the 

snapshots do not necessarily need to be equidistant in time to calculate POD modes but are required to be 

equidistant in time to calculate DMD modes [4]. 

 

Dynamical Mode Decomposition (DMD) is a model-based approach which can be used for continuous 

dynamical systems in general. It was first introduced into fluid dynamics community by Schmid and 

Sesterhenn [9]. The method identifies coherent flow structures by determining the most energetic modes 

and correlative behaviors of the fluid flow for continuous dynamical systems. An example of this method 

is outlined in Figure 2 below. Following the identified computational limitations of non-discretised 

analysis, a snap-shot method was introduced by Schmid using a data-based approach, with the resultant 

modes being equivalent to global linear stability analysis for linearized flows [10]. In contrast, DMD 

analysis of a nonlinear flow produces representations of a linear tangential approximation of the flow and 
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outlines dominant fluid features which can be identified as coherent flow structures. DMD is based on the 

Arnoldi algorithm [11], for a fixed sampling rate i.e. a single frequency  [12]. The DMD snapshot-based 

method is intended as an equation free method (EFM) for use in large fluid flow datasets without fluid flow 

equations [13]. An EFM does not require prior understanding of the physics of the flow to utilise. 

 

Koopman analysis is yet another computational method used for modal analysis with a great overview 

provided by Taira et al [1]. The DMD algorithm was redefined by Kutz et al. with a more rigorous 

representation of time series data which allowed the time series data to be non-sequential when the DMD 

method was applied to a dataset i.e. sequences could be missing [12]. This time order characteristic of DMD 

forms the basis of sparse DMD which is used for sensor & control applications for flow regimes [13]. DMD 

for a dataset can be broadly considered an eigendecomposition of an approximating linear operator whereby 

the independent time series representing the number of snapshots must be uniformly distributed  [12].  

 

Equation (2) and equation (3) used in POD are also used in DMD to develop the spatial modes. The matrix 

𝑋′  is defined as 𝑋 shifted by a time-step.  

 

𝑋′ = [ 𝑥(𝑡2) 𝑥(𝑡3)…   𝑥(𝑡𝑚+1)] ∈ ℝ𝑛×𝑚 (4) 

 

The matrix, 𝐴 can be formed by taking the product of the pseudo-inverse (denoted by ∗ ) of 𝑋. 

 

 

𝐴 = 𝑋′𝑋∗ = 𝑋′𝑉Σ−1𝑈∗  (5) 

   
The matrix, 𝐴̃ serves as an approximation for the Koopman Operator for the relationship between 𝑋′ and  𝑋  

. 

 

𝐴̃ = 𝑈∗𝐴𝑈 
 

(6) 

The matrix is then subject to an eigendecomposition where columns of 𝑊are eigenvectors and Λ is the 

diagonal matrix of eigenvalues, 𝜆𝑘. 

𝐴̃𝑊 = 𝑊Λ 
 

(7) 

 

DMD modes are found as the columns of  Φ. A more complete overview of DMD can be found, described 

by Kutz et al. [13]. 

 

Φ = 𝑋′𝑉Σ−1𝑊 (8) 
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Figure 2. Simplified diagrammatic overview of DMD on fluid flow [13] 

POD and DMD are both data driven methods for obtaining modal components of a fluid flow. Modal 

components are ordered and guaranteed to be orthogonal using the POD snapshot algorithm however it 

requires sequential time series data which DMD does not. The resultant modes found using DMD are, 

however unordered and not necessarily orthogonal. POD and DMD can be considered a form of 

unsupervised machine learning with respect to dimensionality reduction applications. Thus, once coherent 

structures are identified, these algorithms can be employed as a pre-processor for supervised learning 

algorithms useful for prediction and control of short-time future states [14].   

Chapter 2- Literature Review 

2.1. POD Analysis of Fluid Interactions 

The fluid-bluff body interaction and subsequent vortex shedding is a well understood phenomenon. Study 

of bluff bodies allows for a clear and concise comparison between different computational methods for 

identifying coherent flow structures in an unsteady flow, as well as other flow features. 

 

Usage of the POD-Galerkin projection method allows for comparison between computational times and 

accuracy of a reduced order model (ROM) and high order DNS model [1]. A comparison between the full 

order model using Navier-Stokes equations in a parametric study to determine the lift and drag coefficients 

and a reduced-order POD-Galerkin projection in a 2-D domain outlined that ability of POD to effectively 

compress spatio-temporal flow data for fluid-interaction DNS with 𝑅𝑒 =  100 and uniform horizontal flow 

[15]. For a modal decomposition of ten modal values, it was found that the lift and drag coefficients could 

be represented with an error of 1.89% and 6.43% respectively in comparison to a full order Navier-Stokes 

model with a comparative computation speed up factor of approximately 650 for a POD ROM [15]. POD 

is thus a significantly effective technique in reducing computational time for identification, calculation, and 

representation of features such as drag and lift coefficients compared to using Navier-Stokes equations. 

Similar parametric studies have been completed on bluff bodies such as on the DU91(2)250 aerofoils 

whereby extensive computational fluid modelling of the positioning of gurney flaps and microtabs with 

respect to its effect on the optimal lift-drag ratio was conducted [16]. Through POD-Galerkin projection of 

Reynolds averaged Navier-Stokes (RANS) model to a ROM the optimal lift-drag ratio can be recursively 

interpolated for control applications with respect to varying angle of attack, requiring a low number of 

computational resources to resolve, this also allows for prediction of a short-time future state within a 

selected domain. The study, however, is limited by assumed constant conditions of 𝑅𝑒 =  106 and 𝑈∞ =
56.48𝑚/𝑠. Further data is likely required to consider control applications and variable environmental 

conditions for practical purposes. 
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POD beyond simply reducing orders of calculation allows a comprehensive analysis of coherent structures 

correlated with modal shapes of determined modal numbers to be conducted with low computational 

processing times. The characteristics of POD are particularly useful in assessing the effectiveness of varying 

flow control techniques such as piezoelectric actuators, wavy or rough surfaces and synthetic jet control, 

among others. A 2-D study was conducted to examine the influence of a surrounding porous material on 

the wake topology from a fluid-cylinder interaction, with the first four modes representing 46.3% and 

27.0% of the total kinetic energy for the bare and porous cylinder, respectively [17]. By considering the 

first four POD modes of phase resolved PIV data it could be confirmed across several flow visualization 

techniques that the region of vortex shedding was less energetic and shifted further downstream due to the 

additional porous material in the porous cylinder case, as shown in Figure 3  [17]. The porous material was 

cause of a wider wake topology with a correlated reduced vortex shedding frequency as corroborated by 

Klausmann and Ruck [18]. Further work may be completed to assess the impact of varying porous layer 

thickness or porosity of both open and closed cells on wake topology using POD analysis to improve 

understanding of a porous layer as a control flow technique. 

 
Figure 3. Smoke-wire visualisation of the cylinder wake topology (a) bare cylinder; (b) porous 

cylinder [17] 

 

Active flow control techniques generally have a higher degree of dynamical control due to the ease with 

which flow parameters can be modified. Synthetic jet control is an active flow control technique. It normally 

involves oscillation of a flow due to actuation of a diaphragm, from an enclosure to an orifice. Synthetic jet 

control was assessed for a cylinder cross flow of D = 30mm for Re = 950 and 1800 of varying stroke 

lengths and excitation frequencies. Using POD it was found that the control effect of the synthetic jets could 

be represented by two dimensionless parameters, the momentum coefficient and stroke length  [19]. The 

work is limited by insufficient comparable data for flow cases, for example there are only two unique 

instances of non-dimensional stroke length ratios considered within the study: L0/D = 1.5 and L0/D =
 3.3. 

 

The common use of averaging calculations across temporal and frequency domains for velocity fields 

hinders the improved understanding of non-linear dynamics. This is particularly true in the case of phase 

averaging to understand fluid-structure interactions. POD offers a means of considering dynamics due to 

perturbations where the mean component can be removed from the dynamics. A study of vortex induced 

vibrations with varying free stream velocity on a circular cylinder for 𝐷 = 25.4mm and 2150 < Re <
8530 produced an approximate relationship between the vortex shedding, 𝑓𝑉𝑆 and beat frequency, 𝑓𝐵, with 

respect to the natural frequency, 𝑓𝑁 and distinguished by the third mode pair [20].  

 
𝑓𝐵
𝑓𝑁

≈ 1 −
𝑓𝑉𝑆

𝑓𝑁
 

(9) 
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Analysis of the POD modes for vortex induced vibrations in terms of the beat frequency allows higher order 

modes to be considered. This study furthers understanding of non-linear dynamics due to the inclusion of 

the small vortices which cannot be examined with phase-averaging techniques due to this method’s inherent 

characterization of dynamic frequency variation. It is hoped that a greater understanding of vortex induced 

vibrations in low order models for linearized flow through attribution of coherent structures to higher order 

modes may improve applications for energy harvesting [21]. Improved understanding of vortex induced 

vibrations through POD may be utilised in control flow techniques for suppression of oscillations in fluid-

structure interactions as demonstrated by Chen et al. [22] . 

 

2.2. POD Analysis of 3-D Complex Flow in Practical Applications 

POD has seen further usage in 3-D flow analysis for comparing experimental data to numerical simulation 

to assess the effectiveness of flow control techniques. Axial water injection was investigated as a novel 

flow control mechanism to mitigate the flow instability associated with pressure pulsations in hydraulic 

turbines in an experimental setup [23]. The research was continued in a new study using the old 

experimental velocity datasets which were compared with an ANSYS Fluent numerical simulation using a 

zonal-DES turbulence model to investigate the influence of water jet injection. Individual POD modes 

reconstructed from the numerical simulations swirling flow were of particular interest: to minimize the 

radial velocity of the vortex rope at the critical threshold discharge value (11.5%). It was found that 

increasing the jet discharge value from 2% to 11.5% significantly reduced the dimensionless amplitude of 

the pulsations of the first mode. It was also observed that the mode shape for static pressure and radial 

velocity of the first mode shifted further down the diffuser, in the z-axis [24]. This shift confirmed the 

effectiveness of jet injection as a control flow technique in suppressing pulsations as seen when comparing 

Figure 4 and Figure 5. Further study is needed to parametrically investigate an optimal value of jet 

discharge rate, while considering and minimizing volumetric losses to improve overall efficiencies of the 

system as well as develop dynamic control functionality [24].  

 

 
Figure 4. Modal shapes of vortex rope (a) static pressure and (b) radial velocity mode 1 at 2% jet 

discharge value [24] 
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Figure 5. Modal shapes of vortex rope (a) static pressure and (b) radial velocity mode 1 at 5% jet 

discharge value [24] 

POD although a useful tool for identifying coherent structures can be limited by the presence of turbulence 

in highly complex flow. The use of variations of the POD algorithm may help alleviate some of these 

limitations, such an example is the advent of extended-POD whereby pressure and velocity data can be 

coupled to uncover correlations between flow events and pressure variations as originally described by 

Maurel et al. [25]. The flow instabilities within a steam turbine control valve were investigated using a 

combination of POD and extended POD analysis by Wang et al to improve operational safety practices 

[26]. The first three modes of POD modes represented 9.6%, 5.7% and <5% of the total pressure fluctuation, 

respectively indicating the highly chaotic nature of the pressure variations, however insight was gained on 

the coherent structures [26]. A correlation was identified between positive pressure variations and 

synchronous oscillation from the impingement jet flow as exemplified in extended mode 1 in Figure 6 . 

Implementation of control flow techniques may assist in reducing the chaos of the flow so a more thorough 

quantitative investigation can be conducted beyond qualitative relations between pressure and velocity 

fields. Furthermore, the assumption of circumferential symmetry for vortices may be invalid for the chaotic 

pressure variations and it is suggested the pressure fluctuations be studied on an additional orthogonal plane, 

so that the full 3-D turbulence effects may be studied [27]. 

 

 
Figure 6. Control valve extended-POD modes for pressure-velocity coupling field, XY plane [26] 
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2.3. DMD Analysis of a Fluid Interactions 

DMD analysis is a useful tool for determining specific dynamic structures of a fluid. However, it is difficult 

to determine the correct ranking of the modal decomposition and determine the relevancy of modes as they 

are not orthogonal, like in POD. Although, prior knowledge of the dynamical system is not required to 

determine modes, insight using DMD is lost if prior physical information about the system is unknown. A 

suggested method of easing the subjective relevancy   of the modes involves the use of specific and well-

defined criteria. A criterion 𝐼𝑗 allows the influence of the temporal (time) coefficient 𝑏𝑖𝑗(𝑡) on the entire 

time domain to be considered rather than for an instant, allowing for an effective method of ordering 

dominant DMD modes to determine the relevancy of coherent structures [28].  

 

𝐼𝑗 = ∫|𝑏𝑗(𝑡)|𝑑𝑡 ≈ ∫ |𝑏𝑖𝑗|𝑑𝑡
𝑁

𝑖=1

 

 

(10) 

 

Similarly, to how POD has been applied to numerical simulations and experimental data, DMD can inform 

on the dominance of coherent structures for modes of single frequencies. The geometry of various differing 

bluff bodies can greatly impact the wake generated by a fluid flow. A comparison between the fluid 

interaction of a square cylinder and wavy square cylinder for Re= 4075 demonstrated the formation of 

secondary vortical structures associated with the leading wave edge as opposed to the square cylinder where 

no secondary vortical structures from Von Kármán vortex shedding could be identified [29]. The DMD 

method resolved spatial patterns, demonstrating that modification of surface topology by a wavy leading 

edge can provide passive flow control, increasing dissipation of vortical structures, as outlined in Figure 7. 

However, insight into the relevancy and ordering of each mode to the entire time domain could be improved 

by inclusion of the criterion discussed above in addition to the use of Fourier transforms to understand the 

time-frequency relationship. 

 
Figure 7. DMD spatial patterns of mode 1 (a) square cylinder (b) wavy-square cylinder node plane 

(c) wavy-square cylinder middle plane (d) wavy-square cylinder saddle plane. [29] 

A major challenge in utilizing DMD modes for the identification of coherent structures is determining the 

contribution of the real and imaginary parts of the spatial mode. A study by Wang et al. suggests DMD 

spatial modes contain an imaginary and real part with both parts at different phases through mathematical 

manipulation and visualization, as depicted in Figure 8  for a diffuser setup  [30]. This visualization of 

coherent structures assists in the interpretation of the DMD modes with respect to the contribution of 

imaginary and real parts, as a spatial relation is apparent. As such DMD modes can be considered to contain 
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a constant, singular complex frequency for each mode, with a phase shift apparent between the real and 

imaginary parts of a mode. This relationship was earlier suggested by Goza et al. with modal analysis of 

flag flapping for a fluid structure interaction [31]. However, the mathematical relationship was not 

explicitly stated in the earlier work. 

 
Figure 8. Imaginary and real parts of spatial DMD mode (St = 0.173) for a diffuser [30] 

The DMD algorithm approximates the Koopman operator under certain conditions whereby Koopman 

modes can be harmonics of a fundamental real frequency as they are integer multiples of one another. 

Bagheri demonstrates that it is necessary to consider different regimes of flow with respect to time and use 

different analysis methods and some dynamics do not necessarily carry over into other intervals [32]. This 

is especially true with regards to the limitations of the FFT algorithm as the approach requires a 

predetermined set of frequencies and a periodic dataset which is only true for interval IV as shown in Figure 

9  [32]. Other approaches are available that may overcome these limitations. Perhaps, autoregression and 

vector autoregression may provide further insights into these dynamics beyond those explored by Bagheri. 

 
Figure 9. Drag coefficient as a function of time for a cylinder at Re=50 [32] 

2.4. POD and DMD Analysis Comparison Studies 

POD spatial modes generally contain a mix of frequencies although Spectral Proper Orthogonal 

Decomposition (SPOD) has been developed to alleviate this issue by resolving in a frequency rather than 
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temporal domain [1]. DMD can resolve spatial modes for singular frequencies thus it may be more useful 

than POD to significantly uncouple modes with more fragmented and detailed coherent structures [33]. As 

POD modes may share frequencies, it can be necessary to complete both a POD and DMD analysis on a 

fluid flow to identify coherent structures. Furthermore, DMD analysis can require a priori knowledge of 

modal energies in relation to the total kinetic energy to determine relevancy of modes especially for noisy 

data. This limitation gives rise to the in-tandem approach of applying both POD and DMD techniques to 

unsteady flow experiments. 

 

POD modes can be separated into their spatial components independent of time and time component 

independent of space, commonly referred to as topos and chronos respectively. The chronos for a POD 

mode may contain a spectrum of frequencies. When detailed analysis of the frequency domain is required 

DMD can be preferred for further insight into these coherent structures as singular frequencies can be 

identified rather than a mix which POD chronos modes contain. This methodology has proven useful for 

analysis of combustion chambers; for example it was demonstrated that by modifying the angle of fuel 

injection from 150° to 90°, a squish dominated frequency spectrum (6-8.5khz) informed by DMD analysis 

could have its amplitude reduced (sound pressure level), which coincided with a shift of POD spatial modes 

as outlined in Figure 10 and Figure 11 respectively [34]. Although efficiencies of the modification were 

not considered, this control feedback loop of adjusting parameters informed by coherent structure 

identification stresses the ability of POD and DMD in informing or optimizing a control algorithm.  It is 

also significant that although POD modes appear shifted, this is largely an observed approximation. 

 
Figure 10. Shifted POD modes due to modified fuel injection spray angle  [34] 

 

 
Figure 11.  Reduced sound pressure due to modified fuel injection spray angle [34] 
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The applications of DMD and POD analysis go beyond the analysis of coherent structures in fluids, the 

insights provided on modal analysis also allow a combined analysis of a fluid-structure interaction. It is 

important to analyse these systems with respect to the coupled physics instead of independently to identify 

dominant features and improve physical understanding. A major limitation of a POD and DMD study 

completed by Muld et al. on a high-speed train [35] was the methodology in which the fluid and structure 

were not clearly coupled in the matrix formation, although this would have made the simulation quite 

expensive. It is also important to recognize that the model was analysed in 3-D which allowed a 

methodology with an improved analysis of turbulence effects compared to an equivalent 2-D study [27].  

 

A method for analyzing a coupled fluid-structure system with respect to a weighting matrix was developed 

by Goza et al [31] for a flag flapping at Re = 500. The method found good agreement between the DMD 

and POD modes as it was determined there was a dominant frequency related to the limit cycle behaviour 

of the oscillating flag. The use of SPOD is suggested as an intermediary method between DMD and POD 

as it can isolate coherent structures at distinct frequencies in its modes. A key trait shared between DMD, 

and POD analysis is the similarity of spatial modes for some flows periodic in time [36]. This is confirmed 

by studies conducted on fluid-structure interactions of the Crevalle Jack’s caudal fin for Re=500 and 4000 

by Khalid et al [37]. Furthermore, the study identifies the occurrence of quadfurcations as coherent 

structures where the first mode accounts for the separation of each of the four vortex tubes and second mode 

relates to vortices pairing, as is visually depicted in Figure 12.  The study successfully identifies coherent 

structure for a 3-D body using a modal analysis method for fluid-structure interactions inspired by Goza et 

al. 

 
Figure 12. POD and DMD modes for crevalle jack caudal fin FSI, Re=500 

A generally accepted limitation of POD is its inability to isolate individual frequencies within a mode. 

Rather, POD produces a spectrum of frequencies. However, in cases where there is no spectrum of 

frequencies or where spectrums can be broken down into individual frequencies through post processing 

methods, this limitation is less prevalent for the dominant or leading mode. Burtsev et al. have seemingly 

implied this important case exists for a cylinder flow of Re = 60 whereby the roots between POD and DMD 

in a linear regime match those of the Bi-Global EVP [38]. It is unclear which post processing steps if any 

were taken to arrive to these results with DMD such as down sampling or subsampling among other possible 

steps. Further clarification is required upon what factors impact on DMD and POD roots being equivalent 

allowing individual frequencies to be characterized. 
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Figure 13. Leading travelling and stationary modes canonical two-dimensional cylinder at Re = 60 

[38] 

2.5. Machine Learning 

 DMD and POD can be thought of as linear encoder methods that are able to compress and decompress 

high dimensionality fluid data [39]. Such an example of this is viewed in research conducted on a mixed 

flow pump by Han and Tan, showcasing the ability to extract coherent structures using POD and DMD as 

well as reconstruct the flow field with a high degree of accuracy as seen in Figure 14 [40].Such 

reconstruction of the flow field from dominant modes forms the basis for prediction modelling and 

prediction applications. A key limitation of POD and DMD is its ability to account for non-linearities, 

which auto-encoder networks have been found to alleviate as has been researched with the limitations of 

PCA, closely resembling the limitations of POD [41]. It is possible to use a neural network with encoders 

based on fundamental physics-informed knowledge such as energy conservation laws and Newton’s 

equations to also improve the accuracy of the model. This deep learning framework has been referred to as 

hidden fluid mechanics (HFM). HFM has shown, for example, success in modelling flow fields for 

informing on hemodynamics of a 3D intracranial aneurysm [42]. 

 

Machine learning has seen great success in the use of unsupervised learning in neural networks which can 

be used for the prediction of fluid flow features. A method comparing linear DMD and POD with respect 

to auto-encoders for long short-term memory neural networks and a POD-LSTM network was studied by 

Eivazi et al [39].  The study outlined potential for improved prediction of non-linear flow fields using auto-

encoder networks with respect to the reduction of the mean square error [39]. There are however large 

limitations associated with such techniques, particularly computational time with DMD being three orders 

of magnitude faster for prediction than a relevant neural network [39]. Furthermore, selection of the size of 

the bottle neck layer which dictates the dimensionality reduction before reconstruction is an a priori 

proposition that requires a posteriori validation. This means that poor selection of the size of the bottle neck 

layer can severely slow down calculation time and may require neural networks to have their training 

conducted again. This limitation is particularly risky for analysing large data sets. Further research is 

required to understand the risk profile of bottle neck layer selection in relation to the study of flow fields to 

encourage research in this area. 
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Figure 14. Reconstructed flow fields comparing POD and DMD for the tip leakage vortex in a 

multi-stage pump [40] 

2.6. Ink Jet Print Zone and Tiger Stripes  

It has been identified that minute changes in the stability of airflow dynamics within the print zone of inkjet 

printheads has a large impact on the output quality leading to issues such as the tiger stripe error [43].Tiger 

stripes occur as a result of the deposition of satellite droplets that disperse away from the main printhead 

flow which create an impinging jet flow effect with counter rotating vortices [44]. This issue becomes 

especially exacerbated when the distance is increased between the printhead and print material. Work has 

been conducted to significantly reduce the tiger stripe incidence in inkjet printing.However, these 

minimization strategies: blocking the flow by inducing a pressure gradient from the roller rotation and 

application of a pressure difference between the print zone ends. These strategies, however, do not 

completely eradicate the issue over all industrially useful configurations and operating conditions [45]. 

 

 
Figure 15. Solid block printing (left) and bar-code (right) showing the effect of airflow oscillations 

creating tiger stripes [43] 

Aquino et. al. compared the amplitude of velocity oscillation at a probe point just downstream of the print 

zone as a function of the density of nozzles printing [46]. Figure 16 compares the square of the amplitude 
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of the oscillation with respect to print density. This shows that the onset of oscillations occurs approximately 

between print density values of 0.076 and 0.077, where print density is a measurement of the amount of ink 

measured normally with densitometer and pressmen [46]. The change in flow behaviour from steady to 

oscillatory is characteristic of a supercritical Hopf bifurcation [47]. The supercritical Hopf bifurcation 

marks the point of a transition from steady to unsteady flow as the Reynolds number or (in the case of inkjet 

printing) print density increases. It is expected that computational methods such as POD may provide a 

method to garner similar results which elucidate of the physics of the flow and inform on coherent features 

such as the critical point for other flow examples. 

 
Figure 16. Bifurcation diagram - amplitude of oscillation squared (r2) [mm2/ms2] vs. print density 

[46] 

2.7. Supercritical Hopf Bifurcation on a Cylinder 

 

A canonical bluff body for examining supercritical Hopf bifurcation is the circular cylinder [48, 49, 50, 51, 

52]. Thus, it is a suitable problem for testing out the analyses developed herein. For the cylinder problem, 

a very large flow domain is required to remove any effect of the boundaries on the flow. Placing the cylinder 

on the centerline of the planar channel reduces the size of the domain, and thus computational cost for 

examining this problem. There are also numerical predictions of the critical Reynolds numbers in this 

configuration that are available for comparison [53, 54, 55].  

 

The tiger-stripe problem in inkjet printers has barely been considered compared to the wide literature on 

flow over cylinders. There is a desire to understand the coherent structures with respect to bifurcation 

behavior in these flows [45]. This thesis aims to qualitatively identify coherent flow structures through 

visualizations using DMD and POD as well as other methods, hoping to explain the advent of supercritical 

Hopf bifurcations which have been observed in numerical simulations [46].  The methodology employed 

on the cylinder wake problem can then be applied in a generalized sense to the tiger-stripe problem. 
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Chapter 3 - Methodology 

The 2-D cylinder wake flow example was first considered in the planning for this project to allow for a 

simple process of validation of the methodology presented against known and well researched results for a 

canonical problem. The 2-D cylinder despite being a relatively simple geometry, involves a rich level of 

detailed physics. Knowledge of applied mathematics is required to analyse the problem with a high degree 

of accuracy and insight. Traditional techniques such as bifurcation analysis can inform on the bifurcation 

point and coherent features of the fluid flow that are observed during this transition between steady and 

unsteady flow. Numerical simulations are sensitive to minute changes in initial conditions and equation 

solution methods ultimately have a large impact on the identification and accuracy of the determined 

bifurcation point. Theoretical mathematical analysis techniques can provide a benchmark for testing the 

numerical predictions and give insight into the problem over a wide range of parameter space for much less 

computational effort than simulations. 

 

The aim of this methodology section is to propose, employ, validate, and verify statistical techniques using 

computational methods which may garner the same insights with a simpler methodology that is easier to 

repeat at scale. The cases where Reynolds number are near the observed bifurcation point are of particular 

interest in confirming previously observed results and providing further insight into supercritical Hopf 

bifurcation. The methodology presented will largely analyse results from a time window of flow whereby 

the flow is periodic and the oscillations in flow properties have reached a saturated amplitude i.e., Interval 

IV which is discussed later. The flow data simulation considered occurs where Re = 150 which is equivalent 

to Re = 100 for a circular cylinder wake flow, however the general process of methodology is applicable to 

other flow examples for a variety of Reynolds numbers. The impetus for using this time window is related 

to the later development of non-linearity and structure associated with a new attractor [3].  

 

The methodology used to analyse the confined cylinder wake problem will then be applied to results from 

an ink-jet print zone simulation, to identify coherent features which corroborate with known printing 

dynamics and phenomena [43, 46, 44]. 

3.1. 2-D Cylinder Flow  

The canonical confined cylinder wake problem will be examined in greater detail as it is a well-researched 

and well-defined simulation [32, 55]. It will form a testbed to develop modal analysis oriented 

computational techniques to identify coherent features which can be applied to more complex geometry. 

There is particular interest in the critical Reynolds number associated with the onset of the steady to 

unsteady flow transition in a fluid flow between supercritical and subcritical Reynolds numbers whereby 

the critical Reynolds number is identified by a zero-growth rate. The solution transitions from a breakdown 

of the steady flow to a periodic unsteady flow past this critical threshold. This zero-growth rate is 

representative of the fluid flow behaviors of the fundamental eigenmode. For a supercritical case some 

saturated amplitude behaviour would be expected whereas for subcritical cases a steady state would be 

expected. Various similar values have been observed for the critical Reynolds number, Gallaire et al. 

observed that the critical Reynolds number occurred at 𝑅𝑒𝑐𝑟𝑖𝑡 = 46 [48]. Bagheri has provided a similar 

result for the critical Reynolds number with a more precise of value 𝑅𝑒𝑐𝑟𝑖𝑡 = 46.6 [32]. Other research has 

indicated that the bifurcation point coincides with a critical Reynolds number of between 45-49 [49]. For 

the centerline Reynolds number this would be equivalent to approximately Re = 67.5 -73.5. Furthermore, 

other factors may impact the identified Reynolds number for the bifurcation point including: 

• Width of the channel 

• Inlet velocity profile  

• Blockage Ratio 



Jake Allan Edwards – Computational Methods for Unsteady Flow Structure Analysis 

 

 
 

   

16 

• Distance of cylinder from inlet and outlet 

• Mesh settings (for a DNS) 

 

3.1.1. Cylinder Wake Geometry Simulation  

Several Python scripts were developed utilizing the scikit-fem library to create a geometrical cylinder model 

in a channel as described below in Table 1 and to solve the Navier-Stokes equations using a finite element 

method [56]. Numerical simulations of the canonical confined cylinder wake flow model were generated 

for multiple cases between 𝑅𝑒 = 70 and 𝑅𝑒 = 150 with adherence to the Deutsche Forschungsgemeinschaft  

(DFG) time periodic 2-D case [50]. This simulation will be referred to as the st08-NS case and is generated 

by the   st08_navier_stokes_cylinder Python script or ‘.py’ file. This simulation was generated to compare 

to existing studies and validate the implementation of POD, DMD and other Python scripts. These scripts 

were created to be later used for the more complex ink-jet printer injection zone geometric structure which 

was developed by Aquino et al.; using scikit-fem to solve the steady equations and to generate initial 

conditions and unsteady simulations were created using OpenFOAM  [46]. 

 

Parameters for the geometry are given below in Table 1 and the mesh is shown in Figure 17. 

 

 

Table 1. Cylinder wake simulation parameters for st08_navier_stokes_cylinder.py 

Parameters Value 

Domain Height x Length  0.41(H) x 2.2 (L) 

Cylinder Radius  0.05 

Circle Centre  0.2,0.2 

Edge Size  0.025 

Blockage Ratio 0.244 

Number of Cells per snapshot(elements) 3073 

Number of Points per snapshot(nodes) 1651 

Total Snapshots  15000-60000 

Time Step  0.001 

 

The following mesh was generated using the dmsh Python library [57] . The scikit-fem simulation was 

able to provide pressure, velocity, and vorticity data per each nodal value for a range of snapshots. The inlet 

is defined as the coordinates (x,y) = (0.0,0.0) to (x,y) = (0.0,0.4) and the outlet is defined as (x,y) = (2.2,0.0) 

to (x,y) = (2.2,0.4). 

 
Figure 17. 2-D Cylinder flow geometry of a triangular mesh generated with scikit-fem 

The Python simulation for a DNS solution to the confined cylinder wake problem and consequent post 

processing of matrices data for vorticity and other parameters was handled by the Python dependencies and 

their consequent child dependencies portrayed in Table 2. The libraries and software were selected for the 

project as they are open source and relatively portable which means that a non-commercial computing 

environment may handle the requirements of the simulation reducing the barrier to undertaking this study. 
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Table 2. Script dependencies with Python 3.8.6 

Python Package Version 

scikit-fem [58] 2.5.0 

dmsh [59] 0.2.16 

h5py [60] 2.10 

matplotlib [61] 3.4.2 

modred [62] 2.1.0 

pyamg [63] 4.1.0 

 

The specifications of the computer and environment used for simulations and post processing are as follows 

in Table 3. 

 

Table 3. Computation environment 

Specification Value 

CPU Intel(R) Core(TM) i5-9600KF CPU @ 3.70GHz (6 

CPUs) 

GPU AMD RX 590 Series 

RAM 16318MB 

SSD 1TB 

Operating System  Windows 10 Pro 64-bit (10.0, Build 19042) 

IDE Spyder 4.2.5 

Python 3.8.6 

 

The DNS was resolved by numerically resolving the incompressible Navier-Stokes equations using a finite 

difference method. The Navier-Stokes equations for mass conservation were considered with the 

assumption the fluid was incompressible and could be modelled as a continuous body. 

  

In equation (11), 𝐿 is the characteristic length in this case this is the size of the cylinder diameter 𝐷, and 𝑢 

is the flow speed. In this simulation 𝑢 was considered as the maximum velocity flow vector of the parabolic 

fully developed Poiseuille flow which is imposed as an initial condition.  Note that these dimensions are 

not indicative of a real-world simulation regarding scale. 

  

 

𝑅𝑒 =
𝑢𝐿

𝑣
 

(11) 

 

It is important to note that discrepancies between the results achieved in the DNS may be different to other 

similar cylinder flow studies as they may use a plug flow where initial conditions of the flow are uniform 

parallel to the flow stream. Furthermore, mesh settings and finite difference methods may be different in 

approach. The canonical example of the cylinder wake flow for 𝑅𝑒 = 100 was examined by Kutz et al. for 

a plug flow with a dimensionless uniform initial velocity of one [13]. The equivalent case used to verify 

the simulation was examined for 𝑅𝑒𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 = 150 whereby the max velocity was 1.5. It is important to 
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note how the velocity profile impacts on the Reynolds numbers which make these cases largely equivalent. 

As for an even Poiseuille velocity profile, the maximum velocity also known as the centerline velocity is 

1.5 times that of the mean velocity as seen in equation (12), where 𝑢𝑚 is the mean velocity, 𝑢𝑐 is the 

maximum (centerline) velocity. This means that a critical Reynolds number of 𝑅𝑒 = 46.6 is equivalent to a 

𝑅𝑒𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 value of 𝑅𝑒𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 = 69.9 

 

𝑅𝑒𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 =
𝑢𝑐𝐿

𝑣
=

1.5𝑢𝑚𝐿

𝑣
 

(12) 

 

A restart facility was devised within the Python code motivated by the need to produce a linear stage of 

growing disturbance to verify Burtsev etl al’s results as well as reduce initial transient features that are 

resultant of poorly defined initial conditions [38].  Different intervals are shown to exhibit different flow 

behaviour and have been defined by Bagheri as follows: interval I represents the exponential escape rate 

from the unstable equilibrium as the initial stage, interval II represents the growth from the interaction 

between the equilibrium and limit cycle and interval III represents the exponential relaxation rate due to the 

limit cycle and interval IV is the saturated growth stage marking a period of oscillations in the limit cycle  

[32]. For Figure 19 interval II – III is approximately represented by time 2 to time 8 from represented 

snapshots 2000-8000 and interval IV is represented by snapshots 8000-15000 i.e., time 8-15. It can be seen 

in Figure 19 that the restart facility produces the desired range of intervals from interval I to interval III 

thus it produces a linear stage of initial disturbance growth. 

 

An example of a simulation with large initial transients can be seen in Figure 18.  for velocities 𝑣 and 𝑢 

(for the y and x axis, respectively), for time, 𝑡, less than 4. At 𝑡 ~ 2.5 there is a large change in both the 𝑣 

and 𝑢 values which does not reflect the expected shape of the function which should resemble that of  Figure 

9 for interval I to interval III. This would require an increased number of cycles for the equivalent growth 

stage in the cases being examined. 

 

 

 
Figure 18. Velocity probe at coordinate (1.759,0.114) of st08-NS simulation without restart facility 

for Re = 90 where time is in unit time, where dT =0.001 and 1 unit time is 1000 snapshots 

In contrast, the restart facility uses the solution for a subcritical Reynolds number in this case  

𝑅𝑒𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 = 40 as the initial condition which reduces the volatility of the initial transient dynamics. The 

restart facility implicitly assumes that the initial steady state dynamics for supercritical Reynolds numbers, 

𝑅𝑒𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 >  𝑅𝑒𝑐𝑟𝑖𝑡 are approximately equal to the initial steady states of subcritical Reynolds numbers 

where, 𝑅𝑒𝑐𝑒𝑛𝑡𝑟𝑒 𝑙𝑖𝑛𝑒 <  𝑅𝑒𝑐𝑟𝑖𝑡 and 𝑅𝑒𝑐𝑟𝑖𝑡 is defined as the critical Reynolds number. Centre line Reynolds 

number from hereon will just be referred to as 𝑅𝑒. 
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Figure 19. Vorticity probe for fore and aft stagnation points with restart facility for Re = 90 

An example of a subcritical case is shown below in Figure 20. Interval I is comprised of initial transients 

which are largely superfluous and are resultant of stagnant initial conditions and other simulation settings. 

This stage is not present in Figure 20, as it has been cropped. An example of these transients can be found 

in the appendices in Figure 66. Interval II shows multimodal decay after the initial transients of interval I. 

In some cases, the results show several peaks representing the fundamental eigenmode and its harmonics 

which decay at different rates. This is not a very prominent stage in Figure 20 but likely explains the slightly 

reduced peak near snapshot 1100. Interval III is the linear decay of the fundamental mode whereby the 

signal can be largely interpreted to resemble that of trigonometric-exponential decay e.g., the product of an 

exponentially decaying curve and a sine wave. Interval III exists for snapshot 2000-45000 approximately. 

Past those snapshots, interval IV represents the stagnation where the amplitude of the decaying signal falls 

below the noise. This is shown from snapshot 45000-60000. It should be noted that the vorticity values for 

these perturbations are relatively quite small and Bagheri has not considered all the intervals for a subcritical 

Reynolds number case [32]. 

 

 
Figure 20. Fore and aft stagnation point vorticity probes for Re = 74 

 

The simulation conducted produces an ‘.xdmf’ file format which, for the purposes of analyzing the flow 

structures, can be read as a NumPy matrix of a desired shape with the number of rows equal to the number 

of nodal points and columns equal to the number of snapshots. 
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Reynolds numbers less than 𝑅𝑒 = 80 were run for 60000 snapshots with a time difference (time step value) 

of  𝛿t = 0.001 between each snapshot in relation to the Navier-Stokes numerical solver scripted in 

st08_navier_stokes_cylinder.py. Cases greater than 𝑅𝑒 = 80 in contrast were only run for 15000 snapshots 

also with a difference of  𝛿𝑡 = 0.001 between each snapshot. The cases near the bifurcation point and below 

the bifurcation point (critical Reynolds number) were run for a longer time window (i.e., more snapshots 

with same time step size) as this was necessary to reach the quasi-steady state for Interval IV for subcritical 

cases.  

 

The results were first observed by reading the ‘.xdmf’ files into the open source scientific visualization tool 

Paraview to observe the evolution of the dynamics for each case. Later necessary snapshots were plotted 

using the matplotlib library [61]. A script for plotting these snapshots can be found in the repository linked 

in the appendices, whereby the script plot_snapshot.py was used. For the given computational environment 

simulation generally took approximately 1hr and 6 minutes to complete for 60000 snapshots and 

approximately 17 minutes for 15000 snapshots. It should be noted that these simulations were performed 

in series when there was opportunity to process them in parallel. For example, a modified version of 

st08_navier_stokes_cylinder.py would be able to simulate multiple Reynolds number cases for 

approximately 1hr and 6 minutes. Optimization of this algorithm was not pursued due to time constraints 

of the project but would greatly improve simulation time and may be pursued in future works. 

 

 

When comparing  Figure 21 and Figure 23 it can be observed that there are similarities as the vorticity 

conditions for as a subcritical 𝑅𝑒 = 40  (similar to the plot observed in Figure 23) for the case in Interval 

IV is used as the in initial condition to create the simulation for 𝑅𝑒 = 150 as observed in Figure 21. This 

can be visually confirmed as there is a clear independent section between the red and blue vorticity stream 

in Figure 23. As expected in Figure 21 the vorticity streams are also independent in the wake of the cylinder, 

however as time evolves the growth rate increases leading to the vorticity dynamics observed in Figure 22. 

 
Figure 21. Plot of snapshot 500 for Re = 150 using matplotlib interval II, supercritical case 

generated using plot_snapshot.py 

Figure 22 below is representative of a supercritical case for the confined cylinder wake problem, which, 

when viewed shows contours of y-velocity and it exhibits characteristics of a Von Kármán vortex street, 

whereby vortical structures exhibit oscillatory behaviour in vortex pairs. These simulations were then 

postprocessed using computational methods such as autoregression, POD and DMD among others to garner 

further insights into the fluid flow dynamics. Figure 22 corroborates with both Bagheri and Kutz et al 

regarding paired vortex shedding for supercritical cases past the bifurcation point which visually validates 

that the simulation has merit and matches the expected flow dynamics [13] [32]. 
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Figure 22. Plot of snapshot 11000 for Re = 150 using matplotlib interval IV, supercritical case 

generated using plot_snapshot.py 

A subcritical case in contrast demonstrates Interval IV which decays to a steady laminar flow as time 

evolves hence achieving a flow where a probe response is below that of the noise. Such a snapshot of a 

subcritical case is demonstrated below in Figure 23. 

 
Figure 23. Plot of snapshot 18000 for Re = 70 using matplotlib interval IV, subcritical case 

generated using plot_snapshot.py 

These simulations are postprocessed using computational methods such as autoregression, POD and DMD 

among others to garner further insights into the fluid flow dynamics.   

 

3.1.2. Selection of POD Algorithm 

Once the simulations were completed for the relevant Reynolds number cases POD modal analysis was 

performed. A key element in the methodology was determining which variant of the POD algorithm to use. 

Considerations of the applicable POD implementation included the speed of the algorithm, ease of use and 

adaptability. Initially the NumPy library as ‘np’ and the SVD module function was employed to perform 

the main part of the POD analysis whereby the variable xT represented a vorticity field consisting of 1651 

rows for each nodal value within the mesh and either 15000 or 60000 columns representing the vorticity 

field values for each snapshot. The variable qT was assigned by reading the .xdmf files for the original 

vorticity field simulated by st08_navier_stokes_cylinder.py. The mean value of variable qT was subtracted 

from the vorticity field in line with POD theory as described in the Taira et al. overview paper [1]. This 

step allows the consideration of the perturbations rather than the entire field. The reduced SVD 

decomposition is used by setting full_matrices to false this decreases computation time by ignoring 

elements of the matrix that would have otherwise been multiplied by zero. 

 

Code Snippet 1. NumPy SVD implementation 

xT = qT - qT.mean(0) 
v, s, uh = np.linalg.svd(xT, full_matrices = False) 

 
Although the above methodology was effective in decomposing the vorticity field, it was limited in its 

speed. This led to the exploration of the dask Python library for parallel computing which was proposed to 

be faster for larger matrices due to the way it streams smaller decompositions of the matrix into blocks or 
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chunks which would assist in allowing parallelization for larger matrix multiplications [64]. In contrast to 

the NumPy SVD method, the dask SVD method also had the added benefit of being able to specify the rank 

reduction during the decomposition process which increased computational speed. Further to this dask has 

some ability to operate within a cloud computing environment for increased concurrent scheduling of 

processes.  One of the other main drawbacks is that much of NumPy’s linear algebra module has not been 

implemented in dask. This method did not prove native support for consideration of the mass matrix and 

there was difficulty in fully realizing the benefits of parallelization without serious development of the idea 

and related scripts. 

 

Code Snippet 2. Dask compressed SVD implementation 

v, s, uh = da.linalg.svd_compressed(xT, k = r) 
 

The above implementations of SVD have not considered the mass matrix, which is required to determine 

the inner product. The incorporation of the mass matrix modifies the resultant matrices derived from SVD 

quantitatively. Without the mass matrix the energy of the modes would be representative of pseudo energy. 

For a mesh that is set with a uniform grid the mass matrix would be the identity matrix and would not be 

considered. However, since the mesh is not uniform for these simulations the mass matrix must be 

considered. The simulation code had to be modified to save the mass matrix once for each mesh. 

 

Code Snippet 3. SciPy.sparse with the save_npz module to save the mass matrix for each simulation 

case in st08_navier_stokes_cylinder.py. 

save_npz( 
          Path(str(os.path.dirname(__file__)) + '\\' + 'SIM_XDMF\\' +  

     os.path.splitext(str(os.path.basename(__file__)))[0] +                     
          "mass_Re_{}".format(str(Rey).replace('.', '-')) + ".npz"), 
          skfem.asm(mass, basis["p"]) 

    )   
 

The mass matrix was then employed for snapshot SVD [5]. This method allows for a different approach 

when including the mass matrix within the context of POD. Equation (13) represents the eigenvalue 

decomposition of the zero mean flow field with the inclusion of the mass matrix as an inner product. 

Equation (14) represents the eigen value problem for the covariance matrix of the zero mean flow field. 

The eigen values are effectively the square of the singular values whereby Ψ is a diagonal matrix of eigen 

values and Λ is a matrix of eigen vectors, whereby equation (15) highlights the relationship between the 

two eigen value decomposition methods. 

 

𝑋𝑇𝑊𝑋Ψ = ΨΛ (13) 

 

𝑋𝑋𝑇𝑊Φ = ΦΛ (14) 

 

Φ = 𝑋Ψ (15) 

 

This method allows for incorporation of the mass matrix as well as the necessary include rank r truncation 

to select the number of modes. This is a large improvement of the functionality and output possible with 

the NumPy module and is much simpler to implement than in dask. Equation (13) is presented in its Python 

code form below in Code Snippet 4. 
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Code Snippet 4. SciPy.sparse.linalg  library with eigsh module function which allows snapshot 

method of POD to be employed 

xT = qT - qT.mean(0) 
eiv, Psi = eigsh(xT @ W @ xT.T, k = r)  # Schmidt & Colonius (2020, eq. 17) 

 
In line with existing literature, it was believed that a more adaptable approach would be appropriate for 

POD decomposition that was not limited by computation time. The direct method of POD as shown below 

in Code Snippet 5 does not square the singular vectors and singular values. It is more accurate than the 

eigen-decomposition as used in the snapshot method however it can be slower if there are more rows than 

columns i.e., 𝑛 >  𝑚  [62]. 

Modred allows for the functionality to swap between the direct and snapshot methods for SVD with 

minimal effort. Modred is a separate library and is actively maintained and developed which is thus likely 

to be more suitable for future improvements especially with possibility of using Dask for larger matrices 

which can be collaborated on with Modred community. 

 

Code Snippet 5. Modred Library SVD Implementation POD_MODRED_Kutz.py 

xT = qT - qT.mean(0)   
x  = xT.T 
POD = mr.compute_POD_arrays_direct_method(x, 
      inner_product_weights=W, mode_indices = range(r)) 

 
3.1.3. POD Validation Cylinder Wake 

It was necessary to validate the current methodology against existing simulations to confirm that it is 

performing correctly and producing expected results both quantitatively and qualitatively. The fluid flow 

case for an unconfined cylinder wake data set named VORTALL was generated by Kutz et al. using an 

immersed boundary projection method (IBPM) fluid solver on a cylinder wake and sourced from an online 

repository [65] [13].This example data consisted of 150 snapshots with a 0.02 unit time step. Thus, there 

were five periods of vortex shedding sampled at a steady state of vortex shedding on the saturated limit 

cycle of the vorticity dynamics. Consequently, data was sampled at the same rate of approximately 30 

snapshots per cycle in the saturated limit cycle region for data generated by the numerical simulation by 

the Python script st08_navier_stokes_cylinder.py by using subsampling.  The resemblance between the 

topos or spatial modes of both simulations can be seen comparing Error! Reference source not found. 

and Figure 26 or Figure 25 and Figure 27. The Reynolds number for VORTALL data is equivalent to 𝑅𝑒 = 

150. 

 

 
Figure 24. Spatial mode 1 from Re = 150, interval IV, simulation generated by 

st08_navier_stokes_cylinder.py and spatial mode generated by POD_MODRED_Kutz.py 
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Figure 25. Spatial mode 2 from Re = 150, interval IV, st08-NS and spatial mode generated by 

POD_MODRED_Kutz.py 

 
Figure 26. VORTALL Re=100 spatial mode 1, interval IV, st08-NS and spatial mode generated by 

POD_Modred_Test.py 

 
Figure 27. VORTALL Re=100 spatial mode 2, interval IV, and spatial mode generated by 

POD_Modred_Test.py 

The colour alteration between red/orange and blue areas represents the alternating vortical structures which 

become smaller due to the generation of the harmonics of the unsteady laminar flow.  The VORTALL data 

modes were generated using the Python library matplotlib. As the Navier-Stokes solvers used to generate 

both datasets are inherently different it is expected that there will be discrepancies between the non-

dimensionalised spatial modes due to second order errors. First order parameter that may influence the 

results between the two datasets more significantly than second order errors may also include the blockage 

ratio and the inlet velocity profile, and geometry and boundary condition differences.  For example, the 

scikit-fem solution has an inlet boundary condition for an even parabolic Poiseuille velocity profile which 

has an odd-linear vorticity profile, it has a mean velocity of 0.75 velocity units and a diameter of 0.1 length 

units. In contrast the VORTALL data consists of an inlet boundary condition with a uniform (plug) flow 

velocity of one velocity unit and a diameter of 0.5 length units [66]. The relationship between spatial mode 

1 and spatial mode 2 for both datasets qualitatively and visually confirms a mode pairing, where there is a 

phase shift between each mode in the pairing for the respective datasets. These modes share an equal or 

near equal distribution of energy. Mode pairing in POD occurs for real valued (not complex valued modes) 
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which can represent a travelling structure, which is not possible with a single mode [1].  For example the 

energy in Figure 26 at (x,y) = (5.5,0) approximately corresponds to the phase shift of (x,y) = (6.5,0) in 

Figure 27. This is also true between Error! Reference source not found. and Figure 25 where (x,y) = (

5.25,0)  in spatial mode 1 corresponds to (x,y) =  (4.25,0) in spatial mode 2. Note that the phase shift is not 

required to be positive but the absolute value is approximately the same from a qualitiative viewpoint.  

 

Comparing quantitatively the modal energy distribution of both simulations for the same Reynolds number 

yields the results present in Figure 28. There is confirmed a high similarity between the modal energy 

distribution with a maximum discrepancy or difference of 1.74% and an average difference of ~ 0%. 

 
Figure 28. Modal energy distribution Re = 150 

 

3.1.4. Selection of DMD Algorithm  

 

The DMD algorithm was selected upon similar merits upon which the POD algorithm was selected not least 

of which is because POD or SVD is a major step within the DMD algorithm. It should be noted that unlike 

POD, the DMD algorithm does not take the zero mean of the vorticity field. Initially Kutz’s algorithm was 

used and implemented within the Python environment as shown below in Code Snippet 6 following the 

notation present in Burtsev et al. [38]. Following similar code to that present in  Code Snippet 1 X1 and X2 

represent truncated matrices which then follows equations (4) to (8). The 0.001-time step was hard coded 

to extract the singular frequencies and growth rates using DMD of the st08-NS case which were assigned 

to the variables f_j and g_j respectively. The variable b represents an amplitude value for further 

reference consider Kutz’s work on the topic [13]. Note down-sampling is the frequency of which the signal 

was taken e.g., if the down sampling frequency is 4 only every fourth snapshot is considered in 

chronological order of if the down sampling frequency is 10 only every tenth sample is considered and so 

on. When frequency values are generated, the negative conjugates of the conjugate pairs produce negative 

frequencies mirror the positive frequencies thus these modes can be disregarded using a condition 

referencing the index position of the mode and the corresponding frequency being less than zero, as seen 

in   DMD_MODRED_Kutz.py, line 107-120. Much like how POD has mode pairs representing a phase shift 

the DMD modes have an imaginary and real part which functions as a pair whereby they can be processed 

separately when producing a spatial mode to see a phase shift, this can be seen when comparing Figure 29 

and Figure 30. 
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Code Snippet 6. Initial DMD algorithm implemented in DMD_MODRED_Kutz.py 

x = qT 
X1 = x[:, :-1]                   #eq A1 (Burtsev et. al. 2021 ) 
X2 = x[:, 1:]                    #eq A2 (Burtsev et. al. 2021 ) 
''' 

SVD and Rank-R Truncation to find first 'r' modes 

''' 
u, s, vh = np.linalg.svd(X1, full_matrices=False) 
r = len(u[0]) 
Ur = u[:, :r] 
Sr = s[:r] 
Vr = vh.T[:, :r] 
     

Atilde = Ur.T @ X2 @ Vr / Sr    #eq A4 (Burtsev et. al. 2021 ) 
D,W = np.linalg.eig(Atilde)     #eq A5 (Burtsev et. al. 2021 )     
Phi =   X2 @ Vr / Sr @ W        #eq A6 (Burtsev et. al. 2021 ) 
x1 = x[:, 0]     
b = np.linalg.lstsq(Phi, x1, rcond = None)[0] 
    

dT = 0.001  
f_j = np.angle(D) / (2 * np.pi * dT * downsampling)   
#eq A9 (Burtsev et. al. 2021 )  
g_j = np.log(np.abs(D)) / (dT * downsampling)   

#eq A10 (Burtsev et. al. 2021 )   
 

Upon review of the methods used to create the DMD algorithm in Code Snippet 6 it was decided that 

abstracting this methodology and improving the computational speed would be of significant benefit for 

future works and simplify the code greatly without impacting functionality or the ability to modify settings. 

The Modred library fulfilled this role of abstracting the algorithm while receiving all the desired inputs and 

returning all the desired outputs. Furthermore, Modred can include the mass matrix with native support 

which was a significant advantage over other possible implementations as seen in Code Snippet 7. The 

values for amplitude, frequency and growth rate however must still be calculated using the above 

methodology 

 

Code Snippet 7. DMD Modred algorithm implemented in DMD_MODRED_Kutz.py 

DMD = mr.compute_DMD_arrays_direct_method(x,  
 mode_indices = range(r), max_num_eigvals = r) 
x1 = x[:, 0]  
dT = 0.001    
b = np.linalg.lstsq(DMD.exact_modes, x1, rcond = None)[0] 
f_j = np.angle(DMD.eigvals) / (2 * np.pi * dT * downsampling)   
g_j = np.log(np.abs(DMD.eigvals)) / (dT * downsampling)    

 
 

 

3.1.5. DMD Validation Cylinder Wake 

The DMD validation between the VORTALL dataset and st08-NS dataset were created using the DMD 

Modred method. The imaginary and real spatial modes for the st08-NS dataset are shown below in Figure 

29 and Figure 30,respectively. Similarly, the imaginary and real spatial modes for the VORTALL data set 

are shown below in Figure 31 and Figure 32. Much like POD mode pairs, DMD spatial mode pairs exhibit 

a phase shift relationship which can be observed visually for example the energy at (2,0) in Figure 29 

approximately translates to (2.5,0) in Figure 30. However, this relationship should not be used as a rigorous 
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method to quantify phase shift as is also true for POD.  DMD spatial modes unlike POD spatial modes do 

not have a natural ordering so it is easier to identify the modes by their frequency rather than the mode 

number as unlike POD, DMD does not contain any similar value to a normalized enstrophy value which is 

contained within the truncated singular values. The fundamental frequency is identified by a frequency 

which is an integer multiple of the remaining frequencies. The frequency for st08-NS is 2.90 and for the 

VORTALL data 1.65 cycles per unit time, these values were also corroborated by a peak fit of the time 

dynamics to also calculate the frequency as seen in DMD_MODRED_Kutz.py, line 123-139. Whereby, 

frequency would be represented by the number of snapshots per cycle. For the Strouhal frequency these 

values are equivalent to 0.4125 and 0.44 respectively, for the VORTALL and st08-NS case where U is the 

mean velocity and L is the length of the diameter. This discrepancy between fundamental frequencies for 

different simulations is largely explained by differences in initial conditions and mesh settings discussed 

previously for each respective simulation. 

 
Figure 29.DMD imaginary mode st08-NS Re = 150, interval IV, st08-NS and spatial mode generated 

by DMD_Modred_Kutz.py 

 
Figure 30.DMD real mode st08-NS Re = 150, interval IV, st08-NS and spatial mode generated by 

DMD_Modred_Kutz.py 

 

 
Figure 31. DMD imaginary mode VORTALL case, interval IV, and spatial mode generated by 

DMD_Test_Modred.py 
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Figure 32.DMD real mode VORTALL case , interval IV, and spatial mode generated by 

DMD_Test_Modred.py 

The near matching DMD eigen values for both the VORTALL and st08-NS simulation are exhibited below 

in Figure 33. The eigenvalues below 𝐼𝑚(𝜆) = 0 are conjugate pairs of the eigen values above 𝐼𝑚(𝜆) = 0  
with the equivalent 𝑅𝑒(𝜆) value. The eigen value related to the fundamental frequency is denoted by the 

eigen value closest to the eigen value  𝐼𝑚(𝜆) = 0 but where 𝐼𝑚(𝜆) > 0. The eigen values being on the unit 

circle is indicative of a zero-growth rate this is exhibited as the snapshots taken are of a periodic limit cycle 

dynamics associated with the Von Kármán vortex Street of interval IV for the supercritical Reynolds 

number case. The eigen value similarity worsens around the cycle for high order modes due to sensitivity 

to noise. Thus, the methodology is validated as it is producing expected results in line with a similar 

simulation. 

 
Figure 33. DMD eigen values of first 21 modes from st08-NS simulation and VORTALL dataset 

generated by DMD_Modred_Kutz.py 

 

 

3.1.6. Autoregression of Cylinder Wake 

Autoregression is a statistics-based model which can predict future values by using the values preceding it, 

it is useful in the context of time-series flow data to understand how various flows whether probes or some 

other time varying data changes. It is important to note that when using autoregression the variable which 

varies with time is analysed independently to other variables which may have an interdependent relationship 

with it. To consider these interdependent relationships HODMD or VAR are likely to be more appropriate 

but they are also more difficult to implement and computationally more costly. 

 

An autoregressive model uses a linear combination of predictors which are past values of the variable being 

predicted. An autoregressive model with order 𝑝 i.e.  AR(𝑝)  is represented below in equation (16), where 
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𝑦𝑡 is the predicted value 𝑐 is the constant value trend used 𝑦𝑡 are the lagged values, Φ𝑝 are the predictor 

parameters or coefficients and 𝜀𝑡 is the error or noise associated with the dataset. 

 

𝑦𝑡 = 𝑐 + Φ1𝑦𝑡−1 + Φ2𝑦𝑡−2 + ⋯+ Φ𝑝𝑦𝑡−𝑝 + 𝜀𝑡  (16) 

  
  

DMD is able to determine the growth rate and frequency for a DMD mode directly from  the eigen values 

it is believed that in some cases the same information can be determined from Autoregressive modelling of 

the chronos mode components of POD modes for dominant modes for high order modes this generally 

shouldn’t be applicable as  incoherent noise generally appears as higher-order POD modes [1]. If higher 

order POD modes are of significance DMD may be a more suitable method of analysis for obtaining 

frequency and growth rate information. A significant question brought up by the weaknesses of POD 

described in the overview paper by Taira et al. claims “spatial POD modes generally contain a mix of 

frequencies”. It is then important to ask upon which circumstances can POD modes contain singular 

frequencies. Autoregression is a useful tool for independently analyzing individual chronos modes to 

determine growth rates or frequencies but is unable to show the relationship between chronos modes.  

Autoregression has been implemented in Python as per  Code Snippet 8. The autoregression method is 

implemented using statsmodels AutoReg module [67]. Although not appropriate in all cases, AR(2) is used 

to find the frequency and growth rate of the first chronos mode of the st08-NS case at various Reynolds 

numbers as this first mode is approximately sinusoidal. 

 

Code Snippet 8. AR(2) root calculation and reconstruction AR(P)_Complex_Frequency_Spectra.py 

n = end_n - start_n  #number of snapshots 
chronos_mod = POD.proj_coeffs  #chronos mode 
zeta = chronos_mod[chronosi]      
 

time = [*range(start_n, end_n)] 
dt = 0.001                      #time step 
n_lags = 2                 #number of lags 
downsampling = 2**0 
p = n_lags            #use p = 2 to find dominant frequency of each mode 
zeta = zeta[::downsampling]   
step = np.arange(zeta.size) * downsampling  
res =  AutoReg(endog = zeta, lags = p).fit() #AR(p) model  
asymptote = res.params[0] / (1 - res.params[1:].sum()) 
print("asymptote:",asymptote) 
mu = 1 / res.roots 
print("Spectrum:", mu) 
s = np.log(mu) / (dt * downsampling)  
print("s:", s) 
modes = np.vander(mu, zeta.size, True).T 
modes /= np.linalg.norm(modes, axis = 0) 
coefficients = np.linalg.lstsq(modes, zeta - asymptote, rcond=None)[0] 
fundamental = np.argmax(abs(coefficients)) 
print("frequencies",abs(s.imag) / (2 * np.pi)) 
reconstruction = asymptote + np.real_if_close(modes @ coefficients) 

 
Note that the angular frequency in radians per unit time is represented by the following equations where 

angular frequency is in terms of radians per unit time and down sampling frequency is representative of the 

frequency unit times are considered. A unit time in the st08-NS case would be 1000 snapshots as dT is 

0.001. 
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𝑠 =
log(𝜇)

𝑑𝑇 × 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
 

(17) 

 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = ℑ𝑠  (18) 

 

𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 =
ℑ𝑠

2𝛱
 

 

(19) 

 

It is clear from Figure 34 that AR (2) is an appropriate method of modelling the first chronos mode (which 

is a multiplication of the singular values with the temporal modes), as it possible to create a near exact 

reconstruction of the original vorticity data with a reconstruction error less than 1%. This model 

approximates the frequency of 3.13 cycles per unit time for the st08-NS supercritical case in Interval IV as 

per equation (19)  [68]. 

 

 

 

 
Figure 34. First chronos mode reconstruction using AR(2) with a constant trend model  with 

coefficient matrix and Vander modes for Re = 150 

3.1.7. Fast Fourier Transform of Cylinder Wake 

Fast Fourier Transform (FFT) refers to a variant of the discrete Fourier Transform (DFT) algorithm whereby 

the number of computations require for N points is reduced from 2𝑁2 to 2𝑁𝑙𝑜𝑔2(𝑁) computations [69]. 

The FFT algorithm like autoregressive models can extract frequency information from a signal however 

FFT provides a spectrum of frequencies where the peaks are the dominant frequencies whereas 

autoregressive models can present several frequencies depending on the number of lags. The FFT can 

estimate frequencies but only for a predetermined set of frequencies and periodic sampled data this means 

that it is appropriate for supercritical interval IV cases where the signal is periodic but not appropriate for 

other parts of the signal this is especially limiting as it is not able to capture the linear growth dynamics 

[32]. The FFT algorithm produced a frequency of 3.2 cycles per unit time for the st08-NS case at Re = 150 

for the first chronos which correspond with the result found using autoregression for AR (2), as shown in 

Figure 35 by the stem plot peak. 
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Code Snippet 9. FFT implemented in CHRONOS_FFT.py 

zeta = zeta – zeta.mean(0) #remove the zero frequency by demeaning 
sr = 1000 #sampling rate -> 1/dT 
FFT = fft(zeta) #FFT of signal zeta 
FFT_FREQ = fftfreq(zeta.size, 1 / sr) 
X_oneside = FFT 
f_oneside = FFT_FREQ 

 

 
Figure 35. FFT of first chronos mode at Re = 150, considering interval IV, snapshot window 10000-

15000 

3.1.8. High Order DMD, Prony Analysis and Vector Autoregression of Cylinder Wake 

Vector Autoregression (VAR) and Higher Order DMD (HODMD) also known as DMD-d (where d is the 

number of lags), share a large range of similarities and extend upon the central premise of DMD which uses 

a discrete linear Koopman operator, by considering an extended number of lags beyond the single lag value 

that DMD uses. That is HODMD replaces the Koopman assumption presented in equation (21) with the 

high order Koopman assumption in equation (22), where 𝑅 is the Koopman matrix, 𝑑 is the number of lags 

and 𝑚 is the number of snapshots [4]. Equation (20) is derived from the temporal and singular value 

components that form a chronos which is derived in equation (3). Prony Analysis extends upon VAR to 

reconstruct the sinusoidal exponentials which is a major step in DMD to create a ROM. 

 

𝑋̂1
𝑛 = Σ𝑉∗ (20) 

 

𝑋̂2
𝑛  ≅ 𝑅𝑋̂1

𝑛−1 (21) 

 

𝑋̂𝑑+1
𝑛 ≅ 𝑅1𝑋̂1

𝑛−𝑑 + 𝑅2𝑋̂2
𝑛−(𝑑−1)

+ ⋯+ 𝑅𝑑𝑋̂𝑑
𝑛−1 (22) 

 

Similarly, VAR(p) extends upon autoregression by considering multiple variables and uses multiple lags 

like HODMD. Equation (23) provides a representation of the result of VAR(p) where 𝑌 is a matrix of 𝑛 

rows by 𝑚 columns, where 𝑛 is the number of variables, in this case 𝑛 is the number of modes from the 

POD ROM considered and 𝑚 is the number of snapshots considered with down sampling. Thus, each 𝑦𝑖 

element is a column vector of size 𝑛 and 𝑝 is the number of lags.  In equation (25) 𝑐 is a flattened matrix 

of intercepts or constants with zero mean for each time series of interest and 𝐴𝑖 is a fixed (𝑛 × 𝑛) coefficient 

matrix for each lagged value and the term 𝑈 is a matrix of 𝑒𝑖  column vectors of size 𝑛, representing the 
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error or white noise terms. Thus, the lagged values are used to predict the future state contained in 𝑌. For 

more information regarding the VAR(p) process see Lütkepohl’s work on the subject [70]. In the 

implementation of VAR, 𝑈 is assumed to be negligible furthermore it is unknown. In Code Snippet 11, 𝑐 

is 𝐵[: , 0] which is the second argument of np.linalg.solve which gives 𝑢𝑖𝑛𝑓. 

𝑌 = 𝐵𝑍 + 𝑈 (23) 

 

𝑌 = [𝑦𝑝 𝑦𝑝+1 …𝑦𝑇] (24) 

 

𝐵 = [𝑐 𝐴1 𝐴2 …𝐴𝑝] (25) 

 

𝑍 =

[
 
 
 
 

1 1 … 1
𝑦𝑝−1 𝑦𝑝 … 𝑦𝑇−1

𝑦𝑝−2 𝑦𝑝−1 ⋯ 𝑦𝑇−2

⋮ ⋮ ⋱ ⋮

𝑦0 𝑦1 ⋯ 𝑦𝑇−𝑝]
 
 
 
 

 

(26) 

 

𝑈 = [𝑒𝑝 𝑒𝑝+1 …𝑒𝑇] (27) 

 

Vector autoregression is then further extended by formulating a polynomial eigenvalue problem (PEP) of 

degree 𝑝 which is converted to a regular eigen value problem of order 𝑝 × 𝑟, where 𝑟 is the number of 

modes being considered, using the Frobenius form of the companion matrix. The Prony coefficients are 

then calculated using a least squares method. This allows for reconstruction of the signal as detailed in Code 

Snippet 11. 

3.2. Ink-jet Printer Injection Zone 

3.2.1. Ink-jet Printer Injection Zone Simulation 

A pipeline for analyzing an ink-jet printer injection zone simulation was formulated with the assumption 

that the methods of analysis used on the cylinder flow example would naturally extend to this simulation 

for future use. OpenFOAM simulation files were provided with a ‘.VTK’ file type for a single print density. 

The ‘.VTK’ files are structured such that there exists one ‘.VTK’ file for each timestep where the file would 

represent the cell-based values and mesh at that time step. It was thus necessary to parse the filenames of 

each of these files which displayed the respective time linked to that file. These files were opened 

individually in a loop using meshio [71] which was able to convert nodal values into a NumPy array, these 

values were then stacked into a matrix whereby the number of rows was representative of the number of 

nodal values and the number of columns was representative of the number of snapshots. This manipulation 

was conducted using the vtk_import_test.py script. 

 

Following the formulation of the matrix various computational methods may be applied to the matrix to 

inform on the coherent features of the flow and create predictions. Only POD and autoregression has been 

applied within this report to this simulation due to the limited project time. In the future more cases at 

varying print densities should be considered for further analysis. 

 

A brief and not at all extensive overview of the some of the main parameters use in the simulation of the 

inkjet print zone has been provided in Table 4. 
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Table 4. Ink-jet printer injection zone OpenFOAM simulation parameters 

Parameters Value 

Retangle Grid for Fluid Space  3mm (H) x 60mm (L) 

Start Time (ms) 370 

End Time (ms) 400 

Number of Points per snapshot(nodes) 30794 

Total Snapshots  2832 

Time Step  0.002 

Write Interval 0.01 

Print Density 0.085 

 

A snapshot of the ink-jet printer injection zone simulation has been captured in Paraview as shown in Figure 

36. The ink-jet stream impinges on the paper surface which forms a counter rotating vortex in the 

streamwise direction of the paper motion whereby the paper moves along the y axis. For more information 

on the topic see Aquino et al.’s work on the topic [43] [46]. 

 

 
Figure 36. Impinging jet printer zone vorticity contours in Paraview 
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Chapter 4 – Results and Discussion 

4.1. Confined Cylinder Wake Problem 

The bifurcation in the context of the cylinder wake flow example represents the process under which the 

main flow transitions from the two vorticial structures lengthening with increasing Reynolds number and 

finally separating into two distinct vortical structures at the bifurcation point, as seen when comparing 

Figure 22 and Figure 23. A Hopf bifurcation is a critical point upon which the stability of the system changes 

and periodic solution arises in this context the Von Kármán Vortex Street structures. A vorticity probe can 

capture the change in dynamics with respect to the Reynolds number as the Reynolds number is increased 

through the bifurcation point whereby the sinusoidal exponential changes with respect to growth rate. These 

growth rate changes can be witnessed when probing the simulation at the same point for the same snapshot 

window for varying Reynolds Numbers. Since, the snapshot window is relatively large in Figure 37 it is 

hard to exactly distinguish the frequency impacts between Re = 70 and Re = 75. However, the apparent 

sinusoidal exponential increases in growth rate as Reynolds number increases, the asymptotic rate at which 

the steady state is approach is more rapid for Re = 75 compared to Re = 70. 

 

 
Figure 37. Fore and aft stagnation point vorticity probes for st08-NS simulation for subcritical 

cases, where Re = 70 (Left) and Re =75 (Right) 

In Figure 38 the bifurcation point has been transitioned through as is indicated by the comparison between 

the first and last snapshot for the Re = 76 case and the Re = 77 case. As the eventual behavior changes from 

decreasing over time to increasing over time it can be said that the stability of the system has changed. A 

periodic solution is expected for Re =77 and a quasi-steady state solution is expected for Re = 76. 

Furthermore in  Figure 39 the eventual periodic stable solution can be witnessed for the higher Reynolds 

numbers past the bifurcation point for Re = 78 and Re = 79. It is seen that the stable solution is reached at 

an earlier instant when increasing the Reynolds number too which provides further evidence on the 

relationship between growth rate increasing as Reynolds number increases. 
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Figure 38 Fore and aft stagnation point vorticity probes for st08-NS simulation for bifurcation 

transition between subcritical and supercritical cases, where Re = 76 (Left) and Re =77 (Right) 

 

Figure 40 and Figure 41 showcase the frequency and growth rate results obtained from using autoregression 

with two lags on the probes at the aft and fore stagnation point as well as autoregression on the chronos 

modes and finally the fundamental DMD mode for an interval I time window. The probe and chronos results 

with auto regression show great agreement in this domain with an average discrepancy less than 0.5%. 

However, when these results are compared to the DMD frequencies and growth rate linked to the 

fundamental frequency there are some significant outliers that are important to consider. One of the major 

drawbacks of DMD is it effectively equivalent to vector autoregression, but it uses one lags instead of two 

or more lags where the autoregression model in this case uses two lags. This makes it particularly sensitive 

to time dynamic changes. That is since interval I has been defined qualitatively and not rigorously 

mathematically DMD is sensitive to these interval changes, this is most apparent for the DMD values at Re 

= 80. Furthermore, it is quite difficult to apply a robust criterion to identify the fundamental frequency and 

corresponding growth rate. In this case from INTERVAL_I_DMD.py, lines 117-122 were used to separate 

negative frequencies from non-negative frequencies and lines 145-149 were used to find the fundamental 

frequency whereby this frequency would that which is closest to zero and not noise. It was particularly 

difficult to apply a robust criterion to define noise and this is one of the major shortfalls of using DMD 

which is apparent in Figure 40 and Figure 41. Autoregression of the chronos modes and the probes however 

promises an effective method of determining frequency and growth rate. In agreement with the information 

from the probes as Reynolds number increases both frequency and growth rate increase. 

Figure 39. Fore and aft Stagnation point vorticity probes for st08-NS simulation for supercritical cases, 

where Re = 78 (Left) and Re =79 (Right) 
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Figure 40. Frequency analysis of st08-NS fundamental frequency in interval I, snapshot 3000-

15000, using varying modal techniques 

The linear relationship between Reynolds number and growth rate allows the implementation of a linear 

interpolation function to calculate the approximate critical Reynolds number whereby the growth rate for 

interval I is zero. The critical Reynolds number was found to be Re = 76.44 which falls outside the expected 

range of values between 67.5 and 73.5. Given the simulation settings there are a multitude of factors that 

this 4% discrepancy may be attributed to including but not limited to the blockage ratio, mesh settings, 

boundary conditions and initial flow profile. The identified bifurcation point with the given percentage error 

however broadly supports the argument that there are a multitude of methods which may be used to identify 

the bifurcation point correctly or approximately for a given flow. 

 
Figure 41.Growth rate analysis of st08-NS fundamental frequency in interval I, snapshot 3000-

15000, using varying modal techniques 

Figure 43 and Figure 44 showcase the results of another method which can approximately identify the 

bifurcation point. Driven by Aquino’s bifurcation diagram in  Figure 16 and Lumley’s work on POD it is 

possible to identify the critical Reynolds number by identifying the amplitude connected with the eventual 

amplitude for a flow simulation at varying Reynolds numbers [3] [46]. This trend is mirrored in Figure 42 
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where a square root relationship is seen between the amplitude and Reynolds number, thus if the amplitude 

was squared there would be a linear relationship. 

 
Figure 42. Amplitude for first chronos mode in interval IV, st08-NS supercritical cases 

 The POD singular values which are the square root of the eigen values are indicative of the eventual 

amplitude for each respective simulation for a subcritical case it is expected that this eventual amplitude 

will be zero whereas for the supercritical case it is expected that the eventual amplitude will be non-zero 

and increasing with higher Reynolds number. Figure 44 clearly shows this relationship whereby a linear 

relationship can be found for the supercritical cases when the entire snapshot window is considered. This 

linear relationship however does not hold when a partial time window is considered as shown in Figure 43. 

This can be a significant issue for computational resources as it suggests there is to some extent a 

requirement to reach the saturated amplitude state for a simulation to effectively use POD to interpolate the 

results to find the bifurcation point. The importance of this issue for applications will largely depend on the 

accuracy of the bifurcation point required as well as the complexity of the simulation. 

 

One might consider using a combination of the autoregression with two lags and POD eigen value 

techniques to approximate the frequency and growth to assist in finding the bifurcation point.  However, 

this will require the simulation to solve for the eventual state and to be in some form of steady or quasi 

steady state which may or may not be periodic. Other techniques such as VAR or HODMD with multiple 

lags show promise in being able to overcome this limitation of POD by being able to reconstruct and predict 

future dynamics, successfully and robustly developing a methodology which can do this should be the key 

next step in identifying the bifurcation point for increasingly more complex geometry. This may further 

assist in overcoming one of the central issues of these methodologies which require an understanding of the 

underlying physics before implementation.  
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Figure 43. Squared singular values for Reynolds numbers 70-80 showcasing the bifurcation 

transition and bifurcation point Snapshot window 3000-30000 

 

Figure 44. Squared singular values for Reynolds numbers 70-80 showcasing the bifurcation 

transition and bifurcation point snapshot window 3000-60000 

Despite DMD’s sensitivity to noise and its singular lag value used for decomposition and reconstruction, it 

is an effective means of accurately calculating the frequency and growth rate in Interval IV with where a 

saturated periodic amplitude is present. This is confirmed by Figure 45 and Figure 46 where the average 

discrepancy is less than 0.5% for frequency values and the zero-growth rate is correctly identified using the 

DMD method. It is expected in interval IV that the saturated amplitude is periodic but does not increase or 

decrease as time evolves. Significantly no other method besides DMD were able to identify the zero-growth 

rate for the fundamental frequency. This calls into question the superiority of autoregression for the interval 

I diagram but falls apart for interval IV analysis. Furthermore, the autoregression model is considering each 

chronos independently of one another which is not necessarily correct as it is expected modes might have 

some interdependence. 
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Figure 45. Frequency analysis of st08-NS fundamental frequency in interval IV, snapshot 10000-

15000, using varying modal techniques 

 
Figure 46. Frequency analysis of st08-NS fundamental frequency in interval IV, snapshot 10000-

15000, using varying modal techniques 

The need for Prony analysis arose from attempts to fit AR (2) to a chronos mode to identify its frequency 

and rate of growth. A significant issue in our analysis of individual chronos modes is the implicit assumption 

that chronos modes are scalar signals and not vector signal whereby each mode has some relation to other 

modes. It is important to consider not only scalar signals but vector too, since if POD does not separate 

nonlinearly generated harmonics, it might be necessary to auto-regress multiple chronos modes together, 

which techniques such as HODMD and vector Prony analysis are able to achieve [72]. This is clear when 

we considered a periodic case of the cylinder wake flow example. For a snapshot window in interval IV as 

seen in Figure 47. The probe data is seemingly periodic and may be able to be represented by a sine or 

cosine equation. However further analysis upon this snapshot windows is required to understand the high 

order dynamics that may be occurring. 
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Figure 47. Aft and fore stagnation point probes for Re = 150 

A FFT was applied to this periodic case of the cylinder wake flow for two probes where a fundamental 

frequency of 3.2 was determined as shown in Figure 48 which matches the same fundamental frequency 

found for the first chronos mode using AR (2). This however does not identify the high order dynamics that 

are present and their associated energies. Further it is important to take into consideration that probes do 

not necessarily represent the full dynamics that are occurring over the whole mesh but rather are samples 

of dynamics from two points. 

 

 
Figure 48. FFT of aft and fore probes for Re = 150, st08-NS 

Prony analysis is a shown to be an effective tool in reconstructing the chronos modes as seen in Figure 51, 

whereby the ‘x’ markers represent the VAR (2) reconstruction. The orange and blue plots as seen in Figure 

51 are of the first and second chronos in each chronos pair. This reconstruction performance is in direct 

contrast to the autoregression model, AR(2) ‘x’ marker reconstruction plot seen in Figure 49 which was 

unable to reconstruct the high-order POD chronos  modes present in chronos pair 3 and chronos pair 4 i.e., 

mode 5,6,7,8. These high order modes collectively represent approximately 20% of the enstrophy present 

in this flow simulation as evidenced by the modal energy distribution  in  Figure 50. It is expected for even 

more complex flow problems the modal energy distribution will be distributed even less towards the first 

four modes thus autoregression is likely not an appropriate tool for many flow problems although it has 

shown great effectiveness for the cylinder wake problem and identifying the bifurcation point. 
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Figure 49. Chronos mode plot for first 8 Modes and AR (2) reconstruction for Re = 150, st08-NS, 

interval IV, down-sampling = 16 produced using AR_2 Reconstruction.py 

An algorithm combining the concepts from VAR, Prony analysis and HODMD was used to create Figure 

51 and Figure 53. In Figure 51 we can see from the reconstruction markers that the high-order modes are 

able to be extracted and reconstructed thus showing the higher harmonics, which are shown in Figure 52 as 

frequency peaks in the FFT analysis. It is also interesting to note the frequency relationships between certain 

modes for example chronos pair 2 seems to show a small relationship with chronos pair 3 where the 

frequency is approximately 9. Furthermore, an approximately diagonal relationship between the peaks and 

their stems in Figure 52 is presented which is further evidence of the modes representing higher harmonics 

from the fundamental shown in the first chronos pair as there is an integer multiple (linear) relationship 

between harmonics. In Figure 52 the blue plot represent the first mode in the chronos pair and the orange 

represents the second mode in the pair, it can be seen in the FFT plot that the frequencies are identical. 

 
Figure 50. POD modal energy distribution for Re = 150, from singular values 
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Figure 51. Chronos mode plot for first 8 Modes and VAR (2) reonstruction for Re = 150,   st08-NS, 

interval IV, down-sampling = 16 produced using VAR_vorticity_prony_analysis.py 

 
Figure 52. FFT Analysis of first 8 modes for Re = 150, st08-NS, interval IV 
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Figure 53. Periodic 2-D flow over a cylinder, Prony roots μ (r = 8, p= 2, down-sampling = 16), 

horizontal real axis and imaginary vertical axis with unit circle produced using 

VAR_vorticity_prony_analysis.py 

Figure 53 is much like the DMD eigen value plot and is indicative of the stability of the system with respect 

to the time window and Reynolds number selected. The ‘x’ markers on this figure are representative of the 

roots and the size of the ellipses drawn on top of these markers are representative of the corresponding 

coefficients to the roots and their real and imaginary part weightings. Roots where the ‘x’ marker can be 

seen are largely irrelevant as their corresponding ellipse coefficient weighting is very small. As the roots 

come in complex conjugates it simpler to consider roots and their corresponding coefficients in the first 

quadrant as the conjugate pairs have mirror dynamics. These roots all lie on the unit circle, which is 

indicative of a stable system [13], this is the case as the periodic time window was selected for a supercritical 

case. Furthermore, the coefficients are logarithmically sized.  

4.2. Ink-jet Printer Injection Zone Preliminary Results 

Using methodology detailed in section 3 POD analysis was performed on the ink-jet printer injection zone 

simulation. AR(2) was used on the ink-jet printer injection zone simulation as most of the modal energy 

was distributed towards the first two modes as seen in Figure 55 thus the interdependence of modes was 

somewhat of less concern, however VAR(2) should be utilised in future works to confirm to what extent 

does the distribution of modal energy impact the usefulness of AR(2) versus VAR(2) reconstruction. Figure 

and Figure 55 indicate that the modal energy distribution lies largely with the first two chronos modes 

which form a chronos pair whereby the energy of each mode in this pair is nearly equivalent. This means 

that techniques such as autoregression with two lags can prove effective as a means of extracting 

information such as growth rate and frequency of the modes as high order more complex modes may be 

able to be ignored. The value of autoregression is highlighted especially in Figure 54 whereby the 

autoregression technique can perform a near perfect reconstruction with less than 0.1% error which can be 

likely attributed to floating point number issues. As over 95% of the energy is contained within the first 

four modes thus the other high order modes can be largely ignored. 
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Figure 54. First chronos mode where print density = 0.085 for ink-jet print zone  

 

Figure 55. Modal energy distribution at print density = 0.085 for ink-jet print zone simulation 

 

Spatial modes for the first four POD modes are presented in Figure 56 and Figure 57. It can be seen for all 

the spatial modes that a vortex exists whereby if we consider the centre of the vortex at approximately 

(Y/PPS, Z/PPS) = (0.2, -0.4) for the Y and Z coordinate respectively a phase shift occurs between modes, 

where the modes rotate in their respective chronos pairs. This is quite difficult to discern as the shapes 

seemingly coalesce and disperse irregularly unlike in the cylinder wake problem where mode shapes are 

somewhat more unidirectional. This phase shift is more apparent in the second pair of modes in Figure 57. 

It is important to note that in both the cylinder wake and ink-jet print zone simulation flow simulation the 

modal energy pairs are not exactly equal. It is known from Taira et. al. that POD modes must be paired to 

show a travelling structure, but they do not have to be paired in general thus the pairing allows a phase shift 

to be shown. In DMD phase shifts are shown between the real and imaginary components of a mode which 

in essence is the same as POD mode pairing not be confused with the conjugate pairs [1]. This does not 

account for the modal energies change although SPOD is suggested as an algorithm to further explore the 

phase shift. At this stage it is believed that since a true wave requires a domain that is translationally 

invariant in the direction of travel of the wave and both simulations are not perfectly translationally invariant 

with respect to the wave direction, that this could account for the discrepancies regarding some pairs in 

terms of modal energy.  
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Figure 56. Spatial modes 1-2 (from top to bottom) at print density = 0.085 for ink-jet print zone 

simulation 

Figure 57 . Spatial Modes 3-4 (from top to bottom) at print density = 0.085 for ink-jet print zone 

simulation 
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Chapter 5- Future Works and Current Work Limitations 

This study of computational methods for the analysis of fluid flow structures considers both the confined 

cylinder wake problem and the ink-jet print zone simulation. A variety of algorithms are proposed which 

can elucidate flow characteristics such as frequency, growth rate, bifurcation point, mode shape and some 

less important features. The implementation of a ROM that is able to be used for prediction, has somewhat 

been achieved with the reconstruction efforts shown with regard to VAR (2) and AR (2) reconstruction. 

POD is also easily able to be used for reconstruction whereby the significant modes with respect to modal 

energy are multiplied together with the chronos mode and spatial mode components. Albeit VAR (2) and 

AR(2) were used for reconstruction for chronos modes with the further ability for prediction however this  

prediction capability was not implemented as only time windows within the scope of the simulations were 

considered in their respective reconstruction expressions. 

 

One of the most useful applications that VAR could achieve would be to determine the decay point or 

saturation point for subcritical or supercritical cases, respectively. This would allow for in effect a ROM as 

the whole simulation would not be required to run for the entire time window and the relationship between 

snapshot windows and their respective intervals would likely be easier to identify.  This would significantly 

reduce necessary computation time as running simulations has accounted for a large part of the allocated 

projected resources specifically time in the early stages, this was especially problematic when simulations 

needed to be run again due to the noise created by the initial transients or when simulations were simply 

not run long enough. 

 

Another avenue for in general improved computational time and scalability with respect to larger meshes 

and more complex flow problems would be the incorporation of parallel processing which utilizes the extra 

threads and cores present in modern CPUs. The dask Python library presented great promise within this 

area as it able to process significantly large matrices with the SVD method much quicker than library such 

as NumPy. Dask has further advantages as the community is building cloud computing capabilities whereby 

networked CPUs could be utilised for even large problems, in contrast the work here was limited to a local 

computer. 

 

In general, the entire workflow with all related Python scripts was not optimized or designed with parallel 

computing in mind but rather each script was a proof of concept of mathematical algorithms working and 

producing some flow data result. This report generalizes three main methods of finding the bifurcation point 

for a given flow problem which has been studied before: POD, DMD and autoregression. It has become 

apparent though that the growth rate transition between negative and positive values at the zero-value 

growth rate evolves monotonically with respect to Reynolds number increasing, this linear relationship 

presents the opportunity to consider standard search related algorithms such as binary searches as a 

framework to find the bifurcation point. A significant hurdle would be setting the two limits points whereby 

one point should be a supercritical case and the other a subcritical case. This is largely a generalization of 

the work Fortin et. al. completed in finding the Hopf bifurcation point using a “guess and check method” 

in this case the guess and check would be automated and only be informed a priori with physical knowledge 

for notifying the algorithm of a supercritical case and subcritical case [51]. This generalized method is 

presented in Figure 58 as a binary search algorithm. It is hoped that this generalization for finding the 

bifurcation point might prove useful for simulation such as the ink-jet printer zone simulation and agree 

with existing literature [46]. 

 

Machine learning also has a variety of uses for prediction models for more complex flow whereby SVD 

normally is a precursor to a prediction model as it forms part of the unsupervised learning stage. This was 

largely beyond the scope of the project as machine learning models require many computational resources 

with the latest graphics cards to run them, normally in networked systems. 
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Figure 58. Generalized Binary Search Hopf Bifurcation 

One of the central issues with this study is the approximation of the intervals for specific time windows 

used and that their features are not mathematically well defined. This is problematic for techniques such as 

DMD that are sensitive to these changes that occur over different intervals. From the reconstruction results 

obtained using VAR it is believed that techniques such as HODMD that use more lags to represent the time 

series data may be able to use a less strict interval or ignore interval entirely and be able to consider the 

entire time window. This however must be confirmed in another study as HODMD was a late addition to 

this project and was not researched in detail. 

 

SPOD was also an algorithm that was not utilised for this project this was because when it was first tested 

it was discovered that due to the way windowing functions are implemented in SPOD a significant number 

of time cycles are necessary to provide useful frequency information otherwise SPOD suffers the sample 

problems as FFT with relation to the number of bins correlating to the number and accuracy of the 

frequencies able to be resolved. Such a simulation with enough time cycles would be very computationally 

costly. 
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In future works it may be considered that the steady state solution may be more appropriate to subtract 

rather than the vorticity field mean as this may be easier to analyse using statistical techniques as the mean 

of the periodic saturated oscillation in a supercritical Hopf bifurcation differs from the steady equilibrium 

by an amount that increases with the excess of the Reynolds number over the critical value. 

 

Chapter 6 – Conclusions 

This report details three major ways of identifying the bifurcation point through consideration of 

amplitudes, POD singular values and growth rates obtained from chronos modes using autoregressive 

techniques, as well as POD analysis of the singular values and DMD growth rates. An unfortunate finding 

of this work is the limitations of DMD for being able to reliably determine the bifurcation point. DMD was 

found to be very sensitive both to noise and the time window selected.  

 

 Late in the project, HODMD was identified to hopefully alleviate some of those issues present when using 

DMD. The full HODMD algorithm was not implemented due to time constraints however a VAR model 

with Prony Root reconstruction was and it was found that high order modes could be reconstructed which 

contained multiple frequencies, this was not possible with an autoregression model and further elucidated 

the interdependent relationship of modes whereas in contrast the autoregression models considered the 

chronos components separately. 

 

As most of the modal energy for both the cylinder wake simulation and ink-jet print zone simulation was 

found within the first four modes and these modes were dynamically largely sinusoidal simple, 

autoregression models were found to be largely appropriate for reconstruction and identifying growth rate 

and frequency values. Furthermore, this energy distribution also allowed for the identification of the 

fundamental frequency for various Reynolds number. These fundamental frequencies were consequently 

confirmed by the identification of other integer multiple harmonic frequencies as well as the utilization of 

other frequency count methodologies such as FFT and find peaks from the SciPy Python library. 

 

A generalized binary search algorithm to find the bifurcation point was presented which largely considered 

the chronos components of the simulation related to the chronos modes to recursively relate growth rates 

to Reynolds numbers. It is hoped that further works with the ink-jet printer zone simulation with varying 

print densities with the use of this framework will agree with previous work identifying the bifurcation 

point and confirm the algorithm’s usefulness. 

 

Of further value is developing an understanding of HODMD and implementing it both in relation to the 

cylinder wake example and inkjet print zone. This involves understanding how to appropriately select the 

number of lags for a given simulation allowing accurate prediction of future states. As well as obtain the 

standard frequency and growth rate information that DMD provides. It will be important to determine 

whether HODMD is noise sensitive as well or identify other significant parameters that may impact on its 

effectiveness. 

 

HODMD may still need to be used in conjunction with POD to assist understanding as the orthogonal 

modes that arise out of the SVD are ordered helping identify important modes that can be used in a ROM. 

Other criteria may be available for exclusive use of POD in some flow problems, but this will need to be 

further explored in future research. 
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Glossary 

Canonical 

Simple and uniquely identifiable. 

 

Coherent Structures 

In turbulent flow a coherent structure refers to an observed or recorded flow structure which appears time 

invariant over a specified time domain whereby it can be analysed statistically despite the total flow having 

temporal variance.  

 

Economy Sized SVD 

The economy sized SVD is truncated to reduce computational costs as the last 𝑚 − 𝑛 rows of Σ are all zero 

terms, thus the size of the 𝑈 can also be truncated to reduce unnecessary multiplication of zero terms, as 

per Figure 59,where matrix 𝐴 is equivalent to matrix 𝑋 discussed in the introduction. 

 

 
Figure 59. Economy- Sized SVD diagram [1]  

 

 

Hopf Bifurcation 

Is a mathematical theory which has applications in the representation of vortex shedding in fluid flow, 

further there are periodic solutions which exist at critical value synonymous with Supercritical Hopf 

Bifurcation. The bifurcation process furthermore represents the transition from laminar to turbulent flow 

[4]. 

 

Limit Cycle Behaviour 

Bifurcation theory closely relates to limit cycle behaviour with supercritical Hopf bifurcation determining 

an occurrence of a stable limit cycle, whereby a trajectory is closed in phase space and other trajectories 

will spiral into the closed trajectory. 

 
Figure 60. Limit cycle schematic diagrams [73] 
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Linearised Flow  

“A flow of small perturbation about a steady base flow” [10]. 

 

Kelvin-Helmholtz Instability 

Kelvin-Helmholtz instability refers to the phenomenon of instability which occurs when two adjacent, 

streams travel at different speeds. 

 
Figure 61. Kelvin- Helmholtz instability observed in the upper cloud region [74] 

Self - Oscillating 

A signal that exponentially grows due to a negative damping term from small perturbations this especially 

shown in  

Figure 9 from Interval I to Interval II. 

 

Supervised Machine Learning 

Supervised Machine Learning involves broadly classification, regression, optimisation and control, the 

objective of the learning is to find a function that maps input to output with a specified expected input-

output pair. 

 

Von Kármán vortex Shedding 

Refers to the alternating dissipation of energy in the wake of a fluid flow as spiraling vortices divert from 

the mean flow normally due to interaction with a blunt surface e.g. a cylinder. A Kármán Vortex Street 

refers to an observed repeating pattern of vortex shedding. 

 
Figure 62. Kármán vortex Street with cylinder cross flow @ R=140, V=1.4cm/s,Ø=1cm [75] 
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Vortex Pairing/Merging 

Vortex merging occurs when a pair of vortices of the same rotational direction with near  parallel axes, 

interact at a critical distance, superposition of the velocity fields occur to create one vortex. [76] 

 
Figure 63. 2-D vortex pairing/merging of experiment dye visuals (a)-(c) & DNS (d)-(f). snapshots 

are taken (a),(d) before merging (b),(e) during merging & (c),(f) after merging [76] 

 

Unsteady Flow 

Flows that are dependent on a time variable and thus vary with respect to time such as cross flow of a 

cylinder. 

 

Unsupervised Machine Learning 

Unsupervised Machine Learning involves broadly clustering & dimensionality reduction of data, the 

objective is to identify patterns in data through minimisation or maximisation of an objective function. 
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Appendices 

Appendix A. Code Repository  

 

Code Repository 
https://github.com/PythonpadawanEXE/flostr_report  
 

 

Appendix B. Assortment of Flow Structure Figures 

 
Figure 64. Poiseuille velocity profile with Bottom axis as streamwise velocity and left axis as Y 

position perpendicular to direction of flow 

 

https://github.com/pythonpadawanEXE/flostr_report
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Figure 65. Vorticity probe for Re = 40 condition for restart facility used as initial condition for 

supercritical cases 

 
Figure 66. Subcritical Reynolds number case demonstrating volatile initial transients at time < 0.1 
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Figure 67. DMD time dynamics find peaks used to find frequency st08-NS case where one unit time 

is 1000 snapshots, since down sampling = 11 and dT = 0.001 from DMD_ Modred_Kutz.py 

 

 
Figure 68. DMD time dynamics find peaks used to find frequency VORTALL case where one unit 

time is 50 snapshots since dT = 0.02 and down sampling = 1 from DMD_Test_Modred.py 
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Figure 69. Plot of vorticity probe for st08-NS case Re = 100 

Appendix C. Assortment of Code Snippets 

Code Snippet 10. DMD_MODRED_Kutz.py line 123-139 demonstrating find_peaks for frequency of 

time dynamics 

n= vortall.shape[1] 
time_dynamics = np.zeros((MODES.shape[0],n),dtype=complex) 
t = len(x[0]) 
ssf = 1 
for i in range(t): 
 time_dynamics[:,i] = (Bs*np.exp(OMEGAS*(i)*dT)) 
 

 

 

fig,ax = plt.subplots() 
ax.set(xlabel = 'Snapshot', ylabel = 'Amplitude', title=str('Frequency Plot 

at Re={}'.format(Rey)) ) 
for i in range(MODES.shape[0]): 
 ax.plot(list(np.array(range(t))*ssf)[:],(time_dynamics[i].real)[:], 

label="Mode {}- Freq- {}".format(i,round(FREQS[i],2))) 
 peaks_A, _A = find_peaks(time_dynamics[i]) 
 troughs_A, t_A = find_peaks(-time_dynamics[i]) 
 cycles = round((len(peaks_A)+len(troughs_A))/2,0) 
 print("For mode",i,"Freq is",cycles/(n/1000)) 
ax.legend()     
plt.show() 
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Code Snippet 11. VAR(p) and Prony reconstruction credit to G. D. McBain from VAR_vorticity.py 

def L(Q: np.ndarray, mu: np.ndarray, m: int) -> np.ndarray: 
    M = diags(mu) 
    return np.vstack([Q @ M ** k for k in range(m)]) 
def varp( 
    snapshots: np.ndarray, p: int, trend: str = "c" 
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: 
    """Return matrix containing horizontally stacked VAR coefficients, 

eigenvalues, and companion eigenvectors 
    The first column is the constant inhomogeneous term, the succeeding 

    squares multiply the sumccessive lags from 1 through p. 

    The snapshots should also be horizontally stacked columns. 

    """ 
    if trend != "c": 
        raise NotImplementedError 
 

    r, m = snapshots.shape 
 

    # The notation Y = B Z is from 
    # https://en.wikipedia.org/wiki/General_matrix_notation_of_a_VAR(p) 
 

    Y = snapshots[:, p:] 
    Z = np.vstack( 
        [np.ones(m - p), *[snapshots[:, r : r + m - p] for r in range(p - 

1, -1, -1)]] 
    ) 
    B = np.linalg.lstsq(Z.T, Y.T, rcond=None)[0].T 
 

    uinf = np.linalg.solve( 
        np.eye(r) - sum(B[:, i : i + r] for i in range(1, p * r + 1, r)), 

B[:, 0] 
    ) #intercept values or constants 
     

    # first Frobenius companion form (Mackey, Mackey, & Tisseur 2015, 

Section 3) 
 

    companion = np.vstack([B[:, 1:], np.eye((p - 1) * r, p * r)]) 
    mu, imbedded_eifs = np.linalg.eig(companion) 
    eifs = imbedded_eifs[:r] 
 

    # reconstruction (Le Clainche & Vega 2017 SIADS, Sections 2.1.3, 2.2.3) 
 

    ell = L(eifs, mu, m) 
    lstsq = np.linalg.lstsq(ell, (snapshots - uinf[:, None]).flatten("F"), 

rcond=None) 
    a = lstsq[0] #mode amplitudes or prony coefficents 
 

    return B, mu, eifs[:r], uinf, a, ell 

p = 2 #number of lags 
r = 8 #number of modes  
downsampling = 16 
v = POD.proj_coeffs[:r, ::downsampling] 
B, mu, eifs, uinf, a, ell = varp(v, p) 
reconstruction = (ell @ a).reshape((r, m), order="F") + uinf[:, None] 

         

https://github.com/gdmcbain/flostr/blob/59a5be7c4e73816187446b1408b50145ad5304b4/VAR_vorticity.py#L79-L86

