5
5
6
6
import pytest
7
7
8
- import numpy as np
9
-
10
8
DENSITY = 0.01
11
9
12
10
@@ -15,13 +13,12 @@ def format_id(format):
15
13
16
14
17
15
@pytest .mark .parametrize ("format" , ["coo" , "gcxs" ])
18
- def test_matmul (benchmark , sides , format , seed , max_size , ids = format_id ):
16
+ def test_matmul (benchmark , sides , format , rng , max_size , ids = format_id ):
19
17
m , n , p = sides
20
18
21
19
if m * n >= max_size or n * p >= max_size :
22
20
pytest .skip ()
23
21
24
- rng = np .random .default_rng (seed = seed )
25
22
x = sparse .random ((m , n ), density = DENSITY , format = format , random_state = rng )
26
23
y = sparse .random ((n , p ), density = DENSITY , format = format , random_state = rng )
27
24
@@ -38,11 +35,10 @@ def get_test_id(params):
38
35
39
36
40
37
@pytest .fixture (params = itertools .product ([100 , 500 , 1000 ], [1 , 2 , 3 , 4 ], ["coo" , "gcxs" ]), ids = get_test_id )
41
- def elemwise_args (request , seed , max_size ):
38
+ def elemwise_args (request , rng , max_size ):
42
39
side , rank , format = request .param
43
40
if side ** rank >= max_size :
44
41
pytest .skip ()
45
- rng = np .random .default_rng (seed = seed )
46
42
shape = (side ,) * rank
47
43
x = sparse .random (shape , density = DENSITY , format = format , random_state = rng )
48
44
y = sparse .random (shape , density = DENSITY , format = format , random_state = rng )
@@ -65,11 +61,10 @@ def get_elemwise_ids(params):
65
61
66
62
67
63
@pytest .fixture (params = itertools .product ([100 , 500 , 1000 ], ["coo" , "gcxs" ]), ids = get_elemwise_ids )
68
- def elemwise_broadcast_args (request , seed , max_size ):
64
+ def elemwise_broadcast_args (request , rng , max_size ):
69
65
side , format = request .param
70
66
if side ** 2 >= max_size :
71
67
pytest .skip ()
72
- rng = np .random .default_rng (seed = seed )
73
68
x = sparse .random ((side , 1 , side ), density = DENSITY , format = format , random_state = rng )
74
69
y = sparse .random ((side , side ), density = DENSITY , format = format , random_state = rng )
75
70
return x , y
@@ -86,11 +81,10 @@ def bench():
86
81
87
82
88
83
@pytest .fixture (params = itertools .product ([100 , 500 , 1000 ], [1 , 2 , 3 ], ["coo" , "gcxs" ]), ids = get_test_id )
89
- def indexing_args (request , seed , max_size ):
84
+ def indexing_args (request , rng , max_size ):
90
85
side , rank , format = request .param
91
86
if side ** rank >= max_size :
92
87
pytest .skip ()
93
- rng = np .random .default_rng (seed = seed )
94
88
shape = (side ,) * rank
95
89
96
90
return sparse .random (shape , density = DENSITY , format = format , random_state = rng )
@@ -120,10 +114,9 @@ def bench():
120
114
x [(slice (side // 2 ),) * rank ]
121
115
122
116
123
- def test_index_fancy (benchmark , indexing_args , seed ):
117
+ def test_index_fancy (benchmark , indexing_args , rng ):
124
118
x = indexing_args
125
119
side = x .shape [0 ]
126
- rng = np .random .default_rng (seed = seed )
127
120
index = rng .integers (0 , side , size = (side // 2 ,))
128
121
129
122
x [index ] # Numba compilation
@@ -145,12 +138,11 @@ def sides(request):
145
138
146
139
147
140
@pytest .fixture (params = ([(0 , "coo" ), (0 , "gcxs" ), (1 , "gcxs" )]), ids = ["coo" , "gcxs-0-axis" , "gcxs-1-axis" ])
148
- def densemul_args (request , sides , seed , max_size ):
141
+ def densemul_args (request , sides , rng , max_size ):
149
142
compressed_axis , format = request .param
150
143
m , n , p = sides
151
144
if m * n >= max_size or n * p >= max_size :
152
145
pytest .skip ()
153
- rng = np .random .default_rng (seed = seed )
154
146
if format == "coo" :
155
147
x = sparse .random ((m , n ), density = DENSITY / 10 , format = format , random_state = rng )
156
148
else :
0 commit comments