-
-
Notifications
You must be signed in to change notification settings - Fork 30.8k
/
ceval_gil.c
1268 lines (1096 loc) · 39.8 KB
/
ceval_gil.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "Python.h"
#include "pycore_ceval.h" // _PyEval_SignalReceived()
#include "pycore_initconfig.h" // _PyStatus_OK()
#include "pycore_interp.h" // _Py_RunGC()
#include "pycore_pyerrors.h" // _PyErr_GetRaisedException()
#include "pycore_pylifecycle.h" // _PyErr_Print()
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
#include "pycore_pystats.h" // _Py_PrintSpecializationStats()
/*
Notes about the implementation:
- The GIL is just a boolean variable (locked) whose access is protected
by a mutex (gil_mutex), and whose changes are signalled by a condition
variable (gil_cond). gil_mutex is taken for short periods of time,
and therefore mostly uncontended.
- In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
able to release the GIL on demand by another thread. A volatile boolean
variable (gil_drop_request) is used for that purpose, which is checked
at every turn of the eval loop. That variable is set after a wait of
`interval` microseconds on `gil_cond` has timed out.
[Actually, another volatile boolean variable (eval_breaker) is used
which ORs several conditions into one. Volatile booleans are
sufficient as inter-thread signalling means since Python is run
on cache-coherent architectures only.]
- A thread wanting to take the GIL will first let pass a given amount of
time (`interval` microseconds) before setting gil_drop_request. This
encourages a defined switching period, but doesn't enforce it since
opcodes can take an arbitrary time to execute.
The `interval` value is available for the user to read and modify
using the Python API `sys.{get,set}switchinterval()`.
- When a thread releases the GIL and gil_drop_request is set, that thread
ensures that another GIL-awaiting thread gets scheduled.
It does so by waiting on a condition variable (switch_cond) until
the value of last_holder is changed to something else than its
own thread state pointer, indicating that another thread was able to
take the GIL.
This is meant to prohibit the latency-adverse behaviour on multi-core
machines where one thread would speculatively release the GIL, but still
run and end up being the first to re-acquire it, making the "timeslices"
much longer than expected.
(Note: this mechanism is enabled with FORCE_SWITCHING above)
*/
// GH-89279: Force inlining by using a macro.
#if defined(_MSC_VER) && SIZEOF_INT == 4
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value)))
#else
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL)
#endif
// Atomically copy the bits indicated by mask between two values.
static inline void
copy_eval_breaker_bits(uintptr_t *from, uintptr_t *to, uintptr_t mask)
{
uintptr_t from_bits = _Py_atomic_load_uintptr_relaxed(from) & mask;
uintptr_t old_value = _Py_atomic_load_uintptr_relaxed(to);
uintptr_t to_bits = old_value & mask;
if (from_bits == to_bits) {
return;
}
uintptr_t new_value;
do {
new_value = (old_value & ~mask) | from_bits;
} while (!_Py_atomic_compare_exchange_uintptr(to, &old_value, new_value));
}
// When attaching a thread, set the global instrumentation version and
// _PY_CALLS_TO_DO_BIT from the current state of the interpreter.
static inline void
update_eval_breaker_for_thread(PyInterpreterState *interp, PyThreadState *tstate)
{
#ifdef Py_GIL_DISABLED
// Free-threaded builds eagerly update the eval_breaker on *all* threads as
// needed, so this function doesn't apply.
return;
#endif
int32_t npending = _Py_atomic_load_int32_relaxed(
&interp->ceval.pending.npending);
if (npending) {
_Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
}
else if (_Py_IsMainThread()) {
npending = _Py_atomic_load_int32_relaxed(
&_PyRuntime.ceval.pending_mainthread.npending);
if (npending) {
_Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
}
}
// _PY_CALLS_TO_DO_BIT was derived from other state above, so the only bits
// we copy from our interpreter's state are the instrumentation version.
copy_eval_breaker_bits(&interp->ceval.instrumentation_version,
&tstate->eval_breaker,
~_PY_EVAL_EVENTS_MASK);
}
/*
* Implementation of the Global Interpreter Lock (GIL).
*/
#include <stdlib.h>
#include <errno.h>
#include "condvar.h"
#define MUTEX_INIT(mut) \
if (PyMUTEX_INIT(&(mut))) { \
Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
#define MUTEX_FINI(mut) \
if (PyMUTEX_FINI(&(mut))) { \
Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
#define MUTEX_LOCK(mut) \
if (PyMUTEX_LOCK(&(mut))) { \
Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
#define MUTEX_UNLOCK(mut) \
if (PyMUTEX_UNLOCK(&(mut))) { \
Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
#define COND_INIT(cond) \
if (PyCOND_INIT(&(cond))) { \
Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
#define COND_FINI(cond) \
if (PyCOND_FINI(&(cond))) { \
Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
#define COND_SIGNAL(cond) \
if (PyCOND_SIGNAL(&(cond))) { \
Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
#define COND_WAIT(cond, mut) \
if (PyCOND_WAIT(&(cond), &(mut))) { \
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
{ \
int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
if (r < 0) \
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
timeout_result = 1; \
else \
timeout_result = 0; \
} \
#define DEFAULT_INTERVAL 5000
static void _gil_initialize(struct _gil_runtime_state *gil)
{
gil->locked = -1;
gil->interval = DEFAULT_INTERVAL;
}
static int gil_created(struct _gil_runtime_state *gil)
{
if (gil == NULL) {
return 0;
}
return (_Py_atomic_load_int_acquire(&gil->locked) >= 0);
}
static void create_gil(struct _gil_runtime_state *gil)
{
MUTEX_INIT(gil->mutex);
#ifdef FORCE_SWITCHING
MUTEX_INIT(gil->switch_mutex);
#endif
COND_INIT(gil->cond);
#ifdef FORCE_SWITCHING
COND_INIT(gil->switch_cond);
#endif
_Py_atomic_store_ptr_relaxed(&gil->last_holder, 0);
_Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
_Py_atomic_store_int_release(&gil->locked, 0);
}
static void destroy_gil(struct _gil_runtime_state *gil)
{
/* some pthread-like implementations tie the mutex to the cond
* and must have the cond destroyed first.
*/
COND_FINI(gil->cond);
MUTEX_FINI(gil->mutex);
#ifdef FORCE_SWITCHING
COND_FINI(gil->switch_cond);
MUTEX_FINI(gil->switch_mutex);
#endif
_Py_atomic_store_int_release(&gil->locked, -1);
_Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
}
#ifdef HAVE_FORK
static void recreate_gil(struct _gil_runtime_state *gil)
{
_Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
/* XXX should we destroy the old OS resources here? */
create_gil(gil);
}
#endif
static void
drop_gil_impl(struct _gil_runtime_state *gil)
{
MUTEX_LOCK(gil->mutex);
_Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
_Py_atomic_store_int_relaxed(&gil->locked, 0);
COND_SIGNAL(gil->cond);
MUTEX_UNLOCK(gil->mutex);
}
static void
drop_gil(PyInterpreterState *interp, PyThreadState *tstate)
{
struct _ceval_state *ceval = &interp->ceval;
/* If tstate is NULL, the caller is indicating that we're releasing
the GIL for the last time in this thread. This is particularly
relevant when the current thread state is finalizing or its
interpreter is finalizing (either may be in an inconsistent
state). In that case the current thread will definitely
never try to acquire the GIL again. */
// XXX It may be more correct to check tstate->_status.finalizing.
// XXX assert(tstate == NULL || !tstate->_status.cleared);
struct _gil_runtime_state *gil = ceval->gil;
#ifdef Py_GIL_DISABLED
if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
return;
}
#endif
if (!_Py_atomic_load_int_relaxed(&gil->locked)) {
Py_FatalError("drop_gil: GIL is not locked");
}
/* tstate is allowed to be NULL (early interpreter init) */
if (tstate != NULL) {
/* Sub-interpreter support: threads might have been switched
under our feet using PyThreadState_Swap(). Fix the GIL last
holder variable so that our heuristics work. */
_Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
}
drop_gil_impl(gil);
#ifdef FORCE_SWITCHING
/* We check tstate first in case we might be releasing the GIL for
the last time in this thread. In that case there's a possible
race with tstate->interp getting deleted after gil->mutex is
unlocked and before the following code runs, leading to a crash.
We can use (tstate == NULL) to indicate the thread is done with
the GIL, and that's the only time we might delete the
interpreter, so checking tstate first prevents the crash.
See https://github.com/python/cpython/issues/104341. */
if (tstate != NULL &&
_Py_eval_breaker_bit_is_set(tstate, _PY_GIL_DROP_REQUEST_BIT)) {
MUTEX_LOCK(gil->switch_mutex);
/* Not switched yet => wait */
if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate)
{
assert(_PyThreadState_CheckConsistency(tstate));
_Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
/* NOTE: if COND_WAIT does not atomically start waiting when
releasing the mutex, another thread can run through, take
the GIL and drop it again, and reset the condition
before we even had a chance to wait for it. */
COND_WAIT(gil->switch_cond, gil->switch_mutex);
}
MUTEX_UNLOCK(gil->switch_mutex);
}
#endif
}
/* Take the GIL.
The function saves errno at entry and restores its value at exit.
tstate must be non-NULL.
Returns 1 if the GIL was acquired, or 0 if not. */
static int
take_gil(PyThreadState *tstate)
{
int err = errno;
assert(tstate != NULL);
/* We shouldn't be using a thread state that isn't viable any more. */
// XXX It may be more correct to check tstate->_status.finalizing.
// XXX assert(!tstate->_status.cleared);
if (_PyThreadState_MustExit(tstate)) {
/* bpo-39877: If Py_Finalize() has been called and tstate is not the
thread which called Py_Finalize(), exit immediately the thread.
This code path can be reached by a daemon thread after Py_Finalize()
completes. In this case, tstate is a dangling pointer: points to
PyThreadState freed memory. */
PyThread_exit_thread();
}
assert(_PyThreadState_CheckConsistency(tstate));
PyInterpreterState *interp = tstate->interp;
struct _gil_runtime_state *gil = interp->ceval.gil;
#ifdef Py_GIL_DISABLED
if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
return 0;
}
#endif
/* Check that _PyEval_InitThreads() was called to create the lock */
assert(gil_created(gil));
MUTEX_LOCK(gil->mutex);
int drop_requested = 0;
while (_Py_atomic_load_int_relaxed(&gil->locked)) {
unsigned long saved_switchnum = gil->switch_number;
unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
int timed_out = 0;
COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
/* If we timed out and no switch occurred in the meantime, it is time
to ask the GIL-holding thread to drop it. */
if (timed_out &&
_Py_atomic_load_int_relaxed(&gil->locked) &&
gil->switch_number == saved_switchnum)
{
PyThreadState *holder_tstate =
(PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
if (_PyThreadState_MustExit(tstate)) {
MUTEX_UNLOCK(gil->mutex);
// gh-96387: If the loop requested a drop request in a previous
// iteration, reset the request. Otherwise, drop_gil() can
// block forever waiting for the thread which exited. Drop
// requests made by other threads are also reset: these threads
// may have to request again a drop request (iterate one more
// time).
if (drop_requested) {
_Py_unset_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
}
PyThread_exit_thread();
}
assert(_PyThreadState_CheckConsistency(tstate));
_Py_set_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
drop_requested = 1;
}
}
#ifdef Py_GIL_DISABLED
if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
// Another thread disabled the GIL between our check above and
// now. Don't take the GIL, signal any other waiting threads, and
// return 0.
COND_SIGNAL(gil->cond);
MUTEX_UNLOCK(gil->mutex);
return 0;
}
#endif
#ifdef FORCE_SWITCHING
/* This mutex must be taken before modifying gil->last_holder:
see drop_gil(). */
MUTEX_LOCK(gil->switch_mutex);
#endif
/* We now hold the GIL */
_Py_atomic_store_int_relaxed(&gil->locked, 1);
_Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) {
_Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
++gil->switch_number;
}
#ifdef FORCE_SWITCHING
COND_SIGNAL(gil->switch_cond);
MUTEX_UNLOCK(gil->switch_mutex);
#endif
if (_PyThreadState_MustExit(tstate)) {
/* bpo-36475: If Py_Finalize() has been called and tstate is not
the thread which called Py_Finalize(), exit immediately the
thread.
This code path can be reached by a daemon thread which was waiting
in take_gil() while the main thread called
wait_for_thread_shutdown() from Py_Finalize(). */
MUTEX_UNLOCK(gil->mutex);
/* Passing NULL to drop_gil() indicates that this thread is about to
terminate and will never hold the GIL again. */
drop_gil(interp, NULL);
PyThread_exit_thread();
}
assert(_PyThreadState_CheckConsistency(tstate));
_Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
update_eval_breaker_for_thread(interp, tstate);
MUTEX_UNLOCK(gil->mutex);
errno = err;
return 1;
}
void _PyEval_SetSwitchInterval(unsigned long microseconds)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
struct _gil_runtime_state *gil = interp->ceval.gil;
assert(gil != NULL);
gil->interval = microseconds;
}
unsigned long _PyEval_GetSwitchInterval(void)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
struct _gil_runtime_state *gil = interp->ceval.gil;
assert(gil != NULL);
return gil->interval;
}
int
_PyEval_ThreadsInitialized(void)
{
/* XXX This is only needed for an assert in PyGILState_Ensure(),
* which currently does not work with subinterpreters.
* Thus we only use the main interpreter. */
PyInterpreterState *interp = _PyInterpreterState_Main();
if (interp == NULL) {
return 0;
}
struct _gil_runtime_state *gil = interp->ceval.gil;
return gil_created(gil);
}
// Function removed in the Python 3.13 API but kept in the stable ABI.
PyAPI_FUNC(int)
PyEval_ThreadsInitialized(void)
{
return _PyEval_ThreadsInitialized();
}
#ifndef NDEBUG
static inline int
current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate)
{
if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) != tstate) {
return 0;
}
return _Py_atomic_load_int_relaxed(&gil->locked);
}
#endif
static void
init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
{
assert(gil_created(gil));
interp->ceval.gil = gil;
interp->ceval.own_gil = 0;
}
static void
init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
{
assert(!gil_created(gil));
#ifdef Py_GIL_DISABLED
const PyConfig *config = _PyInterpreterState_GetConfig(interp);
gil->enabled = config->enable_gil == _PyConfig_GIL_ENABLE ? INT_MAX : 0;
#endif
create_gil(gil);
assert(gil_created(gil));
interp->ceval.gil = gil;
interp->ceval.own_gil = 1;
}
void
_PyEval_InitGIL(PyThreadState *tstate, int own_gil)
{
assert(tstate->interp->ceval.gil == NULL);
if (!own_gil) {
/* The interpreter will share the main interpreter's instead. */
PyInterpreterState *main_interp = _PyInterpreterState_Main();
assert(tstate->interp != main_interp);
struct _gil_runtime_state *gil = main_interp->ceval.gil;
init_shared_gil(tstate->interp, gil);
assert(!current_thread_holds_gil(gil, tstate));
}
else {
PyThread_init_thread();
init_own_gil(tstate->interp, &tstate->interp->_gil);
}
// Lock the GIL and mark the current thread as attached.
_PyThreadState_Attach(tstate);
}
void
_PyEval_FiniGIL(PyInterpreterState *interp)
{
struct _gil_runtime_state *gil = interp->ceval.gil;
if (gil == NULL) {
/* It was already finalized (or hasn't been initialized yet). */
assert(!interp->ceval.own_gil);
return;
}
else if (!interp->ceval.own_gil) {
#ifdef Py_DEBUG
PyInterpreterState *main_interp = _PyInterpreterState_Main();
assert(main_interp != NULL && interp != main_interp);
assert(interp->ceval.gil == main_interp->ceval.gil);
#endif
interp->ceval.gil = NULL;
return;
}
if (!gil_created(gil)) {
/* First Py_InitializeFromConfig() call: the GIL doesn't exist
yet: do nothing. */
return;
}
destroy_gil(gil);
assert(!gil_created(gil));
interp->ceval.gil = NULL;
}
void
PyEval_InitThreads(void)
{
/* Do nothing: kept for backward compatibility */
}
void
_PyEval_Fini(void)
{
#ifdef Py_STATS
_Py_PrintSpecializationStats(1);
#endif
}
// Function removed in the Python 3.13 API but kept in the stable ABI.
PyAPI_FUNC(void)
PyEval_AcquireLock(void)
{
PyThreadState *tstate = _PyThreadState_GET();
_Py_EnsureTstateNotNULL(tstate);
take_gil(tstate);
}
// Function removed in the Python 3.13 API but kept in the stable ABI.
PyAPI_FUNC(void)
PyEval_ReleaseLock(void)
{
PyThreadState *tstate = _PyThreadState_GET();
/* This function must succeed when the current thread state is NULL.
We therefore avoid PyThreadState_Get() which dumps a fatal error
in debug mode. */
drop_gil(tstate->interp, tstate);
}
int
_PyEval_AcquireLock(PyThreadState *tstate)
{
_Py_EnsureTstateNotNULL(tstate);
return take_gil(tstate);
}
void
_PyEval_ReleaseLock(PyInterpreterState *interp, PyThreadState *tstate)
{
/* If tstate is NULL then we do not expect the current thread
to acquire the GIL ever again. */
assert(tstate == NULL || tstate->interp == interp);
drop_gil(interp, tstate);
}
void
PyEval_AcquireThread(PyThreadState *tstate)
{
_Py_EnsureTstateNotNULL(tstate);
_PyThreadState_Attach(tstate);
}
void
PyEval_ReleaseThread(PyThreadState *tstate)
{
assert(_PyThreadState_CheckConsistency(tstate));
_PyThreadState_Detach(tstate);
}
#ifdef HAVE_FORK
/* This function is called from PyOS_AfterFork_Child to re-initialize the
GIL and pending calls lock. */
PyStatus
_PyEval_ReInitThreads(PyThreadState *tstate)
{
assert(tstate->interp == _PyInterpreterState_Main());
struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
if (!gil_created(gil)) {
return _PyStatus_OK();
}
recreate_gil(gil);
take_gil(tstate);
struct _pending_calls *pending = &tstate->interp->ceval.pending;
_PyMutex_at_fork_reinit(&pending->mutex);
return _PyStatus_OK();
}
#endif
PyThreadState *
PyEval_SaveThread(void)
{
PyThreadState *tstate = _PyThreadState_GET();
_PyThreadState_Detach(tstate);
return tstate;
}
void
PyEval_RestoreThread(PyThreadState *tstate)
{
#ifdef MS_WINDOWS
int err = GetLastError();
#endif
_Py_EnsureTstateNotNULL(tstate);
_PyThreadState_Attach(tstate);
#ifdef MS_WINDOWS
SetLastError(err);
#endif
}
void
_PyEval_SignalReceived(void)
{
_Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_SIGNALS_PENDING_BIT);
}
#ifndef Py_GIL_DISABLED
static void
signal_active_thread(PyInterpreterState *interp, uintptr_t bit)
{
struct _gil_runtime_state *gil = interp->ceval.gil;
// If a thread from the targeted interpreter is holding the GIL, signal
// that thread. Otherwise, the next thread to run from the targeted
// interpreter will have its bit set as part of taking the GIL.
MUTEX_LOCK(gil->mutex);
if (_Py_atomic_load_int_relaxed(&gil->locked)) {
PyThreadState *holder = (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
if (holder->interp == interp) {
_Py_set_eval_breaker_bit(holder, bit);
}
}
MUTEX_UNLOCK(gil->mutex);
}
#endif
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
signal handlers or Mac I/O completion routines) can schedule calls
to a function to be called synchronously.
The synchronous function is called with one void* argument.
It should return 0 for success or -1 for failure -- failure should
be accompanied by an exception.
If registry succeeds, the registry function returns 0; if it fails
(e.g. due to too many pending calls) it returns -1 (without setting
an exception condition).
Note that because registry may occur from within signal handlers,
or other asynchronous events, calling malloc() is unsafe!
Any thread can schedule pending calls, but only the main thread
will execute them.
There is no facility to schedule calls to a particular thread, but
that should be easy to change, should that ever be required. In
that case, the static variables here should go into the python
threadstate.
*/
/* Push one item onto the queue while holding the lock. */
static int
_push_pending_call(struct _pending_calls *pending,
_Py_pending_call_func func, void *arg, int flags)
{
if (pending->npending == pending->max) {
return _Py_ADD_PENDING_FULL;
}
assert(pending->npending < pending->max);
int i = pending->next;
assert(pending->calls[i].func == NULL);
pending->calls[i].func = func;
pending->calls[i].arg = arg;
pending->calls[i].flags = flags;
assert(pending->npending < PENDINGCALLSARRAYSIZE);
_Py_atomic_add_int32(&pending->npending, 1);
pending->next = (i + 1) % PENDINGCALLSARRAYSIZE;
assert(pending->next != pending->first
|| pending->npending == pending->max);
return _Py_ADD_PENDING_SUCCESS;
}
static int
_next_pending_call(struct _pending_calls *pending,
int (**func)(void *), void **arg, int *flags)
{
int i = pending->first;
if (pending->npending == 0) {
/* Queue empty */
assert(i == pending->next);
assert(pending->calls[i].func == NULL);
return -1;
}
*func = pending->calls[i].func;
*arg = pending->calls[i].arg;
*flags = pending->calls[i].flags;
return i;
}
/* Pop one item off the queue while holding the lock. */
static void
_pop_pending_call(struct _pending_calls *pending,
int (**func)(void *), void **arg, int *flags)
{
int i = _next_pending_call(pending, func, arg, flags);
if (i >= 0) {
pending->calls[i] = (struct _pending_call){0};
pending->first = (i + 1) % PENDINGCALLSARRAYSIZE;
assert(pending->npending > 0);
_Py_atomic_add_int32(&pending->npending, -1);
}
}
/* This implementation is thread-safe. It allows
scheduling to be made from any thread, and even from an executing
callback.
*/
_Py_add_pending_call_result
_PyEval_AddPendingCall(PyInterpreterState *interp,
_Py_pending_call_func func, void *arg, int flags)
{
struct _pending_calls *pending = &interp->ceval.pending;
int main_only = (flags & _Py_PENDING_MAINTHREADONLY) != 0;
if (main_only) {
/* The main thread only exists in the main interpreter. */
assert(_Py_IsMainInterpreter(interp));
pending = &_PyRuntime.ceval.pending_mainthread;
}
PyMutex_Lock(&pending->mutex);
_Py_add_pending_call_result result =
_push_pending_call(pending, func, arg, flags);
PyMutex_Unlock(&pending->mutex);
if (main_only) {
_Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_CALLS_TO_DO_BIT);
}
else {
#ifdef Py_GIL_DISABLED
_Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
#else
signal_active_thread(interp, _PY_CALLS_TO_DO_BIT);
#endif
}
return result;
}
int
Py_AddPendingCall(_Py_pending_call_func func, void *arg)
{
/* Legacy users of this API will continue to target the main thread
(of the main interpreter). */
PyInterpreterState *interp = _PyInterpreterState_Main();
_Py_add_pending_call_result r =
_PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY);
if (r == _Py_ADD_PENDING_FULL) {
return -1;
}
else {
assert(r == _Py_ADD_PENDING_SUCCESS);
return 0;
}
}
static int
handle_signals(PyThreadState *tstate)
{
assert(_PyThreadState_CheckConsistency(tstate));
_Py_unset_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
return 0;
}
if (_PyErr_CheckSignalsTstate(tstate) < 0) {
/* On failure, re-schedule a call to handle_signals(). */
_Py_set_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
return -1;
}
return 0;
}
static int
_make_pending_calls(struct _pending_calls *pending, int32_t *p_npending)
{
int res = 0;
int32_t npending = -1;
assert(sizeof(pending->max) <= sizeof(size_t)
&& ((size_t)pending->max) <= Py_ARRAY_LENGTH(pending->calls));
int32_t maxloop = pending->maxloop;
if (maxloop == 0) {
maxloop = pending->max;
}
assert(maxloop > 0 && maxloop <= pending->max);
/* perform a bounded number of calls, in case of recursion */
for (int i=0; i<maxloop; i++) {
_Py_pending_call_func func = NULL;
void *arg = NULL;
int flags = 0;
/* pop one item off the queue while holding the lock */
PyMutex_Lock(&pending->mutex);
_pop_pending_call(pending, &func, &arg, &flags);
npending = pending->npending;
PyMutex_Unlock(&pending->mutex);
/* Check if there are any more pending calls. */
if (func == NULL) {
assert(npending == 0);
break;
}
/* having released the lock, perform the callback */
res = func(arg);
if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) {
PyMem_RawFree(arg);
}
if (res != 0) {
res = -1;
goto finally;
}
}
finally:
*p_npending = npending;
return res;
}
static void
signal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
{
#ifdef Py_GIL_DISABLED
_Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
#else
_Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
#endif
}
static void
unsignal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
{
#ifdef Py_GIL_DISABLED
_Py_unset_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
#else
_Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
#endif
}
static int
make_pending_calls(PyThreadState *tstate)
{
PyInterpreterState *interp = tstate->interp;
struct _pending_calls *pending = &interp->ceval.pending;
struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread;
/* Only one thread (per interpreter) may run the pending calls
at once. In the same way, we don't do recursive pending calls. */
PyMutex_Lock(&pending->mutex);
if (pending->handling_thread != NULL) {
/* A pending call was added after another thread was already
handling the pending calls (and had already "unsignaled").
Once that thread is done, it may have taken care of all the
pending calls, or there might be some still waiting.
To avoid all threads constantly stopping on the eval breaker,
we clear the bit for this thread and make sure it is set
for the thread currently handling the pending call. */
_Py_set_eval_breaker_bit(pending->handling_thread, _PY_CALLS_TO_DO_BIT);
_Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
PyMutex_Unlock(&pending->mutex);
return 0;
}
pending->handling_thread = tstate;
PyMutex_Unlock(&pending->mutex);
/* unsignal before starting to call callbacks, so that any callback
added in-between re-signals */
unsignal_pending_calls(tstate, interp);
int32_t npending;
if (_make_pending_calls(pending, &npending) != 0) {
pending->handling_thread = NULL;
/* There might not be more calls to make, but we play it safe. */
signal_pending_calls(tstate, interp);
return -1;
}
if (npending > 0) {
/* We hit pending->maxloop. */
signal_pending_calls(tstate, interp);
}
if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) {
if (_make_pending_calls(pending_main, &npending) != 0) {
pending->handling_thread = NULL;
/* There might not be more calls to make, but we play it safe. */
signal_pending_calls(tstate, interp);
return -1;
}
if (npending > 0) {
/* We hit pending_main->maxloop. */
signal_pending_calls(tstate, interp);
}
}
pending->handling_thread = NULL;
return 0;
}
void
_Py_set_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
{
_PyRuntimeState *runtime = &_PyRuntime;
HEAD_LOCK(runtime);
for (PyThreadState *tstate = interp->threads.head; tstate != NULL; tstate = tstate->next) {
_Py_set_eval_breaker_bit(tstate, bit);
}
HEAD_UNLOCK(runtime);
}
void
_Py_unset_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
{
_PyRuntimeState *runtime = &_PyRuntime;
HEAD_LOCK(runtime);
for (PyThreadState *tstate = interp->threads.head; tstate != NULL; tstate = tstate->next) {
_Py_unset_eval_breaker_bit(tstate, bit);
}
HEAD_UNLOCK(runtime);
}
void
_Py_FinishPendingCalls(PyThreadState *tstate)
{
assert(PyGILState_Check());
assert(_PyThreadState_CheckConsistency(tstate));
if (make_pending_calls(tstate) < 0) {
PyObject *exc = _PyErr_GetRaisedException(tstate);
PyErr_BadInternalCall();
_PyErr_ChainExceptions1(exc);
_PyErr_Print(tstate);
}
}
int
_PyEval_MakePendingCalls(PyThreadState *tstate)
{
int res;
if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) {
/* Python signal handler doesn't really queue a callback:
it only signals that a signal was received,
see _PyEval_SignalReceived(). */
res = handle_signals(tstate);
if (res != 0) {
return res;