We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,在AKT模型中,有这样几种嵌入 self.difficult_param = nn.Embedding(self.n_pid+1, 1) # 题目难度 self.q_embed_diff = nn.Embedding(self.n_question+1, embed_l) # question emb, 总结了包含当前question(concept)的problems(questions)的变化 self.q_embed = nn.Embedding(self.n_question, embed_l)
为什么前两种嵌入需要elf.n_pid+1和self.n_question+1。而第三种直接传入n_question
The text was updated successfully, but these errors were encountered:
您好,在AKT模型中,有这样几种嵌入 self.difficult_param = nn.Embedding(self.n_pid+1, 1) # 题目难度 self.q_embed_diff = nn.Embedding(self.n_question+1, embed_l) # question emb, 总结了包含当前question(concept)的problems(questions)的变化 self.q_embed = nn.Embedding(self.n_question, embed_l) 为什么前两种嵌入需要elf.n_pid+1和self.n_question+1。而第三种直接传入n_question
self.n_pid代表的是题目ID的数量, self.n_question是知识点ID的数量, self.difficult_param代表原论文 rasch model-based emb中的$\mu_{q_t}$, self.q_embed_diff和self.q_embed分别是$\mathbf{d}{c_t}$和$\mathbf{c}{c_t}$, 所以用的是self.n_question. 具体可以查看原论文Section 3.4
Sorry, something went wrong.
No branches or pull requests
您好,在AKT模型中,有这样几种嵌入
self.difficult_param = nn.Embedding(self.n_pid+1, 1) # 题目难度
self.q_embed_diff = nn.Embedding(self.n_question+1, embed_l) # question emb, 总结了包含当前question(concept)的problems(questions)的变化
self.q_embed = nn.Embedding(self.n_question, embed_l)
为什么前两种嵌入需要elf.n_pid+1和self.n_question+1。而第三种直接传入n_question
The text was updated successfully, but these errors were encountered: