
Pillow (PIL Fork) Documentation
Release 9.5.0

Jeffrey A. Clark (Alex)

Apr 26, 2023





CONTENTS

1 Overview 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Handbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.4 Porting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
1.5 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
1.6 Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
1.7 Deprecations and removals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

2 Indices and tables 287

Python Module Index 289

Index 291

i



ii



Pillow (PIL Fork) Documentation, Release 9.5.0

Pillow is the friendly PIL fork by Jeffrey A. Clark (Alex) and contributors. PIL is the Python Imaging Library by
Fredrik Lundh and contributors.

Pillow for enterprise is available via the Tidelift Subscription. Learn more.

CONTENTS 1

https://github.com/python-pillow/Pillow/graphs/contributors
https://tidelift.com/subscription/pkg/pypi-pillow?utm_source=pypi-pillow&utm_medium=docs&utm_campaign=enterprise
https://pillow.readthedocs.io/?badge=latest
https://github.com/python-pillow/Pillow/actions/workflows/lint.yml
https://github.com/python-pillow/Pillow/actions/workflows/test-docker.yml
https://github.com/python-pillow/Pillow/actions/workflows/test.yml
https://github.com/python-pillow/Pillow/actions/workflows/test-windows.yml
https://github.com/python-pillow/Pillow/actions/workflows/test-mingw.yml
https://github.com/python-pillow/Pillow/actions/workflows/test-cygwin.yml
https://ci.appveyor.com/project/python-pillow/Pillow
https://github.com/python-pillow/pillow-wheels/actions
https://app.travis-ci.com/github/python-pillow/pillow-wheels
https://app.codecov.io/gh/python-pillow/Pillow
https://zenodo.org/badge/latestdoi/17549/python-pillow/Pillow
https://tidelift.com/subscription/pkg/pypi-pillow?utm_source=pypi-pillow&utm_medium=badge
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:pillow
https://pypi.org/project/Pillow/
https://pypi.org/project/Pillow/
https://bestpractices.coreinfrastructure.org/projects/6331
https://gitter.im/python-pillow/Pillow?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge


Pillow (PIL Fork) Documentation, Release 9.5.0

2 CONTENTS



CHAPTER

ONE

OVERVIEW

The Python Imaging Library adds image processing capabilities to your Python interpreter.

This library provides extensive file format support, an efficient internal representation, and fairly powerful image pro-
cessing capabilities.

The core image library is designed for fast access to data stored in a few basic pixel formats. It should provide a solid
foundation for a general image processing tool.

1.1 Installation

1.1.1 Warnings

Warning: Pillow and PIL cannot co-exist in the same environment. Before installing Pillow, please uninstall PIL.

Warning: Pillow >= 1.0 no longer supports import Image. Please use from PIL import Image instead.

Warning: Pillow >= 2.1.0 no longer supports import _imaging. Please use from PIL.Image import core
as _imaging instead.

1.1.2 Python Support

Pillow supports these Python versions.

Table 1: Newer versions
Python 3.11 3.10 3.9 3.8 3.7 3.6 3.5
Pillow >= 9.3 Yes Yes Yes Yes Yes
Pillow 9.0 - 9.2 Yes Yes Yes Yes
Pillow 8.3.2 - 8.4 Yes Yes Yes Yes Yes
Pillow 8.0 - 8.3.1 Yes Yes Yes Yes
Pillow 7.0 - 7.2 Yes Yes Yes Yes

3



Pillow (PIL Fork) Documentation, Release 9.5.0

Table 2: Older versions
Python 3.8 3.7 3.6 3.5 3.4 3.3 3.2 2.7 2.6 2.5 2.4
Pillow 6.2.1 - 6.2.2 Yes Yes Yes Yes Yes
Pillow 6.0 - 6.2.0 Yes Yes Yes Yes
Pillow 5.2 - 5.4 Yes Yes Yes Yes Yes
Pillow 5.0 - 5.1 Yes Yes Yes Yes
Pillow 4 Yes Yes Yes Yes Yes
Pillow 2 - 3 Yes Yes Yes Yes Yes Yes
Pillow < 2 Yes Yes Yes Yes

1.1.3 Basic Installation

Note: The following instructions will install Pillow with support for most common image formats. See External
Libraries for a full list of external libraries supported.

Install Pillow with pip:

python3 -m pip install --upgrade pip
python3 -m pip install --upgrade Pillow

Linux

We provide binaries for Linux for each of the supported Python versions in the manylinux wheel format. These include
support for all optional libraries except libimagequant. Raqm support requires FriBiDi to be installed separately:

python3 -m pip install --upgrade pip
python3 -m pip install --upgrade Pillow

Most major Linux distributions, including Fedora, Ubuntu and ArchLinux also include Pillow in packages that previ-
ously contained PIL e.g. python-imaging. Debian splits it into two packages, python3-pil and python3-pil.
imagetk.

macOS

We provide binaries for macOS for each of the supported Python versions in the wheel format. These include support
for all optional libraries except libimagequant. Raqm support requires FriBiDi to be installed separately:

python3 -m pip install --upgrade pip
python3 -m pip install --upgrade Pillow

While we provide binaries for both x86-64 and arm64, we do not provide universal2 binaries. However, it is simple to
combine our current binaries to create one:

python3 -m pip download --only-binary=:all: --platform macosx_10_10_x86_64 Pillow
python3 -m pip download --only-binary=:all: --platform macosx_11_0_arm64 Pillow
python3 -m pip install delocate

Then, with the names of the downloaded wheels, use Python to combine them:

4 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

from delocate.fuse import fuse_wheels
fuse_wheels('Pillow-9.4.0-2-cp39-cp39-macosx_10_10_x86_64.whl', 'Pillow-9.4.0-cp39-cp39-
→˓macosx_11_0_arm64.whl', 'Pillow-9.4.0-cp39-cp39-macosx_11_0_universal2.whl')

Windows

We provide Pillow binaries for Windows compiled for the matrix of supported Pythons in both 32 and 64-bit versions
in the wheel format. These binaries include support for all optional libraries except libimagequant and libxcb. Raqm
support requires FriBiDi to be installed separately:

python3 -m pip install --upgrade pip
python3 -m pip install --upgrade Pillow

To install Pillow in MSYS2, see Building on Windows using MSYS2/MinGW .

FreeBSD

Pillow can be installed on FreeBSD via the official Ports or Packages systems:

Ports:

cd /usr/ports/graphics/py-pillow && make install clean

Packages:

pkg install py38-pillow

Note: The Pillow FreeBSD port and packages are tested by the ports team with all supported FreeBSD versions.

1.1.4 Building From Source

External Libraries

Note: You do not need to install all supported external libraries to use Pillow’s basic features. Zlib and libjpeg
are required by default.

Note: There are Dockerfiles in our Docker images repo to install the dependencies for some operating systems.

Many of Pillow’s features require external libraries:

• libjpeg provides JPEG functionality.

– Pillow has been tested with libjpeg versions 6b, 8, 9-9d and libjpeg-turbo version 8.

– Starting with Pillow 3.0.0, libjpeg is required by default, but may be disabled with the --disable-jpeg
flag.

• zlib provides access to compressed PNGs

1.1. Installation 5

https://www.freshports.org/graphics/py-pillow/
https://github.com/python-pillow/docker-images


Pillow (PIL Fork) Documentation, Release 9.5.0

– Starting with Pillow 3.0.0, zlib is required by default, but may be disabled with the --disable-zlib flag.

• libtiff provides compressed TIFF functionality

– Pillow has been tested with libtiff versions 3.x and 4.0-4.5

• libfreetype provides type related services

• littlecms provides color management

– Pillow version 2.2.1 and below uses liblcms1, Pillow 2.3.0 and above uses liblcms2. Tested with 1.19 and
2.7-2.15.

• libwebp provides the WebP format.

– Pillow has been tested with version 0.1.3, which does not read transparent WebP files. Versions 0.3.0 and
above support transparency.

• tcl/tk provides support for tkinter bitmap and photo images.

• openjpeg provides JPEG 2000 functionality.

– Pillow has been tested with openjpeg 2.0.0, 2.1.0, 2.3.1, 2.4.0 and 2.5.0.

– Pillow does not support the earlier 1.5 series which ships with Debian Jessie.

• libimagequant provides improved color quantization

– Pillow has been tested with libimagequant 2.6-4.1.1

– Libimagequant is licensed GPLv3, which is more restrictive than the Pillow license, therefore we will not
be distributing binaries with libimagequant support enabled.

• libraqm provides complex text layout support.

– libraqm provides bidirectional text support (using FriBiDi), shaping (using HarfBuzz), and proper script
itemization. As a result, Raqm can support most writing systems covered by Unicode.

– libraqm depends on the following libraries: FreeType, HarfBuzz, FriBiDi, make sure that you install them
before installing libraqm if not available as package in your system.

– Setting text direction or font features is not supported without libraqm.

– Pillow wheels since version 8.2.0 include a modified version of libraqm that loads libfribidi at runtime if it is
installed. On Windows this requires compiling FriBiDi and installing fribidi.dll into a directory listed
in the Dynamic-link library search order (Microsoft Learn) (fribidi-0.dll or libfribidi-0.dll are
also detected). See Build Options to see how to build this version.

– Previous versions of Pillow (5.0.0 to 8.1.2) linked libraqm dynamically at runtime.

• libxcb provides X11 screengrab support.

Linux

If you didn’t build Python from source, make sure you have Python’s development libraries installed.

In Debian or Ubuntu:

sudo apt-get install python3-dev python3-setuptools

In Fedora, the command is:

sudo dnf install python3-devel redhat-rpm-config

In Alpine, the command is:

6 Chapter 1. Overview

https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order#search-order-for-unpackaged-apps


Pillow (PIL Fork) Documentation, Release 9.5.0

sudo apk add python3-dev py3-setuptools

Note: redhat-rpm-config is required on Fedora 23, but not earlier versions.

Prerequisites for Ubuntu 16.04 LTS - 22.04 LTS are installed with:

sudo apt-get install libtiff5-dev libjpeg8-dev libopenjp2-7-dev zlib1g-dev \
libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python3-tk \
libharfbuzz-dev libfribidi-dev libxcb1-dev

To install libraqm, sudo apt-get install meson and then see depends/install_raqm.sh.

Prerequisites are installed on recent Red Hat, CentOS or Fedora with:

sudo dnf install libtiff-devel libjpeg-devel openjpeg2-devel zlib-devel \
freetype-devel lcms2-devel libwebp-devel tcl-devel tk-devel \
harfbuzz-devel fribidi-devel libraqm-devel libimagequant-devel libxcb-devel

Note that the package manager may be yum or DNF, depending on the exact distribution.

Prerequisites are installed for Alpine with:

sudo apk add tiff-dev jpeg-dev openjpeg-dev zlib-dev freetype-dev lcms2-dev \
libwebp-dev tcl-dev tk-dev harfbuzz-dev fribidi-dev libimagequant-dev \
libxcb-dev libpng-dev

See also the Dockerfiles in the Test Infrastructure repo (https://github.com/python-pillow/docker-images) for a
known working install process for other tested distros.

macOS

The Xcode command line tools are required to compile portions of Pillow. The tools are installed by running
xcode-select --install from the command line. The command line tools are required even if you have the full
Xcode package installed. It may be necessary to run sudo xcodebuild -license to accept the license prior to using
the tools.

The easiest way to install external libraries is via Homebrew. After you install Homebrew, run:

brew install libjpeg libtiff little-cms2 openjpeg webp

To install libraqm on macOS use Homebrew to install its dependencies:

brew install freetype harfbuzz fribidi

Then see depends/install_raqm_cmake.sh to install libraqm.

1.1. Installation 7

https://github.com/python-pillow/docker-images
https://brew.sh/


Pillow (PIL Fork) Documentation, Release 9.5.0

Windows

We recommend you use prebuilt wheels from PyPI. If you wish to compile Pillow manually, you can use the build
scripts in the winbuild directory used for CI testing and development. These scripts require Visual Studio 2017 or
newer and NASM.

The scripts also install Pillow from the local copy of the source code, so the Installing instructions will not be necessary
afterwards.

Windows using MSYS2/MinGW

To build Pillow using MSYS2, make sure you run the MSYS2 MinGW 32-bit or MSYS2 MinGW 64-bit console,
not MSYS2 directly.

The following instructions target the 64-bit build, for 32-bit replace all occurrences of mingw-w64-x86_64- with
mingw-w64-i686-.

Make sure you have Python and GCC installed:

pacman -S \
mingw-w64-x86_64-gcc \
mingw-w64-x86_64-python3 \
mingw-w64-x86_64-python3-pip \
mingw-w64-x86_64-python3-setuptools

Prerequisites are installed on MSYS2 MinGW 64-bit with:

pacman -S \
mingw-w64-x86_64-libjpeg-turbo \
mingw-w64-x86_64-zlib \
mingw-w64-x86_64-libtiff \
mingw-w64-x86_64-freetype \
mingw-w64-x86_64-lcms2 \
mingw-w64-x86_64-libwebp \
mingw-w64-x86_64-openjpeg2 \
mingw-w64-x86_64-libimagequant \
mingw-w64-x86_64-libraqm

FreeBSD

Note: Only FreeBSD 10 and 11 tested

Make sure you have Python’s development libraries installed:

sudo pkg install python3

Prerequisites are installed on FreeBSD 10 or 11 with:

sudo pkg install jpeg-turbo tiff webp lcms2 freetype2 openjpeg harfbuzz fribidi libxcb

Then see depends/install_raqm_cmake.sh to install libraqm.

8 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Android

Basic Android support has been added for compilation within the Termux environment. The dependencies can be
installed by:

pkg install -y python ndk-sysroot clang make \
libjpeg-turbo

This has been tested within the Termux app on ChromeOS, on x86.

Installing

Once you have installed the prerequisites, to install Pillow from the source code on PyPI, run:

python3 -m pip install --upgrade pip
python3 -m pip install --upgrade Pillow --no-binary :all:

If the prerequisites are installed in the standard library locations for your machine (e.g. /usr or /usr/local), no
additional configuration should be required. If they are installed in a non-standard location, you may need to configure
setuptools to use those locations by editing setup.py or setup.cfg, or by adding environment variables on the
command line:

CFLAGS="-I/usr/pkg/include" python3 -m pip install --upgrade Pillow --no-binary :all:

If Pillow has been previously built without the required prerequisites, it may be necessary to manually clear the pip
cache or build without cache using the --no-cache-dir option to force a build with newly installed external libraries.

If you would like to install from a local copy of the source code instead, you can clone from GitHub with git clone
https://github.com/python-pillow/Pillow or download and extract the compressed archive from PyPI.

After navigating to the Pillow directory, run:

python3 -m pip install --upgrade pip
python3 -m pip install .

Build Options

• Environment variable: MAX_CONCURRENCY=n. Pillow can use multiprocessing to build the extension. Setting
MAX_CONCURRENCY sets the number of CPUs to use, or can disable parallel building by using a setting of 1. By
default, it uses 4 CPUs, or if 4 are not available, as many as are present.

• Build flags: --disable-zlib, --disable-jpeg, --disable-tiff, --disable-freetype,
--disable-raqm, --disable-lcms, --disable-webp, --disable-webpmux, --disable-jpeg2000,
--disable-imagequant, --disable-xcb. Disable building the corresponding feature even if the develop-
ment libraries are present on the building machine.

• Build flags: --enable-zlib, --enable-jpeg, --enable-tiff, --enable-freetype, --enable-raqm,
--enable-lcms, --enable-webp, --enable-webpmux, --enable-jpeg2000, --enable-imagequant,
--enable-xcb. Require that the corresponding feature is built. The build will raise an exception if the libraries
are not found. Webpmux (WebP metadata) relies on WebP support. Tcl and Tk also must be used together.

• Build flags: --vendor-raqm, --vendor-fribidi. These flags are used to compile a modified version of
libraqm and a shim that dynamically loads libfribidi at runtime. These are used to compile the standard Pillow
wheels. Compiling libraqm requires a C99-compliant compiler.

1.1. Installation 9

https://pypi.org/project/Pillow/#files


Pillow (PIL Fork) Documentation, Release 9.5.0

• Build flag: --disable-platform-guessing. Skips all of the platform dependent guessing of include and
library directories for automated build systems that configure the proper paths in the environment variables (e.g.
Buildroot).

• Build flag: --debug. Adds a debugging flag to the include and library search process to dump all paths searched
for and found to stdout.

Sample usage:

python3 -m pip install --upgrade Pillow --global-option="build_ext" --global-option="--
→˓enable-[feature]"

1.1.5 Platform Support

Current platform support for Pillow. Binary distributions are contributed for each release on a volunteer basis, but the
source should compile and run everywhere platform support is listed. In general, we aim to support all current versions
of Linux, macOS, and Windows.

Continuous Integration Targets

These platforms are built and tested for every change.

Operating system Tested Python versions Tested architecture
Alpine 3.9 x86-64
Amazon Linux 2 3.7 x86-64
Amazon Linux 2023 3.9 x86-64
Arch 3.9 x86-64
CentOS 7 3.9 x86-64
CentOS Stream 8 3.9 x86-64
CentOS Stream 9 3.9 x86-64
Debian 11 Bullseye 3.9 x86
Fedora 36 3.10 x86-64
Fedora 37 3.11 x86-64
Gentoo 3.9 x86-64
macOS 12 Monterey 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, PyPy3 x86-64
Ubuntu Linux 18.04 LTS (Bionic) 3.9 x86-64
Ubuntu Linux 20.04 LTS (Focal) 3.8 x86-64
Ubuntu Linux 22.04 LTS (Jammy) 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, PyPy3 x86-64

3.10 arm64v8, ppc64le, s390x
Windows Server 2016 3.7 x86-64
Windows Server 2022 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, PyPy3 x86, x86-64

3.9 (MinGW) x86, x86-64
3.8, 3.9 (Cygwin) x86-64

10 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Other Platforms

These platforms have been reported to work at the versions mentioned.

Note: Contributors please test Pillow on your platform then update this document and send a pull request.

Operating system
Tested Python
versions

Latest tested
Pillow version

Tested
processors

macOS 13 Ventura 3.7, 3.8, 3.9, 3.10, 3.11 9.4.0 arm
macOS 12 Big Sur 3.7, 3.8, 3.9, 3.10, 3.11 9.3.0 arm
macOS 11 Big Sur 3.7, 3.8, 3.9, 3.10 8.4.0 arm

3.7, 3.8, 3.9, 3.10, 3.11 9.4.0 x86-64
3.6 8.4.0

macOS 10.15 Catalina 3.6, 3.7, 3.8, 3.9 8.3.2 x86-64
3.5 7.2.0

macOS 10.14 Mojave 3.5, 3.6, 3.7, 3.8 7.2.0 x86-64
2.7 6.0.0
3.4 5.4.1

macOS 10.13 High Sierra 2.7, 3.4, 3.5, 3.6 4.2.1 x86-64
macOS 10.12 Sierra 2.7, 3.4, 3.5, 3.6 4.1.1 x86-64
Mac OS X 10.11 El Capi-
tan

2.7, 3.4, 3.5, 3.6, 3.7 5.4.1 x86-64
3.3 4.1.0

Mac OS X 10.9 Mavericks 2.7, 3.2, 3.3, 3.4 3.0.0 x86-64
Mac OS X 10.8 Mountain
Lion

2.6, 2.7, 3.2, 3.3 x86-64

Redhat Linux 6 2.6 x86
CentOS 6.3 2.7, 3.3 x86
CentOS 8 3.9 9.0.0 x86-64
Fedora 23 2.7, 3.4 3.1.0 x86-64
Ubuntu Linux 12.04 LTS
(Precise) 2.6, 3.2, 3.3, 3.4, 3.5

PyPy5.3.1, PyPy3 v2.4.0

3.4.1 x86,x86-64

2.7 4.3.0 x86-64
2.7, 3.2 3.4.1 ppc

Ubuntu Linux 10.04 LTS
(Lucid)

2.6 2.3.0 x86,x86-64

Debian 8.2 Jessie 2.7, 3.4 3.1.0 x86-64
Raspbian Jessie 2.7, 3.4 3.1.0 arm
Raspbian Stretch 2.7, 3.5 4.0.0 arm
Raspberry Pi OS 3.6, 3.7, 3.8, 3.9 8.2.0 arm

2.7 6.2.2
Gentoo Linux 2.7, 3.2 2.1.0 x86-64
FreeBSD 11.1 2.7, 3.4, 3.5, 3.6 4.3.0 x86-64
FreeBSD 10.3 2.7, 3.4, 3.5 4.2.0 x86-64
FreeBSD 10.2 2.7, 3.4 3.1.0 x86-64
Windows 10 3.7 7.1.0 x86-64
Windows 10/Cygwin 3.3 3.6, 3.7, 3.8, 3.9 8.4.0 x86-64

continues on next page

1.1. Installation 11



Pillow (PIL Fork) Documentation, Release 9.5.0

Table 3 – continued from previous page
Operating system

Tested Python
versions

Latest tested
Pillow version

Tested
processors

Windows 8.1 Pro 2.6, 2.7, 3.2, 3.3, 3.4 2.4.0 x86,x86-64
Windows 8 Pro 2.6, 2.7, 3.2, 3.3, 3.4a3 2.2.0 x86,x86-64
Windows 7 Professional 3.7 7.0.0 x86,x86-64
Windows Server 2008 R2
Enterprise

3.3 x86-64

1.1.6 Old Versions

You can download old distributions from the release history at PyPI and by direct URL access eg. https://pypi.org/
project/Pillow/1.0/.

1.2 Handbook

1.2.1 Overview

The Python Imaging Library adds image processing capabilities to your Python interpreter.

This library provides extensive file format support, an efficient internal representation, and fairly powerful image pro-
cessing capabilities.

The core image library is designed for fast access to data stored in a few basic pixel formats. It should provide a solid
foundation for a general image processing tool.

Let’s look at a few possible uses of this library.

Image Archives

The Python Imaging Library is ideal for image archival and batch processing applications. You can use the library to
create thumbnails, convert between file formats, print images, etc.

The current version identifies and reads a large number of formats. Write support is intentionally restricted to the most
commonly used interchange and presentation formats.

Image Display

The current release includes Tk PhotoImage and BitmapImage interfaces, as well as a Windows DIB interface
that can be used with PythonWin and other Windows-based toolkits. Many other GUI toolkits come with some kind
of PIL support.

For debugging, there’s also a show() method which saves an image to disk, and calls an external display utility.

12 Chapter 1. Overview

https://pypi.org/project/Pillow/#history
https://pypi.org/project/Pillow/1.0/
https://pypi.org/project/Pillow/1.0/


Pillow (PIL Fork) Documentation, Release 9.5.0

Image Processing

The library contains basic image processing functionality, including point operations, filtering with a set of built-in
convolution kernels, and colour space conversions.

The library also supports image resizing, rotation and arbitrary affine transforms.

There’s a histogram method allowing you to pull some statistics out of an image. This can be used for automatic contrast
enhancement, and for global statistical analysis.

1.2.2 Tutorial

Using the Image class

The most important class in the Python Imaging Library is the Image class, defined in the module with the same name.
You can create instances of this class in several ways; either by loading images from files, processing other images, or
creating images from scratch.

To load an image from a file, use the open() function in the Image module:

>>> from PIL import Image
>>> im = Image.open("hopper.ppm")

If successful, this function returns an Image object. You can now use instance attributes to examine the file contents:

>>> print(im.format, im.size, im.mode)
PPM (512, 512) RGB

The format attribute identifies the source of an image. If the image was not read from a file, it is set to None. The
size attribute is a 2-tuple containing width and height (in pixels). The mode attribute defines the number and names of
the bands in the image, and also the pixel type and depth. Common modes are “L” (luminance) for greyscale images,
“RGB” for true color images, and “CMYK” for pre-press images.

If the file cannot be opened, an OSError exception is raised.

Once you have an instance of the Image class, you can use the methods defined by this class to process and manipulate
the image. For example, let’s display the image we just loaded:

>>> im.show()

Note: The standard version of show() is not very efficient, since it saves the image to a temporary file and calls a
utility to display the image. If you don’t have an appropriate utility installed, it won’t even work. When it does work
though, it is very handy for debugging and tests.

The following sections provide an overview of the different functions provided in this library.

1.2. Handbook 13

https://docs.python.org/3/library/exceptions.html#OSError


Pillow (PIL Fork) Documentation, Release 9.5.0

Reading and writing images

The Python Imaging Library supports a wide variety of image file formats. To read files from disk, use the open() func-
tion in the Image module. You don’t have to know the file format to open a file. The library automatically determines
the format based on the contents of the file.

To save a file, use the save()method of the Image class. When saving files, the name becomes important. Unless you
specify the format, the library uses the filename extension to discover which file storage format to use.

Convert files to JPEG

import os, sys
from PIL import Image

for infile in sys.argv[1:]:
f, e = os.path.splitext(infile)
outfile = f + ".jpg"
if infile != outfile:

try:
with Image.open(infile) as im:

im.save(outfile)
except OSError:

print("cannot convert", infile)

A second argument can be supplied to the save() method which explicitly specifies a file format. If you use a non-
standard extension, you must always specify the format this way:

Create JPEG thumbnails

import os, sys
from PIL import Image

size = (128, 128)

for infile in sys.argv[1:]:
outfile = os.path.splitext(infile)[0] + ".thumbnail"
if infile != outfile:

try:
with Image.open(infile) as im:

im.thumbnail(size)
im.save(outfile, "JPEG")

except OSError:
print("cannot create thumbnail for", infile)

It is important to note that the library doesn’t decode or load the raster data unless it really has to. When you open a
file, the file header is read to determine the file format and extract things like mode, size, and other properties required
to decode the file, but the rest of the file is not processed until later.

This means that opening an image file is a fast operation, which is independent of the file size and compression type.
Here’s a simple script to quickly identify a set of image files:

14 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Identify Image Files

import sys
from PIL import Image

for infile in sys.argv[1:]:
try:

with Image.open(infile) as im:
print(infile, im.format, f"{im.size}x{im.mode}")

except OSError:
pass

Cutting, pasting, and merging images

The Image class contains methods allowing you to manipulate regions within an image. To extract a sub-rectangle
from an image, use the crop() method.

Copying a subrectangle from an image

box = (100, 100, 400, 400)
region = im.crop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right, lower). The Python Imaging Library uses a
coordinate system with (0, 0) in the upper left corner. Also note that coordinates refer to positions between the pixels,
so the region in the above example is exactly 300x300 pixels.

The region could now be processed in a certain manner and pasted back.

Processing a subrectangle, and pasting it back

region = region.transpose(Image.Transpose.ROTATE_180)
im.paste(region, box)

When pasting regions back, the size of the region must match the given region exactly. In addition, the region cannot
extend outside the image. However, the modes of the original image and the region do not need to match. If they don’t,
the region is automatically converted before being pasted (see the section on Color transforms below for details).

Here’s an additional example:

Rolling an image

def roll(im, delta):
"""Roll an image sideways."""
xsize, ysize = im.size

delta = delta % xsize
if delta == 0:

return im
(continues on next page)

1.2. Handbook 15



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

part1 = im.crop((0, 0, delta, ysize))
part2 = im.crop((delta, 0, xsize, ysize))
im.paste(part1, (xsize - delta, 0, xsize, ysize))
im.paste(part2, (0, 0, xsize - delta, ysize))

return im

Or if you would like to merge two images into a wider image:

Merging images

def merge(im1, im2):
w = im1.size[0] + im2.size[0]
h = max(im1.size[1], im2.size[1])
im = Image.new("RGBA", (w, h))

im.paste(im1)
im.paste(im2, (im1.size[0], 0))

return im

For more advanced tricks, the paste method can also take a transparency mask as an optional argument. In this mask,
the value 255 indicates that the pasted image is opaque in that position (that is, the pasted image should be used as
is). The value 0 means that the pasted image is completely transparent. Values in-between indicate different levels of
transparency. For example, pasting an RGBA image and also using it as the mask would paste the opaque portion of
the image but not its transparent background.

The Python Imaging Library also allows you to work with the individual bands of an multi-band image, such as an RGB
image. The split method creates a set of new images, each containing one band from the original multi-band image.
The merge function takes a mode and a tuple of images, and combines them into a new image. The following sample
swaps the three bands of an RGB image:

Splitting and merging bands

r, g, b = im.split()
im = Image.merge("RGB", (b, g, r))

Note that for a single-band image, split() returns the image itself. To work with individual color bands, you may
want to convert the image to “RGB” first.

16 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Geometrical transforms

The PIL.Image.Image class contains methods to resize() and rotate() an image. The former takes a tuple giving
the new size, the latter the angle in degrees counter-clockwise.

Simple geometry transforms

out = im.resize((128, 128))
out = im.rotate(45) # degrees counter-clockwise

To rotate the image in 90 degree steps, you can either use the rotate() method or the transpose() method. The
latter can also be used to flip an image around its horizontal or vertical axis.

Transposing an image

out = im.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
out = im.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
out = im.transpose(Image.Transpose.ROTATE_90)
out = im.transpose(Image.Transpose.ROTATE_180)
out = im.transpose(Image.Transpose.ROTATE_270)

transpose(ROTATE) operations can also be performed identically with rotate() operations, provided the expand
flag is true, to provide for the same changes to the image’s size.

A more general form of image transformations can be carried out via the transform() method.

Color transforms

The Python Imaging Library allows you to convert images between different pixel representations using the convert()
method.

Converting between modes

from PIL import Image

with Image.open("hopper.ppm") as im:
im = im.convert("L")

The library supports transformations between each supported mode and the “L” and “RGB” modes. To convert between
other modes, you may have to use an intermediate image (typically an “RGB” image).

1.2. Handbook 17



Pillow (PIL Fork) Documentation, Release 9.5.0

Image enhancement

The Python Imaging Library provides a number of methods and modules that can be used to enhance images.

Filters

The ImageFilter module contains a number of pre-defined enhancement filters that can be used with the filter()
method.

Applying filters

from PIL import ImageFilter
out = im.filter(ImageFilter.DETAIL)

Point Operations

The point()method can be used to translate the pixel values of an image (e.g. image contrast manipulation). In most
cases, a function object expecting one argument can be passed to this method. Each pixel is processed according to
that function:

Applying point transforms

# multiply each pixel by 1.2
out = im.point(lambda i: i * 1.2)

Using the above technique, you can quickly apply any simple expression to an image. You can also combine the
point() and paste() methods to selectively modify an image:

Processing individual bands

# split the image into individual bands
source = im.split()

R, G, B = 0, 1, 2

# select regions where red is less than 100
mask = source[R].point(lambda i: i < 100 and 255)

# process the green band
out = source[G].point(lambda i: i * 0.7)

# paste the processed band back, but only where red was < 100
source[G].paste(out, None, mask)

# build a new multiband image
im = Image.merge(im.mode, source)

Note the syntax used to create the mask:

18 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

imout = im.point(lambda i: expression and 255)

Python only evaluates the portion of a logical expression as is necessary to determine the outcome, and returns the
last value examined as the result of the expression. So if the expression above is false (0), Python does not look at the
second operand, and thus returns 0. Otherwise, it returns 255.

Enhancement

For more advanced image enhancement, you can use the classes in the ImageEnhance module. Once created from an
image, an enhancement object can be used to quickly try out different settings.

You can adjust contrast, brightness, color balance and sharpness in this way.

Enhancing images

from PIL import ImageEnhance

enh = ImageEnhance.Contrast(im)
enh.enhance(1.3).show("30% more contrast")

Image sequences

The Python Imaging Library contains some basic support for image sequences (also called animation formats). Sup-
ported sequence formats include FLI/FLC, GIF, and a few experimental formats. TIFF files can also contain more than
one frame.

When you open a sequence file, PIL automatically loads the first frame in the sequence. You can use the seek and tell
methods to move between different frames:

Reading sequences

from PIL import Image

with Image.open("animation.gif") as im:
im.seek(1) # skip to the second frame

try:
while 1:

im.seek(im.tell() + 1)
# do something to im

except EOFError:
pass # end of sequence

As seen in this example, you’ll get an EOFError exception when the sequence ends.

The following class lets you use the for-statement to loop over the sequence:

1.2. Handbook 19

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

Using the ImageSequence Iterator class

from PIL import ImageSequence
for frame in ImageSequence.Iterator(im):

# ...do something to frame...

PostScript printing

The Python Imaging Library includes functions to print images, text and graphics on PostScript printers. Here’s a
simple example:

Drawing PostScript

from PIL import Image
from PIL import PSDraw

with Image.open("hopper.ppm") as im:
title = "hopper"
box = (1 * 72, 2 * 72, 7 * 72, 10 * 72) # in points

ps = PSDraw.PSDraw() # default is sys.stdout or sys.stdout.buffer
ps.begin_document(title)

# draw the image (75 dpi)
ps.image(box, im, 75)
ps.rectangle(box)

# draw title
ps.setfont("HelveticaNarrow-Bold", 36)
ps.text((3 * 72, 4 * 72), title)

ps.end_document()

More on reading images

As described earlier, the open() function of the Imagemodule is used to open an image file. In most cases, you simply
pass it the filename as an argument. Image.open() can be used as a context manager:

from PIL import Image
with Image.open("hopper.ppm") as im:

...

If everything goes well, the result is an PIL.Image.Image object. Otherwise, an OSError exception is raised.

You can use a file-like object instead of the filename. The object must implement file.read, file.seek and file.
tell methods, and be opened in binary mode.

20 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#OSError


Pillow (PIL Fork) Documentation, Release 9.5.0

Reading from an open file

from PIL import Image

with open("hopper.ppm", "rb") as fp:
im = Image.open(fp)

To read an image from binary data, use the BytesIO class:

Reading from binary data

from PIL import Image
import io

im = Image.open(io.BytesIO(buffer))

Note that the library rewinds the file (using seek(0)) before reading the image header. In addition, seek will also be
used when the image data is read (by the load method). If the image file is embedded in a larger file, such as a tar file,
you can use the ContainerIO or TarIO modules to access it.

Reading from URL

from PIL import Image
from urllib.request import urlopen
url = "https://python-pillow.org/images/pillow-logo.png"
img = Image.open(urlopen(url))

Reading from a tar archive

from PIL import Image, TarIO

fp = TarIO.TarIO("Tests/images/hopper.tar", "hopper.jpg")
im = Image.open(fp)

Batch processing

Operations can be applied to multiple image files. For example, all PNG images in the current directory can be saved
as JPEGs at reduced quality.

import glob
from PIL import Image

def compress_image(source_path, dest_path):
with Image.open(source_path) as img:

if img.mode != "RGB":
img = img.convert("RGB")

(continues on next page)

1.2. Handbook 21

https://docs.python.org/3/library/io.html#io.BytesIO


Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

img.save(dest_path, "JPEG", optimize=True, quality=80)

paths = glob.glob("*.png")
for path in paths:

compress_image(path, path[:-4] + ".jpg")

Since images can also be opened from a Path from the pathlibmodule, the example could be modified to use pathlib
instead of the glob module.

from pathlib import Path

paths = Path(".").glob("*.png")
for path in paths:

compress_image(path, path.stem + ".jpg")

Controlling the decoder

Some decoders allow you to manipulate the image while reading it from a file. This can often be used to speed up
decoding when creating thumbnails (when speed is usually more important than quality) and printing to a monochrome
laser printer (when only a greyscale version of the image is needed).

The draft() method manipulates an opened but not yet loaded image so it as closely as possible matches the given
mode and size. This is done by reconfiguring the image decoder.

Reading in draft mode

This is only available for JPEG and MPO files.

from PIL import Image

with Image.open(file) as im:
print("original =", im.mode, im.size)

im.draft("L", (100, 100))
print("draft =", im.mode, im.size)

This prints something like:

original = RGB (512, 512)
draft = L (128, 128)

Note that the resulting image may not exactly match the requested mode and size. To make sure that the image is not
larger than the given size, use the thumbnail method instead.

22 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

1.2.3 Concepts

The Python Imaging Library handles raster images; that is, rectangles of pixel data.

Bands

An image can consist of one or more bands of data. The Python Imaging Library allows you to store several bands in a
single image, provided they all have the same dimensions and depth. For example, a PNG image might have ‘R’, ‘G’,
‘B’, and ‘A’ bands for the red, green, blue, and alpha transparency values. Many operations act on each band separately,
e.g., histograms. It is often useful to think of each pixel as having one value per band.

To get the number and names of bands in an image, use the getbands() method.

Modes

The mode of an image is a string which defines the type and depth of a pixel in the image. Each pixel uses the full
range of the bit depth. So a 1-bit pixel has a range of 0-1, an 8-bit pixel has a range of 0-255, a 32-signed integer pixel
has the range of INT32 and a 32-bit floating point pixel has the range of FLOAT32. The current release supports the
following standard modes:

• 1 (1-bit pixels, black and white, stored with one pixel per byte)

• L (8-bit pixels, grayscale)

• P (8-bit pixels, mapped to any other mode using a color palette)

• RGB (3x8-bit pixels, true color)

• RGBA (4x8-bit pixels, true color with transparency mask)

• CMYK (4x8-bit pixels, color separation)

• YCbCr (3x8-bit pixels, color video format)

– Note that this refers to the JPEG, and not the ITU-R BT.2020, standard

• LAB (3x8-bit pixels, the L*a*b color space)

• HSV (3x8-bit pixels, Hue, Saturation, Value color space)

– Hue’s range of 0-255 is a scaled version of 0 degrees <= Hue < 360 degrees

• I (32-bit signed integer pixels)

• F (32-bit floating point pixels)

Pillow also provides limited support for a few additional modes, including:

• LA (L with alpha)

• PA (P with alpha)

• RGBX (true color with padding)

• RGBa (true color with premultiplied alpha)

• La (L with premultiplied alpha)

• I;16 (16-bit unsigned integer pixels)

• I;16L (16-bit little endian unsigned integer pixels)

• I;16B (16-bit big endian unsigned integer pixels)

1.2. Handbook 23



Pillow (PIL Fork) Documentation, Release 9.5.0

• I;16N (16-bit native endian unsigned integer pixels)

• BGR;15 (15-bit reversed true colour)

• BGR;16 (16-bit reversed true colour)

• BGR;24 (24-bit reversed true colour)

Premultiplied alpha is where the values for each other channel have been multiplied by the alpha. For example, an
RGBA pixel of (10, 20, 30, 127) would convert to an RGBa pixel of (5, 10, 15, 127). The values of the R,
G and B channels are halved as a result of the half transparency in the alpha channel.

Apart from these additional modes, Pillow doesn’t yet support multichannel images with a depth of more than 8 bits
per channel.

Pillow also doesn’t support user-defined modes; if you need to handle band combinations that are not listed above, use
a sequence of Image objects.

You can read the mode of an image through the mode attribute. This is a string containing one of the above values.

Size

You can read the image size through the size attribute. This is a 2-tuple, containing the horizontal and vertical size in
pixels.

Coordinate System

The Python Imaging Library uses a Cartesian pixel coordinate system, with (0,0) in the upper left corner. Note that the
coordinates refer to the implied pixel corners; the centre of a pixel addressed as (0, 0) actually lies at (0.5, 0.5).

Coordinates are usually passed to the library as 2-tuples (x, y). Rectangles are represented as 4-tuples, with the upper
left corner given first. For example, a rectangle covering all of an 800x600 pixel image is written as (0, 0, 800, 600).

Palette

The palette mode (P) uses a color palette to define the actual color for each pixel.

Info

You can attach auxiliary information to an image using the info attribute. This is a dictionary object.

How such information is handled when loading and saving image files is up to the file format handler (see the chapter
on Image file formats). Most handlers add properties to the info attribute when loading an image, but ignore it when
saving images.

Transparency

If an image does not have an alpha band, transparency may be specified in the info attribute with a “transparency”
key.

Most of the time, the “transparency” value is a single integer, describing which pixel value is transparent in a “1”, “L”,
“I” or “P” mode image. However, PNG images may have three values, one for each channel in an “RGB” mode image,
or can have a byte string for a “P” mode image, to specify the alpha value for each palette entry.

24 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Orientation

A common element of the info attribute for JPG and TIFF images is the EXIF orientation tag. This is an instruction
for how the image data should be oriented. For example, it may instruct an image to be rotated by 90 degrees, or to be
mirrored. To apply this information to an image, exif_transpose() can be used.

Filters

For geometry operations that may map multiple input pixels to a single output pixel, the Python Imaging Library
provides different resampling filters.

Resampling.NEAREST

Pick one nearest pixel from the input image. Ignore all other input pixels.

Resampling.BOX

Each pixel of source image contributes to one pixel of the destination image with identical weights. For upscaling
is equivalent of Resampling.NEAREST. This filter can only be used with the resize() and thumbnail()
methods.

New in version 3.4.0.

Resampling.BILINEAR

For resize calculate the output pixel value using linear interpolation on all pixels that may contribute to the output
value. For other transformations linear interpolation over a 2x2 environment in the input image is used.

Resampling.HAMMING

Produces a sharper image than Resampling.BILINEAR , doesn’t have dislocations on local level like with
Resampling.BOX . This filter can only be used with the resize() and thumbnail() methods.

New in version 3.4.0.

Resampling.BICUBIC

For resize calculate the output pixel value using cubic interpolation on all pixels that may contribute to the output
value. For other transformations cubic interpolation over a 4x4 environment in the input image is used.

Resampling.LANCZOS

Calculate the output pixel value using a high-quality Lanczos filter (a truncated sinc) on all pixels that may
contribute to the output value. This filter can only be used with the resize() and thumbnail() methods.

New in version 1.1.3.

Filters comparison table

Filter Downscaling quality Upscaling quality Performance
Resampling.NEAREST
Resampling.BOX
Resampling.BILINEAR
Resampling.HAMMING
Resampling.BICUBIC
Resampling.LANCZOS

1.2. Handbook 25



Pillow (PIL Fork) Documentation, Release 9.5.0

1.2.4 Appendices

Note: Contributors please include appendices as needed or appropriate with your bug fixes, feature additions and tests.

Image file formats

The Python Imaging Library supports a wide variety of raster file formats. Over 30 different file formats can be
identified and read by the library. Write support is less extensive, but most common interchange and presentation
formats are supported.

The open() function identifies files from their contents, not their names, but the save() method looks at the name to
determine which format to use, unless the format is given explicitly.

When an image is opened from a file, only that instance of the image is considered to have the format. Copies of the
image will contain data loaded from the file, but not the file itself, meaning that it can no longer be considered to be in
the original format. So if copy() is called on an image, or another method internally creates a copy of the image, then
any methods or attributes specific to the format will no longer be present. The fp (file pointer) attribute will no longer
be present, and the format attribute will be None.

Fully supported formats

BLP

BLP is the Blizzard Mipmap Format, a texture format used in World of Warcraft. Pillow supports reading JPEG Com-
pressed or raw BLP1 images, and all types of BLP2 images.

Saving

Pillow supports writing BLP images. The save() method can take the following keyword arguments:

blp_version
If present and set to “BLP1”, images will be saved as BLP1. Otherwise, images will be saved as BLP2.

BMP

Pillow reads and writes Windows and OS/2 BMP files containing 1, L, P, or RGB data. 16-colour images are read as P
images. Support for reading 8-bit run-length encoding was added in Pillow 9.1.0. Support for reading 4-bit run-length
encoding was added in Pillow 9.3.0.

26 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Opening

The open() method sets the following info properties:

compression
Set to 1 if the file is a 256-color run-length encoded image. Set to 2 if the file is a 16-color run-length encoded
image.

DDS

DDS is a popular container texture format used in video games and natively supported by DirectX. Uncompressed RGB
and RGBA can be read, and (since 8.3.0) written. DXT1, DXT3 (since 3.4.0) and DXT5 pixel formats can be read,
only in RGBA mode.

DIB

Pillow reads and writes DIB files. DIB files are similar to BMP files, so see above for more information.

New in version 6.0.0.

EPS

Pillow identifies EPS files containing image data, and can read files that contain embedded raster images (ImageData
descriptors). If Ghostscript is available, other EPS files can be read as well. The EPS driver can also write EPS images.
The EPS driver can read EPS images in L, LAB, RGB and CMYK mode, but Ghostscript may convert the images to RGB
mode rather than leaving them in the original color space. The EPS driver can write images in L, RGB and CMYK modes.

Loading

If Ghostscript is available, you can call the load() method with the following parameters to affect how Ghostscript
renders the EPS

scale
Affects the scale of the resultant rasterized image. If the EPS suggests that the image be rendered at 100px x
100px, setting this parameter to 2 will make the Ghostscript render a 200px x 200px image instead. The relative
position of the bounding box is maintained:

im = Image.open(...)
im.size # (100,100)
im.load(scale=2)
im.size # (200,200)

transparency
If true, generates an RGBA image with a transparent background, instead of the default behaviour of an RGB
image with a white background.

1.2. Handbook 27



Pillow (PIL Fork) Documentation, Release 9.5.0

GIF

Pillow reads GIF87a and GIF89a versions of the GIF file format. The library writes files in GIF87a by default, unless
GIF89a features are used or GIF89a is already in use. Files are written with LZW encoding.

GIF files are initially read as grayscale (L) or palette mode (P) images. Seeking to later frames in a P image will change
the image to RGB (or RGBA if the first frame had transparency).

P mode images are changed to RGB because each frame of a GIF may contain its own individual palette of up to 256
colors. When a new frame is placed onto a previous frame, those colors may combine to exceed the P mode limit of
256 colors. Instead, the image is converted to RGB handle this.

If you would prefer the first P image frame to be RGB as well, so that every P frame is converted to RGB or RGBA mode,
there is a setting available:

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_ALWAYS

GIF frames do not always contain individual palettes however. If there is only a global palette, then all of the colors
can fit within P mode. If you would prefer the frames to be kept as P in that case, there is also a setting available:

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_AFTER_DIFFERENT_
→˓PALETTE_ONLY

To restore the default behavior, where P mode images are only converted to RGB or RGBA after the first frame:

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_AFTER_FIRST

Opening

The open() method sets the following info properties:

background
Default background color (a palette color index).

transparency
Transparency color index. This key is omitted if the image is not transparent.

version
Version (either GIF87a or GIF89a).

duration
May not be present. The time to display the current frame of the GIF, in milliseconds.

loop
May not be present. The number of times the GIF should loop. 0 means that it will loop forever.

comment
May not be present. A comment about the image. This is the last comment found before the current frame’s
image.

extension
May not be present. Contains application specific information.

28 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Reading sequences

The GIF loader supports the seek() and tell() methods. You can combine these methods to seek to the next frame
(im.seek(im.tell() + 1)).

im.seek() raises an EOFError if you try to seek after the last frame.

Saving

When calling save() to write a GIF file, the following options are available:

im.save(out, save_all=True, append_images=[im1, im2, ...])

save_all
If present and true, all frames of the image will be saved. If not, then only the first frame of a multiframe image
will be saved.

append_images
A list of images to append as additional frames. Each of the images in the list can be single or multiframe images.
This is currently supported for GIF, PDF, PNG, TIFF, and WebP.

It is also supported for ICO and ICNS. If images are passed in of relevant sizes, they will be used instead of
scaling down the main image.

include_color_table
Whether or not to include local color table.

interlace
Whether or not the image is interlaced. By default, it is, unless the image is less than 16 pixels in width or height.

disposal
Indicates the way in which the graphic is to be treated after being displayed.

• 0 - No disposal specified.

• 1 - Do not dispose.

• 2 - Restore to background color.

• 3 - Restore to previous content.

Pass a single integer for a constant disposal, or a list or tuple to set the disposal for each frame sepa-
rately.

palette
Use the specified palette for the saved image. The palette should be a bytes or bytearray object containing the
palette entries in RGBRGB. . . form. It should be no more than 768 bytes. Alternately, the palette can be passed
in as an PIL.ImagePalette.ImagePalette object.

optimize
If present and true, attempt to compress the palette by eliminating unused colors. This is only useful if the palette
can be compressed to the next smaller power of 2 elements.

Note that if the image you are saving comes from an existing GIF, it may have the following properties in its info
dictionary. For these options, if you do not pass them in, they will default to their info values.

transparency
Transparency color index.

1.2. Handbook 29

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

duration
The display duration of each frame of the multiframe gif, in milliseconds. Pass a single integer for a constant
duration, or a list or tuple to set the duration for each frame separately.

loop
Integer number of times the GIF should loop. 0 means that it will loop forever. By default, the image will not
loop.

comment
A comment about the image.

Reading local images

The GIF loader creates an image memory the same size as the GIF file’s logical screen size, and pastes the actual pixel
data (the local image) into this image. If you only want the actual pixel rectangle, you can crop the image:

im = Image.open(...)

if im.tile[0][0] == "gif":
# only read the first "local image" from this GIF file
box = im.tile[0][1]
im = im.crop(box)

ICNS

Pillow reads and writes macOS .icns files. By default, the largest available icon is read, though you can override this
by setting the size property before calling load(). The open() method sets the following info property:

Note: Prior to version 8.3.0, Pillow could only write ICNS files on macOS.

sizes
A list of supported sizes found in this icon file; these are a 3-tuple, (width, height, scale), where scale
is 2 for a retina icon and 1 for a standard icon. You are permitted to use this 3-tuple format for the size property
if you set it before calling load(); after loading, the size will be reset to a 2-tuple containing pixel dimensions
(so, e.g. if you ask for (512, 512, 2), the final value of size will be (1024, 1024)).

Saving

The save() method can take the following keyword arguments:

append_images
A list of images to replace the scaled down versions of the image. The order of the images does not matter, as
their use is determined by the size of each image.

New in version 5.1.0.

30 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

ICO

ICO is used to store icons on Windows. The largest available icon is read.

Saving

The save() method supports the following options:

sizes
A list of sizes including in this ico file; these are a 2-tuple, (width, height); Default to [(16, 16), (24,
24), (32, 32), (48, 48), (64, 64), (128, 128), (256, 256)]. Any sizes bigger than the original
size or 256 will be ignored.

The save() method can take the following keyword arguments:

append_images
A list of images to replace the scaled down versions of the image. The order of the images does not matter, as
their use is determined by the size of each image.

New in version 8.1.0.

bitmap_format
By default, the image data will be saved in PNG format. With a bitmap format of “bmp”, image data will be
saved in BMP format instead.

New in version 8.3.0.

IM

IM is a format used by LabEye and other applications based on the IFUNC image processing library. The library reads
and writes most uncompressed interchange versions of this format.

IM is the only format that can store all internal Pillow formats.

JPEG

Pillow reads JPEG, JFIF, and Adobe JPEG files containing L, RGB, or CMYK data. It writes standard and progressive
JFIF files.

Using the draft() method, you can speed things up by converting RGB images to L, and resize images to 1/2, 1/4 or
1/8 of their original size while loading them.

By default Pillow doesn’t allow loading of truncated JPEG files, set ImageFile.LOAD_TRUNCATED_IMAGES to over-
ride this.

1.2. Handbook 31



Pillow (PIL Fork) Documentation, Release 9.5.0

Opening

The open() method may set the following info properties if available:

jfif
JFIF application marker found. If the file is not a JFIF file, this key is not present.

jfif_version
A tuple representing the jfif version, (major version, minor version).

jfif_density
A tuple representing the pixel density of the image, in units specified by jfif_unit.

jfif_unit
Units for the jfif_density:

• 0 - No Units

• 1 - Pixels per Inch

• 2 - Pixels per Centimeter

dpi
A tuple representing the reported pixel density in pixels per inch, if the file is a jfif file and the units are in inches.

adobe
Adobe application marker found. If the file is not an Adobe JPEG file, this key is not present.

adobe_transform
Vendor Specific Tag.

progression
Indicates that this is a progressive JPEG file.

icc_profile
The ICC color profile for the image.

exif
Raw EXIF data from the image.

comment
A comment about the image.

New in version 7.1.0.

Saving

The save() method supports the following options:

quality
The image quality, on a scale from 0 (worst) to 95 (best), or the string keep. The default is 75. Values above
95 should be avoided; 100 disables portions of the JPEG compression algorithm, and results in large files with
hardly any gain in image quality. The value keep is only valid for JPEG files and will retain the original image
quality level, subsampling, and qtables.

optimize
If present and true, indicates that the encoder should make an extra pass over the image in order to select optimal
encoder settings.

progressive
If present and true, indicates that this image should be stored as a progressive JPEG file.

32 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

dpi
A tuple of integers representing the pixel density, (x,y).

icc_profile
If present and true, the image is stored with the provided ICC profile. If this parameter is not provided, the image
will be saved with no profile attached. To preserve the existing profile:

im.save(filename, 'jpeg', icc_profile=im.info.get('icc_profile'))

exif
If present, the image will be stored with the provided raw EXIF data.

subsampling
If present, sets the subsampling for the encoder.

• keep: Only valid for JPEG files, will retain the original image setting.

• 4:4:4, 4:2:2, 4:2:0: Specific sampling values

• 0: equivalent to 4:4:4

• 1: equivalent to 4:2:2

• 2: equivalent to 4:2:0

If absent, the setting will be determined by libjpeg or libjpeg-turbo.

qtables
If present, sets the qtables for the encoder. This is listed as an advanced option for wizards in the JPEG docu-
mentation. Use with caution. qtables can be one of several types of values:

• a string, naming a preset, e.g. keep, web_low, or web_high

• a list, tuple, or dictionary (with integer keys = range(len(keys))) of lists of 64 integers. There must be
between 2 and 4 tables.

New in version 2.5.0.

comment
A comment about the image.

New in version 9.4.0.

Note: To enable JPEG support, you need to build and install the IJG JPEG library before building the Python Imaging
Library. See the distribution README for details.

JPEG 2000

New in version 2.4.0.

Pillow reads and writes JPEG 2000 files containing L, LA, RGB or RGBA data. It can also read files containing YCbCr data,
which it converts on read into RGB or RGBA depending on whether or not there is an alpha channel. Pillow supports
JPEG 2000 raw codestreams (.j2k files), as well as boxed JPEG 2000 files (.j2p or .jpx files). Pillow does not
support files whose components have different sampling frequencies.

When loading, if you set the mode on the image prior to the load() method being invoked, you can ask Pillow to
convert the image to either RGB or RGBA rather than choosing for itself. It is also possible to set reduce to the number
of resolutions to discard (each one reduces the size of the resulting image by a factor of 2), and layers to specify the
number of quality layers to load.

1.2. Handbook 33



Pillow (PIL Fork) Documentation, Release 9.5.0

Saving

The save() method supports the following options:

offset
The image offset, as a tuple of integers, e.g. (16, 16)

tile_offset
The tile offset, again as a 2-tuple of integers.

tile_size
The tile size as a 2-tuple. If not specified, or if set to None, the image will be saved without tiling.

quality_mode
Either "rates" or "dB" depending on the units you want to use to specify image quality.

quality_layers
A sequence of numbers, each of which represents either an approximate size reduction (if quality mode is
"rates") or a signal to noise ratio value in decibels. If not specified, defaults to a single layer of full qual-
ity.

num_resolutions
The number of different image resolutions to be stored (which corresponds to the number of Discrete Wavelet
Transform decompositions plus one).

codeblock_size
The code-block size as a 2-tuple. Minimum size is 4 x 4, maximum is 1024 x 1024, with the additional restriction
that no code-block may have more than 4096 coefficients (i.e. the product of the two numbers must be no greater
than 4096).

precinct_size
The precinct size as a 2-tuple. Must be a power of two along both axes, and must be greater than the code-block
size.

irreversible
If True, use the lossy discrete waveform transformation DWT 9-7. Defaults to False, which uses the lossless
DWT 5-3.

mct
If 1 then enable multiple component transformation when encoding, otherwise use 0 for no component transfor-
mation (default). If MCT is enabled and irreversible is True then the Irreversible Color Transformation will
be applied, otherwise encoding will use the Reversible Color Transformation. MCT works best with a mode of
RGB and is only applicable when the image data has 3 components.

New in version 9.1.0.

progression
Controls the progression order; must be one of "LRCP", "RLCP", "RPCL", "PCRL", "CPRL". The letters stand
for Component, Position, Resolution and Layer respectively and control the order of encoding, the idea being
that e.g. an image encoded using LRCP mode can have its quality layers decoded as they arrive at the decoder,
while one encoded using RLCP mode will have increasing resolutions decoded as they arrive, and so on.

signed
If true, then tell the encoder to save the image as signed.

New in version 9.4.0.

cinema_mode
Set the encoder to produce output compliant with the digital cinema specifications. The options here are "no"
(the default), "cinema2k-24" for 24fps 2K, "cinema2k-48" for 48fps 2K, and "cinema4k-24" for 24fps 4K.

34 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Note that for compliant 2K files, at least one of your image dimensions must match 2048 x 1080, while for
compliant 4K files, at least one of the dimensions must match 4096 x 2160.

no_jp2
If True then don’t wrap the raw codestream in the JP2 file format when saving, otherwise the extension of the
filename will be used to determine the format (default).

New in version 9.1.0.

comment
Adds a custom comment to the file, replacing the default “Created by OpenJPEG version” comment.

New in version 9.5.0.

plt
If True and OpenJPEG 2.4.0 or later is available, then include a PLT (packet length, tile-part header) marker in
the produced file. Defaults to False.

New in version 9.5.0.

Note: To enable JPEG 2000 support, you need to build and install the OpenJPEG library, version 2.0.0 or higher,
before building the Python Imaging Library.

Windows users can install the OpenJPEG binaries available on the OpenJPEG website, but must add them to their
PATH in order to use Pillow (if you fail to do this, you will get errors about not being able to load the _imaging DLL).

MSP

Pillow identifies and reads MSP files from Windows 1 and 2. The library writes uncompressed (Windows 1) versions
of this format.

PCX

Pillow reads and writes PCX files containing 1, L, P, or RGB data.

PNG

Pillow identifies, reads, and writes PNG files containing 1, L, LA, I, P, RGB or RGBA data. Interlaced files are supported
as of v1.1.7.

As of Pillow 6.0, EXIF data can be read from PNG images. However, unlike other image formats, EXIF data is not
guaranteed to be present in info until load() has been called.

By default Pillow doesn’t allow loading of truncated PNG files, set ImageFile.LOAD_TRUNCATED_IMAGES to override
this.

1.2. Handbook 35



Pillow (PIL Fork) Documentation, Release 9.5.0

Opening

The open() function sets the following info properties, when appropriate:

chromaticity
The chromaticity points, as an 8 tuple of floats. (White Point X, White Point Y, Red X, Red Y, Green X,
Green Y, Blue X, Blue Y)

gamma
Gamma, given as a floating point number.

srgb
The sRGB rendering intent as an integer.

• 0 Perceptual

• 1 Relative Colorimetric

• 2 Saturation

• 3 Absolute Colorimetric

transparency
For P images: Either the palette index for full transparent pixels, or a byte string with alpha values for each palette
entry.

For 1, L, I and RGB images, the color that represents full transparent pixels in this image.

This key is omitted if the image is not a transparent palette image.

open also sets Image.text to a dictionary of the values of the tEXt, zTXt, and iTXt chunks of the PNG im-
age. Individual compressed chunks are limited to a decompressed size of PngImagePlugin.MAX_TEXT_CHUNK , by
default 1MB, to prevent decompression bombs. Additionally, the total size of all of the text chunks is limited to
PngImagePlugin.MAX_TEXT_MEMORY , defaulting to 64MB.

Saving

The save() method supports the following options:

optimize
If present and true, instructs the PNG writer to make the output file as small as possible. This includes extra
processing in order to find optimal encoder settings.

transparency
For P, 1, L, I, and RGB images, this option controls what color from the image to mark as transparent.

For P images, this can be a either the palette index, or a byte string with alpha values for each palette entry.

dpi
A tuple of two numbers corresponding to the desired dpi in each direction.

pnginfo
A PIL.PngImagePlugin.PngInfo instance containing chunks.

compress_level
ZLIB compression level, a number between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no
compression at all. Default is 6. When optimize option is True compress_level has no effect (it is set to 9
regardless of a value passed).

icc_profile
The ICC Profile to include in the saved file.

36 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

exif
The exif data to include in the saved file.

New in version 6.0.0.

bits (experimental)
For P images, this option controls how many bits to store. If omitted, the PNG writer uses 8 bits (256 colors).

dictionary (experimental)
Set the ZLIB encoder dictionary.

Note: To enable PNG support, you need to build and install the ZLIB compression library before building the Python
Imaging Library. See the installation documentation for details.

APNG sequences

The PNG loader includes limited support for reading and writing Animated Portable Network Graphics (APNG) files.
When an APNG file is loaded, get_format_mimetype()will return "image/apng". The value of the is_animated
property will be True when the n_frames property is greater than 1. For APNG files, the n_frames property depends
on both the animation frame count as well as the presence or absence of a default image. See the default_image
property documentation below for more details. The seek() and tell() methods are supported.

im.seek() raises an EOFError if you try to seek after the last frame.

These info properties will be set for APNG frames, where applicable:

default_image
Specifies whether or not this APNG file contains a separate default image, which is not a part of the actual APNG
animation.

When an APNG file contains a default image, the initially loaded image (i.e. the result of seek(0)) will be the de-
fault image. To account for the presence of the default image, the n_frames property will be set to frame_count
+ 1, where frame_count is the actual APNG animation frame count. To load the first APNG animation frame,
seek(1) must be called.

• True - The APNG contains default image, which is not an animation frame.

• False - The APNG does not contain a default image. The n_frames property will be set to the actual
APNG animation frame count. The initially loaded image (i.e. seek(0)) will be the first APNG animation
frame.

loop
The number of times to loop this APNG, 0 indicates infinite looping.

duration
The time to display this APNG frame (in milliseconds).

Note: The APNG loader returns images the same size as the APNG file’s logical screen size. The returned image
contains the pixel data for a given frame, after applying any APNG frame disposal and frame blend operations (i.e. it
contains what a web browser would render for this frame - the composite of all previous frames and this frame).

Any APNG file containing sequence errors is treated as an invalid image. The APNG loader will not attempt to repair
and reorder files containing sequence errors.

1.2. Handbook 37

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

Saving

When calling save(), by default only a single frame PNG file will be saved. To save an APNG file (including a single
frame APNG), the save_all parameter must be set to True. The following parameters can also be set:

default_image
Boolean value, specifying whether or not the base image is a default image. If True, the base image will be used
as the default image, and the first image from the append_images sequence will be the first APNG animation
frame. If False, the base image will be used as the first APNG animation frame. Defaults to False.

append_images
A list or tuple of images to append as additional frames. Each of the images in the list can be single or multiframe
images. The size of each frame should match the size of the base image. Also note that if a frame’s mode does
not match that of the base image, the frame will be converted to the base image mode.

loop
Integer number of times to loop this APNG, 0 indicates infinite looping. Defaults to 0.

duration
Integer (or list or tuple of integers) length of time to display this APNG frame (in milliseconds). Defaults to 0.

disposal
An integer (or list or tuple of integers) specifying the APNG disposal operation to be used for this frame before
rendering the next frame. Defaults to 0.

• 0 (OP_NONE, default) - No disposal is done on this frame before rendering the next frame.

• 1 (PIL.PngImagePlugin.Disposal.OP_BACKGROUND) - This frame’s modified region is cleared to fully
transparent black before rendering the next frame.

• 2 (OP_PREVIOUS) - This frame’s modified region is reverted to the previous frame’s contents before ren-
dering the next frame.

blend
An integer (or list or tuple of integers) specifying the APNG blend operation to be used for this frame before
rendering the next frame. Defaults to 0.

• 0 (OP_SOURCE) - All color components of this frame, including alpha, overwrite the previous output image
contents.

• 1 (OP_OVER) - This frame should be alpha composited with the previous output image contents.

Note: The duration, disposal and blend parameters can be set to lists or tuples to specify values for each individual
frame in the animation. The length of the list or tuple must be identical to the total number of actual frames in the APNG
animation. If the APNG contains a default image (i.e. default_image is set to True), these list or tuple parameters
should not include an entry for the default image.

PPM

Pillow reads and writes PBM, PGM, PPM and PNM files containing 1, L, I or RGB data.

38 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

SGI

Pillow reads and writes uncompressed L, RGB, and RGBA files.

SPIDER

Pillow reads and writes SPIDER image files of 32-bit floating point data (“F;32F”).

Pillow also reads SPIDER stack files containing sequences of SPIDER images. The seek() and tell() methods are
supported, and random access is allowed.

Opening

The open() method sets the following attributes:

format
Set to SPIDER

istack
Set to 1 if the file is an image stack, else 0.

n_frames
Set to the number of images in the stack.

A convenience method, convert2byte(), is provided for converting floating point data to byte data (mode L):

im = Image.open("image001.spi").convert2byte()

Saving

The extension of SPIDER files may be any 3 alphanumeric characters. Therefore the output format must be specified
explicitly:

im.save('newimage.spi', format='SPIDER')

For more information about the SPIDER image processing package, see https://github.com/spider-em/SPIDER

TGA

Pillow reads and writes TGA images containing L, LA, P, RGB, and RGBA data. Pillow can read and write both uncom-
pressed and run-length encoded TGAs.

1.2. Handbook 39

https://github.com/spider-em/SPIDER


Pillow (PIL Fork) Documentation, Release 9.5.0

Saving

The save() method can take the following keyword arguments:

compression
If set to “tga_rle”, the file will be run-length encoded.

New in version 5.3.0.

id_section
The identification field.

New in version 5.3.0.

orientation
If present and a positive number, the first pixel is for the top left corner, rather than the bottom left corner.

New in version 5.3.0.

TIFF

Pillow reads and writes TIFF files. It can read both striped and tiled images, pixel and plane interleaved multi-band
images. If you have libtiff and its headers installed, Pillow can read and write many kinds of compressed TIFF files. If
not, Pillow will only read and write uncompressed files.

Note: Beginning in version 5.0.0, Pillow requires libtiff to read or write compressed files. Prior to that release, Pillow
had buggy support for reading Packbits, LZW and JPEG compressed TIFFs without using libtiff.

Opening

The open() method sets the following info properties:

compression
Compression mode.

New in version 2.0.0.

dpi
Image resolution as an (xdpi, ydpi) tuple, where applicable. You can use the tag attribute to get more detailed
information about the image resolution.

New in version 1.1.5.

resolution
Image resolution as an (xres, yres) tuple, where applicable. This is a measurement in whichever unit is
specified by the file.

New in version 1.1.5.

The tag_v2 attribute contains a dictionary of TIFF metadata. The keys are numerical indexes from TiffTags.
TAGS_V2. Values are strings or numbers for single items, multiple values are returned in a tuple of values. Rational
numbers are returned as a IFDRational object.

New in version 3.0.0.

For compatibility with legacy code, the tag attribute contains a dictionary of decoded TIFF fields as returned prior
to version 3.0.0. Values are returned as either strings or tuples of numeric values. Rational numbers are returned as a
tuple of (numerator, denominator).

40 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Deprecated since version 3.0.0.

Reading Multi-frame TIFF Images

The TIFF loader supports the seek() and tell()methods, taking and returning frame numbers within the image file.
You can combine these methods to seek to the next frame (im.seek(im.tell() + 1)). Frames are numbered from
0 to im.n_frames - 1, and can be accessed in any order.

im.seek() raises an EOFError if you try to seek after the last frame.

Saving

The save() method can take the following keyword arguments:

save_all
If true, Pillow will save all frames of the image to a multiframe tiff document.

New in version 3.4.0.

append_images
A list of images to append as additional frames. Each of the images in the list can be single or multiframe
images. Note however, that for correct results, all the appended images should have the same encoderinfo and
encoderconfig properties.

New in version 4.2.0.

tiffinfo
A ImageFileDirectory_v2 object or dict object containing tiff tags and values. The TIFF field type is autode-
tected for Numeric and string values, any other types require using an ImageFileDirectory_v2 object and
setting the type in tagtype with the appropriate numerical value from TiffTags.TYPES.

New in version 2.3.0.

Metadata values that are of the rational type should be passed in using a IFDRational object.

New in version 3.1.0.

For compatibility with legacy code, a ImageFileDirectory_v1 object may be passed in this field. However,
this is deprecated.

New in version 5.4.0.

Previous versions only supported some tags when writing using libtiff. The supported list is found in TiffTags.
LIBTIFF_CORE.

New in version 6.1.0.

Added support for signed types (e.g. TIFF_SIGNED_LONG) and multiple values. Multiple values for a single tag
must be to ImageFileDirectory_v2 as a tuple and require a matching type in tagtype tagtype.

exif
Alternate keyword to “tiffinfo”, for consistency with other formats.

New in version 8.4.0.

compression
A string containing the desired compression method for the file. (valid only with libtiff installed)
Valid compression methods are: None, "group3", "group4", "jpeg", "lzma", "packbits",
"tiff_adobe_deflate", "tiff_ccitt", "tiff_lzw", "tiff_raw_16", "tiff_sgilog",
"tiff_sgilog24", "tiff_thunderscan", "webp", "zstd"

1.2. Handbook 41

https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/constants.html#None


Pillow (PIL Fork) Documentation, Release 9.5.0

quality
The image quality for JPEG compression, on a scale from 0 (worst) to 100 (best). The default is 75.

New in version 6.1.0.

These arguments to set the tiff header fields are an alternative to using the general tags available through tiffinfo.

description

software

date_time

artist

copyright
Strings

icc_profile
The ICC Profile to include in the saved file.

resolution_unit
An integer. 1 for no unit, 2 for inches and 3 for centimeters.

resolution
Either an integer or a float, used for both the x and y resolution.

x_resolution
Either an integer or a float.

y_resolution
Either an integer or a float.

dpi
A tuple of (x_resolution, y_resolution), with inches as the resolution unit. For consistency with other
image formats, the x and y resolutions of the dpi will be rounded to the nearest integer.

WebP

Pillow reads and writes WebP files. The specifics of Pillow’s capabilities with this format are currently undocumented.

Saving

The save() method supports the following options:

lossless
If present and true, instructs the WebP writer to use lossless compression.

quality
Integer, 0-100, Defaults to 80. For lossy, 0 gives the smallest size and 100 the largest. For lossless, this parameter
is the amount of effort put into the compression: 0 is the fastest, but gives larger files compared to the slowest,
but best, 100.

method
Quality/speed trade-off (0=fast, 6=slower-better). Defaults to 4.

exact
If true, preserve the transparent RGB values. Otherwise, discard invisible RGB values for better compression.
Defaults to false. Requires libwebp 0.5.0 or later.

42 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

icc_profile
The ICC Profile to include in the saved file. Only supported if the system WebP library was built with webpmux
support.

exif
The exif data to include in the saved file. Only supported if the system WebP library was built with webpmux
support.

xmp
The XMP data to include in the saved file. Only supported if the system WebP library was built with webpmux
support.

Saving sequences

Note: Support for animated WebP files will only be enabled if the system WebP library is v0.5.0 or later. You can
check webp animation support at runtime by calling features.check("webp_anim").

When calling save() to write a WebP file, by default only the first frame of a multiframe image will be saved. If the
save_all argument is present and true, then all frames will be saved, and the following options will also be available.

append_images
A list of images to append as additional frames. Each of the images in the list can be single or multiframe images.

duration
The display duration of each frame, in milliseconds. Pass a single integer for a constant duration, or a list or tuple
to set the duration for each frame separately.

loop
Number of times to repeat the animation. Defaults to [0 = infinite].

background
Background color of the canvas, as an RGBA tuple with values in the range of (0-255).

minimize_size
If true, minimize the output size (slow). Implicitly disables key-frame insertion.

kmin, kmax
Minimum and maximum distance between consecutive key frames in the output. The library may insert some
key frames as needed to satisfy this criteria. Note that these conditions should hold: kmax > kmin and kmin >=
kmax / 2 + 1. Also, if kmax <= 0, then key-frame insertion is disabled; and if kmax == 1, then all frames will be
key-frames (kmin value does not matter for these special cases).

allow_mixed
If true, use mixed compression mode; the encoder heuristically chooses between lossy and lossless for each
frame.

1.2. Handbook 43



Pillow (PIL Fork) Documentation, Release 9.5.0

XBM

Pillow reads and writes X bitmap files (mode 1).

Read-only formats

CUR

CUR is used to store cursors on Windows. The CUR decoder reads the largest available cursor. Animated cursors are
not supported.

DCX

DCX is a container file format for PCX files, defined by Intel. The DCX format is commonly used in fax applications.
The DCX decoder can read files containing 1, L, P, or RGB data.

When the file is opened, only the first image is read. You can use seek() or ImageSequence to read other images.

FITS

New in version 9.1.0.

Pillow identifies and reads FITS files, commonly used for astronomy.

FLI, FLC

Pillow reads Autodesk FLI and FLC animations.

The open() method sets the following info properties:

duration
The delay (in milliseconds) between each frame.

FPX

Pillow reads Kodak FlashPix files. In the current version, only the highest resolution image is read from the file, and
the viewing transform is not taken into account.

Note: To enable full FlashPix support, you need to build and install the IJG JPEG library before building the Python
Imaging Library. See the distribution README for details.

44 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

FTEX

New in version 3.2.0.

The FTEX decoder reads textures used for 3D objects in Independence War 2: Edge Of Chaos. The plugin reads a
single texture per file, in the compressed and uncompressed formats.

GBR

The GBR decoder reads GIMP brush files, version 1 and 2.

Opening

The open() method sets the following info properties:

comment
The brush name.

spacing
The spacing between the brushes, in pixels. Version 2 only.

GD

Pillow reads uncompressed GD2 files. Note that you must use PIL.GdImageFile.open() to read such a file.

Opening

The open() method sets the following info properties:

transparency
Transparency color index. This key is omitted if the image is not transparent.

IMT

Pillow reads Image Tools images containing L data.

IPTC/NAA

Pillow provides limited read support for IPTC/NAA newsphoto files.

1.2. Handbook 45



Pillow (PIL Fork) Documentation, Release 9.5.0

MCIDAS

Pillow identifies and reads 8-bit McIdas area files.

MIC

Pillow identifies and reads Microsoft Image Composer (MIC) files. When opened, the first sprite in the file is loaded.
You can use seek() and tell() to read other sprites from the file.

Note that there may be an embedded gamma of 2.2 in MIC files.

MPO

Pillow identifies and reads Multi Picture Object (MPO) files, loading the primary image when first opened. The seek()
and tell()methods may be used to read other pictures from the file. The pictures are zero-indexed and random access
is supported.

Saving

When calling save() to write an MPO file, by default only the first frame of a multiframe image will be saved. If the
save_all argument is present and true, then all frames will be saved, and the following option will also be available.

append_images
A list of images to append as additional pictures. Each of the images in the list can be single or multiframe
images.

New in version 9.3.0.

PCD

Pillow reads PhotoCD files containing RGB data. This only reads the 768x512 resolution image from the file. Higher
resolutions are encoded in a proprietary encoding.

PIXAR

Pillow provides limited support for PIXAR raster files. The library can identify and read “dumped” RGB files.

The format code is PIXAR.

PSD

Pillow identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0.

46 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

SUN

Pillow identifies and reads Sun raster files.

WAL

New in version 1.1.4.

Pillow reads Quake2 WAL texture files.

Note that this file format cannot be automatically identified, so you must use the open function in the WalImageFile
module to read files in this format.

By default, a Quake2 standard palette is attached to the texture. To override the palette, use the putpalette method.

WMF, EMF

Pillow can identify WMF and EMF files.

On Windows, it can read WMF and EMF files. By default, it will load the image at 72 dpi. To load it at another
resolution:

from PIL import Image

with Image.open("drawing.wmf") as im:
im.load(dpi=144)

To add other read or write support, use PIL.WmfImagePlugin.register_handler() to register a WMF and EMF
handler.

from PIL import Image
from PIL import WmfImagePlugin

class WmfHandler:
def open(self, im):

...

def load(self, im):
...
return image

def save(self, im, fp, filename):
...

wmf_handler = WmfHandler()

WmfImagePlugin.register_handler(wmf_handler)

im = Image.open("sample.wmf")

1.2. Handbook 47



Pillow (PIL Fork) Documentation, Release 9.5.0

XPM

Pillow reads X pixmap files (mode P) with 256 colors or less.

Opening

The open() method sets the following info properties:

transparency
Transparency color index. This key is omitted if the image is not transparent.

Write-only formats

PALM

Pillow provides write-only support for PALM pixmap files.

The format code is Palm, the extension is .palm.

PDF

Pillow can write PDF (Acrobat) images. Such images are written as binary PDF 1.4 files. Different encoding methods
are used, depending on the image mode.

• 1 mode images are saved using TIFF encoding, or JPEG encoding if libtiff support is unavailable

• L, RGB and CMYK mode images use JPEG encoding

• P mode images use HEX encoding

• RGBA mode images use JPEG2000 encoding

Saving

The save() method can take the following keyword arguments:

save_all
If a multiframe image is used, by default, only the first image will be saved. To save all frames, each frame to a
separate page of the PDF, the save_all parameter must be present and set to True.

New in version 3.0.0.

append_images
A list of PIL.Image.Image objects to append as additional pages. Each of the images in the list can be
single or multiframe images. The save_all parameter must be present and set to True in conjunction with
append_images.

New in version 4.2.0.

append
Set to True to append pages to an existing PDF file. If the file doesn’t exist, an OSError will be raised.

New in version 5.1.0.

48 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#OSError


Pillow (PIL Fork) Documentation, Release 9.5.0

resolution
Image resolution in DPI. This, together with the number of pixels in the image, will determine the physical
dimensions of the page that will be saved in the PDF.

dpi
A tuple of (x_resolution, y_resolution), with inches as the resolution unit. If both the resolution
parameter and the dpi parameter are present, resolution will be ignored.

title
The document’s title. If not appending to an existing PDF file, this will default to the filename.

New in version 5.1.0.

author
The name of the person who created the document.

New in version 5.1.0.

subject
The subject of the document.

New in version 5.1.0.

keywords
Keywords associated with the document.

New in version 5.1.0.

creator
If the document was converted to PDF from another format, the name of the conforming product that created the
original document from which it was converted.

New in version 5.1.0.

producer
If the document was converted to PDF from another format, the name of the conforming product that converted
it to PDF.

New in version 5.1.0.

creationDate
The creation date of the document. If not appending to an existing PDF file, this will default to the current time.

New in version 5.3.0.

modDate
The modification date of the document. If not appending to an existing PDF file, this will default to the current
time.

New in version 5.3.0.

QOI

New in version 9.5.0.

Pillow identifies and reads images in Quite OK Image format.

1.2. Handbook 49



Pillow (PIL Fork) Documentation, Release 9.5.0

XV Thumbnails

Pillow can read XV thumbnail files.

Identify-only formats

BUFR

New in version 1.1.3.

Pillow provides a stub driver for BUFR files.

To add read or write support to your application, use PIL.BufrStubImagePlugin.register_handler().

GRIB

New in version 1.1.5.

Pillow provides a stub driver for GRIB files.

The driver requires the file to start with a GRIB header. If you have files with embedded GRIB data, or files with
multiple GRIB fields, your application has to seek to the header before passing the file handle to Pillow.

To add read or write support to your application, use PIL.GribStubImagePlugin.register_handler().

HDF5

New in version 1.1.5.

Pillow provides a stub driver for HDF5 files.

To add read or write support to your application, use PIL.Hdf5StubImagePlugin.register_handler().

MPEG

Pillow identifies MPEG files.

Text anchors

The anchor parameter determines the alignment of drawn text relative to the xy parameter. The default alignment is
top left, specifically la (left-ascender) for horizontal text and lt (left-top) for vertical text.

This parameter is only supported by OpenType/TrueType fonts. Other fonts may ignore the parameter and use the
default (top left) alignment.

50 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Specifying an anchor

An anchor is specified with a two-character string. The first character is the horizontal alignment, the second character
is the vertical alignment. For example, the default value of la for horizontal text means left-ascender aligned text.

When drawing text with PIL.ImageDraw.ImageDraw.text()with a specific anchor, the text will be placed such that
the specified anchor point is at the xy coordinates.

For example, in the following image, the text is ms (middle-baseline) aligned, with xy at the intersection of the two
lines:

from PIL import Image, ImageDraw, ImageFont

font = ImageFont.truetype("Tests/fonts/NotoSans-Regular.ttf", 48)
im = Image.new("RGB", (200, 200), "white")
d = ImageDraw.Draw(im)
d.line(((0, 100), (200, 100)), "gray")
d.line(((100, 0), (100, 200)), "gray")
d.text((100, 100), "Quick", fill="black", anchor="ms", font=font)

Quick reference

Horizontal anchor alignment

l— left
Anchor is to the left of the text.

For horizontal text this is the origin of the first glyph, as shown in the FreeType tutorial.

m— middle
Anchor is horizontally centered with the text.

For vertical text it is recommended to use s (baseline) alignment instead, as it does not change based on the
specific glyphs of the given text.

1.2. Handbook 51

https://freetype.org/freetype2/docs/tutorial/step2.html


Pillow (PIL Fork) Documentation, Release 9.5.0

r— right
Anchor is to the right of the text.

For horizontal text this is the advanced origin of the last glyph, as shown in the FreeType tutorial.

s— baseline (vertical text only)
Anchor is at the baseline (middle) of the text. The exact alignment depends on the font.

For vertical text this is the recommended alignment, as it does not change based on the specific glyphs of the
given text (see image for vertical text above).

Vertical anchor alignment

a— ascender / top (horizontal text only)
Anchor is at the ascender line (top) of the first line of text, as defined by the font.

See Font metrics on Wikipedia for more information.

t— top (single-line text only)
Anchor is at the top of the text.

For vertical text this is the origin of the first glyph, as shown in the FreeType tutorial.

For horizontal text it is recommended to use a (ascender) alignment instead, as it does not change based on the
specific glyphs of the given text.

m— middle
Anchor is vertically centered with the text.

For horizontal text this is the midpoint of the first ascender line and the last descender line.

s— baseline (horizontal text only)
Anchor is at the baseline (bottom) of the first line of text, only descenders extend below the anchor.

See Font metrics on Wikipedia for more information.

b— bottom (single-line text only)
Anchor is at the bottom of the text.

For vertical text this is the advanced origin of the last glyph, as shown in the FreeType tutorial.

For horizontal text it is recommended to use d (descender) alignment instead, as it does not change based on the
specific glyphs of the given text.

d— descender / bottom (horizontal text only)
Anchor is at the descender line (bottom) of the last line of text, as defined by the font.

See Font metrics on Wikipedia for more information.

Examples

The following image shows several examples of anchors for horizontal text. In each section the xy parameter was set
to the center shown by the intersection of the two lines.

52 Chapter 1. Overview

https://freetype.org/freetype2/docs/tutorial/step2.html
https://en.wikipedia.org/wiki/Typeface#Font_metrics
https://freetype.org/freetype2/docs/tutorial/step2.html
https://en.wikipedia.org/wiki/Typeface#Font_metrics
https://freetype.org/freetype2/docs/tutorial/step2.html
https://en.wikipedia.org/wiki/Typeface#Font_metrics


Pillow (PIL Fork) Documentation, Release 9.5.0

Writing Your Own Image Plugin

Pillow uses a plugin model which allows you to add your own decoders and encoders to the library, without any changes
to the library itself. Such plugins usually have names like XxxImagePlugin.py, where Xxx is a unique format name
(usually an abbreviation).

Warning: Pillow >= 2.1.0 no longer automatically imports any file in the Python path with a name ending in
ImagePlugin.py. You will need to import your image plugin manually.

Pillow decodes files in two stages:

1. It loops over the available image plugins in the loaded order, and calls the plugin’s _accept function with the
first 16 bytes of the file. If the _accept function returns true, the plugin’s _open method is called to set up the
image metadata and image tiles. The _open method is not for decoding the actual image data.

2. When the image data is requested, the ImageFile.load method is called, which sets up a decoder for each tile
and feeds the data to it.

An image plugin should contain a format handler derived from the PIL.ImageFile.ImageFile base class. This class
should provide an _open method, which reads the file header and sets up at least the mode and size attributes. To be
able to load the file, the method must also create a list of tile descriptors, which contain a decoder name, extents of
the tile, and any decoder-specific data. The format handler class must be explicitly registered, via a call to the Image
module.

Note: For performance reasons, it is important that the _open method quickly rejects files that do not have the
appropriate contents.

1.2. Handbook 53



Pillow (PIL Fork) Documentation, Release 9.5.0

Example

The following plugin supports a simple format, which has a 128-byte header consisting of the words “SPAM” followed
by the width, height, and pixel size in bits. The header fields are separated by spaces. The image data follows directly
after the header, and can be either bi-level, greyscale, or 24-bit true color.

SpamImagePlugin.py:

from PIL import Image, ImageFile

def _accept(prefix):
return prefix[:4] == b"SPAM"

class SpamImageFile(ImageFile.ImageFile):

format = "SPAM"
format_description = "Spam raster image"

def _open(self):

header = self.fp.read(128).split()

# size in pixels (width, height)
self._size = int(header[1]), int(header[2])

# mode setting
bits = int(header[3])
if bits == 1:

self.mode = "1"
elif bits == 8:

self.mode = "L"
elif bits == 24:

self.mode = "RGB"
else:

msg = "unknown number of bits"
raise SyntaxError(msg)

# data descriptor
self.tile = [("raw", (0, 0) + self.size, 128, (self.mode, 0, 1))]

Image.register_open(SpamImageFile.format, SpamImageFile, _accept)

Image.register_extensions(
SpamImageFile.format,
[

".spam",
".spa", # DOS version

],
)

The format handler must always set the size and mode attributes. If these are not set, the file cannot be opened. To

54 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

simplify the plugin, the calling code considers exceptions like SyntaxError, KeyError, IndexError, EOFError and
struct.error as a failure to identify the file.

Note that the image plugin must be explicitly registered using PIL.Image.register_open(). Although not required,
it is also a good idea to register any extensions used by this format.

Once the plugin has been imported, it can be used:

from PIL import Image
import SpamImagePlugin

with Image.open("hopper.spam") as im:
pass

The tile attribute

To be able to read the file as well as just identifying it, the tile attribute must also be set. This attribute consists of a
list of tile descriptors, where each descriptor specifies how data should be loaded to a given region in the image.

In most cases, only a single descriptor is used, covering the full image. PsdImagePlugin.PsdImageFile uses mul-
tiple tiles to combine channels within a single layer, given that the channels are stored separately, one after the other.

The tile descriptor is a 4-tuple with the following contents:

(decoder, region, offset, parameters)

The fields are used as follows:

decoder
Specifies which decoder to use. The raw decoder used here supports uncompressed data, in a variety of pixel
formats. For more information on this decoder, see the description below.

A list of C decoders can be seen under codecs section of the function array in _imaging.c. Python decoders
are registered within the relevant plugins.

region
A 4-tuple specifying where to store data in the image.

offset
Byte offset from the beginning of the file to image data.

parameters
Parameters to the decoder. The contents of this field depends on the decoder specified by the first field in the tile
descriptor tuple. If the decoder doesn’t need any parameters, use None for this field.

Note that the tile attribute contains a list of tile descriptors, not just a single descriptor.

Decoders

The raw decoder

The raw decoder is used to read uncompressed data from an image file. It can be used with most uncompressed file
formats, such as PPM, BMP, uncompressed TIFF, and many others. To use the raw decoder with the PIL.Image.
frombytes() function, use the following syntax:

1.2. Handbook 55

https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/struct.html#struct.error
https://docs.python.org/3/library/constants.html#None


Pillow (PIL Fork) Documentation, Release 9.5.0

image = Image.frombytes(
mode, size, data, "raw",
raw_mode, stride, orientation
)

When used in a tile descriptor, the parameter field should look like:

(raw_mode, stride, orientation)

The fields are used as follows:

raw_mode
The pixel layout used in the file, and is used to properly convert data to PIL’s internal layout. For a summary of
the available formats, see the table below.

stride
The distance in bytes between two consecutive lines in the image. If 0, the image is assumed to be packed (no
padding between lines). If omitted, the stride defaults to 0.

orientation
Whether the first line in the image is the top line on the screen (1), or the bottom line (-1). If omitted, the
orientation defaults to 1.

The raw mode field is used to determine how the data should be unpacked to match PIL’s internal pixel layout. PIL
supports a large set of raw modes; for a complete list, see the table in the Unpack.c module. The following table
describes some commonly used raw modes:

56 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

mode description
1

1-bit bilevel, stored with the leftmost pixel in the most
significant bit. 0 means black, 1 means white.

1;I

1-bit inverted bilevel, stored with the leftmost pixel in
the
most significant bit. 0 means white, 1 means black.

1;R

1-bit reversed bilevel, stored with the leftmost pixel in
the
least significant bit. 0 means black, 1 means white.

L 8-bit greyscale. 0 means black, 255 means white.
L;I 8-bit inverted greyscale. 0 means white, 255 means

black.
P 8-bit palette-mapped image.
RGB 24-bit true colour, stored as (red, green, blue).
BGR 24-bit true colour, stored as (blue, green, red).
RGBX

24-bit true colour, stored as (red, green, blue, pad). The
pad
pixels may vary.

RGB;L

24-bit true colour, line interleaved (first all red pixels,
then
all green pixels, finally all blue pixels).

Note that for the most common cases, the raw mode is simply the same as the mode.

The Python Imaging Library supports many other decoders, including JPEG, PNG, and PackBits. For details, see the
decode.c source file, and the standard plugin implementations provided with the library.

Decoding floating point data

PIL provides some special mechanisms to allow you to load a wide variety of formats into a mode F (floating point)
image memory.

You can use the raw decoder to read images where data is packed in any standard machine data type, using one of the
following raw modes:

1.2. Handbook 57



Pillow (PIL Fork) Documentation, Release 9.5.0

mode description
F 32-bit native floating point.
F;8 8-bit unsigned integer.
F;8S 8-bit signed integer.
F;16 16-bit little endian unsigned integer.
F;16S 16-bit little endian signed integer.
F;16B 16-bit big endian unsigned integer.
F;16BS 16-bit big endian signed integer.
F;16N 16-bit native unsigned integer.
F;16NS 16-bit native signed integer.
F;32 32-bit little endian unsigned integer.
F;32S 32-bit little endian signed integer.
F;32B 32-bit big endian unsigned integer.
F;32BS 32-bit big endian signed integer.
F;32N 32-bit native unsigned integer.
F;32NS 32-bit native signed integer.
F;32F 32-bit little endian floating point.
F;32BF 32-bit big endian floating point.
F;32NF 32-bit native floating point.
F;64F 64-bit little endian floating point.
F;64BF 64-bit big endian floating point.
F;64NF 64-bit native floating point.

The bit decoder

If the raw decoder cannot handle your format, PIL also provides a special “bit” decoder that can be used to read various
packed formats into a floating point image memory.

To use the bit decoder with the PIL.Image.frombytes() function, use the following syntax:

image = Image.frombytes(
mode, size, data, "bit",
bits, pad, fill, sign, orientation
)

When used in a tile descriptor, the parameter field should look like:

(bits, pad, fill, sign, orientation)

The fields are used as follows:

bits
Number of bits per pixel (2-32). No default.

pad
Padding between lines, in bits. This is either 0 if there is no padding, or 8 if lines are padded to full bytes. If
omitted, the pad value defaults to 8.

fill
Controls how data are added to, and stored from, the decoder bit buffer.

fill=0
Add bytes to the LSB end of the decoder buffer; store pixels from the MSB end.

58 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

fill=1
Add bytes to the MSB end of the decoder buffer; store pixels from the MSB end.

fill=2
Add bytes to the LSB end of the decoder buffer; store pixels from the LSB end.

fill=3
Add bytes to the MSB end of the decoder buffer; store pixels from the LSB end.

If omitted, the fill order defaults to 0.

sign
If non-zero, bit fields are sign extended. If zero or omitted, bit fields are unsigned.

orientation
Whether the first line in the image is the top line on the screen (1), or the bottom line (-1). If omitted, the
orientation defaults to 1.

Writing Your Own File Codec in C

There are 3 stages in a file codec’s lifetime:

1. Setup: Pillow looks for a function in the decoder or encoder registry, falling back to a function named
[codecname]_decoder or [codecname]_encoder on the internal core image object. That function is called
with the args tuple from the tile.

2. Transforming: The codec’s decode or encode function is repeatedly called with chunks of image data.

3. Cleanup: If the codec has registered a cleanup function, it will be called at the end of the transformation process,
even if there was an exception raised.

Setup

The current conventions are that the codec setup function is named PyImaging_[codecname]DecoderNew or
PyImaging_[codecname]EncoderNew and defined in decode.c or encode.c. The Python binding for it is named
[codecname]_decoder or [codecname]_encoder and is set up from within the _imaging.c file in the codecs
section of the function array.

The setup function needs to call PyImaging_DecoderNew or PyImaging_EncoderNew and at the very least, set the
decode or encode function pointer. The fields of interest in this object are:

decode/encode
Function pointer to the decode or encode function, which has access to im, state, and the buffer of data to be
transformed.

cleanup
Function pointer to the cleanup function, has access to state.

im
The target image, will be set by Pillow.

state
An ImagingCodecStateInstance, will be set by Pillow. The context member is an opaque struct that can be used
by the codec to store any format specific state or options.

pulls_fd/pushes_fd
If the decoder has pulls_fd or the encoder has pushes_fd set to 1, state->fd will be a pointer to the Python
file like object. The codec may use the functions in codec_fd.c to read or write directly with the file like object
rather than have the data pushed through a buffer.

1.2. Handbook 59



Pillow (PIL Fork) Documentation, Release 9.5.0

New in version 3.3.0.

Transforming

The decode or encode function is called with the target (core) image, the codec state structure, and a buffer of data to
be transformed.

It is the codec’s responsibility to pull as much data as possible out of the buffer and return the number of bytes consumed.
The next call to the codec will include the previous unconsumed tail. The codec function will be called multiple times
as the data processed.

Alternatively, if pulls_fd or pushes_fd is set, then the decode or encode function is called once, with an empty
buffer. It is the codec’s responsibility to transform the entire tile in that one call. Using this will provide a codec with
more freedom, but that freedom may mean increased memory usage if the entire tile is held in memory at once by the
codec.

If an error occurs, set state->errcode and return -1.

Return -1 on success, without setting the errcode.

Cleanup

The cleanup function is called after the codec returns a negative value, or if there is an error. This function should free
any allocated memory and release any resources from external libraries.

Writing Your Own File Codec in Python

Python file decoders and encoders should derive from PIL.ImageFile.PyDecoder and PIL.ImageFile.
PyEncoder respectively, and should at least override the decode or encode method. They should be registered using
PIL.Image.register_decoder() and PIL.Image.register_encoder(). As in the C implementation of the file
codecs, there are three stages in the lifetime of a Python-based file codec:

1. Setup: Pillow looks for the codec in the decoder or encoder registry, then instantiates the class.

2. Transforming: The instance’s decode method is repeatedly called with a buffer of data to be interpreted, or the
encode method is repeatedly called with the size of data to be output.

Alternatively, if the decoder’s _pulls_fd property (or the encoder’s _pushes_fd property) is set to True, then
decode and encode will only be called once. In the decoder, self.fd can be used to access the file-like object.
Using this will provide a codec with more freedom, but that freedom may mean increased memory usage if entire
file is held in memory at once by the codec.

In decode, once the data has been interpreted, set_as_raw can be used to populate the image.

3. Cleanup: The instance’s cleanup method is called once the transformation is complete. This can be used to
clean up any resources used by the codec.

If you set _pulls_fd or _pushes_fd to True however, then you probably chose to perform any cleanup tasks
at the end of decode or encode.

For an example PIL.ImageFile.PyDecoder, see DdsImagePlugin. For a plugin that uses both PIL.ImageFile.
PyDecoder and PIL.ImageFile.PyEncoder, see BlpImagePlugin

60 Chapter 1. Overview

https://github.com/python-pillow/Pillow/blob/main/docs/example/DdsImagePlugin.py
https://github.com/python-pillow/Pillow/blob/main/src/PIL/BlpImagePlugin.py


Pillow (PIL Fork) Documentation, Release 9.5.0

1.3 Reference

1.3.1 Image Module

The Image module provides a class with the same name which is used to represent a PIL image. The module also
provides a number of factory functions, including functions to load images from files, and to create new images.

Examples

Open, rotate, and display an image (using the default viewer)

The following script loads an image, rotates it 45 degrees, and displays it using an external viewer (usually xv on Unix,
and the Paint program on Windows).

from PIL import Image
with Image.open("hopper.jpg") as im:

im.rotate(45).show()

Create thumbnails

The following script creates nice thumbnails of all JPEG images in the current directory preserving aspect ratios with
128x128 max resolution.

from PIL import Image
import glob, os

size = 128, 128

for infile in glob.glob("*.jpg"):
file, ext = os.path.splitext(infile)
with Image.open(infile) as im:

im.thumbnail(size)
im.save(file + ".thumbnail", "JPEG")

Functions

PIL.Image.open(fp, mode='r', formats=None)
Opens and identifies the given image file.

This is a lazy operation; this function identifies the file, but the file remains open and the actual image data is not
read from the file until you try to process the data (or call the load() method). See new(). See File Handling
in Pillow.

Parameters

• fp – A filename (string), pathlib.Path object or a file object. The file object must implement
file.read, file.seek, and file.tell methods, and be opened in binary mode.

• mode – The mode. If given, this argument must be “r”.

1.3. Reference 61



Pillow (PIL Fork) Documentation, Release 9.5.0

• formats – A list or tuple of formats to attempt to load the file in. This can be used to restrict
the set of formats checked. Pass None to try all supported formats. You can print the set of
available formats by running python3 -m PIL or using the PIL.features.pilinfo()
function.

Returns
An Image object.

Raises

• FileNotFoundError – If the file cannot be found.

• PIL.UnidentifiedImageError – If the image cannot be opened and identified.

• ValueError – If the mode is not “r”, or if a StringIO instance is used for fp.

• TypeError – If formats is not None, a list or a tuple.

Warning: To protect against potential DOS attacks caused by “decompression bombs” (i.e. malicious files
which decompress into a huge amount of data and are designed to crash or cause disruption by using up a lot
of memory), Pillow will issue a DecompressionBombWarning if the number of pixels in an image is over a
certain limit, MAX_IMAGE_PIXELS.

This threshold can be changed by setting MAX_IMAGE_PIXELS. It can be disabled by setting Image.
MAX_IMAGE_PIXELS = None.

If desired, the warning can be turned into an error with warnings.simplefilter('error', Image.
DecompressionBombWarning) or suppressed entirely with warnings.simplefilter('ignore',
Image.DecompressionBombWarning). See also the logging documentation to have warnings output to
the logging facility instead of stderr.

If the number of pixels is greater than twice MAX_IMAGE_PIXELS, then a DecompressionBombError will
be raised instead.

Image processing

PIL.Image.alpha_composite(im1, im2)
Alpha composite im2 over im1.

Parameters

• im1 – The first image. Must have mode RGBA.

• im2 – The second image. Must have mode RGBA, and the same size as the first image.

Returns
An Image object.

PIL.Image.blend(im1, im2, alpha)
Creates a new image by interpolating between two input images, using a constant alpha:

out = image1 * (1.0 - alpha) + image2 * alpha

Parameters

• im1 – The first image.

• im2 – The second image. Must have the same mode and size as the first image.

62 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://en.wikipedia.org/wiki/Zip_bomb
https://docs.python.org/3/library/logging.html#integration-with-the-warnings-module


Pillow (PIL Fork) Documentation, Release 9.5.0

• alpha – The interpolation alpha factor. If alpha is 0.0, a copy of the first image is returned.
If alpha is 1.0, a copy of the second image is returned. There are no restrictions on the alpha
value. If necessary, the result is clipped to fit into the allowed output range.

Returns
An Image object.

PIL.Image.composite(image1, image2, mask)
Create composite image by blending images using a transparency mask.

Parameters

• image1 – The first image.

• image2 – The second image. Must have the same mode and size as the first image.

• mask – A mask image. This image can have mode “1”, “L”, or “RGBA”, and must have the
same size as the other two images.

PIL.Image.eval(image, *args)
Applies the function (which should take one argument) to each pixel in the given image. If the image has more
than one band, the same function is applied to each band. Note that the function is evaluated once for each
possible pixel value, so you cannot use random components or other generators.

Parameters

• image – The input image.

• function – A function object, taking one integer argument.

Returns
An Image object.

PIL.Image.merge(mode, bands)
Merge a set of single band images into a new multiband image.

Parameters

• mode – The mode to use for the output image. See: Modes.

• bands – A sequence containing one single-band image for each band in the output image.
All bands must have the same size.

Returns
An Image object.

Constructing images

PIL.Image.new(mode, size, color=0)
Creates a new image with the given mode and size.

Parameters

• mode – The mode to use for the new image. See: Modes.

• size – A 2-tuple, containing (width, height) in pixels.

• color – What color to use for the image. Default is black. If given, this should be a single
integer or floating point value for single-band modes, and a tuple for multi-band modes (one
value per band). When creating RGB images, you can also use color strings as supported by
the ImageColor module. If the color is None, the image is not initialised.

1.3. Reference 63



Pillow (PIL Fork) Documentation, Release 9.5.0

Returns
An Image object.

PIL.Image.fromarray(obj, mode=None)
Creates an image memory from an object exporting the array interface (using the buffer protocol):

from PIL import Image
import numpy as np
a = np.zeros((5, 5))
im = Image.fromarray(a)

If obj is not contiguous, then the tobytes method is called and frombuffer() is used.

In the case of NumPy, be aware that Pillow modes do not always correspond to NumPy dtypes. Pillow modes
only offer 1-bit pixels, 8-bit pixels, 32-bit signed integer pixels, and 32-bit floating point pixels.

Pillow images can also be converted to arrays:

from PIL import Image
import numpy as np
im = Image.open("hopper.jpg")
a = np.asarray(im)

When converting Pillow images to arrays however, only pixel values are transferred. This means that P and PA
mode images will lose their palette.

Parameters

• obj – Object with array interface

• mode – Optional mode to use when reading obj. Will be determined from type if None.

This will not be used to convert the data after reading, but will be used to change how the
data is read:

from PIL import Image
import numpy as np
a = np.full((1, 1), 300)
im = Image.fromarray(a, mode="L")
im.getpixel((0, 0)) # 44
im = Image.fromarray(a, mode="RGB")
im.getpixel((0, 0)) # (44, 1, 0)

See: Modes for general information about modes.

Returns
An image object.

New in version 1.1.6.

PIL.Image.frombytes(mode, size, data, decoder_name='raw', *args)
Creates a copy of an image memory from pixel data in a buffer.

In its simplest form, this function takes three arguments (mode, size, and unpacked pixel data).

You can also use any pixel decoder supported by PIL. For more information on available decoders, see the section
Writing Your Own File Codec.

Note that this function decodes pixel data only, not entire images. If you have an entire image in a string, wrap
it in a BytesIO object, and use open() to load it.

64 Chapter 1. Overview

https://docs.python.org/3/library/io.html#io.BytesIO


Pillow (PIL Fork) Documentation, Release 9.5.0

Parameters

• mode – The image mode. See: Modes.

• size – The image size.

• data – A byte buffer containing raw data for the given mode.

• decoder_name – What decoder to use.

• args – Additional parameters for the given decoder.

Returns
An Image object.

PIL.Image.frombuffer(mode, size, data, decoder_name='raw', *args)
Creates an image memory referencing pixel data in a byte buffer.

This function is similar to frombytes(), but uses data in the byte buffer, where possible. This means that
changes to the original buffer object are reflected in this image). Not all modes can share memory; supported
modes include “L”, “RGBX”, “RGBA”, and “CMYK”.

Note that this function decodes pixel data only, not entire images. If you have an entire image file in a string,
wrap it in a BytesIO object, and use open() to load it.

In the current version, the default parameters used for the “raw” decoder differs from that used for frombytes().
This is a bug, and will probably be fixed in a future release. The current release issues a warning if you do this;
to disable the warning, you should provide the full set of parameters. See below for details.

Parameters

• mode – The image mode. See: Modes.

• size – The image size.

• data – A bytes or other buffer object containing raw data for the given mode.

• decoder_name – What decoder to use.

• args – Additional parameters for the given decoder. For the default encoder (“raw”), it’s
recommended that you provide the full set of parameters:

frombuffer(mode, size, data, "raw", mode, 0, 1)

Returns
An Image object.

New in version 1.1.4.

Generating images

PIL.Image.effect_mandelbrot(size, extent, quality)
Generate a Mandelbrot set covering the given extent.

Parameters

• size – The requested size in pixels, as a 2-tuple: (width, height).

• extent – The extent to cover, as a 4-tuple: (x0, y0, x1, y1).

• quality – Quality.

1.3. Reference 65

https://docs.python.org/3/library/io.html#io.BytesIO


Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.Image.effect_noise(size, sigma)
Generate Gaussian noise centered around 128.

Parameters

• size – The requested size in pixels, as a 2-tuple: (width, height).

• sigma – Standard deviation of noise.

PIL.Image.linear_gradient(mode)
Generate 256x256 linear gradient from black to white, top to bottom.

Parameters
mode – Input mode.

PIL.Image.radial_gradient(mode)
Generate 256x256 radial gradient from black to white, centre to edge.

Parameters
mode – Input mode.

Registering plugins

Note: These functions are for use by plugin authors. Application authors can ignore them.

PIL.Image.register_open(id, factory, accept=None)
Register an image file plugin. This function should not be used in application code.

Parameters

• id – An image format identifier.

• factory – An image file factory method.

• accept – An optional function that can be used to quickly reject images having another
format.

PIL.Image.register_mime(id, mimetype)
Registers an image MIME type. This function should not be used in application code.

Parameters

• id – An image format identifier.

• mimetype – The image MIME type for this format.

PIL.Image.register_save(id, driver)
Registers an image save function. This function should not be used in application code.

Parameters

• id – An image format identifier.

• driver – A function to save images in this format.

PIL.Image.register_save_all(id, driver)
Registers an image function to save all the frames of a multiframe format. This function should not be used in
application code.

Parameters

66 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• id – An image format identifier.

• driver – A function to save images in this format.

PIL.Image.register_extension(id, extension)
Registers an image extension. This function should not be used in application code.

Parameters

• id – An image format identifier.

• extension – An extension used for this format.

PIL.Image.register_extensions(id, extensions)
Registers image extensions. This function should not be used in application code.

Parameters

• id – An image format identifier.

• extensions – A list of extensions used for this format.

PIL.Image.registered_extensions()

Returns a dictionary containing all file extensions belonging to registered plugins

PIL.Image.register_decoder(name, decoder)
Registers an image decoder. This function should not be used in application code.

Parameters

• name – The name of the decoder

• decoder – A callable(mode, args) that returns an ImageFile.PyDecoder object

New in version 4.1.0.

PIL.Image.register_encoder(name, encoder)
Registers an image encoder. This function should not be used in application code.

Parameters

• name – The name of the encoder

• encoder – A callable(mode, args) that returns an ImageFile.PyEncoder object

New in version 4.1.0.

The Image Class

class PIL.Image.Image

This class represents an image object. To create Image objects, use the appropriate factory functions. There’s
hardly ever any reason to call the Image constructor directly.

• open()

• new()

• frombytes()

An instance of the Image class has the following methods. Unless otherwise stated, all methods return a new instance
of the Image class, holding the resulting image.

1.3. Reference 67



Pillow (PIL Fork) Documentation, Release 9.5.0

Image.alpha_composite(im, dest=(0, 0), source=(0, 0))
‘In-place’ analog of Image.alpha_composite. Composites an image onto this image.

Parameters

• im – image to composite over this one

• dest – Optional 2 tuple (left, top) specifying the upper left corner in this (destination) image.

• source – Optional 2 (left, top) tuple for the upper left corner in the overlay source image, or
4 tuple (left, top, right, bottom) for the bounds of the source rectangle

Performance Note: Not currently implemented in-place in the core layer.

Image.apply_transparency()

If a P mode image has a “transparency” key in the info dictionary, remove the key and instead apply the trans-
parency to the palette. Otherwise, the image is unchanged.

Image.convert(mode=None, matrix=None, dither=None, palette=Palette.WEB, colors=256)
Returns a converted copy of this image. For the “P” mode, this method translates pixels through the palette. If
mode is omitted, a mode is chosen so that all information in the image and the palette can be represented without
a palette.

The current version supports all possible conversions between “L”, “RGB” and “CMYK”. The matrix argument
only supports “L” and “RGB”.

When translating a color image to greyscale (mode “L”), the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

The default method of converting a greyscale (“L”) or “RGB” image into a bilevel (mode “1”) image uses Floyd-
Steinberg dither to approximate the original image luminosity levels. If dither is None, all values larger than 127
are set to 255 (white), all other values to 0 (black). To use other thresholds, use the point() method.

When converting from “RGBA” to “P” without a matrix argument, this passes the operation to quantize(),
and dither and palette are ignored.

When converting from “PA”, if an “RGBA” palette is present, the alpha channel from the image will be used
instead of the values from the palette.

Parameters

• mode – The requested mode. See: Modes.

• matrix – An optional conversion matrix. If given, this should be 4- or 12-tuple containing
floating point values.

• dither – Dithering method, used when converting from mode “RGB” to “P” or from “RGB”
or “L” to “1”. Available methods are Dither.NONE or Dither.FLOYDSTEINBERG (default).
Note that this is not used when matrix is supplied.

• palette – Palette to use when converting from mode “RGB” to “P”. Available palettes are
Palette.WEB or Palette.ADAPTIVE.

• colors – Number of colors to use for the Palette.ADAPTIVE palette. Defaults to 256.

Return type
Image

Returns
An Image object.

68 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

The following example converts an RGB image (linearly calibrated according to ITU-R 709, using the D65 luminant)
to the CIE XYZ color space:

rgb2xyz = (
0.412453, 0.357580, 0.180423, 0,
0.212671, 0.715160, 0.072169, 0,
0.019334, 0.119193, 0.950227, 0)

out = im.convert("RGB", rgb2xyz)

Image.copy()

Copies this image. Use this method if you wish to paste things into an image, but still retain the original.

Return type
Image

Returns
An Image object.

Image.crop(box=None)
Returns a rectangular region from this image. The box is a 4-tuple defining the left, upper, right, and lower pixel
coordinate. See Coordinate System.

Note: Prior to Pillow 3.4.0, this was a lazy operation.

Parameters
box – The crop rectangle, as a (left, upper, right, lower)-tuple.

Return type
Image

Returns
An Image object.

This crops the input image with the provided coordinates:

from PIL import Image

with Image.open("hopper.jpg") as im:

# The crop method from the Image module takes four coordinates as input.
# The right can also be represented as (left+width)
# and lower can be represented as (upper+height).
(left, upper, right, lower) = (20, 20, 100, 100)

# Here the image "im" is cropped and assigned to new variable im_crop
im_crop = im.crop((left, upper, right, lower))

Image.draft(mode, size)
Configures the image file loader so it returns a version of the image that as closely as possible matches the given
mode and size. For example, you can use this method to convert a color JPEG to greyscale while loading it.

If any changes are made, returns a tuple with the chosen mode and box with coordinates of the original image
within the altered one.

Note that this method modifies the Image object in place. If the image has already been loaded, this method has
no effect.

Note: This method is not implemented for most images. It is currently implemented only for JPEG and MPO
images.

1.3. Reference 69



Pillow (PIL Fork) Documentation, Release 9.5.0

Parameters

• mode – The requested mode.

• size – The requested size in pixels, as a 2-tuple: (width, height).

Image.effect_spread(distance)
Randomly spread pixels in an image.

Parameters
distance – Distance to spread pixels.

Image.entropy(mask=None, extrema=None)
Calculates and returns the entropy for the image.

A bilevel image (mode “1”) is treated as a greyscale (“L”) image by this method.

If a mask is provided, the method employs the histogram for those parts of the image where the mask image is
non-zero. The mask image must have the same size as the image, and be either a bi-level image (mode “1”) or a
greyscale image (“L”).

Parameters

• mask – An optional mask.

• extrema – An optional tuple of manually-specified extrema.

Returns
A float value representing the image entropy

Image.filter(filter)
Filters this image using the given filter. For a list of available filters, see the ImageFilter module.

Parameters
filter – Filter kernel.

Returns
An Image object.

This blurs the input image using a filter from the ImageFilter module:

from PIL import Image, ImageFilter

with Image.open("hopper.jpg") as im:

# Blur the input image using the filter ImageFilter.BLUR
im_blurred = im.filter(filter=ImageFilter.BLUR)

Image.frombytes(data, decoder_name='raw', *args)
Loads this image with pixel data from a bytes object.

This method is similar to the frombytes() function, but loads data into this image instead of creating a new
image object.

Image.getbands()

Returns a tuple containing the name of each band in this image. For example, getbands on an RGB image
returns (“R”, “G”, “B”).

Returns
A tuple containing band names.

Return type
tuple

70 Chapter 1. Overview

https://docs.python.org/3/library/stdtypes.html#tuple


Pillow (PIL Fork) Documentation, Release 9.5.0

This helps to get the bands of the input image:

from PIL import Image

with Image.open("hopper.jpg") as im:
print(im.getbands()) # Returns ('R', 'G', 'B')

Image.getbbox()

Calculates the bounding box of the non-zero regions in the image.

Returns
The bounding box is returned as a 4-tuple defining the left, upper, right, and lower pixel coordi-
nate. See Coordinate System. If the image is completely empty, this method returns None.

This helps to get the bounding box coordinates of the input image:

from PIL import Image

with Image.open("hopper.jpg") as im:
print(im.getbbox())
# Returns four coordinates in the format (left, upper, right, lower)

Image.getchannel(channel)
Returns an image containing a single channel of the source image.

Parameters
channel – What channel to return. Could be index (0 for “R” channel of “RGB”) or channel
name (“A” for alpha channel of “RGBA”).

Returns
An image in “L” mode.

New in version 4.3.0.

Image.getcolors(maxcolors=256)
Returns a list of colors used in this image.

The colors will be in the image’s mode. For example, an RGB image will return a tuple of (red, green, blue)
color values, and a P image will return the index of the color in the palette.

Parameters
maxcolors – Maximum number of colors. If this number is exceeded, this method returns None.
The default limit is 256 colors.

Returns
An unsorted list of (count, pixel) values.

Image.getdata(band=None)
Returns the contents of this image as a sequence object containing pixel values. The sequence object is flattened,
so that values for line one follow directly after the values of line zero, and so on.

Note that the sequence object returned by this method is an internal PIL data type, which only supports certain
sequence operations. To convert it to an ordinary sequence (e.g. for printing), use list(im.getdata()).

Parameters
band – What band to return. The default is to return all bands. To return a single band, pass in
the index value (e.g. 0 to get the “R” band from an “RGB” image).

Returns
A sequence-like object.

1.3. Reference 71



Pillow (PIL Fork) Documentation, Release 9.5.0

Image.getexif()

Gets EXIF data from the image.

Returns
an Exif object.

Image.getextrema()

Gets the minimum and maximum pixel values for each band in the image.

Returns
For a single-band image, a 2-tuple containing the minimum and maximum pixel value. For a
multi-band image, a tuple containing one 2-tuple for each band.

Image.getpalette(rawmode='RGB')
Returns the image palette as a list.

Parameters
rawmode – The mode in which to return the palette. None will return the palette in its current
mode.

New in version 9.1.0.

Returns
A list of color values [r, g, b, . . . ], or None if the image has no palette.

Image.getpixel(xy)
Returns the pixel value at a given position.

Parameters
xy – The coordinate, given as (x, y). See Coordinate System.

Returns
The pixel value. If the image is a multi-layer image, this method returns a tuple.

Image.getprojection()

Get projection to x and y axes

Returns
Two sequences, indicating where there are non-zero pixels along the X-axis and the Y-axis, re-
spectively.

Image.histogram(mask=None, extrema=None)
Returns a histogram for the image. The histogram is returned as a list of pixel counts, one for each pixel value
in the source image. Counts are grouped into 256 bins for each band, even if the image has more than 8 bits
per band. If the image has more than one band, the histograms for all bands are concatenated (for example, the
histogram for an “RGB” image contains 768 values).

A bilevel image (mode “1”) is treated as a greyscale (“L”) image by this method.

If a mask is provided, the method returns a histogram for those parts of the image where the mask image is
non-zero. The mask image must have the same size as the image, and be either a bi-level image (mode “1”) or a
greyscale image (“L”).

Parameters

• mask – An optional mask.

• extrema – An optional tuple of manually-specified extrema.

Returns
A list containing pixel counts.

72 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Image.paste(im, box=None, mask=None)
Pastes another image into this image. The box argument is either a 2-tuple giving the upper left corner, a 4-tuple
defining the left, upper, right, and lower pixel coordinate, or None (same as (0, 0)). See Coordinate System. If a
4-tuple is given, the size of the pasted image must match the size of the region.

If the modes don’t match, the pasted image is converted to the mode of this image (see the convert() method
for details).

Instead of an image, the source can be a integer or tuple containing pixel values. The method then fills the region
with the given color. When creating RGB images, you can also use color strings as supported by the ImageColor
module.

If a mask is given, this method updates only the regions indicated by the mask. You can use either “1”, “L”,
“LA”, “RGBA” or “RGBa” images (if present, the alpha band is used as mask). Where the mask is 255, the given
image is copied as is. Where the mask is 0, the current value is preserved. Intermediate values will mix the two
images together, including their alpha channels if they have them.

See alpha_composite() if you want to combine images with respect to their alpha channels.

Parameters

• im – Source image or pixel value (integer or tuple).

• box – An optional 4-tuple giving the region to paste into. If a 2-tuple is used instead, it’s
treated as the upper left corner. If omitted or None, the source is pasted into the upper left
corner.

If an image is given as the second argument and there is no third, the box defaults to (0, 0),
and the second argument is interpreted as a mask image.

• mask – An optional mask image.

Image.point(lut, mode=None)
Maps this image through a lookup table or function.

Parameters

• lut – A lookup table, containing 256 (or 65536 if self.mode==”I” and mode == “L”) values
per band in the image. A function can be used instead, it should take a single argument. The
function is called once for each possible pixel value, and the resulting table is applied to all
bands of the image.

It may also be an ImagePointHandler object:

class Example(Image.ImagePointHandler):
def point(self, data):
# Return result

• mode – Output mode (default is same as input). In the current version, this can only be used
if the source image has mode “L” or “P”, and the output has mode “1” or the source image
mode is “I” and the output mode is “L”.

Returns
An Image object.

Image.putalpha(alpha)
Adds or replaces the alpha layer in this image. If the image does not have an alpha layer, it’s converted to “LA”
or “RGBA”. The new layer must be either “L” or “1”.

Parameters
alpha – The new alpha layer. This can either be an “L” or “1” image having the same size as
this image, or an integer or other color value.

1.3. Reference 73



Pillow (PIL Fork) Documentation, Release 9.5.0

Image.putdata(data, scale=1.0, offset=0.0)
Copies pixel data from a flattened sequence object into the image. The values should start at the upper left corner
(0, 0), continue to the end of the line, followed directly by the first value of the second line, and so on. Data will
be read until either the image or the sequence ends. The scale and offset values are used to adjust the sequence
values: pixel = value*scale + offset.

Parameters

• data – A flattened sequence object.

• scale – An optional scale value. The default is 1.0.

• offset – An optional offset value. The default is 0.0.

Image.putpalette(data, rawmode='RGB')
Attaches a palette to this image. The image must be a “P”, “PA”, “L” or “LA” image.

The palette sequence must contain at most 256 colors, made up of one integer value for each channel in the raw
mode. For example, if the raw mode is “RGB”, then it can contain at most 768 values, made up of red, green and
blue values for the corresponding pixel index in the 256 colors. If the raw mode is “RGBA”, then it can contain
at most 1024 values, containing red, green, blue and alpha values.

Alternatively, an 8-bit string may be used instead of an integer sequence.

Parameters

• data – A palette sequence (either a list or a string).

• rawmode – The raw mode of the palette. Either “RGB”, “RGBA”, or a mode that can be
transformed to “RGB” or “RGBA” (e.g. “R”, “BGR;15”, “RGBA;L”).

Image.putpixel(xy, value)
Modifies the pixel at the given position. The color is given as a single numerical value for single-band images,
and a tuple for multi-band images. In addition to this, RGB and RGBA tuples are accepted for P and PA images.

Note that this method is relatively slow. For more extensive changes, use paste() or the ImageDraw module
instead.

See:

• paste()

• putdata()

• ImageDraw

Parameters

• xy – The pixel coordinate, given as (x, y). See Coordinate System.

• value – The pixel value.

Image.quantize(colors=256, method=None, kmeans=0, palette=None, dither=Dither.FLOYDSTEINBERG)

Convert the image to ‘P’ mode with the specified number of colors.

Parameters

• colors – The desired number of colors, <= 256

• method – Quantize.MEDIANCUT (median cut), Quantize.MAXCOVERAGE (maxi-
mum coverage), Quantize.FASTOCTREE (fast octree), Quantize.LIBIMAGEQUANT
(libimagequant; check support using PIL.features.check_feature() with
feature="libimagequant").

74 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

By default, Quantize.MEDIANCUT will be used.

The exception to this is RGBA images. Quantize.MEDIANCUT and Quantize.
MAXCOVERAGE do not support RGBA images, so Quantize.FASTOCTREE is used by default
instead.

• kmeans – Integer

• palette – Quantize to the palette of given PIL.Image.Image.

• dither – Dithering method, used when converting from mode “RGB” to “P” or from “RGB”
or “L” to “1”. Available methods are Dither.NONE or Dither.FLOYDSTEINBERG (default).

Returns
A new image

Image.reduce(factor, box=None)
Returns a copy of the image reduced factor times. If the size of the image is not dividable by factor, the
resulting size will be rounded up.

Parameters

• factor – A greater than 0 integer or tuple of two integers for width and height separately.

• box – An optional 4-tuple of ints providing the source image region to be reduced. The
values must be within (0, 0, width, height) rectangle. If omitted or None, the entire
source is used.

Image.remap_palette(dest_map, source_palette=None)
Rewrites the image to reorder the palette.

Parameters

• dest_map – A list of indexes into the original palette. e.g. [1,0] would swap a two item
palette, and list(range(256)) is the identity transform.

• source_palette – Bytes or None.

Returns
An Image object.

Image.resize(size, resample=None, box=None, reducing_gap=None)
Returns a resized copy of this image.

Parameters

• size – The requested size in pixels, as a 2-tuple: (width, height).

• resample – An optional resampling filter. This can be one of Resampling.NEAREST,
Resampling.BOX , Resampling.BILINEAR , Resampling.HAMMING , Resampling.
BICUBIC or Resampling.LANCZOS. If the image has mode “1” or “P”, it is always
set to Resampling.NEAREST. If the image mode specifies a number of bits, such as
“I;16”, then the default filter is Resampling.NEAREST. Otherwise, the default filter is
Resampling.BICUBIC. See: Filters.

• box – An optional 4-tuple of floats providing the source image region to be scaled. The
values must be within (0, 0, width, height) rectangle. If omitted or None, the entire source
is used.

• reducing_gap – Apply optimization by resizing the image in two steps. First, reducing the
image by integer times using reduce(). Second, resizing using regular resampling. The
last step changes size no less than by reducing_gap times. reducing_gap may be None
(no first step is performed) or should be greater than 1.0. The bigger reducing_gap, the

1.3. Reference 75



Pillow (PIL Fork) Documentation, Release 9.5.0

closer the result to the fair resampling. The smaller reducing_gap, the faster resizing. With
reducing_gap greater or equal to 3.0, the result is indistinguishable from fair resampling
in most cases. The default value is None (no optimization).

Returns
An Image object.

This resizes the given image from (width, height) to (width/2, height/2):

from PIL import Image

with Image.open("hopper.jpg") as im:

# Provide the target width and height of the image
(width, height) = (im.width // 2, im.height // 2)
im_resized = im.resize((width, height))

Image.rotate(angle, resample=Resampling.NEAREST, expand=0, center=None, translate=None, fillcolor=None)
Returns a rotated copy of this image. This method returns a copy of this image, rotated the given number of
degrees counter clockwise around its centre.

Parameters

• angle – In degrees counter clockwise.

• resample – An optional resampling filter. This can be one of Resampling.NEAREST (use
nearest neighbour), Resampling.BILINEAR (linear interpolation in a 2x2 environment), or
Resampling.BICUBIC (cubic spline interpolation in a 4x4 environment). If omitted, or if
the image has mode “1” or “P”, it is set to Resampling.NEAREST. See Filters.

• expand – Optional expansion flag. If true, expands the output image to make it large enough
to hold the entire rotated image. If false or omitted, make the output image the same size
as the input image. Note that the expand flag assumes rotation around the center and no
translation.

• center – Optional center of rotation (a 2-tuple). Origin is the upper left corner. Default is
the center of the image.

• translate – An optional post-rotate translation (a 2-tuple).

• fillcolor – An optional color for area outside the rotated image.

Returns
An Image object.

This rotates the input image by theta degrees counter clockwise:

from PIL import Image

with Image.open("hopper.jpg") as im:

# Rotate the image by 60 degrees counter clockwise
theta = 60
# Angle is in degrees counter clockwise
im_rotated = im.rotate(angle=theta)

Image.save(fp, format=None, **params)
Saves this image under the given filename. If no format is specified, the format to use is determined from the
filename extension, if possible.

76 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Keyword options can be used to provide additional instructions to the writer. If a writer doesn’t recognise an
option, it is silently ignored. The available options are described in the image format documentation for each
writer.

You can use a file object instead of a filename. In this case, you must always specify the format. The file object
must implement the seek, tell, and write methods, and be opened in binary mode.

Parameters

• fp – A filename (string), pathlib.Path object or file object.

• format – Optional format override. If omitted, the format to use is determined from the
filename extension. If a file object was used instead of a filename, this parameter should
always be used.

• params – Extra parameters to the image writer.

Returns
None

Raises

• ValueError – If the output format could not be determined from the file name. Use the
format option to solve this.

• OSError – If the file could not be written. The file may have been created, and may contain
partial data.

Image.seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

Image.show(title=None)
Displays this image. This method is mainly intended for debugging purposes.

This method calls PIL.ImageShow.show() internally. You can use PIL.ImageShow.register() to override
its default behaviour.

The image is first saved to a temporary file. By default, it will be in PNG format.

On Unix, the image is then opened using the display, eog or xv utility, depending on which one can be found.

On macOS, the image is opened with the native Preview application.

On Windows, the image is opened with the standard PNG display utility.

Parameters
title – Optional title to use for the image window, where possible.

Image.split()

Split this image into individual bands. This method returns a tuple of individual image bands from an image.
For example, splitting an “RGB” image creates three new images each containing a copy of one of the original
bands (red, green, blue).

If you need only one band, getchannel() method can be more convenient and faster.

1.3. Reference 77

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

Returns
A tuple containing bands.

Image.tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

Image.thumbnail(size, resample=Resampling.BICUBIC, reducing_gap=2.0)
Make this image into a thumbnail. This method modifies the image to contain a thumbnail version of itself, no
larger than the given size. This method calculates an appropriate thumbnail size to preserve the aspect of the
image, calls the draft() method to configure the file reader (where applicable), and finally resizes the image.

Note that this function modifies the Image object in place. If you need to use the full resolution image as well,
apply this method to a copy() of the original image.

Parameters

• size – The requested size in pixels, as a 2-tuple: (width, height).

• resample – Optional resampling filter. This can be one of Resampling.NEAREST,
Resampling.BOX , Resampling.BILINEAR , Resampling.HAMMING , Resampling.
BICUBIC or Resampling.LANCZOS. If omitted, it defaults to Resampling.BICUBIC. (was
Resampling.NEAREST prior to version 2.5.0). See: Filters.

• reducing_gap – Apply optimization by resizing the image in two steps. First, reducing
the image by integer times using reduce() or draft() for JPEG images. Second, resiz-
ing using regular resampling. The last step changes size no less than by reducing_gap
times. reducing_gap may be None (no first step is performed) or should be greater than
1.0. The bigger reducing_gap, the closer the result to the fair resampling. The smaller
reducing_gap, the faster resizing. With reducing_gap greater or equal to 3.0, the result
is indistinguishable from fair resampling in most cases. The default value is 2.0 (very close
to fair resampling while still being faster in many cases).

Returns
None

Image.tobitmap(name='image')
Returns the image converted to an X11 bitmap.

Note: This method only works for mode “1” images.

Parameters
name – The name prefix to use for the bitmap variables.

Returns
A string containing an X11 bitmap.

Raises
ValueError – If the mode is not “1”

Image.tobytes(encoder_name='raw', *args)
Return image as a bytes object.

78 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#ValueError


Pillow (PIL Fork) Documentation, Release 9.5.0

Warning: This method returns the raw image data from the internal storage. For compressed image data
(e.g. PNG, JPEG) use save(), with a BytesIO parameter for in-memory data.

Parameters

• encoder_name – What encoder to use. The default is to use the standard “raw” encoder.

A list of C encoders can be seen under codecs section of the function array in _imaging.c.
Python encoders are registered within the relevant plugins.

• args – Extra arguments to the encoder.

Returns
A bytes object.

Image.transform(size, method, data=None, resample=Resampling.NEAREST, fill=1, fillcolor=None)
Transforms this image. This method creates a new image with the given size, and the same mode as the original,
and copies data to the new image using the given transform.

Parameters

• size – The output size in pixels, as a 2-tuple: (width, height).

• method – The transformation method. This is one of Transform.EXTENT (cut out a rectan-
gular subregion), Transform.AFFINE (affine transform), Transform.PERSPECTIVE (per-
spective transform), Transform.QUAD (map a quadrilateral to a rectangle), or Transform.
MESH (map a number of source quadrilaterals in one operation).

It may also be an ImageTransformHandler object:

class Example(Image.ImageTransformHandler):
def transform(self, size, data, resample, fill=1):

# Return result

It may also be an object with a method.getdata method that returns a tuple supplying new
method and data values:

class Example:
def getdata(self):

method = Image.Transform.EXTENT
data = (0, 0, 100, 100)
return method, data

• data – Extra data to the transformation method.

• resample – Optional resampling filter. It can be one of Resampling.NEAREST (use near-
est neighbour), Resampling.BILINEAR (linear interpolation in a 2x2 environment), or
Resampling.BICUBIC (cubic spline interpolation in a 4x4 environment). If omitted, or
if the image has mode “1” or “P”, it is set to Resampling.NEAREST. See: Filters.

• fill – If method is an ImageTransformHandler object, this is one of the arguments
passed to it. Otherwise, it is unused.

• fillcolor – Optional fill color for the area outside the transform in the output image.

Returns
An Image object.

1.3. Reference 79

https://docs.python.org/3/library/stdtypes.html#bytes


Pillow (PIL Fork) Documentation, Release 9.5.0

Image.transpose(method)
Transpose image (flip or rotate in 90 degree steps)

Parameters
method – One of Transpose.FLIP_LEFT_RIGHT, Transpose.FLIP_TOP_BOTTOM ,
Transpose.ROTATE_90, Transpose.ROTATE_180, Transpose.ROTATE_270, Transpose.
TRANSPOSE or Transpose.TRANSVERSE.

Returns
Returns a flipped or rotated copy of this image.

This flips the input image by using the Transpose.FLIP_LEFT_RIGHT method.

from PIL import Image

with Image.open("hopper.jpg") as im:

# Flip the image from left to right
im_flipped = im.transpose(method=Image.Transpose.FLIP_LEFT_RIGHT)
# To flip the image from top to bottom,
# use the method "Image.Transpose.FLIP_TOP_BOTTOM"

Image.verify()

Verifies the contents of a file. For data read from a file, this method attempts to determine if the file is broken,
without actually decoding the image data. If this method finds any problems, it raises suitable exceptions. If you
need to load the image after using this method, you must reopen the image file.

Image.load()

Allocates storage for the image and loads the pixel data. In normal cases, you don’t need to call this method,
since the Image class automatically loads an opened image when it is accessed for the first time.

If the file associated with the image was opened by Pillow, then this method will close it. The exception to this is
if the image has multiple frames, in which case the file will be left open for seek operations. See File Handling
in Pillow for more information.

Returns
An image access object.

Return type
PixelAccess Class or PIL.PyAccess

Image.close()

Closes the file pointer, if possible.

This operation will destroy the image core and release its memory. The image data will be unusable afterward.

This function is required to close images that have multiple frames or have not had their file read and closed by
the load() method. See File Handling in Pillow for more information.

80 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Image Attributes

Instances of the Image class have the following attributes:

Image.filename: str

The filename or path of the source file. Only images created with the factory function open have a filename
attribute. If the input is a file like object, the filename attribute is set to an empty string.

Image.format: Optional[str]

The file format of the source file. For images created by the library itself (via a factory function, or by running a
method on an existing image), this attribute is set to None.

Image.mode: str

Image mode. This is a string specifying the pixel format used by the image. Typical values are “1”, “L”, “RGB”,
or “CMYK.” See Modes for a full list.

Image.size: tuple[int]

Image size, in pixels. The size is given as a 2-tuple (width, height).

Image.width: int

Image width, in pixels.

Image.height: int

Image height, in pixels.

Image.palette: Optional[PIL.ImagePalette.ImagePalette]

Colour palette table, if any. If mode is “P” or “PA”, this should be an instance of the ImagePalette class.
Otherwise, it should be set to None.

Image.info: dict

A dictionary holding data associated with the image. This dictionary is used by file handlers to pass on various
non-image information read from the file. See documentation for the various file handlers for details.

Most methods ignore the dictionary when returning new images; since the keys are not standardized, it’s not
possible for a method to know if the operation affects the dictionary. If you need the information later on, keep
a reference to the info dictionary returned from the open method.

Unless noted elsewhere, this dictionary does not affect saving files.

Image.is_animated: bool

True if this image has more than one frame, or False otherwise.

This attribute is only defined by image plugins that support animated images. Plugins may leave this attribute
undefined if they don’t support loading animated images, even if the given format supports animated images.

Given that this attribute is not present for all images use getattr(image, "is_animated", False) to check
if Pillow is aware of multiple frames in an image regardless of its format.

See also:

n_frames, seek() and tell()

Image.n_frames: int

The number of frames in this image.

This attribute is only defined by image plugins that support animated images. Plugins may leave this attribute
undefined if they don’t support loading animated images, even if the given format supports animated images.

Given that this attribute is not present for all images use getattr(image, "n_frames", 1) to check the
number of frames that Pillow is aware of in an image regardless of its format.

1.3. Reference 81

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int


Pillow (PIL Fork) Documentation, Release 9.5.0

See also:

is_animated , seek() and tell()

Classes

class PIL.Image.Exif

Bases: MutableMapping

This class provides read and write access to EXIF image data:

from PIL import Image
im = Image.open("exif.png")
exif = im.getexif() # Returns an instance of this class

Information can be read and written, iterated over or deleted:

print(exif[274]) # 1
exif[274] = 2
for k, v in exif.items():
print("Tag", k, "Value", v) # Tag 274 Value 2

del exif[274]

To access information beyond IFD0, get_ifd() returns a dictionary:

from PIL import ExifTags
im = Image.open("exif_gps.jpg")
exif = im.getexif()
gps_ifd = exif.get_ifd(ExifTags.IFD.GPSInfo)
print(gps_ifd)

Other IFDs include ExifTags.IFD.Exif, ExifTags.IFD.Makernote, ExifTags.IFD.Interop and
ExifTags.IFD.IFD1.

ExifTags also has enum classes to provide names for data:

print(exif[ExifTags.Base.Software]) # PIL
print(gps_ifd[ExifTags.GPS.GPSDateStamp]) # 1999:99:99 99:99:99

bigtiff = False

endian = None

get_ifd(tag)

hide_offsets()

load(data)

load_from_fp(fp, offset=None)

tobytes(offset=8)

class PIL.Image.ImagePointHandler

Used as a mixin by point transforms (for use with point())

class PIL.Image.ImageTransformHandler

Used as a mixin by geometry transforms (for use with transform())

82 Chapter 1. Overview

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping


Pillow (PIL Fork) Documentation, Release 9.5.0

Constants

PIL.Image.NONE

PIL.Image.MAX_IMAGE_PIXELS

Set to 89,478,485, approximately 0.25GB for a 24-bit (3 bpp) image. See open() for more information about
how this is used.

Transpose methods

Used to specify the Image.transpose() method to use.

class PIL.Image.Transpose(value)
An enumeration.

FLIP_LEFT_RIGHT = 0

FLIP_TOP_BOTTOM = 1

ROTATE_180 = 3

ROTATE_270 = 4

ROTATE_90 = 2

TRANSPOSE = 5

TRANSVERSE = 6

Transform methods

Used to specify the Image.transform() method to use.

class PIL.Image.Transform

AFFINE

Affine transform

EXTENT

Cut out a rectangular subregion

PERSPECTIVE

Perspective transform

QUAD

Map a quadrilateral to a rectangle

MESH

Map a number of source quadrilaterals in one operation

1.3. Reference 83



Pillow (PIL Fork) Documentation, Release 9.5.0

Resampling filters

See Filters for details.

class PIL.Image.Resampling(value)
An enumeration.

BICUBIC = 3

BILINEAR = 2

BOX = 4

HAMMING = 5

LANCZOS = 1

NEAREST = 0

Some deprecated filters are also available under the following names:

PIL.Image.NONE = Resampling.NEAREST

PIL.Image.LINEAR = Resampling.BILINEAR

PIL.Image.CUBIC = Resampling.BICUBIC

PIL.Image.ANTIALIAS = Resampling.LANCZOS

Dither modes

Used to specify the dithering method to use for the convert() and quantize() methods.

class PIL.Image.Dither

NONE

No dither

ORDERED

Not implemented

RASTERIZE

Not implemented

FLOYDSTEINBERG

Floyd-Steinberg dither

Palettes

Used to specify the pallete to use for the convert() method.

class PIL.Image.Palette(value)
An enumeration.

ADAPTIVE = 1

WEB = 0

84 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Quantization methods

Used to specify the quantization method to use for the quantize() method.

class PIL.Image.Quantize

MEDIANCUT

Median cut. Default method, except for RGBA images. This method does not support RGBA images.

MAXCOVERAGE

Maximum coverage. This method does not support RGBA images.

FASTOCTREE

Fast octree. Default method for RGBA images.

LIBIMAGEQUANT

libimagequant

Check support using PIL.features.check_feature() with feature="libimagequant".

1.3.2 ImageChops (“Channel Operations”) Module

The ImageChops module contains a number of arithmetical image operations, called channel operations (“chops”).
These can be used for various purposes, including special effects, image compositions, algorithmic painting, and more.

For more pre-made operations, see ImageOps.

At this time, most channel operations are only implemented for 8-bit images (e.g. “L” and “RGB”).

Functions

Most channel operations take one or two image arguments and returns a new image. Unless otherwise noted, the result
of a channel operation is always clipped to the range 0 to MAX (which is 255 for all modes supported by the operations
in this module).

PIL.ImageChops.add(image1, image2, scale=1.0, offset=0)
Adds two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset
to 0.0.

out = ((image1 + image2) / scale + offset)

Return type
Image

PIL.ImageChops.add_modulo(image1, image2)
Add two images, without clipping the result.

out = ((image1 + image2) % MAX)

Return type
Image

1.3. Reference 85



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.ImageChops.blend(image1, image2, alpha)
Blend images using constant transparency weight. Alias for PIL.Image.blend().

Return type
Image

PIL.ImageChops.composite(image1, image2, mask)
Create composite using transparency mask. Alias for PIL.Image.composite().

Return type
Image

PIL.ImageChops.constant(image, value)
Fill a channel with a given grey level.

Return type
Image

PIL.ImageChops.darker(image1, image2)
Compares the two images, pixel by pixel, and returns a new image containing the darker values.

out = min(image1, image2)

Return type
Image

PIL.ImageChops.difference(image1, image2)
Returns the absolute value of the pixel-by-pixel difference between the two images.

out = abs(image1 - image2)

Return type
Image

PIL.ImageChops.duplicate(image)
Copy a channel. Alias for PIL.Image.Image.copy().

Return type
Image

PIL.ImageChops.invert(image)
Invert an image (channel).

out = MAX - image

Return type
Image

PIL.ImageChops.lighter(image1, image2)
Compares the two images, pixel by pixel, and returns a new image containing the lighter values.

out = max(image1, image2)

Return type
Image

86 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.ImageChops.logical_and(image1, image2)
Logical AND between two images.

Both of the images must have mode “1”. If you would like to perform a logical AND on an image with a mode
other than “1”, try multiply() instead, using a black-and-white mask as the second image.

out = ((image1 and image2) % MAX)

Return type
Image

PIL.ImageChops.logical_or(image1, image2)
Logical OR between two images.

Both of the images must have mode “1”.

out = ((image1 or image2) % MAX)

Return type
Image

PIL.ImageChops.logical_xor(image1, image2)
Logical XOR between two images.

Both of the images must have mode “1”.

out = ((bool(image1) != bool(image2)) % MAX)

Return type
Image

PIL.ImageChops.multiply(image1, image2)
Superimposes two images on top of each other.

If you multiply an image with a solid black image, the result is black. If you multiply with a solid white image,
the image is unaffected.

out = image1 * image2 / MAX

Return type
Image

PIL.ImageChops.soft_light(image1, image2)
Superimposes two images on top of each other using the Soft Light algorithm

Return type
Image

PIL.ImageChops.hard_light(image1, image2)
Superimposes two images on top of each other using the Hard Light algorithm

Return type
Image

1.3. Reference 87



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.ImageChops.overlay(image1, image2)
Superimposes two images on top of each other using the Overlay algorithm

Return type
Image

PIL.ImageChops.offset(image, xoffset, yoffset=None)
Returns a copy of the image where data has been offset by the given distances. Data wraps around the edges. If
yoffset is omitted, it is assumed to be equal to xoffset.

Parameters

• image – Input image.

• xoffset – The horizontal distance.

• yoffset – The vertical distance. If omitted, both distances are set to the same value.

Return type
Image

PIL.ImageChops.screen(image1, image2)
Superimposes two inverted images on top of each other.

out = MAX - ((MAX - image1) * (MAX - image2) / MAX)

Return type
Image

PIL.ImageChops.subtract(image1, image2, scale=1.0, offset=0)
Subtracts two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and
offset to 0.0.

out = ((image1 - image2) / scale + offset)

Return type
Image

PIL.ImageChops.subtract_modulo(image1, image2)
Subtract two images, without clipping the result.

out = ((image1 - image2) % MAX)

Return type
Image

88 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

1.3.3 ImageCms Module

The ImageCms module provides color profile management support using the LittleCMS2 color management engine,
based on Kevin Cazabon’s PyCMS library.

class PIL.ImageCms.ImageCmsTransform(input, output, input_mode, output_mode,
intent=Intent.PERCEPTUAL, proof=None,
proof_intent=Intent.ABSOLUTE_COLORIMETRIC, flags=0)

Transform. This can be used with the procedural API, or with the standard point() method.

Will return the output profile in the output.info['icc_profile'].

exception PIL.ImageCms.PyCMSError

(pyCMS) Exception class. This is used for all errors in the pyCMS API.

Functions

PIL.ImageCms.applyTransform(im, transform, inPlace=False)
(pyCMS) Applies a transform to a given image.

If im.mode != transform.inMode, a PyCMSError is raised.

If inPlace is True and transform.inMode != transform.outMode, a PyCMSError is raised.

If im.mode, transform.inMode or transform.outMode is not supported by pyCMSdll or the profiles you
used for the transform, a PyCMSError is raised.

If an error occurs while the transform is being applied, a PyCMSError is raised.

This function applies a pre-calculated transform (from ImageCms.buildTransform() or Im-
ageCms.buildTransformFromOpenProfiles()) to an image. The transform can be used for multiple images,
saving considerable calculation time if doing the same conversion multiple times.

If you want to modify im in-place instead of receiving a new image as the return value, set inPlace to True.
This can only be done if transform.inMode and transform.outMode are the same, because we can’t change
the mode in-place (the buffer sizes for some modes are different). The default behavior is to return a new Image
object of the same dimensions in mode transform.outMode.

Parameters

• im – An Image object, and im.mode must be the same as the inMode supported by the
transform.

• transform – A valid CmsTransform class object

• inPlace – Bool. If True, im is modified in place and None is returned, if False, a new
Image object with the transform applied is returned (and im is not changed). The default is
False.

Returns
Either None, or a new Image object, depending on the value of inPlace. The profile will be
returned in the image’s info['icc_profile'].

Raises
PyCMSError –

PIL.ImageCms.buildProofTransform(inputProfile, outputProfile, proofProfile, inMode, outMode,
renderingIntent=Intent.PERCEPTUAL,
proofRenderingIntent=Intent.ABSOLUTE_COLORIMETRIC,
flags=16384)

1.3. Reference 89



Pillow (PIL Fork) Documentation, Release 9.5.0

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile, but tries to sim-
ulate the result that would be obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will
be raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile, but tries
to simulate the result that would be obtained on the proofProfile device using renderingIntent and
proofRenderingIntent to determine what to do with out-of-gamut colors. This is known as “soft-proofing”.
It will ONLY work for converting images that are in inMode to images that are in outMode color format (PIL
mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a good idea of what the final printed/displayed
image would look like on the proofProfile device when it’s quicker and easier to use the output device for
judging color. Generally, this means that the output device is a monitor, or a dye-sub printer (etc.), and the
simulated device is something more expensive, complicated, or time consuming (making it difficult to make a
real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the output device to match the colors of the device
being simulated. However, when the simulated device has a much wider gamut than the output device, you may
obtain marginal results.

Parameters

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use for
this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output (monitor, usually)
profile you wish to use for this transform, or a profile object

• proofProfile – String, as a valid filename path to the ICC proof profile you wish to use
for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
input->proof (simulated) transform

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what they do.

• proofRenderingIntent – Integer (0-3) specifying the rendering intent you wish to use for
proof->output transform

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what they do.

90 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• flags – Integer (0-. . . ) specifying additional flags

Returns
A CmsTransform class object.

Raises
PyCMSError –

PIL.ImageCms.buildProofTransformFromOpenProfiles(inputProfile, outputProfile, proofProfile, inMode,
outMode, renderingIntent=Intent.PERCEPTUAL,
proofRenderingIn-
tent=Intent.ABSOLUTE_COLORIMETRIC,
flags=16384)

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile, but tries to sim-
ulate the result that would be obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will
be raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile, but tries
to simulate the result that would be obtained on the proofProfile device using renderingIntent and
proofRenderingIntent to determine what to do with out-of-gamut colors. This is known as “soft-proofing”.
It will ONLY work for converting images that are in inMode to images that are in outMode color format (PIL
mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a good idea of what the final printed/displayed
image would look like on the proofProfile device when it’s quicker and easier to use the output device for
judging color. Generally, this means that the output device is a monitor, or a dye-sub printer (etc.), and the
simulated device is something more expensive, complicated, or time consuming (making it difficult to make a
real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the output device to match the colors of the device
being simulated. However, when the simulated device has a much wider gamut than the output device, you may
obtain marginal results.

Parameters

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use for
this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output (monitor, usually)
profile you wish to use for this transform, or a profile object

• proofProfile – String, as a valid filename path to the ICC proof profile you wish to use
for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
input->proof (simulated) transform

1.3. Reference 91



Pillow (PIL Fork) Documentation, Release 9.5.0

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what they do.

• proofRenderingIntent – Integer (0-3) specifying the rendering intent you wish to use for
proof->output transform

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what they do.

• flags – Integer (0-. . . ) specifying additional flags

Returns
A CmsTransform class object.

Raises
PyCMSError –

PIL.ImageCms.buildTransform(inputProfile, outputProfile, inMode, outMode,
renderingIntent=Intent.PERCEPTUAL, flags=0)

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile. Use applyTrans-
form to apply the transform to a given image.

If the input or output profiles specified are not valid filenames, a PyCMSError will be raised. If an error occurs
during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will
be raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile using the
renderingIntent to determine what to do with out-of-gamut colors. It will ONLY work for converting images
that are in inMode to images that are in outMode color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in ImageCms.profileToProfile(), so if you’re planning on
converting multiple images using the same input/output settings, this can save you time. Once you have a trans-
form object, it can be used with ImageCms.applyProfile() to convert images without the need to re-compute the
lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly to the transform is that it needs to keep
track of the PIL input/output modes that the transform is meant for. These attributes are stored in the inMode
and outMode attributes of the object (which can be manually overridden if you really want to, but I don’t know
of any time that would be of use, or would even work).

Parameters

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use for
this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output profile you wish to use
for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

92 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
transform

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what they do.

• flags – Integer (0-. . . ) specifying additional flags

Returns
A CmsTransform class object.

Raises
PyCMSError –

PIL.ImageCms.buildTransformFromOpenProfiles(inputProfile, outputProfile, inMode, outMode,
renderingIntent=Intent.PERCEPTUAL, flags=0)

(pyCMS) Builds an ICC transform mapping from the inputProfile to the outputProfile. Use applyTrans-
form to apply the transform to a given image.

If the input or output profiles specified are not valid filenames, a PyCMSError will be raised. If an error occurs
during creation of the transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or by pyCMS), a PyCMSError will
be raised.

This function builds and returns an ICC transform from the inputProfile to the outputProfile using the
renderingIntent to determine what to do with out-of-gamut colors. It will ONLY work for converting images
that are in inMode to images that are in outMode color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in ImageCms.profileToProfile(), so if you’re planning on
converting multiple images using the same input/output settings, this can save you time. Once you have a trans-
form object, it can be used with ImageCms.applyProfile() to convert images without the need to re-compute the
lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly to the transform is that it needs to keep
track of the PIL input/output modes that the transform is meant for. These attributes are stored in the inMode
and outMode attributes of the object (which can be manually overridden if you really want to, but I don’t know
of any time that would be of use, or would even work).

Parameters

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use for
this transform, or a profile object

• outputProfile – String, as a valid filename path to the ICC output profile you wish to use
for this transform, or a profile object

• inMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• outMode – String, as a valid PIL mode that the appropriate profile also supports (i.e. “RGB”,
“RGBA”, “CMYK”, etc.)

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
transform

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

1.3. Reference 93



Pillow (PIL Fork) Documentation, Release 9.5.0

see the pyCMS documentation for details on rendering intents and what they do.

• flags – Integer (0-. . . ) specifying additional flags

Returns
A CmsTransform class object.

Raises
PyCMSError –

PIL.ImageCms.createProfile(colorSpace, colorTemp=-1)
(pyCMS) Creates a profile.

If colorSpace not in ["LAB", "XYZ", "sRGB"], a PyCMSError is raised.

If using LAB and colorTemp is not a positive integer, a PyCMSError is raised.

If an error occurs while creating the profile, a PyCMSError is raised.

Use this function to create common profiles on-the-fly instead of having to supply a profile on disk
and knowing the path to it. It returns a normal CmsProfile object that can be passed to Im-
ageCms.buildTransformFromOpenProfiles() to create a transform to apply to images.

Parameters

• colorSpace – String, the color space of the profile you wish to create. Currently only
“LAB”, “XYZ”, and “sRGB” are supported.

• colorTemp – Positive integer for the white point for the profile, in degrees Kelvin (i.e. 5000,
6500, 9600, etc.). The default is for D50 illuminant if omitted (5000k). colorTemp is ONLY
applied to LAB profiles, and is ignored for XYZ and sRGB.

Returns
A CmsProfile class object

Raises
PyCMSError –

PIL.ImageCms.getDefaultIntent(profile)
(pyCMS) Gets the default intent name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the default intent, a PyCMSError is raised.

Use this function to determine the default (and usually best optimized) rendering intent for this profile. Most
profiles support multiple rendering intents, but are intended mostly for one type of conversion. If you wish to
use a different intent than returned, use ImageCms.isIntentSupported() to verify it will work first.

Parameters
profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Returns

Integer 0-3 specifying the default rendering intent for this profile.

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION =
2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what
they do.

94 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Raises
PyCMSError –

PIL.ImageCms.getOpenProfile(profileFilename)
(pyCMS) Opens an ICC profile file.

The PyCMSProfile object can be passed back into pyCMS for use in creating transforms and such (as in Im-
ageCms.buildTransformFromOpenProfiles()).

If profileFilename is not a valid filename for an ICC profile, a PyCMSError will be raised.

Parameters
profileFilename – String, as a valid filename path to the ICC profile you wish to open, or a
file-like object.

Returns
A CmsProfile class object.

Raises
PyCMSError –

PIL.ImageCms.getProfileCopyright(profile)
(pyCMS) Gets the copyright for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the copyright tag, a PyCMSError is raised.

Use this function to obtain the information stored in the profile’s copyright tag.

Parameters
profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Returns
A string containing the internal profile information stored in an ICC tag.

Raises
PyCMSError –

PIL.ImageCms.getProfileDescription(profile)
(pyCMS) Gets the description for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the description tag, a PyCMSError is raised.

Use this function to obtain the information stored in the profile’s description tag.

Parameters
profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Returns
A string containing the internal profile information stored in an ICC tag.

Raises
PyCMSError –

PIL.ImageCms.getProfileInfo(profile)
(pyCMS) Gets the internal product information for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the info tag, a PyCMSError is raised.

1.3. Reference 95



Pillow (PIL Fork) Documentation, Release 9.5.0

Use this function to obtain the information stored in the profile’s info tag. This often contains details about the
profile, and how it was created, as supplied by the creator.

Parameters
profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Returns
A string containing the internal profile information stored in an ICC tag.

Raises
PyCMSError –

PIL.ImageCms.getProfileManufacturer(profile)
(pyCMS) Gets the manufacturer for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the manufacturer tag, a PyCMSError is raised.

Use this function to obtain the information stored in the profile’s manufacturer tag.

Parameters
profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Returns
A string containing the internal profile information stored in an ICC tag.

Raises
PyCMSError –

PIL.ImageCms.getProfileModel(profile)
(pyCMS) Gets the model for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised.

If an error occurs while trying to obtain the model tag, a PyCMSError is raised.

Use this function to obtain the information stored in the profile’s model tag.

Parameters
profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Returns
A string containing the internal profile information stored in an ICC tag.

Raises
PyCMSError –

PIL.ImageCms.getProfileName(profile)
(pyCMS) Gets the internal product name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile, a PyCMSError is raised If an error occurs
while trying to obtain the name tag, a PyCMSError is raised.

Use this function to obtain the INTERNAL name of the profile (stored in an ICC tag in the profile itself), usually
the one used when the profile was originally created. Sometimes this tag also contains additional information
supplied by the creator.

Parameters
profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

Returns
A string containing the internal name of the profile as stored in an ICC tag.

96 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Raises
PyCMSError –

PIL.ImageCms.get_display_profile(handle=None)
(experimental) Fetches the profile for the current display device.

Returns
None if the profile is not known.

PIL.ImageCms.isIntentSupported(profile, intent, direction)
(pyCMS) Checks if a given intent is supported.

Use this function to verify that you can use your desired intent with profile, and that profile can be used
for the input/output/proof profile as you desire.

Some profiles are created specifically for one “direction”, can cannot be used for others. Some profiles can only
be used for certain rendering intents, so it’s best to either verify this before trying to create a transform with
them (using this function), or catch the potential PyCMSError that will occur if they don’t support the modes
you select.

Parameters

• profile – EITHER a valid CmsProfile object, OR a string of the filename of an ICC profile.

• intent – Integer (0-3) specifying the rendering intent you wish to use with this profile

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what
they do.

• direction – Integer specifying if the profile is to be used for input, output, or proof

INPUT = 0 (or use ImageCms.Direction.INPUT) OUTPUT = 1 (or use Im-
ageCms.Direction.OUTPUT) PROOF = 2 (or use ImageCms.Direction.PROOF)

Returns
1 if the intent/direction are supported, -1 if they are not.

Raises
PyCMSError –

PIL.ImageCms.profileToProfile(im, inputProfile, outputProfile, renderingIntent=Intent.PERCEPTUAL,
outputMode=None, inPlace=False, flags=0)

(pyCMS) Applies an ICC transformation to a given image, mapping from inputProfile to outputProfile.

If the input or output profiles specified are not valid filenames, a PyCMSError will be raised. If inPlace is
True and outputMode != im.mode, a PyCMSError will be raised. If an error occurs during application of the
profiles, a PyCMSError will be raised. If outputMode is not a mode supported by the outputProfile (or by
pyCMS), a PyCMSError will be raised.

This function applies an ICC transformation to im from inputProfile’s color space to outputProfile’s color
space using the specified rendering intent to decide how to handle out-of-gamut colors.

outputMode can be used to specify that a color mode conversion is to be done using these profiles, but the
specified profiles must be able to handle that mode. I.e., if converting im from RGB to CMYK using profiles,
the input profile must handle RGB data, and the output profile must handle CMYK data.

Parameters

1.3. Reference 97



Pillow (PIL Fork) Documentation, Release 9.5.0

• im – An open Image object (i.e. Image.new(. . . ) or Image.open(. . . ), etc.)

• inputProfile – String, as a valid filename path to the ICC input profile you wish to use for
this image, or a profile object

• outputProfile – String, as a valid filename path to the ICC output profile you wish to use
for this image, or a profile object

• renderingIntent – Integer (0-3) specifying the rendering intent you wish to use for the
transform

ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT) Im-
ageCms.Intent.RELATIVE_COLORIMETRIC = 1 ImageCms.Intent.SATURATION
= 2 ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3

see the pyCMS documentation for details on rendering intents and what they do.

• outputMode – A valid PIL mode for the output image (i.e. “RGB”, “CMYK”, etc.). Note:
if rendering the image “inPlace”, outputMode MUST be the same mode as the input, or
omitted completely. If omitted, the outputMode will be the same as the mode of the input
image (im.mode)

• inPlace – Boolean. If True, the original image is modified in-place, and None is returned.
If False (default), a new Image object is returned with the transform applied.

• flags – Integer (0-. . . ) specifying additional flags

Returns
Either None or a new Image object, depending on the value of inPlace

Raises
PyCMSError –

PIL.ImageCms.versions()

(pyCMS) Fetches versions.

CmsProfile

The ICC color profiles are wrapped in an instance of the class CmsProfile. The specification ICC.1:2010 contains
more information about the meaning of the values in ICC profiles.

For convenience, all XYZ-values are also given as xyY-values (so they can be easily displayed in a chromaticity diagram,
for example).

class PIL.ImageCms.CmsProfile

creation_date: Optional[datetime.datetime]

Date and time this profile was first created (see 7.2.1 of ICC.1:2010).

version: float

The version number of the ICC standard that this profile follows (e.g. 2.0).

icc_version: int

Same as version, but in encoded format (see 7.2.4 of ICC.1:2010).

device_class: str

4-character string identifying the profile class. One of scnr, mntr, prtr, link, spac, abst, nmcl (see
7.2.5 of ICC.1:2010 for details).

98 Chapter 1. Overview

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Pillow (PIL Fork) Documentation, Release 9.5.0

xcolor_space: str

4-character string (padded with whitespace) identifying the color space, e.g. XYZ␣, RGB␣ or CMYK (see 7.2.6
of ICC.1:2010 for details).

connection_space: str

4-character string (padded with whitespace) identifying the color space on the B-side of the transform (see
7.2.7 of ICC.1:2010 for details).

header_flags: int

The encoded header flags of the profile (see 7.2.11 of ICC.1:2010 for details).

header_manufacturer: str

4-character string (padded with whitespace) identifying the device manufacturer, which shall match the
signature contained in the appropriate section of the ICC signature registry found at www.color.org (see
7.2.12 of ICC.1:2010).

header_model: str

4-character string (padded with whitespace) identifying the device model, which shall match the signature
contained in the appropriate section of the ICC signature registry found at www.color.org (see 7.2.13 of
ICC.1:2010).

attributes: int

Flags used to identify attributes unique to the particular device setup for which the profile is applicable (see
7.2.14 of ICC.1:2010 for details).

rendering_intent: int

The rendering intent to use when combining this profile with another profile (usually overridden at run-time,
but provided here for DeviceLink and embedded source profiles, see 7.2.15 of ICC.1:2010).

One of ImageCms.Intent.ABSOLUTE_COLORIMETRIC, ImageCms.Intent.PERCEPTUAL, ImageCms.
Intent.RELATIVE_COLORIMETRIC and ImageCms.Intent.SATURATION.

profile_id: bytes

A sequence of 16 bytes identifying the profile (via a specially constructed MD5 sum), or 16 binary zeroes
if the profile ID has not been calculated (see 7.2.18 of ICC.1:2010).

copyright: Optional[str]

The text copyright information for the profile (see 9.2.21 of ICC.1:2010).

manufacturer: Optional[str]

The (English) display string for the device manufacturer (see 9.2.22 of ICC.1:2010).

model: Optional[str]

The (English) display string for the device model of the device for which this profile is created (see 9.2.23
of ICC.1:2010).

profile_description: Optional[str]

The (English) display string for the profile description (see 9.2.41 of ICC.1:2010).

target: Optional[str]

The name of the registered characterization data set, or the measurement data for a characterization target
(see 9.2.14 of ICC.1:2010).

red_colorant: Optional[tuple[tuple[float]]]

The first column in the matrix used in matrix/TRC transforms (see 9.2.44 of ICC.1:2010).

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

1.3. Reference 99

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float


Pillow (PIL Fork) Documentation, Release 9.5.0

green_colorant: Optional[tuple[tuple[float]]]

The second column in the matrix used in matrix/TRC transforms (see 9.2.30 of ICC.1:2010).

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

blue_colorant: Optional[tuple[tuple[float]]]

The third column in the matrix used in matrix/TRC transforms (see 9.2.4 of ICC.1:2010).

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

luminance: Optional[tuple[tuple[float]]]

The absolute luminance of emissive devices in candelas per square metre as described by the Y channel
(see 9.2.32 of ICC.1:2010).

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

chromaticity: Optional[tuple[tuple[float]]]

The data of the phosphor/colorant chromaticity set used (red, green and blue channels, see 9.2.16 of
ICC.1:2010).

The value is in the format ((x, y, Y), (x, y, Y), (x, y, Y)), if available.

chromatic_adaption: tuple[tuple[float]]

The chromatic adaption matrix converts a color measured using the actual illumination conditions and rela-
tive to the actual adopted white, to a color relative to the PCS adopted white, with complete adaptation from
the actual adopted white chromaticity to the PCS adopted white chromaticity (see 9.2.15 of ICC.1:2010).

Two 3-tuples of floats are returned in a 2-tuple, one in (X, Y, Z) space and one in (x, y, Y) space.

colorant_table: list[str]

This tag identifies the colorants used in the profile by a unique name and set of PCSXYZ or PCSLAB values
(see 9.2.19 of ICC.1:2010).

colorant_table_out: list[str]

This tag identifies the colorants used in the profile by a unique name and set of PCSLAB values (for De-
viceLink profiles only, see 9.2.19 of ICC.1:2010).

colorimetric_intent: Optional[str]

4-character string (padded with whitespace) identifying the image state of PCS colorimetry produced using
the colorimetric intent transforms (see 9.2.20 of ICC.1:2010 for details).

perceptual_rendering_intent_gamut: Optional[str]

4-character string (padded with whitespace) identifying the (one) standard reference medium gamut (see
9.2.37 of ICC.1:2010 for details).

saturation_rendering_intent_gamut: Optional[str]

4-character string (padded with whitespace) identifying the (one) standard reference medium gamut (see
9.2.37 of ICC.1:2010 for details).

technology: Optional[str]

4-character string (padded with whitespace) identifying the device technology (see 9.2.47 of ICC.1:2010
for details).

media_black_point: Optional[tuple[tuple[float]]]

This tag specifies the media black point and is used for generating absolute colorimetry.

This tag was available in ICC 3.2, but it is removed from version 4.

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

100 Chapter 1. Overview

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float


Pillow (PIL Fork) Documentation, Release 9.5.0

media_white_point_temperature: Optional[float]

Calculates the white point temperature (see the LCMS documentation for more information).

viewing_condition: Optional[str]

The (English) display string for the viewing conditions (see 9.2.48 of ICC.1:2010).

screening_description: Optional[str]

The (English) display string for the screening conditions.

This tag was available in ICC 3.2, but it is removed from version 4.

red_primary: Optional[tuple[tuple[float]]]

The XYZ-transformed of the RGB primary color red (1, 0, 0).

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

green_primary: Optional[tuple[tuple[float]]]

The XYZ-transformed of the RGB primary color green (0, 1, 0).

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

blue_primary: Optional[tuple[tuple[float]]]

The XYZ-transformed of the RGB primary color blue (0, 0, 1).

The value is in the format ((X, Y, Z), (x, y, Y)), if available.

is_matrix_shaper: bool

True if this profile is implemented as a matrix shaper (see documentation on LCMS).

clut: dict[tuple[bool]]

Returns a dictionary of all supported intents and directions for the CLUT model.

The dictionary is indexed by intents (ImageCms.Intent.ABSOLUTE_COLORIMETRIC, ImageCms.
Intent.PERCEPTUAL, ImageCms.Intent.RELATIVE_COLORIMETRIC and ImageCms.Intent.
SATURATION).

The values are 3-tuples indexed by directions (ImageCms.Direction.INPUT, ImageCms.Direction.
OUTPUT, ImageCms.Direction.PROOF).

The elements of the tuple are booleans. If the value is True, that intent is supported for that direction.

intent_supported: dict[tuple[bool]]

Returns a dictionary of all supported intents and directions.

The dictionary is indexed by intents (ImageCms.Intent.ABSOLUTE_COLORIMETRIC, ImageCms.
Intent.PERCEPTUAL, ImageCms.Intent.RELATIVE_COLORIMETRIC and ImageCms.Intent.
SATURATION).

The values are 3-tuples indexed by directions (ImageCms.Direction.INPUT, ImageCms.Direction.
OUTPUT, ImageCms.Direction.PROOF).

The elements of the tuple are booleans. If the value is True, that intent is supported for that direction.

There is one function defined on the class:

is_intent_supported(intent, direction)
Returns if the intent is supported for the given direction.

Note that you can also get this information for all intents and directions with intent_supported .

Parameters

1.3. Reference 101

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool


Pillow (PIL Fork) Documentation, Release 9.5.0

• intent – One of ImageCms.Intent.ABSOLUTE_COLORIMETRIC, ImageCms.Intent.
PERCEPTUAL, ImageCms.Intent.RELATIVE_COLORIMETRIC and ImageCms.Intent.
SATURATION.

• direction – One of ImageCms.Direction.INPUT, ImageCms.Direction.OUTPUT
and ImageCms.Direction.PROOF

Returns
Boolean if the intent and direction is supported.

1.3.4 ImageColor Module

The ImageColor module contains color tables and converters from CSS3-style color specifiers to RGB tuples. This
module is used by PIL.Image.new() and the ImageDraw module, among others.

Color Names

The ImageColor module supports the following string formats:

• Hexadecimal color specifiers, given as #rgb, #rgba, #rrggbb or #rrggbbaa, where r is red, g is green, b is
blue and a is alpha (also called ‘opacity’). For example, #ff0000 specifies pure red, and #ff0000cc specifies
red with 80% opacity (cc is 204 in decimal form, and 204 / 255 = 0.8).

• RGB functions, given as rgb(red, green, blue) where the color values are integers in the range 0 to 255.
Alternatively, the color values can be given as three percentages (0% to 100%). For example, rgb(255,0,0)
and rgb(100%,0%,0%) both specify pure red.

• Hue-Saturation-Lightness (HSL) functions, given as hsl(hue, saturation%, lightness%) where hue is
the color given as an angle between 0 and 360 (red=0, green=120, blue=240), saturation is a value between 0%
and 100% (gray=0%, full color=100%), and lightness is a value between 0% and 100% (black=0%, normal=50%,
white=100%). For example, hsl(0,100%,50%) is pure red.

• Hue-Saturation-Value (HSV) functions, given as hsv(hue, saturation%, value%)where hue and saturation
are the same as HSL, and value is between 0% and 100% (black=0%, normal=100%). For example, hsv(0,
100%,100%) is pure red. This format is also known as Hue-Saturation-Brightness (HSB), and can be given as
hsb(hue, saturation%, brightness%), where each of the values are used as they are in HSV.

• Common HTML color names. The ImageColor module provides some 140 standard color names, based on
the colors supported by the X Window system and most web browsers. color names are case insensitive. For
example, red and Red both specify pure red.

Functions

PIL.ImageColor.getrgb(color)
Convert a color string to an RGB tuple. If the string cannot be parsed, this function raises a ValueError excep-
tion.

New in version 1.1.4.

PIL.ImageColor.getcolor(color, mode)
Same as getrgb(), but converts the RGB value to a greyscale value if the mode is not color or a palette image.
If the string cannot be parsed, this function raises a ValueError exception.

New in version 1.1.4.

102 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


Pillow (PIL Fork) Documentation, Release 9.5.0

1.3.5 ImageDraw Module

The ImageDraw module provides simple 2D graphics for Image objects. You can use this module to create new images,
annotate or retouch existing images, and to generate graphics on the fly for web use.

For a more advanced drawing library for PIL, see the aggdraw module.

Example: Draw a gray cross over an image

import sys
from PIL import Image, ImageDraw

with Image.open("hopper.jpg") as im:

draw = ImageDraw.Draw(im)
draw.line((0, 0) + im.size, fill=128)
draw.line((0, im.size[1], im.size[0], 0), fill=128)

# write to stdout
im.save(sys.stdout, "PNG")

Concepts

Coordinates

The graphics interface uses the same coordinate system as PIL itself, with (0, 0) in the upper left corner. Any pixels
drawn outside of the image bounds will be discarded.

Colors

To specify colors, you can use numbers or tuples just as you would use with PIL.Image.new() or PIL.Image.Image.
putpixel(). For “1”, “L”, and “I” images, use integers. For “RGB” images, use a 3-tuple containing integer values.
For “F” images, use integer or floating point values.

For palette images (mode “P”), use integers as color indexes. In 1.1.4 and later, you can also use RGB 3-tuples or color
names (see below). The drawing layer will automatically assign color indexes, as long as you don’t draw with more
than 256 colors.

Color Names

See Color Names for the color names supported by Pillow.

1.3. Reference 103

https://github.com/pytroll/aggdraw


Pillow (PIL Fork) Documentation, Release 9.5.0

Fonts

PIL can use bitmap fonts or OpenType/TrueType fonts.

Bitmap fonts are stored in PIL’s own format, where each font typically consists of two files, one named .pil and the
other usually named .pbm. The former contains font metrics, the latter raster data.

To load a bitmap font, use the load functions in the ImageFont module.

To load a OpenType/TrueType font, use the truetype function in the ImageFontmodule. Note that this function depends
on third-party libraries, and may not available in all PIL builds.

Example: Draw Partial Opacity Text

from PIL import Image, ImageDraw, ImageFont

# get an image
with Image.open("Pillow/Tests/images/hopper.png").convert("RGBA") as base:

# make a blank image for the text, initialized to transparent text color
txt = Image.new("RGBA", base.size, (255, 255, 255, 0))

# get a font
fnt = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", 40)
# get a drawing context
d = ImageDraw.Draw(txt)

# draw text, half opacity
d.text((10, 10), "Hello", font=fnt, fill=(255, 255, 255, 128))
# draw text, full opacity
d.text((10, 60), "World", font=fnt, fill=(255, 255, 255, 255))

out = Image.alpha_composite(base, txt)

out.show()

Example: Draw Multiline Text

from PIL import Image, ImageDraw, ImageFont

# create an image
out = Image.new("RGB", (150, 100), (255, 255, 255))

# get a font
fnt = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", 40)
# get a drawing context
d = ImageDraw.Draw(out)

# draw multiline text
d.multiline_text((10, 10), "Hello\nWorld", font=fnt, fill=(0, 0, 0))

out.show()

104 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Functions

PIL.ImageDraw.Draw(im, mode=None)
Creates an object that can be used to draw in the given image.

Note that the image will be modified in place.

Parameters

• im – The image to draw in.

• mode – Optional mode to use for color values. For RGB images, this argument can be RGB
or RGBA (to blend the drawing into the image). For all other modes, this argument must be
the same as the image mode. If omitted, the mode defaults to the mode of the image.

Attributes

ImageDraw.fill: bool = False

Selects whether ImageDraw.ink should be used as a fill or outline color.

ImageDraw.font

The current default font.

Can be set per instance:

from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(image)
draw.font = ImageFont.truetype("Tests/fonts/FreeMono.ttf")

Or globally for all future ImageDraw instances:

from PIL import ImageDraw, ImageFont
ImageDraw.ImageDraw.font = ImageFont.truetype("Tests/fonts/FreeMono.ttf")

ImageDraw.fontmode

The current font drawing mode.

Set to "1" to disable antialiasing or "L" to enable it.

ImageDraw.ink: int

The internal representation of the current default color.

Methods

ImageDraw.getfont()

Get the current default font, ImageDraw.font.

If the current default font is None, it is initialized with ImageFont.load_default().

Returns
An image font.

ImageDraw.arc(xy, start, end, fill=None, width=0)
Draws an arc (a portion of a circle outline) between the start and end angles, inside the given bounding box.

Parameters

1.3. Reference 105

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int


Pillow (PIL Fork) Documentation, Release 9.5.0

• xy – Two points to define the bounding box. Sequence of [(x0, y0), (x1, y1)] or [x0,
y0, x1, y1], where x1 >= x0 and y1 >= y0.

• start – Starting angle, in degrees. Angles are measured from 3 o’clock, increasing clock-
wise.

• end – Ending angle, in degrees.

• fill – Color to use for the arc.

• width – The line width, in pixels.

New in version 5.3.0.

ImageDraw.bitmap(xy, bitmap, fill=None)
Draws a bitmap (mask) at the given position, using the current fill color for the non-zero portions. The bitmap
should be a valid transparency mask (mode “1”) or matte (mode “L” or “RGBA”).

This is equivalent to doing image.paste(xy, color, bitmap).

To paste pixel data into an image, use the paste() method on the image itself.

ImageDraw.chord(xy, start, end, fill=None, outline=None, width=1)
Same as arc(), but connects the end points with a straight line.

Parameters

• xy – Two points to define the bounding box. Sequence of [(x0, y0), (x1, y1)] or [x0,
y0, x1, y1], where x1 >= x0 and y1 >= y0.

• outline – Color to use for the outline.

• fill – Color to use for the fill.

• width – The line width, in pixels.

New in version 5.3.0.

ImageDraw.ellipse(xy, fill=None, outline=None, width=1)
Draws an ellipse inside the given bounding box.

Parameters

• xy – Two points to define the bounding box. Sequence of either [(x0, y0), (x1, y1)]
or [x0, y0, x1, y1], where x1 >= x0 and y1 >= y0.

• outline – Color to use for the outline.

• fill – Color to use for the fill.

• width – The line width, in pixels.

New in version 5.3.0.

ImageDraw.line(xy, fill=None, width=0, joint=None)
Draws a line between the coordinates in the xy list.

Parameters

• xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or numeric values like [x,
y, x, y, ...].

• fill – Color to use for the line.

106 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• width – The line width, in pixels.

New in version 1.1.5.

Note: This option was broken until version 1.1.6.

• joint – Joint type between a sequence of lines. It can be "curve", for rounded edges, or
None.

New in version 5.3.0.

ImageDraw.pieslice(xy, start, end, fill=None, outline=None, width=1)
Same as arc, but also draws straight lines between the end points and the center of the bounding box.

Parameters

• xy – Two points to define the bounding box. Sequence of [(x0, y0), (x1, y1)] or [x0,
y0, x1, y1], where x1 >= x0 and y1 >= y0.

• start – Starting angle, in degrees. Angles are measured from 3 o’clock, increasing clock-
wise.

• end – Ending angle, in degrees.

• fill – Color to use for the fill.

• outline – Color to use for the outline.

• width – The line width, in pixels.

New in version 5.3.0.

ImageDraw.point(xy, fill=None)
Draws points (individual pixels) at the given coordinates.

Parameters

• xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or numeric values like [x,
y, x, y, ...].

• fill – Color to use for the point.

ImageDraw.polygon(xy, fill=None, outline=None, width=1)
Draws a polygon.

The polygon outline consists of straight lines between the given coordinates, plus a straight line between the last
and the first coordinate.

Parameters

• xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or numeric values like [x,
y, x, y, ...].

• fill – Color to use for the fill.

• outline – Color to use for the outline.

• width – The line width, in pixels.

ImageDraw.regular_polygon(bounding_circle, n_sides, rotation=0, fill=None, outline=None)
Draws a regular polygon inscribed in bounding_circle, with n_sides, and rotation of rotation degrees.

Parameters

1.3. Reference 107

https://docs.python.org/3/library/constants.html#None


Pillow (PIL Fork) Documentation, Release 9.5.0

• bounding_circle – The bounding circle is a tuple defined by a point and radius. (e.g.
bounding_circle=(x, y, r) or ((x, y), r)). The polygon is inscribed in this circle.

• n_sides – Number of sides (e.g. n_sides=3 for a triangle, 6 for a hexagon).

• rotation – Apply an arbitrary rotation to the polygon (e.g. rotation=90, applies a 90
degree rotation).

• fill – Color to use for the fill.

• outline – Color to use for the outline.

ImageDraw.rectangle(xy, fill=None, outline=None, width=1)
Draws a rectangle.

Parameters

• xy – Two points to define the bounding box. Sequence of either [(x0, y0), (x1, y1)]
or [x0, y0, x1, y1], where x1 >= x0 and y1 >= y0. The bounding box is inclusive of
both endpoints.

• fill – Color to use for the fill.

• outline – Color to use for the outline.

• width – The line width, in pixels.

New in version 5.3.0.

ImageDraw.rounded_rectangle(xy, radius=0, fill=None, outline=None, width=1)
Draws a rounded rectangle.

Parameters

• xy – Two points to define the bounding box. Sequence of either [(x0, y0), (x1, y1)]
or [x0, y0, x1, y1], where x1 >= x0 and y1 >= y0. The bounding box is inclusive of
both endpoints.

• radius – Radius of the corners.

• fill – Color to use for the fill.

• outline – Color to use for the outline.

• width – The line width, in pixels.

• corners – A tuple of whether to round each corner, (top_left, top_right,
bottom_right, bottom_left).

New in version 8.2.0.

ImageDraw.shape(shape, fill=None, outline=None)

Warning: This method is experimental.

Draw a shape.

ImageDraw.text(xy, text, fill=None, font=None, anchor=None, spacing=4, align='left', direction=None,
features=None, language=None, stroke_width=0, stroke_fill=None, embedded_color=False)

Draws the string at the given position.

Parameters

• xy – The anchor coordinates of the text.

108 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• text – String to be drawn. If it contains any newline characters, the text is passed on to
multiline_text().

• fill – Color to use for the text.

• font – An ImageFont instance.

• anchor – The text anchor alignment. Determines the relative location of the anchor to the
text. The default alignment is top left. See Text anchors for valid values. This parameter is
ignored for non-TrueType fonts.

Note: This parameter was present in earlier versions of Pillow, but implemented only
in version 8.0.0.

• spacing – If the text is passed on to multiline_text(), the number of pixels between
lines.

• align – If the text is passed on to multiline_text(), "left", "center" or "right".
Determines the relative alignment of lines. Use the anchor parameter to specify the align-
ment to xy.

• direction – Direction of the text. It can be "rtl" (right to left), "ltr" (left to right) or
"ttb" (top to bottom). Requires libraqm.

New in version 4.2.0.

• features – A list of OpenType font features to be used during text layout. This is usually
used to turn on optional font features that are not enabled by default, for example "dlig"
or "ss01", but can be also used to turn off default font features, for example "-liga" to
disable ligatures or "-kern" to disable kerning. To get all supported features, see OpenType
docs. Requires libraqm.

New in version 4.2.0.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code. Requires
libraqm.

New in version 6.0.0.

• stroke_width – The width of the text stroke.

New in version 6.2.0.

• stroke_fill – Color to use for the text stroke. If not given, will default to the fill pa-
rameter.

New in version 6.2.0.

• embedded_color – Whether to use font embedded color glyphs (COLR, CBDT, SBIX).

New in version 8.0.0.

ImageDraw.multiline_text(xy, text, fill=None, font=None, anchor=None, spacing=4, align='left',
direction=None, features=None, language=None, stroke_width=0,
stroke_fill=None, embedded_color=False)

Draws the string at the given position.

Parameters

• xy – The anchor coordinates of the text.

1.3. Reference 109

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

• text – String to be drawn.

• fill – Color to use for the text.

• font – An ImageFont instance.

• anchor – The text anchor alignment. Determines the relative location of the anchor to the
text. The default alignment is top left. See Text anchors for valid values. This parameter is
ignored for non-TrueType fonts.

Note: This parameter was present in earlier versions of Pillow, but implemented only
in version 8.0.0.

• spacing – The number of pixels between lines.

• align – "left", "center" or "right". Determines the relative alignment of lines. Use
the anchor parameter to specify the alignment to xy.

• direction – Direction of the text. It can be "rtl" (right to left), "ltr" (left to right) or
"ttb" (top to bottom). Requires libraqm.

New in version 4.2.0.

• features – A list of OpenType font features to be used during text layout. This is usually
used to turn on optional font features that are not enabled by default, for example "dlig"
or "ss01", but can be also used to turn off default font features, for example "-liga" to
disable ligatures or "-kern" to disable kerning. To get all supported features, see OpenType
docs. Requires libraqm.

New in version 4.2.0.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code. Requires
libraqm.

New in version 6.0.0.

• stroke_width – The width of the text stroke.

New in version 6.2.0.

• stroke_fill –

Color to use for the text stroke. If not given, will default to
the fill parameter.

New in version 6.2.0.

• embedded_color – Whether to use font embedded color glyphs (COLR, CBDT, SBIX).

New in version 8.0.0.

ImageDraw.textsize(text, font=None, spacing=4, direction=None, features=None, language=None,
stroke_width=0)

Deprecated since version 9.2.0.

See deprecations for more information.

Use textlength() to measure the offset of following text with 1/64 pixel precision. Use textbbox() to get
the exact bounding box based on an anchor.

Return the size of the given string, in pixels.

110 Chapter 1. Overview

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

Note: For historical reasons this function measures text height from the ascender line instead of the top, see
Text anchors. If you wish to measure text height from the top, it is recommended to use textbbox() with
anchor='lt' instead.

Parameters

• text – Text to be measured. If it contains any newline characters, the text is passed on to
multiline_textsize().

• font – An ImageFont instance.

• spacing – If the text is passed on to multiline_textsize(), the number of pixels be-
tween lines.

• direction – Direction of the text. It can be "rtl" (right to left), "ltr" (left to right) or
"ttb" (top to bottom). Requires libraqm.

New in version 4.2.0.

• features – A list of OpenType font features to be used during text layout. This is usually
used to turn on optional font features that are not enabled by default, for example "dlig"
or "ss01", but can be also used to turn off default font features, for example "-liga" to
disable ligatures or "-kern" to disable kerning. To get all supported features, see OpenType
docs. Requires libraqm.

New in version 4.2.0.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code. Requires
libraqm.

New in version 6.0.0.

• stroke_width – The width of the text stroke.

New in version 6.2.0.

Returns
(width, height)

ImageDraw.multiline_textsize(text, font=None, spacing=4, direction=None, features=None, language=None,
stroke_width=0)

Deprecated since version 9.2.0.

See deprecations for more information.

Use multiline_textbbox() instead.

Return the size of the given string, in pixels.

Use textlength() to measure the offset of following text with 1/64 pixel precision. Use textbbox() to get
the exact bounding box based on an anchor.

Note: For historical reasons this function measures text height as the distance between the top ascender line and
bottom descender line, not the top and bottom of the text, see Text anchors. If you wish to measure text height
from the top to the bottom of text, it is recommended to use multiline_textbbox() instead.

1.3. Reference 111

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

Parameters

• text – Text to be measured.

• font – An ImageFont instance.

• spacing – The number of pixels between lines.

• direction – Direction of the text. It can be "rtl" (right to left), "ltr" (left to right) or
"ttb" (top to bottom). Requires libraqm.

New in version 4.2.0.

• features – A list of OpenType font features to be used during text layout. This is usually
used to turn on optional font features that are not enabled by default, for example "dlig"
or "ss01", but can be also used to turn off default font features, for example "-liga" to
disable ligatures or "-kern" to disable kerning. To get all supported features, see OpenType
docs. Requires libraqm.

New in version 4.2.0.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code. Requires
libraqm.

New in version 6.0.0.

• stroke_width – The width of the text stroke.

New in version 6.2.0.

Returns
(width, height)

ImageDraw.textlength(text, font=None, direction=None, features=None, language=None,
embedded_color=False)

Returns length (in pixels with 1/64 precision) of given text when rendered in font with provided direction, features,
and language.

This is the amount by which following text should be offset. Text bounding box may extend past the length in
some fonts, e.g. when using italics or accents.

The result is returned as a float; it is a whole number if using basic layout.

Note that the sum of two lengths may not equal the length of a concatenated string due to kerning. If you need
to adjust for kerning, include the following character and subtract its length.

For example, instead of

hello = draw.textlength("Hello", font)
world = draw.textlength("World", font)
hello_world = hello + world # not adjusted for kerning
assert hello_world == draw.textlength("HelloWorld", font) # may fail

use

hello = draw.textlength("HelloW", font) - draw.textlength(
"W", font

) # adjusted for kerning
world = draw.textlength("World", font)

(continues on next page)

112 Chapter 1. Overview

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

hello_world = hello + world # adjusted for kerning
assert hello_world == draw.textlength("HelloWorld", font) # True

or disable kerning with (requires libraqm)

hello = draw.textlength("Hello", font, features=["-kern"])
world = draw.textlength("World", font, features=["-kern"])
hello_world = hello + world # kerning is disabled, no need to adjust
assert hello_world == draw.textlength("HelloWorld", font, features=["-kern"]) #␣
→˓True

New in version 8.0.0.

Parameters

• text – Text to be measured. May not contain any newline characters.

• font – An ImageFont instance.

• direction – Direction of the text. It can be "rtl" (right to left), "ltr" (left to right) or
"ttb" (top to bottom). Requires libraqm.

• features – A list of OpenType font features to be used during text layout. This is usually
used to turn on optional font features that are not enabled by default, for example "dlig"
or "ss01", but can be also used to turn off default font features, for example "-liga" to
disable ligatures or "-kern" to disable kerning. To get all supported features, see OpenType
docs. Requires libraqm.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code. Requires
libraqm.

• embedded_color – Whether to use font embedded color glyphs (COLR, CBDT, SBIX).

Returns
Width for horizontal, height for vertical text.

ImageDraw.textbbox(xy, text, font=None, anchor=None, spacing=4, align='left', direction=None, features=None,
language=None, stroke_width=0, embedded_color=False)

Returns bounding box (in pixels) of given text relative to given anchor when rendered in font with provided
direction, features, and language. Only supported for TrueType fonts.

Use textlength() to get the offset of following text with 1/64 pixel precision. The bounding box includes extra
margins for some fonts, e.g. italics or accents.

New in version 8.0.0.

Parameters

• xy – The anchor coordinates of the text.

• text – Text to be measured. If it contains any newline characters, the text is passed on to
multiline_textbbox().

• font – A FreeTypeFont instance.

• anchor – The text anchor alignment. Determines the relative location of the anchor to the
text. The default alignment is top left. See Text anchors for valid values. This parameter is
ignored for non-TrueType fonts.

1.3. Reference 113

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

• spacing – If the text is passed on to multiline_textbbox(), the number of pixels be-
tween lines.

• align – If the text is passed on to multiline_textbbox(), "left", "center" or
"right". Determines the relative alignment of lines. Use the anchor parameter to specify
the alignment to xy.

• direction – Direction of the text. It can be "rtl" (right to left), "ltr" (left to right) or
"ttb" (top to bottom). Requires libraqm.

• features – A list of OpenType font features to be used during text layout. This is usually
used to turn on optional font features that are not enabled by default, for example "dlig"
or "ss01", but can be also used to turn off default font features, for example "-liga" to
disable ligatures or "-kern" to disable kerning. To get all supported features, see OpenType
docs. Requires libraqm.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code. Requires
libraqm.

• stroke_width – The width of the text stroke.

• embedded_color – Whether to use font embedded color glyphs (COLR, CBDT, SBIX).

Returns
(left, top, right, bottom) bounding box

ImageDraw.multiline_textbbox(xy, text, font=None, anchor=None, spacing=4, align='left', direction=None,
features=None, language=None, stroke_width=0, embedded_color=False)

Returns bounding box (in pixels) of given text relative to given anchor when rendered in font with provided
direction, features, and language. Only supported for TrueType fonts.

Use textlength() to get the offset of following text with 1/64 pixel precision. The bounding box includes extra
margins for some fonts, e.g. italics or accents.

New in version 8.0.0.

Parameters

• xy – The anchor coordinates of the text.

• text – Text to be measured.

• font – A FreeTypeFont instance.

• anchor – The text anchor alignment. Determines the relative location of the anchor to the
text. The default alignment is top left. See Text anchors for valid values. This parameter is
ignored for non-TrueType fonts.

• spacing – The number of pixels between lines.

• align – "left", "center" or "right". Determines the relative alignment of lines. Use
the anchor parameter to specify the alignment to xy.

• direction – Direction of the text. It can be "rtl" (right to left), "ltr" (left to right) or
"ttb" (top to bottom). Requires libraqm.

• features – A list of OpenType font features to be used during text layout. This is usually
used to turn on optional font features that are not enabled by default, for example "dlig"
or "ss01", but can be also used to turn off default font features, for example "-liga" to
disable ligatures or "-kern" to disable kerning. To get all supported features, see OpenType
docs. Requires libraqm.

114 Chapter 1. Overview

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist


Pillow (PIL Fork) Documentation, Release 9.5.0

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code. Requires
libraqm.

• stroke_width – The width of the text stroke.

• embedded_color – Whether to use font embedded color glyphs (COLR, CBDT, SBIX).

Returns
(left, top, right, bottom) bounding box

PIL.ImageDraw.getdraw(im=None, hints=None)

Warning: This method is experimental.

A more advanced 2D drawing interface for PIL images, based on the WCK interface.

Parameters

• im – The image to draw in.

• hints – An optional list of hints.

Returns
A (drawing context, drawing resource factory) tuple.

PIL.ImageDraw.floodfill(image, xy, value, border=None, thresh=0)

Warning: This method is experimental.

Fills a bounded region with a given color.

Parameters

• image – Target image.

• xy – Seed position (a 2-item coordinate tuple).

• value – Fill color.

• border – Optional border value. If given, the region consists of pixels with a color different
from the border color. If not given, the region consists of pixels having the same color as the
seed pixel.

• thresh – Optional threshold value which specifies a maximum tolerable difference of a pixel
value from the ‘background’ in order for it to be replaced. Useful for filling regions of non-
homogeneous, but similar, colors.

1.3. Reference 115

https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

1.3.6 ImageEnhance Module

The ImageEnhance module contains a number of classes that can be used for image enhancement.

Example: Vary the sharpness of an image

from PIL import ImageEnhance

enhancer = ImageEnhance.Sharpness(image)

for i in range(8):
factor = i / 4.0
enhancer.enhance(factor).show(f"Sharpness {factor:f}")

Also see the enhancer.py demo program in the Scripts/ directory.

Classes

All enhancement classes implement a common interface, containing a single method:

class PIL.ImageEnhance._Enhance

enhance(factor)
Returns an enhanced image.

Parameters
factor – A floating point value controlling the enhancement. Factor 1.0 always returns
a copy of the original image, lower factors mean less color (brightness, contrast, etc), and
higher values more. There are no restrictions on this value.

class PIL.ImageEnhance.Color(image)
Adjust image color balance.

This class can be used to adjust the colour balance of an image, in a manner similar to the controls on a colour
TV set. An enhancement factor of 0.0 gives a black and white image. A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Contrast(image)
Adjust image contrast.

This class can be used to control the contrast of an image, similar to the contrast control on a TV set. An
enhancement factor of 0.0 gives a solid grey image. A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Brightness(image)
Adjust image brightness.

This class can be used to control the brightness of an image. An enhancement factor of 0.0 gives a black image.
A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Sharpness(image)
Adjust image sharpness.

This class can be used to adjust the sharpness of an image. An enhancement factor of 0.0 gives a blurred image,
a factor of 1.0 gives the original image, and a factor of 2.0 gives a sharpened image.

116 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

1.3.7 ImageFile Module

The ImageFile module provides support functions for the image open and save functions.

In addition, it provides a Parser class which can be used to decode an image piece by piece (e.g. while receiving it
over a network connection). This class implements the same consumer interface as the standard sgmllib and xmllib
modules.

Example: Parse an image

from PIL import ImageFile

fp = open("hopper.pgm", "rb")

p = ImageFile.Parser()

while 1:
s = fp.read(1024)
if not s:

break
p.feed(s)

im = p.close()

im.save("copy.jpg")

Classes

class PIL.ImageFile.Parser

Incremental image parser. This class implements the standard feed/close consumer interface.

close()

(Consumer) Close the stream.

Returns
An image object.

Raises
OSError – If the parser failed to parse the image file either because it cannot be identified or
cannot be decoded.

feed(data)
(Consumer) Feed data to the parser.

Parameters
data – A string buffer.

Raises
OSError – If the parser failed to parse the image file.

reset()

(Consumer) Reset the parser. Note that you can only call this method immediately after you’ve created a
parser; parser instances cannot be reused.

1.3. Reference 117

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError


Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.ImageFile.PyCodec

cleanup()

Override to perform codec specific cleanup

Returns
None

init(args)
Override to perform codec specific initialization

Parameters
args – Array of args items from the tile entry

Returns
None

setfd(fd)
Called from ImageFile to set the Python file-like object

Parameters
fd – A Python file-like object

Returns
None

setimage(im, extents=None)
Called from ImageFile to set the core output image for the codec

Parameters

• im – A core image object

• extents – a 4 tuple of (x0, y0, x1, y1) defining the rectangle for this tile

Returns
None

class PIL.ImageFile.PyDecoder

Bases: PyCodec

Python implementation of a format decoder. Override this class and add the decoding logic in the decode()
method.

See Writing Your Own File Codec in Python

decode(buffer)
Override to perform the decoding process.

Parameters
buffer – A bytes object with the data to be decoded.

Returns
A tuple of (bytes consumed, errcode). If finished with decoding return -1 for the bytes
consumed. Err codes are from ImageFile.ERRORS.

set_as_raw(data, rawmode=None)
Convenience method to set the internal image from a stream of raw data

Parameters

• data – Bytes to be set

118 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• rawmode – The rawmode to be used for the decoder. If not specified, it will default to the
mode of the image

Returns
None

class PIL.ImageFile.PyEncoder

Bases: PyCodec

Python implementation of a format encoder. Override this class and add the decoding logic in the encode()
method.

See Writing Your Own File Codec in Python

encode(bufsize)
Override to perform the encoding process.

Parameters
bufsize – Buffer size.

Returns
A tuple of (bytes encoded, errcode, bytes). If finished with encoding return 1 for
the error code. Err codes are from ImageFile.ERRORS.

encode_to_file(fh, bufsize)

Parameters

• fh – File handle.

• bufsize – Buffer size.

Returns
If finished successfully, return 0. Otherwise, return an error code. Err codes are from
ImageFile.ERRORS.

encode_to_pyfd()

If pushes_fd is True, then this method will be used, and encode() will only be called once.

Returns
A tuple of (bytes consumed, errcode). Err codes are from ImageFile.ERRORS.

class PIL.ImageFile.ImageFile

Bases: Image

Base class for image file format handlers.

tile

A list of tile descriptors, or None

get_format_mimetype()

verify()

Check file integrity

load()

Load image data based on tile list

load_prepare()

load_end()

1.3. Reference 119



Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.ImageFile.StubImageFile

Bases: ImageFile

Base class for stub image loaders.

A stub loader is an image loader that can identify files of a certain format, but relies on external code to load the
file.

load()

Load image data based on tile list

Constants

PIL.ImageFile.LOAD_TRUNCATED_IMAGES = False

Whether or not to load truncated image files. User code may change this.

PIL.ImageFile.ERRORS

Dict of known error codes returned from PyDecoder.decode(), PyEncoder.encode() PyEncoder.
encode_to_pyfd() and PyEncoder.encode_to_file().

1.3.8 ImageFilter Module

The ImageFilter module contains definitions for a pre-defined set of filters, which can be be used with the Image.
filter() method.

Example: Filter an image

from PIL import ImageFilter

im1 = im.filter(ImageFilter.BLUR)

im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter) # same as MinFilter(3)

Filters

The current version of the library provides the following set of predefined image enhancement filters:

• BLUR

• CONTOUR

• DETAIL

• EDGE_ENHANCE

• EDGE_ENHANCE_MORE

• EMBOSS

• FIND_EDGES

• SHARPEN

• SMOOTH

120 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• SMOOTH_MORE

class PIL.ImageFilter.Color3DLUT(size, table, channels=3, target_mode=None, **kwargs)
Three-dimensional color lookup table.

Transforms 3-channel pixels using the values of the channels as coordinates in the 3D lookup table and interpo-
lating the nearest elements.

This method allows you to apply almost any color transformation in constant time by using pre-calculated deci-
mated tables.

New in version 5.2.0.

Parameters

• size – Size of the table. One int or tuple of (int, int, int). Minimal size in any dimension is
2, maximum is 65.

• table – Flat lookup table. A list of channels * size**3 float elements or a list of
size**3 channels-sized tuples with floats. Channels are changed first, then first dimension,
then second, then third. Value 0.0 corresponds lowest value of output, 1.0 highest.

• channels – Number of channels in the table. Could be 3 or 4. Default is 3.

• target_mode – A mode for the result image. Should have not less than channels channels.
Default is None, which means that mode wouldn’t be changed.

classmethod generate(size, callback, channels=3, target_mode=None)
Generates new LUT using provided callback.

Parameters

• size – Size of the table. Passed to the constructor.

• callback – Function with three parameters which correspond three color channels. Will
be called size**3 times with values from 0.0 to 1.0 and should return a tuple with
channels elements.

• channels – The number of channels which should return callback.

• target_mode – Passed to the constructor of the resulting lookup table.

transform(callback, with_normals=False, channels=None, target_mode=None)
Transforms the table values using provided callback and returns a new LUT with altered values.

Parameters

• callback – A function which takes old lookup table values and returns a new set of val-
ues. The number of arguments which function should take is self.channels or 3 +
self.channels if with_normals flag is set. Should return a tuple of self.channels
or channels elements if it is set.

• with_normals – If true, callback will be called with coordinates in the color cube as the
first three arguments. Otherwise, callback will be called only with actual color values.

• channels – The number of channels in the resulting lookup table.

• target_mode – Passed to the constructor of the resulting lookup table.

class PIL.ImageFilter.BoxBlur(radius)
Blurs the image by setting each pixel to the average value of the pixels in a square box extending radius pixels in
each direction. Supports float radius of arbitrary size. Uses an optimized implementation which runs in linear
time relative to the size of the image for any radius value.

1.3. Reference 121



Pillow (PIL Fork) Documentation, Release 9.5.0

Parameters
radius – Size of the box in one direction. Radius 0 does not blur, returns an identical image.
Radius 1 takes 1 pixel in each direction, i.e. 9 pixels in total.

class PIL.ImageFilter.GaussianBlur(radius=2)
Blurs the image with a sequence of extended box filters, which approximates a Gaussian kernel. For details on
accuracy see <https://www.mia.uni-saarland.de/Publications/gwosdek-ssvm11.pdf>

Parameters
radius – Standard deviation of the Gaussian kernel.

class PIL.ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3)
Unsharp mask filter.

See Wikipedia’s entry on digital unsharp masking for an explanation of the parameters.

Parameters

• radius – Blur Radius

• percent – Unsharp strength, in percent

• threshold – Threshold controls the minimum brightness change that will be sharpened

class PIL.ImageFilter.Kernel(size, kernel, scale=None, offset=0)
Create a convolution kernel. The current version only supports 3x3 and 5x5 integer and floating point kernels.

In the current version, kernels can only be applied to “L” and “RGB” images.

Parameters

• size – Kernel size, given as (width, height). In the current version, this must be (3,3) or
(5,5).

• kernel – A sequence containing kernel weights.

• scale – Scale factor. If given, the result for each pixel is divided by this value. The default
is the sum of the kernel weights.

• offset – Offset. If given, this value is added to the result, after it has been divided by the
scale factor.

class PIL.ImageFilter.RankFilter(size, rank)
Create a rank filter. The rank filter sorts all pixels in a window of the given size, and returns the rank’th value.

Parameters

• size – The kernel size, in pixels.

• rank – What pixel value to pick. Use 0 for a min filter, size * size / 2 for a median
filter, size * size - 1 for a max filter, etc.

class PIL.ImageFilter.MedianFilter(size=3)
Create a median filter. Picks the median pixel value in a window with the given size.

Parameters
size – The kernel size, in pixels.

class PIL.ImageFilter.MinFilter(size=3)
Create a min filter. Picks the lowest pixel value in a window with the given size.

Parameters
size – The kernel size, in pixels.

122 Chapter 1. Overview

https://www.mia.uni-saarland.de/Publications/gwosdek-ssvm11.pdf
https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking


Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.ImageFilter.MaxFilter(size=3)
Create a max filter. Picks the largest pixel value in a window with the given size.

Parameters
size – The kernel size, in pixels.

class PIL.ImageFilter.ModeFilter(size=3)
Create a mode filter. Picks the most frequent pixel value in a box with the given size. Pixel values that occur
only once or twice are ignored; if no pixel value occurs more than twice, the original pixel value is preserved.

Parameters
size – The kernel size, in pixels.

class PIL.ImageFilter.Filter

An abstract mixin used for filtering images (for use with filter()).

Implementors must provide the following method:

filter(self, image)
Applies a filter to a single-band image, or a single band of an image.

Returns
A filtered copy of the image.

class PIL.ImageFilter.MultibandFilter

An abstract mixin used for filtering multi-band images (for use with filter()).

Implementors must provide the following method:

filter(self, image)
Applies a filter to a multi-band image.

Returns
A filtered copy of the image.

1.3.9 ImageFont Module

The ImageFont module defines a class with the same name. Instances of this class store bitmap fonts, and are used
with the PIL.ImageDraw.ImageDraw.text() method.

PIL uses its own font file format to store bitmap fonts, limited to 256 characters. You can use pilfont.py from pillow-
scripts to convert BDF and PCF font descriptors (X window font formats) to this format.

Starting with version 1.1.4, PIL can be configured to support TrueType and OpenType fonts (as well as other font
formats supported by the FreeType library). For earlier versions, TrueType support is only available as part of the
imToolkit package.

Example

from PIL import ImageFont, ImageDraw

draw = ImageDraw.Draw(image)

# use a bitmap font
font = ImageFont.load("arial.pil")

(continues on next page)

1.3. Reference 123

https://github.com/python-pillow/pillow-scripts/blob/main/Scripts/pilfont.py
https://pypi.org/project/pillow-scripts/
https://pypi.org/project/pillow-scripts/


Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

draw.text((10, 10), "hello", font=font)

# use a truetype font
font = ImageFont.truetype("arial.ttf", 15)

draw.text((10, 25), "world", font=font)

Functions

PIL.ImageFont.load(filename)
Load a font file. This function loads a font object from the given bitmap font file, and returns the corresponding
font object.

Parameters
filename – Name of font file.

Returns
A font object.

Raises
OSError – If the file could not be read.

PIL.ImageFont.load_path(filename)
Load font file. Same as load(), but searches for a bitmap font along the Python path.

Parameters
filename – Name of font file.

Returns
A font object.

Raises
OSError – If the file could not be read.

PIL.ImageFont.truetype(font=None, size=10, index=0, encoding='', layout_engine=None)
Load a TrueType or OpenType font from a file or file-like object, and create a font object. This function loads a
font object from the given file or file-like object, and creates a font object for a font of the given size.

Pillow uses FreeType to open font files. On Windows, be aware that FreeType will keep the file open as long
as the FreeTypeFont object exists. Windows limits the number of files that can be open in C at once to 512, so
if many fonts are opened simultaneously and that limit is approached, an OSError may be thrown, reporting
that FreeType “cannot open resource”. A workaround would be to copy the file(s) into memory, and open that
instead.

This function requires the _imagingft service.

Parameters

• font – A filename or file-like object containing a TrueType font. If the file is not found in
this filename, the loader may also search in other directories, such as the fonts/ directory
on Windows or /Library/Fonts/, /System/Library/Fonts/ and ~/Library/Fonts/
on macOS.

• size – The requested size, in pixels.

• index – Which font face to load (default is first available face).

124 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError


Pillow (PIL Fork) Documentation, Release 9.5.0

• encoding – Which font encoding to use (default is Unicode). Possible encodings include
(see the FreeType documentation for more information):

– ”unic” (Unicode)

– ”symb” (Microsoft Symbol)

– ”ADOB” (Adobe Standard)

– ”ADBE” (Adobe Expert)

– ”ADBC” (Adobe Custom)

– ”armn” (Apple Roman)

– ”sjis” (Shift JIS)

– ”gb “ (PRC)

– ”big5”

– ”wans” (Extended Wansung)

– ”joha” (Johab)

– ”lat1” (Latin-1)

This specifies the character set to use. It does not alter the encoding of any text provided in
subsequent operations.

• layout_engine – Which layout engine to use, if available: ImageFont.Layout.BASIC
or ImageFont.Layout.RAQM . If it is available, Raqm layout will be used by default. Oth-
erwise, basic layout will be used.

Raqm layout is recommended for all non-English text. If Raqm layout is not required, basic
layout will have better performance.

You can check support for Raqm layout using PIL.features.check_feature() with
feature="raqm".

New in version 4.2.0.

Returns
A font object.

Raises
OSError – If the file could not be read.

PIL.ImageFont.load_default()

Load a “better than nothing” default font.

New in version 1.1.4.

Returns
A font object.

1.3. Reference 125

https://docs.python.org/3/library/exceptions.html#OSError


Pillow (PIL Fork) Documentation, Release 9.5.0

Methods

class PIL.ImageFont.ImageFont

PIL font wrapper

getbbox(text, *args, **kwargs)
Returns bounding box (in pixels) of given text.

New in version 9.2.0.

Parameters

• text – Text to render.

• mode – Used by some graphics drivers to indicate what mode the driver prefers; if empty,
the renderer may return either mode. Note that the mode is always a string, to simplify
C-level implementations.

Returns
(left, top, right, bottom) bounding box

getlength(text, *args, **kwargs)
Returns length (in pixels) of given text. This is the amount by which following text should be offset.

New in version 9.2.0.

getmask(text, mode='', *args, **kwargs)
Create a bitmap for the text.

If the font uses antialiasing, the bitmap should have mode L and use a maximum value of 255. Otherwise,
it should have mode 1.

Parameters

• text – Text to render.

• mode – Used by some graphics drivers to indicate what mode the driver prefers; if empty,
the renderer may return either mode. Note that the mode is always a string, to simplify
C-level implementations.

New in version 1.1.5.

Returns
An internal PIL storage memory instance as defined by the PIL.Image.core interface mod-
ule.

getsize(text, *args, **kwargs)
Deprecated since version 9.2.0.

Use getbbox() or getlength() instead.

See deprecations for more information.

Returns width and height (in pixels) of given text.

Parameters
text – Text to measure.

Returns
(width, height)

class PIL.ImageFont.FreeTypeFont(font=None, size=10, index=0, encoding='', layout_engine=None)
FreeType font wrapper (requires _imagingft service)

126 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

font_variant(font=None, size=None, index=None, encoding=None, layout_engine=None)
Create a copy of this FreeTypeFont object, using any specified arguments to override the settings.

Parameters are identical to the parameters used to initialize this object.

Returns
A FreeTypeFont object.

get_variation_axes()

Returns
A list of the axes in a variation font.

Raises
OSError – If the font is not a variation font.

get_variation_names()

Returns
A list of the named styles in a variation font.

Raises
OSError – If the font is not a variation font.

getbbox(text, mode='', direction=None, features=None, language=None, stroke_width=0, anchor=None)
Returns bounding box (in pixels) of given text relative to given anchor when rendered in font with provided
direction, features, and language.

Use getlength() to get the offset of following text with 1/64 pixel precision. The bounding box includes
extra margins for some fonts, e.g. italics or accents.

New in version 8.0.0.

Parameters

• text – Text to render.

• mode – Used by some graphics drivers to indicate what mode the driver prefers; if empty,
the renderer may return either mode. Note that the mode is always a string, to simplify
C-level implementations.

• direction – Direction of the text. It can be ‘rtl’ (right to left), ‘ltr’ (left to right) or ‘ttb’
(top to bottom). Requires libraqm.

• features – A list of OpenType font features to be used during text layout. This is usu-
ally used to turn on optional font features that are not enabled by default, for example
‘dlig’ or ‘ss01’, but can be also used to turn off default font features for example ‘-liga’
to disable ligatures or ‘-kern’ to disable kerning. To get all supported features, see https:
//learn.microsoft.com/en-us/typography/opentype/spec/featurelist Requires libraqm.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code Requires
libraqm.

• stroke_width – The width of the text stroke.

• anchor – The text anchor alignment. Determines the relative location of the anchor to the
text. The default alignment is top left. See Text anchors for valid values.

Returns
(left, top, right, bottom) bounding box

1.3. Reference 127

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

getlength(text, mode='', direction=None, features=None, language=None)
Returns length (in pixels with 1/64 precision) of given text when rendered in font with provided direction,
features, and language.

This is the amount by which following text should be offset. Text bounding box may extend past the length
in some fonts, e.g. when using italics or accents.

The result is returned as a float; it is a whole number if using basic layout.

Note that the sum of two lengths may not equal the length of a concatenated string due to kerning. If you
need to adjust for kerning, include the following character and subtract its length.

For example, instead of

hello = font.getlength("Hello")
world = font.getlength("World")
hello_world = hello + world # not adjusted for kerning
assert hello_world == font.getlength("HelloWorld") # may fail

use

hello = font.getlength("HelloW") - font.getlength("W") # adjusted for kerning
world = font.getlength("World")
hello_world = hello + world # adjusted for kerning
assert hello_world == font.getlength("HelloWorld") # True

or disable kerning with (requires libraqm)

hello = draw.textlength("Hello", font, features=["-kern"])
world = draw.textlength("World", font, features=["-kern"])
hello_world = hello + world # kerning is disabled, no need to adjust
assert hello_world == draw.textlength("HelloWorld", font, features=["-kern"])

New in version 8.0.0.

Parameters

• text – Text to measure.

• mode – Used by some graphics drivers to indicate what mode the driver prefers; if empty,
the renderer may return either mode. Note that the mode is always a string, to simplify
C-level implementations.

• direction – Direction of the text. It can be ‘rtl’ (right to left), ‘ltr’ (left to right) or ‘ttb’
(top to bottom). Requires libraqm.

• features – A list of OpenType font features to be used during text layout. This is usu-
ally used to turn on optional font features that are not enabled by default, for example
‘dlig’ or ‘ss01’, but can be also used to turn off default font features for example ‘-liga’
to disable ligatures or ‘-kern’ to disable kerning. To get all supported features, see https:
//learn.microsoft.com/en-us/typography/opentype/spec/featurelist Requires libraqm.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code Requires
libraqm.

Returns
Width for horizontal, height for vertical text.

128 Chapter 1. Overview

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

getmask(text, mode='', direction=None, features=None, language=None, stroke_width=0, anchor=None,
ink=0, start=None)

Create a bitmap for the text.

If the font uses antialiasing, the bitmap should have mode L and use a maximum value of 255. If the font
has embedded color data, the bitmap should have mode RGBA. Otherwise, it should have mode 1.

Parameters

• text – Text to render.

• mode – Used by some graphics drivers to indicate what mode the driver prefers; if empty,
the renderer may return either mode. Note that the mode is always a string, to simplify
C-level implementations.

New in version 1.1.5.

• direction – Direction of the text. It can be ‘rtl’ (right to left), ‘ltr’ (left to right) or ‘ttb’
(top to bottom). Requires libraqm.

New in version 4.2.0.

• features – A list of OpenType font features to be used during text layout. This is usu-
ally used to turn on optional font features that are not enabled by default, for example
‘dlig’ or ‘ss01’, but can be also used to turn off default font features for example ‘-liga’
to disable ligatures or ‘-kern’ to disable kerning. To get all supported features, see https:
//learn.microsoft.com/en-us/typography/opentype/spec/featurelist Requires libraqm.

New in version 4.2.0.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code Requires
libraqm.

New in version 6.0.0.

• stroke_width – The width of the text stroke.

New in version 6.2.0.

• anchor – The text anchor alignment. Determines the relative location of the anchor to the
text. The default alignment is top left. See Text anchors for valid values.

New in version 8.0.0.

• ink – Foreground ink for rendering in RGBA mode.

New in version 8.0.0.

• start – Tuple of horizontal and vertical offset, as text may render differently when starting
at fractional coordinates.

New in version 9.4.0.

Returns
An internal PIL storage memory instance as defined by the PIL.Image.core interface mod-
ule.

getmask2(text, mode='', fill=<object object>, direction=None, features=None, language=None,
stroke_width=0, anchor=None, ink=0, start=None, *args, **kwargs)

Create a bitmap for the text.

1.3. Reference 129

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

If the font uses antialiasing, the bitmap should have mode L and use a maximum value of 255. If the font
has embedded color data, the bitmap should have mode RGBA. Otherwise, it should have mode 1.

Parameters

• text – Text to render.

• mode – Used by some graphics drivers to indicate what mode the driver prefers; if empty,
the renderer may return either mode. Note that the mode is always a string, to simplify
C-level implementations.

New in version 1.1.5.

• fill – Optional fill function. By default, an internal Pillow function will be used.

Deprecated. This parameter will be removed in Pillow 10 (2023-07-01).

• direction – Direction of the text. It can be ‘rtl’ (right to left), ‘ltr’ (left to right) or ‘ttb’
(top to bottom). Requires libraqm.

New in version 4.2.0.

• features – A list of OpenType font features to be used during text layout. This is usu-
ally used to turn on optional font features that are not enabled by default, for example
‘dlig’ or ‘ss01’, but can be also used to turn off default font features for example ‘-liga’
to disable ligatures or ‘-kern’ to disable kerning. To get all supported features, see https:
//learn.microsoft.com/en-us/typography/opentype/spec/featurelist Requires libraqm.

New in version 4.2.0.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code Requires
libraqm.

New in version 6.0.0.

• stroke_width – The width of the text stroke.

New in version 6.2.0.

• anchor – The text anchor alignment. Determines the relative location of the anchor to the
text. The default alignment is top left. See Text anchors for valid values.

New in version 8.0.0.

• ink – Foreground ink for rendering in RGBA mode.

New in version 8.0.0.

• start – Tuple of horizontal and vertical offset, as text may render differently when starting
at fractional coordinates.

New in version 9.4.0.

Returns
A tuple of an internal PIL storage memory instance as defined by the PIL.Image.core inter-
face module, and the text offset, the gap between the starting coordinate and the first marking

getmetrics()

Returns
A tuple of the font ascent (the distance from the baseline to the highest outline point) and
descent (the distance from the baseline to the lowest outline point, a negative value)

130 Chapter 1. Overview

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

getname()

Returns
A tuple of the font family (e.g. Helvetica) and the font style (e.g. Bold)

getoffset(text)
Deprecated since version 9.2.0.

Use getbbox() instead.

See deprecations for more information.

Returns the offset of given text. This is the gap between the starting coordinate and the first marking. Note
that this gap is included in the result of getsize().

Parameters
text – Text to measure.

Returns
A tuple of the x and y offset

getsize(text, direction=None, features=None, language=None, stroke_width=0)
Deprecated since version 9.2.0.

Use getlength() to measure the offset of following text with 1/64 pixel precision. Use getbbox() to get
the exact bounding box based on an anchor.

See deprecations for more information.

Returns width and height (in pixels) of given text if rendered in font with provided direction, features, and
language.

Note: For historical reasons this function measures text height from the ascender line instead of the top,
see Text anchors. If you wish to measure text height from the top, it is recommended to use the bottom
value of getbbox() with anchor='lt' instead.

Parameters

• text – Text to measure.

• direction – Direction of the text. It can be ‘rtl’ (right to left), ‘ltr’ (left to right) or ‘ttb’
(top to bottom). Requires libraqm.

New in version 4.2.0.

• features – A list of OpenType font features to be used during text layout. This is usu-
ally used to turn on optional font features that are not enabled by default, for example
‘dlig’ or ‘ss01’, but can be also used to turn off default font features for example ‘-liga’
to disable ligatures or ‘-kern’ to disable kerning. To get all supported features, see https:
//learn.microsoft.com/en-us/typography/opentype/spec/featurelist Requires libraqm.

New in version 4.2.0.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code Requires
libraqm.

New in version 6.0.0.

1.3. Reference 131

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/


Pillow (PIL Fork) Documentation, Release 9.5.0

• stroke_width – The width of the text stroke.

New in version 6.2.0.

Returns
(width, height)

getsize_multiline(text, direction=None, spacing=4, features=None, language=None, stroke_width=0)
Deprecated since version 9.2.0.

Use ImageDraw.multiline_textbbox() instead.

See deprecations for more information.

Returns width and height (in pixels) of given text if rendered in font with provided direction, features, and
language, while respecting newline characters.

Parameters

• text – Text to measure.

• direction – Direction of the text. It can be ‘rtl’ (right to left), ‘ltr’ (left to right) or ‘ttb’
(top to bottom). Requires libraqm.

• spacing – The vertical gap between lines, defaulting to 4 pixels.

• features – A list of OpenType font features to be used during text layout. This is usu-
ally used to turn on optional font features that are not enabled by default, for example
‘dlig’ or ‘ss01’, but can be also used to turn off default font features for example ‘-liga’
to disable ligatures or ‘-kern’ to disable kerning. To get all supported features, see https:
//learn.microsoft.com/en-us/typography/opentype/spec/featurelist Requires libraqm.

• language – Language of the text. Different languages may use different glyph shapes or
ligatures. This parameter tells the font which language the text is in, and to apply the correct
substitutions as appropriate, if available. It should be a BCP 47 language code Requires
libraqm.

New in version 6.0.0.

• stroke_width – The width of the text stroke.

New in version 6.2.0.

Returns
(width, height)

set_variation_by_axes(axes)

Parameters
axes – A list of values for each axis.

Raises
OSError – If the font is not a variation font.

set_variation_by_name(name)

Parameters
name – The name of the style.

Raises
OSError – If the font is not a variation font.

132 Chapter 1. Overview

https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist
https://www.w3.org/International/articles/language-tags/
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError


Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.ImageFont.TransposedFont(font, orientation=None)
Wrapper for writing rotated or mirrored text

getbbox(text, *args, **kwargs)

getlength(text, *args, **kwargs)

getmask(text, mode='', *args, **kwargs)

getsize(text, *args, **kwargs)
Deprecated since version 9.2.0.

Use getbbox() or getlength() instead.

See deprecations for more information.

Constants

PIL.ImageFont.Layout.BASIC

Use basic text layout for TrueType font. Advanced features such as text direction are not supported.

PIL.ImageFont.Layout.RAQM

Use Raqm text layout for TrueType font. Advanced features are supported.

Requires Raqm, you can check support using PIL.features.check_feature() with feature="raqm".

1.3.10 ImageGrab Module

The ImageGrab module can be used to copy the contents of the screen or the clipboard to a PIL image memory.

New in version 1.1.3.

PIL.ImageGrab.grab(bbox=None, include_layered_windows=False, all_screens=False, xdisplay=None)
Take a snapshot of the screen. The pixels inside the bounding box are returned as an “RGBA” on macOS, or an
“RGB” image otherwise. If the bounding box is omitted, the entire screen is copied.

On Linux, if xdisplay is None then gnome-screenshot will be used if it is installed. To capture the default
X11 display instead, pass xdisplay="".

New in version 1.1.3: (Windows), 3.0.0 (macOS), 7.1.0 (Linux)

Parameters

• bbox – What region to copy. Default is the entire screen. Note that on Windows OS, the
top-left point may be negative if all_screens=True is used.

• include_layered_windows – Includes layered windows. Windows OS only.

New in version 6.1.0.

• all_screens – Capture all monitors. Windows OS only.

New in version 6.2.0.

• xdisplay – X11 Display address. Pass None to grab the default system screen. Pass "" to
grab the default X11 screen on Windows or macOS.

You can check X11 support using PIL.features.check_feature() with
feature="xcb".

New in version 7.1.0.

1.3. Reference 133

https://docs.python.org/3/library/constants.html#None


Pillow (PIL Fork) Documentation, Release 9.5.0

Returns
An image

PIL.ImageGrab.grabclipboard()

Take a snapshot of the clipboard image, if any. Only macOS and Windows are currently supported.

New in version 1.1.4: (Windows), 3.3.0 (macOS)

Returns

On Windows, an image, a list of filenames, or None if the clipboard does not contain image data
or filenames. Note that if a list is returned, the filenames may not represent image files.

On Mac, an image, or None if the clipboard does not contain image data.

1.3.11 ImageMath Module

The ImageMath module can be used to evaluate “image expressions”. The module provides a single eval() function,
which takes an expression string and one or more images.

Example: Using the ImageMath module

from PIL import Image, ImageMath

with Image.open("image1.jpg") as im1:
with Image.open("image2.jpg") as im2:

out = ImageMath.eval("convert(min(a, b), 'L')", a=im1, b=im2)
out.save("result.png")

PIL.ImageMath.eval(expression, environment)
Evaluate expression in the given environment.

In the current version, ImageMath only supports single-layer images. To process multi-band images, use the
split() method or merge() function.

Parameters

• expression – A string which uses the standard Python expression syntax. In addition to
the standard operators, you can also use the functions described below.

• environment – A dictionary that maps image names to Image instances. You can use one
or more keyword arguments instead of a dictionary, as shown in the above example. Note
that the names must be valid Python identifiers.

Returns
An image, an integer value, a floating point value, or a pixel tuple, depending on the expression.

134 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Expression syntax

Expressions are standard Python expressions, but they’re evaluated in a non-standard environment. You can use PIL
methods as usual, plus the following set of operators and functions:

Standard Operators

You can use standard arithmetical operators for addition (+), subtraction (-), multiplication (*), and division (/).

The module also supports unary minus (-), modulo (%), and power (**) operators.

Note that all operations are done with 32-bit integers or 32-bit floating point values, as necessary. For example, if you
add two 8-bit images, the result will be a 32-bit integer image. If you add a floating point constant to an 8-bit image,
the result will be a 32-bit floating point image.

You can force conversion using the convert(), float(), and int() functions described below.

Bitwise Operators

The module also provides operations that operate on individual bits. This includes and (&), or (|), and exclusive or (^).
You can also invert (~) all pixel bits.

Note that the operands are converted to 32-bit signed integers before the bitwise operation is applied. This means that
you’ll get negative values if you invert an ordinary greyscale image. You can use the and (&) operator to mask off
unwanted bits.

Bitwise operators don’t work on floating point images.

Logical Operators

Logical operators like and, or, and not work on entire images, rather than individual pixels.

An empty image (all pixels zero) is treated as false. All other images are treated as true.

Note that and and or return the last evaluated operand, while not always returns a boolean value.

Built-in Functions

These functions are applied to each individual pixel.

abs(image)
Absolute value.

convert(image, mode)
Convert image to the given mode. The mode must be given as a string constant.

float(image)
Convert image to 32-bit floating point. This is equivalent to convert(image, “F”).

int(image)
Convert image to 32-bit integer. This is equivalent to convert(image, “I”).

Note that 1-bit and 8-bit images are automatically converted to 32-bit integers if necessary to get a correct result.

1.3. Reference 135



Pillow (PIL Fork) Documentation, Release 9.5.0

max(image1, image2)
Maximum value.

min(image1, image2)
Minimum value.

1.3.12 ImageMorph Module

The ImageMorph module provides morphology operations on images.

class PIL.ImageMorph.LutBuilder(patterns=None, op_name=None)
Bases: object

A class for building a MorphLut from a descriptive language

The input patterns is a list of a strings sequences like these:

4:(...
.1.
111)->1

(whitespaces including linebreaks are ignored). The option 4 describes a series of symmetry operations (in this
case a 4-rotation), the pattern is described by:

• . or X - Ignore

• 1 - Pixel is on

• 0 - Pixel is off

The result of the operation is described after “->” string.

The default is to return the current pixel value, which is returned if no other match is found.

Operations:

• 4 - 4 way rotation

• N - Negate

• 1 - Dummy op for no other operation (an op must always be given)

• M - Mirroring

Example:

lb = LutBuilder(patterns = ["4:(... .1. 111)->1"])
lut = lb.build_lut()

add_patterns(patterns)

build_default_lut()

build_lut()

Compile all patterns into a morphology lut.

TBD :Build based on (file) morphlut:modify_lut

get_lut()

136 Chapter 1. Overview

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.ImageMorph.MorphOp(lut=None, op_name=None, patterns=None)
Bases: object

A class for binary morphological operators

apply(image)
Run a single morphological operation on an image

Returns a tuple of the number of changed pixels and the morphed image

get_on_pixels(image)
Get a list of all turned on pixels in a binary image

Returns a list of tuples of (x,y) coordinates of all matching pixels. See Coordinate System.

load_lut(filename)
Load an operator from an mrl file

match(image)
Get a list of coordinates matching the morphological operation on an image.

Returns a list of tuples of (x,y) coordinates of all matching pixels. See Coordinate System.

save_lut(filename)
Save an operator to an mrl file

set_lut(lut)
Set the lut from an external source

1.3.13 ImageOps Module

The ImageOps module contains a number of ‘ready-made’ image processing operations. This module is somewhat
experimental, and most operators only work on L and RGB images.

New in version 1.1.3.

PIL.ImageOps.autocontrast(image, cutoff=0, ignore=None, mask=None, preserve_tone=False)
Maximize (normalize) image contrast. This function calculates a histogram of the input image (or mask region),
removes cutoff percent of the lightest and darkest pixels from the histogram, and remaps the image so that the
darkest pixel becomes black (0), and the lightest becomes white (255).

Parameters

• image – The image to process.

• cutoff – The percent to cut off from the histogram on the low and high ends. Either a tuple
of (low, high), or a single number for both.

• ignore – The background pixel value (use None for no background).

• mask – Histogram used in contrast operation is computed using pixels within the mask. If
no mask is given the entire image is used for histogram computation.

• preserve_tone – Preserve image tone in Photoshop-like style autocontrast.

New in version 8.2.0.

Returns
An image.

1.3. Reference 137

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.ImageOps.colorize(image, black, white, mid=None, blackpoint=0, whitepoint=255, midpoint=127)
Colorize grayscale image. This function calculates a color wedge which maps all black pixels in the source
image to the first color and all white pixels to the second color. If mid is specified, it uses three-color mapping.
The black and white arguments should be RGB tuples or color names; optionally you can use three-color
mapping by also specifying mid. Mapping positions for any of the colors can be specified (e.g. blackpoint),
where these parameters are the integer value corresponding to where the corresponding color should be mapped.
These parameters must have logical order, such that blackpoint <= midpoint <= whitepoint (if mid is
specified).

Parameters

• image – The image to colorize.

• black – The color to use for black input pixels.

• white – The color to use for white input pixels.

• mid – The color to use for midtone input pixels.

• blackpoint – an int value [0, 255] for the black mapping.

• whitepoint – an int value [0, 255] for the white mapping.

• midpoint – an int value [0, 255] for the midtone mapping.

Returns
An image.

PIL.ImageOps.contain(image, size, method=Resampling.BICUBIC)
Returns a resized version of the image, set to the maximum width and height within the requested size, while
maintaining the original aspect ratio.

Parameters

• image – The image to resize and crop.

• size – The requested output size in pixels, given as a (width, height) tuple.

• method – Resampling method to use. Default is BICUBIC. See Filters.

Returns
An image.

PIL.ImageOps.pad(image, size, method=Resampling.BICUBIC, color=None, centering=(0.5, 0.5))
Returns a resized and padded version of the image, expanded to fill the requested aspect ratio and size.

Parameters

• image – The image to resize and crop.

• size – The requested output size in pixels, given as a (width, height) tuple.

• method – Resampling method to use. Default is BICUBIC. See Filters.

• color – The background color of the padded image.

• centering – Control the position of the original image within the padded version.

(0.5, 0.5) will keep the image centered (0, 0) will keep the image aligned to the top left
(1, 1) will keep the image aligned to the bottom right

Returns
An image.

138 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.ImageOps.crop(image, border=0)
Remove border from image. The same amount of pixels are removed from all four sides. This function works on
all image modes.

See also:

crop()

Parameters

• image – The image to crop.

• border – The number of pixels to remove.

Returns
An image.

PIL.ImageOps.scale(image, factor, resample=Resampling.BICUBIC)
Returns a rescaled image by a specific factor given in parameter. A factor greater than 1 expands the image,
between 0 and 1 contracts the image.

Parameters

• image – The image to rescale.

• factor – The expansion factor, as a float.

• resample – Resampling method to use. Default is BICUBIC. See Filters.

Returns
An Image object.

PIL.ImageOps.deform(image, deformer, resample=Resampling.BILINEAR)
Deform the image.

Parameters

• image – The image to deform.

• deformer – A deformer object. Any object that implements a getmeshmethod can be used.

• resample – An optional resampling filter. Same values possible as in the
PIL.Image.transform function.

Returns
An image.

PIL.ImageOps.equalize(image, mask=None)
Equalize the image histogram. This function applies a non-linear mapping to the input image, in order to create
a uniform distribution of grayscale values in the output image.

Parameters

• image – The image to equalize.

• mask – An optional mask. If given, only the pixels selected by the mask are included in the
analysis.

Returns
An image.

1.3. Reference 139



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.ImageOps.expand(image, border=0, fill=0)
Add border to the image

Parameters

• image – The image to expand.

• border – Border width, in pixels.

• fill – Pixel fill value (a color value). Default is 0 (black).

Returns
An image.

PIL.ImageOps.fit(image, size, method=Resampling.BICUBIC, bleed=0.0, centering=(0.5, 0.5))
Returns a resized and cropped version of the image, cropped to the requested aspect ratio and size.

This function was contributed by Kevin Cazabon.

Parameters

• image – The image to resize and crop.

• size – The requested output size in pixels, given as a (width, height) tuple.

• method – Resampling method to use. Default is BICUBIC. See Filters.

• bleed – Remove a border around the outside of the image from all four edges. The value is
a decimal percentage (use 0.01 for one percent). The default value is 0 (no border). Cannot
be greater than or equal to 0.5.

• centering – Control the cropping position. Use (0.5, 0.5) for center cropping (e.g. if
cropping the width, take 50% off of the left side, and therefore 50% off the right side). (0.0,
0.0) will crop from the top left corner (i.e. if cropping the width, take all of the crop off of
the right side, and if cropping the height, take all of it off the bottom). (1.0, 0.0) will crop
from the bottom left corner, etc. (i.e. if cropping the width, take all of the crop off the left
side, and if cropping the height take none from the top, and therefore all off the bottom).

Returns
An image.

PIL.ImageOps.flip(image)
Flip the image vertically (top to bottom).

Parameters
image – The image to flip.

Returns
An image.

PIL.ImageOps.grayscale(image)
Convert the image to grayscale.

Parameters
image – The image to convert.

Returns
An image.

PIL.ImageOps.invert(image)
Invert (negate) the image.

Parameters
image – The image to invert.

140 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Returns
An image.

PIL.ImageOps.mirror(image)
Flip image horizontally (left to right).

Parameters
image – The image to mirror.

Returns
An image.

PIL.ImageOps.posterize(image, bits)
Reduce the number of bits for each color channel.

Parameters

• image – The image to posterize.

• bits – The number of bits to keep for each channel (1-8).

Returns
An image.

PIL.ImageOps.solarize(image, threshold=128)
Invert all pixel values above a threshold.

Parameters

• image – The image to solarize.

• threshold – All pixels above this greyscale level are inverted.

Returns
An image.

PIL.ImageOps.exif_transpose(image)
If an image has an EXIF Orientation tag, other than 1, return a new image that is transposed accordingly. The
new image will have the orientation data removed.

Otherwise, return a copy of the image.

Parameters
image – The image to transpose.

Returns
An image.

1.3.14 ImagePalette Module

The ImagePalette module contains a class of the same name to represent the color palette of palette mapped images.

Note: The ImagePalette class has several methods, but they are all marked as “experimental.” Read that as you will.
The [source] link is there for a reason.

class PIL.ImagePalette.ImagePalette(mode='RGB', palette=None, size=0)
Color palette for palette mapped images

Parameters

1.3. Reference 141



Pillow (PIL Fork) Documentation, Release 9.5.0

• mode – The mode to use for the palette. See: Modes. Defaults to “RGB”

• palette – An optional palette. If given, it must be a bytearray, an array or a list of ints
between 0-255. The list must consist of all channels for one color followed by the next color
(e.g. RGBRGBRGB). Defaults to an empty palette.

getcolor(color, image=None)
Given an rgb tuple, allocate palette entry.

Warning: This method is experimental.

getdata()

Get palette contents in format suitable for the low-level im.putpalette primitive.

Warning: This method is experimental.

save(fp)
Save palette to text file.

Warning: This method is experimental.

tobytes()

Convert palette to bytes.

Warning: This method is experimental.

tostring()

Convert palette to bytes.

Warning: This method is experimental.

1.3.15 ImagePath Module

The ImagePath module is used to store and manipulate 2-dimensional vector data. Path objects can be passed to the
methods on the ImageDraw module.

class PIL.ImagePath.Path

A path object. The coordinate list can be any sequence object containing either 2-tuples [(x, y), . . . ] or numeric
values [x, y, . . . ].

You can also create a path object from another path object.

In 1.1.6 and later, you can also pass in any object that implements Python’s buffer API. The buffer should provide
read access, and contain C floats in machine byte order.

The path object implements most parts of the Python sequence interface, and behaves like a list of (x, y) pairs. You
can use len(), item access, and slicing as usual. However, the current version does not support slice assignment,
or item and slice deletion.

142 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Parameters
xy – A sequence. The sequence can contain 2-tuples [(x, y), . . . ] or a flat list of numbers [x, y,
. . . ].

PIL.ImagePath.Path.compact(distance=2)
Compacts the path, by removing points that are close to each other. This method modifies the path in place, and
returns the number of points left in the path.

distance is measured as Manhattan distance and defaults to two pixels.

PIL.ImagePath.Path.getbbox()

Gets the bounding box of the path.

Returns
(x0, y0, x1, y1)

PIL.ImagePath.Path.map(function)
Maps the path through a function.

PIL.ImagePath.Path.tolist(flat=0)
Converts the path to a Python list [(x, y), . . . ].

Parameters
flat – By default, this function returns a list of 2-tuples [(x, y), . . . ]. If this argument is True, it
returns a flat list [x, y, . . . ] instead.

Returns
A list of coordinates. See flat.

PIL.ImagePath.Path.transform(matrix)
Transforms the path in place, using an affine transform. The matrix is a 6-tuple (a, b, c, d, e, f), and each point
is mapped as follows:

xOut = xIn * a + yIn * b + c
yOut = xIn * d + yIn * e + f

1.3.16 ImageQt Module

The ImageQt module contains support for creating PyQt6, PySide6, PyQt5 or PySide2 QImage objects from PIL
images.

Qt 5 reached end-of-life on 2020-12-08 for open-source users (and will reach EOL on 2023-12-08 for commercial
licence holders).

Support for PyQt5 and PySide2 has been deprecated from ImageQt and will be removed in Pillow 10 (2023-07-01).
Upgrade to PyQt6 or PySide6 instead.

New in version 1.1.6.

class PIL.ImageQt.ImageQt(image)
Creates an ImageQt object from a PIL Image object. This class is a subclass of QtGui.QImage, which means
that you can pass the resulting objects directly to PyQt6/PySide6/PyQt5/PySide2 API functions and methods.

This operation is currently supported for mode 1, L, P, RGB, and RGBA images. To handle other modes, you
need to convert the image first.

1.3. Reference 143

https://en.wikipedia.org/wiki/Manhattan_distance
https://www.qt.io/blog/qt-5.15-released
https://www.riverbankcomputing.com/static/Docs/PyQt6/
https://doc.qt.io/qtforpython/


Pillow (PIL Fork) Documentation, Release 9.5.0

1.3.17 ImageSequence Module

The ImageSequence module contains a wrapper class that lets you iterate over the frames of an image sequence.

Extracting frames from an animation

from PIL import Image, ImageSequence

with Image.open("animation.fli") as im:
index = 1
for frame in ImageSequence.Iterator(im):

frame.save(f"frame{index}.png")
index += 1

The Iterator class

class PIL.ImageSequence.Iterator(im)

This class implements an iterator object that can be used to loop over an image sequence.

You can use the [] operator to access elements by index. This operator will raise an IndexError if you try to
access a nonexistent frame.

Parameters
im – An image object.

Functions

PIL.ImageSequence.all_frames(im, func=None)
Applies a given function to all frames in an image or a list of images. The frames are returned as a list of separate
images.

Parameters

• im – An image, or a list of images.

• func – The function to apply to all of the image frames.

Returns
A list of images.

1.3.18 ImageShow Module

The ImageShow Module is used to display images. All default viewers convert the image to be shown to PNG format.

PIL.ImageShow.show(image, title=None, **options)
Display a given image.

Parameters

• image – An image object.

• title – Optional title. Not all viewers can display the title.

• **options – Additional viewer options.

144 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#IndexError


Pillow (PIL Fork) Documentation, Release 9.5.0

Returns
True if a suitable viewer was found, False otherwise.

class PIL.ImageShow.IPythonViewer

The viewer for IPython frontends.

class PIL.ImageShow.WindowsViewer

The default viewer on Windows is the default system application for PNG files.

class PIL.ImageShow.MacViewer

The default viewer on macOS using Preview.app.

class PIL.ImageShow.UnixViewer

The following viewers may be registered on Unix-based systems, if the given command is found:

class XDGViewer

The freedesktop.org xdg-open command.

class DisplayViewer

The ImageMagick display command. This viewer supports the title parameter.

class GmDisplayViewer

The GraphicsMagick gm display command.

class EogViewer

The GNOME Image Viewer eog command.

class XVViewer

The X Viewer xv command. This viewer supports the title parameter.

To provide maximum functionality on Unix-based systems, temporary files created from images will not be
automatically removed by Pillow.

PIL.ImageShow.register(viewer, order=1)
The register() function is used to register additional viewers:

from PIL import ImageShow
ImageShow.register(MyViewer()) # MyViewer will be used as a last resort
ImageShow.register(MySecondViewer(), 0) # MySecondViewer will be prioritised
ImageShow.register(ImageShow.XVViewer(), 0) # XVViewer will be prioritised

Parameters

• viewer – The viewer to be registered.

• order – Zero or a negative integer to prepend this viewer to the list, a positive integer to
append it.

class PIL.ImageShow.Viewer

Base class for viewers.

show(image, **options)
The main function for displaying an image. Converts the given image to the target format and displays it.

format = None

The format to convert the image into.

1.3. Reference 145



Pillow (PIL Fork) Documentation, Release 9.5.0

options = {}

Additional options used to convert the image.

get_format(image)
Return format name, or None to save as PGM/PPM.

get_command(file, **options)
Returns the command used to display the file. Not implemented in the base class.

save_image(image)
Save to temporary file and return filename.

show_image(image, **options)
Display the given image.

show_file(path=None, **options)
Display given file.

Before Pillow 9.1.0, the first argument was file. This is now deprecated, and will be removed in Pillow
10.0.0 (2023-07-01). path should be used instead.

1.3.19 ImageStat Module

The ImageStat module calculates global statistics for an image, or for a region of an image.

class PIL.ImageStat.Stat(image_or_list, mask=None)
Calculate statistics for the given image. If a mask is included, only the regions covered by that mask are included
in the statistics. You can also pass in a previously calculated histogram.

Parameters

• image – A PIL image, or a precalculated histogram.

Note: For a PIL image, calculations rely on the histogram() method. The pixel counts
are grouped into 256 bins, even if the image has more than 8 bits per channel. So I and F
mode images have a maximum mean, median and rms of 255, and cannot have an extrema
maximum of more than 255.

• mask – An optional mask.

extrema

Min/max values for each band in the image.

Note: This relies on the histogram()method, and simply returns the low and high bins used. This is cor-
rect for images with 8 bits per channel, but fails for other modes such as I or F. Instead, use getextrema()
to return per-band extrema for the image. This is more correct and efficient because, for non-8-bit modes,
the histogram method uses getextrema() to determine the bins used.

count

Total number of pixels for each band in the image.

sum

Sum of all pixels for each band in the image.

146 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

sum2

Squared sum of all pixels for each band in the image.

mean

Average (arithmetic mean) pixel level for each band in the image.

median

Median pixel level for each band in the image.

rms

RMS (root-mean-square) for each band in the image.

var

Variance for each band in the image.

stddev

Standard deviation for each band in the image.

1.3.20 ImageTk Module

The ImageTk module contains support to create and modify Tkinter BitmapImage and PhotoImage objects from PIL
images.

For examples, see the demo programs in the Scripts directory.

class PIL.ImageTk.BitmapImage(image=None, **kw)
A Tkinter-compatible bitmap image. This can be used everywhere Tkinter expects an image object.

The given image must have mode “1”. Pixels having value 0 are treated as transparent. Options, if any, are
passed on to Tkinter. The most commonly used option is foreground, which is used to specify the color for the
non-transparent parts. See the Tkinter documentation for information on how to specify colours.

Parameters
image – A PIL image.

height()

Get the height of the image.

Returns
The height, in pixels.

width()

Get the width of the image.

Returns
The width, in pixels.

class PIL.ImageTk.PhotoImage(image=None, size=None, **kw)
A Tkinter-compatible photo image. This can be used everywhere Tkinter expects an image object. If the image
is an RGBA image, pixels having alpha 0 are treated as transparent.

The constructor takes either a PIL image, or a mode and a size. Alternatively, you can use the file or data
options to initialize the photo image object.

Parameters

• image – Either a PIL image, or a mode string. If a mode string is used, a size must also be
given.

• size – If the first argument is a mode string, this defines the size of the image.

1.3. Reference 147



Pillow (PIL Fork) Documentation, Release 9.5.0

• file – A filename to load the image from (using Image.open(file)).

• data – An 8-bit string containing image data (as loaded from an image file).

height()

Get the height of the image.

Returns
The height, in pixels.

paste(im, box=None)
Paste a PIL image into the photo image. Note that this can be very slow if the photo image is displayed.

Parameters

• im – A PIL image. The size must match the target region. If the mode does not match, the
image is converted to the mode of the bitmap image.

• box – Deprecated. This parameter will be removed in Pillow 10 (2023-07-01).

width()

Get the width of the image.

Returns
The width, in pixels.

1.3.21 ImageWin Module (Windows-only)

The ImageWin module contains support to create and display images on Windows.

ImageWin can be used with PythonWin and other user interface toolkits that provide access to Windows device contexts
or window handles. For example, Tkinter makes the window handle available via the winfo_id method:

from PIL import ImageWin

dib = ImageWin.Dib(...)

hwnd = ImageWin.HWND(widget.winfo_id())
dib.draw(hwnd, xy)

class PIL.ImageWin.Dib(image, size=None)
A Windows bitmap with the given mode and size. The mode can be one of “1”, “L”, “P”, or “RGB”.

If the display requires a palette, this constructor creates a suitable palette and associates it with the image. For
an “L” image, 128 greylevels are allocated. For an “RGB” image, a 6x6x6 colour cube is used, together with 20
greylevels.

To make sure that palettes work properly under Windows, you must call the palette method upon certain events
from Windows.

Parameters

• image – Either a PIL image, or a mode string. If a mode string is used, a size must also be
given. The mode can be one of “1”, “L”, “P”, or “RGB”.

• size – If the first argument is a mode string, this defines the size of the image.

148 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

draw(handle, dst, src=None)
Same as expose, but allows you to specify where to draw the image, and what part of it to draw.

The destination and source areas are given as 4-tuple rectangles. If the source is omitted, the entire image
is copied. If the source and the destination have different sizes, the image is resized as necessary.

expose(handle)
Copy the bitmap contents to a device context.

Parameters
handle – Device context (HDC), cast to a Python integer, or an HDC or HWND instance. In
PythonWin, you can use CDC.GetHandleAttrib() to get a suitable handle.

frombytes(buffer)
Load display memory contents from byte data.

Parameters
buffer – A buffer containing display data (usually data returned from tobytes())

paste(im, box=None)
Paste a PIL image into the bitmap image.

Parameters

• im – A PIL image. The size must match the target region. If the mode does not match, the
image is converted to the mode of the bitmap image.

• box – A 4-tuple defining the left, upper, right, and lower pixel coordinate. See Coordinate
System. If None is given instead of a tuple, all of the image is assumed.

query_palette(handle)
Installs the palette associated with the image in the given device context.

This method should be called upon QUERYNEWPALETTE and PALETTECHANGED events from
Windows. If this method returns a non-zero value, one or more display palette entries were changed, and
the image should be redrawn.

Parameters
handle – Device context (HDC), cast to a Python integer, or an HDC or HWND instance.

Returns
A true value if one or more entries were changed (this indicates that the image should be
redrawn).

tobytes()

Copy display memory contents to bytes object.

Returns
A bytes object containing display data.

class PIL.ImageWin.HDC(dc)
Wraps an HDC integer. The resulting object can be passed to the draw() and expose() methods.

class PIL.ImageWin.HWND(wnd)
Wraps an HWND integer. The resulting object can be passed to the draw() and expose() methods, instead of
a DC.

1.3. Reference 149



Pillow (PIL Fork) Documentation, Release 9.5.0

1.3.22 ExifTags Module

The ExifTags module exposes several enum.IntEnum classes which provide constants and clear-text names for vari-
ous well-known EXIF tags.

PIL.ExifTags.Base

>>> from PIL.ExifTags import Base
>>> Base.ImageDescription.value
270
>>> Base(270).name
'ImageDescription'

PIL.ExifTags.GPS

>>> from PIL.ExifTags import GPS
>>> GPS.GPSDestLatitude.value
20
>>> GPS(20).name
'GPSDestLatitude'

PIL.ExifTags.Interop

>>> from PIL.ExifTags import Interop
>>> Interop.RelatedImageFileFormat.value
4096
>>> Interop(4096).name
'RelatedImageFileFormat'

PIL.ExifTags.IFD

>>> from PIL.ExifTags import IFD
>>> IFD.Exif.value
34665
>>> IFD(34665).name
'Exif

PIL.ExifTags.LightSource

>>> from PIL.ExifTags import LightSource
>>> LightSource.Unknown.value
0
>>> LightSource(0).name
'Unknown'

Two of these values are also exposed as dictionaries.

PIL.ExifTags.TAGS: dict

The TAGS dictionary maps 16-bit integer EXIF tag enumerations to descriptive string names. For instance:

>>> from PIL.ExifTags import TAGS
>>> TAGS[0x010e]
'ImageDescription'

150 Chapter 1. Overview

https://docs.python.org/3/library/stdtypes.html#dict


Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.ExifTags.GPSTAGS: dict

The GPSTAGS dictionary maps 8-bit integer EXIF GPS enumerations to descriptive string names. For instance:

>>> from PIL.ExifTags import GPSTAGS
>>> GPSTAGS[20]
'GPSDestLatitude'

1.3.23 TiffTags Module

The TiffTags module exposes many of the standard TIFF metadata tag numbers, names, and type information.

PIL.TiffTags.lookup(tag)

Parameters

• tag – Integer tag number

• group – Which TAGS_V2_GROUPS to look in

New in version 8.3.0.

Returns
Taginfo namedtuple, From the TAGS_V2 info if possible, otherwise just populating the value and
name from TAGS. If the tag is not recognized, “unknown” is returned for the name

New in version 3.1.0.

class PIL.TiffTags.TagInfo

__init__(self, value=None, name='unknown', type=None, length=0, enum=None)

Parameters

• value – Integer Tag Number

• name – Tag Name

• type – Integer type from PIL.TiffTags.TYPES

• length – Array length: 0 == variable, 1 == single value, n = fixed

• enum – Dict of name:integer value options for an enumeration

cvt_enum(self, value)

Parameters
value – The enumerated value name

Returns
The integer corresponding to the name.

New in version 3.0.0.

PIL.TiffTags.TAGS_V2: dict

The TAGS_V2 dictionary maps 16-bit integer tag numbers to PIL.TiffTags.TagInfo tuples for metadata fields
defined in the TIFF spec.

New in version 3.0.0.

1.3. Reference 151

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.TiffTags.TAGS_V2_GROUPS: dict

TAGS_V2 is one dimensional and doesn’t account for the fact that tags actually exist in different groups. This
dictionary is used when the tag in question is part of a group.

New in version 8.3.0.

PIL.TiffTags.TAGS: dict

The TAGS dictionary maps 16-bit integer TIFF tag number to descriptive string names. For instance:

>>> from PIL.TiffTags import TAGS
>>> TAGS[0x010e]
'ImageDescription'

This dictionary contains a superset of the tags in TAGS_V2, common EXIF tags, and other well known metadata
tags.

PIL.TiffTags.TYPES: dict

The TYPES dictionary maps the TIFF type short integer to a human readable type name.

PIL.TiffTags.LIBTIFF_CORE: list

A list of supported tag IDs when writing using LibTIFF.

1.3.24 JpegPresets Module

JPEG quality settings equivalent to the Photoshop settings. Can be used when saving JPEG files.

The following presets are available by default: web_low, web_medium, web_high, web_very_high, web_maximum,
low, medium, high, maximum. More presets can be added to the presets dict if needed.

To apply the preset, specify:

quality="preset_name"

To apply only the quantization table:

qtables="preset_name"

To apply only the subsampling setting:

subsampling="preset_name"

Example:

im.save("image_name.jpg", quality="web_high")

Subsampling

Subsampling is the practice of encoding images by implementing less resolution for chroma information than for luma
information. (ref.: https://en.wikipedia.org/wiki/Chroma_subsampling)

Possible subsampling values are 0, 1 and 2 that correspond to 4:4:4, 4:2:2 and 4:2:0.

You can get the subsampling of a JPEG with the JpegImagePlugin.get_sampling() function.

In JPEG compressed data a JPEG marker is used instead of an EXIF tag. (ref.: https://exiv2.org/tags.html)

152 Chapter 1. Overview

https://docs.python.org/3/library/stdtypes.html#dict
https://exiftool.org/TagNames/EXIF.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://en.wikipedia.org/wiki/Chroma_subsampling
https://exiv2.org/tags.html


Pillow (PIL Fork) Documentation, Release 9.5.0

Quantization tables

They are values use by the DCT (Discrete cosine transform) to remove unnecessary information from the image
(the lossy part of the compression). (ref.: https://en.wikipedia.org/wiki/Quantization_matrix#Quantization_matrices,
https://en.wikipedia.org/wiki/JPEG#Quantization)

You can get the quantization tables of a JPEG with:

im.quantization

This will return a dict with a number of lists. You can pass this dict directly as the qtables argument when saving a
JPEG.

The quantization table format in presets is a list with sublists. These formats are interchangeable.

Libjpeg ref.: https://web.archive.org/web/20120328125543/http://www.jpegcameras.com/libjpeg/libjpeg-3.html

PIL.JpegPresets.presets: dict

A dictionary of all supported presets.

1.3.25 PSDraw Module

The PSDraw module provides simple print support for PostScript printers. You can print text, graphics and images
through this module.

class PIL.PSDraw.PSDraw(fp=None)
Sets up printing to the given file. If fp is omitted, sys.stdout.buffer or sys.stdout is assumed.

begin_document(id=None)
Set up printing of a document. (Write PostScript DSC header.)

end_document()

Ends printing. (Write PostScript DSC footer.)

image(box, im, dpi=None)
Draw a PIL image, centered in the given box.

line(xy0, xy1)
Draws a line between the two points. Coordinates are given in PostScript point coordinates (72 points per
inch, (0, 0) is the lower left corner of the page).

rectangle(box)
Draws a rectangle.

Parameters
box – A tuple of four integers, specifying left, bottom, width and height.

setfont(font, size)
Selects which font to use.

Parameters

• font – A PostScript font name

• size – Size in points.

text(xy, text)
Draws text at the given position. You must use setfont() before calling this method.

1.3. Reference 153

https://en.wikipedia.org/wiki/Quantization_matrix#Quantization_matrices
https://en.wikipedia.org/wiki/JPEG#Quantization
https://web.archive.org/web/20120328125543/http://www.jpegcameras.com/libjpeg/libjpeg-3.html
https://docs.python.org/3/library/stdtypes.html#dict


Pillow (PIL Fork) Documentation, Release 9.5.0

1.3.26 PixelAccess Class

The PixelAccess class provides read and write access to PIL.Image data at a pixel level.

Note: Accessing individual pixels is fairly slow. If you are looping over all of the pixels in an image, there is likely a
faster way using other parts of the Pillow API.

Image, ImageChops and ImageOps have methods for many standard operations. If you wish to perform a custom
mapping, check out point().

Example

The following script loads an image, accesses one pixel from it, then changes it.

from PIL import Image

with Image.open("hopper.jpg") as im:
px = im.load()

print(px[4, 4])
px[4, 4] = (0, 0, 0)
print(px[4, 4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

Access using negative indexes is also possible.

px[-1, -1] = (0, 0, 0)
print(px[-1, -1])

PixelAccess Class

class PixelAccess

__setitem__(self, xy, color):

Modifies the pixel at x,y. The color is given as a single numerical value for single band images, and a tuple
for multi-band images

Parameters

• xy – The pixel coordinate, given as (x, y).

• color – The pixel value according to its mode. e.g. tuple (r, g, b) for RGB mode)

__getitem__(self, xy):

Returns the pixel at x,y. The pixel is returned as a single
value for single band images or a tuple for multiple band images

param xy
The pixel coordinate, given as (x, y).

154 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

returns
a pixel value for single band images, a tuple of pixel values for multiband images.

putpixel(self, xy, color):

Modifies the pixel at x,y. The color is given as a single numerical value for single band images, and a tuple
for multi-band images. In addition to this, RGB and RGBA tuples are accepted for P and PA images.

Parameters

• xy – The pixel coordinate, given as (x, y).

• color – The pixel value according to its mode. e.g. tuple (r, g, b) for RGB mode)

getpixel(self, xy):

Returns the pixel at x,y. The pixel is returned as a single
value for single band images or a tuple for multiple band images

param xy
The pixel coordinate, given as (x, y).

returns
a pixel value for single band images, a tuple of pixel values for multiband images.

1.3.27 PyAccess Module

The PyAccess module provides a CFFI/Python implementation of the PixelAccess Class. This implementation is far
faster on PyPy than the PixelAccess version.

Note: Accessing individual pixels is fairly slow. If you are looping over all of the pixels in an image, there is likely a
faster way using other parts of the Pillow API.

Image, ImageChops and ImageOps have methods for many standard operations. If you wish to perform a custom
mapping, check out point().

Example

The following script loads an image, accesses one pixel from it, then changes it.

from PIL import Image

with Image.open("hopper.jpg") as im:
px = im.load()

print(px[4, 4])
px[4, 4] = (0, 0, 0)
print(px[4, 4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

Access using negative indexes is also possible.

1.3. Reference 155



Pillow (PIL Fork) Documentation, Release 9.5.0

px[-1, -1] = (0, 0, 0)
print(px[-1, -1])

PyAccess Class

class PIL.PyAccess.PyAccess

getpixel(xy)
Returns the pixel at x,y. The pixel is returned as a single value for single band images or a tuple for multiple
band images

Parameters
xy – The pixel coordinate, given as (x, y). See Coordinate System.

Returns
a pixel value for single band images, a tuple of pixel values for multiband images.

putpixel(xy, color)
Modifies the pixel at x,y. The color is given as a single numerical value for single band images, and a tuple
for multi-band images

Parameters

• xy – The pixel coordinate, given as (x, y). See Coordinate System.

• color – The pixel value.

1.3.28 features Module

The PIL.features module can be used to detect which Pillow features are available on your system.

PIL.features.pilinfo(out=None, supported_formats=True)
Prints information about this installation of Pillow. This function can be called with python3 -m PIL.

Parameters

• out – The output stream to print to. Defaults to sys.stdout if None.

• supported_formats – If True, a list of all supported image file formats will be printed.

PIL.features.check(feature)

Parameters
feature – A module, codec, or feature name.

Returns
True if the module, codec, or feature is available, False or None otherwise.

PIL.features.version(feature)

Parameters
feature – The module, codec, or feature to check for.

Returns
The version number as a string, or None if unknown or not available.

PIL.features.get_supported()

Returns
A list of all supported modules, features, and codecs.

156 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Modules

Support for the following modules can be checked:

• pil: The Pillow core module, required for all functionality.

• tkinter: Tkinter support.

• freetype2: FreeType font support via PIL.ImageFont.truetype().

• littlecms2: LittleCMS 2 support via PIL.ImageCms.

• webp: WebP image support.

PIL.features.check_module(feature)
Checks if a module is available.

Parameters
feature – The module to check for.

Returns
True if available, False otherwise.

Raises
ValueError – If the module is not defined in this version of Pillow.

PIL.features.version_module(feature)

Parameters
feature – The module to check for.

Returns
The loaded version number as a string, or None if unknown or not available.

Raises
ValueError – If the module is not defined in this version of Pillow.

PIL.features.get_supported_modules()

Returns
A list of all supported modules.

Codecs

Support for these is only checked during Pillow compilation. If the required library was uninstalled from the system,
the pil core module may fail to load instead. Except for jpg, the version number is checked at run-time.

Support for the following codecs can be checked:

• jpg: (compile time) Libjpeg support, required for JPEG based image formats. Only compile time version number
is available.

• jpg_2000: (compile time) OpenJPEG support, required for JPEG 2000 image formats.

• zlib: (compile time) Zlib support, required for zlib compressed formats, such as PNG.

• libtiff: (compile time) LibTIFF support, required for TIFF based image formats.

PIL.features.check_codec(feature)
Checks if a codec is available.

Parameters
feature – The codec to check for.

1.3. Reference 157

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


Pillow (PIL Fork) Documentation, Release 9.5.0

Returns
True if available, False otherwise.

Raises
ValueError – If the codec is not defined in this version of Pillow.

PIL.features.version_codec(feature)

Parameters
feature – The codec to check for.

Returns
The version number as a string, or None if not available. Checked at compile time for jpg,
run-time otherwise.

Raises
ValueError – If the codec is not defined in this version of Pillow.

PIL.features.get_supported_codecs()

Returns
A list of all supported codecs.

Features

Some of these are only checked during Pillow compilation. If the required library was uninstalled from the system, the
relevant module may fail to load instead. Feature version numbers are available only where stated.

Support for the following features can be checked:

• libjpeg_turbo: (compile time) Whether Pillow was compiled against the libjpeg-turbo version of libjpeg.
Compile-time version number is available.

• transp_webp: Support for transparency in WebP images.

• webp_mux: (compile time) Support for EXIF data in WebP images.

• webp_anim: (compile time) Support for animated WebP images.

• raqm: Raqm library, required for ImageFont.Layout.RAQM in PIL.ImageFont.truetype(). Run-time ver-
sion number is available for Raqm 0.7.0 or newer.

• libimagequant: (compile time) ImageQuant quantization support in PIL.Image.Image.quantize(). Run-
time version number is available.

• xcb: (compile time) Support for X11 in PIL.ImageGrab.grab() via the XCB library.

PIL.features.check_feature(feature)
Checks if a feature is available.

Parameters
feature – The feature to check for.

Returns
True if available, False if unavailable, None if unknown.

Raises
ValueError – If the feature is not defined in this version of Pillow.

PIL.features.version_feature(feature)

Parameters
feature – The feature to check for.

158 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


Pillow (PIL Fork) Documentation, Release 9.5.0

Returns
The version number as a string, or None if not available.

Raises
ValueError – If the feature is not defined in this version of Pillow.

PIL.features.get_supported_features()

Returns
A list of all supported features.

1.3.29 PIL Package (autodoc of remaining modules)

Reference for modules whose documentation has not yet been ported or written can be found here.

PIL Module

exception PIL.UnidentifiedImageError

Bases: OSError

Raised in PIL.Image.open() if an image cannot be opened and identified.

If a PNG image raises this error, setting ImageFile.LOAD_TRUNCATED_IMAGES to true may allow the image to
be opened after all. The setting will ignore missing data and checksum failures.

BdfFontFile Module

Parse X Bitmap Distribution Format (BDF)

class PIL.BdfFontFile.BdfFontFile(fp)
Bases: FontFile

Font file plugin for the X11 BDF format.

PIL.BdfFontFile.bdf_char(f )

ContainerIO Module

class PIL.ContainerIO.ContainerIO(file, offset, length)
Bases: object

A file object that provides read access to a part of an existing file (for example a TAR file).

isatty()

read(n=0)
Read data.

Parameters
n – Number of bytes to read. If omitted or zero, read until end of region.

Returns
An 8-bit string.

1.3. Reference 159

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

readline()

Read a line of text.

Returns
An 8-bit string.

readlines()

Read multiple lines of text.

Returns
A list of 8-bit strings.

seek(offset, mode=0)
Move file pointer.

Parameters

• offset – Offset in bytes.

• mode – Starting position. Use 0 for beginning of region, 1 for current offset, and 2 for end
of region. You cannot move the pointer outside the defined region.

tell()

Get current file pointer.

Returns
Offset from start of region, in bytes.

FontFile Module

class PIL.FontFile.FontFile

Bases: object

Base class for raster font file handlers.

bitmap = None

compile()

Create metrics and bitmap

save(filename)
Save font

PIL.FontFile.puti16(fp, values)
Write network order (big-endian) 16-bit sequence

GdImageFile Module

Note: This format cannot be automatically recognized, so the class is not registered for use with PIL.Image.open().
To open a gd file, use the PIL.GdImageFile.open() function instead.

Warning: THE GD FORMAT IS NOT DESIGNED FOR DATA INTERCHANGE. This implementation is pro-
vided for convenience and demonstrational purposes only.

160 Chapter 1. Overview

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.GdImageFile.GdImageFile(fp=None, filename=None)
Bases: ImageFile

Image plugin for the GD uncompressed format. Note that this format is not supported by the standard PIL.
Image.open() function. To use this plugin, you have to import the PIL.GdImageFile module and use the
PIL.GdImageFile.open() function.

format = 'GD'

format_description = 'GD uncompressed images'

PIL.GdImageFile.open(fp, mode='r')
Load texture from a GD image file.

Parameters

• fp – GD file name, or an opened file handle.

• mode – Optional mode. In this version, if the mode argument is given, it must be “r”.

Returns
An image instance.

Raises
OSError – If the image could not be read.

GimpGradientFile Module

Stuff to translate curve segments to palette values (derived from the corresponding code in GIMP, written by Federico
Mena Quintero. See the GIMP distribution for more information.)

PIL.GimpGradientFile.EPSILON = 1e-10

class PIL.GimpGradientFile.GimpGradientFile(fp)
Bases: GradientFile

File handler for GIMP’s gradient format.

class PIL.GimpGradientFile.GradientFile

Bases: object

getpalette(entries=256)

gradient = None

PIL.GimpGradientFile.SEGMENTS = [<function linear>, <function curved>, <function sine>,
<function sphere_increasing>, <function sphere_decreasing>]

PIL.GimpGradientFile.curved(middle, pos)

PIL.GimpGradientFile.linear(middle, pos)

PIL.GimpGradientFile.sine(middle, pos)

PIL.GimpGradientFile.sphere_decreasing(middle, pos)

PIL.GimpGradientFile.sphere_increasing(middle, pos)

1.3. Reference 161

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

GimpPaletteFile Module

class PIL.GimpPaletteFile.GimpPaletteFile(fp)
Bases: object

File handler for GIMP’s palette format.

getpalette()

rawmode = 'RGB'

ImageDraw2 Module

(Experimental) WCK-style drawing interface operations

See also:

PIL.ImageDraw

class PIL.ImageDraw2.Pen(color, width=1, opacity=255)
Bases: object

Stores an outline color and width.

class PIL.ImageDraw2.Brush(color, opacity=255)
Bases: object

Stores a fill color

class PIL.ImageDraw2.Font(color, file, size=12)
Bases: object

Stores a TrueType font and color

class PIL.ImageDraw2.Draw(image, size=None, color=None)
Bases: object

(Experimental) WCK-style drawing interface

flush()

render(op, xy, pen, brush=None)

settransform(offset)
Sets a transformation offset.

arc(xy, start, end, *options)
Draws an arc (a portion of a circle outline) between the start and end angles, inside the given bounding box.

See also:

PIL.ImageDraw.ImageDraw.arc()

chord(xy, start, end, *options)
Same as arc(), but connects the end points with a straight line.

See also:

PIL.ImageDraw.ImageDraw.chord()

162 Chapter 1. Overview

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

ellipse(xy, *options)
Draws an ellipse inside the given bounding box.

See also:

PIL.ImageDraw.ImageDraw.ellipse()

line(xy, *options)
Draws a line between the coordinates in the xy list.

See also:

PIL.ImageDraw.ImageDraw.line()

pieslice(xy, start, end, *options)
Same as arc, but also draws straight lines between the end points and the center of the bounding box.

See also:

PIL.ImageDraw.ImageDraw.pieslice()

polygon(xy, *options)
Draws a polygon.

The polygon outline consists of straight lines between the given coordinates, plus a straight line between
the last and the first coordinate.

See also:

PIL.ImageDraw.ImageDraw.polygon()

rectangle(xy, *options)
Draws a rectangle.

See also:

PIL.ImageDraw.ImageDraw.rectangle()

text(xy, text, font)
Draws the string at the given position.

See also:

PIL.ImageDraw.ImageDraw.text()

textsize(text, font)
Deprecated since version 9.2.0.

Return the size of the given string, in pixels.

See also:

PIL.ImageDraw.ImageDraw.textsize()

textbbox(xy, text, font)
Returns bounding box (in pixels) of given text.

Returns
(left, top, right, bottom) bounding box

See also:

PIL.ImageDraw.ImageDraw.textbbox()

1.3. Reference 163



Pillow (PIL Fork) Documentation, Release 9.5.0

textlength(text, font)
Returns length (in pixels) of given text. This is the amount by which following text should be offset.

See also:

PIL.ImageDraw.ImageDraw.textlength()

ImageTransform Module

class PIL.ImageTransform.AffineTransform(data)
Bases: Transform

Define an affine image transform.

This function takes a 6-tuple (a, b, c, d, e, f) which contain the first two rows from an affine transform matrix.
For each pixel (x, y) in the output image, the new value is taken from a position (a x + b y + c, d x + e y + f) in
the input image, rounded to nearest pixel.

This function can be used to scale, translate, rotate, and shear the original image.

See transform()

Parameters
matrix – A 6-tuple (a, b, c, d, e, f) containing the first two rows from an affine transform matrix.

method = 0

class PIL.ImageTransform.ExtentTransform(data)
Bases: Transform

Define a transform to extract a subregion from an image.

Maps a rectangle (defined by two corners) from the image to a rectangle of the given size. The resulting image
will contain data sampled from between the corners, such that (x0, y0) in the input image will end up at (0,0) in
the output image, and (x1, y1) at size.

This method can be used to crop, stretch, shrink, or mirror an arbitrary rectangle in the current image. It is
slightly slower than crop, but about as fast as a corresponding resize operation.

See transform()

Parameters
bbox – A 4-tuple (x0, y0, x1, y1) which specifies two points in the input image’s coordinate
system. See Coordinate System.

method = 1

class PIL.ImageTransform.MeshTransform(data)
Bases: Transform

Define a mesh image transform. A mesh transform consists of one or more individual quad transforms.

See transform()

Parameters
data – A list of (bbox, quad) tuples.

method = 4

164 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.ImageTransform.QuadTransform(data)
Bases: Transform

Define a quad image transform.

Maps a quadrilateral (a region defined by four corners) from the image to a rectangle of the given size.

See transform()

Parameters
xy – An 8-tuple (x0, y0, x1, y1, x2, y2, x3, y3) which contain the upper left, lower left, lower
right, and upper right corner of the source quadrilateral.

method = 3

class PIL.ImageTransform.Transform(data)
Bases: ImageTransformHandler

getdata()

transform(size, image, **options)

PaletteFile Module

class PIL.PaletteFile.PaletteFile(fp)
Bases: object

File handler for Teragon-style palette files.

getpalette()

rawmode = 'RGB'

PcfFontFile Module

class PIL.PcfFontFile.PcfFontFile(fp, charset_encoding='iso8859-1')
Bases: FontFile

Font file plugin for the X11 PCF format.

name = 'name'

PIL.PcfFontFile.sz(s, o)

PngImagePlugin.iTXt Class

class PIL.PngImagePlugin.iTXt(text, lang=None, tkey=None)
Bases: str

Subclass of string to allow iTXt chunks to look like strings while keeping their extra information

__new__(cls, text, lang, tkey)

Parameters

• value – value for this key

• lang – language code

• tkey – UTF-8 version of the key name

1.3. Reference 165

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str


Pillow (PIL Fork) Documentation, Release 9.5.0

PngImagePlugin.PngInfo Class

class PIL.PngImagePlugin.PngInfo

Bases: object

PNG chunk container (for use with save(pnginfo=))

add(cid, data, after_idat=False)
Appends an arbitrary chunk. Use with caution.

Parameters

• cid – a byte string, 4 bytes long.

• data – a byte string of the encoded data

• after_idat – for use with private chunks. Whether the chunk should be written after
IDAT

add_itxt(key, value, lang='', tkey='', zip=False)
Appends an iTXt chunk.

Parameters

• key – latin-1 encodable text key name

• value – value for this key

• lang – language code

• tkey – UTF-8 version of the key name

• zip – compression flag

add_text(key, value, zip=False)
Appends a text chunk.

Parameters

• key – latin-1 encodable text key name

• value – value for this key, text or an PIL.PngImagePlugin.iTXt instance

• zip – compression flag

TarIO Module

class PIL.TarIO.TarIO(tarfile, file)
Bases: ContainerIO

A file object that provides read access to a given member of a TAR file.

close()

166 Chapter 1. Overview

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

WalImageFile Module

This reader is based on the specification available from: https://www.flipcode.com/archives/Quake_2_BSP_File_
Format.shtml and has been tested with a few sample files found using google.

Note: This format cannot be automatically recognized, so the reader is not registered for use with PIL.Image.open().
To open a WAL file, use the PIL.WalImageFile.open() function instead.

class PIL.WalImageFile.WalImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'WAL'

format_description = 'Quake2 Texture'

load()

Load image data based on tile list

PIL.WalImageFile.open(filename)
Load texture from a Quake2 WAL texture file.

By default, a Quake2 standard palette is attached to the texture. To override the palette, use the PIL.Image.
Image.putpalette() method.

Parameters
filename – WAL file name, or an opened file handle.

Returns
An image instance.

1.3.30 Plugin reference

BmpImagePlugin Module

class PIL.BmpImagePlugin.BmpImageFile(fp=None, filename=None)
Bases: ImageFile

Image plugin for the Windows Bitmap format (BMP)

BITFIELDS = 3

COMPRESSIONS = {'BITFIELDS': 3, 'JPEG': 4, 'PNG': 5, 'RAW': 0, 'RLE4': 2, 'RLE8':
1}

JPEG = 4

PNG = 5

RAW = 0

RLE4 = 2

RLE8 = 1

format = 'BMP'

1.3. Reference 167

https://www.flipcode.com/archives/Quake_2_BSP_File_Format.shtml
https://www.flipcode.com/archives/Quake_2_BSP_File_Format.shtml


Pillow (PIL Fork) Documentation, Release 9.5.0

format_description = 'Windows Bitmap'

k = 'PNG'

v = 5

class PIL.BmpImagePlugin.BmpRleDecoder(mode, *args)
Bases: PyDecoder

decode(buffer)
Override to perform the decoding process.

Parameters
buffer – A bytes object with the data to be decoded.

Returns
A tuple of (bytes consumed, errcode). If finished with decoding return -1 for the bytes
consumed. Err codes are from ImageFile.ERRORS.

class PIL.BmpImagePlugin.DibImageFile(fp=None, filename=None)
Bases: BmpImageFile

format = 'DIB'

format_description = 'Windows Bitmap'

BufrStubImagePlugin Module

class PIL.BufrStubImagePlugin.BufrStubImageFile(fp=None, filename=None)
Bases: StubImageFile

format = 'BUFR'

format_description = 'BUFR'

PIL.BufrStubImagePlugin.register_handler(handler)
Install application-specific BUFR image handler.

Parameters
handler – Handler object.

CurImagePlugin Module

class PIL.CurImagePlugin.CurImageFile(fp=None, filename=None)
Bases: BmpImageFile

format = 'CUR'

format_description = 'Windows Cursor'

168 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

DcxImagePlugin Module

class PIL.DcxImagePlugin.DcxImageFile(fp=None, filename=None)
Bases: PcxImageFile

format = 'DCX'

format_description = 'Intel DCX'

seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

EpsImagePlugin Module

class PIL.EpsImagePlugin.EpsImageFile(fp=None, filename=None)
Bases: ImageFile

EPS File Parser for the Python Imaging Library

format = 'EPS'

format_description = 'Encapsulated Postscript'

load(scale=1, transparency=False)
Load image data based on tile list

load_seek(*args, **kwargs)

mode_map = {1: 'L', 2: 'LAB', 3: 'RGB', 4: 'CMYK'}

PIL.EpsImagePlugin.Ghostscript(tile, size, fp, scale=1, transparency=False)
Render an image using Ghostscript

class PIL.EpsImagePlugin.PSFile(fp)
Bases: object

Wrapper for bytesio object that treats either CR or LF as end of line. This class is no longer used internally, but
kept for backwards compatibility.

readline()

1.3. Reference 169

https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

seek(offset, whence=0)

PIL.EpsImagePlugin.has_ghostscript()

FitsImagePlugin Module

class PIL.FitsImagePlugin.FitsImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'FITS'

format_description = 'FITS'

FliImagePlugin Module

class PIL.FliImagePlugin.FliImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'FLI'

format_description = 'Autodesk FLI/FLC Animation'

seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

FpxImagePlugin Module

class PIL.FpxImagePlugin.FpxImageFile(fp=None, filename=None)
Bases: ImageFile

close()

Closes the file pointer, if possible.

This operation will destroy the image core and release its memory. The image data will be unusable after-
ward.

This function is required to close images that have multiple frames or have not had their file read and closed
by the load() method. See File Handling in Pillow for more information.

170 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

format = 'FPX'

format_description = 'FlashPix'

load()

Load image data based on tile list

GbrImagePlugin Module

class PIL.GbrImagePlugin.GbrImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'GBR'

format_description = 'GIMP brush file'

load()

Load image data based on tile list

GifImagePlugin Module

class PIL.GifImagePlugin.GifImageFile(fp=None, filename=None)
Bases: ImageFile

data()

format = 'GIF'

format_description = 'Compuserve GIF'

global_palette = None

property is_animated

load_end()

load_prepare()

property n_frames

seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

1.3. Reference 171

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

PIL.GifImagePlugin.LOADING_STRATEGY = LoadingStrategy.RGB_AFTER_FIRST

New in version 9.1.0.

class PIL.GifImagePlugin.LoadingStrategy(value)
Bases: IntEnum

New in version 9.1.0.

RGB_AFTER_DIFFERENT_PALETTE_ONLY = 1

RGB_AFTER_FIRST = 0

RGB_ALWAYS = 2

PIL.GifImagePlugin.get_interlace(im)

PIL.GifImagePlugin.getdata(im, offset=(0, 0), **params)
Legacy Method

Return a list of strings representing this image. The first string is a local image header, the rest contains encoded
image data.

To specify duration, add the time in milliseconds, e.g. getdata(im_frame, duration=1000)

Parameters

• im – Image object

• offset – Tuple of (x, y) pixels. Defaults to (0, 0)

• **params – e.g. duration or other encoder info parameters

Returns
List of bytes containing GIF encoded frame data

PIL.GifImagePlugin.getheader(im, palette=None, info=None)
Legacy Method to get Gif data from image.

Warning:: May modify image data.

Parameters

• im – Image object

• palette – bytes object containing the source palette, or . . . .

• info – encoderinfo

Returns
tuple of(list of header items, optimized palette)

172 Chapter 1. Overview

https://docs.python.org/3/library/enum.html#enum.IntEnum


Pillow (PIL Fork) Documentation, Release 9.5.0

GribStubImagePlugin Module

class PIL.GribStubImagePlugin.GribStubImageFile(fp=None, filename=None)
Bases: StubImageFile

format = 'GRIB'

format_description = 'GRIB'

PIL.GribStubImagePlugin.register_handler(handler)
Install application-specific GRIB image handler.

Parameters
handler – Handler object.

Hdf5StubImagePlugin Module

class PIL.Hdf5StubImagePlugin.HDF5StubImageFile(fp=None, filename=None)
Bases: StubImageFile

format = 'HDF5'

format_description = 'HDF5'

PIL.Hdf5StubImagePlugin.register_handler(handler)
Install application-specific HDF5 image handler.

Parameters
handler – Handler object.

IcnsImagePlugin Module

class PIL.IcnsImagePlugin.IcnsFile(fobj)
Bases: object

SIZES = {(16, 16, 1): [(b'icp4', <function read_png_or_jpeg2000>), (b'is32',
<function read_32>), (b's8mk', <function read_mk>)], (16, 16, 2): [(b'ic11',
<function read_png_or_jpeg2000>)], (32, 32, 1): [(b'icp5', <function
read_png_or_jpeg2000>), (b'il32', <function read_32>), (b'l8mk', <function
read_mk>)], (32, 32, 2): [(b'ic12', <function read_png_or_jpeg2000>)], (48, 48, 1):
[(b'ih32', <function read_32>), (b'h8mk', <function read_mk>)], (64, 64, 1):
[(b'icp6', <function read_png_or_jpeg2000>)], (128, 128, 1): [(b'ic07', <function
read_png_or_jpeg2000>), (b'it32', <function read_32t>), (b't8mk', <function
read_mk>)], (128, 128, 2): [(b'ic13', <function read_png_or_jpeg2000>)], (256, 256,
1): [(b'ic08', <function read_png_or_jpeg2000>)], (256, 256, 2): [(b'ic14',
<function read_png_or_jpeg2000>)], (512, 512, 1): [(b'ic09', <function
read_png_or_jpeg2000>)], (512, 512, 2): [(b'ic10', <function
read_png_or_jpeg2000>)]}

bestsize()

dataforsize(size)
Get an icon resource as {channel: array}. Note that the arrays are bottom-up like windows bitmaps and
will likely need to be flipped or transposed in some way.

1.3. Reference 173

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

getimage(size=None)

itersizes()

class PIL.IcnsImagePlugin.IcnsImageFile(fp=None, filename=None)
Bases: ImageFile

PIL image support for Mac OS .icns files. Chooses the best resolution, but will possibly load a different size
image if you mutate the size attribute before calling ‘load’.

The info dictionary has a key ‘sizes’ that is a list of sizes that the icns file has.

format = 'ICNS'

format_description = 'Mac OS icns resource'

load()

Load image data based on tile list

property size

PIL.IcnsImagePlugin.nextheader(fobj)

PIL.IcnsImagePlugin.read_32(fobj, start_length, size)
Read a 32bit RGB icon resource. Seems to be either uncompressed or an RLE packbits-like scheme.

PIL.IcnsImagePlugin.read_32t(fobj, start_length, size)

PIL.IcnsImagePlugin.read_mk(fobj, start_length, size)

PIL.IcnsImagePlugin.read_png_or_jpeg2000(fobj, start_length, size)

IcoImagePlugin Module

class PIL.IcoImagePlugin.IcoFile(buf )
Bases: object

frame(idx)
Get an image from frame idx

getentryindex(size, bpp=False)

getimage(size, bpp=False)
Get an image from the icon

sizes()

Get a list of all available icon sizes and color depths.

class PIL.IcoImagePlugin.IcoImageFile(fp=None, filename=None)
Bases: ImageFile

PIL read-only image support for Microsoft Windows .ico files.

By default the largest resolution image in the file will be loaded. This can be changed by altering the ‘size’
attribute before calling ‘load’.

The info dictionary has a key ‘sizes’ that is a list of the sizes available in the icon file.

Handles classic, XP and Vista icon formats.

174 Chapter 1. Overview

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

When saving, PNG compression is used. Support for this was only added in Windows Vista. If you are unable
to view the icon in Windows, convert the image to “RGBA” mode before saving.

This plugin is a refactored version of Win32IconImagePlugin by Bryan Davis <casadebender@gmail.com>.
https://code.google.com/archive/p/casadebender/wikis/Win32IconImagePlugin.wiki

format = 'ICO'

format_description = 'Windows Icon'

load()

Load image data based on tile list

load_seek()

property size

ImImagePlugin Module

class PIL.ImImagePlugin.ImImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'IM'

format_description = 'IFUNC Image Memory'

property is_animated

property n_frames

seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

PIL.ImImagePlugin.number(s)

1.3. Reference 175

mailto:casadebender@gmail.com
https://code.google.com/archive/p/casadebender/wikis/Win32IconImagePlugin.wiki
https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

ImtImagePlugin Module

class PIL.ImtImagePlugin.ImtImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'IMT'

format_description = 'IM Tools'

IptcImagePlugin Module

class PIL.IptcImagePlugin.IptcImageFile(fp=None, filename=None)
Bases: ImageFile

field()

format = 'IPTC'

format_description = 'IPTC/NAA'

getint(key)

load()

Load image data based on tile list

PIL.IptcImagePlugin.dump(c)

PIL.IptcImagePlugin.getiptcinfo(im)

Get IPTC information from TIFF, JPEG, or IPTC file.

Parameters
im – An image containing IPTC data.

Returns
A dictionary containing IPTC information, or None if no IPTC information block was found.

PIL.IptcImagePlugin.i(c)

JpegImagePlugin Module

PIL.JpegImagePlugin.APP(self, marker)

PIL.JpegImagePlugin.COM(self, marker)

PIL.JpegImagePlugin.DQT(self, marker)

class PIL.JpegImagePlugin.JpegImageFile(fp=None, filename=None)
Bases: ImageFile

draft(mode, size)
Configures the image file loader so it returns a version of the image that as closely as possible matches the
given mode and size. For example, you can use this method to convert a color JPEG to greyscale while
loading it.

If any changes are made, returns a tuple with the chosen mode and box with coordinates of the original
image within the altered one.

176 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Note that this method modifies the Image object in place. If the image has already been loaded, this method
has no effect.

Note: This method is not implemented for most images. It is currently implemented only for JPEG and
MPO images.

Parameters

• mode – The requested mode.

• size – The requested size in pixels, as a 2-tuple: (width, height).

format = 'JPEG'

format_description = 'JPEG (ISO 10918)'

getxmp()

Returns a dictionary containing the XMP tags. Requires defusedxml to be installed.

Returns
XMP tags in a dictionary.

load_djpeg()

load_read(read_bytes)
internal: read more image data For premature EOF and LOAD_TRUNCATED_IMAGES adds EOI marker
so libjpeg can finish decoding

PIL.JpegImagePlugin.SOF(self, marker)

PIL.JpegImagePlugin.Skip(self, marker)

PIL.JpegImagePlugin.convert_dict_qtables(qtables)

PIL.JpegImagePlugin.get_sampling(im)

PIL.JpegImagePlugin.jpeg_factory(fp=None, filename=None)

Jpeg2KImagePlugin Module

class PIL.Jpeg2KImagePlugin.BoxReader(fp, length=-1)
Bases: object

A small helper class to read fields stored in JPEG2000 header boxes and to easily step into and read sub-boxes.

has_next_box()

next_box_type()

read_boxes()

read_fields(field_format)

class PIL.Jpeg2KImagePlugin.Jpeg2KImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'JPEG2000'

format_description = 'JPEG 2000 (ISO 15444)'

1.3. Reference 177

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

load()

Load image data based on tile list

property reduce

Returns a copy of the image reduced factor times. If the size of the image is not dividable by factor,
the resulting size will be rounded up.

Parameters

• factor – A greater than 0 integer or tuple of two integers for width and height separately.

• box – An optional 4-tuple of ints providing the source image region to be reduced. The
values must be within (0, 0, width, height) rectangle. If omitted or None, the entire
source is used.

McIdasImagePlugin Module

class PIL.McIdasImagePlugin.McIdasImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'MCIDAS'

format_description = 'McIdas area file'

MicImagePlugin Module

class PIL.MicImagePlugin.MicImageFile(fp=None, filename=None)
Bases: TiffImageFile

close()

Closes the file pointer, if possible.

This operation will destroy the image core and release its memory. The image data will be unusable after-
ward.

This function is required to close images that have multiple frames or have not had their file read and closed
by the load() method. See File Handling in Pillow for more information.

format = 'MIC'

format_description = 'Microsoft Image Composer'

seek(frame)
Select a given frame as current image

tell()

Return the current frame number

178 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

MpegImagePlugin Module

class PIL.MpegImagePlugin.BitStream(fp)
Bases: object

next()

peek(bits)

read(bits)

skip(bits)

class PIL.MpegImagePlugin.MpegImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'MPEG'

format_description = 'MPEG'

MspImagePlugin Module

class PIL.MspImagePlugin.MspDecoder(mode, *args)
Bases: PyDecoder

decode(buffer)
Override to perform the decoding process.

Parameters
buffer – A bytes object with the data to be decoded.

Returns
A tuple of (bytes consumed, errcode). If finished with decoding return -1 for the bytes
consumed. Err codes are from ImageFile.ERRORS.

class PIL.MspImagePlugin.MspImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'MSP'

format_description = 'Windows Paint'

PalmImagePlugin Module

PIL.PalmImagePlugin.build_prototype_image()

1.3. Reference 179

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

PcdImagePlugin Module

class PIL.PcdImagePlugin.PcdImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'PCD'

format_description = 'Kodak PhotoCD'

load_end()

PcxImagePlugin Module

class PIL.PcxImagePlugin.PcxImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'PCX'

format_description = 'Paintbrush'

PdfImagePlugin Module

PixarImagePlugin Module

class PIL.PixarImagePlugin.PixarImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'PIXAR'

format_description = 'PIXAR raster image'

PngImagePlugin Module

class PIL.PngImagePlugin.Blend(value)
Bases: IntEnum

An enumeration.

OP_OVER = 1

This frame should be alpha composited with the previous output image contents. See Saving APNG se-
quences.

OP_SOURCE = 0

All color components of this frame, including alpha, overwrite the previous output image contents. See
Saving APNG sequences.

class PIL.PngImagePlugin.ChunkStream(fp)
Bases: object

call(cid, pos, length)
Call the appropriate chunk handler

close()

180 Chapter 1. Overview

https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

crc(cid, data)
Read and verify checksum

crc_skip(cid, data)
Read checksum

push(cid, pos, length)

read()

Fetch a new chunk. Returns header information.

verify(endchunk=b'IEND')

class PIL.PngImagePlugin.Disposal(value)
Bases: IntEnum

An enumeration.

OP_BACKGROUND = 1

This frame’s modified region is cleared to fully transparent black before rendering the next frame. See
Saving APNG sequences.

OP_NONE = 0

No disposal is done on this frame before rendering the next frame. See Saving APNG sequences.

OP_PREVIOUS = 2

This frame’s modified region is reverted to the previous frame’s contents before rendering the next frame.
See Saving APNG sequences.

class PIL.PngImagePlugin.PngImageFile(fp=None, filename=None)
Bases: ImageFile

getexif()

Gets EXIF data from the image.

Returns
an Exif object.

getxmp()

Returns a dictionary containing the XMP tags. Requires defusedxml to be installed.

Returns
XMP tags in a dictionary.

load_end()

internal: finished reading image data

load_prepare()

internal: prepare to read PNG file

load_read(read_bytes)
internal: read more image data

seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

1.3. Reference 181

https://docs.python.org/3/library/enum.html#enum.IntEnum


Pillow (PIL Fork) Documentation, Release 9.5.0

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

verify()

Verify PNG file

format = 'PNG'

format_description = 'Portable network graphics'

property text

class PIL.PngImagePlugin.PngStream(fp)
Bases: ChunkStream

check_text_memory(chunklen)

chunk_IDAT(pos, length)

chunk_IEND(pos, length)

chunk_IHDR(pos, length)

chunk_PLTE(pos, length)

chunk_acTL(pos, length)

chunk_cHRM(pos, length)

chunk_eXIf(pos, length)

chunk_fcTL(pos, length)

chunk_fdAT(pos, length)

chunk_gAMA(pos, length)

chunk_iCCP(pos, length)

chunk_iTXt(pos, length)

chunk_pHYs(pos, length)

chunk_sRGB(pos, length)

chunk_tEXt(pos, length)

chunk_tRNS(pos, length)

chunk_zTXt(pos, length)

182 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

rewind()

save_rewind()

PIL.PngImagePlugin.getchunks(im, **params)
Return a list of PNG chunks representing this image.

PIL.PngImagePlugin.is_cid(string, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.

PIL.PngImagePlugin.putchunk(fp, cid, *data)
Write a PNG chunk (including CRC field)

PIL.PngImagePlugin.MAX_TEXT_CHUNK = 1048576

Maximum decompressed size for a iTXt or zTXt chunk. Eliminates decompression bombs where compressed
chunks can expand 1000x. See Text in PNG File Format.

PIL.PngImagePlugin.MAX_TEXT_MEMORY = 67108864

Set the maximum total text chunk size. See Text in PNG File Format.

PpmImagePlugin Module

class PIL.PpmImagePlugin.PpmDecoder(mode, *args)
Bases: PyDecoder

decode(buffer)
Override to perform the decoding process.

Parameters
buffer – A bytes object with the data to be decoded.

Returns
A tuple of (bytes consumed, errcode). If finished with decoding return -1 for the bytes
consumed. Err codes are from ImageFile.ERRORS.

class PIL.PpmImagePlugin.PpmImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'PPM'

format_description = 'Pbmplus image'

class PIL.PpmImagePlugin.PpmPlainDecoder(mode, *args)
Bases: PyDecoder

decode(buffer)
Override to perform the decoding process.

Parameters
buffer – A bytes object with the data to be decoded.

Returns
A tuple of (bytes consumed, errcode). If finished with decoding return -1 for the bytes
consumed. Err codes are from ImageFile.ERRORS.

1.3. Reference 183



Pillow (PIL Fork) Documentation, Release 9.5.0

PsdImagePlugin Module

class PIL.PsdImagePlugin.PsdImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'PSD'

format_description = 'Adobe Photoshop'

seek(layer)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

SgiImagePlugin Module

class PIL.SgiImagePlugin.SGI16Decoder(mode, *args)
Bases: PyDecoder

decode(buffer)
Override to perform the decoding process.

Parameters
buffer – A bytes object with the data to be decoded.

Returns
A tuple of (bytes consumed, errcode). If finished with decoding return -1 for the bytes
consumed. Err codes are from ImageFile.ERRORS.

class PIL.SgiImagePlugin.SgiImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'SGI'

format_description = 'SGI Image File Format'

184 Chapter 1. Overview

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

SpiderImagePlugin Module

class PIL.SpiderImagePlugin.SpiderImageFile(fp=None, filename=None)
Bases: ImageFile

convert2byte(depth=255)

format = 'SPIDER'

format_description = 'Spider 2D image'

property is_animated

property n_frames

seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

tkPhotoImage()

PIL.SpiderImagePlugin.isInt(f )

PIL.SpiderImagePlugin.isSpiderHeader(t)

PIL.SpiderImagePlugin.isSpiderImage(filename)

PIL.SpiderImagePlugin.loadImageSeries(filelist=None)
create a list of Image objects for use in a montage

PIL.SpiderImagePlugin.makeSpiderHeader(im)

SunImagePlugin Module

class PIL.SunImagePlugin.SunImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'SUN'

format_description = 'Sun Raster File'

1.3. Reference 185

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

TgaImagePlugin Module

class PIL.TgaImagePlugin.TgaImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'TGA'

format_description = 'Targa'

load_end()

TiffImagePlugin Module

class PIL.TiffImagePlugin.AppendingTiffWriter(fn, new=False)
Bases: object

Tags = {273, 288, 324, 519, 520, 521}

close()

fieldSizes = [0, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 4, 8]

finalize()

fixIFD()

fixOffsets(count, isShort=False, isLong=False)

goToEnd()

newFrame()

readLong()

readShort()

rewriteLastLong(value)

rewriteLastShort(value)

rewriteLastShortToLong(value)

seek(offset, whence=0)

setEndian(endian)

setup()

skipIFDs()

tell()

write(data)

writeLong(value)

writeShort(value)

186 Chapter 1. Overview

https://docs.python.org/3/library/functions.html#object


Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.TiffImagePlugin.IFDRational(value, denominator=1)
Bases: Rational

Implements a rational class where 0/0 is a legal value to match the in the wild use of exif rationals.

e.g., DigitalZoomRatio - 0.00/0.00 indicates that no digital zoom was used

property denominator

limit_rational(max_denominator)

Parameters
max_denominator – Integer, the maximum denominator value

Returns
Tuple of (numerator, denominator)

property numerator

PIL.TiffImagePlugin.ImageFileDirectory

alias of ImageFileDirectory_v1

class PIL.TiffImagePlugin.ImageFileDirectory_v1(*args, **kwargs)
Bases: ImageFileDirectory_v2

This class represents the legacy interface to a TIFF tag directory.

Exposes a dictionary interface of the tags in the directory:

ifd = ImageFileDirectory_v1()
ifd[key] = 'Some Data'
ifd.tagtype[key] = TiffTags.ASCII
print(ifd[key])
('Some Data',)

Also contains a dictionary of tag types as read from the tiff image file, tagtype.

Values are returned as a tuple.

Deprecated since version 3.0.0.

classmethod from_v2(original)
Returns an ImageFileDirectory_v1 instance with the same data as is contained in the original
ImageFileDirectory_v2 instance.

Returns
ImageFileDirectory_v1

property tagdata

property tags

tagtype: dict

Dictionary of tag types

to_v2()

Returns an ImageFileDirectory_v2 instance with the same data as is contained in the original
ImageFileDirectory_v1 instance.

Returns
ImageFileDirectory_v2

1.3. Reference 187

https://docs.python.org/3/library/numbers.html#numbers.Rational
https://docs.python.org/3/library/stdtypes.html#dict


Pillow (PIL Fork) Documentation, Release 9.5.0

class PIL.TiffImagePlugin.ImageFileDirectory_v2(ifh=b'II*\x00\x00\x00\x00\x00', prefix=None,
group=None)

Bases: MutableMapping

This class represents a TIFF tag directory. To speed things up, we don’t decode tags unless they’re asked for.

Exposes a dictionary interface of the tags in the directory:

ifd = ImageFileDirectory_v2()
ifd[key] = 'Some Data'
ifd.tagtype[key] = TiffTags.ASCII
print(ifd[key])
'Some Data'

Individual values are returned as the strings or numbers, sequences are returned as tuples of the values.

The tiff metadata type of each item is stored in a dictionary of tag types in tagtype. The types are read from a
tiff file, guessed from the type added, or added manually.

Data Structures:

• self.tagtype = {}

– Key: numerical TIFF tag number

– Value: integer corresponding to the data type from TiffTags.TYPES

New in version 3.0.0.

‘Internal’ data structures:

• self._tags_v2 = {}

– Key: numerical TIFF tag number

– Value: decoded data, as tuple for multiple values

• self._tagdata = {}

– Key: numerical TIFF tag number

– Value: undecoded byte string from file

• self._tags_v1 = {}

– Key: numerical TIFF tag number

– Value: decoded data in the v1 format

Tags will be found in the private attributes self._tagdata, and in self._tags_v2 once decoded.

self.legacy_api is a value for internal use, and shouldn’t be changed from outside code. In cooperation with
ImageFileDirectory_v1, if legacy_api is true, then decoded tags will be populated into both _tags_v1
and _tags_v2. _tags_v2 will be used if this IFD is used in the TIFF save routine. Tags should be read from
_tags_v1 if legacy_api == true.

property legacy_api

load(fp)

load_byte(data, legacy_api=True)

load_double(data, legacy_api=True)

188 Chapter 1. Overview

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping


Pillow (PIL Fork) Documentation, Release 9.5.0

load_float(data, legacy_api=True)

load_long(data, legacy_api=True)

load_long8(data, legacy_api=True)

load_rational(data, legacy_api=True)

load_short(data, legacy_api=True)

load_signed_byte(data, legacy_api=True)

load_signed_long(data, legacy_api=True)

load_signed_rational(data, legacy_api=True)

load_signed_short(data, legacy_api=True)

load_string(data, legacy_api=True)

load_undefined(data, legacy_api=True)

named()

Returns
dict of name|key: value

Returns the complete tag dictionary, with named tags where possible.

property offset

property prefix

reset()

save(fp)

tagtype

Dictionary of tag types

tobytes(offset=0)

write_byte(data)

write_double(*values)

write_float(*values)

write_long(*values)

write_long8(*values)

write_rational(*values)

write_short(*values)

write_signed_byte(*values)

write_signed_long(*values)

write_signed_rational(*values)

1.3. Reference 189



Pillow (PIL Fork) Documentation, Release 9.5.0

write_signed_short(*values)

write_string(value)

write_undefined(value)

class PIL.TiffImagePlugin.TiffImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'TIFF'

format_description = 'Adobe TIFF'

get_photoshop_blocks()

Returns a dictionary of Photoshop “Image Resource Blocks”. The keys are the image resource ID.
For more information, see https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#50577409_
pgfId-1037727

Returns
Photoshop “Image Resource Blocks” in a dictionary.

getxmp()

Returns a dictionary containing the XMP tags. Requires defusedxml to be installed.

Returns
XMP tags in a dictionary.

load()

Load image data based on tile list

load_end()

property n_frames

seek(frame)
Select a given frame as current image

tag

Legacy tag entries

tag_v2

Image file directory (tag dictionary)

tell()

Return the current frame number

WebPImagePlugin Module

class PIL.WebPImagePlugin.WebPImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'WEBP'

format_description = 'WebP image'

190 Chapter 1. Overview

https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#50577409_pgfId-1037727
https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#50577409_pgfId-1037727


Pillow (PIL Fork) Documentation, Release 9.5.0

getxmp()

Returns a dictionary containing the XMP tags. Requires defusedxml to be installed.

Returns
XMP tags in a dictionary.

load()

Load image data based on tile list

seek(frame)
Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method
raises an EOFError exception. When a sequence file is opened, the library automatically seeks to frame 0.

See tell().

If defined, n_frames refers to the number of available frames.

Parameters
frame – Frame number, starting at 0.

Raises
EOFError – If the call attempts to seek beyond the end of the sequence.

tell()

Returns the current frame number. See seek().

If defined, n_frames refers to the number of available frames.

Returns
Frame number, starting with 0.

WmfImagePlugin Module

class PIL.WmfImagePlugin.WmfStubImageFile(fp=None, filename=None)
Bases: StubImageFile

format = 'WMF'

format_description = 'Windows Metafile'

load(dpi=None)
Load image data based on tile list

PIL.WmfImagePlugin.register_handler(handler)
Install application-specific WMF image handler.

Parameters
handler – Handler object.

1.3. Reference 191

https://docs.python.org/3/library/exceptions.html#EOFError


Pillow (PIL Fork) Documentation, Release 9.5.0

XVThumbImagePlugin Module

class PIL.XVThumbImagePlugin.XVThumbImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'XVThumb'

format_description = 'XV thumbnail image'

XbmImagePlugin Module

class PIL.XbmImagePlugin.XbmImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'XBM'

format_description = 'X11 Bitmap'

XpmImagePlugin Module

class PIL.XpmImagePlugin.XpmImageFile(fp=None, filename=None)
Bases: ImageFile

format = 'XPM'

format_description = 'X11 Pixel Map'

load_read(bytes)

1.3.31 Internal Reference Docs

File Handling in Pillow

When opening a file as an image, Pillow requires a filename, pathlib.Path object, or a file-like object. Pillow uses
the filename or Path to open a file, so for the rest of this article, they will all be treated as a file-like object.

The following are all equivalent:

from PIL import Image
import io
import pathlib

with Image.open("test.jpg") as im:
...

with Image.open(pathlib.Path("test.jpg")) as im2:
...

with open("test.jpg", "rb") as f:
im3 = Image.open(f)
...

(continues on next page)

192 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

with open("test.jpg", "rb") as f:
im4 = Image.open(io.BytesIO(f.read()))
...

If a filename or a path-like object is passed to Pillow, then the resulting file object opened by Pillow may also be closed
by Pillow after the Image.Image.load() method is called, provided the associated image does not have multiple
frames.

Pillow cannot in general close and reopen a file, so any access to that file needs to be prior to the close.

Image Lifecycle

• Image.open() Filenames and Path objects are opened as a file. Metadata is read from the open file. The file
is left open for further usage.

• Image.Image.load() When the pixel data from the image is required, load() is called. The current frame is
read into memory. The image can now be used independently of the underlying image file.

Any Pillow method that creates a new image instance based on another will internally call load() on the original
image and then read the data. The new image instance will not be associated with the original image file.

If a filename or a Path object was passed to Image.open(), then the file object was opened by Pillow and is
considered to be used exclusively by Pillow. So if the image is a single-frame image, the file will be closed in
this method after the frame is read. If the image is a multi-frame image, (e.g. multipage TIFF and animated GIF)
the image file is left open so that Image.Image.seek() can load the appropriate frame.

• Image.Image.close() Closes the file and destroys the core image object.

The Pillow context manager will also close the file, but will not destroy the core image object. e.g.:

with Image.open("test.jpg") as img:
img.load()

assert img.fp is None
img.save("test.png")

The lifecycle of a single-frame image is relatively simple. The file must remain open until the load() or close()
function is called or the context manager exits.

Multi-frame images are more complicated. The load() method is not a terminal method, so it should not close the
underlying file. In general, Pillow does not know if there are going to be any requests for additional data until the caller
has explicitly closed the image.

Complications

• TiffImagePlugin has some code to pass the underlying file descriptor into libtiff (if working on an actual file).
Since libtiff closes the file descriptor internally, it is duplicated prior to passing it into libtiff.

• After a file has been closed, operations that require file access will fail:

with open("test.jpg", "rb") as f:
im5 = Image.open(f)

im5.load() # FAILS, closed file

with Image.open("test.jpg") as im6:
(continues on next page)

1.3. Reference 193



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

pass
im6.load() # FAILS, closed file

Proposed File Handling

• Image.Image.load() should close the image file, unless there are multiple frames.

• Image.Image.seek() should never close the image file.

• Users of the library should use a context manager or call Image.Image.close() on any image opened with a
filename or Path object to ensure that the underlying file is closed.

Limits

This page is documentation to the various fundamental size limits in the Pillow implementation.

Internal Limits

• Image sizes cannot be negative. These are checked both in Storage.c and Image.py

• Image sizes may be 0. (Although not in 3.4)

• Maximum pixel dimensions are limited to INT32, or 2^31 by the sizes in the image header.

• Individual allocations are limited to 2GB in Storage.c

• The 2GB allocation puts an upper limit to the xsize of the image of either 2^31 for ‘L’ or 2^29 for ‘RGB’

• Individual memory mapped segments are limited to 2GB in map.c based on the overflow checks. This requires
that any memory mapped image is smaller than 2GB, as calculated by y*stride (so 2Gpx for ‘L’ images, and
.5Gpx for ‘RGB’

Format Size Limits

• ICO: Max size is 256x256

• Webp: 16383x16383 (underlying library size limit: https://developers.google.com/speed/webp/docs/api)

Block Allocator

Previous Design

Historically there have been two image allocators in Pillow: ImagingAllocateBlock and ImagingAllocateArray.
The first works for images smaller than 16MB of data and allocates one large chunk of memory of im->linesize
* im->ysize bytes. The second works for large images and makes one allocation for each scan line of size
im->linesize bytes. This makes for a very sharp transition between one allocation and potentially thousands of
small allocations, leading to unpredictable performance penalties around the transition.

194 Chapter 1. Overview

https://developers.google.com/speed/webp/docs/api


Pillow (PIL Fork) Documentation, Release 9.5.0

New Design

ImagingAllocateArray now allocates space for images as a chain of blocks with a maximum size of 16MB. If there
is a memory allocation error, it falls back to allocating a 4KB block, or at least one scan line. This is now the default
for all internal allocations.

ImagingAllocateBlock is now only used for those cases when we are specifically requesting a single segment of
memory for sharing with other code.

Memory Pools

There is now a memory pool to contain a supply of recently freed blocks, which can then be reused without going back
to the OS for a fresh allocation. This caching of free blocks is currently disabled by default, but can be enabled and
tweaked using three environment variables:

• PILLOW_ALIGNMENT, in bytes. Specifies the alignment of memory allocations. Valid values are powers of 2
between 1 and 128, inclusive. Defaults to 1.

• PILLOW_BLOCK_SIZE, in bytes, K, or M. Specifies the maximum block size for ImagingAllocateArray. Valid
values are integers, with an optional k or m suffix. Defaults to 16M.

• PILLOW_BLOCKS_MAX Specifies the number of freed blocks to retain to fill future memory requests. Any freed
blocks over this threshold will be returned to the OS immediately. Defaults to 0.

Internal Modules

_binary Module

Binary input/output support routines.

PIL._binary.i16be(c, o=0)

PIL._binary.i16le(c, o=0)
Converts a 2-bytes (16 bits) string to an unsigned integer.

Parameters

• c – string containing bytes to convert

• o – offset of bytes to convert in string

PIL._binary.i32be(c, o=0)

PIL._binary.i32le(c, o=0)
Converts a 4-bytes (32 bits) string to an unsigned integer.

Parameters

• c – string containing bytes to convert

• o – offset of bytes to convert in string

PIL._binary.i8(c)

PIL._binary.o16be(i)

PIL._binary.o16le(i)

1.3. Reference 195



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL._binary.o32be(i)

PIL._binary.o32le(i)

PIL._binary.o8(i)

PIL._binary.si16be(c, o=0)
Converts a 2-bytes (16 bits) string to a signed integer, big endian.

Parameters

• c – string containing bytes to convert

• o – offset of bytes to convert in string

PIL._binary.si16le(c, o=0)
Converts a 2-bytes (16 bits) string to a signed integer.

Parameters

• c – string containing bytes to convert

• o – offset of bytes to convert in string

PIL._binary.si32le(c, o=0)
Converts a 4-bytes (32 bits) string to a signed integer.

Parameters

• c – string containing bytes to convert

• o – offset of bytes to convert in string

_deprecate Module

PIL._deprecate.deprecate(deprecated: str, when: int | None, replacement: str | None = None, *, action: str |
None = None, plural: bool = False)→ None

Deprecations helper.

Parameters

• deprecated – Name of thing to be deprecated.

• when – Pillow major version to be removed in.

• replacement – Name of replacement.

• action – Instead of “replacement”, give a custom call to action e.g. “Upgrade to new thing”.

• plural – if the deprecated thing is plural, needing “are” instead of “is”.

Usually of the form:

“[deprecated] is deprecated and will be removed in Pillow [when] (yyyy-mm-dd). Use [replacement]
instead.”

You can leave out the replacement sentence:

“[deprecated] is deprecated and will be removed in Pillow [when] (yyyy-mm-dd)”

Or with another call to action:

“[deprecated] is deprecated and will be removed in Pillow [when] (yyyy-mm-dd). [action].”

196 Chapter 1. Overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None


Pillow (PIL Fork) Documentation, Release 9.5.0

_tkinter_finder Module

Find compiled module linking to Tcl / Tk libraries

_util Module

class PIL._util.DeferredError(ex)
Bases: object

PIL._util.is_directory(f )
Checks if an object is a string, and that it points to a directory.

PIL._util.is_path(f )

_version Module

PIL._version.__version__: str

This is the master version number for Pillow, all other uses reference this module.

PIL.Image.core Module

An internal interface module previously known as _imaging, implemented in _imaging.c.

C Extension debugging on Linux, with gbd/valgrind.

Install the tools

You need some basics in addition to the basic tools to build pillow. These are what’s required on Ubuntu, YMMV for
other distributions.

• python3-dbg package for the gdb extensions and python symbols

• gdb and valgrind

• Potentially debug symbols for libraries. On Ubuntu you can follow those instructions to install the corresponding
packages: Debug Symbol Packages

Then sudo apt-get install libtiff5-dbgsym

• There’s a bug with the python3-dbg package for at least Python 3.8 on Ubuntu 20.04, and you need to add a
new link or two to make it autoload when running python:

cd /usr/share/gdb/auto-load/usr/bin
ln -s python3.8m-gdb.py python3.8d-gdb.py

• In Ubuntu 18.04, it’s actually including the path to the virtualenv in the search for the python3.*-gdb.py file,
but you can helpfully put in the same directory as the binary.

• I also find that history is really useful for gdb, so I added this to my ~/.gdbinit file:

set history filename ~/.gdb_history
set history save on

1.3. Reference 197

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://wiki.ubuntu.com/Debug%20Symbol%20Packages#Getting_-dbgsym.ddeb_packages


Pillow (PIL Fork) Documentation, Release 9.5.0

• If the python stack isn’t working in gdb, then set debug auto-load can also be helpful in .gdbinit.

• Make a virtualenv with the debug python and activate it, then install whatever dependencies are required and
build. You want to build with the debug python so you get symbols for your extension.

virtualenv -p python3.8-dbg ~/vpy38-dbg
source ~/vpy38-dbg/bin/activate
cd ~/Pillow && make install

Test Case

Take your test image, and make a really simple harness.

from PIL import Image

with Image.open(path) as im:
im.load()

• Run this through valgrind, but note that python triggers some issues on its own, so you’re looking for items within
the Pillow hierarchy that don’t look like they’re solely in the python call chain. In this example, the ones we’re
interested are after the warnings, and have decode.c and TiffDecode.c in the call stack:

(vpy38-dbg) ubuntu@primary:~/Home/tests$ valgrind python test_tiff.py
==51890== Memcheck, a memory error detector
==51890== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==51890== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==51890== Command: python test_tiff.py
==51890==
==51890== Invalid read of size 4
==51890== at 0x472E3D: address_in_range (obmalloc.c:1401)
==51890== by 0x472EEA: pymalloc_free (obmalloc.c:1677)
==51890== by 0x474960: _PyObject_Free (obmalloc.c:1896)
==51890== by 0x473BAC: _PyMem_DebugRawFree (obmalloc.c:2187)
==51890== by 0x473BD4: _PyMem_DebugFree (obmalloc.c:2318)
==51890== by 0x474C08: PyObject_Free (obmalloc.c:709)
==51890== by 0x45DD60: dictresize (dictobject.c:1259)
==51890== by 0x45DD76: insertion_resize (dictobject.c:1019)
==51890== by 0x464F30: PyDict_SetDefault (dictobject.c:2924)
==51890== by 0x4D03BE: PyUnicode_InternInPlace (unicodeobject.c:15289)
==51890== by 0x4D0700: PyUnicode_InternFromString (unicodeobject.c:15322)
==51890== by 0x64D2FC: descr_new (descrobject.c:857)
==51890== Address 0x4c1b020 is 384 bytes inside a block of size 1,160 free'd
==51890== at 0x483CA3F: free (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_
→˓memcheck-amd64-linux.so)
==51890== by 0x4735D3: _PyMem_RawFree (obmalloc.c:127)
==51890== by 0x473BAC: _PyMem_DebugRawFree (obmalloc.c:2187)
==51890== by 0x474941: PyMem_RawFree (obmalloc.c:595)
==51890== by 0x47496E: _PyObject_Free (obmalloc.c:1898)
==51890== by 0x473BAC: _PyMem_DebugRawFree (obmalloc.c:2187)
==51890== by 0x473BD4: _PyMem_DebugFree (obmalloc.c:2318)
==51890== by 0x474C08: PyObject_Free (obmalloc.c:709)
==51890== by 0x45DD60: dictresize (dictobject.c:1259)
==51890== by 0x45DD76: insertion_resize (dictobject.c:1019)

(continues on next page)

198 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

==51890== by 0x464F30: PyDict_SetDefault (dictobject.c:2924)
==51890== by 0x4D03BE: PyUnicode_InternInPlace (unicodeobject.c:15289)
==51890== Block was alloc'd at
==51890== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_
→˓memcheck-amd64-linux.so)
==51890== by 0x473646: _PyMem_RawMalloc (obmalloc.c:99)
==51890== by 0x473529: _PyMem_DebugRawAlloc (obmalloc.c:2120)
==51890== by 0x473565: _PyMem_DebugRawMalloc (obmalloc.c:2153)
==51890== by 0x4748B1: PyMem_RawMalloc (obmalloc.c:572)
==51890== by 0x475909: _PyObject_Malloc (obmalloc.c:1628)
==51890== by 0x473529: _PyMem_DebugRawAlloc (obmalloc.c:2120)
==51890== by 0x473565: _PyMem_DebugRawMalloc (obmalloc.c:2153)
==51890== by 0x4736B0: _PyMem_DebugMalloc (obmalloc.c:2303)
==51890== by 0x474B78: PyObject_Malloc (obmalloc.c:685)
==51890== by 0x45C435: new_keys_object (dictobject.c:558)
==51890== by 0x45DA95: dictresize (dictobject.c:1202)
==51890==
==51890== Invalid read of size 4
==51890== at 0x472E3D: address_in_range (obmalloc.c:1401)
==51890== by 0x47594A: pymalloc_realloc (obmalloc.c:1929)
==51890== by 0x475A02: _PyObject_Realloc (obmalloc.c:1982)
==51890== by 0x473DCA: _PyMem_DebugRawRealloc (obmalloc.c:2240)
==51890== by 0x473FF8: _PyMem_DebugRealloc (obmalloc.c:2326)
==51890== by 0x4749FB: PyMem_Realloc (obmalloc.c:623)
==51890== by 0x44A6FC: list_resize (listobject.c:70)
==51890== by 0x44A872: app1 (listobject.c:340)
==51890== by 0x44FD65: PyList_Append (listobject.c:352)
==51890== by 0x514315: r_ref (marshal.c:945)
==51890== by 0x516034: r_object (marshal.c:1139)
==51890== by 0x516C70: r_object (marshal.c:1389)
==51890== Address 0x4c41020 is 32 bytes before a block of size 1,600 in arena "client"
==51890==
==51890== Conditional jump or move depends on uninitialised value(s)
==51890== at 0x472E46: address_in_range (obmalloc.c:1403)
==51890== by 0x47594A: pymalloc_realloc (obmalloc.c:1929)
==51890== by 0x475A02: _PyObject_Realloc (obmalloc.c:1982)
==51890== by 0x473DCA: _PyMem_DebugRawRealloc (obmalloc.c:2240)
==51890== by 0x473FF8: _PyMem_DebugRealloc (obmalloc.c:2326)
==51890== by 0x4749FB: PyMem_Realloc (obmalloc.c:623)
==51890== by 0x44A6FC: list_resize (listobject.c:70)
==51890== by 0x44A872: app1 (listobject.c:340)
==51890== by 0x44FD65: PyList_Append (listobject.c:352)
==51890== by 0x5E3321: _posix_listdir (posixmodule.c:3823)
==51890== by 0x5E33A8: os_listdir_impl (posixmodule.c:3879)
==51890== by 0x5E4D77: os_listdir (posixmodule.c.h:1197)
==51890==
==51890== Use of uninitialised value of size 8
==51890== at 0x472E59: address_in_range (obmalloc.c:1403)
==51890== by 0x47594A: pymalloc_realloc (obmalloc.c:1929)
==51890== by 0x475A02: _PyObject_Realloc (obmalloc.c:1982)
==51890== by 0x473DCA: _PyMem_DebugRawRealloc (obmalloc.c:2240)
==51890== by 0x473FF8: _PyMem_DebugRealloc (obmalloc.c:2326)

(continues on next page)

1.3. Reference 199



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

==51890== by 0x4749FB: PyMem_Realloc (obmalloc.c:623)
==51890== by 0x44A6FC: list_resize (listobject.c:70)
==51890== by 0x44A872: app1 (listobject.c:340)
==51890== by 0x44FD65: PyList_Append (listobject.c:352)
==51890== by 0x5E3321: _posix_listdir (posixmodule.c:3823)
==51890== by 0x5E33A8: os_listdir_impl (posixmodule.c:3879)
==51890== by 0x5E4D77: os_listdir (posixmodule.c.h:1197)
==51890==
/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 16908288 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 67895296 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 1572864 bytes but only got 0. Skipping tag 42
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 116647 bytes but only got 4867. Skipping tag 42738
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 3468830728 bytes but only got 4851. Skipping tag 279
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 2198732800 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 67239937 bytes but only got 4125. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33947764 bytes but only got 0. Skipping tag 139
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 17170432 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 80478208 bytes but only got 0. Skipping tag 1
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 787460 bytes but only got 4882. Skipping tag 20
warnings.warn(

(continues on next page)

200 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 1075 bytes but only got 0. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 120586240 bytes but only got 0. Skipping tag 194
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 65536 bytes but only got 0. Skipping tag 3
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 198656 bytes but only got 0. Skipping tag 279
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 206848 bytes but only got 0. Skipping tag 64512
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 130968 bytes but only got 4882. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 77848 bytes but only got 4689. Skipping tag 64270
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 262156 bytes but only got 0. Skipping tag 257
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33624064 bytes but only got 0. Skipping tag 49152
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 67178752 bytes but only got 4627. Skipping tag 50688
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33632768 bytes but only got 0. Skipping tag 56320
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 134386688 bytes but only got 4115. Skipping tag 2048
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33912832 bytes but only got 0. Skipping tag 7168
warnings.warn(

(continues on next page)

1.3. Reference 201



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 151966208 bytes but only got 4627. Skipping tag 10240
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 119032832 bytes but only got 3859. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 46535680 bytes but only got 0. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 35651584 bytes but only got 0. Skipping tag 42
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 524288 bytes but only got 0. Skipping tag 0
warnings.warn(

_TIFFVSetField: tempfile.tif: Null count for "Tag 769" (type 1, writecount -3, passcount␣
→˓1).
_TIFFVSetField: tempfile.tif: Null count for "Tag 42754" (type 1, writecount -3,␣
→˓passcount 1).
_TIFFVSetField: tempfile.tif: Null count for "Tag 769" (type 1, writecount -3, passcount␣
→˓1).
_TIFFVSetField: tempfile.tif: Null count for "Tag 42754" (type 1, writecount -3,␣
→˓passcount 1).
ZIPDecode: Decoding error at scanline 0, incorrect header check.
==51890== Invalid write of size 4
==51890== at 0x61C39E6: putcontig8bitYCbCr22tile (tif_getimage.c:2146)
==51890== by 0x61C5865: gtStripContig (tif_getimage.c:977)
==51890== by 0x6094317: ReadStrip (TiffDecode.c:269)
==51890== by 0x6094749: ImagingLibTiffDecode (TiffDecode.c:479)
==51890== by 0x60615D1: _decode (decode.c:136)
==51890== by 0x64BF47: method_vectorcall_VARARGS (descrobject.c:300)
==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== by 0x43627B: function_code_fastcall (call.c:283)
==51890== by 0x436D21: _PyFunction_Vectorcall (call.c:410)
==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== Address 0x6f456d4 is 0 bytes after a block of size 68 alloc'd
==51890== at 0x483DFAF: realloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_
→˓memcheck-amd64-linux.so)
==51890== by 0x60946D0: ImagingLibTiffDecode (TiffDecode.c:469)
==51890== by 0x60615D1: _decode (decode.c:136)
==51890== by 0x64BF47: method_vectorcall_VARARGS (descrobject.c:300)

(continues on next page)

202 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== by 0x43627B: function_code_fastcall (call.c:283)
==51890== by 0x436D21: _PyFunction_Vectorcall (call.c:410)
==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== by 0x4DFDFB: _PyEval_EvalCodeWithName (ceval.c:4298)
==51890== by 0x436C40: _PyFunction_Vectorcall (call.c:435)
==51890==
==51890== Invalid write of size 4
==51890== at 0x61C39B5: putcontig8bitYCbCr22tile (tif_getimage.c:2145)
==51890== by 0x61C5865: gtStripContig (tif_getimage.c:977)
==51890== by 0x6094317: ReadStrip (TiffDecode.c:269)
==51890== by 0x6094749: ImagingLibTiffDecode (TiffDecode.c:479)
==51890== by 0x60615D1: _decode (decode.c:136)
==51890== by 0x64BF47: method_vectorcall_VARARGS (descrobject.c:300)
==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== by 0x43627B: function_code_fastcall (call.c:283)
==51890== by 0x436D21: _PyFunction_Vectorcall (call.c:410)
==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== Address 0x6f456d8 is 4 bytes after a block of size 68 alloc'd
==51890== at 0x483DFAF: realloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_
→˓memcheck-amd64-linux.so)
==51890== by 0x60946D0: ImagingLibTiffDecode (TiffDecode.c:469)
==51890== by 0x60615D1: _decode (decode.c:136)
==51890== by 0x64BF47: method_vectorcall_VARARGS (descrobject.c:300)
==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== by 0x43627B: function_code_fastcall (call.c:283)
==51890== by 0x436D21: _PyFunction_Vectorcall (call.c:410)
==51890== by 0x4EB73C: _PyObject_Vectorcall (abstract.h:127)
==51890== by 0x4EB73C: call_function (ceval.c:4963)
==51890== by 0x4EB73C: _PyEval_EvalFrameDefault (ceval.c:3486)
==51890== by 0x4DF2EE: PyEval_EvalFrameEx (ceval.c:741)
==51890== by 0x4DFDFB: _PyEval_EvalCodeWithName (ceval.c:4298)
==51890== by 0x436C40: _PyFunction_Vectorcall (call.c:435)
==51890==
TIFFFillStrip: Invalid strip byte count 0, strip 1.
Traceback (most recent call last):
File "test_tiff.py", line 8, in <module>

(continues on next page)

1.3. Reference 203



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

im.load()
File "/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_

→˓64.egg/PIL/TiffImagePlugin.py", line 1087, in load
return self._load_libtiff()

File "/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_
→˓64.egg/PIL/TiffImagePlugin.py", line 1191, in _load_libtiff

raise OSError(err)
OSError: -2
sys:1: ResourceWarning: unclosed file <_io.BufferedReader name='crash-2020-10-test.tiff'>
==51890==
==51890== HEAP SUMMARY:
==51890== in use at exit: 748,734 bytes in 444 blocks
==51890== total heap usage: 6,320 allocs, 5,876 frees, 69,142,969 bytes allocated
==51890==
==51890== LEAK SUMMARY:
==51890== definitely lost: 0 bytes in 0 blocks
==51890== indirectly lost: 0 bytes in 0 blocks
==51890== possibly lost: 721,538 bytes in 372 blocks
==51890== still reachable: 27,196 bytes in 72 blocks
==51890== suppressed: 0 bytes in 0 blocks
==51890== Rerun with --leak-check=full to see details of leaked memory
==51890==
==51890== Use --track-origins=yes to see where uninitialised values come from
==51890== For lists of detected and suppressed errors, rerun with: -s
==51890== ERROR SUMMARY: 2556 errors from 6 contexts (suppressed: 0 from 0)
(vpy38-dbg) ubuntu@primary:~/Home/tests$

• Now that we’ve confirmed that there’s something odd/bad going on, it’s time to gdb.

• Start with gdb python

• Set a break point starting with the valgrind stack trace. b TiffDecode.c:269

• Run the script with r test_tiff.py

• When the break point is hit, explore the state with info locals, bt, py-bt, or p [variable]. For pointers,
p *[variable] is useful.

(vpy38-dbg) ubuntu@primary:~/Home/tests$ gdb python
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<https://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...

(continues on next page)

204 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

Reading symbols from python...
(gdb) b TiffDecode.c:269
No source file named TiffDecode.c.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (TiffDecode.c:269) pending.
(gdb) r test_tiff.py
Starting program: /home/ubuntu/vpy38-dbg/bin/python test_tiff.py
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 16908288 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 67895296 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 1572864 bytes but only got 0. Skipping tag 42
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 116647 bytes but only got 4867. Skipping tag 42738
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 3468830728 bytes but only got 4851. Skipping tag 279
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 2198732800 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 67239937 bytes but only got 4125. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33947764 bytes but only got 0. Skipping tag 139
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 17170432 bytes but only got 0. Skipping tag 0
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 80478208 bytes but only got 0. Skipping tag 1
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 787460 bytes but only got 4882. Skipping tag 20

(continues on next page)

1.3. Reference 205



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

warnings.warn(
/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 1075 bytes but only got 0. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 120586240 bytes but only got 0. Skipping tag 194
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 65536 bytes but only got 0. Skipping tag 3
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 198656 bytes but only got 0. Skipping tag 279
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 206848 bytes but only got 0. Skipping tag 64512
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 130968 bytes but only got 4882. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 77848 bytes but only got 4689. Skipping tag 64270
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 262156 bytes but only got 0. Skipping tag 257
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33624064 bytes but only got 0. Skipping tag 49152
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 67178752 bytes but only got 4627. Skipping tag 50688
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33632768 bytes but only got 0. Skipping tag 56320
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 134386688 bytes but only got 4115. Skipping tag 2048
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 33912832 bytes but only got 0. Skipping tag 7168

(continues on next page)

206 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

warnings.warn(
/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 151966208 bytes but only got 4627. Skipping tag 10240
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 119032832 bytes but only got 3859. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 46535680 bytes but only got 0. Skipping tag 256
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 35651584 bytes but only got 0. Skipping tag 42
warnings.warn(

/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_64.egg/
→˓PIL/TiffImagePlugin.py:770: UserWarning: Possibly corrupt EXIF data. Expecting to␣
→˓read 524288 bytes but only got 0. Skipping tag 0
warnings.warn(

_TIFFVSetField: tempfile.tif: Null count for "Tag 769" (type 1, writecount -3, passcount␣
→˓1).
_TIFFVSetField: tempfile.tif: Null count for "Tag 42754" (type 1, writecount -3,␣
→˓passcount 1).
_TIFFVSetField: tempfile.tif: Null count for "Tag 769" (type 1, writecount -3, passcount␣
→˓1).
_TIFFVSetField: tempfile.tif: Null count for "Tag 42754" (type 1, writecount -3,␣
→˓passcount 1).

Breakpoint 1, ReadStrip (tiff=tiff@entry=0xae9b90, row=0, buffer=0xac2eb0) at src/
→˓libImaging/TiffDecode.c:269
269 ok = TIFFRGBAImageGet(&img, buffer, img.width, rows_to_read);
(gdb) p img
$1 = {tif = 0xae9b90, stoponerr = 0, isContig = 1, alpha = 0, width = 20, height = 1536,␣
→˓bitspersample = 8, samplesperpixel = 3,
orientation = 1, req_orientation = 1, photometric = 6, redcmap = 0x0, greencmap = 0x0,␣

→˓bluecmap = 0x0, get =
0x7ffff71d0710 <gtStripContig>, put = {any = 0x7ffff71ce550

→˓<putcontig8bitYCbCr22tile>,
contig = 0x7ffff71ce550 <putcontig8bitYCbCr22tile>, separate = 0x7ffff71ce550

→˓<putcontig8bitYCbCr22tile>}, Map = 0x0,
BWmap = 0x0, PALmap = 0x0, ycbcr = 0xaf24b0, cielab = 0x0, UaToAa = 0x0, Bitdepth16To8␣

→˓= 0x0, row_offset = 0, col_offset = 0}
(gdb) up
#1 0x00007ffff736174a in ImagingLibTiffDecode (im=0xac1f90, state=0x7ffff76767e0,␣
→˓buffer=<optimized out>, bytes=<optimized out>)

at src/libImaging/TiffDecode.c:479
479 if (ReadStrip(tiff, state->y, (UINT32 *)state->buffer) == -1) {
(gdb) p *state
$2 = {count = 0, state = 0, errcode = 0, x = 0, y = 0, ystep = 0, xsize = 17, ysize =␣
→˓108, xoff = 0, yoff = 0,

(continues on next page)

1.3. Reference 207



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

shuffle = 0x7ffff735f411 <copy4>, bits = 32, bytes = 68, buffer = 0xac2eb0 "P\354\336\
→˓367\377\177", context = 0xa75440, fd = 0x0}
(gdb) py-bt
Traceback (most recent call first):
File "/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_

→˓64.egg/PIL/TiffImagePlugin.py", line 1428, in _load_libtiff

File "/home/ubuntu/vpy38-dbg/lib/python3.8/site-packages/Pillow-8.0.1-py3.8-linux-x86_
→˓64.egg/PIL/TiffImagePlugin.py", line 1087, in load

return self._load_libtiff()
File "test_tiff.py", line 8, in <module>
im.load()

• Poke around till you understand what’s going on. In this case, state->xsize and img.width are different, which
led to an out of bounds write, as the receiving buffer was sized for the smaller of the two.

Caveats

• If your program is running/hung in a docker container and your host has the appropriate tools, you can run gdb
as the superuser in the host and you may be able to get a trace of where the process is hung. You probably won’t
have the capability to do that from within the docker container, as the trace capacity isn’t allowed by default.

• Variations of this are possible on the mac/windows, but the details are going to be different.

• IIRC, Fedora has the gdb bits working by default. Ubuntu has always been a bit of a battle to make it work.

1.4 Porting

Porting existing PIL-based code to Pillow

Pillow is a functional drop-in replacement for the Python Imaging Library.

PIL is Python 2 only. Pillow dropped support for Python 2 in Pillow 7.0. So if you would like to run the latest version
of Pillow, you will first and foremost need to port your code from Python 2 to 3.

To run your existing PIL-compatible code with Pillow, it needs to be modified to import the Image module from the
PIL namespace instead of the global namespace. Change this:

import Image

to this:

from PIL import Image

The PIL._imaging module has been moved to PIL.Image.core. You can now import it like this:

from PIL.Image import core as _imaging

The image plugin loading mechanism has changed. Pillow no longer automatically imports any file in the Python path
with a name ending in ImagePlugin.py. You will need to import your image plugin manually.

Pillow will raise an exception if the core extension can’t be loaded for any reason, including a version mismatch between
the Python and extension code. Previously PIL allowed Python only code to run if the core extension was not available.

208 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

1.5 About

1.5.1 Goals

The fork author’s goal is to foster and support active development of PIL through:

• Continuous integration testing via GitHub Actions, AppVeyor and Travis CI

• Publicized development activity on GitHub

• Regular releases to the Python Package Index

1.5.2 License

Like PIL, Pillow is licensed under the open source HPND License

1.5.3 Why a fork?

PIL is not setuptools compatible. Please see this Image-SIG post for a more detailed explanation. Also, PIL’s current
bi-yearly (or greater) release schedule is too infrequent to accommodate the large number and frequency of issues
reported.

1.5.4 What about PIL?

Note: Prior to Pillow 2.0.0, very few image code changes were made. Pillow 2.0.0 added Python 3 support and
includes many bug fixes from many contributors.

As more time passes since the last PIL release (1.1.7 in 2009), the likelihood of a new PIL release decreases. However,
we’ve yet to hear an official “PIL is dead” announcement.

1.6 Release Notes

Pillow is released quarterly on January 2nd, April 1st, July 1st and October 15th. Patch releases are created if the latest
release contains severe bugs, or if security fixes are put together before a scheduled release. See Versioning for more
information.

Please use the latest version of Pillow. Functionality and security fixes should not be expected to be backported to
earlier versions.

Note: Contributors please include release notes as needed or appropriate with your bug fixes, feature additions and
tests.

1.5. About 209

https://github.com/python-pillow/Pillow/actions
https://ci.appveyor.com/project/Python-pillow/pillow
https://app.travis-ci.com/github/python-pillow/pillow-wheels
https://github.com/python-pillow/Pillow
https://pypi.org/project/Pillow/
https://raw.githubusercontent.com/python-pillow/Pillow/main/LICENSE
https://mail.python.org/pipermail/image-sig/2010-August/006480.html


Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.1 9.5.0

Backwards Incompatible Changes

TODO

TODO

Deprecations

PSFile

The PSFile class has been deprecated and will be removed in Pillow 11 (2024-10-15). This class was only made as
a helper to be used internally, so there is no replacement. If you need this functionality though, it is a very short class
that can easily be recreated in your own code.

API Changes

TODO

TODO

API Additions

QOI file format

Pillow can now read images in Quite OK Image format.

Added dpi argument when saving PDFs

When saving a PDF, resolution could already be specified using the resolution argument. Now, a tuple of
(x_resolution, y_resolution) can be provided as dpi. If both are provided, dpi will override resolution.

Added corners argument to ImageDraw.rounded_rectangle()

ImageDraw.rounded_rectangle() now accepts a keyword argument of corners. This a tuple of Booleans, speci-
fying whether to round each corner, (top_left, top_right, bottom_right, bottom_left).

210 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

JPEG2000 comments and PLT marker

When opening a JPEG2000 image, the comment may now be read into info. The comment keyword argument can be
used to save it back again.

If OpenJPEG 2.4.0 or later is available and the plt keyword argument is present and true when saving JPEG2000
images, tell the encoder to generate PLT markers.

Security

Clear PPM half token after use

Image files that are small on disk are often prevented from expanding to be big images consuming a large amount of
resources simply because they lack the data to populate those resources.

PpmImagePlugin might hold onto the last data read for a pixel value in case the pixel value has not been finished yet.
However, that data was not being cleared afterwards, meaning that infinite data could be available to fill any image size.
This has been present since Pillow 9.2.0.

That data is now cleared after use.

Saving TIFF tag ImageSourceData

If Pillow incorrectly saved the TIFF tag ImageSourceData as ASCII instead of UNDEFINED, a segmentation fault was
triggered.

The correct tag type will now be used by default instead.

Other Changes

Added support for saving PDFs in RGBA mode

Using the JPXDecode filter, PDFs can now be saved in RGBA mode.

Improved I;16N support

Support has been added for I;16N access, packing and unpacking. Conversion to and from L mode has also been added.

BGR;* modes

It is now possible to create new BGR;15, BGR;16 and BGR;24 images. Conversely, BGR;32 has been removed from
ImageMode and its associated methods, dropping the little support Pillow had for the mode.

With that, all modes listed under Modes can now be used to create a new image.

1.6. Release Notes 211



Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.2 9.4.0

API Additions

Added start position for getmask and getmask2

Text may render differently when starting at fractional coordinates, so FreeTypeFont.getmask() and
FreeTypeFont.getmask2() now support a start argument. This tuple of horizontal and vertical offset will be
used internally by ImageDraw.text() to more accurately place text at the xy coordinates.

Added the exact encoding option for WebP

The exact encoding option for WebP is now supported. The WebP encoder removes the hidden RGB values for better
compression by default in libwebp 0.5 or later. By setting this option to True, the encoder will keep the hidden RGB
values.

Added signed option when saving JPEG2000

If the signed keyword argument is present and true when saving JPEG2000 images, then tell the encoder to save the
image as signed.

Added IFD, Interop and LightSource ExifTags enums

IFD has been added, allowing enums to be used with get_ifd():

from PIL import Image, ExifTags
im = Image.open("Tests/images/flower.jpg")
print(im.getexif().get_ifd(ExifTags.IFD.Exif))

IFD1 can also be used with get_ifd(), but it should not be used in other contexts, as the enum value is only internally
meaningful.

Interop has been added for tags within the Interop IFD:

from PIL import Image, ExifTags
im = Image.open("Tests/images/flower.jpg")
interop_ifd = im.getexif().get_ifd(ExifTags.IFD.Interop)
print(interop_ifd.get(ExifTags.Interop.InteropIndex)) # R98

LightSource has been added for values within the LightSource tag:

from PIL import Image, ExifTags
im = Image.open("Tests/images/iptc.jpg")
exif_ifd = im.getexif().get_ifd(ExifTags.IFD.Exif)
print(ExifTags.LightSource(exif_ifd[0x9208])) # LightSource.Unknown

212 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

getxmp()

XMP data can now be decoded for WEBP images through getxmp().

Writing JPEG comments

When saving a JPEG image, a comment can now be written from info, or by using an argument when saving:

im.save(out, comment="Test comment")

Security

Fix memory DOS in ImageFont

A corrupt or specially crafted TTF font could have font metrics that lead to unreasonably large sizes when rendering
text in font. ImageFont.py did not check the image size before allocating memory for it. This dates to the PIL fork.
Pillow 8.2.0 added a check for large sizes, but did not consider the case where one dimension is zero.

Null pointer dereference crash in ImageFont

Pillow attempted to dereference a null pointer in ImageFont, leading to a crash. An error is now raised instead. This
has been present since Pillow 8.0.0.

Other Changes

Added support for DDS L and LA images

Support has been added to read and write L and LA DDS images in the uncompressed format, known as “luminance”
textures.

Constants

In Pillow 9.1.0, the following constants were deprecated. That has been reversed and these constants will now remain
available.

• Image.NONE

• Image.NEAREST

• Image.ORDERED

• Image.RASTERIZE

• Image.FLOYDSTEINBERG

• Image.WEB

• Image.ADAPTIVE

• Image.AFFINE

• Image.EXTENT

1.6. Release Notes 213

https://en.wikipedia.org/wiki/Extensible_Metadata_Platform


Pillow (PIL Fork) Documentation, Release 9.5.0

• Image.PERSPECTIVE

• Image.QUAD

• Image.MESH

• Image.FLIP_LEFT_RIGHT

• Image.FLIP_TOP_BOTTOM

• Image.ROTATE_90

• Image.ROTATE_180

• Image.ROTATE_270

• Image.TRANSPOSE

• Image.TRANSVERSE

• Image.BOX

• Image.BILINEAR

• Image.HAMMING

• Image.BICUBIC

• Image.LANCZOS

• Image.MEDIANCUT

• Image.MAXCOVERAGE

• Image.FASTOCTREE

• Image.LIBIMAGEQUANT

1.6.3 9.3.0

API Additions

Allow default ImageDraw font to be set

Rather than specifying a font when calling text-related ImageDraw methods, or setting a font on each ImageDraw
instance, the default font can now be set for all future ImageDraw operations:

from PIL import ImageDraw, ImageFont
ImageDraw.ImageDraw.font = ImageFont.truetype("Tests/fonts/FreeMono.ttf")

Saving multiple MPO frames

Multiple MPO frames can now be saved. Using the save_all argument, all of an image’s frames will be saved to file:

from PIL import Image
im = Image.open("frozenpond.mpo")
im.save(out, save_all=True)

Additional images can also be appended when saving, by combining the save_all argument with the append_images
argument:

214 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

im.save(out, save_all=True, append_images=[im1, im2, ...])

Added ExifTags enums

The data from TAGS and GPSTAGS is now also exposed as enum.IntEnum classes: Base and GPS.

Security

Initialize libtiff buffer when saving

When saving a TIFF image to a file object using libtiff, the buffer was not initialized. This behaviour introduced in
Pillow 2.0.0, and has now been fixed.

Decode JPEG compressed BLP1 data in original mode

Within the BLP image format, BLP1 data may use JPEG compression. Instead of telling the JPEG library that this data
is in BGRX mode, Pillow will now decode the data in its natural CMYK mode, then convert it to RGB and rearrange
the channels afterwards. Trying to load the data in an incorrect mode could result in a segmentation fault. This issue
was introduced in Pillow 9.1.0.

Limit SAMPLESPERPIXEL to avoid runtime DOS

A large value in the SAMPLESPERPIXEL tag could lead to a memory and runtime DOS in TiffImagePlugin.py when
setting up the context for image decoding. This was introduced in Pillow 9.2.0, found with OSS-Fuzz and fixed by
limiting SAMPLESPERPIXEL to the number of planes that we can decode.

Other Changes

Python 3.11 wheels

Pillow 9.2.0 had wheels built against Python 3.11 beta, available as a preview to help others prepare for 3.11, and ensure
Pillow can be used immediately on release day of 3.11.0 final (2022-10-24, PEP 664).

Pillow 9.3.0 now officially includes binary wheels for Python 3.11 final.

Windows wheels

This release contains wheels for Windows built using GitHub Actions.

Previously they were built by Christoph Gohlke.

A huge thanks to Christoph for building Windows binaries for us for around a decade, plus testing, and fixing over
a hundred bug fixes along the way, in addition to building and hosting unofficial Windows binaries for hundreds of
Python projects!

1.6. Release Notes 215

https://github.com/google/oss-fuzz
https://peps.python.org/pep-0664/
https://www.cgohlke.com/


Pillow (PIL Fork) Documentation, Release 9.5.0

Added DDS ATI1, ATI2 and BC6H reading

Support has been added to read the ATI1, ATI2 and BC6H formats of DDS images.

Release GIL when converting images using matrix operations

Python’s Global Interpreter Lock is now released when converting images using matrix operations.

Show all frames with ImageShow

When calling show() or using ImageShow, all frames will now be shown.

1.6.4 9.2.0

Deprecations

PyQt5 and PySide2

Deprecated since version 9.2.0.

Qt 5 reached end-of-life on 2020-12-08 for open-source users (and will reach EOL on 2023-12-08 for commercial
licence holders).

Support for PyQt5 and PySide2 has been deprecated from ImageQt and will be removed in Pillow 10 (2023-07-01).
Upgrade to PyQt6 or PySide6 instead.

FreeTypeFont.getmask2 fill parameter

Deprecated since version 9.2.0.

The undocumented fill parameter of FreeTypeFont.getmask2() has been deprecated and will be removed in
Pillow 10 (2023-07-01).

PhotoImage.paste box parameter

Deprecated since version 9.2.0.

The box parameter is unused. It will be removed in Pillow 10.0.0 (2023-07-01).

Image.coerce_e

Deprecated since version 9.2.0.

This undocumented method has been deprecated and will be removed in Pillow 10 (2023-07-01).

216 Chapter 1. Overview

https://www.qt.io/blog/qt-5.15-released
https://www.riverbankcomputing.com/static/Docs/PyQt6/
https://doc.qt.io/qtforpython/


Pillow (PIL Fork) Documentation, Release 9.5.0

Font size and offset methods

Deprecated since version 9.2.0.

Several functions for computing the size and offset of rendered text have been deprecated and will be removed in Pillow
10 (2023-07-01):

Deprecated Use instead
FreeTypeFont.getsize() and
FreeTypeFont.getoffset()

FreeTypeFont.getbbox() and FreeTypeFont.getlength()

FreeTypeFont.getsize_multiline() ImageDraw.multiline_textbbox()
ImageFont.getsize() ImageFont.getbbox() and ImageFont.getlength()
TransposedFont.getsize() TransposedFont.getbbox() and TransposedFont.

getlength()
ImageDraw.textsize() and ImageDraw.
multiline_textsize()

ImageDraw.textbbox(), ImageDraw.textlength() and
ImageDraw.multiline_textbbox()

ImageDraw2.Draw.textsize() ImageDraw2.Draw.textbbox() and ImageDraw2.Draw.
textlength()

Previous code:

from PIL import Image, ImageDraw, ImageFont

font = ImageFont.truetype("Tests/fonts/FreeMono.ttf")
width, height = font.getsize("Hello world")
left, top = font.getoffset("Hello world")

im = Image.new("RGB", (100, 100))
draw = ImageDraw.Draw(im)
width, height = draw.textsize("Hello world")

width, height = font.getsize_multiline("Hello\nworld")
width, height = draw.multiline_textsize("Hello\nworld")

Use instead:

from PIL import Image, ImageDraw, ImageFont

font = ImageFont.truetype("Tests/fonts/FreeMono.ttf")
left, top, right, bottom = font.getbbox("Hello world")
width, height = right - left, bottom - top

im = Image.new("RGB", (100, 100))
draw = ImageDraw.Draw(im)
width = draw.textlength("Hello world")

left, top, right, bottom = draw.multiline_textbbox((0, 0), "Hello\nworld")
width, height = right - left, bottom - top

1.6. Release Notes 217



Pillow (PIL Fork) Documentation, Release 9.5.0

API Additions

Image.apply_transparency

Added apply_transparency(), a method to take a P mode image with “transparency” in im.info, and apply the
transparency to the palette instead. The image’s palette mode will become “RGBA”, and “transparency” will be removed
from im.info.

Security

An additional decompression bomb check has been added for the GIF format.

Other Changes

Using gnome-screenshot on Linux

In grab() on Linux, if xdisplay is None then gnome-screenshotwill be used to capture the display if it is installed.
To capture the default X11 display instead, pass xdisplay="".

1.6.5 9.1.1

Security

This release addresses several security problems.

CVE-2022-30595: When reading a TGA file with RLE packets that cross scan lines, Pillow reads the information
past the end of the first line without deducting that from the length of the remaining file data. This vulnerability was
introduced in Pillow 9.1.0, and can cause a heap buffer overflow.

Opening an image with a zero or negative height has been found to bypass a decompression bomb check. This will
now raise a SyntaxError instead, in turn raising a PIL.UnidentifiedImageError.

1.6.6 9.1.0

API Changes

Raise an error when performing a negative crop

Performing a negative crop on an image previously just returned a (0, 0) image. Now it will raise a ValueError, to
help reduce confusion if a user has unintentionally provided the wrong arguments.

218 Chapter 1. Overview

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-30595
https://docs.python.org/3/library/exceptions.html#SyntaxError


Pillow (PIL Fork) Documentation, Release 9.5.0

Added specific error if path coordinate type is incorrect

Rather than returning a SystemError, passing the incorrect types of coordinates into a path will now raise a more
specific ValueError, with the message “incorrect coordinate type”.

Replace requirements.txt with extras

Rather than installing all dependencies for docs and tests via requirements.txt, extras_require is used instead.
This installs only those needed and at the same time as installing Pillow.

For example:

# Install with dependencies for tests:
python3 -m pip install .[tests]

# Or for building docs:
python3 -m pip install .[docs]

# Or for all:
python3 -m pip install .[docs,tests]

On macOS, the last argument may need to be wrapped in quotes, e.g. python3 -m pip install ".[tests]"

Therefore requirements.txt has been removed along with the make install-req command for installing its con-
tents.

Deprecations

Constants

A number of constants have been deprecated and will be removed in Pillow 10.0.0 (2023-07-01). Instead, enum.
IntEnum classes have been added.

Note: Some of these deprecations were restored in Pillow 9.4.0. See Constants

Deprecated Use instead
Image.NONE Either Image.Dither.NONE or Image.Resampling.NEAREST
Image.NEAREST Either Image.Dither.NONE or Image.Resampling.NEAREST
Image.ORDERED Image.Dither.ORDERED
Image.RASTERIZE Image.Dither.RASTERIZE
Image.FLOYDSTEINBERG Image.Dither.FLOYDSTEINBERG
Image.WEB Image.Palette.WEB
Image.ADAPTIVE Image.Palette.ADAPTIVE
Image.AFFINE Image.Transform.AFFINE
Image.EXTENT Image.Transform.EXTENT
Image.PERSPECTIVE Image.Transform.PERSPECTIVE
Image.QUAD Image.Transform.QUAD
Image.MESH Image.Transform.MESH
Image.FLIP_LEFT_RIGHT Image.Transpose.FLIP_LEFT_RIGHT

continues on next page

1.6. Release Notes 219



Pillow (PIL Fork) Documentation, Release 9.5.0

Table 4 – continued from previous page
Deprecated Use instead
Image.FLIP_TOP_BOTTOM Image.Transpose.FLIP_TOP_BOTTOM
Image.ROTATE_90 Image.Transpose.ROTATE_90
Image.ROTATE_180 Image.Transpose.ROTATE_180
Image.ROTATE_270 Image.Transpose.ROTATE_270
Image.TRANSPOSE Image.Transpose.TRANSPOSE
Image.TRANSVERSE Image.Transpose.TRANSVERSE
Image.BOX Image.Resampling.BOX
Image.BILINEAR Image.Resampling.BILINEAR
Image.LINEAR Image.Resampling.BILINEAR
Image.HAMMING Image.Resampling.HAMMING
Image.BICUBIC Image.Resampling.BICUBIC
Image.CUBIC Image.Resampling.BICUBIC
Image.LANCZOS Image.Resampling.LANCZOS
Image.ANTIALIAS Image.Resampling.LANCZOS
Image.MEDIANCUT Image.Quantize.MEDIANCUT
Image.MAXCOVERAGE Image.Quantize.MAXCOVERAGE
Image.FASTOCTREE Image.Quantize.FASTOCTREE
Image.LIBIMAGEQUANT Image.Quantize.LIBIMAGEQUANT
ImageCms.INTENT_PERCEPTUAL ImageCms.Intent.PERCEPTUAL
ImageCms.INTENT_RELATIVE_COLORMETRIC ImageCms.Intent.RELATIVE_COLORMETRIC
ImageCms.INTENT_SATURATION ImageCms.Intent.SATURATION
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC ImageCms.Intent.ABSOLUTE_COLORIMETRIC
ImageCms.DIRECTION_INPUT ImageCms.Direction.INPUT
ImageCms.DIRECTION_OUTPUT ImageCms.Direction.OUTPUT
ImageCms.DIRECTION_PROOF ImageCms.Direction.PROOF
ImageFont.LAYOUT_BASIC ImageFont.Layout.BASIC
ImageFont.LAYOUT_RAQM ImageFont.Layout.RAQM
BlpImagePlugin.BLP_FORMAT_JPEG BlpImagePlugin.Format.JPEG
BlpImagePlugin.BLP_ENCODING_UNCOMPRESSED BlpImagePlugin.Encoding.UNCOMPRESSED
BlpImagePlugin.BLP_ENCODING_DXT BlpImagePlugin.Encoding.DXT
BlpImagePlugin.BLP_ENCODING_UNCOMPRESSED_RAW_RGBA BlpImagePlugin.Encoding.UNCOMPRESSED_RAW_RGBA
BlpImagePlugin.BLP_ALPHA_ENCODING_DXT1 BlpImagePlugin.AlphaEncoding.DXT1
BlpImagePlugin.BLP_ALPHA_ENCODING_DXT3 BlpImagePlugin.AlphaEncoding.DXT3
BlpImagePlugin.BLP_ALPHA_ENCODING_DXT5 BlpImagePlugin.AlphaEncoding.DXT5
FtexImagePlugin.FORMAT_DXT1 FtexImagePlugin.Format.DXT1
FtexImagePlugin.FORMAT_UNCOMPRESSED FtexImagePlugin.Format.UNCOMPRESSED
PngImagePlugin.APNG_DISPOSE_OP_NONE PngImagePlugin.Disposal.OP_NONE
PngImagePlugin.APNG_DISPOSE_OP_BACKGROUND PngImagePlugin.Disposal.OP_BACKGROUND
PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS PngImagePlugin.Disposal.OP_PREVIOUS
PngImagePlugin.APNG_BLEND_OP_SOURCE PngImagePlugin.Blend.OP_SOURCE
PngImagePlugin.APNG_BLEND_OP_OVER PngImagePlugin.Blend.OP_OVER

220 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

ImageShow.Viewer.show_file file argument

The file argument in show_file() has been deprecated and will be removed in Pillow 10.0.0 (2023-07-01). It has
been replaced by path.

In effect, viewer.show_file("test.jpg") will continue to work unchanged. viewer.show_file(file="test.
jpg") will raise a deprecation warning, and suggest viewer.show_file(path="test.jpg") instead.

FitsStubImagePlugin

Deprecated since version 9.1.0.

The stub image plugin FitsStubImagePlugin has been deprecated and will be removed in Pillow 10.0.0 (2023-07-
01). FITS images can be read without a handler through FitsImagePlugin instead.

API Additions

Added get_photoshop_blocks() to parse Photoshop TIFF tag

get_photoshop_blocks() has been added, to allow users to determine what Photoshop “Image Resource Blocks”
are contained within an image. The keys of the returned dictionary are the image resource IDs.

At present, the information within each block is merely returned as a dictionary with a “data” entry. This will allow
more useful information to be added in the future without breaking backwards compatibility.

Added mct and no_jp2 options for saving JPEG 2000

The PIL.Image.Image.save() method now supports the following options for JPEG 2000:

mct
If 1 then enable multiple component transformation when encoding, otherwise use 0 for no component transfor-
mation (default). If MCT is enabled and irreversible is True then the Irreversible Color Transformation will
be applied, otherwise encoding will use the Reversible Color Transformation. MCT works best with a mode of
RGB and is only applicable when the image data has 3 components.

no_jp2
If True then don’t wrap the raw codestream in the JP2 file format when saving, otherwise the extension of the
filename will be used to determine the format (default).

Added PyEncoder

PyEncoder has been added, allowing for file encoders to be written in Python. See Writing Your Own File Codec in
Python for more information.

1.6. Release Notes 221



Pillow (PIL Fork) Documentation, Release 9.5.0

GifImagePlugin loading strategy

Pillow 9.0.0 introduced the conversion of subsequent GIF frames to RGB or RGBA. This behaviour can now be changed
so that the first P frame is converted to RGB as well.

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_ALWAYS

Or subsequent frames can be kept in P mode as long as there is only a single palette.

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_AFTER_DIFFERENT_
→˓PALETTE_ONLY

Other Changes

musllinux wheels

Pillow now builds binary wheels for musllinux, suitable for Linux distributions based on the musl C standard library
such as Alpine (rather than the glibc library used by manylinux wheels). See PEP 656.

ImageShow temporary files on Unix

When calling show() or using ImageShow, a temporary file is created from the image. On Unix, Pillow will no longer
delete these files, and instead leave it to the operating system to do so.

Image._repr_pretty_

im._repr_pretty_ has been added to provide a representation of an image without the identity of the object. This
allows Jupyter to describe an image and have that description stay the same on subsequent executions of the same code.

Added BigTIFF reading

Support has been added for reading BigTIFF images.

Added BLP saving

Support has been added for saving BLP images. blp_version can be used to specify whether the image should be
saved as BLP1 or BLP2, e.g. im.save("out.blp", blp_version="BLP1"). By default, BLP2 will be used.

222 Chapter 1. Overview

https://peps.python.org/pep-0656/


Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.7 9.0.1

Security

This release addresses several security problems.

CVE-2022-24303: If the path to the temporary directory on Linux or macOS contained a space, this would break
removal of the temporary image file after im.show() (and related actions), and potentially remove an unrelated file.
This has been present since PIL.

CVE-2022-22817: While Pillow 9.0 restricted top-level builtins available to PIL.ImageMath.eval(), it did not pre-
vent builtins available to lambda expressions. These are now also restricted.

Other Changes

Pillow 9.0 added support for xdg-open as an image viewer, but there have been reports that the temporary image file
was removed too quickly to be loaded into the final application. A delay has been added.

1.6.8 9.0.0

Fredrik Lundh

This release is dedicated to the memory of Fredrik Lundh, aka Effbot, who died in November 2021. Fredrik created
PIL in 1995 and he was instrumental in the early success of Python.

Guido wrote:

Fredrik was an early Python contributor (e.g. Elementtree and the ‘re’ module) and his enthusiasm for
the language and community were inspiring for all who encountered him or his work. He spent countless
hours on comp.lang.python answering questions from newbies and advanced users alike.

He also co-founded an early Python startup, Secret Labs AB, which among other software released an IDE
named PythonWorks. Fredrik also created the Python Imaging Library (PIL) which is still THE way to
interact with images in Python, now most often through its Pillow fork. His effbot.org site was a valuable
resource for generations of Python users, especially its Tkinter documentation.

Thank you, Fredrik.

Backwards Incompatible Changes

Python 3.6

Pillow has dropped support for Python 3.6, which reached end-of-life on 2021-12-23.

1.6. Release Notes 223

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24303
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22817
https://mail.python.org/archives/list/python-dev@python.org/thread/36Q5QBILL3QIFIA3KHNGFBNJQKXKN7SD/


Pillow (PIL Fork) Documentation, Release 9.5.0

PILLOW_VERSION constant

PILLOW_VERSION has been removed. Use __version__ instead.

FreeType 2.7

Support for FreeType 2.7 has been removed; FreeType 2.8 is the minimum supported.

We recommend upgrading to at least FreeType 2.10.4, which fixed a severe vulnerability introduced in FreeType 2.6
(CVE-2020-15999).

Image.show command parameter

The command parameter has been removed. Use a subclass of PIL.ImageShow.Viewer instead.

Image._showxv

Image._showxv has been removed. Use show() instead. If custom behaviour is required, use register() to add a
custom Viewer class.

ImageFile.raise_ioerror

IOError was merged into OSError in Python 3.3. So, ImageFile.raise_ioerror has been removed. Use
ImageFile.raise_oserror instead.

API Changes

Added line width parameter to ImageDraw polygon

An optional line width parameter has been added to ImageDraw.Draw.polygon.

API Additions

ImageShow.XDGViewer

If xdg-open is present on Linux, this new PIL.ImageShow.Viewer subclass will be registered. It displays images
using the application selected by the system.

It is higher in priority than the other default PIL.ImageShow.Viewer instances, so it will be preferred by im.show()
or ImageShow.show().

224 Chapter 1. Overview

https://freetype.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15999


Pillow (PIL Fork) Documentation, Release 9.5.0

Added support for “title” argument to DisplayViewer

Support has been added for the “title” argument in DisplayViewer, so that when im.show() or ImageShow.show()
use the display command line tool, the “title” argument will also now be supported, e.g. im.show(title="My
Image") and ImageShow.show(im, title="My Image").

Security

Ensure JpegImagePlugin stops at the end of a truncated file

JpegImagePlugin may append an EOF marker to the end of a truncated file, so that the last segment of the data will
still be processed by the decoder.

If the EOF marker is not detected as such however, this could lead to an infinite loop where JpegImagePlugin keeps
trying to end the file.

Remove consecutive duplicate tiles that only differ by their offset

To prevent attempts to slow down loading times for images, if an image has consecutive duplicate tiles that only differ
by their offset, only load the last tile. Credit to Google’s OSS-Fuzz project for finding this issue.

Restrict builtins available to ImageMath.eval

CVE-2022-22817: To limit PIL.ImageMath to working with images, Pillow will now restrict the builtins available
to PIL.ImageMath.eval(). This will help prevent problems arising if users evaluate arbitrary expressions, such as
ImageMath.eval("exec(exit())").

Fixed ImagePath.Path array handling

CVE-2022-22815 (CWE-126) and CVE-2022-22816 (CWE-665) were found when initializing ImagePath.Path.

Other Changes

Convert subsequent GIF frames to RGB or RGBA

Since each frame of a GIF can have up to 256 colors, after the first frame it is possible for there to be too many colors
to fit in a P mode image. To allow for this, seeking to any subsequent GIF frame will now convert the image to RGB
or RGBA, depending on whether or not the first frame had transparency.

1.6. Release Notes 225

https://github.com/google/oss-fuzz
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22817
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22815
https://cwe.mitre.org/data/definitions/126.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22816
https://cwe.mitre.org/data/definitions/665.html


Pillow (PIL Fork) Documentation, Release 9.5.0

Switched to libjpeg-turbo in macOS and Linux wheels

The Pillow wheels from PyPI for macOS and Linux have switched from libjpeg to libjpeg-turbo. It is a fork of libjpeg,
popular for its speed.

Because different JPEG decoders load images differently, JPEG pixels may be altered slightly with this change.

Added support for pickling TrueType fonts

TrueType fonts may now be pickled and unpickled. For example:

import pickle
from PIL import ImageFont

font = ImageFont.truetype("arial.ttf", size=30)
pickled_font = pickle.dumps(font, protocol=pickle.HIGHEST_PROTOCOL)

# Later...
unpickled_font = pickle.loads(pickled_font)

Added support for additional TGA orientations

TGA images with top right or bottom right orientations are now supported.

1.6.9 8.4.0

API Changes

Deprecations

ImagePalette size parameter

The size parameter will be removed in Pillow 10.0.0 (2023-07-01).

Before Pillow 8.3.0, ImagePalette required palette data of particular lengths by default, and the size parameter could
be used to override that. Pillow 8.3.0 removed the default required length, also removing the need for the size parameter.

API Additions

Added “transparency” argument for loading EPS images

This new argument switches the Ghostscript device from “ppmraw” to “pngalpha”, generating an RGBA image with a
transparent background instead of an RGB image with a white background.

with Image.open("sample.eps") as im:
im.load(transparency=True)

226 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Added WalImageFile class

PIL.WalImageFile.open() previously returned a generic PIL.Image.Image instance. It now returns a dedicated
PIL.WalImageFile.WalImageFile class.

Other Changes

Speed improvement when rotating square images

Starting with Pillow 3.3.0, the speed of rotating images by 90 or 270 degrees was improved by quickly returning
transpose() instead, if the rotate operation allowed for expansion and did not specify a center or post-rotate transla-
tion.

Since the expand flag makes no difference for square images though, Pillow now uses this faster method for square
images without the expand flag as well.

1.6.10 8.3.2

Security

• CVE-2021-23437: Avoid a potential ReDoS (regular expression denial of service) in ImageColor’s getrgb()
by raising ValueError if the color specifier is too long. Present since Pillow 5.2.0.

• Fix 6-byte out-of-bounds (OOB) read. The previous bounds check in FliDecode.c incorrectly calculated the
required read buffer size when copying a chunk, potentially reading six extra bytes off the end of the allocated
buffer from the heap. Present since Pillow 7.1.0. This bug was found by Google’s OSS-Fuzz CIFuzz runs.

Other Changes

Python 3.10 wheels

Pillow now includes binary wheels for Python 3.10.

The Python 3.10 release candidate was released on 2021-08-03 with the final release due 2021-10-04 (PEP 619). The
CPython core team strongly encourages maintainers of third-party Python projects to prepare for 3.10 compatibility.
And as there are no ABI changes planned we are releasing wheels to help others prepare for 3.10, and ensure Pillow
can be used immediately on release day of 3.10.0 final.

Fixed regressions

• Ensure TIFF RowsPerStrip is multiple of 8 for JPEG compression (#5588).

• Updates for ImagePalette channel order (#5599).

• Hide FriBiDi shim symbols to avoid conflict with real FriBiDi library (#5651).

1.6. Release Notes 227

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23437
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/google/oss-fuzz
https://google.github.io/oss-fuzz/getting-started/continuous-integration/
https://peps.python.org/pep-0619/
https://www.python.org/downloads/release/python-3100rc1/
https://github.com/python-pillow/Pillow/pull/5588
https://github.com/python-pillow/Pillow/pull/5599
https://github.com/python-pillow/Pillow/pull/5651


Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.11 8.3.1

Fixed regression converting to NumPy arrays

This fixes a regression introduced in 8.3.0 when converting an image to a NumPy array with a dtype argument.

>>> from PIL import Image
>>> import numpy
>>> im = Image.new("RGB", (100, 100))
>>> numpy.array(im, dtype=numpy.float64)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: __array__() takes 1 positional argument but 2 were given
>>>

Catch OSError when checking if destination is sys.stdout

In 8.3.0, a check to see if the destination was sys.stdout when saving an image was updated. This lead to an OSError
being raised if the environment restricted access.

The OSError is now silently caught.

Fixed removing orientation in ImageOps.exif_transpose

In 8.3.0, exif_transpose() was changed to ensure that the original image EXIF data was not modified, and the
orientation was only removed from the modified copy.

However, for certain images the orientation was already missing from the modified image, leading to a KeyError.

This error has been resolved, and the copying of metadata to the modified image improved.

1.6.12 8.3.0

Deprecations

JpegImagePlugin.convert_dict_qtables

JPEG quantization is now automatically converted, but still returned as a dictionary. The convert_dict_qtables
method no longer performs any operations on the data given to it, has been deprecated and will be removed in Pillow
10.0.0 (2023-07-01).

API Changes

Changed WebP default “method” value when saving

Previously, it was 0, for the best speed. The default has now been changed to 4, to match WebP’s default, for higher
quality with still some speed optimisation.

228 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Default resampling filter for special image modes

Pillow 7.0 changed the default resampling filter to Image.BICUBIC. However, as this is not supported yet for images
with a custom number of bits, the default filter for those modes has been reverted to Image.NEAREST.

ImageMorph incorrect mode errors

For apply(), match() and get_on_pixels(), if the image mode is not L, an Exception was thrown. This has now
been changed to a ValueError.

getxmp()

XMP data can now be returned for PNG and TIFF images, through getxmp() for each format.

The returned dictionary will start from the base of the XML, meaning that the top level should contain an “xmpmeta”
key. JPEG’s getxmp() method has also been updated to this structure.

TIFF getexif()

TIFF tag_v2 data can now be accessed through getexif(). This also provides access to the GPS and EXIF IFDs,
through im.getexif().get_ifd(0x8825) and im.getexif().get_ifd(0x8769) respectively.

API Additions

ImageOps.contain

Returns a resized version of the image, set to the maximum width and height within size, while maintaining the
original aspect ratio.

To compare it to other ImageOps methods:

• fit() expands an image until is fills size, cropping the parts of the image that do not fit.

• pad() expands an image to fill size, without cropping, but instead filling the extra space with color.

• contain() is similar to pad(), but it does not fill the extra space. Instead, the original aspect ratio is maintained.
So unlike the other two methods, it is not guaranteed to return an image of size.

ICO saving: bitmap_format argument

By default, Pillow saves ICO files in the PNG format. They can now also be saved in BMP format, through the new
bitmap_format argument:

im.save("out.ico", bitmap_format="bmp")

1.6. Release Notes 229

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Extensible_Metadata_Platform


Pillow (PIL Fork) Documentation, Release 9.5.0

Security

Buffer overflow

This release addresses CVE-2021-34552. PIL since 1.1.4 and Pillow since 1.0 allowed parameters passed into a convert
function to trigger buffer overflow in Convert.c.

Parsing XML

Pillow previously parsed XMP data using Python’s xml module. However, this module is not secure.

• getexif() has used xml to potentially retrieve orientation data since Pillow 7.2.0. It has been refactored to use
re instead.

• getxmp() was added in Pillow 8.2.0. It will now use defusedxml instead. If the dependency is not present, an
empty dictionary will be returned and a warning raised.

Other Changes

Added DDS BC5 reading and uncompressed saving

Support has been added to read the BC5 format of DDS images, whether UNORM, SNORM or TYPELESS.

Support has also been added to write the uncompressed format of DDS images.

1.6.13 8.2.0

Deprecations

Categories

im.category is deprecated and will be removed in Pillow 10.0.0 (2023-07-01), along with the related Image.NORMAL,
Image.SEQUENCE and Image.CONTAINER attributes.

To determine if an image has multiple frames or not, getattr(im, "is_animated", False) can be used instead.

Tk/Tcl 8.4

Support for Tk/Tcl 8.4 is deprecated and will be removed in Pillow 10.0.0 (2023-07-01), when Tk/Tcl 8.5 will be the
minimum supported.

230 Chapter 1. Overview

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34552


Pillow (PIL Fork) Documentation, Release 9.5.0

API Changes

Image.alpha_composite: dest

When calling alpha_composite(), the dest argument now accepts negative co-ordinates, like the upper left corner
of the box argument of paste() can be negative. Naturally, this has effect of cropping the overlaid image.

Image.getexif: EXIF and GPS IFD

Previously, getexif() flattened the EXIF IFD into the rest of the data, losing information. This information is now
kept separate, moved under im.getexif().get_ifd(0x8769).

Direct access to the GPS IFD dictionary was possible through im.getexif()[0x8825]. This is now consistent with
other IFDs, and must be accessed through im.getexif().get_ifd(0x8825).

These changes only affect getexif(), introduced in Pillow 6.0. The older _getexif() methods are unaffected.

Image._MODEINFO

This internal dictionary had been deprecated by a comment since PIL, and is now removed. Instead,
Image.getmodebase(), Image.getmodetype(), Image.getmodebandnames(), Image.getmodebands() or
ImageMode.getmode() can be used.

API Additions

getxmp() for JPEG images

A new method has been added to return XMP data for JPEG images. It reads the XML data into a dictionary of names
and values.

For example:

>>> from PIL import Image
>>> with Image.open("Tests/images/xmp_test.jpg") as im:
>>> print(im.getxmp())
{'RDF': {}, 'Description': {'Version': '10.4', 'ProcessVersion': '10.0', ...}, ...}

ImageDraw.rounded_rectangle

Added rounded_rectangle(). It works the same as rectangle(), except with an additional radius argument.
radius is limited to half of the width or the height, so that users can create a circle, but not any other ellipse.

from PIL import Image, ImageDraw
im = Image.new("RGB", (200, 200))
draw = ImageDraw.Draw(im)
draw.rounded_rectangle(xy=(10, 20, 190, 180), radius=30, fill="red")

1.6. Release Notes 231

https://en.wikipedia.org/wiki/Extensible_Metadata_Platform


Pillow (PIL Fork) Documentation, Release 9.5.0

ImageOps.autocontrast: preserve_tone

The default behaviour of autocontrast() is to normalize separate histograms for each color channel, changing the
tone of the image. The new preserve_tone argument keeps the tone unchanged by using one luminance histogram
for all channels.

ImageShow.GmDisplayViewer

If GraphicsMagick is present, this new PIL.ImageShow.Viewer subclass will be registered. It uses GraphicsMagick,
an ImageMagick fork, to display images.

The GraphicsMagick based viewer has a lower priority than its ImageMagick counterpart. Thus, if both ImageMagick
and GraphicsMagick are installed, im.show() and ImageShow.show() prefer the viewer based on ImageMagick, i.e
the behaviour stays the same for Pillow users having ImageMagick installed.

ImageShow.IPythonViewer

If IPython is present, this new PIL.ImageShow.Viewer subclass will be registered. It displays images on all IPython
frontends. This will be helpful to users of Google Colab, allowing im.show() to display images.

It is lower in priority than the other default PIL.ImageShow.Viewer instances, so it will only be used by im.show()
or ImageShow.show() if none of the other viewers are available. This means that the behaviour of PIL.ImageShow
will stay the same for most Pillow users.

Saving TIFF with ICC profile

As is already possible for JPEG, PNG and WebP, the ICC profile for TIFF files can now be specified through a keyword
argument:

im.save("out.tif", icc_profile=...)

Security

These were all found with OSS-Fuzz.

CVE-2021-25287, CVE-2021-25288: Fix OOB read in Jpeg2KDecode

• For J2k images with multiple bands, it’s legal to have different widths for each band, e.g. 1 byte for L, 4 bytes
for A.

• This dates to Pillow 2.4.0.

232 Chapter 1. Overview

http://www.graphicsmagick.org/
https://imagemagick.org/
https://github.com/google/oss-fuzz


Pillow (PIL Fork) Documentation, Release 9.5.0

CVE-2021-28675: Fix DOS in PsdImagePlugin

• PsdImagePlugin.PsdImageFile did not sanity check the number of input layers with regard to the size of the
data block, this could lead to a denial-of-service on open() prior to load().

• This dates to the PIL fork.

CVE-2021-28676: Fix FLI DOS

• FliDecode.c did not properly check that the block advance was non-zero, potentially leading to an infinite loop
on load.

• This dates to the PIL fork.

CVE-2021-28677: Fix EPS DOS on _open

• The readline used in EPS has to deal with any combination of \r and \n as line endings. It accidentally used a
quadratic method of accumulating lines while looking for a line ending.

• A malicious EPS file could use this to perform a denial-of-service of Pillow in the open phase, before an image
was accepted for opening.

• This dates to the PIL fork.

CVE-2021-28678: Fix BLP DOS

• BlpImagePlugin did not properly check that reads after jumping to file offsets returned data. This could lead
to a denial-of-service where the decoder could be run a large number of times on empty data.

• This dates to Pillow 5.1.0.

Fix memory DOS in ImageFont

• A corrupt or specially crafted TTF font could have font metrics that lead to unreasonably large sizes when ren-
dering text in font. ImageFont.py did not check the image size before allocating memory for it.

• This dates to the PIL fork.

Other Changes

GIF writer uses LZW encoding

GIF files are now written using LZW encoding, which will generate smaller files, typically about 70% of the size
generated by the older encoder.

The pixel data is encoded using the format specified in the CompuServe GIF standard.

The older encoder used a variant of run-length encoding that was compatible but less efficient.

1.6. Release Notes 233

https://www.w3.org/Graphics/GIF/spec-gif89a.txt


Pillow (PIL Fork) Documentation, Release 9.5.0

GraphicsMagick

The test suite can now be run on systems which have GraphicsMagick but not ImageMagick installed. If both are
installed, the tests prefer ImageMagick.

Libraqm and FriBiDi linking

The way the libraqm dependency for complex text scripts is linked has been changed:

Source builds will now link against the system version of libraqm at build time rather than at runtime by default.

Binary wheels now include a statically linked modified version of libraqm that links against FriBiDi at runtime instead.
This change is intended to address issues with the previous implementation on some platforms. These are created by
building Pillow with the new build flags --vendor-raqm --vendor-fribidi.

Windows users will now need to install fribidi.dll (or fribidi-0.dll) only, libraqm.dll is no longer used.

See installation documentation for more information.

PyQt6

Support has been added for PyQt6. If it is installed, it will be used instead of PySide6, PyQt5 or PySide2.

1.6.14 8.1.2

Security

There is an exhaustion of memory DOS in the BLP (CVE-2021-27921), ICNS (CVE-2021-27922) and ICO (CVE-
2021-27923) container formats where Pillow did not properly check the reported size of the contained image. These
images could cause arbitrarily large memory allocations. This was reported by Jiayi Lin, Luke Shaffer, Xinran Xie,
and Akshay Ajayan of Arizona State University.

1.6.15 8.1.1

Security

CVE-2021-25289: The previous fix for CVE-2020-35654 was insufficient due to incorrect error checking in
TiffDecode.c.

CVE-2021-25290: In TiffDecode.c, there is a negative-offset memcpy with an invalid size.

CVE-2021-25291: In TiffDecode.c, invalid tile boundaries could lead to an out-of-bounds read in
TIFFReadRGBATile.

CVE-2021-25292: The PDF parser has a catastrophic backtracking regex that could be used as a DOS attack.

CVE-2021-25293: There is an out-of-bounds read in SgiRleDecode.c, since Pillow 4.3.0.

234 Chapter 1. Overview

http://www.graphicsmagick.org/
https://imagemagick.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27921
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27922
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27923
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27923
https://www.asu.edu/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25289
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35654
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25290
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25291
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25292
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25293


Pillow (PIL Fork) Documentation, Release 9.5.0

Other Changes

A crash with the feature flags for libimagequant, libjpeg-turbo, WebP and XCB on unreleased Python 3.10 has been
fixed (#5193).

1.6.16 8.1.0

Deprecations

FreeType 2.7

Support for FreeType 2.7 is deprecated and will be removed in Pillow 9.0.0 (2022-01-02), when FreeType 2.8 will be
the minimum supported.

We recommend upgrading to at least FreeType 2.10.4, which fixed a severe vulnerability introduced in FreeType 2.6
(CVE-2020-15999).

Makefile

The install-venv target has been deprecated.

API Additions

Append images to ICO

When saving an ICO image, the file may contain versions of the image at different sizes. By default, Pillow will scale
down the main image to create these copies.

With this release, a list of images can be provided to the append_images parameter when saving, to replace the scaled
down versions. This is the same functionality that already exists for the ICNS format.

Security

This release includes security fixes.

• An out-of-bounds read when saving TIFFs with custom metadata through LibTIFF

• An out-of-bounds read when saving a GIF of 1px width

• CVE-2020-35653 Buffer read overrun in PCX decoding

The PCX image decoder used the reported image stride to calculate the row buffer, rather than calculating it from the
image size. This issue dates back to the PIL fork. Thanks to Google’s OSS-Fuzz project for finding this.

• CVE-2020-35654 Fix TIFF out-of-bounds write error

Out-of-bounds write in TiffDecode.c when reading corrupt YCbCr files in some LibTIFF versions (4.1.0/Ubuntu
20.04, but not 4.0.9/Ubuntu 18.04). In some cases LibTIFF’s interpretation of the file is different when reading in
RGBA mode, leading to an out-of-bounds write in TiffDecode.c. This potentially affects Pillow versions from 6.0.0
to 8.0.1, depending on the version of LibTIFF. This was reported through Tidelift.

• CVE-2020-35655 Fix for SGI Decode buffer overrun

1.6. Release Notes 235

https://github.com/python-pillow/Pillow/issues/5193
https://sourceforge.net/projects/freetype/files/freetype2/2.10.4/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15999
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35653
https://github.com/google/oss-fuzz
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35654
https://tidelift.com/subscription/pkg/pypi-pillow?utm_source=pillow&utm_medium=referral&utm_campaign=docs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35655


Pillow (PIL Fork) Documentation, Release 9.5.0

4 byte read overflow in SgiRleDecode.c, where the code was not correctly checking the offsets and length tables.
Independently reported through Tidelift and Google’s OSS-Fuzz. This vulnerability covers Pillow versions 4.3.0-
>8.0.1.

Dependencies

OpenJPEG in the macOS and Linux wheels has been updated from 2.3.1 to 2.4.0, including security fixes.

LibTIFF in the macOS and Linux wheels has been updated from 4.1.0 to 4.2.0, including security fixes discovered by
fuzzers.

Other Changes

Makefile

The co target has been removed.

PyPy wheels

Wheels have been added for PyPy 3.7.

PySide6

Support has been added for PySide6. If it is installed, it will be used instead of PyQt5 or PySide2, since it is based on
a newer Qt.

1.6.17 8.0.1

Security

Update FreeType used in binary wheels to 2.10.4 to fix CVE-2020-15999:

• A heap buffer overflow has been found in the handling of embedded PNG bitmaps, introduced in FreeType version
2.6.

If you use option FT_CONFIG_OPTION_USE_PNG you should upgrade immediately.

We strongly recommend updating to Pillow 8.0.1 if you are using Pillow 8.0.0, which improved support for bitmap
fonts.

In Pillow 7.2.0 and earlier bitmap fonts were disabled with FT_LOAD_NO_BITMAP, but it is not clear if this prevents the
exploit and we recommend updating to Pillow 8.0.1.

Pillow 8.0.0 and earlier are potentially vulnerable releases, including the last release to support Python 2.7, namely
Pillow 6.2.2.

236 Chapter 1. Overview

https://tidelift.com/subscription/pkg/pypi-pillow?utm_source=pillow&utm_medium=referral&utm_campaign=docs
https://github.com/google/oss-fuzz
https://sourceforge.net/projects/freetype/files/freetype2/2.10.4/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15999


Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.18 8.0.0

Backwards Incompatible Changes

Python 3.5

Pillow has dropped support for Python 3.5, which reached end-of-life on 2020-09-13.

PyPy 7.1.x

Pillow has dropped support for PyPy3 7.1.1. PyPy3 7.2.0, released on 2019-10-14, is now the minimum compatible
version.

im.offset

im.offset() has been removed, call ImageChops.offset() instead.

Image.fromstring, im.fromstring and im.tostring

• Image.fromstring() has been removed, call Image.frombytes() instead.

• im.fromstring() has been removed, call frombytes() instead.

• im.tostring() has been removed, call tobytes() instead.

ImageCms.CmsProfile attributes

Some attributes in PIL.ImageCms.CmsProfile have been removed:

Removed Use instead
color_space Padded xcolor_space
pcs Padded connection_space
product_copyright Unicode copyright
product_desc Unicode profile_description
product_description Unicode profile_description
product_manufacturer Unicode manufacturer
product_model Unicode model

API Changes

ImageDraw.text: stroke_width

Fixed issue where passing stroke_width with a non-zero value to ImageDraw.text() would cause the text to be
offset by that amount.

1.6. Release Notes 237



Pillow (PIL Fork) Documentation, Release 9.5.0

ImageDraw.text: anchor

The anchor parameter of ImageDraw.text() has been implemented.

Use this parameter to change the position of text relative to the specified xy point. See Text anchors for details.

Add MIME type to PsdImagePlugin

“image/vnd.adobe.photoshop” is now registered as the PsdImagePlugin.PsdImageFile MIME type.

API Additions

Image.open: add formats parameter

Added a new formats parameter to Image.open():

• A list or tuple of formats to attempt to load the file in. This can be used to restrict the set of formats checked.
Pass None to try all supported formats. You can print the set of available formats by running python3 -m PIL
or using the PIL.features.pilinfo() function.

ImageOps.autocontrast: add mask parameter

ImageOps.autocontrast() can now take a mask parameter:

• Histogram used in contrast operation is computed using pixels within the mask. If no mask is given the entire
image is used for histogram computation.

ImageOps.autocontrast cutoffs

Previously, the cutoff parameter of ImageOps.autocontrast() could only be a single number, used as the percent
to cut off from the histogram on the low and high ends.

Now, it can also be a tuple (low, high).

ImageDraw.regular_polygon

A new method ImageDraw.regular_polygon(), draws a regular polygon of n_sides, inscribed in a
bounding_circle.

For example draw.regular_polygon(((100, 100), 50), 5) draws a pentagon centered at the point (100,
100) with a polygon radius of 50.

238 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

ImageDraw.text: embedded_color

The methods ImageDraw.text() and ImageDraw.multiline_text() now support fonts with embedded color data.

To render text with embedded color data, use the parameter embedded_color=True.

Support for CBDT fonts requires FreeType 2.5 compiled with libpng. Support for SBIX fonts requires FreeType 2.5.1
compiled with libpng. Support for COLR fonts requires FreeType 2.10. SVG fonts are not yet supported.

ImageDraw.textlength

Two new methods ImageDraw.textlength() and FreeTypeFont.getlength() were added, returning the exact
advance length of text with 1/64 pixel precision.

These can be used for word-wrapping or rendering text in parts.

ImageDraw.textbbox

Three new methods ImageDraw.textbbox(), ImageDraw.multiline_textbbox(), and FreeTypeFont.
getbbox() return the bounding box of rendered text.

These functions accept an anchor parameter, see Text anchors for details.

Other Changes

Improved ellipse-drawing algorithm

The ellipse-drawing algorithm has been changed from drawing a 360-sided polygon to one which resembles Bresen-
ham’s algorithm for circles. It should be faster and produce smoother curves, especially for smaller ellipses.

ImageDraw.text and ImageDraw.multiline_text

Fixed multiple issues in methods ImageDraw.text() and ImageDraw.multiline_text() sometimes causing un-
expected text alignment issues.

The align parameter of ImageDraw.multiline_text() now gives better results in some cases.

TrueType fonts with embedded bitmaps are now supported.

Added writing of subIFDs

When saving EXIF data, Pillow is now able to write subIFDs, such as the GPS IFD. This should happen automatically
when saving an image using the EXIF data that it was opened with, such as in exif_transpose().

Previously, the code of the first tag of the subIFD was incorrectly written as the offset.

1.6. Release Notes 239



Pillow (PIL Fork) Documentation, Release 9.5.0

Error for large BMP files

Previously, if a BMP file was too large, an OSErrorwould be raised. Now, DecompressionBombError is used instead,
as Pillow already uses for other formats.

Dark theme for docs

The https://pillow.readthedocs.io documentation will use a dark theme if the user has requested the system use one.
Uses the prefers-color-scheme CSS media query.

1.6.19 7.2.0

API Changes

Replaced TiffImagePlugin DEBUG with logging

TiffImagePlugin.DEBUG = True has been a way to print various debugging information when interacting with
TIFF images. This has now been removed in favour of Python’s logging module, already used in other places in the
Pillow source code.

Corrected default offset when writing EXIF data

Previously, the default offset argument for tobytes() was 0, which did not include the magic header. It is now 8.

Moved to ImageFileDirectory_v2 in Image.Exif

Moved from the legacy PIL.TiffImagePlugin.ImageFileDirectory_v1 to PIL.TiffImagePlugin.
ImageFileDirectory_v2 in PIL.Image.Exif . This means that Exif RATIONALs and SIGNED_RATIONALs
are now read as PIL.TiffImagePlugin.IFDRational, instead of as a tuple with a numerator and a denominator.

TIFF BYTE tags format

TIFF BYTE tags were previously read as a tuple containing a bytestring. They are now read as just a single bytestring.

Deprecations

Image.show command parameter

The command parameter was deprecated and will be removed in a future release. Use a subclass of PIL.ImageShow.
Viewer instead.

240 Chapter 1. Overview

https://pillow.readthedocs.io


Pillow (PIL Fork) Documentation, Release 9.5.0

Image._showxv

Image._showxv has been deprecated. Use show() instead. If custom behaviour is required, use register() to add
a custom Viewer class.

ImageFile.raise_ioerror

IOError was merged into OSError in Python 3.3. So, ImageFile.raise_ioerror is now deprecated and will be
removed in a future release. Use ImageFile.raise_oserror instead.

1.6.20 7.1.2

Fix another regression seeking PNG files

This fixes a regression introduced in 7.1.0 when adding support for APNG files.

When calling seek(n) on a regular PNG where n > 0, it failed to raise an EOFError as it should have done, resulting
in:

AttributeError: 'NoneType' object has no attribute 'read'

Pillow 7.1.2 now raises the correct exception.

1.6.21 7.1.1

Fix regression seeking PNG files

This fixes a regression introduced in 7.1.0 when adding support for APNG files when calling seek and tell:

>>> from PIL import Image
>>> with Image.open("Tests/images/hopper.png") as im:
... im.seek(0)
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/

→˓PIL/PngImagePlugin.py", line 739, in seek
if not self._seek_check(frame):

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/
→˓PIL/ImageFile.py", line 306, in _seek_check
return self.tell() != frame

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/
→˓PIL/PngImagePlugin.py", line 827, in tell
return self.__frame

AttributeError: 'PngImageFile' object has no attribute '_PngImageFile__frame'
>>>

1.6. Release Notes 241



Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.22 7.1.0

API Changes

Allow saving of zero quality JPEG images

If no quality was specified when saving a JPEG, Pillow internally used a value of zero to indicate that the default
quality should be used. However, this removed the ability to actually save a JPEG with zero quality. This has now been
resolved.

from PIL import Image
im = Image.open("hopper.jpg")
im.save("out.jpg", quality=0)

API Additions

New channel operations

Three new channel operations have been added: soft_light(), hard_light() and overlay().

PILLOW_VERSION constant

PILLOW_VERSION has been re-added but is deprecated and will be removed in a future release. Use __version__
instead.

It was initially removed in Pillow 7.0.0, but brought back in 7.1.0 to give projects more time to upgrade.

Reading JPEG comments

When opening a JPEG image, the comment may now be read into info.

Support for different charset encodings in PcfFontFile

Previously PcfFontFile output only bitmap PIL fonts with ISO 8859-1 encoding, even though the PCF format sup-
ports Unicode, making it hard to work with Pillow with bitmap fonts in languages which use different character sets.

Now it’s possible to set a different charset encoding in PcfFontFile’s class constructor. By default, it generates a PIL
font file with ISO 8859-1 as before. The generated PIL font file still contains up to 256 characters, but the character set
is different depending on the selected encoding.

To use such a font with ImageDraw.text, call it with a bytes object with the same encoding as the font file.

242 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

X11 ImageGrab.grab()

Support has been added for ImageGrab.grab() on Linux using the X server with the XCB library.

An optional xdisplay parameter has been added to select the X server, with the default value of None using the default
X server.

Passing a different value on Windows or macOS will force taking a snapshot using the selected X server; pass an empty
string to use the default X server. XCB support is not included in pre-compiled wheels for Windows and macOS.

Security

This release includes security fixes.

• CVE-2020-10177 Fix multiple out-of-bounds reads in FLI decoding

• CVE-2020-10378 Fix bounds overflow in PCX decoding

• CVE-2020-10379 Fix two buffer overflows in TIFF decoding

• CVE-2020-10994 Fix bounds overflow in JPEG 2000 decoding

• CVE-2020-11538 Fix buffer overflow in SGI-RLE decoding

Other Changes

If present, only use alpha channel for bounding box

When the getbbox() method calculates the bounding box, for an RGB image it trims black pixels. Similarly, for an
RGBA image it would trim black transparent pixels. This is now changed so that if an image has an alpha channel
(RGBA, RGBa, PA, LA, La), any transparent pixels are trimmed.

Improved APNG support

Added support for reading and writing Animated Portable Network Graphics (APNG) images. The PNG plugin now
supports using the seek() method and the Iterator class to read APNG frame sequences. The PNG plugin also
now supports using the append_images argument to write APNG frame sequences. See APNG sequences for further
details.

1.6.23 7.0.0

Backwards Incompatible Changes

Python 2.7

Pillow has dropped support for Python 2.7, which reached end-of-life on 2020-01-01.

1.6. Release Notes 243

https://docs.python.org/3/library/constants.html#None
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10177
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10378
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10379
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10994
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11538


Pillow (PIL Fork) Documentation, Release 9.5.0

PILLOW_VERSION constant

PILLOW_VERSION has been removed. Use __version__ instead.

PIL.*ImagePlugin.__version__ attributes

The version constants of individual plugins have been removed. Use PIL.__version__ instead.

Removed Removed Removed
BmpImagePlugin.
__version__

Jpeg2KImagePlugin.
__version__

PngImagePlugin.__version__

CurImagePlugin.
__version__

JpegImagePlugin.__version__ PpmImagePlugin.__version__

DcxImagePlugin.
__version__

McIdasImagePlugin.
__version__

PsdImagePlugin.__version__

EpsImagePlugin.
__version__

MicImagePlugin.__version__ SgiImagePlugin.__version__

FliImagePlugin.
__version__

MpegImagePlugin.__version__ SunImagePlugin.__version__

FpxImagePlugin.
__version__

MpoImagePlugin.__version__ TgaImagePlugin.__version__

GdImageFile.__version__ MspImagePlugin.__version__ TiffImagePlugin.__version__
GifImagePlugin.
__version__

PalmImagePlugin.__version__ WmfImagePlugin.__version__

IcoImagePlugin.
__version__

PcdImagePlugin.__version__ XbmImagePlugin.__version__

ImImagePlugin.__version__ PcxImagePlugin.__version__ XpmImagePlugin.__version__
ImtImagePlugin.
__version__

PdfImagePlugin.__version__ XVThumbImagePlugin.
__version__

IptcImagePlugin.
__version__

PixarImagePlugin.
__version__

PyQt4 and PySide

Qt 4 reached end-of-life on 2015-12-19. Its Python bindings are also EOL: PyQt4 since 2018-08-31 and PySide since
2015-10-14.

Support for PyQt4 and PySide has been removed from ImageQt. Please upgrade to PyQt5 or PySide2.

Setting the size of TIFF images

Setting the size of a TIFF image directly (eg. im.size = (256, 256)) throws an error. Use Image.resize instead.

244 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Default resampling filter

The default resampling filter has been changed to the high-quality convolution Image.BICUBIC instead of Image.
NEAREST, for the resize() method and the pad(), scale() and fit() functions. Image.NEAREST is still always
used for images in “P” and “1” modes. See Filters to learn the difference. In short, Image.NEAREST is a very fast filter,
but simple and low-quality.

Image.draft() return value

If the draft() method has no effect, it returns None. If it does have an effect, then it previously returned the image
itself. However, unlike other chain methods, draft() does not return a modified version of the image, but modifies it
in-place. So instead, if draft() has an effect, Pillow will now return a tuple of the image mode and a co-ordinate box.
The box is the original coordinates in the bounds of resulting image. This may be useful in a subsequent resize()
call.

API Additions

Custom unidentified image error

Pillow will now throw a custom UnidentifiedImageError when an image cannot be identified. For backwards
compatibility, this will inherit from OSError.

New argument reducing_gap for Image.resize() and Image.thumbnail() methods

Speeds up resizing by resizing the image in two steps. The bigger reducing_gap, the closer the result to the fair
resampling. The smaller reducing_gap, the faster resizing. With reducing_gap greater or equal to 3.0, the result is
indistinguishable from fair resampling.

The default value for resize() is None, which means that the optimization is turned off by default.

The default value for thumbnail() is 2.0, which is very close to fair resampling while still being faster in many cases.
In addition, the same gap is applied when thumbnail() calls draft(), which may greatly improve the quality of
JPEG thumbnails. As a result, thumbnail() in the new version provides equally high speed and high quality from
any source (JPEG or arbitrary images).

New Image.reduce() method

reduce() is a highly efficient operation to reduce an image by integer times. Normally, it shouldn’t be used directly.
Used internally by resize() and thumbnail() methods to speed up resize when a new argument reducing_gap is
set.

1.6. Release Notes 245

https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Method_chaining
https://docs.python.org/3/library/constants.html#None


Pillow (PIL Fork) Documentation, Release 9.5.0

Loading WMF images at a given DPI

On Windows, Pillow can read WMF files, with a default DPI of 72. An image can now also be loaded at another
resolution:

from PIL import Image
with Image.open("drawing.wmf") as im:

im.load(dpi=144)

Other Changes

Image.__del__

Implicitly closing the image’s underlying file in Image.__del__ has been removed. Use a context manager or call
close() instead to close the file in a deterministic way.

Previous method:

im = Image.open("hopper.png")
im.save("out.jpg")

Use instead:

with Image.open("hopper.png") as im:
im.save("out.jpg")

Better thumbnail geometry

When calculating the new dimensions in thumbnail(), round to the nearest integer, instead of always rounding down.
This better preserves the original aspect ratio.

When the image width or height is not divisible by 8 the last row and column in the image get the correct weight after
JPEG DCT scaling.

1.6.24 6.2.2

Security

This release addresses several security problems.

CVE-2019-19911 is regarding FPX images. If an image reports that it has a large number of bands, a large amount of
resources will be used when trying to process the image. This is fixed by limiting the number of bands to those usable
by Pillow.

Buffer overruns were found when processing an SGI (CVE-2020-5311), PCX (CVE-2020-5312) or FLI image (CVE-
2020-5313). Checks have been added to prevent this.

CVE-2020-5310: Overflow checks have been added when calculating the size of a memory block to be reallocated in
the processing of a TIFF image.

246 Chapter 1. Overview

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19911
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5311
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5312
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5313
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5313
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5310


Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.25 6.2.1

API Changes

Deprecations

Python 2.7

Python 2.7 reaches end-of-life on 2020-01-01.

Pillow 7.0.0 will be released on 2020-01-01 and will drop support for Python 2.7, making Pillow 6.2.x the last release
series to support Python 2.

Other Changes

Support added for Python 3.8

Pillow 6.2.1 supports Python 3.8.

1.6.26 6.2.0

API Additions

Text stroking

stroke_width and stroke_fill arguments have been added to text drawing operations. They allow text to be
outlined, setting the width of the stroke and and the color respectively. If not provided, stroke_fill will default to
the fill parameter.

from PIL import Image, ImageDraw, ImageFont

font = ImageFont.truetype("Tests/fonts/FreeMono.ttf", 40)
font.getsize_multiline("A", stroke_width=2)
font.getsize("ABC\nAaaa", stroke_width=2)

im = Image.new("RGB", (100, 100))
draw = ImageDraw.Draw(im)
draw.textsize("A", font, stroke_width=2)
draw.multiline_textsize("ABC\nAaaa", font, stroke_width=2)
draw.text((10, 10), "A", "#f00", font, stroke_width=2, stroke_fill="#0f0")
draw.multiline_text((10, 10), "A\nB", "#f00", font,

stroke_width=2, stroke_fill="#0f0")

For example,

from PIL import Image, ImageDraw, ImageFont

im = Image.new("RGB", (120, 130))
draw = ImageDraw.Draw(im)
font = ImageFont.truetype("Tests/fonts/FreeMono.ttf", 120)
draw.text((10, 10), "A", "#f00", font, stroke_width=2, stroke_fill="#0f0")

1.6. Release Notes 247



Pillow (PIL Fork) Documentation, Release 9.5.0

creates the following image:

ImageGrab on multi-monitor Windows

An all_screens argument has been added to ImageGrab.grab. If True, all monitors will be included in the created
image.

API Changes

Image.getexif

To allow for lazy loading of Exif data, Image.getexif() now returns a shared instance of Image.Exif.

Deprecations

Image.frombuffer

There has been a longstanding warning that the defaults of Image.frombuffer may change in the future for the “raw”
decoder. The change will now take place in Pillow 7.0.

Security

This release catches several buffer overruns, as well as addressing CVE-2019-16865. The CVE is regarding DOS
problems, such as consuming large amounts of memory, or taking a large amount of time to process an image.

In RawDecode.c, an error is now thrown if skip is calculated to be less than zero. It is intended to skip padding between
lines, not to go backwards.

In PsdImagePlugin, if the combined sizes of the individual parts is larger than the declared size of the extra data field,
then it looked for the next layer by seeking backwards. This is now corrected by seeking to (the start of the layer + the
size of the extra data field) instead of (the read parts of the layer + the rest of the layer).

Decompression bomb checks have been added to GIF and ICO formats.

An error is now raised if a TIFF dimension is a string, rather than trying to perform operations on it.

248 Chapter 1. Overview

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16865


Pillow (PIL Fork) Documentation, Release 9.5.0

Other Changes

Removed bdist_wininst .exe installers

.exe installers fell out of favour with PEP 527, and will be deprecated in Python 3.8. Pillow will no longer be distributing
them. Wheels should be used instead.

Flags for libwebp in wheels

When building libwebp for inclusion in wheels, Pillow now adds the -O3 and -DNDEBUG CFLAGS. These flags would
be used by default if building libwebp without debugging, and using them fixes a significant decrease in speed when a
wheel-installed copy of Pillow performs libwebp operations.

1.6.27 6.1.0

Deprecations

Image.__del__

Deprecated since version 6.1.0.

Implicitly closing the image’s underlying file in Image.__del__ has been deprecated. Use a context manager or call
Image.close() instead to close the file in a deterministic way.

Deprecated:

im = Image.open("hopper.png")
im.save("out.jpg")

Use instead:

with Image.open("hopper.png") as im:
im.save("out.jpg")

API Additions

Image.entropy

Calculates and returns the entropy for the image. A bilevel image (mode “1”) is treated as a greyscale (“L”) image by
this method. If a mask is provided, the method employs the histogram for those parts of the image where the mask
image is non-zero. The mask image must have the same size as the image, and be either a bi-level image (mode “1”)
or a greyscale image (“L”).

1.6. Release Notes 249

https://peps.python.org/pep-0527/


Pillow (PIL Fork) Documentation, Release 9.5.0

ImageGrab.grab

An optional include_layered_windows parameter has been added to ImageGrab.grab, defaulting to False. If
true, layered windows will be included in the resulting image on Windows.

ImageSequence.all_frames

A new method to facilitate applying a given function to all frames in an image, or to all frames in a list of images.
The frames are returned as a list of separate images. For example, ImageSequence.all_frames(im, lambda
im_frame: im_frame.rotate(90)) could be used to return all frames from an image, each rotated 90 degrees.

Variation fonts

Variation fonts are now supported, allowing for different styles from the same font file. ImageFont.FreeTypeFont
has four new methods, PIL.ImageFont.FreeTypeFont.get_variation_names() and PIL.ImageFont.
FreeTypeFont.set_variation_by_name() for using named styles, and PIL.ImageFont.FreeTypeFont.
get_variation_axes() and PIL.ImageFont.FreeTypeFont.set_variation_by_axes() for using font axes
instead. An IOError will be raised if the font is not a variation font. FreeType 2.9.1 or greater is required.

Other Changes

ImageTk.getimage

This function is now supported. It returns the contents of an ImageTk.PhotoImage as an RGBA Image.Image
instance.

Image quality for JPEG compressed TIFF

The TIFF encoder accepts a quality parameter for jpeg compressed TIFF files. A value from 0 (worst) to 100 (best)
controls the image quality, similar to the JPEG encoder. The default is 75. For example:

im.save("out.tif", compression="jpeg", quality=85)

Improve encoding of TIFF tags

The TIFF encoder supports more types, especially arrays. This is required for the GeoTIFF format which encodes
geospatial information.

• Pass tagtype from v2 directory to libtiff encoder, instead of autodetecting type.

• Use explicit types eg. uint32_t for TIFF_LONG to fix issues on platforms with 64-bit longs.

• Add support for multiple values (arrays). Requires type in v2 directory and values must be passed as a tuple.

• Add support for signed types eg. TIFFTypes.TIFF_SIGNED_SHORT.

250 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Respect PKG_CONFIG environment variable when building

This variable is commonly used by other build systems and using it can help with cross-compiling. Falls back to
pkg-config as before.

Top-to-bottom complex text rendering

Drawing text in the ‘ttb’ direction with ImageFont has been significantly improved and requires Raqm 0.7 or greater.

1.6.28 6.0.0

Backwards Incompatible Changes

Python 3.4 dropped

Python 3.4 is EOL since 2019-03-16 and no longer supported. We will not be creating binaries, testing, or retaining
compatibility with this version. The final version of Pillow for Python 3.4 is 5.4.1.

Removed deprecated PIL.OleFileIO

PIL.OleFileIO was removed as a vendored file and in Pillow 4.0.0 (2017-01) in favour of the upstream olefile Python
package, and replaced with an ImportError. The deprecated file has now been removed from Pillow. If needed, install
from PyPI (eg. python3 -m pip install olefile).

Removed deprecated ImageOps functions

Several undocumented functions in ImageOps were deprecated in Pillow 4.3.0 (2017-10) and have now been removed:
gaussian_blur, gblur, unsharp_mask, usm and box_blur. Use the equivalent operations in ImageFilter instead.

Removed deprecated VERSION

VERSION (the old PIL version, always 1.1.7) has been removed. Use __version__ instead.

API Changes

Deprecations

Python 2.7

Python 2.7 reaches end-of-life on 2020-01-01.

Pillow 7.0.0 will be released on 2020-01-01 and will drop support for Python 2.7, making Pillow 6.x the last series to
support Python 2.

1.6. Release Notes 251



Pillow (PIL Fork) Documentation, Release 9.5.0

PyQt4 and PySide

Qt 4 reached end-of-life on 2015-12-19. Its Python bindings are also EOL: PyQt4 since 2018-08-31 and PySide since
2015-10-14.

Support for PyQt4 and PySide has been deprecated from ImageQt and will be removed in a future version. Please
upgrade to PyQt5 or PySide2.

PIL.*ImagePlugin.__version__ attributes

These version constants have been deprecated and will be removed in a future version.

• BmpImagePlugin.__version__

• CurImagePlugin.__version__

• DcxImagePlugin.__version__

• EpsImagePlugin.__version__

• FliImagePlugin.__version__

• FpxImagePlugin.__version__

• GdImageFile.__version__

• GifImagePlugin.__version__

• IcoImagePlugin.__version__

• ImImagePlugin.__version__

• ImtImagePlugin.__version__

• IptcImagePlugin.__version__

• Jpeg2KImagePlugin.__version__

• JpegImagePlugin.__version__

• McIdasImagePlugin.__version__

• MicImagePlugin.__version__

• MpegImagePlugin.__version__

• MpoImagePlugin.__version__

• MspImagePlugin.__version__

• PalmImagePlugin.__version__

• PcdImagePlugin.__version__

• PcxImagePlugin.__version__

• PdfImagePlugin.__version__

• PixarImagePlugin.__version__

• PngImagePlugin.__version__

• PpmImagePlugin.__version__

• PsdImagePlugin.__version__

• SgiImagePlugin.__version__

252 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

• SunImagePlugin.__version__

• TgaImagePlugin.__version__

• TiffImagePlugin.__version__

• WmfImagePlugin.__version__

• XbmImagePlugin.__version__

• XpmImagePlugin.__version__

• XVThumbImagePlugin.__version__

Use PIL.__version__ instead.

ImageCms.CmsProfile attributes

Some attributes in ImageCms.CmsProfile have been deprecated since Pillow 3.2.0. From 6.0.0, they issue a
DeprecationWarning:

Deprecated Use instead
color_space Padded xcolor_space
pcs Padded connection_space
product_copyright Unicode copyright
product_desc Unicode profile_description
product_description Unicode profile_description
product_manufacturer Unicode manufacturer
product_model Unicode model

MIME type improvements

Previously, all JPEG2000 images had the MIME type “image/jpx”. This has now been corrected. After the file format
drivers have been loaded, Image.MIME["JPEG2000"]will return “image/jp2”. ImageFile.get_format_mimetype
will return “image/jpx” if a JPX profile is present, or “image/jp2” otherwise.

Previously, all SGI images had the MIME type “image/rgb”. This has now been corrected. After the file format drivers
have been loaded, Image.MIME["SGI"] will return “image/sgi”. ImageFile.get_format_mimetype will return
“image/rgb” if RGB image data is present, or “image/sgi” otherwise.

MIME types have been added to the PPM format. After the file format drivers have been loaded, Image.MIME["PPM"]
will now return the generic “image/x-portable-anymap”. ImageFile.get_format_mimetype will return a MIME
type specific to the color type.

The TGA, PCX and ICO formats also now have MIME types: “image/x-tga”, “image/x-pcx” and “image/x-icon”
respectively.

1.6. Release Notes 253



Pillow (PIL Fork) Documentation, Release 9.5.0

API Additions

DIB file format

Pillow now supports reading and writing the Device Independent Bitmap file format.

Image.quantize

The dither option is now a customisable parameter (was previously hardcoded to 1). This parameter takes the same
values used in convert().

New language parameter

These text-rendering functions now accept a language parameter to request language-specific glyphs and ligatures
from the font:

• ImageDraw.ImageDraw.multiline_text()

• ImageDraw.ImageDraw.multiline_textsize()

• ImageDraw.ImageDraw.text()

• ImageDraw.ImageDraw.textsize()

• ImageFont.ImageFont.getmask()

• ImageFont.ImageFont.getsize_multiline()

• ImageFont.ImageFont.getsize()

Added EXIF class

getexif() has been added, which returns an Exif instance. Values can be retrieved and set like a dictionary. When
saving JPEG, PNG or WEBP, the instance can be passed as an exif argument to include any changes in the output
image.

Added ImageOps.exif_transpose

exif_transpose() returns a copy of an image, transposed according to its EXIF Orientation tag.

PNG EXIF data

EXIF data can now be read from and saved to PNG images. However, unlike other image formats, EXIF data is not
guaranteed to be present in info until load() has been called.

254 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Other Changes

Reading new DDS image format

Pillow can now read uncompressed RGB data from DDS images.

Reading TIFF with old-style JPEG compression

Added support reading TIFF files with old-style JPEG compression through LibTIFF. All YCbCr TIFF images are now
always read as RGB.

TIFF compression codecs

Support has been added for the LZMA, Zstd and WebP TIFF compression codecs.

Improved support for transposing I;16 images

I;16, I;16L and I;16B are now supported image modes for all transpose() operations.

1.6.29 5.4.1

This release fixes regressions in 5.4.0.

Installation on Termux

A change to the way Pillow detects libraries during installed prevented installation on Termux, which does not have
/sbin/ldconfig. This is now fixed.

PNG: Handle IDAT chunks after image end

Some PNG images have multiple IDAT chunks. In some cases, Pillow will stop reading image data before the IDAT
chunks finish. A regression caused an EOFError exception when previously there was none. This is now fixed, and
file reading continues in case there are subsequent text chunks.

PNG: MIME type

The addition of limited APNG support to the PNG plugin also overwrote the MIME type for PNG files, causing “im-
age/apng” to be returned as the MIME type of both APNG and PNG files. This has been fixed so the MIME type of
PNG files is “image/png”.

1.6. Release Notes 255



Pillow (PIL Fork) Documentation, Release 9.5.0

File closing

A regression caused an unsupported image file to report a ValueError: seek of closed file exception instead
of an OSError. This has been fixed by ensuring that image plugins only close their internal __fp if they are not the
same as ImageFile’s fp, allowing each to manage their own file pointers.

1.6.30 5.4.0

API Changes

APNG extension to PNG plugin

Animated Portable Network Graphics (APNG) images are not fully supported but can be opened via the PNG plugin
to get some basic info:

im = Image.open("image.apng")
print(im.mode) # "RGBA"
print(im.size) # (245, 245)
im.show() # Shows a single frame

Check for libjpeg-turbo

You can check if Pillow has been built against the libjpeg-turbo version of the libjpeg library:

from PIL import features
features.check_feature("libjpeg_turbo") # True or False

Negative indexes in pixel access

When accessing individual image pixels, negative indexes are now also accepted. For example, to get or set the farthest
pixel in the lower right of an image:

px = im.load()
print(px[-1, -1])
px[-1, -1] = (0, 0, 0)

New custom TIFF tags

TIFF images can now be saved with custom integer, float and string TIFF tags:

im = Image.new("RGB", (200, 100))
custom = {

37000: 4,
37001: 4.2,
37002: "custom tag value",
37003: u"custom tag value",
37004: b"custom tag value",

}
(continues on next page)

256 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

(continued from previous page)

im.save("output.tif", tiffinfo=custom)

im2 = Image.open("output.tif")
print(im2.tag_v2[37000]) # 4
print(im2.tag_v2[37002]) # "custom tag value"
print(im2.tag_v2[37004]) # b"custom tag value"

Other Changes

ImageOps.fit

Now uses one resize operation with box parameter internally instead of a crop and scale operations sequence. This
improves the performance and accuracy of cropping since the box parameter accepts float values.

1.6.31 5.3.0

API Changes

Image size

If you attempt to set the size of an image directly, e.g. im.size = (100, 100), you will now receive an
AttributeError. This is not about removing existing functionality, but instead about raising an explicit error to
prevent later consequences. The resize method is the correct way to change an image’s size.

The exceptions to this are:

• The ICO and ICNS image formats, which use im.size = (100, 100) to select a subimage.

• The TIFF image format, which now has a DeprecationWarning for this action, as direct image size setting was
previously necessary to work around an issue with tile extents.

API Additions

Added line width parameter to rectangle and ellipse-based shapes

An optional line width parameter has been added to ImageDraw.Draw.arc, chord, ellipse, pieslice and
rectangle.

Curved joints for line sequences

ImageDraw.Draw.line draws a line, or lines, between points. Previously, when multiple points are given, for a larger
width, the joints between these lines looked unsightly. There is now an additional optional argument, joint, defaulting
to None. When it is set to curved, the joints between the lines will become rounded.

1.6. Release Notes 257

https://docs.python.org/3/library/constants.html#None


Pillow (PIL Fork) Documentation, Release 9.5.0

ImageOps.colorize

Previously ImageOps.colorize only supported two-color mapping with black and white arguments being mapped
to 0 and 255 respectively. Now it supports three-color mapping with the optional mid parameter, and the positions for
all three color arguments can each be optionally specified (blackpoint, whitepoint and midpoint). For example,
with all optional arguments:

ImageOps.colorize(im, black=(32, 37, 79), white='white', mid=(59, 101, 175),
blackpoint=15, whitepoint=240, midpoint=100)

ImageOps.pad

While ImageOps.fit allows users to crop images to a requested aspect ratio and size, new method ImageOps.pad
pads images to fill a requested aspect ratio and size, filling new space with a provided color and positioning the image
within the new area through a centering argument.

Other Changes

Added support for reading tiled TIFF images through LibTIFF. Compressed TIFF images are now read through
LibTIFF.

RGB WebP images are now read as RGB mode, rather than RGBX.

1.6.32 5.2.0

API Changes

Deprecations

These version constants have been deprecated. VERSION will be removed in Pillow 6.0.0, and PILLOW_VERSION will
be removed after that.

• PIL.VERSION (old PIL version 1.1.7)

• PIL.PILLOW_VERSION

• PIL.Image.VERSION

• PIL.Image.PILLOW_VERSION

Use PIL.__version__ instead.

API Additions

3D color lookup tables

Support for 3D color lookup table transformations has been added.

• https://en.wikipedia.org/wiki/3D_lookup_table

Color3DLUT.generate transforms 3-channel pixels using the values of the channels as coordinates in the 3D lookup
table and interpolating the nearest elements.

It allows you to apply almost any color transformation in constant time by using pre-calculated decimated tables.

258 Chapter 1. Overview

https://en.wikipedia.org/wiki/3D_lookup_table


Pillow (PIL Fork) Documentation, Release 9.5.0

Color3DLUT.transform() allows altering table values with a callback.

If NumPy is installed, the performance of argument conversion is dramatically improved when a source table supports
buffer interface (NumPy && arrays in Python >= 3).

ImageColor.getrgb

Previously Image.rotate only supported HSL color strings. Now HSB and HSV strings are also supported, as well
as float values. For example, ImageColor.getrgb("hsv(180,100%,99.5%)").

ImageFile.get_format_mimetype

ImageFile.get_format_mimetype has been added to return the MIME type of an image file, where available. For
example, Image.open("hopper.jpg").get_format_mimetype() returns "image/jpeg".

ImageFont.getsize_multiline

A new method to return the size of multiline text, for example font.getsize_multiline("ABC\nAaaa")

Image.rotate

A new named parameter, fillcolor, has been added to Image.rotate. This color specifies the background color to
use in the area outside the rotated image. This parameter takes the same color specifications as used in Image.new.

TGA file format

Pillow can now read and write LA data (in addition to L, P, RGB and RGBA), and write RLE data (in addition to
uncompressed).

Other Changes

Support added for Python 3.7

Pillow 5.2 supports Python 3.7.

Build macOS wheels with Xcode 6.4, supporting older macOS versions

The macOS wheels for Pillow 5.1.0 were built with Xcode 9.2, meaning 10.12 Sierra was the lowest supported version.

Prior to Pillow 5.1.0, Xcode 8 was used, supporting El Capitan 10.11.

Instead, Pillow 5.2.0 is built with the oldest available Xcode 6.4 to support at least 10.10 Yosemite.

1.6. Release Notes 259



Pillow (PIL Fork) Documentation, Release 9.5.0

Fix _i2f compilation with some GCC versions

For example, this allows compilation with GCC 4.8 on NetBSD.

Resolve confusion getting PIL / Pillow version string

Re: “version constants deprecated” listed above, as user gnbl notes in #3082:

• it’s confusing that PIL.VERSION returns the version string of the former PIL instead of Pillow’s

• ReadTheDocs documentation is missing for some version branches (why is this, will it ever change, . . . )

• it’s confusing that PIL.version is a module and does not return the version information directly or hints on how
to get it

• the package information header is essentially useless (placeholder, does not even mention Pillow, nor the version)

• PIL._version module documentation comment could explain how to access the version information

We have attempted to resolve these issues in #3083, #3090 and #3218.

1.6.33 5.1.0

New File Format

BLP File Format

Pillow now supports reading the BLP “Blizzard Mipmap” file format used for tiles in Blizzard’s engine.

API Changes

Optional channels for TIFF files

Pillow can now open TIFF files with base modes of RGB, YCbCr, and CMYK with up to 6 8-bit channels, discarding
any extra channels if the content is tagged as UNSPECIFIED. Pillow still does not store more than 4 8-bit channels of
image data.

Append to PDF Files

Images can now be appended to PDF files in place by passing in append=True when saving the image.

Other Changes

WebP memory leak

A memory leak when opening WebP files has been fixed.

260 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.34 5.0.0

Backwards Incompatible Changes

Python 3.3 Dropped

Python 3.3 is EOL and no longer supported due to moving testing from nose, which is deprecated, to pytest, which
doesn’t support Python 3.3. We will not be creating binaries, testing, or retaining compatibility with this version. The
final version of Pillow for Python 3.3 is 4.3.0.

Decompression Bombs now raise Exceptions

Pillow has previously emitted warnings for images that are unexpectedly large and may be a denial of service. These
warnings are now upgraded to DecompressionBombErrors for images that are twice the size of images that trigger
the DecompressionBombWarning. The default threshold is 128Mpx, or 0.5GB for an RGB or RGBA image. This can
be disabled or changed by setting Image.MAX_IMAGE_PIXELS = None.

Scripts

The scripts formerly installed by Pillow have been split into a separate package, pillow-scripts, living at https://github.
com/python-pillow/pillow-scripts .

API Changes

OleFileIO.py

The olefile module is no longer a required dependency when installing Pillow. Support for plugins requiring olefile
will not be loaded if it is not installed. This allows library consumers to avoid installing this dependency if they choose.
Some library consumers have little interest in the format support and would like to keep dependencies to a minimum.

Further, the vendored version was removed in Pillow 4.0.0 and replaced with a deprecation warning that PIL.OleFileIO
would be removed in a future version. This warning has been upgraded to an import error pending future removal.

Check parameter on _save

Several image plugins supported a named check parameter on their nominally private _save method to preflight if the
image could be saved in that format. That parameter has been removed.

API Additions

Image.transform

A new named parameter, fillcolor, has been added to Image.transform. This color specifies the background color
to use in the area outside the transformed area in the output image. This parameter takes the same color specifications
as used in Image.new.

1.6. Release Notes 261

https://github.com/python-pillow/pillow-scripts
https://github.com/python-pillow/pillow-scripts


Pillow (PIL Fork) Documentation, Release 9.5.0

GIF Disposal

Multiframe GIF images now take an optional disposal parameter to specify the disposal option for changed pixels.

Other Changes

Compressed TIFF Images

Previously, there were some compression modes (JPEG, Packbits, and LZW) that were supported with Pillow’s internal
TIFF decoder. All compressed TIFFs are now read using the libtiff decoder, as it implements the compression
schemes more correctly.

Libraqm is now Dynamically Linked

The libraqm dependency for complex text scripts is now linked dynamically at runtime rather than at packaging time.
This allows us to release binaries with support for libraqm if it is installed on the user’s machine.

Source Layout Changes

The Pillow source is now stored within the src directory of the distribution. This prevents accidental imports of the
PIL directory when running Python from the project directory.

Setup.py Changes

Multiarch support on Linux should be more robust, especially on Debian derivatives on ARM platforms. Debian’s
multiarch platform configuration is run in preference to the sniffing of machine platform and architecture.

1.6.35 4.3.0

API Changes

Deprecations

Several undocumented functions in ImageOps have been deprecated: gaussian_blur, gblur, unsharp_mask, usm
and box_blur. Use the equivalent operations in ImageFilter instead. These functions will be removed in a future
release.

TIFF Metadata Changes

• TIFF tags with unknown type/quantity now default to being bare values if they are 1 element, where previously
they would be a single element tuple. This is only with the new api, not the legacy api. This normalizes the
handling of fields, so that the metadata with inferred or image specified counts are handled the same as metadata
with count specified in the TIFF spec.

• The PhotoshopInfo, XMP, and JPEGTables tags now have a defined type (bytes) and a count of 1.

• The ImageJMetaDataByteCounts tag now has an arbitrary number of items, as there can be multiple items,
one for UTF-8, and one for UTF-16.

262 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Core Image API Changes

These are internal functions that should not have been used by user code, but they were accessible from the python
layer.

Debugging code within Image.core.grabclipboard was removed. It had been marked as will be removed in
future versions since PIL. When enabled, it identified the format of the clipboard data.

The PIL.Image.core.copy and PIL.Image.Image.im.copy2 methods have been removed.

The PIL.Image.core.getcount methods have been removed, use PIL.Image.core.
get_stats()['new_count'] property instead.

API Additions

Get One Channel From Image

A new method PIL.Image.Image.getchannel() has been added to return a single channel by index or name. For
example, image.getchannel("A") will return alpha channel as separate image. getchannel should work up to 6
times faster than image.split()[0] in previous Pillow versions.

Box Blur

A new filter, PIL.ImageFilter.BoxBlur, has been added. This is a filter with similar results to a Gaussian blur, but
is much faster.

Partial Resampling

Added new argument box for PIL.Image.Image.resize(). This argument defines a source rectangle from within
the source image to be resized. This is very similar to the image.crop(box).resize(size) sequence except that
box can be specified with subpixel accuracy.

New Transpose Operation

The Image.TRANSVERSE operation has been added to PIL.Image.Image.transpose(). This is equivalent to a
transpose operation about the opposite diagonal.

Multiband Filters

There is a new PIL.ImageFilter.MultibandFilter base class for image filters that can run on all channels of an
image in one operation. The original PIL.ImageFilter.Filter class remains for image filters that can process only
single band images, or require splitting of channels prior to filtering.

1.6. Release Notes 263



Pillow (PIL Fork) Documentation, Release 9.5.0

Other Changes

Loading 16-bit TIFF Images

Pillow now can read 16-bit multichannel TIFF files including files with alpha transparency. The image data is truncated
to 8-bit precision.

Pillow now can read 16-bit signed integer single channel TIFF files. The image data is promoted to 32-bit for storage
and processing.

SGI Images

Pillow can now read and write uncompressed 16-bit multichannel SGI images to and from RGB and RGBA formats.
The image data is truncated to 8-bit precision.

Pillow can now read RLE encoded SGI images in both 8 and 16-bit precision.

Performance

This release contains several performance improvements:

• Many memory bandwidth-bounded operations such as crop, image allocation, conversion, split into bands and
merging from bands are up to 2x faster.

• Upscaling of multichannel images (such as RGB) is accelerated by 5-10%

• JPEG loading is accelerated up to 15% and JPEG saving up to 20% when using a recent version of libjpeg-turbo.

• Image.transpose has been accelerated 15% or more by using a cache friendly algorithm.

• ImageFilters based on Kernel convolution are significantly faster due to the new MultibandFilter feature.

• All memory allocation for images is now done in blocks, rather than falling back to an allocation for each scan
line for images larger than the block size.

CMYK Conversion

The basic CMYK->RGB conversion has been tweaked to match the formula from Google Chrome. This produces
an image that is generally lighter than the previous formula, and more in line with what color managed applications
produce.

1.6.36 4.2.1

There are no functional changes in this release.

264 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Fixed Windows PyPy Build

A change in the 4.2.0 cycle broke the Windows PyPy build. This has been fixed, and PyPy is now part of the Windows
CI matrix.

1.6.37 4.2.0

Added Complex Text Rendering

Pillow now supports complex text rendering for scripts requiring glyph composition and bidirectional flow. This op-
tional feature adds three dependencies: harfbuzz, fribidi, and raqm. See the install documentation for further details.
This feature is tested and works on Unix and Mac, but has not yet been built on Windows platforms.

New Optional Parameters

• PIL.ImageDraw.floodfill() has a new optional parameter: threshold. This specifies a tolerance for the color
to replace with the flood fill.

• The TIFF and PDF image writers now support the append_images optional parameter for specifying additional
images to create multipage outputs.

New DecompressionBomb Warning

PIL.Image.Image.crop() now may raise a DecompressionBomb warning if the crop region enlarges the image over
the threshold specified by PIL.Image.MAX_IMAGE_PIXELS.

Removed Deprecated Items

Several deprecated items have been removed.

• The methods PIL.ImageWin.Dib.fromstring, PIL.ImageWin.Dib.tostring and PIL.
TiffImagePlugin.ImageFileDirectory_v2.as_dict have been removed.

• Before Pillow 4.2.0, attempting to save an RGBA image as JPEG would discard the alpha channel. From Pillow
3.4.0, a deprecation warning was shown. From Pillow 4.2.0, the deprecation warning is removed and an IOError
is raised.

Removed Core Image Function

The unused function Image.core.new_array was removed. This is an internal function that should not have been
used by user code, but it was accessible from the python layer.

1.6. Release Notes 265

https://docs.python.org/3/library/exceptions.html#IOError


Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.38 4.1.1

Fix Regression with reading DPI from EXIF data

Some JPEG images don’t contain DPI information in the image metadata, but do contain it in the EXIF data. A patch
was added in 4.1.0 to read from the EXIF data, but it did not accept all possible types that could be included there. This
fix adds the ability to read ints as well as rational values.

Incompatibility between 3.6.0 and 3.6.1

CPython 3.6.1 added a new symbol, PySlice_GetIndicesEx, which was not present in 3.6.0. This had the effect of
causing binaries compiled on CPython 3.6.1 to not work on installations of C-Python 3.6.0. This fix undefines PyS-
lice_GetIndicesEx if it exists to restore compatibility with both 3.6.0 and 3.6.1. See https://bugs.python.org/issue29943
for more details.

1.6.39 4.1.0

Removed Deprecated Items

Several deprecated items have been removed.

• Support for spaces in tiff kwargs in the parameters for ‘x resolution’, ‘y resolution’, ‘resolution unit’, and ‘date
time’ has been removed. Underscores should be used instead.

• The methods PIL.ImageDraw.ImageDraw.setink, PIL.ImageDraw.ImageDraw.setfill, and PIL.
ImageDraw.ImageDraw.setfont have been removed.

Closing Files When Opening Images

The file handling when opening images has been overhauled. Previously, Pillow would attempt to close some, but not
all image formats after loading the image data. Now, the following behavior is specified:

• For images where an open file is passed in, it is the responsibility of the calling code to close the file.

• For images where Pillow opens the file and the file is known to have only one frame, the file is closed after
loading.

• If the file has more than one frame, or if it can’t be determined, then the file is left open to permit seeking to
subsequent frames. It will be closed, eventually, in the close or __del__ methods.

• If the image is memory mapped, then we can’t close the mapping to the underlying file until we are done with
the image. The mapping will be closed in the close or __del__ method.

Changes to GIF Handling When Saving

The PIL.GifImagePlugin code has been refactored to fix the flow when saving images. There are two external
changes that arise from this:

• An PIL.ImagePalette.ImagePalette object is now accepted as a specified palette argument in PIL.Image.
Image.save().

• The image to be saved is no longer modified in place by any of the operations of the save function. Previously it
was modified when optimizing the image palette.

This refactor fixed some bugs with palette handling when saving multiple frame GIFs.

266 Chapter 1. Overview

https://bugs.python.org/issue29943


Pillow (PIL Fork) Documentation, Release 9.5.0

New Method: Image.remap_palette

The method PIL.Image.Image.remap_palette() has been added. This method was hoisted from the GifImage-
Plugin code used to optimize the palette.

Added Decoder Registry and Support for Python Based Decoders

There is now a decoder registry similar to the image plugin registries. Image plugins can register a decoder, and it
will be called when the decoding is requested. This allows for the creation of pure Python decoders. While the Python
decoders will not be as fast as their C based counterparts, they may be easier and quicker to develop or safer to run.

Tests

Many tests have been added, including correctness tests for image formats that have been previously untested.

We are now running automated tests in Docker containers against more Linux versions than are provided on Travis CI,
which is currently Ubuntu 14.04 x64. This Pillow release is tested on 64-bit Alpine, Arch, Ubuntu 12.04 and 16.04,
and 32-bit Debian Stretch and Ubuntu 14.04. This also covers a wider range of dependency versions than are provided
on Travis natively.

1.6.40 4.0.0

Python 2.6 and 3.2 Dropped

Pillow 4.0 no longer supports Python 2.6 and 3.2. We will not be creating binaries, testing, or retaining compatibility
with these releases. This release removes some workarounds for those Python releases, so the final working version of
Pillow on 2.6 or 3.2 is 3.4.2.

Support added for Python 3.6

Pillow 4.0 supports Python 3.6.

OleFileIO.py

OleFileIO.py has been removed as a vendored file and is now installed from the upstream olefile pypi package. All
internal dependencies are redirected to the olefile package. Direct accesses to PIL.OlefileIO raises a deprecation
warning, then patches the upstream olefile into sys.modules in its place.

SGI image save

It is now possible to save images in modes L, RGB, and RGBA to the uncompressed SGI image format.

1.6. Release Notes 267



Pillow (PIL Fork) Documentation, Release 9.5.0

Zero sized images

Pillow 3.4.0 removed support for creating images with (0,0) size. This has been reenabled, restoring pre 3.4 behavior.

Internal handles_eof flag

The handles_eof flag for decoding images has been removed, as there were no internal users of the flag. Anyone
maintaining image decoders outside of the Pillow source tree should consider using the cleanup function pointers
instead.

Image.core.stretch removed

The stretch function on the core image object has been removed. This used to be for enlarging the image, but has been
aliased to resize recently.

1.6.41 3.4.0

New resizing filters

Two new filters available for Image.resize() and Image.thumbnail() functions: BOX and HAMMING. BOX is the
high-performance filter with two times shorter window than BILINEAR. It can be used for image reduction 3 and more
times and produces a sharper result than BILINEAR.

HAMMING filter has the same performance as BILINEAR filter while providing the image downscaling quality comparable
to BICUBIC. Both new filters don’t show good quality for the image upscaling.

Deprecation Warning when Saving JPEGs

JPEG images cannot contain an alpha channel. Pillow prior to 3.4.0 silently drops the alpha channel. With this release
Pillow will now issue a DeprecationWarning when attempting to save a RGBA mode image as a JPEG. This will
become an error in Pillow 4.2.

New DDS Decoders

Pillow can now decode DXT3 images, as well as the previously supported DXT1 and DXT5 formats. All three formats
are now decoded in C code for better performance.

Append images to GIF

Additional frames can now be appended when saving a GIF file, through the append_images argument. The new
frames are passed in as a list of images, which may be have multiple frames themselves.

Note that the append_images argument is only used if save_all is also in effect, e.g.:

im.save(out, save_all=True, append_images=[im1, im2, ...])

268 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Save multiple frame TIFF

Multiple frames can now be saved in a TIFF file by using the save_all option. e.g.:

im.save("filename.tiff", format="TIFF", save_all=True)

Image.core.open_ppm removed

The nominally private/debugging function Image.core.open_ppm has been removed. If you were using this function,
please use Image.open instead.

1.6.42 3.3.2

Integer overflow in Map.c

Pillow prior to 3.3.2 may experience integer overflow errors in map.c when reading specially crafted image files. This
may lead to memory disclosure or corruption.

Specifically, when parameters from the image are passed into Image.core.map_buffer, the size of the image was
calculated with xsize * ysize * bytes_per_pixel. This will overflow if the result is larger than SIZE_MAX. This
is possible on a 32-bit system.

Furthermore this size value was added to a potentially attacker provided offset value and compared to the size of
the buffer without checking for overflow or negative values.

These values were then used for creating pointers, at which point Pillow could read the memory and include it in other
images. The image was marked readonly, so Pillow would not ordinarily write to that memory without duplicating the
image first.

This issue was found by Cris Neckar at Divergent Security.

Sign Extension in Storage.c

Pillow prior to 3.3.2 and PIL 1.1.7 (at least) do not check for negative image sizes in ImagingNew in Storage.c. A
negative image size can lead to a smaller allocation than expected, leading to arbitrary writes.

This issue was found by Cris Neckar at Divergent Security.

1.6.43 3.3.0

Libimagequant support

There is now support for using libimagequant as a higher quality quantization option in Image.quantize() on Unix-
like platforms. This support requires building Pillow from source against libimagequant. We cannot distribute binaries
due to licensing differences.

1.6. Release Notes 269



Pillow (PIL Fork) Documentation, Release 9.5.0

New Setup.py options

There are two new options to control the build_ext task in setup.py:

• --debug dumps all of the directories and files that are checked when searching for libraries or headers when
building the extensions.

• --disable-platform-guessing removes many of the directories that are checked for libraries and headers
for build systems or cross compilers that specify that information in via environment variables.

Resizing

Image resampling for 8-bit per channel images was rewritten using only integer computings. This is faster on most
platforms and doesn’t introduce precision errors on the wide range of scales. With other performance improvements,
this makes resampling 60% faster on average.

Color calculation for images in the LA mode on semitransparent pixels was fixed.

Rotation

Rotation for angles divisible by 90 degrees now always uses transposition. This greatly improves both quality and
performance in this case. Also, the bug with wrong image size calculation when rotating by 90 degrees was fixed.

Image Metadata

The return type for binary data in version 2 Exif and Tiff metadata has been changed from a tuple of integers to bytes.
This is a change from the behavior since 3.0.0.

1.6.44 3.2.0

New DDS and FTEX Image Plugins

The DdsImagePlugin reading DXT1 and DXT5 encoded .dds images was added. DXT3 images are not currently
supported.

The FtexImagePlugin reads textures used for 3D objects in Independence War 2: Edge Of Chaos. The plugin reads
a single texture per file, in the .ftc (compressed) and .ftu (uncompressed) formats.

Updates to the GbrImagePlugin

The GbrImagePlugin (GIMP brush format) has been updated to fix support for version 1 files and add support for
version 2 files.

270 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Passthrough Parameters for ImageDraw.text

ImageDraw.multiline_text and ImageDraw.multiline_size take extra spacing parameters above what are
used in ImageDraw.text and ImageDraw.size. These parameters can now be passed into ImageDraw.text and
ImageDraw.size and they will be passed through to the corresponding multiline functions.

ImageSequence.Iterator changes

ImageSequence.Iterator is now an actual iterator implementing the Iterator protocol. It is also now possible to
seek to the first image of the file when using direct indexing.

1.6.45 3.1.2

CVE-2016-3076 – Buffer overflow in Jpeg2KEncode.c

Pillow between 2.5.0 and 3.1.1 may overflow a buffer when writing large Jpeg2000 files, allowing for code execution
or other memory corruption (CVE-2016-3076).

This occurs specifically in the function j2k_encode_entry, at the line:

state->buffer = malloc (tile_width * tile_height * components * prec / 8);

This vulnerability requires a particular value for height * width such that height * width * components *
precision overflows, at which point the malloc will be for a smaller value than expected. The buffer that is allo-
cated will be ((height * width * components * precision) mod (2^31) / 8), where components is 1-4
and precision is either 8 or 16. Common values would be 4 components at precision 8 for a standard RGBA image.

The unpackers then split an image that is laid out:

RGBARGBARGBA....

into:

RRR.
GGG.
BBB.
AAA.

If this buffer is smaller than expected, the jpeg2k unpacker functions will write outside the allocation and onto the heap,
corrupting memory.

This issue was found by Alyssa Besseling at Atlassian.

1.6.46 3.1.1

CVE-2016-0740 – Buffer overflow in TiffDecode.c

Pillow 3.1.0 and earlier when linked against libtiff >= 4.0.0 on x64 may overflow a buffer when reading a specially
crafted tiff file (CVE-2016-0740).

Specifically, libtiff >= 4.0.0 changed the return type of TIFFScanlineSize from int32 to machine dependent
int32|64. If the scanline is sized so that it overflows an int32, it may be interpreted as a negative number, which
will then pass the size check in TiffDecode.c line 236. To do this, the logical scanline size has to be > 2gb, and for

1.6. Release Notes 271

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3076
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0740


Pillow (PIL Fork) Documentation, Release 9.5.0

the test file, the allocated buffer size is 64k against a roughly 4gb scan line size. Any image data over 64k is written
over the heap, causing a segfault.

This issue was found by security researcher FourOne.

CVE-2016-0775 – Buffer overflow in FliDecode.c

In all versions of Pillow, dating back at least to the last PIL 1.1.7 release, FliDecode.c has a buffer overflow error
(CVE-2016-0775).

Around line 192:

case 16:
/* COPY chunk */
for (y = 0; y < state->ysize; y++) {

UINT8* buf = (UINT8*) im->image[y];
memcpy(buf+x, data, state->xsize);
data += state->xsize;

}
break;

The memcpy has error where x is added to the target buffer address. X is used in several internal temporary variable
roles, but can take a value up to the width of the image. Im->image[y] is a set of row pointers to segments of memory
that are the size of the row. At the max y, this will write the contents of the line off the end of the memory buffer,
causing a segfault.

This issue was found by Alyssa Besseling at Atlassian.

CVE-2016-2533 – Buffer overflow in PcdDecode.c

In all versions of Pillow, dating back at least to the last PIL 1.1.7 release, PcdDecode.c has a buffer overflow error
(CVE-2016-2533).

The state.buffer for PcdDecode.c is allocated based on a 3 bytes per pixel sizing, where PcdDecode.c wrote
into the buffer assuming 4 bytes per pixel. This writes 768 bytes beyond the end of the buffer into other Python object
storage. In some cases, this causes a segfault, in others an internal Python malloc error.

Integer overflow in Resample.c

If a large value was passed into the new size for an image, it is possible to overflow an int32 value passed into malloc.

kk = malloc(xsize * kmax * sizeof(float));
...
xbounds = malloc(xsize * 2 * sizeof(int));

xsize is trusted user input. These multiplications can overflow, leading the malloc’d buffer to be undersized. These
allocations are followed by a loop that writes out of bounds. This can lead to corruption on the heap of the Python
process with attacker controlled float data.

This issue was found by Ned Williamson.

272 Chapter 1. Overview

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0775
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2533


Pillow (PIL Fork) Documentation, Release 9.5.0

1.6.47 3.1.0

ImageDraw arc, chord and pieslice can now use floats

There is no longer a need to ensure that the start and end arguments for arc, chord and pieslice are integers.

Note that these numbers are not simply rounded internally, but are actually utilised in the drawing process.

Consistent multiline text spacing

When using the ImageDraw multiline methods, the spacing between lines was inconsistent, based on the combination
on ascenders and descenders.

This has now been fixed, so that lines are offset by their baselines, not the absolute height of each line.

There is also now a default spacing of 4px between lines.

Exif, Jpeg and Tiff Metadata

There were major changes in the TIFF ImageFileDirectory support in Pillow 3.0 that led to a number of regressions.
Some of them have been fixed in Pillow 3.1, and some of them have been extended to have different behavior.

TiffImagePlugin.IFDRational

Pillow 3.0 changed rational metadata to use a float. In Pillow 3.1, this has changed to allow the expression of 0/0 as a
valid piece of rational metadata to reflect usage in the wild.

Rational metadata is now encapsulated in an IFDRational instance. This class extends the Rational class to allow a
denominator of 0. It compares as a float or a number, but does allow access to the raw numerator and denominator
values through attributes.

When used in a ImageFileDirectory_v1, a 2 item tuple is returned of the numerator and denominator, as was done
previously.

This class should be used when adding a rational value to an ImageFileDirectory for saving to image metadata.

JpegImagePlugin._getexif

In Pillow 3.0, the dictionary returned from the private, experimental, but generally widely used _getexif function
changed to reflect the ImageFileDirectory_v2 format, without a fallback to the previous format.

In Pillow 3.1, _getexif now returns a dictionary compatible with Pillow 2.9 and earlier, built with
ImageFileDirectory_v1 instances. Additionally, any single item tuples have been unwrapped and return a bare
element.

The format returned by Pillow 3.0 has been abandoned. A more fully featured interface for EXIF is anticipated in a
future release.

1.6. Release Notes 273



Pillow (PIL Fork) Documentation, Release 9.5.0

Out of Spec Metadata

In Pillow 3.0 and 3.1, images that contain metadata that is internally consistent, but not in agreement with the TIFF
spec, may cause an exception when reading the metadata. This can happen when a tag that is specified to have a single
value is stored with an array of values.

It is anticipated that this behavior will change in future releases.

1.6.48 3.0.0

Saving Multipage Images

There is now support for saving multipage images in the GIF and PDF formats. To enable this functionality, pass in
save_all=True as a keyword argument to the save:

im.save('test.pdf', save_all=True)

Tiff ImageFileDirectory Rewrite

The Tiff ImageFileDirectory metadata code has been rewritten. Where previously it returned a somewhat arbitrary set
of values and tuples, it now returns bare values where appropriate and tuples when the metadata item is a sequence or
collection.

The original metadata is still available in the TiffImage.tags, the new values are available in the TiffImage.tags_v2
member. The old structures will be deprecated at some point in the future. When saving Tiff metadata, new code
should use the TiffImagePlugin.ImageFileDirectory_v2 class.

Deprecated Methods

Several methods that have been marked as deprecated for many releases have been removed in this release:

Image.tostring()
Image.fromstring()
Image.offset()
ImageDraw.setink()
ImageDraw.setfill()
The ImageFileIO module
The ImageFont.FreeTypeFont and ImageFont.truetype ``file`` keyword arg
The ImagePalette private _make functions
ImageWin.fromstring()
ImageWin.tostring()

274 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

LibJpeg and Zlib are Required by Default

The external dependencies on libjpeg and zlib are now required by default. If the headers or libraries are not
found, then installation will abort with an error. This behaviour can be disabled with the --disable-libjpeg and
--disable-zlib flags.

1.6.49 2.8.0

Open HTTP response objects with Image.open

HTTP response objects returned from urllib2.urlopen(url) or requests.get(url, stream=True).raw are
‘file-like’ but do not support .seek() operations. As a result PIL was unable to open them as images, requiring a wrap
in cStringIO or BytesIO.

Now new functionality has been added to Image.open() by way of an .seek(0) check and catch on exception
AttributeError or io.UnsupportedOperation. If this is caught we attempt to wrap the object using io.BytesIO
(which will only work on buffer-file-like objects).

This allows opening of files using both urllib2 and requests, e.g.:

Image.open(urllib2.urlopen(url))
Image.open(requests.get(url, stream=True).raw)

If the response uses content-encoding (compression, either gzip or deflate) then this will fail as both the urllib2 and
requests raw file object will produce compressed data in that case. Using Content-Encoding on images is rather non-
sensical as most images are already compressed, but it can still happen.

For requests the work-around is to set the decode_content attribute on the raw object to True:

response = requests.get(url, stream=True)
response.raw.decode_content = True
image = Image.open(response.raw)

1.6.50 2.7.0

Sane Plugin

The Sane plugin has now been split into its own repo: https://github.com/python-pillow/Sane .

Png text chunk size limits

To prevent potential denial of service attacks using compressed text chunks, there are now limits to the decompressed
size of text chunks decoded from PNG images. If the limits are exceeded when opening a PNG image a ValueError
will be raised.

Individual text chunks are limited to PIL.PngImagePlugin.MAX_TEXT_CHUNK , set to 1MB by default. The total de-
compressed size of all text chunks is limited to PIL.PngImagePlugin.MAX_TEXT_MEMORY , which defaults to 64MB.
These values can be changed prior to opening PNG images if you know that there are large text blocks that are desired.

1.6. Release Notes 275

https://github.com/python-pillow/Sane
https://docs.python.org/3/library/exceptions.html#ValueError


Pillow (PIL Fork) Documentation, Release 9.5.0

Image resizing filters

Image resizing methods resize() and thumbnail() take a resample argument, which tells which filter should be
used for resampling. Possible values are: NEAREST, BILINEAR, BICUBIC and ANTIALIAS. Almost all of them were
changed in this version.

Bicubic and bilinear downscaling

From the beginning BILINEAR and BICUBIC filters were based on affine transformations and used a fixed number of
pixels from the source image for every destination pixel (2x2 pixels for BILINEAR and 4x4 for BICUBIC). This gave
an unsatisfactory result for downscaling. At the same time, a high quality convolutions-based algorithm with flexible
kernel was used for ANTIALIAS filter.

Starting from Pillow 2.7.0, a high quality convolutions-based algorithm is used for all of these three filters.

If you have previously used any tricks to maintain quality when downscaling with BILINEAR and BICUBIC filters (for
example, reducing within several steps), they are unnecessary now.

Antialias renamed to Lanczos

A new LANCZOS constant was added instead of ANTIALIAS.

When ANTIALIASwas initially added, it was the only high-quality filter based on convolutions. It’s name was supposed
to reflect this. Starting from Pillow 2.7.0 all resize method are based on convolutions. All of them are antialias from
now on. And the real name of the ANTIALIAS filter is Lanczos filter.

The ANTIALIAS constant is left for backward compatibility and is an alias for LANCZOS.

Lanczos upscaling quality

The image upscaling quality with LANCZOS filter was almost the same as BILINEAR due to a bug. This has been fixed.

Bicubic upscaling quality

The BICUBIC filter for affine transformations produced sharp, slightly pixelated image for upscaling. Bicubic for
convolutions is more soft.

Resize performance

In most cases, convolution is more a expensive algorithm for downscaling because it takes into account all the pixels of
source image. Therefore BILINEAR and BICUBIC filters’ performance can be lower than before. On the other hand the
quality of BILINEAR and BICUBIC was close to NEAREST. So if such quality is suitable for your tasks you can switch
to NEAREST filter for downscaling, which will give a huge improvement in performance.

At the same time performance of convolution resampling for downscaling has been improved by around a factor of
two compared to the previous version. The upscaling performance of the LANCZOS filter has remained the same. For
BILINEAR filter it has improved by 1.5 times and for BICUBIC by four times.

276 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Default filter for thumbnails

In Pillow 2.5 the default filter for thumbnail() was changed from NEAREST to ANTIALIAS. Antialias was chosen
because all the other filters gave poor quality for reduction. Starting from Pillow 2.7.0, ANTIALIAS has been replaced
with BICUBIC, because it’s faster and ANTIALIAS doesn’t give any advantages after downscaling with libjpeg, which
uses supersampling internally, not convolutions.

Image transposition

A new method TRANSPOSE has been added for the transpose() operation in addition to FLIP_LEFT_RIGHT,
FLIP_TOP_BOTTOM, ROTATE_90, ROTATE_180, ROTATE_270. TRANSPOSE is an algebra transpose, with an image
reflected across its main diagonal.

The speed of ROTATE_90, ROTATE_270 and TRANSPOSE has been significantly improved for large images which don’t
fit in the processor cache.

Gaussian blur and unsharp mask

The GaussianBlur() implementation has been replaced with a sequential application of box filters. The new imple-
mentation is based on “Theoretical foundations of Gaussian convolution by extended box filtering” from the Mathe-
matical Image Analysis Group. As UnsharpMask() implementations use Gaussian blur internally, all changes from
this chapter are also applicable to it.

Blur radius

There was an error in the previous version of Pillow, where blur radius (the standard deviation of Gaussian) actually
meant blur diameter. For example, to blur an image with actual radius 5 you were forced to use value 10. This has been
fixed. Now the meaning of the radius is the same as in other software.

If you used a Gaussian blur with some radius value, you need to divide this value by two.

Blur performance

Box filter computation time is constant relative to the radius and depends on source image size only. Because the new
Gaussian blur implementation is based on box filter, its computation time also doesn’t depend on the blur radius.

For example, previously, if the execution time for a given test image was 1 second for radius 1, 3.6 seconds for radius
10 and 17 seconds for 50, now blur with any radius on same image is executed for 0.2 seconds.

Blur quality

The previous implementation takes into account only source pixels within 2 * standard deviation radius for every
destination pixel. This was not enough, so the quality was worse compared to other Gaussian blur software.

The new implementation does not have this drawback.

1.6. Release Notes 277



Pillow (PIL Fork) Documentation, Release 9.5.0

TIFF Parameter Changes

Several kwarg parameters for saving TIFF images were previously specified as strings with included spaces (e.g. ‘x
resolution’). This was difficult to use as kwargs without constructing and passing a dictionary. These parameters now
use the underscore character instead of space. (e.g. ‘x_resolution’)

1.6.51 Versioning

Pillow follows Semantic Versioning:

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.

Quarterly releases (”Main Release”) bump at least the MINOR version, as new functionality has likely been added in
the prior three months.

A quarterly release bumps the MAJOR version when incompatible API changes are made, such as removing deprecated
APIs or dropping an EOL Python version. In practice, these occur every 12-18 months, guided by Python’s EOL
schedule, and any APIs that have been deprecated for at least a year are removed at the same time.

PATCH versions (”Point Release” or “Embargoed Release”) are for security, installation or critical bug fixes. These
are less common as it is preferred to stick to quarterly releases.

Between quarterly releases, .dev0 is appended to the main branch, indicating that this is not a formally released copy.

1.7 Deprecations and removals

This page lists Pillow features that are deprecated, or have been removed in past major releases, and gives the alternatives
to use instead.

1.7.1 Deprecated features

Below are features which are considered deprecated. Where appropriate, a DeprecationWarning is issued.

Tk/Tcl 8.4

Deprecated since version 8.2.0.

Support for Tk/Tcl 8.4 is deprecated and will be removed in Pillow 10.0.0 (2023-07-01), when Tk/Tcl 8.5 will be the
minimum supported.

278 Chapter 1. Overview

https://semver.org/
https://github.com/python-pillow/Pillow/blob/main/RELEASING.md#user-content-main-release
https://devguide.python.org/#status-of-python-branches
https://devguide.python.org/#status-of-python-branches
https://github.com/python-pillow/Pillow/blob/main/RELEASING.md#user-content-point-release
https://github.com/python-pillow/Pillow/blob/main/RELEASING.md#user-content-embargoed-release


Pillow (PIL Fork) Documentation, Release 9.5.0

Categories

Deprecated since version 8.2.0.

im.category is deprecated and will be removed in Pillow 10.0.0 (2023-07-01), along with the related Image.NORMAL,
Image.SEQUENCE and Image.CONTAINER attributes.

To determine if an image has multiple frames or not, getattr(im, "is_animated", False) can be used instead.

JpegImagePlugin.convert_dict_qtables

Deprecated since version 8.3.0.

JPEG quantization is now automatically converted, but still returned as a dictionary. The convert_dict_qtables
method no longer performs any operations on the data given to it, has been deprecated and will be removed in Pillow
10.0.0 (2023-07-01).

ImagePalette size parameter

Deprecated since version 8.4.0.

The size parameter will be removed in Pillow 10.0.0 (2023-07-01).

Before Pillow 8.3.0, ImagePalette required palette data of particular lengths by default, and the size parameter could
be used to override that. Pillow 8.3.0 removed the default required length, also removing the need for the size parameter.

ImageShow.Viewer.show_file file argument

Deprecated since version 9.1.0.

The file argument in show_file() has been deprecated and will be removed in Pillow 10.0.0 (2023-07-01). It has
been replaced by path.

In effect, viewer.show_file("test.jpg") will continue to work unchanged. viewer.show_file(file="test.
jpg") will raise a deprecation warning, and suggest viewer.show_file(path="test.jpg") instead.

Constants

Deprecated since version 9.1.0.

A number of constants have been deprecated and will be removed in Pillow 10.0.0 (2023-07-01). Instead, enum.
IntEnum classes have been added.

Note: Additional Image constants were deprecated in Pillow 9.1.0, but that was reversed in Pillow 9.4.0 and those
constants will now remain available. See Constants

1.7. Deprecations and removals 279



Pillow (PIL Fork) Documentation, Release 9.5.0

Deprecated Use instead
Image.LINEAR Image.BILINEAR or Image.Resampling.

BILINEAR
Image.CUBIC Image.BICUBIC or Image.Resampling.BICUBIC
Image.ANTIALIAS Image.LANCZOS or Image.Resampling.LANCZOS
ImageCms.INTENT_PERCEPTUAL ImageCms.Intent.PERCEPTUAL
ImageCms.INTENT_RELATIVE_COLORMETRIC ImageCms.Intent.RELATIVE_COLORMETRIC
ImageCms.INTENT_SATURATION ImageCms.Intent.SATURATION
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC ImageCms.Intent.ABSOLUTE_COLORIMETRIC
ImageCms.DIRECTION_INPUT ImageCms.Direction.INPUT
ImageCms.DIRECTION_OUTPUT ImageCms.Direction.OUTPUT
ImageCms.DIRECTION_PROOF ImageCms.Direction.PROOF
ImageFont.LAYOUT_BASIC ImageFont.Layout.BASIC
ImageFont.LAYOUT_RAQM ImageFont.Layout.RAQM
BlpImagePlugin.BLP_FORMAT_JPEG BlpImagePlugin.Format.JPEG
BlpImagePlugin.BLP_ENCODING_UNCOMPRESSED BlpImagePlugin.Encoding.UNCOMPRESSED
BlpImagePlugin.BLP_ENCODING_DXT BlpImagePlugin.Encoding.DXT
BlpImagePlugin.BLP_ENCODING_UNCOMPRESSED_RAW_RGBABlpImagePlugin.Encoding.

UNCOMPRESSED_RAW_RGBA
BlpImagePlugin.BLP_ALPHA_ENCODING_DXT1 BlpImagePlugin.AlphaEncoding.DXT1
BlpImagePlugin.BLP_ALPHA_ENCODING_DXT3 BlpImagePlugin.AlphaEncoding.DXT3
BlpImagePlugin.BLP_ALPHA_ENCODING_DXT5 BlpImagePlugin.AlphaEncoding.DXT5
FtexImagePlugin.FORMAT_DXT1 FtexImagePlugin.Format.DXT1
FtexImagePlugin.FORMAT_UNCOMPRESSED FtexImagePlugin.Format.UNCOMPRESSED
PngImagePlugin.APNG_DISPOSE_OP_NONE PngImagePlugin.Disposal.OP_NONE
PngImagePlugin.APNG_DISPOSE_OP_BACKGROUND PngImagePlugin.Disposal.OP_BACKGROUND
PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS PngImagePlugin.Disposal.OP_PREVIOUS
PngImagePlugin.APNG_BLEND_OP_SOURCE PngImagePlugin.Blend.OP_SOURCE
PngImagePlugin.APNG_BLEND_OP_OVER PngImagePlugin.Blend.OP_OVER

FitsStubImagePlugin

Deprecated since version 9.1.0.

The stub image plugin FitsStubImagePlugin has been deprecated and will be removed in Pillow 10.0.0 (2023-07-
01). FITS images can be read without a handler through FitsImagePlugin instead.

280 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

FreeTypeFont.getmask2 fill parameter

Deprecated since version 9.2.0.

The undocumented fill parameter of FreeTypeFont.getmask2() has been deprecated and will be removed in
Pillow 10 (2023-07-01).

PhotoImage.paste box parameter

Deprecated since version 9.2.0.

The box parameter is unused. It will be removed in Pillow 10.0.0 (2023-07-01).

PyQt5 and PySide2

Deprecated since version 9.2.0.

Qt 5 reached end-of-life on 2020-12-08 for open-source users (and will reach EOL on 2023-12-08 for commercial
licence holders).

Support for PyQt5 and PySide2 has been deprecated from ImageQt and will be removed in Pillow 10 (2023-07-01).
Upgrade to PyQt6 or PySide6 instead.

Image.coerce_e

Deprecated since version 9.2.0.

This undocumented method has been deprecated and will be removed in Pillow 10 (2023-07-01).

Font size and offset methods

Deprecated since version 9.2.0.

Several functions for computing the size and offset of rendered text have been deprecated and will be removed in Pillow
10 (2023-07-01):

Deprecated Use instead
FreeTypeFont.getsize() and
FreeTypeFont.getoffset()

FreeTypeFont.getbbox() and FreeTypeFont.getlength()

FreeTypeFont.getsize_multiline() ImageDraw.multiline_textbbox()
ImageFont.getsize() ImageFont.getbbox() and ImageFont.getlength()
TransposedFont.getsize() TransposedFont.getbbox() and TransposedFont.

getlength()
ImageDraw.textsize() and ImageDraw.
multiline_textsize()

ImageDraw.textbbox(), ImageDraw.textlength() and
ImageDraw.multiline_textbbox()

ImageDraw2.Draw.textsize() ImageDraw2.Draw.textbbox() and ImageDraw2.Draw.
textlength()

Previous code:

1.7. Deprecations and removals 281

https://www.qt.io/blog/qt-5.15-released
https://www.riverbankcomputing.com/static/Docs/PyQt6/
https://doc.qt.io/qtforpython/


Pillow (PIL Fork) Documentation, Release 9.5.0

from PIL import Image, ImageDraw, ImageFont

font = ImageFont.truetype("Tests/fonts/FreeMono.ttf")
width, height = font.getsize("Hello world")
left, top = font.getoffset("Hello world")

im = Image.new("RGB", (100, 100))
draw = ImageDraw.Draw(im)
width, height = draw.textsize("Hello world")

width, height = font.getsize_multiline("Hello\nworld")
width, height = draw.multiline_textsize("Hello\nworld")

Use instead:

from PIL import Image, ImageDraw, ImageFont

font = ImageFont.truetype("Tests/fonts/FreeMono.ttf")
left, top, right, bottom = font.getbbox("Hello world")
width, height = right - left, bottom - top

im = Image.new("RGB", (100, 100))
draw = ImageDraw.Draw(im)
width = draw.textlength("Hello world")

left, top, right, bottom = draw.multiline_textbbox((0, 0), "Hello\nworld")
width, height = right - left, bottom - top

PSFile

Deprecated since version 9.5.0.

The PSFile class has been deprecated and will be removed in Pillow 11 (2024-10-15). This class was only made as
a helper to be used internally, so there is no replacement. If you need this functionality though, it is a very short class
that can easily be recreated in your own code.

1.7.2 Removed features

Deprecated features are only removed in major releases after an appropriate period of deprecation has passed.

PILLOW_VERSION constant

Deprecated since version 5.2.0.

Removed in version 9.0.0.

Use __version__ instead.

It was initially removed in Pillow 7.0.0, but temporarily brought back in 7.1.0 to give projects more time to upgrade.

282 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

Image.show command parameter

Deprecated since version 7.2.0.

Removed in version 9.0.0.

The command parameter has been removed. Use a subclass of ImageShow.Viewer instead.

Image._showxv

Deprecated since version 7.2.0.

Removed in version 9.0.0.

Use Image.Image.show() instead. If custom behaviour is required, use ImageShow.register() to add a custom
ImageShow.Viewer class.

ImageFile.raise_ioerror

Deprecated since version 7.2.0.

Removed in version 9.0.0.

IOError was merged into OSError in Python 3.3. So, ImageFile.raise_ioerror has been removed. Use
ImageFile.raise_oserror instead.

FreeType 2.7

Deprecated since version 8.1.0.

Removed in version 9.0.0.

Support for FreeType 2.7 has been removed.

We recommend upgrading to at least FreeType 2.10.4, which fixed a severe vulnerability introduced in FreeType 2.6
(CVE-2020-15999).

im.offset

Deprecated since version 1.1.2.

Removed in version 8.0.0.

im.offset() has been removed, call ImageChops.offset() instead.

It was documented as deprecated in PIL 1.1.2, raised a DeprecationWarning since 1.1.5, an Exception since Pillow
3.0.0 and NotImplementedError since 3.3.0.

1.7. Deprecations and removals 283

https://freetype.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15999


Pillow (PIL Fork) Documentation, Release 9.5.0

Image.fromstring, im.fromstring and im.tostring

Deprecated since version 2.0.0.

Removed in version 8.0.0.

• Image.fromstring() has been removed, call Image.frombytes() instead.

• im.fromstring() has been removed, call frombytes() instead.

• im.tostring() has been removed, call tobytes() instead.

They issued a DeprecationWarning since 2.0.0, an Exception since 3.0.0 and NotImplementedError since 3.3.0.

ImageCms.CmsProfile attributes

Deprecated since version 3.2.0.

Removed in version 8.0.0.

Some attributes in PIL.ImageCms.CmsProfile have been removed. From 6.0.0, they issued a
DeprecationWarning:

Removed Use instead
color_space Padded xcolor_space
pcs Padded connection_space
product_copyright Unicode copyright
product_desc Unicode profile_description
product_description Unicode profile_description
product_manufacturer Unicode manufacturer
product_model Unicode model

Python 2.7

Deprecated since version 6.0.0.

Removed in version 7.0.0.

Python 2.7 reached end-of-life on 2020-01-01. Pillow 6.x was the last series to support Python 2.

Image.__del__

Deprecated since version 6.1.0.

Removed in version 7.0.0.

Implicitly closing the image’s underlying file in Image.__del__ has been removed. Use a context manager or call
Image.close() instead to close the file in a deterministic way.

Previous method:

im = Image.open("hopper.png")
im.save("out.jpg")

Use instead:

284 Chapter 1. Overview



Pillow (PIL Fork) Documentation, Release 9.5.0

with Image.open("hopper.png") as im:
im.save("out.jpg")

PIL.*ImagePlugin.__version__ attributes

Deprecated since version 6.0.0.

Removed in version 7.0.0.

The version constants of individual plugins have been removed. Use PIL.__version__ instead.

Removed Removed Removed
BmpImagePlugin.
__version__

Jpeg2KImagePlugin.
__version__

PngImagePlugin.__version__

CurImagePlugin.
__version__

JpegImagePlugin.__version__ PpmImagePlugin.__version__

DcxImagePlugin.
__version__

McIdasImagePlugin.
__version__

PsdImagePlugin.__version__

EpsImagePlugin.
__version__

MicImagePlugin.__version__ SgiImagePlugin.__version__

FliImagePlugin.
__version__

MpegImagePlugin.__version__ SunImagePlugin.__version__

FpxImagePlugin.
__version__

MpoImagePlugin.__version__ TgaImagePlugin.__version__

GdImageFile.__version__ MspImagePlugin.__version__ TiffImagePlugin.__version__
GifImagePlugin.
__version__

PalmImagePlugin.__version__ WmfImagePlugin.__version__

IcoImagePlugin.
__version__

PcdImagePlugin.__version__ XbmImagePlugin.__version__

ImImagePlugin.__version__ PcxImagePlugin.__version__ XpmImagePlugin.__version__
ImtImagePlugin.
__version__

PdfImagePlugin.__version__ XVThumbImagePlugin.
__version__

IptcImagePlugin.
__version__

PixarImagePlugin.
__version__

PyQt4 and PySide

Deprecated since version 6.0.0.

Removed in version 7.0.0.

Qt 4 reached end-of-life on 2015-12-19. Its Python bindings are also EOL: PyQt4 since 2018-08-31 and PySide since
2015-10-14.

Support for PyQt4 and PySide has been removed from ImageQt. Please upgrade to PyQt5 or PySide2.

1.7. Deprecations and removals 285



Pillow (PIL Fork) Documentation, Release 9.5.0

Setting the size of TIFF images

Deprecated since version 5.3.0.

Removed in version 7.0.0.

Setting the size of a TIFF image directly (eg. im.size = (256, 256)) throws an error. Use Image.resize instead.

VERSION constant

Deprecated since version 5.2.0.

Removed in version 6.0.0.

VERSION (the old PIL version, always 1.1.7) has been removed. Use __version__ instead.

Undocumented ImageOps functions

Deprecated since version 4.3.0.

Removed in version 6.0.0.

Several undocumented functions in ImageOps have been removed. Use the equivalents in ImageFilter instead:

Removed Use instead
ImageOps.box_blur ImageFilter.BoxBlur
ImageOps.gaussian_blur ImageFilter.GaussianBlur
ImageOps.gblur ImageFilter.GaussianBlur
ImageOps.usm ImageFilter.UnsharpMask
ImageOps.unsharp_mask ImageFilter.UnsharpMask

PIL.OleFileIO

Deprecated since version 4.0.0.

Removed in version 6.0.0.

PIL.OleFileIO was removed as a vendored file in Pillow 4.0.0 (2017-01) in favour of the upstream olefile Python
package, and replaced with an ImportError in 5.0.0 (2018-01). The deprecated file has now been removed from
Pillow. If needed, install from PyPI (eg. python3 -m pip install olefile).

286 Chapter 1. Overview



CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

287



Pillow (PIL Fork) Documentation, Release 9.5.0

288 Chapter 2. Indices and tables



PYTHON MODULE INDEX

p
PIL, 159
PIL._binary, 195
PIL._deprecate, 196
PIL._imaging, 197
PIL._tkinter_finder, 197
PIL._util, 197
PIL._version, 197
PIL.BdfFontFile, 159
PIL.BmpImagePlugin, 167
PIL.BufrStubImagePlugin, 168
PIL.ContainerIO, 159
PIL.CurImagePlugin, 168
PIL.DcxImagePlugin, 169
PIL.EpsImagePlugin, 169
PIL.ExifTags, 149
PIL.features, 156
PIL.FitsImagePlugin, 170
PIL.FliImagePlugin, 170
PIL.FontFile, 160
PIL.FpxImagePlugin, 170
PIL.GbrImagePlugin, 171
PIL.GdImageFile, 160
PIL.GifImagePlugin, 171
PIL.GimpGradientFile, 161
PIL.GimpPaletteFile, 162
PIL.GribStubImagePlugin, 173
PIL.Hdf5StubImagePlugin, 173
PIL.IcnsImagePlugin, 173
PIL.IcoImagePlugin, 174
PIL.Image, 61
PIL.Image.core, 197
PIL.ImageChops, 85
PIL.ImageCms, 88
PIL.ImageColor, 102
PIL.ImageDraw, 102
PIL.ImageDraw2, 162
PIL.ImageEnhance, 115
PIL.ImageFile, 116
PIL.ImageFilter, 120
PIL.ImageFont, 123
PIL.ImageGrab, 133

PIL.ImageMath, 134
PIL.ImageMorph, 136
PIL.ImageOps, 137
PIL.ImagePalette, 141
PIL.ImagePath, 142
PIL.ImageQt, 143
PIL.ImageSequence, 143
PIL.ImageShow, 144
PIL.ImageStat, 146
PIL.ImageTk, 147
PIL.ImageTransform, 164
PIL.ImageWin, 148
PIL.ImImagePlugin, 175
PIL.ImtImagePlugin, 176
PIL.IptcImagePlugin, 176
PIL.Jpeg2KImagePlugin, 177
PIL.JpegImagePlugin, 176
PIL.JpegPresets, 152
PIL.McIdasImagePlugin, 178
PIL.MicImagePlugin, 178
PIL.MpegImagePlugin, 179
PIL.MspImagePlugin, 179
PIL.PaletteFile, 165
PIL.PalmImagePlugin, 179
PIL.PcdImagePlugin, 180
PIL.PcfFontFile, 165
PIL.PcxImagePlugin, 180
PIL.PdfImagePlugin, 180
PIL.PixarImagePlugin, 180
PIL.PngImagePlugin, 180
PIL.PpmImagePlugin, 183
PIL.PsdImagePlugin, 184
PIL.PSDraw, 153
PIL.PyAccess, 155
PIL.SgiImagePlugin, 184
PIL.SpiderImagePlugin, 185
PIL.SunImagePlugin, 185
PIL.TarIO, 166
PIL.TgaImagePlugin, 186
PIL.TiffImagePlugin, 186
PIL.TiffTags, 151
PIL.WalImageFile, 167

289



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.WebPImagePlugin, 190
PIL.WmfImagePlugin, 191
PIL.XbmImagePlugin, 192
PIL.XpmImagePlugin, 192
PIL.XVThumbImagePlugin, 192

290 Python Module Index



INDEX

Symbols
_Enhance (class in PIL.ImageEnhance), 116
__init__() (PIL.TiffTags.TagInfo method), 151
__new__() (PIL.PngImagePlugin.iTXt method), 165
__version__ (in module PIL._version), 197

A
ADAPTIVE (PIL.Image.Palette attribute), 84
add() (in module PIL.ImageChops), 85
add() (PIL.PngImagePlugin.PngInfo method), 166
add_itxt() (PIL.PngImagePlugin.PngInfo method),

166
add_modulo() (in module PIL.ImageChops), 85
add_text() (PIL.PngImagePlugin.PngInfo method),

166
AFFINE (PIL.Image.Transform attribute), 83
AffineTransform (class in PIL.ImageTransform), 164
all_frames() (in module PIL.ImageSequence), 144
alpha_composite() (in module PIL.Image), 62
alpha_composite() (PIL.Image.Image method), 67
ANTIALIAS (in module PIL.Image), 84
APP() (in module PIL.JpegImagePlugin), 176
AppendingTiffWriter (class in PIL.TiffImagePlugin),

186
apply_transparency() (PIL.Image.Image method), 68
applyTransform() (in module PIL.ImageCms), 89
arc() (PIL.ImageDraw.ImageDraw method), 105
arc() (PIL.ImageDraw2.Draw method), 162
attributes (PIL.ImageCms.CmsProfile attribute), 99
autocontrast() (in module PIL.ImageOps), 137

B
Base (in module PIL.ExifTags), 150
bdf_char() (in module PIL.BdfFontFile), 159
BdfFontFile (class in PIL.BdfFontFile), 159
begin_document() (PIL.PSDraw.PSDraw method), 153
bestsize() (PIL.IcnsImagePlugin.IcnsFile method),

173
bigtiff (PIL.Image.Exif attribute), 82
BITFIELDS (PIL.BmpImagePlugin.BmpImageFile

attribute), 167
bitmap (PIL.FontFile.FontFile attribute), 160

bitmap() (PIL.ImageDraw.ImageDraw method), 106
BitmapImage (class in PIL.ImageTk), 147
BitStream (class in PIL.MpegImagePlugin), 179
Blend (class in PIL.PngImagePlugin), 180
blend() (in module PIL.Image), 62
blend() (in module PIL.ImageChops), 85
blue_colorant (PIL.ImageCms.CmsProfile attribute),

100
blue_primary (PIL.ImageCms.CmsProfile attribute),

101
BmpImageFile (class in PIL.BmpImagePlugin), 167
BmpRleDecoder (class in PIL.BmpImagePlugin), 168
BoxBlur (class in PIL.ImageFilter), 121
BoxReader (class in PIL.Jpeg2KImagePlugin), 177
Brightness (class in PIL.ImageEnhance), 116
Brush (class in PIL.ImageDraw2), 162
BufrStubImageFile (class in

PIL.BufrStubImagePlugin), 168
build_prototype_image() (in module

PIL.PalmImagePlugin), 179
buildProofTransform() (in module PIL.ImageCms),

89
buildProofTransformFromOpenProfiles() (in mod-

ule PIL.ImageCms), 91
buildTransform() (in module PIL.ImageCms), 92
buildTransformFromOpenProfiles() (in module

PIL.ImageCms), 93

C
call() (PIL.PngImagePlugin.ChunkStream method),

180
check() (in module PIL.features), 156
check_codec() (in module PIL.features), 157
check_feature() (in module PIL.features), 158
check_module() (in module PIL.features), 157
check_text_memory()

(PIL.PngImagePlugin.PngStream method),
182

chord() (PIL.ImageDraw.ImageDraw method), 106
chord() (PIL.ImageDraw2.Draw method), 162
chromatic_adaption (PIL.ImageCms.CmsProfile at-

tribute), 100

291



Pillow (PIL Fork) Documentation, Release 9.5.0

chromaticity (PIL.ImageCms.CmsProfile attribute),
100

chunk_acTL() (PIL.PngImagePlugin.PngStream
method), 182

chunk_cHRM() (PIL.PngImagePlugin.PngStream
method), 182

chunk_eXIf() (PIL.PngImagePlugin.PngStream
method), 182

chunk_fcTL() (PIL.PngImagePlugin.PngStream
method), 182

chunk_fdAT() (PIL.PngImagePlugin.PngStream
method), 182

chunk_gAMA() (PIL.PngImagePlugin.PngStream
method), 182

chunk_iCCP() (PIL.PngImagePlugin.PngStream
method), 182

chunk_IDAT() (PIL.PngImagePlugin.PngStream
method), 182

chunk_IEND() (PIL.PngImagePlugin.PngStream
method), 182

chunk_IHDR() (PIL.PngImagePlugin.PngStream
method), 182

chunk_iTXt() (PIL.PngImagePlugin.PngStream
method), 182

chunk_pHYs() (PIL.PngImagePlugin.PngStream
method), 182

chunk_PLTE() (PIL.PngImagePlugin.PngStream
method), 182

chunk_sRGB() (PIL.PngImagePlugin.PngStream
method), 182

chunk_tEXt() (PIL.PngImagePlugin.PngStream
method), 182

chunk_tRNS() (PIL.PngImagePlugin.PngStream
method), 182

chunk_zTXt() (PIL.PngImagePlugin.PngStream
method), 182

ChunkStream (class in PIL.PngImagePlugin), 180
cleanup() (PIL.ImageFile.PyCodec method), 118
close() (PIL.FpxImagePlugin.FpxImageFile method),

170
close() (PIL.Image.Image method), 80
close() (PIL.ImageFile.Parser method), 117
close() (PIL.MicImagePlugin.MicImageFile method),

178
close() (PIL.PngImagePlugin.ChunkStream method),

180
close() (PIL.TarIO.TarIO method), 166
close() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
clut (PIL.ImageCms.CmsProfile attribute), 101
CmsProfile (class in PIL.ImageCms), 98
Color (class in PIL.ImageEnhance), 116
Color3DLUT (class in PIL.ImageFilter), 121
colorant_table (PIL.ImageCms.CmsProfile attribute),

100
colorant_table_out (PIL.ImageCms.CmsProfile at-

tribute), 100
colorimetric_intent (PIL.ImageCms.CmsProfile at-

tribute), 100
colorize() (in module PIL.ImageOps), 137
COM() (in module PIL.JpegImagePlugin), 176
compact() (PIL.ImagePath.PIL.ImagePath.Path

method), 143
compile() (PIL.FontFile.FontFile method), 160
composite() (in module PIL.Image), 63
composite() (in module PIL.ImageChops), 86
COMPRESSIONS (PIL.BmpImagePlugin.BmpImageFile at-

tribute), 167
connection_space (PIL.ImageCms.CmsProfile at-

tribute), 99
constant() (in module PIL.ImageChops), 86
contain() (in module PIL.ImageOps), 138
ContainerIO (class in PIL.ContainerIO), 159
Contrast (class in PIL.ImageEnhance), 116
convert() (PIL.Image.Image method), 68
convert2byte() (PIL.SpiderImagePlugin.SpiderImageFile

method), 185
convert_dict_qtables() (in module

PIL.JpegImagePlugin), 177
copy() (PIL.Image.Image method), 69
copyright (PIL.ImageCms.CmsProfile attribute), 99
count (PIL.ImageStat.Stat attribute), 146
crc() (PIL.PngImagePlugin.ChunkStream method), 180
crc_skip() (PIL.PngImagePlugin.ChunkStream

method), 181
createProfile() (in module PIL.ImageCms), 94
creation_date (PIL.ImageCms.CmsProfile attribute),

98
crop() (in module PIL.ImageOps), 138
crop() (PIL.Image.Image method), 69
CUBIC (in module PIL.Image), 84
CurImageFile (class in PIL.CurImagePlugin), 168
curved() (in module PIL.GimpGradientFile), 161
cvt_enum() (PIL.TiffTags.TagInfo method), 151

D
darker() (in module PIL.ImageChops), 86
data() (PIL.GifImagePlugin.GifImageFile method), 171
dataforsize() (PIL.IcnsImagePlugin.IcnsFile

method), 173
DcxImageFile (class in PIL.DcxImagePlugin), 169
decode() (PIL.BmpImagePlugin.BmpRleDecoder

method), 168
decode() (PIL.ImageFile.PyDecoder method), 118
decode() (PIL.MspImagePlugin.MspDecoder method),

179
decode() (PIL.PpmImagePlugin.PpmDecoder method),

183

292 Index



Pillow (PIL Fork) Documentation, Release 9.5.0

decode() (PIL.PpmImagePlugin.PpmPlainDecoder
method), 183

decode() (PIL.SgiImagePlugin.SGI16Decoder method),
184

DeferredError (class in PIL._util), 197
deform() (in module PIL.ImageOps), 139
denominator (PIL.TiffImagePlugin.IFDRational prop-

erty), 187
deprecate() (in module PIL._deprecate), 196
device_class (PIL.ImageCms.CmsProfile attribute), 98
Dib (class in PIL.ImageWin), 148
DibImageFile (class in PIL.BmpImagePlugin), 168
difference() (in module PIL.ImageChops), 86
Disposal (class in PIL.PngImagePlugin), 181
Dither (class in PIL.Image), 84
DQT() (in module PIL.JpegImagePlugin), 176
draft() (PIL.Image.Image method), 69
draft() (PIL.JpegImagePlugin.JpegImageFile method),

176
Draw (class in PIL.ImageDraw2), 162
Draw() (in module PIL.ImageDraw), 105
draw() (PIL.ImageWin.Dib method), 148
dump() (in module PIL.IptcImagePlugin), 176
duplicate() (in module PIL.ImageChops), 86

E
effect_mandelbrot() (in module PIL.Image), 65
effect_noise() (in module PIL.Image), 65
effect_spread() (PIL.Image.Image method), 70
ellipse() (PIL.ImageDraw.ImageDraw method), 106
ellipse() (PIL.ImageDraw2.Draw method), 162
encode() (PIL.ImageFile.PyEncoder method), 119
encode_to_file() (PIL.ImageFile.PyEncoder

method), 119
encode_to_pyfd() (PIL.ImageFile.PyEncoder

method), 119
end_document() (PIL.PSDraw.PSDraw method), 153
endian (PIL.Image.Exif attribute), 82
enhance() (PIL.ImageEnhance._Enhance method), 116
entropy() (PIL.Image.Image method), 70
EPSILON (in module PIL.GimpGradientFile), 161
EpsImageFile (class in PIL.EpsImagePlugin), 169
equalize() (in module PIL.ImageOps), 139
ERRORS (in module PIL.ImageFile), 120
eval() (in module PIL.Image), 63
eval() (in module PIL.ImageMath), 134
Exif (class in PIL.Image), 82
exif_transpose() (in module PIL.ImageOps), 141
expand() (in module PIL.ImageOps), 139
expose() (PIL.ImageWin.Dib method), 149
EXTENT (PIL.Image.Transform attribute), 83
ExtentTransform (class in PIL.ImageTransform), 164
extrema (PIL.ImageStat.Stat attribute), 146

F
FASTOCTREE (PIL.Image.Quantize attribute), 85
feed() (PIL.ImageFile.Parser method), 117
field() (PIL.IptcImagePlugin.IptcImageFile method),

176
fieldSizes (PIL.TiffImagePlugin.AppendingTiffWriter

attribute), 186
filename (PIL.Image.Image attribute), 81
fill (PIL.ImageDraw.ImageDraw attribute), 105
Filter (class in PIL.ImageFilter), 123
filter() (PIL.Image.Image method), 70
filter() (PIL.ImageFilter.Filter method), 123
filter() (PIL.ImageFilter.MultibandFilter method),

123
finalize() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
fit() (in module PIL.ImageOps), 140
FitsImageFile (class in PIL.FitsImagePlugin), 170
fixIFD() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
fixOffsets() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
FliImageFile (class in PIL.FliImagePlugin), 170
flip() (in module PIL.ImageOps), 140
FLIP_LEFT_RIGHT (PIL.Image.Transpose attribute), 83
FLIP_TOP_BOTTOM (PIL.Image.Transpose attribute), 83
floodfill() (in module PIL.ImageDraw), 115
FLOYDSTEINBERG (PIL.Image.Dither attribute), 84
flush() (PIL.ImageDraw2.Draw method), 162
Font (class in PIL.ImageDraw2), 162
font (PIL.ImageDraw.ImageDraw attribute), 105
font_variant() (PIL.ImageFont.FreeTypeFont

method), 126
FontFile (class in PIL.FontFile), 160
fontmode (PIL.ImageDraw.ImageDraw attribute), 105
format (PIL.BmpImagePlugin.BmpImageFile attribute),

167
format (PIL.BmpImagePlugin.DibImageFile attribute),

168
format (PIL.BufrStubImagePlugin.BufrStubImageFile

attribute), 168
format (PIL.CurImagePlugin.CurImageFile attribute),

168
format (PIL.DcxImagePlugin.DcxImageFile attribute),

169
format (PIL.EpsImagePlugin.EpsImageFile attribute),

169
format (PIL.FitsImagePlugin.FitsImageFile attribute),

170
format (PIL.FliImagePlugin.FliImageFile attribute),

170
format (PIL.FpxImagePlugin.FpxImageFile attribute),

170

Index 293



Pillow (PIL Fork) Documentation, Release 9.5.0

format (PIL.GbrImagePlugin.GbrImageFile attribute),
171

format (PIL.GdImageFile.GdImageFile attribute), 161
format (PIL.GifImagePlugin.GifImageFile attribute),

171
format (PIL.GribStubImagePlugin.GribStubImageFile

attribute), 173
format (PIL.Hdf5StubImagePlugin.HDF5StubImageFile

attribute), 173
format (PIL.IcnsImagePlugin.IcnsImageFile attribute),

174
format (PIL.IcoImagePlugin.IcoImageFile attribute),

175
format (PIL.Image.Image attribute), 81
format (PIL.ImageShow.Viewer attribute), 145
format (PIL.ImImagePlugin.ImImageFile attribute), 175
format (PIL.ImtImagePlugin.ImtImageFile attribute),

176
format (PIL.IptcImagePlugin.IptcImageFile attribute),

176
format (PIL.Jpeg2KImagePlugin.Jpeg2KImageFile at-

tribute), 177
format (PIL.JpegImagePlugin.JpegImageFile attribute),

177
format (PIL.McIdasImagePlugin.McIdasImageFile at-

tribute), 178
format (PIL.MicImagePlugin.MicImageFile attribute),

178
format (PIL.MpegImagePlugin.MpegImageFile at-

tribute), 179
format (PIL.MspImagePlugin.MspImageFile attribute),

179
format (PIL.PcdImagePlugin.PcdImageFile attribute),

180
format (PIL.PcxImagePlugin.PcxImageFile attribute),

180
format (PIL.PixarImagePlugin.PixarImageFile at-

tribute), 180
format (PIL.PngImagePlugin.PngImageFile attribute),

182
format (PIL.PpmImagePlugin.PpmImageFile attribute),

183
format (PIL.PsdImagePlugin.PsdImageFile attribute),

184
format (PIL.SgiImagePlugin.SgiImageFile attribute),

184
format (PIL.SpiderImagePlugin.SpiderImageFile

attribute), 185
format (PIL.SunImagePlugin.SunImageFile attribute),

185
format (PIL.TgaImagePlugin.TgaImageFile attribute),

186
format (PIL.TiffImagePlugin.TiffImageFile attribute),

190

format (PIL.WalImageFile.WalImageFile attribute), 167
format (PIL.WebPImagePlugin.WebPImageFile at-

tribute), 190
format (PIL.WmfImagePlugin.WmfStubImageFile

attribute), 191
format (PIL.XbmImagePlugin.XbmImageFile attribute),

192
format (PIL.XpmImagePlugin.XpmImageFile attribute),

192
format (PIL.XVThumbImagePlugin.XVThumbImageFile

attribute), 192
format_description (PIL.BmpImagePlugin.BmpImageFile

attribute), 167
format_description (PIL.BmpImagePlugin.DibImageFile

attribute), 168
format_description (PIL.BufrStubImagePlugin.BufrStubImageFile

attribute), 168
format_description (PIL.CurImagePlugin.CurImageFile

attribute), 168
format_description (PIL.DcxImagePlugin.DcxImageFile

attribute), 169
format_description (PIL.EpsImagePlugin.EpsImageFile

attribute), 169
format_description (PIL.FitsImagePlugin.FitsImageFile

attribute), 170
format_description (PIL.FliImagePlugin.FliImageFile

attribute), 170
format_description (PIL.FpxImagePlugin.FpxImageFile

attribute), 171
format_description (PIL.GbrImagePlugin.GbrImageFile

attribute), 171
format_description (PIL.GdImageFile.GdImageFile

attribute), 161
format_description (PIL.GifImagePlugin.GifImageFile

attribute), 171
format_description (PIL.GribStubImagePlugin.GribStubImageFile

attribute), 173
format_description (PIL.Hdf5StubImagePlugin.HDF5StubImageFile

attribute), 173
format_description (PIL.IcnsImagePlugin.IcnsImageFile

attribute), 174
format_description (PIL.IcoImagePlugin.IcoImageFile

attribute), 175
format_description (PIL.ImImagePlugin.ImImageFile

attribute), 175
format_description (PIL.ImtImagePlugin.ImtImageFile

attribute), 176
format_description (PIL.IptcImagePlugin.IptcImageFile

attribute), 176
format_description (PIL.Jpeg2KImagePlugin.Jpeg2KImageFile

attribute), 177
format_description (PIL.JpegImagePlugin.JpegImageFile

attribute), 177
format_description (PIL.McIdasImagePlugin.McIdasImageFile

294 Index



Pillow (PIL Fork) Documentation, Release 9.5.0

attribute), 178
format_description (PIL.MicImagePlugin.MicImageFile

attribute), 178
format_description (PIL.MpegImagePlugin.MpegImageFile

attribute), 179
format_description (PIL.MspImagePlugin.MspImageFile

attribute), 179
format_description (PIL.PcdImagePlugin.PcdImageFile

attribute), 180
format_description (PIL.PcxImagePlugin.PcxImageFile

attribute), 180
format_description (PIL.PixarImagePlugin.PixarImageFile

attribute), 180
format_description (PIL.PngImagePlugin.PngImageFile

attribute), 182
format_description (PIL.PpmImagePlugin.PpmImageFile

attribute), 183
format_description (PIL.PsdImagePlugin.PsdImageFile

attribute), 184
format_description (PIL.SgiImagePlugin.SgiImageFile

attribute), 184
format_description (PIL.SpiderImagePlugin.SpiderImageFile

attribute), 185
format_description (PIL.SunImagePlugin.SunImageFile

attribute), 185
format_description (PIL.TgaImagePlugin.TgaImageFile

attribute), 186
format_description (PIL.TiffImagePlugin.TiffImageFile

attribute), 190
format_description (PIL.WalImageFile.WalImageFile

attribute), 167
format_description (PIL.WebPImagePlugin.WebPImageFile

attribute), 190
format_description (PIL.WmfImagePlugin.WmfStubImageFile

attribute), 191
format_description (PIL.XbmImagePlugin.XbmImageFile

attribute), 192
format_description (PIL.XpmImagePlugin.XpmImageFile

attribute), 192
format_description (PIL.XVThumbImagePlugin.XVThumbImageFile

attribute), 192
FpxImageFile (class in PIL.FpxImagePlugin), 170
frame() (PIL.IcoImagePlugin.IcoFile method), 174
FreeTypeFont (class in PIL.ImageFont), 126
from_v2() (PIL.TiffImagePlugin.ImageFileDirectory_v1

class method), 187
fromarray() (in module PIL.Image), 64
frombuffer() (in module PIL.Image), 65
frombytes() (in module PIL.Image), 64
frombytes() (PIL.Image.Image method), 70
frombytes() (PIL.ImageWin.Dib method), 149

G
GaussianBlur (class in PIL.ImageFilter), 122

GbrImageFile (class in PIL.GbrImagePlugin), 171
GdImageFile (class in PIL.GdImageFile), 160
generate() (PIL.ImageFilter.Color3DLUT class

method), 121
get_command() (PIL.ImageShow.Viewer method), 146
get_display_profile() (in module PIL.ImageCms),

97
get_format() (PIL.ImageShow.Viewer method), 146
get_format_mimetype() (PIL.ImageFile.ImageFile

method), 119
get_ifd() (PIL.Image.Exif method), 82
get_interlace() (in module PIL.GifImagePlugin), 172
get_photoshop_blocks()

(PIL.TiffImagePlugin.TiffImageFile method),
190

get_sampling() (in module PIL.JpegImagePlugin), 177
get_supported() (in module PIL.features), 156
get_supported_codecs() (in module PIL.features),

158
get_supported_features() (in module PIL.features),

159
get_supported_modules() (in module PIL.features),

157
get_variation_axes() (PIL.ImageFont.FreeTypeFont

method), 127
get_variation_names()

(PIL.ImageFont.FreeTypeFont method), 127
getbands() (PIL.Image.Image method), 70
getbbox() (PIL.Image.Image method), 71
getbbox() (PIL.ImageFont.FreeTypeFont method), 127
getbbox() (PIL.ImageFont.ImageFont method), 126
getbbox() (PIL.ImageFont.TransposedFont method),

133
getbbox() (PIL.ImagePath.PIL.ImagePath.Path

method), 143
getchannel() (PIL.Image.Image method), 71
getchunks() (in module PIL.PngImagePlugin), 183
getcolor() (in module PIL.ImageColor), 102
getcolor() (PIL.ImagePalette.ImagePalette method),

142
getcolors() (PIL.Image.Image method), 71
getdata() (in module PIL.GifImagePlugin), 172
getdata() (PIL.Image.Image method), 71
getdata() (PIL.ImagePalette.ImagePalette method),

142
getdata() (PIL.ImageTransform.Transform method),

165
getDefaultIntent() (in module PIL.ImageCms), 94
getdraw() (in module PIL.ImageDraw), 115
getentryindex() (PIL.IcoImagePlugin.IcoFile

method), 174
getexif() (PIL.Image.Image method), 71
getexif() (PIL.PngImagePlugin.PngImageFile

method), 181

Index 295



Pillow (PIL Fork) Documentation, Release 9.5.0

getextrema() (PIL.Image.Image method), 72
getfont() (PIL.ImageDraw.ImageDraw method), 105
getheader() (in module PIL.GifImagePlugin), 172
getimage() (PIL.IcnsImagePlugin.IcnsFile method),

173
getimage() (PIL.IcoImagePlugin.IcoFile method), 174
getint() (PIL.IptcImagePlugin.IptcImageFile method),

176
getiptcinfo() (in module PIL.IptcImagePlugin), 176
getlength() (PIL.ImageFont.FreeTypeFont method),

127
getlength() (PIL.ImageFont.ImageFont method), 126
getlength() (PIL.ImageFont.TransposedFont method),

133
getmask() (PIL.ImageFont.FreeTypeFont method), 128
getmask() (PIL.ImageFont.ImageFont method), 126
getmask() (PIL.ImageFont.TransposedFont method),

133
getmask2() (PIL.ImageFont.FreeTypeFont method), 129
getmetrics() (PIL.ImageFont.FreeTypeFont method),

130
getname() (PIL.ImageFont.FreeTypeFont method), 130
getoffset() (PIL.ImageFont.FreeTypeFont method),

131
getOpenProfile() (in module PIL.ImageCms), 95
getpalette() (PIL.GimpGradientFile.GradientFile

method), 161
getpalette() (PIL.GimpPaletteFile.GimpPaletteFile

method), 162
getpalette() (PIL.Image.Image method), 72
getpalette() (PIL.PaletteFile.PaletteFile method), 165
getpixel() (PIL.Image.Image method), 72
getpixel() (PIL.PyAccess.PyAccess method), 156
getProfileCopyright() (in module PIL.ImageCms),

95
getProfileDescription() (in module

PIL.ImageCms), 95
getProfileInfo() (in module PIL.ImageCms), 95
getProfileManufacturer() (in module

PIL.ImageCms), 96
getProfileModel() (in module PIL.ImageCms), 96
getProfileName() (in module PIL.ImageCms), 96
getprojection() (PIL.Image.Image method), 72
getrgb() (in module PIL.ImageColor), 102
getsize() (PIL.ImageFont.FreeTypeFont method), 131
getsize() (PIL.ImageFont.ImageFont method), 126
getsize() (PIL.ImageFont.TransposedFont method),

133
getsize_multiline() (PIL.ImageFont.FreeTypeFont

method), 132
getxmp() (PIL.JpegImagePlugin.JpegImageFile

method), 177
getxmp() (PIL.PngImagePlugin.PngImageFile method),

181

getxmp() (PIL.TiffImagePlugin.TiffImageFile method),
190

getxmp() (PIL.WebPImagePlugin.WebPImageFile
method), 190

Ghostscript() (in module PIL.EpsImagePlugin), 169
GifImageFile (class in PIL.GifImagePlugin), 171
GimpGradientFile (class in PIL.GimpGradientFile),

161
GimpPaletteFile (class in PIL.GimpPaletteFile), 162
global_palette (PIL.GifImagePlugin.GifImageFile at-

tribute), 171
goToEnd() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
GPS (in module PIL.ExifTags), 150
GPSTAGS (in module PIL.ExifTags), 150
grab() (in module PIL.ImageGrab), 133
grabclipboard() (in module PIL.ImageGrab), 134
gradient (PIL.GimpGradientFile.GradientFile at-

tribute), 161
GradientFile (class in PIL.GimpGradientFile), 161
grayscale() (in module PIL.ImageOps), 140
green_colorant (PIL.ImageCms.CmsProfile attribute),

99
green_primary (PIL.ImageCms.CmsProfile attribute),

101
GribStubImageFile (class in

PIL.GribStubImagePlugin), 173

H
hard_light() (in module PIL.ImageChops), 87
has_ghostscript() (in module PIL.EpsImagePlugin),

170
has_next_box() (PIL.Jpeg2KImagePlugin.BoxReader

method), 177
HDC (class in PIL.ImageWin), 149
HDF5StubImageFile (class in

PIL.Hdf5StubImagePlugin), 173
header_flags (PIL.ImageCms.CmsProfile attribute), 99
header_manufacturer (PIL.ImageCms.CmsProfile at-

tribute), 99
header_model (PIL.ImageCms.CmsProfile attribute), 99
height (PIL.Image.Image attribute), 81
height() (PIL.ImageTk.BitmapImage method), 147
height() (PIL.ImageTk.PhotoImage method), 148
hide_offsets() (PIL.Image.Exif method), 82
histogram() (PIL.Image.Image method), 72
HWND (class in PIL.ImageWin), 149

I
i() (in module PIL.IptcImagePlugin), 176
i16be() (in module PIL._binary), 195
i16le() (in module PIL._binary), 195
i32be() (in module PIL._binary), 195
i32le() (in module PIL._binary), 195

296 Index



Pillow (PIL Fork) Documentation, Release 9.5.0

i8() (in module PIL._binary), 195
icc_version (PIL.ImageCms.CmsProfile attribute), 98
IcnsFile (class in PIL.IcnsImagePlugin), 173
IcnsImageFile (class in PIL.IcnsImagePlugin), 174
IcoFile (class in PIL.IcoImagePlugin), 174
IcoImageFile (class in PIL.IcoImagePlugin), 174
IFD (in module PIL.ExifTags), 150
IFDRational (class in PIL.TiffImagePlugin), 186
Image (class in PIL.Image), 67
image() (PIL.PSDraw.PSDraw method), 153
ImageCmsTransform (class in PIL.ImageCms), 89
ImageFile (class in PIL.ImageFile), 119
ImageFileDirectory (in module PIL.TiffImagePlugin),

187
ImageFileDirectory_v1 (class in

PIL.TiffImagePlugin), 187
ImageFileDirectory_v2 (class in

PIL.TiffImagePlugin), 187
ImageFont (class in PIL.ImageFont), 126
ImagePalette (class in PIL.ImagePalette), 141
ImagePointHandler (class in PIL.Image), 82
ImageQt (class in PIL.ImageQt), 143
ImageTransformHandler (class in PIL.Image), 82
ImImageFile (class in PIL.ImImagePlugin), 175
ImtImageFile (class in PIL.ImtImagePlugin), 176
info (PIL.Image.Image attribute), 81
init() (PIL.ImageFile.PyCodec method), 118
ink (PIL.ImageDraw.ImageDraw attribute), 105
intent_supported (PIL.ImageCms.CmsProfile at-

tribute), 101
Interop (in module PIL.ExifTags), 150
invert() (in module PIL.ImageChops), 86
invert() (in module PIL.ImageOps), 140
IptcImageFile (class in PIL.IptcImagePlugin), 176
IPythonViewer (class in PIL.ImageShow), 145
is_animated (PIL.GifImagePlugin.GifImageFile prop-

erty), 171
is_animated (PIL.Image.Image attribute), 81
is_animated (PIL.ImImagePlugin.ImImageFile prop-

erty), 175
is_animated (PIL.SpiderImagePlugin.SpiderImageFile

property), 185
is_cid() (in module PIL.PngImagePlugin), 183
is_directory() (in module PIL._util), 197
is_intent_supported() (PIL.ImageCms.CmsProfile

method), 101
is_matrix_shaper (PIL.ImageCms.CmsProfile at-

tribute), 101
is_path() (in module PIL._util), 197
isatty() (PIL.ContainerIO.ContainerIO method), 159
isInt() (in module PIL.SpiderImagePlugin), 185
isIntentSupported() (in module PIL.ImageCms), 97
isSpiderHeader() (in module

PIL.SpiderImagePlugin), 185

isSpiderImage() (in module PIL.SpiderImagePlugin),
185

Iterator (class in PIL.ImageSequence), 144
itersizes() (PIL.IcnsImagePlugin.IcnsFile method),

174
iTXt (class in PIL.PngImagePlugin), 165

J
JPEG (PIL.BmpImagePlugin.BmpImageFile attribute),

167
Jpeg2KImageFile (class in PIL.Jpeg2KImagePlugin),

177
jpeg_factory() (in module PIL.JpegImagePlugin), 177
JpegImageFile (class in PIL.JpegImagePlugin), 176

K
k (PIL.BmpImagePlugin.BmpImageFile attribute), 168
Kernel (class in PIL.ImageFilter), 122

L
legacy_api (PIL.TiffImagePlugin.ImageFileDirectory_v2

property), 188
LIBIMAGEQUANT (PIL.Image.Quantize attribute), 85
lighter() (in module PIL.ImageChops), 86
LightSource (in module PIL.ExifTags), 150
limit_rational() (PIL.TiffImagePlugin.IFDRational

method), 187
line() (PIL.ImageDraw.ImageDraw method), 106
line() (PIL.ImageDraw2.Draw method), 163
line() (PIL.PSDraw.PSDraw method), 153
LINEAR (in module PIL.Image), 84
linear() (in module PIL.GimpGradientFile), 161
linear_gradient() (in module PIL.Image), 66
load() (in module PIL.ImageFont), 124
load() (PIL.EpsImagePlugin.EpsImageFile method),

169
load() (PIL.FpxImagePlugin.FpxImageFile method),

171
load() (PIL.GbrImagePlugin.GbrImageFile method),

171
load() (PIL.IcnsImagePlugin.IcnsImageFile method),

174
load() (PIL.IcoImagePlugin.IcoImageFile method), 175
load() (PIL.Image.Exif method), 82
load() (PIL.Image.Image method), 80
load() (PIL.ImageFile.ImageFile method), 119
load() (PIL.ImageFile.StubImageFile method), 120
load() (PIL.IptcImagePlugin.IptcImageFile method),

176
load() (PIL.Jpeg2KImagePlugin.Jpeg2KImageFile

method), 177
load() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 188

Index 297



Pillow (PIL Fork) Documentation, Release 9.5.0

load() (PIL.TiffImagePlugin.TiffImageFile method), 190
load() (PIL.WalImageFile.WalImageFile method), 167
load() (PIL.WebPImagePlugin.WebPImageFile

method), 191
load() (PIL.WmfImagePlugin.WmfStubImageFile

method), 191
load_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 188
load_default() (in module PIL.ImageFont), 125
load_djpeg() (PIL.JpegImagePlugin.JpegImageFile

method), 177
load_double() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 188
load_end() (PIL.GifImagePlugin.GifImageFile

method), 171
load_end() (PIL.ImageFile.ImageFile method), 119
load_end() (PIL.PcdImagePlugin.PcdImageFile

method), 180
load_end() (PIL.PngImagePlugin.PngImageFile

method), 181
load_end() (PIL.TgaImagePlugin.TgaImageFile

method), 186
load_end() (PIL.TiffImagePlugin.TiffImageFile

method), 190
load_float() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 188
load_from_fp() (PIL.Image.Exif method), 82
load_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
load_long8() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
load_path() (in module PIL.ImageFont), 124
load_prepare() (PIL.GifImagePlugin.GifImageFile

method), 171
load_prepare() (PIL.ImageFile.ImageFile method),

119
load_prepare() (PIL.PngImagePlugin.PngImageFile

method), 181
load_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
load_read() (PIL.JpegImagePlugin.JpegImageFile

method), 177
load_read() (PIL.PngImagePlugin.PngImageFile

method), 181
load_read() (PIL.XpmImagePlugin.XpmImageFile

method), 192
load_seek() (PIL.EpsImagePlugin.EpsImageFile

method), 169
load_seek() (PIL.IcoImagePlugin.IcoImageFile

method), 175
load_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
load_signed_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189

load_signed_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

load_signed_rational()
(PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

load_signed_short()
(PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

load_string() (PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

LOAD_TRUNCATED_IMAGES (in module PIL.ImageFile),
120

load_undefined() (PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

loadImageSeries() (in module
PIL.SpiderImagePlugin), 185

LOADING_STRATEGY (in module PIL.GifImagePlugin),
172

LoadingStrategy (class in PIL.GifImagePlugin), 172
logical_and() (in module PIL.ImageChops), 87
logical_or() (in module PIL.ImageChops), 87
logical_xor() (in module PIL.ImageChops), 87
lookup() (in module PIL.TiffTags), 151
luminance (PIL.ImageCms.CmsProfile attribute), 100

M
MacViewer (class in PIL.ImageShow), 145
makeSpiderHeader() (in module

PIL.SpiderImagePlugin), 185
manufacturer (PIL.ImageCms.CmsProfile attribute), 99
map() (PIL.ImagePath.PIL.ImagePath.Path method), 143
MAX_IMAGE_PIXELS (in module PIL.Image), 83
MAX_TEXT_CHUNK (in module PIL.PngImagePlugin), 183
MAX_TEXT_MEMORY (in module PIL.PngImagePlugin),

183
MAXCOVERAGE (PIL.Image.Quantize attribute), 85
MaxFilter (class in PIL.ImageFilter), 122
McIdasImageFile (class in PIL.McIdasImagePlugin),

178
mean (PIL.ImageStat.Stat attribute), 147
media_black_point (PIL.ImageCms.CmsProfile

attribute), 100
media_white_point_temperature

(PIL.ImageCms.CmsProfile attribute), 100
median (PIL.ImageStat.Stat attribute), 147
MEDIANCUT (PIL.Image.Quantize attribute), 85
MedianFilter (class in PIL.ImageFilter), 122
merge() (in module PIL.Image), 63
MESH (PIL.Image.Transform attribute), 83
MeshTransform (class in PIL.ImageTransform), 164
method (PIL.ImageTransform.AffineTransform attribute),

164
method (PIL.ImageTransform.ExtentTransform at-

tribute), 164

298 Index



Pillow (PIL Fork) Documentation, Release 9.5.0

method (PIL.ImageTransform.MeshTransform attribute),
164

method (PIL.ImageTransform.QuadTransform attribute),
165

MicImageFile (class in PIL.MicImagePlugin), 178
MinFilter (class in PIL.ImageFilter), 122
mirror() (in module PIL.ImageOps), 141
mode (PIL.Image.Image attribute), 81
mode_map (PIL.EpsImagePlugin.EpsImageFile at-

tribute), 169
ModeFilter (class in PIL.ImageFilter), 123
model (PIL.ImageCms.CmsProfile attribute), 99
module

PIL, 159
PIL._binary, 195
PIL._deprecate, 196
PIL._imaging, 197
PIL._tkinter_finder, 197
PIL._util, 197
PIL._version, 197
PIL.BdfFontFile, 159
PIL.BmpImagePlugin, 167
PIL.BufrStubImagePlugin, 168
PIL.ContainerIO, 159
PIL.CurImagePlugin, 168
PIL.DcxImagePlugin, 169
PIL.EpsImagePlugin, 169
PIL.ExifTags, 149
PIL.features, 156
PIL.FitsImagePlugin, 170
PIL.FliImagePlugin, 170
PIL.FontFile, 160
PIL.FpxImagePlugin, 170
PIL.GbrImagePlugin, 171
PIL.GdImageFile, 160
PIL.GifImagePlugin, 171
PIL.GimpGradientFile, 161
PIL.GimpPaletteFile, 162
PIL.GribStubImagePlugin, 173
PIL.Hdf5StubImagePlugin, 173
PIL.IcnsImagePlugin, 173
PIL.IcoImagePlugin, 174
PIL.Image, 61
PIL.Image.core, 197
PIL.ImageChops, 85
PIL.ImageCms, 88
PIL.ImageColor, 102
PIL.ImageDraw, 102
PIL.ImageDraw2, 162
PIL.ImageEnhance, 115
PIL.ImageFile, 116
PIL.ImageFilter, 120
PIL.ImageFont, 123
PIL.ImageGrab, 133

PIL.ImageMath, 134
PIL.ImageMorph, 136
PIL.ImageOps, 137
PIL.ImagePalette, 141
PIL.ImagePath, 142
PIL.ImageQt, 143
PIL.ImageSequence, 143
PIL.ImageShow, 144
PIL.ImageStat, 146
PIL.ImageTk, 147
PIL.ImageTransform, 164
PIL.ImageWin, 148
PIL.ImImagePlugin, 175
PIL.ImtImagePlugin, 176
PIL.IptcImagePlugin, 176
PIL.Jpeg2KImagePlugin, 177
PIL.JpegImagePlugin, 176
PIL.JpegPresets, 152
PIL.McIdasImagePlugin, 178
PIL.MicImagePlugin, 178
PIL.MpegImagePlugin, 179
PIL.MspImagePlugin, 179
PIL.PaletteFile, 165
PIL.PalmImagePlugin, 179
PIL.PcdImagePlugin, 180
PIL.PcfFontFile, 165
PIL.PcxImagePlugin, 180
PIL.PdfImagePlugin, 180
PIL.PixarImagePlugin, 180
PIL.PngImagePlugin, 180
PIL.PpmImagePlugin, 183
PIL.PsdImagePlugin, 184
PIL.PSDraw, 153
PIL.PyAccess, 155
PIL.SgiImagePlugin, 184
PIL.SpiderImagePlugin, 185
PIL.SunImagePlugin, 185
PIL.TarIO, 166
PIL.TgaImagePlugin, 186
PIL.TiffImagePlugin, 186
PIL.TiffTags, 151
PIL.WalImageFile, 167
PIL.WebPImagePlugin, 190
PIL.WmfImagePlugin, 191
PIL.XbmImagePlugin, 192
PIL.XpmImagePlugin, 192
PIL.XVThumbImagePlugin, 192

MpegImageFile (class in PIL.MpegImagePlugin), 179
MspDecoder (class in PIL.MspImagePlugin), 179
MspImageFile (class in PIL.MspImagePlugin), 179
MultibandFilter (class in PIL.ImageFilter), 123
multiline_text() (PIL.ImageDraw.ImageDraw

method), 109

Index 299



Pillow (PIL Fork) Documentation, Release 9.5.0

multiline_textbbox() (PIL.ImageDraw.ImageDraw
method), 114

multiline_textsize() (PIL.ImageDraw.ImageDraw
method), 111

multiply() (in module PIL.ImageChops), 87

N
n_frames (PIL.GifImagePlugin.GifImageFile property),

171
n_frames (PIL.Image.Image attribute), 81
n_frames (PIL.ImImagePlugin.ImImageFile property),

175
n_frames (PIL.SpiderImagePlugin.SpiderImageFile

property), 185
n_frames (PIL.TiffImagePlugin.TiffImageFile property),

190
name (PIL.PcfFontFile.PcfFontFile attribute), 165
named() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
new() (in module PIL.Image), 63
newFrame() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
next() (PIL.MpegImagePlugin.BitStream method), 179
next_box_type() (PIL.Jpeg2KImagePlugin.BoxReader

method), 177
nextheader() (in module PIL.IcnsImagePlugin), 174
NONE (in module PIL.Image), 83
NONE (PIL.Image.Dither attribute), 84
number() (in module PIL.ImImagePlugin), 175
numerator (PIL.TiffImagePlugin.IFDRational prop-

erty), 187

O
o16be() (in module PIL._binary), 195
o16le() (in module PIL._binary), 195
o32be() (in module PIL._binary), 195
o32le() (in module PIL._binary), 196
o8() (in module PIL._binary), 196
offset (PIL.TiffImagePlugin.ImageFileDirectory_v2

property), 189
offset() (in module PIL.ImageChops), 88
OP_BACKGROUND (PIL.PngImagePlugin.Disposal at-

tribute), 181
OP_NONE (PIL.PngImagePlugin.Disposal attribute), 181
OP_OVER (PIL.PngImagePlugin.Blend attribute), 180
OP_PREVIOUS (PIL.PngImagePlugin.Disposal attribute),

181
OP_SOURCE (PIL.PngImagePlugin.Blend attribute), 180
open() (in module PIL.GdImageFile), 161
open() (in module PIL.Image), 61
open() (in module PIL.WalImageFile), 167
options (PIL.ImageShow.Viewer attribute), 145
ORDERED (PIL.Image.Dither attribute), 84
overlay() (in module PIL.ImageChops), 87

P
pad() (in module PIL.ImageOps), 138
Palette (class in PIL.Image), 84
palette (PIL.Image.Image attribute), 81
PaletteFile (class in PIL.PaletteFile), 165
Parser (class in PIL.ImageFile), 117
paste() (PIL.Image.Image method), 72
paste() (PIL.ImageTk.PhotoImage method), 148
paste() (PIL.ImageWin.Dib method), 149
PcdImageFile (class in PIL.PcdImagePlugin), 180
PcfFontFile (class in PIL.PcfFontFile), 165
PcxImageFile (class in PIL.PcxImagePlugin), 180
peek() (PIL.MpegImagePlugin.BitStream method), 179
Pen (class in PIL.ImageDraw2), 162
perceptual_rendering_intent_gamut

(PIL.ImageCms.CmsProfile attribute), 100
PERSPECTIVE (PIL.Image.Transform attribute), 83
PhotoImage (class in PIL.ImageTk), 147
pieslice() (PIL.ImageDraw.ImageDraw method), 107
pieslice() (PIL.ImageDraw2.Draw method), 163
PIL

module, 159
PIL._binary

module, 195
PIL._deprecate

module, 196
PIL._imaging

module, 197
PIL._tkinter_finder

module, 197
PIL._util

module, 197
PIL._version

module, 197
PIL.BdfFontFile

module, 159
PIL.BmpImagePlugin

module, 167
PIL.BufrStubImagePlugin

module, 168
PIL.ContainerIO

module, 159
PIL.CurImagePlugin

module, 168
PIL.DcxImagePlugin

module, 169
PIL.EpsImagePlugin

module, 169
PIL.ExifTags

module, 149
PIL.features

module, 156
PIL.FitsImagePlugin

module, 170

300 Index



Pillow (PIL Fork) Documentation, Release 9.5.0

PIL.FliImagePlugin
module, 170

PIL.FontFile
module, 160

PIL.FpxImagePlugin
module, 170

PIL.GbrImagePlugin
module, 171

PIL.GdImageFile
module, 160

PIL.GifImagePlugin
module, 171

PIL.GimpGradientFile
module, 161

PIL.GimpPaletteFile
module, 162

PIL.GribStubImagePlugin
module, 173

PIL.Hdf5StubImagePlugin
module, 173

PIL.IcnsImagePlugin
module, 173

PIL.IcoImagePlugin
module, 174

PIL.Image
module, 61

PIL.Image.core
module, 197

PIL.ImageChops
module, 85

PIL.ImageCms
module, 88

PIL.ImageColor
module, 102

PIL.ImageDraw
module, 102

PIL.ImageDraw2
module, 162

PIL.ImageEnhance
module, 115

PIL.ImageFile
module, 116

PIL.ImageFilter
module, 120

PIL.ImageFont
module, 123

PIL.ImageFont.Layout.BASIC (in module
PIL.ImageFont), 133

PIL.ImageFont.Layout.RAQM (in module
PIL.ImageFont), 133

PIL.ImageGrab
module, 133

PIL.ImageMath
module, 134

PIL.ImageMorph
module, 136

PIL.ImageOps
module, 137

PIL.ImagePalette
module, 141

PIL.ImagePath
module, 142

PIL.ImagePath.Path (class in PIL.ImagePath), 142
PIL.ImageQt

module, 143
PIL.ImageSequence

module, 143
PIL.ImageShow

module, 144
PIL.ImageStat

module, 146
PIL.ImageTk

module, 147
PIL.ImageTransform

module, 164
PIL.ImageWin

module, 148
PIL.ImImagePlugin

module, 175
PIL.ImtImagePlugin

module, 176
PIL.IptcImagePlugin

module, 176
PIL.Jpeg2KImagePlugin

module, 177
PIL.JpegImagePlugin

module, 176
PIL.JpegPresets

module, 152
PIL.McIdasImagePlugin

module, 178
PIL.MicImagePlugin

module, 178
PIL.MpegImagePlugin

module, 179
PIL.MspImagePlugin

module, 179
PIL.PaletteFile

module, 165
PIL.PalmImagePlugin

module, 179
PIL.PcdImagePlugin

module, 180
PIL.PcfFontFile

module, 165
PIL.PcxImagePlugin

module, 180
PIL.PdfImagePlugin

Index 301



Pillow (PIL Fork) Documentation, Release 9.5.0

module, 180
PIL.PixarImagePlugin

module, 180
PIL.PngImagePlugin

module, 180
PIL.PpmImagePlugin

module, 183
PIL.PsdImagePlugin

module, 184
PIL.PSDraw

module, 153
PIL.PyAccess

module, 155
PIL.SgiImagePlugin

module, 184
PIL.SpiderImagePlugin

module, 185
PIL.SunImagePlugin

module, 185
PIL.TarIO

module, 166
PIL.TgaImagePlugin

module, 186
PIL.TiffImagePlugin

module, 186
PIL.TiffTags

module, 151
PIL.TiffTags.LIBTIFF_CORE (in module

PIL.TiffTags), 152
PIL.TiffTags.TAGS (in module PIL.TiffTags), 152
PIL.TiffTags.TAGS_V2 (in module PIL.TiffTags), 151
PIL.TiffTags.TAGS_V2_GROUPS (in module

PIL.TiffTags), 151
PIL.TiffTags.TYPES (in module PIL.TiffTags), 152
PIL.WalImageFile

module, 167
PIL.WebPImagePlugin

module, 190
PIL.WmfImagePlugin

module, 191
PIL.XbmImagePlugin

module, 192
PIL.XpmImagePlugin

module, 192
PIL.XVThumbImagePlugin

module, 192
pilinfo() (in module PIL.features), 156
PixarImageFile (class in PIL.PixarImagePlugin), 180
PixelAccess (built-in class), 154
PNG (PIL.BmpImagePlugin.BmpImageFile attribute), 167
PngImageFile (class in PIL.PngImagePlugin), 181
PngInfo (class in PIL.PngImagePlugin), 166
PngStream (class in PIL.PngImagePlugin), 182
point() (PIL.Image.Image method), 73

point() (PIL.ImageDraw.ImageDraw method), 107
polygon() (PIL.ImageDraw.ImageDraw method), 107
polygon() (PIL.ImageDraw2.Draw method), 163
posterize() (in module PIL.ImageOps), 141
PpmDecoder (class in PIL.PpmImagePlugin), 183
PpmImageFile (class in PIL.PpmImagePlugin), 183
PpmPlainDecoder (class in PIL.PpmImagePlugin), 183
prefix (PIL.TiffImagePlugin.ImageFileDirectory_v2

property), 189
presets (in module PIL.JpegPresets), 153
profile_description (PIL.ImageCms.CmsProfile at-

tribute), 99
profile_id (PIL.ImageCms.CmsProfile attribute), 99
profileToProfile() (in module PIL.ImageCms), 97
PsdImageFile (class in PIL.PsdImagePlugin), 184
PSDraw (class in PIL.PSDraw), 153
PSFile (class in PIL.EpsImagePlugin), 169
push() (PIL.PngImagePlugin.ChunkStream method),

181
putalpha() (PIL.Image.Image method), 73
putchunk() (in module PIL.PngImagePlugin), 183
putdata() (PIL.Image.Image method), 74
puti16() (in module PIL.FontFile), 160
putpalette() (PIL.Image.Image method), 74
putpixel() (PIL.Image.Image method), 74
putpixel() (PIL.PyAccess.PyAccess method), 156
PyAccess (class in PIL.PyAccess), 156
PyCMSError, 89
PyCodec (class in PIL.ImageFile), 117
PyDecoder (class in PIL.ImageFile), 118
PyEncoder (class in PIL.ImageFile), 119
Python Enhancement Proposals

PEP 527, 249
PEP 619, 227
PEP 656, 222
PEP 664, 215

Q
QUAD (PIL.Image.Transform attribute), 83
QuadTransform (class in PIL.ImageTransform), 164
Quantize (class in PIL.Image), 85
quantize() (PIL.Image.Image method), 74
query_palette() (PIL.ImageWin.Dib method), 149

R
radial_gradient() (in module PIL.Image), 66
RankFilter (class in PIL.ImageFilter), 122
RASTERIZE (PIL.Image.Dither attribute), 84
RAW (PIL.BmpImagePlugin.BmpImageFile attribute), 167
rawmode (PIL.GimpPaletteFile.GimpPaletteFile at-

tribute), 162
rawmode (PIL.PaletteFile.PaletteFile attribute), 165
read() (PIL.ContainerIO.ContainerIO method), 159
read() (PIL.MpegImagePlugin.BitStream method), 179

302 Index



Pillow (PIL Fork) Documentation, Release 9.5.0

read() (PIL.PngImagePlugin.ChunkStream method),
181

read_32() (in module PIL.IcnsImagePlugin), 174
read_32t() (in module PIL.IcnsImagePlugin), 174
read_boxes() (PIL.Jpeg2KImagePlugin.BoxReader

method), 177
read_fields() (PIL.Jpeg2KImagePlugin.BoxReader

method), 177
read_mk() (in module PIL.IcnsImagePlugin), 174
read_png_or_jpeg2000() (in module

PIL.IcnsImagePlugin), 174
readline() (PIL.ContainerIO.ContainerIO method),

159
readline() (PIL.EpsImagePlugin.PSFile method), 169
readlines() (PIL.ContainerIO.ContainerIO method),

160
readLong() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
readShort() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
rectangle() (PIL.ImageDraw.ImageDraw method),

108
rectangle() (PIL.ImageDraw2.Draw method), 163
rectangle() (PIL.PSDraw.PSDraw method), 153
red_colorant (PIL.ImageCms.CmsProfile attribute), 99
red_primary (PIL.ImageCms.CmsProfile attribute), 101
reduce (PIL.Jpeg2KImagePlugin.Jpeg2KImageFile

property), 178
reduce() (PIL.Image.Image method), 75
register() (in module PIL.ImageShow), 145
register_decoder() (in module PIL.Image), 67
register_encoder() (in module PIL.Image), 67
register_extension() (in module PIL.Image), 67
register_extensions() (in module PIL.Image), 67
register_handler() (in module

PIL.BufrStubImagePlugin), 168
register_handler() (in module

PIL.GribStubImagePlugin), 173
register_handler() (in module

PIL.Hdf5StubImagePlugin), 173
register_handler() (in module

PIL.WmfImagePlugin), 191
register_mime() (in module PIL.Image), 66
register_open() (in module PIL.Image), 66
register_save() (in module PIL.Image), 66
register_save_all() (in module PIL.Image), 66
registered_extensions() (in module PIL.Image), 67
regular_polygon() (PIL.ImageDraw.ImageDraw

method), 107
remap_palette() (PIL.Image.Image method), 75
render() (PIL.ImageDraw2.Draw method), 162
rendering_intent (PIL.ImageCms.CmsProfile at-

tribute), 99
Resampling.BICUBIC (in module PIL.Image), 25

Resampling.BILINEAR (in module PIL.Image), 25
Resampling.BOX (in module PIL.Image), 25
Resampling.HAMMING (in module PIL.Image), 25
Resampling.LANCZOS (in module PIL.Image), 25
Resampling.NEAREST (in module PIL.Image), 25
reset() (PIL.ImageFile.Parser method), 117
reset() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
resize() (PIL.Image.Image method), 75
rewind() (PIL.PngImagePlugin.PngStream method),

182
rewriteLastLong() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
rewriteLastShort() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
rewriteLastShortToLong()

(PIL.TiffImagePlugin.AppendingTiffWriter
method), 186

RGB_AFTER_DIFFERENT_PALETTE_ONLY
(PIL.GifImagePlugin.LoadingStrategy at-
tribute), 172

RGB_AFTER_FIRST (PIL.GifImagePlugin.LoadingStrategy
attribute), 172

RGB_ALWAYS (PIL.GifImagePlugin.LoadingStrategy at-
tribute), 172

RLE4 (PIL.BmpImagePlugin.BmpImageFile attribute),
167

RLE8 (PIL.BmpImagePlugin.BmpImageFile attribute),
167

rms (PIL.ImageStat.Stat attribute), 147
rotate() (PIL.Image.Image method), 76
ROTATE_180 (PIL.Image.Transpose attribute), 83
ROTATE_270 (PIL.Image.Transpose attribute), 83
ROTATE_90 (PIL.Image.Transpose attribute), 83
rounded_rectangle() (PIL.ImageDraw.ImageDraw

method), 108

S
saturation_rendering_intent_gamut

(PIL.ImageCms.CmsProfile attribute), 100
save() (PIL.FontFile.FontFile method), 160
save() (PIL.Image.Image method), 76
save() (PIL.ImagePalette.ImagePalette method), 142
save() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
save_image() (PIL.ImageShow.Viewer method), 146
save_rewind() (PIL.PngImagePlugin.PngStream

method), 183
scale() (in module PIL.ImageOps), 139
screen() (in module PIL.ImageChops), 88
screening_description (PIL.ImageCms.CmsProfile

attribute), 101
seek() (PIL.ContainerIO.ContainerIO method), 160

Index 303



Pillow (PIL Fork) Documentation, Release 9.5.0

seek() (PIL.DcxImagePlugin.DcxImageFile method),
169

seek() (PIL.EpsImagePlugin.PSFile method), 169
seek() (PIL.FliImagePlugin.FliImageFile method), 170
seek() (PIL.GifImagePlugin.GifImageFile method), 171
seek() (PIL.Image.Image method), 77
seek() (PIL.ImImagePlugin.ImImageFile method), 175
seek() (PIL.MicImagePlugin.MicImageFile method),

178
seek() (PIL.PngImagePlugin.PngImageFile method),

181
seek() (PIL.PsdImagePlugin.PsdImageFile method),

184
seek() (PIL.SpiderImagePlugin.SpiderImageFile

method), 185
seek() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
seek() (PIL.TiffImagePlugin.TiffImageFile method), 190
seek() (PIL.WebPImagePlugin.WebPImageFile

method), 191
SEGMENTS (in module PIL.GimpGradientFile), 161
set_as_raw() (PIL.ImageFile.PyDecoder method), 118
set_variation_by_axes()

(PIL.ImageFont.FreeTypeFont method), 132
set_variation_by_name()

(PIL.ImageFont.FreeTypeFont method), 132
setEndian() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
setfd() (PIL.ImageFile.PyCodec method), 118
setfont() (PIL.PSDraw.PSDraw method), 153
setimage() (PIL.ImageFile.PyCodec method), 118
settransform() (PIL.ImageDraw2.Draw method), 162
setup() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
SGI16Decoder (class in PIL.SgiImagePlugin), 184
SgiImageFile (class in PIL.SgiImagePlugin), 184
shape() (PIL.ImageDraw.ImageDraw method), 108
Sharpness (class in PIL.ImageEnhance), 116
show() (in module PIL.ImageShow), 144
show() (PIL.Image.Image method), 77
show() (PIL.ImageShow.Viewer method), 145
show_file() (PIL.ImageShow.Viewer method), 146
show_image() (PIL.ImageShow.Viewer method), 146
si16be() (in module PIL._binary), 196
si16le() (in module PIL._binary), 196
si32le() (in module PIL._binary), 196
sine() (in module PIL.GimpGradientFile), 161
size (PIL.IcnsImagePlugin.IcnsImageFile property), 174
size (PIL.IcoImagePlugin.IcoImageFile property), 175
size (PIL.Image.Image attribute), 81
SIZES (PIL.IcnsImagePlugin.IcnsFile attribute), 173
sizes() (PIL.IcoImagePlugin.IcoFile method), 174
Skip() (in module PIL.JpegImagePlugin), 177
skip() (PIL.MpegImagePlugin.BitStream method), 179

skipIFDs() (PIL.TiffImagePlugin.AppendingTiffWriter
method), 186

SOF() (in module PIL.JpegImagePlugin), 177
soft_light() (in module PIL.ImageChops), 87
solarize() (in module PIL.ImageOps), 141
sphere_decreasing() (in module

PIL.GimpGradientFile), 161
sphere_increasing() (in module

PIL.GimpGradientFile), 161
SpiderImageFile (class in PIL.SpiderImagePlugin),

185
split() (PIL.Image.Image method), 77
Stat (class in PIL.ImageStat), 146
stddev (PIL.ImageStat.Stat attribute), 147
StubImageFile (class in PIL.ImageFile), 119
subtract() (in module PIL.ImageChops), 88
subtract_modulo() (in module PIL.ImageChops), 88
sum (PIL.ImageStat.Stat attribute), 146
sum2 (PIL.ImageStat.Stat attribute), 146
SunImageFile (class in PIL.SunImagePlugin), 185
sz() (in module PIL.PcfFontFile), 165

T
tag (PIL.TiffImagePlugin.TiffImageFile attribute), 190
tag_v2 (PIL.TiffImagePlugin.TiffImageFile attribute),

190
tagdata (PIL.TiffImagePlugin.ImageFileDirectory_v1

property), 187
TagInfo (class in PIL.TiffTags), 151
TAGS (in module PIL.ExifTags), 150
Tags (PIL.TiffImagePlugin.AppendingTiffWriter at-

tribute), 186
tags (PIL.TiffImagePlugin.ImageFileDirectory_v1 prop-

erty), 187
tagtype (PIL.TiffImagePlugin.ImageFileDirectory_v1

attribute), 187
tagtype (PIL.TiffImagePlugin.ImageFileDirectory_v2

attribute), 189
target (PIL.ImageCms.CmsProfile attribute), 99
TarIO (class in PIL.TarIO), 166
technology (PIL.ImageCms.CmsProfile attribute), 100
tell() (PIL.ContainerIO.ContainerIO method), 160
tell() (PIL.DcxImagePlugin.DcxImageFile method),

169
tell() (PIL.FliImagePlugin.FliImageFile method), 170
tell() (PIL.GifImagePlugin.GifImageFile method), 171
tell() (PIL.Image.Image method), 78
tell() (PIL.ImImagePlugin.ImImageFile method), 175
tell() (PIL.MicImagePlugin.MicImageFile method),

178
tell() (PIL.PngImagePlugin.PngImageFile method),

182
tell() (PIL.PsdImagePlugin.PsdImageFile method),

184

304 Index



Pillow (PIL Fork) Documentation, Release 9.5.0

tell() (PIL.SpiderImagePlugin.SpiderImageFile
method), 185

tell() (PIL.TiffImagePlugin.AppendingTiffWriter
method), 186

tell() (PIL.TiffImagePlugin.TiffImageFile method), 190
tell() (PIL.WebPImagePlugin.WebPImageFile

method), 191
text (PIL.PngImagePlugin.PngImageFile property), 182
text() (PIL.ImageDraw.ImageDraw method), 108
text() (PIL.ImageDraw2.Draw method), 163
text() (PIL.PSDraw.PSDraw method), 153
textbbox() (PIL.ImageDraw.ImageDraw method), 113
textbbox() (PIL.ImageDraw2.Draw method), 163
textlength() (PIL.ImageDraw.ImageDraw method),

112
textlength() (PIL.ImageDraw2.Draw method), 163
textsize() (PIL.ImageDraw.ImageDraw method), 110
textsize() (PIL.ImageDraw2.Draw method), 163
TgaImageFile (class in PIL.TgaImagePlugin), 186
thumbnail() (PIL.Image.Image method), 78
TiffImageFile (class in PIL.TiffImagePlugin), 190
tile (PIL.ImageFile.ImageFile attribute), 119
tkPhotoImage() (PIL.SpiderImagePlugin.SpiderImageFile

method), 185
to_v2() (PIL.TiffImagePlugin.ImageFileDirectory_v1

method), 187
tobitmap() (PIL.Image.Image method), 78
tobytes() (PIL.Image.Exif method), 82
tobytes() (PIL.Image.Image method), 78
tobytes() (PIL.ImagePalette.ImagePalette method),

142
tobytes() (PIL.ImageWin.Dib method), 149
tobytes() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
tolist() (PIL.ImagePath.PIL.ImagePath.Path method),

143
tostring() (PIL.ImagePalette.ImagePalette method),

142
Transform (class in PIL.Image), 83
Transform (class in PIL.ImageTransform), 165
transform() (PIL.Image.Image method), 79
transform() (PIL.ImageFilter.Color3DLUT method),

121
transform() (PIL.ImagePath.PIL.ImagePath.Path

method), 143
transform() (PIL.ImageTransform.Transform method),

165
Transpose (class in PIL.Image), 83
TRANSPOSE (PIL.Image.Transpose attribute), 83
transpose() (PIL.Image.Image method), 79
TransposedFont (class in PIL.ImageFont), 132
TRANSVERSE (PIL.Image.Transpose attribute), 83
truetype() (in module PIL.ImageFont), 124

U
UnidentifiedImageError, 159
UnixViewer (class in PIL.ImageShow), 145
UnixViewer.DisplayViewer (class in

PIL.ImageShow), 145
UnixViewer.EogViewer (class in PIL.ImageShow), 145
UnixViewer.GmDisplayViewer (class in

PIL.ImageShow), 145
UnixViewer.XDGViewer (class in PIL.ImageShow), 145
UnixViewer.XVViewer (class in PIL.ImageShow), 145
UnsharpMask (class in PIL.ImageFilter), 122

V
v (PIL.BmpImagePlugin.BmpImageFile attribute), 168
var (PIL.ImageStat.Stat attribute), 147
verify() (PIL.Image.Image method), 80
verify() (PIL.ImageFile.ImageFile method), 119
verify() (PIL.PngImagePlugin.ChunkStream method),

181
verify() (PIL.PngImagePlugin.PngImageFile method),

182
version (PIL.ImageCms.CmsProfile attribute), 98
version() (in module PIL.features), 156
version_codec() (in module PIL.features), 158
version_feature() (in module PIL.features), 158
version_module() (in module PIL.features), 157
versions() (in module PIL.ImageCms), 98
Viewer (class in PIL.ImageShow), 145
viewing_condition (PIL.ImageCms.CmsProfile

attribute), 101

W
WalImageFile (class in PIL.WalImageFile), 167
WEB (PIL.Image.Palette attribute), 84
WebPImageFile (class in PIL.WebPImagePlugin), 190
width (PIL.Image.Image attribute), 81
width() (PIL.ImageTk.BitmapImage method), 147
width() (PIL.ImageTk.PhotoImage method), 148
WindowsViewer (class in PIL.ImageShow), 145
WmfStubImageFile (class in PIL.WmfImagePlugin), 191
write() (PIL.TiffImagePlugin.AppendingTiffWriter

method), 186
write_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
write_double() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
write_float() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
write_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
write_long8() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189
write_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2

method), 189

Index 305



Pillow (PIL Fork) Documentation, Release 9.5.0

write_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

write_signed_byte()
(PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

write_signed_long()
(PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

write_signed_rational()
(PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

write_signed_short()
(PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 189

write_string() (PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 190

write_undefined() (PIL.TiffImagePlugin.ImageFileDirectory_v2
method), 190

writeLong() (PIL.TiffImagePlugin.AppendingTiffWriter
method), 186

writeShort() (PIL.TiffImagePlugin.AppendingTiffWriter
method), 186

X
XbmImageFile (class in PIL.XbmImagePlugin), 192
xcolor_space (PIL.ImageCms.CmsProfile attribute), 98
XpmImageFile (class in PIL.XpmImagePlugin), 192
XVThumbImageFile (class in

PIL.XVThumbImagePlugin), 192

306 Index


	Overview
	Installation
	Warnings
	Python Support
	Basic Installation
	Building From Source
	External Libraries
	Installing
	Build Options


	Platform Support
	Continuous Integration Targets
	Other Platforms

	Old Versions

	Handbook
	Overview
	Image Archives
	Image Display
	Image Processing

	Tutorial
	Using the Image class
	Reading and writing images
	Convert files to JPEG
	Create JPEG thumbnails
	Identify Image Files

	Cutting, pasting, and merging images
	Copying a subrectangle from an image
	Processing a subrectangle, and pasting it back
	Rolling an image
	Merging images
	Splitting and merging bands

	Geometrical transforms
	Simple geometry transforms
	Transposing an image

	Color transforms
	Converting between modes

	Image enhancement
	Filters
	Applying filters

	Point Operations
	Applying point transforms
	Processing individual bands

	Enhancement
	Enhancing images


	Image sequences
	Reading sequences
	Using the ImageSequence Iterator class

	PostScript printing
	Drawing PostScript

	More on reading images
	Reading from an open file
	Reading from binary data
	Reading from URL
	Reading from a tar archive
	Batch processing

	Controlling the decoder
	Reading in draft mode


	Concepts
	Bands
	Modes
	Size
	Coordinate System
	Palette
	Info
	Transparency
	Orientation
	Filters
	Filters comparison table


	Appendices
	Image file formats
	Fully supported formats
	BLP
	Saving
	BMP
	Opening
	DDS
	DIB
	EPS
	Loading
	GIF
	Opening
	Reading sequences
	Saving
	Reading local images
	ICNS
	Saving
	ICO
	Saving
	IM
	JPEG
	Opening
	Saving
	JPEG 2000
	Saving
	MSP
	PCX
	PNG
	Opening
	Saving
	APNG sequences
	Saving
	PPM
	SGI
	SPIDER
	Opening
	Saving
	TGA
	Saving
	TIFF
	Opening
	Reading Multi-frame TIFF Images
	Saving
	WebP
	Saving
	Saving sequences
	XBM

	Read-only formats
	CUR
	DCX
	FITS
	FLI, FLC
	FPX
	FTEX
	GBR
	Opening
	GD
	Opening
	IMT
	IPTC/NAA
	MCIDAS
	MIC
	MPO
	Saving
	PCD
	PIXAR
	PSD
	SUN
	WAL
	WMF, EMF
	XPM
	Opening

	Write-only formats
	PALM
	PDF
	Saving
	QOI
	XV Thumbnails

	Identify-only formats
	BUFR
	GRIB
	HDF5
	MPEG


	Text anchors
	Specifying an anchor
	Quick reference
	Horizontal anchor alignment
	Vertical anchor alignment
	Examples

	Writing Your Own Image Plugin
	Example
	The tile attribute

	Decoders
	The raw decoder
	Decoding floating point data
	The bit decoder

	Writing Your Own File Codec in C
	Setup
	Transforming
	Cleanup

	Writing Your Own File Codec in Python


	Reference
	Image Module
	Examples
	Open, rotate, and display an image (using the default viewer)
	Create thumbnails

	Functions
	Image processing
	Constructing images
	Generating images
	Registering plugins

	The Image Class
	Image Attributes
	Classes
	Constants
	Transpose methods
	Transform methods
	Resampling filters
	Dither modes
	Palettes
	Quantization methods


	ImageChops (“Channel Operations”) Module
	Functions

	ImageCms Module
	Functions
	CmsProfile

	ImageColor Module
	Color Names
	Functions

	ImageDraw Module
	Example: Draw a gray cross over an image
	Concepts
	Coordinates
	Colors
	Color Names
	Fonts

	Example: Draw Partial Opacity Text
	Example: Draw Multiline Text
	Functions
	Attributes
	Methods

	ImageEnhance Module
	Example: Vary the sharpness of an image
	Classes

	ImageFile Module
	Example: Parse an image
	Classes
	Constants

	ImageFilter Module
	Example: Filter an image
	Filters

	ImageFont Module
	Example
	Functions
	Methods
	Constants

	ImageGrab Module
	ImageMath Module
	Example: Using the ImageMath module
	Expression syntax
	Standard Operators
	Bitwise Operators
	Logical Operators
	Built-in Functions


	ImageMorph Module
	ImageOps Module
	ImagePalette Module
	ImagePath Module
	ImageQt Module
	ImageSequence Module
	Extracting frames from an animation
	The Iterator class
	Functions

	ImageShow Module
	ImageStat Module
	ImageTk Module
	ImageWin Module (Windows-only)
	ExifTags Module
	TiffTags Module
	JpegPresets Module
	Subsampling
	Quantization tables

	PSDraw Module
	PixelAccess Class
	Example
	PixelAccess Class

	PyAccess Module
	Example
	PyAccess Class

	features Module
	Modules
	Codecs
	Features

	PIL Package (autodoc of remaining modules)
	PIL Module
	BdfFontFile Module
	ContainerIO Module
	FontFile Module
	GdImageFile Module
	GimpGradientFile Module
	GimpPaletteFile Module
	ImageDraw2 Module
	ImageTransform Module
	PaletteFile Module
	PcfFontFile Module
	PngImagePlugin.iTXt Class
	PngImagePlugin.PngInfo Class
	TarIO Module
	WalImageFile Module

	Plugin reference
	BmpImagePlugin Module
	BufrStubImagePlugin Module
	CurImagePlugin Module
	DcxImagePlugin Module
	EpsImagePlugin Module
	FitsImagePlugin Module
	FliImagePlugin Module
	FpxImagePlugin Module
	GbrImagePlugin Module
	GifImagePlugin Module
	GribStubImagePlugin Module
	Hdf5StubImagePlugin Module
	IcnsImagePlugin Module
	IcoImagePlugin Module
	ImImagePlugin Module
	ImtImagePlugin Module
	IptcImagePlugin Module
	JpegImagePlugin Module
	Jpeg2KImagePlugin Module
	McIdasImagePlugin Module
	MicImagePlugin Module
	MpegImagePlugin Module
	MspImagePlugin Module
	PalmImagePlugin Module
	PcdImagePlugin Module
	PcxImagePlugin Module
	PdfImagePlugin Module
	PixarImagePlugin Module
	PngImagePlugin Module
	PpmImagePlugin Module
	PsdImagePlugin Module
	SgiImagePlugin Module
	SpiderImagePlugin Module
	SunImagePlugin Module
	TgaImagePlugin Module
	TiffImagePlugin Module
	WebPImagePlugin Module
	WmfImagePlugin Module
	XVThumbImagePlugin Module
	XbmImagePlugin Module
	XpmImagePlugin Module

	Internal Reference Docs
	File Handling in Pillow
	Image Lifecycle
	Complications
	Proposed File Handling

	Limits
	Internal Limits
	Format Size Limits

	Block Allocator
	Previous Design
	New Design
	Memory Pools

	Internal Modules
	_binary Module
	_deprecate Module
	_tkinter_finder Module
	_util Module
	_version Module
	PIL.Image.core Module

	C Extension debugging on Linux, with gbd/valgrind.
	Install the tools
	Test Case
	Caveats



	Porting
	About
	Goals
	License
	Why a fork?
	What about PIL?

	Release Notes
	9.5.0
	Backwards Incompatible Changes
	TODO

	Deprecations
	PSFile

	API Changes
	TODO

	API Additions
	QOI file format
	Added dpi argument when saving PDFs
	Added corners argument to ImageDraw.rounded_rectangle()
	JPEG2000 comments and PLT marker

	Security
	Clear PPM half token after use
	Saving TIFF tag ImageSourceData

	Other Changes
	Added support for saving PDFs in RGBA mode
	Improved I;16N support
	BGR;* modes


	9.4.0
	API Additions
	Added start position for getmask and getmask2
	Added the exact encoding option for WebP
	Added signed option when saving JPEG2000
	Added IFD, Interop and LightSource ExifTags enums
	getxmp()
	Writing JPEG comments

	Security
	Fix memory DOS in ImageFont
	Null pointer dereference crash in ImageFont

	Other Changes
	Added support for DDS L and LA images
	Constants


	9.3.0
	API Additions
	Allow default ImageDraw font to be set
	Saving multiple MPO frames
	Added ExifTags enums

	Security
	Initialize libtiff buffer when saving
	Decode JPEG compressed BLP1 data in original mode
	Limit SAMPLESPERPIXEL to avoid runtime DOS

	Other Changes
	Python 3.11 wheels
	Windows wheels
	Added DDS ATI1, ATI2 and BC6H reading
	Release GIL when converting images using matrix operations
	Show all frames with ImageShow


	9.2.0
	Deprecations
	PyQt5 and PySide2
	FreeTypeFont.getmask2 fill parameter
	PhotoImage.paste box parameter
	Image.coerce_e
	Font size and offset methods

	API Additions
	Image.apply_transparency

	Security
	Other Changes
	Using gnome-screenshot on Linux


	9.1.1
	Security

	9.1.0
	API Changes
	Raise an error when performing a negative crop
	Added specific error if path coordinate type is incorrect
	Replace requirements.txt with extras

	Deprecations
	Constants
	ImageShow.Viewer.show_file file argument
	FitsStubImagePlugin

	API Additions
	Added get_photoshop_blocks() to parse Photoshop TIFF tag
	Added mct and no_jp2 options for saving JPEG 2000
	Added PyEncoder
	GifImagePlugin loading strategy

	Other Changes
	musllinux wheels
	ImageShow temporary files on Unix
	Image._repr_pretty_
	Added BigTIFF reading
	Added BLP saving


	9.0.1
	Security
	Other Changes

	9.0.0
	Fredrik Lundh
	Backwards Incompatible Changes
	Python 3.6
	PILLOW_VERSION constant
	FreeType 2.7
	Image.show command parameter
	Image._showxv
	ImageFile.raise_ioerror

	API Changes
	Added line width parameter to ImageDraw polygon

	API Additions
	ImageShow.XDGViewer
	Added support for “title” argument to DisplayViewer

	Security
	Ensure JpegImagePlugin stops at the end of a truncated file
	Remove consecutive duplicate tiles that only differ by their offset
	Restrict builtins available to ImageMath.eval
	Fixed ImagePath.Path array handling

	Other Changes
	Convert subsequent GIF frames to RGB or RGBA
	Switched to libjpeg-turbo in macOS and Linux wheels
	Added support for pickling TrueType fonts
	Added support for additional TGA orientations


	8.4.0
	API Changes
	Deprecations
	ImagePalette size parameter


	API Additions
	Added “transparency” argument for loading EPS images
	Added WalImageFile class

	Other Changes
	Speed improvement when rotating square images


	8.3.2
	Security
	Other Changes
	Python 3.10 wheels
	Fixed regressions


	8.3.1
	Fixed regression converting to NumPy arrays
	Catch OSError when checking if destination is sys.stdout
	Fixed removing orientation in ImageOps.exif_transpose

	8.3.0
	Deprecations
	JpegImagePlugin.convert_dict_qtables

	API Changes
	Changed WebP default “method” value when saving
	Default resampling filter for special image modes
	ImageMorph incorrect mode errors
	getxmp()
	TIFF getexif()

	API Additions
	ImageOps.contain
	ICO saving: bitmap_format argument

	Security
	Buffer overflow
	Parsing XML

	Other Changes
	Added DDS BC5 reading and uncompressed saving


	8.2.0
	Deprecations
	Categories
	Tk/Tcl 8.4

	API Changes
	Image.alpha_composite: dest
	Image.getexif: EXIF and GPS IFD
	Image._MODEINFO

	API Additions
	getxmp() for JPEG images
	ImageDraw.rounded_rectangle
	ImageOps.autocontrast: preserve_tone
	ImageShow.GmDisplayViewer
	ImageShow.IPythonViewer
	Saving TIFF with ICC profile

	Security
	CVE-2021-25287, CVE-2021-25288: Fix OOB read in Jpeg2KDecode
	CVE-2021-28675: Fix DOS in PsdImagePlugin
	CVE-2021-28676: Fix FLI DOS
	CVE-2021-28677: Fix EPS DOS on _open
	CVE-2021-28678: Fix BLP DOS
	Fix memory DOS in ImageFont

	Other Changes
	GIF writer uses LZW encoding
	GraphicsMagick
	Libraqm and FriBiDi linking
	PyQt6


	8.1.2
	Security

	8.1.1
	Security
	Other Changes

	8.1.0
	Deprecations
	FreeType 2.7
	Makefile

	API Additions
	Append images to ICO

	Security
	Dependencies

	Other Changes
	Makefile
	PyPy wheels
	PySide6


	8.0.1
	Security

	8.0.0
	Backwards Incompatible Changes
	Python 3.5
	PyPy 7.1.x
	im.offset
	Image.fromstring, im.fromstring and im.tostring
	ImageCms.CmsProfile attributes

	API Changes
	ImageDraw.text: stroke_width
	ImageDraw.text: anchor
	Add MIME type to PsdImagePlugin

	API Additions
	Image.open: add formats parameter
	ImageOps.autocontrast: add mask parameter
	ImageOps.autocontrast cutoffs
	ImageDraw.regular_polygon
	ImageDraw.text: embedded_color
	ImageDraw.textlength
	ImageDraw.textbbox

	Other Changes
	Improved ellipse-drawing algorithm
	ImageDraw.text and ImageDraw.multiline_text
	Added writing of subIFDs
	Error for large BMP files
	Dark theme for docs


	7.2.0
	API Changes
	Replaced TiffImagePlugin DEBUG with logging
	Corrected default offset when writing EXIF data
	Moved to ImageFileDirectory_v2 in Image.Exif
	TIFF BYTE tags format
	Deprecations
	Image.show command parameter
	Image._showxv
	ImageFile.raise_ioerror



	7.1.2
	Fix another regression seeking PNG files

	7.1.1
	Fix regression seeking PNG files

	7.1.0
	API Changes
	Allow saving of zero quality JPEG images

	API Additions
	New channel operations
	PILLOW_VERSION constant
	Reading JPEG comments
	Support for different charset encodings in PcfFontFile
	X11 ImageGrab.grab()

	Security
	Other Changes
	If present, only use alpha channel for bounding box
	Improved APNG support


	7.0.0
	Backwards Incompatible Changes
	Python 2.7
	PILLOW_VERSION constant
	PIL.*ImagePlugin.__version__ attributes
	PyQt4 and PySide
	Setting the size of TIFF images
	Default resampling filter
	Image.draft() return value

	API Additions
	Custom unidentified image error
	New argument reducing_gap for Image.resize() and Image.thumbnail() methods
	New Image.reduce() method
	Loading WMF images at a given DPI

	Other Changes
	Image.__del__
	Better thumbnail geometry


	6.2.2
	Security

	6.2.1
	API Changes
	Deprecations
	Python 2.7


	Other Changes
	Support added for Python 3.8


	6.2.0
	API Additions
	Text stroking
	ImageGrab on multi-monitor Windows

	API Changes
	Image.getexif
	Deprecations
	Image.frombuffer


	Security
	Other Changes
	Removed bdist_wininst .exe installers
	Flags for libwebp in wheels


	6.1.0
	Deprecations
	Image.__del__

	API Additions
	Image.entropy
	ImageGrab.grab
	ImageSequence.all_frames
	Variation fonts

	Other Changes
	ImageTk.getimage
	Image quality for JPEG compressed TIFF
	Improve encoding of TIFF tags
	Respect PKG_CONFIG environment variable when building
	Top-to-bottom complex text rendering


	6.0.0
	Backwards Incompatible Changes
	Python 3.4 dropped
	Removed deprecated PIL.OleFileIO
	Removed deprecated ImageOps functions
	Removed deprecated VERSION

	API Changes
	Deprecations
	Python 2.7
	PyQt4 and PySide
	PIL.*ImagePlugin.__version__ attributes
	ImageCms.CmsProfile attributes

	MIME type improvements

	API Additions
	DIB file format
	Image.quantize
	New language parameter
	Added EXIF class
	Added ImageOps.exif_transpose
	PNG EXIF data

	Other Changes
	Reading new DDS image format
	Reading TIFF with old-style JPEG compression
	TIFF compression codecs
	Improved support for transposing I;16 images


	5.4.1
	Installation on Termux
	PNG: Handle IDAT chunks after image end
	PNG: MIME type
	File closing

	5.4.0
	API Changes
	APNG extension to PNG plugin
	Check for libjpeg-turbo
	Negative indexes in pixel access
	New custom TIFF tags

	Other Changes
	ImageOps.fit


	5.3.0
	API Changes
	Image size

	API Additions
	Added line width parameter to rectangle and ellipse-based shapes
	Curved joints for line sequences
	ImageOps.colorize
	ImageOps.pad

	Other Changes

	5.2.0
	API Changes
	Deprecations

	API Additions
	3D color lookup tables
	ImageColor.getrgb
	ImageFile.get_format_mimetype
	ImageFont.getsize_multiline
	Image.rotate
	TGA file format

	Other Changes
	Support added for Python 3.7
	Build macOS wheels with Xcode 6.4, supporting older macOS versions
	Fix _i2f compilation with some GCC versions
	Resolve confusion getting PIL / Pillow version string


	5.1.0
	New File Format
	BLP File Format

	API Changes
	Optional channels for TIFF files
	Append to PDF Files

	Other Changes
	WebP memory leak


	5.0.0
	Backwards Incompatible Changes
	Python 3.3 Dropped
	Decompression Bombs now raise Exceptions
	Scripts

	API Changes
	OleFileIO.py
	Check parameter on _save

	API Additions
	Image.transform
	GIF Disposal

	Other Changes
	Compressed TIFF Images
	Libraqm is now Dynamically Linked
	Source Layout Changes
	Setup.py Changes


	4.3.0
	API Changes
	Deprecations
	TIFF Metadata Changes
	Core Image API Changes

	API Additions
	Get One Channel From Image
	Box Blur
	Partial Resampling
	New Transpose Operation
	Multiband Filters

	Other Changes
	Loading 16-bit TIFF Images
	SGI Images
	Performance
	CMYK Conversion


	4.2.1
	Fixed Windows PyPy Build

	4.2.0
	Added Complex Text Rendering
	New Optional Parameters
	New DecompressionBomb Warning
	Removed Deprecated Items
	Removed Core Image Function

	4.1.1
	Fix Regression with reading DPI from EXIF data
	Incompatibility between 3.6.0 and 3.6.1

	4.1.0
	Removed Deprecated Items
	Closing Files When Opening Images
	Changes to GIF Handling When Saving
	New Method: Image.remap_palette
	Added Decoder Registry and Support for Python Based Decoders
	Tests

	4.0.0
	Python 2.6 and 3.2 Dropped
	Support added for Python 3.6
	OleFileIO.py
	SGI image save
	Zero sized images
	Internal handles_eof flag
	Image.core.stretch removed

	3.4.0
	New resizing filters
	Deprecation Warning when Saving JPEGs
	New DDS Decoders
	Append images to GIF
	Save multiple frame TIFF
	Image.core.open_ppm removed

	3.3.2
	Integer overflow in Map.c
	Sign Extension in Storage.c

	3.3.0
	Libimagequant support
	New Setup.py options
	Resizing
	Rotation
	Image Metadata

	3.2.0
	New DDS and FTEX Image Plugins
	Updates to the GbrImagePlugin
	Passthrough Parameters for ImageDraw.text
	ImageSequence.Iterator changes

	3.1.2
	CVE-2016-3076 – Buffer overflow in Jpeg2KEncode.c

	3.1.1
	CVE-2016-0740 – Buffer overflow in TiffDecode.c
	CVE-2016-0775 – Buffer overflow in FliDecode.c
	CVE-2016-2533 – Buffer overflow in PcdDecode.c
	Integer overflow in Resample.c

	3.1.0
	ImageDraw arc, chord and pieslice can now use floats
	Consistent multiline text spacing
	Exif, Jpeg and Tiff Metadata
	TiffImagePlugin.IFDRational
	JpegImagePlugin._getexif
	Out of Spec Metadata


	3.0.0
	Saving Multipage Images
	Tiff ImageFileDirectory Rewrite
	Deprecated Methods
	LibJpeg and Zlib are Required by Default

	2.8.0
	Open HTTP response objects with Image.open

	2.7.0
	Sane Plugin
	Png text chunk size limits
	Image resizing filters
	Bicubic and bilinear downscaling
	Antialias renamed to Lanczos
	Lanczos upscaling quality
	Bicubic upscaling quality
	Resize performance
	Default filter for thumbnails

	Image transposition
	Gaussian blur and unsharp mask
	Blur radius
	Blur performance
	Blur quality

	TIFF Parameter Changes

	Versioning

	Deprecations and removals
	Deprecated features
	Tk/Tcl 8.4
	Categories
	JpegImagePlugin.convert_dict_qtables
	ImagePalette size parameter
	ImageShow.Viewer.show_file file argument
	Constants
	FitsStubImagePlugin
	FreeTypeFont.getmask2 fill parameter
	PhotoImage.paste box parameter
	PyQt5 and PySide2
	Image.coerce_e
	Font size and offset methods
	PSFile

	Removed features
	PILLOW_VERSION constant
	Image.show command parameter
	Image._showxv
	ImageFile.raise_ioerror
	FreeType 2.7
	im.offset
	Image.fromstring, im.fromstring and im.tostring
	ImageCms.CmsProfile attributes
	Python 2.7
	Image.__del__
	PIL.*ImagePlugin.__version__ attributes
	PyQt4 and PySide
	Setting the size of TIFF images
	VERSION constant
	Undocumented ImageOps functions
	PIL.OleFileIO



	Indices and tables
	Python Module Index
	Index

