diff --git a/CHANGELOG.md b/CHANGELOG.md index e9160e5081..82f07dea29 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,10 +2,12 @@ ## Features +- Added method to get QuickPlot axes by variable ([#3596](https://github.com/pybamm-team/PyBaMM/pull/3596)) +- Added custom experiment terminations ([#3596](https://github.com/pybamm-team/PyBaMM/pull/3596)) +- Mechanical parameters are now a function of stoichiometry and temperature ([#3576](https://github.com/pybamm-team/PyBaMM/pull/3576)) - Added a new unary operator, `EvaluateAt`, that evaluates a spatial variable at a given position ([#3573](https://github.com/pybamm-team/PyBaMM/pull/3573)) - Added a method, `insert_reference_electrode`, to `pybamm.lithium_ion.BaseModel` that insert a reference electrode to measure the electrolyte potential at a given position in space and adds new variables that mimic a 3E cell setup. ([#3573](https://github.com/pybamm-team/PyBaMM/pull/3573)) - Serialisation added so models can be written to/read from JSON ([#3397](https://github.com/pybamm-team/PyBaMM/pull/3397)) -- Mechanical parameters are now a function of stoichiometry and temperature ([#3576](https://github.com/pybamm-team/PyBaMM/pull/3576)) ## Bug fixes diff --git a/docs/source/api/experiment/experiment_steps.rst b/docs/source/api/experiment/experiment_steps.rst index 55de9d17bf..6a2e2abc31 100644 --- a/docs/source/api/experiment/experiment_steps.rst +++ b/docs/source/api/experiment/experiment_steps.rst @@ -18,3 +18,28 @@ directly: .. autoclass:: pybamm.step._Step :members: + +Step terminations +----------------- + +Standard step termination events are implemented by the following classes, which are +called when the termination is specified by a specific string. These classes can be +either be called directly or via the string format specified in the class docstring + +.. autoclass:: pybamm.step.CrateTermination + :members: + +.. autoclass:: pybamm.step.CurrentTermination + :members: + +.. autoclass:: pybamm.step.VoltageTermination + :members: + +The following classes can be used to define custom terminations for an experiment +step: + +.. autoclass:: pybamm.step.BaseTermination + :members: + +.. autoclass:: pybamm.step.CustomTermination + :members: diff --git a/docs/source/api/plotting/quick_plot.rst b/docs/source/api/plotting/quick_plot.rst index ff7576a00d..870a569e9d 100644 --- a/docs/source/api/plotting/quick_plot.rst +++ b/docs/source/api/plotting/quick_plot.rst @@ -7,3 +7,6 @@ Quick Plot :members: .. autofunction:: pybamm.dynamic_plot + +.. autoclass:: pybamm.QuickPlotAxes + :members: diff --git a/docs/source/examples/index.rst b/docs/source/examples/index.rst index e025ea71b4..e0f2bd5832 100644 --- a/docs/source/examples/index.rst +++ b/docs/source/examples/index.rst @@ -85,6 +85,17 @@ The notebooks are organised into subfolders, and can be viewed in the galleries notebooks/parameterization/parameter-values.ipynb notebooks/parameterization/parameterization.ipynb +.. nbgallery:: + :caption: Simulations and Experiments + :glob: + + notebooks/simulations_and_experiments/callbacks.ipynb + notebooks/simulations_and_experiments/custom-experiments.ipynb + notebooks/simulations_and_experiments/experiments-start-time.ipynb + notebooks/simulations_and_experiments/rpt-experiment.ipynb + notebooks/simulations_and_experiments/simulating-long-experiments.ipynb + notebooks/simulations_and_experiments/simulation-class.ipynb + .. nbgallery:: :caption: Plotting :glob: @@ -111,11 +122,6 @@ The notebooks are organised into subfolders, and can be viewed in the galleries :glob: notebooks/batch_study.ipynb - notebooks/callbacks.ipynb notebooks/change-settings.ipynb notebooks/initialize-model-with-solution.ipynb - notebooks/rpt-experiment.ipynb - notebooks/simulating-long-experiments.ipynb - notebooks/simulation-class.ipynb notebooks/solution-data-and-processed-variables.ipynb - notebooks/experiments-start-time.ipynb diff --git a/docs/source/examples/notebooks/batch_study.ipynb b/docs/source/examples/notebooks/batch_study.ipynb index 807a368fcc..f02d1154ad 100644 --- a/docs/source/examples/notebooks/batch_study.ipynb +++ b/docs/source/examples/notebooks/batch_study.ipynb @@ -523,7 +523,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The difference in the individual plots is not very well visible in the above slider plot, but we can access all the simulations created by `BatchStudy` (`batch_study.sims`) and pass it to `pybamm.plot_summary_variables` to plot the summary variables (more details on \"summary variables\" are available in the [`simulating-long-experiments`](https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/simulating-long-experiments.ipynb) notebook).\n", + "The difference in the individual plots is not very well visible in the above slider plot, but we can access all the simulations created by `BatchStudy` (`batch_study.sims`) and pass it to `pybamm.plot_summary_variables` to plot the summary variables (more details on \"summary variables\" are available in the [`simulating-long-experiments`](./simulations_and_experiments/simulating-long-experiments.ipynb) notebook).\n", "\n", "## Comparing summary variables" ] diff --git a/docs/source/examples/notebooks/change-settings.ipynb b/docs/source/examples/notebooks/change-settings.ipynb index 5b21f4dd6b..c54da8754c 100644 --- a/docs/source/examples/notebooks/change-settings.ipynb +++ b/docs/source/examples/notebooks/change-settings.ipynb @@ -7,7 +7,7 @@ "source": [ "# Changing settings when solving PyBaMM models\n", "\n", - "[This](https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/models/SPM.ipynb) example notebook showed how to run an SPM battery model, using the default parameters, discretisation and solvers that were defined for that particular model. Naturally we would like the ability to alter these options on a case by case basis, and this notebook gives an example of how to do this, again using the SPM model. In this notebook we explicitly handle all the stages of setting up, processing and solving the model in order to explain them in detail. However, it is often simpler in practice to use the `Simulation` class, which handles many of the stages automatically, as shown [here](https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/simulation-class.ipynb).\n", + "[This](./models/SPM.ipynb) example notebook showed how to run an SPM battery model, using the default parameters, discretisation and solvers that were defined for that particular model. Naturally we would like the ability to alter these options on a case by case basis, and this notebook gives an example of how to do this, again using the SPM model. In this notebook we explicitly handle all the stages of setting up, processing and solving the model in order to explain them in detail. However, it is often simpler in practice to use the `Simulation` class, which handles many of the stages automatically, as shown [here](./simulations_and_experiments/simulation-class.ipynb).\n", "\n", "\n", "### Table of Contents\n", diff --git a/docs/source/examples/notebooks/getting_started/tutorial-1-how-to-run-a-model.ipynb b/docs/source/examples/notebooks/getting_started/tutorial-1-how-to-run-a-model.ipynb index aa50147343..226e016300 100644 --- a/docs/source/examples/notebooks/getting_started/tutorial-1-how-to-run-a-model.ipynb +++ b/docs/source/examples/notebooks/getting_started/tutorial-1-how-to-run-a-model.ipynb @@ -205,7 +205,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.0" + "version": "3.11.3" } }, "nbformat": 4, diff --git a/docs/source/examples/notebooks/models/DFN.ipynb b/docs/source/examples/notebooks/models/DFN.ipynb index 682adc8c21..d77a0856e3 100644 --- a/docs/source/examples/notebooks/models/DFN.ipynb +++ b/docs/source/examples/notebooks/models/DFN.ipynb @@ -107,7 +107,7 @@ "source": [ "Below we show how to solve the DFN model, using the default geometry, mesh, parameters, discretisation and solver provided with PyBaMM. For a more detailed example, see the notebook on the [SPM](https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/models/SPM.ipynb).\n", "\n", - "In order to show off all the different points at which the process of setting up and solving a model in PyBaMM can be customised we explicitly handle the stages of choosing a geometry, setting parameters, discretising the model and solving the model. However, it is often simpler in practice to use the `Simulation` class, which handles many of the stages automatically, as shown [here](../simulation-class.ipynb).\n", + "In order to show off all the different points at which the process of setting up and solving a model in PyBaMM can be customised we explicitly handle the stages of choosing a geometry, setting parameters, discretising the model and solving the model. However, it is often simpler in practice to use the `Simulation` class, which handles many of the stages automatically, as shown [here](../simulations_and_experiments/simulation-class.ipynb).\n", "\n", "First we need to import pybamm, along with numpy which we will use in this notebook." ] diff --git a/docs/source/examples/notebooks/models/SPM.ipynb b/docs/source/examples/notebooks/models/SPM.ipynb index 91a09a11b6..e373bdafb5 100644 --- a/docs/source/examples/notebooks/models/SPM.ipynb +++ b/docs/source/examples/notebooks/models/SPM.ipynb @@ -54,7 +54,7 @@ "source": [ "## Example solving SPM using PyBaMM\n", "\n", - "Below we show how to solve the Single Particle Model, using the default geometry, mesh, parameters, discretisation and solver provided with PyBaMM. In this notebook we explicitly handle all the stages of setting up, processing and solving the model in order to explain them in detail. However, it is often simpler in practice to use the `Simulation` class, which handles many of the stages automatically, as shown [here](../simulation-class.ipynb).\n", + "Below we show how to solve the Single Particle Model, using the default geometry, mesh, parameters, discretisation and solver provided with PyBaMM. In this notebook we explicitly handle all the stages of setting up, processing and solving the model in order to explain them in detail. However, it is often simpler in practice to use the `Simulation` class, which handles many of the stages automatically, as shown [here](../simulations_and_experiments/simulation-class.ipynb).\n", "\n", "First we need to import `pybamm`, and then change our working directory to the root of the pybamm folder. " ] diff --git a/docs/source/examples/notebooks/callbacks.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/callbacks.ipynb similarity index 100% rename from docs/source/examples/notebooks/callbacks.ipynb rename to docs/source/examples/notebooks/simulations_and_experiments/callbacks.ipynb diff --git a/docs/source/examples/notebooks/simulations_and_experiments/custom-experiments.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/custom-experiments.ipynb new file mode 100644 index 0000000000..888c002c31 --- /dev/null +++ b/docs/source/examples/notebooks/simulations_and_experiments/custom-experiments.ipynb @@ -0,0 +1,235 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Custom experiments" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install \"pybamm[plot,cite]\" -q # install PyBaMM if it is not installed\n", + "import pybamm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Custom steps\n", + "\n", + "This feature is in development" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Custom termination\n", + "\n", + "Termination of a step can be specified using a few standard strings (e.g. \"4.2V\" for voltage, \"1 A\" for current, \"C/2\" for C-rate), or via a custom termination step. The custom termination step can be specified based on any variable in the model.\n", + "Below, we show an example where we specify a custom termination step based on keeping the anode potential above 0V, which is a common limit used to avoid lithium plating," + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set up model and parameters\n", + "model = pybamm.lithium_ion.DFN()\n", + "# add anode potential as a variable\n", + "# we use the potential at the separator interface since that is the minimum potential\n", + "# during charging (plating is most likely to occur first at the separator interface)\n", + "model.variables[\"Anode potential [V]\"] = model.variables[\n", + " \"Negative electrode surface potential difference at separator interface [V]\"\n", + "]\n", + "parameter_values = pybamm.ParameterValues(\"Chen2020\")\n", + "\n", + "\n", + "# Create a custom termination event for the anode potential cut-off at 0.02V\n", + "# We use 0.02V instead of 0V to give a safety factor\n", + "def anode_potential_cutoff(variables):\n", + " return variables[\"Anode potential [V]\"] - 0.02\n", + "\n", + "# The CustomTermination class takes a name and function\n", + "anode_potential_termination = pybamm.step.CustomTermination(\n", + " name=\"Anode potential cut-off [V]\", event_function=anode_potential_cutoff\n", + ")\n", + "\n", + "# Provide a list of termination events, each step will stop whenever the first\n", + "# termination event is reached\n", + "terminations = [anode_potential_termination, \"4.2V\"]\n", + "\n", + "# Set up multi-step CC experiment with the customer terminations followed\n", + "# by a voltage hold\n", + "experiment = pybamm.Experiment(\n", + " [\n", + " (\n", + " pybamm.step.c_rate(-1, termination=terminations),\n", + " pybamm.step.c_rate(-0.5, termination=terminations),\n", + " pybamm.step.c_rate(-0.25, termination=terminations),\n", + " \"Hold at 4.2V until C/50\",\n", + " )\n", + " ]\n", + ")\n", + "\n", + "# Set up simulation\n", + "sim = pybamm.Simulation(model, parameter_values=parameter_values, experiment=experiment)\n", + "\n", + "# for a charge we start as SOC 0\n", + "sim.solve(initial_soc=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7f0lEQVR4nO3dd3xT9f7H8Xfa0gFpyy6rWJANshGLC7WCoigOVFAKiAsBRdQLKMJFxYKCF+4FUZB1vfIDB3ivC8RKXeyloGxBECgFgRYKdOX8/jg2NHSXJidpX8/H4zySfPM953xCQr49n3yHzTAMQwAAAAAAAIAH+VkdAAAAAAAAAMofklIAAAAAAADwOJJSAAAAAAAA8DiSUgAAAAAAAPA4klIAAAAAAADwOJJSAAAAAAAA8DiSUgAAAAAAAPA4klIAAAAAAADwOJJSAAAAAAAA8DiSUoCX279/v2w2m2w2m9q2bVvs/bP3rVy5cqnHBgDlTVRUlKZOnWp1GHmivQCA0mWz2fTJJ59YHYbHDRgwQL169Spy/ez2Z8uWLfnWiYqKcrYzp06dKlY8Xbt2de5b0Dngm0hKoUxITEzUsGHD1LBhQwUFBSkyMlI9e/ZUfHy81aEVqDgN3ddff53n6/njjz8UGBioVq1a5bnfkSNHvPYCCgA8pWfPnrrlllvyfO7777+XzWbTzz//XOzjeuMFS872YtiwYWrevHme9Q4cOCB/f3/973//k0R7AcB7rV69Wv7+/rrtttusDsUS7vpBJL9k0rRp0zR//vxSP9/LL7+sI0eOKDw8XB9//LH8/f116NChPOs2btxYI0aMkCQtWbJE69atK/V44B1ISsHn7d+/Xx06dNA333yjN954Q1u3btWyZct0ww03aMiQISU+rmEYyszMzFWenp5+KeGWWLVq1VStWrVc5fPnz9d9992nlJQUrV27NtfztWrVUnh4uCdCBACvNWjQIK1YsUJ//PFHrufmzZunjh07qnXr1hZEVvpytheDBg3Sjh07tGrVqlz15s+fr5o1a6pHjx6SaC8AeK85c+Zo2LBh+u6773T48GGrwynzwsPD3dJrNjQ0VLVq1ZLNZtMdd9yhatWqacGCBbnqfffdd9qzZ48GDRokSapatapq1KhR6vHAO5CUgs978sknZbPZtG7dOt1zzz1q0qSJWrZsqREjRmjNmjWS8v4V4NSpU7LZbEpISJAkJSQkyGaz6csvv1SHDh0UFBSkH374QV27dtXQoUM1fPhwVa9eXd27d5ckbdu2TbfeeqvsdrsiIiLUr18/HT9+3Hn8rl276qmnntLf/vY3Va1aVbVq1dLf//535/NRUVGSpLvuuks2m835uDgMw9C8efPUr18/9e3bV3PmzCn2MQCgPLj99ttVo0aNXL/8njlzRh9++KHzD9+PP/5YLVu2VFBQkKKiojRlypR8j5nf9/jevXt15513KiIiQna7XZ06ddLXX3/tsu+RI0d02223KSQkRA0aNNDChQtz/RJ+6tQpPfLII6pRo4bCwsJ044036qeffirW627btq3at2+vuXPnupQbhqH58+erf//+CggIKNYxAcCTzpw5o8WLF2vw4MG67bbbcn2PZ/8NHx8fr44dO6pixYrq0qWLdu7c6VJv5syZuvzyyxUYGKimTZvqvffec3l+9+7duu666xQcHKwWLVpoxYoVuWI5ePCg7rvvPlWuXFlVq1bVnXfeqf379+cbe3Zsn3/+uVq3bq3g4GBdddVV2rZtm0u9gtqerl276vfff9czzzzjHMKW7YcfftC1116rkJAQRUZG6qmnnlJqaqrz+aioKL322mt6+OGHFRoaqvr162vWrFnO5xs0aCBJateunWw2m7p27Sop9/C9ZcuW6ZprrlHlypVVrVo13X777dq7d2++r7soKlSooH79+uXZI2vu3Lnq3LmzWrZseUnngG8gKQWfduLECS1btkxDhgxRpUqVcj1fkgz/qFGjNHHiRG3fvt35q/mCBQsUGBioH3/8UW+//bZOnTqlG2+8Ue3atdOGDRu0bNkyHT16VPfdd5/LsRYsWKBKlSpp7dq1ev311/Xyyy87G7j169dLMn+hP3LkiPNxcaxcuVJnz55VTEyMHnroIS1atMilIQIAmAICAhQbG6v58+fLMAxn+YcffqisrCz16dNHGzdu1H333acHHnhAW7du1d///ne99NJL+Q5hyO97/MyZM+rRo4fi4+O1efNm3XLLLerZs6cOHDjg3Dc2NlaHDx9WQkKCPv74Y82aNUtJSUkux+/du7eSkpL05ZdfauPGjWrfvr1uuukmnThxolivfdCgQfrggw9c2oeEhATt27dPDz/8cLGOBQCe9sEHH6hZs2Zq2rSpHnroIc2dO9flezzbiy++qClTpmjDhg0KCAhw+X5bunSpnn76aT377LPatm2bHn/8cQ0cOFArV66UJDkcDt19990KDAzU2rVr9fbbb2vkyJEux8/IyFD37t0VGhqq77//Xj/++KPsdrtuueWWQkdSPP/885oyZYrWr1+vGjVqqGfPnsrIyJCkQtueJUuWqF69es6hb0eOHJFk/gByyy236J577tHPP/+sxYsX64cfftDQoUNdzj1lyhR17NhRmzdv1pNPPqnBgwc7E3bZQ+K+/vprHTlyREuWLMkz/tTUVI0YMUIbNmxQfHy8/Pz8dNddd8nhcBT4ugszaNAg7d69W999952z7MyZM/roo4+cPxahHDAAH7Z27VpDkrFkyZIC6+3bt8+QZGzevNlZdvLkSUOSsXLlSsMwDGPlypWGJOOTTz5x2ff666832rVr51L2yiuvGN26dXMpO3jwoCHJ2Llzp3O/a665xqVOp06djJEjRzofSzKWLl1a7Niz9e3b1xg+fLjzcZs2bYx58+blqjdv3jwjPDy8wPMAQFm3fft2l+99wzCMa6+91njooYcMwzC/U2+++WaXfZ5//nmjRYsWzseXXXaZ8Y9//MP5uCjf44ZhGC1btjT+9a9/ucSxfv165/O7d+82JDmP/f333xthYWHG+fPnXY5z+eWXG++8806e58ivvTh58qQRHBzs0j7069cvVxtlGLQXALxPly5djKlTpxqGYRgZGRlG9erVXb7Hs/+G//rrr51ln3/+uSHJOHfunPMYjz76qMtxe/fubfTo0cMwDMNYvny5ERAQYBw6dMj5/JdffunyHf/ee+8ZTZs2NRwOh7NOWlqaERISYixfvjzP2LNjW7RokbPszz//NEJCQozFixcbhlGytscwDGPQoEHGY4895lL2/fffG35+fs7XfdlllznbOMMwDIfDYdSsWdOYOXOmYRj5txv9+/c37rzzzjxfk2EYxrFjxwxJxtatWws8Tk55vQbDMIyrrrrK6N+/v/PxnDlzjIoVKxopKSku9YpyDvgmekrBpxl5/EpyqTp27JirrEOHDi6Pf/rpJ61cuVJ2u925NWvWTJJcurJePD9J7dq1c/0SXlKnTp3SkiVL9NBDDznLHnroIYbwAUA+mjVrpi5dujiHsu3Zs0fff/+989fY7du36+qrr3bZ5+qrr9bu3buVlZVV5POcOXNGzz33nJo3b67KlSvLbrdr+/btzp5SO3fuVEBAgNq3b+/cp1GjRqpSpYrz8U8//aQzZ86oWrVqLm3Nvn37ij1konLlyrr77rudrzslJUUff/wxv0ID8Ho7d+7UunXr1KdPH0lmr9f7778/z793c/7dXbt2bUly/t2d3/f79u3bnc9HRkaqTp06zuejo6Nd6v/000/as2ePQkNDnd/JVatW1fnz5wv9Xs55rKpVq6pp06Yu5y5J2/PTTz9p/vz5Lm1E9+7d5XA4tG/fvjz/XWw2m2rVqlXs65Hdu3erT58+atiwocLCwpzD1XP2AC6phx9+WB999JFOnz4tyRy617t3b4WGhl7yseEbmEQAPq1x48ay2WzasWNHgfX8/Mz8a84kVnaX2YvlNQzw4rIzZ86oZ8+emjRpUq662Y2gZI6Vzslms11yN9dsCxcu1Pnz59W5c2dnmWEYcjgc2rVrl5o0aVIq5wGAsmTQoEEaNmyYZsyYoXnz5unyyy/X9ddfX6rneO6557RixQpNnjxZjRo1UkhIiO69995iLZRx5swZ1a5d2znvYU4lGZo+aNAg3XTTTdqzZ49Wrlwpf39/9e7du9jHAQBPmjNnjjIzM12SRYZhKCgoSNOnT3dZnCHn393Z8y6V1t/dkvm93KFDB73//vu5nrNiEu4zZ87o8ccf11NPPZXrufr16zvvl8b1SM+ePXXZZZdp9uzZqlOnjhwOh1q1alUqC0A98MADeuaZZ/TBBx/ouuuu048//qi4uLhLPi58B0kp+LSqVauqe/fumjFjhp566qlcyaNTp06pcuXKzobiyJEjateunSTlWvq0ONq3b6+PP/5YUVFRlzRBbIUKFYr163tOc+bM0bPPPqsBAwa4lD/55JOaO3euJk6cWOK4AKCsuu+++/T0009r4cKF+ve//63Bgwc7L16aN2+uH3/80aX+jz/+qCZNmsjf3z/P4+X1Pf7jjz9qwIABuuuuuySZFw45J8Jt2rSpMjMztXnzZmdP3D179ujkyZPOOu3bt1diYqICAgJKtBDGxW644QY1aNBA8+bN08qVK/XAAw/k+SMMAHiLzMxM/fvf/9aUKVPUrVs3l+d69eql//u//9MTTzxRpGNlf7/379/fWfbjjz+qRYsWzucPHjyoI0eOOH9gzl4wKVv79u21ePFi1axZU2FhYcV6LWvWrHEmik6ePKldu3apefPmLrHldHHbExgYmKutad++vX799Vc1atSoWLHkFBgYKEkFXo/8+eef2rlzp2bPnq1rr71WkjnBemkJDQ1V7969NXfuXO3du1dNmjRxngflA8P34PNmzJihrKwsXXnllfr444+1e/dubd++Xf/85z+dXWVDQkJ01VVXOScw//bbbzVmzJgSn3PIkCE6ceKE+vTpo/Xr12vv3r1avny5Bg4cWKwkU1RUlOLj45WYmOhyMVKYLVu2aNOmTXrkkUfUqlUrl61Pnz5asGCBMjMzS/LSAKBMs9vtuv/++zV69GgdOXLEJbH/7LPPKj4+Xq+88op27dqlBQsWaPr06XruuefyPV5e3+ONGzfWkiVLtGXLFv3000/q27evy6/SzZo1U0xMjB577DGtW7dOmzdv1mOPPaaQkBBngiwmJkbR0dHq1auXvvrqK+3fv1+rVq3Siy++qA0bNhT7ddtsNj388MOaOXOmVq9ezdA9AF7vs88+08mTJzVo0KBcf+/ec889xZqy4vnnn9f8+fM1c+ZM7d69W2+++aaWLFni/H6PiYlRkyZN1L9/f/3000/6/vvv9eKLL7oc48EHH1T16tV155136vvvv9e+ffuUkJCgp556Sn/88UeB53/55ZcVHx+vbdu2acCAAapevbpzdbuitD1RUVH67rvvdOjQIedq3yNHjtSqVas0dOhQbdmyRbt379Z///vfXBOdF6RmzZoKCQlxLtqUnJycq06VKlVUrVo1zZo1S3v27NE333yjESNGFPkcRTFo0CCtWrVKb7/9NgtwlEMkpeDzGjZsqE2bNumGG27Qs88+q1atWunmm29WfHy8Zs6c6aw3d+5cZWZmqkOHDho+fLheffXVEp+zTp06+vHHH5WVlaVu3brpiiuu0PDhw1W5cmXnUMGimDJlilasWKHIyEhnD66imDNnjlq0aOGcxyqnu+66S0lJSfriiy+KfDwAKE8GDRqkkydPqnv37i5DQtq3b68PPvhAixYtUqtWrTR27Fi9/PLLuXqk5pTX9/ibb76pKlWqqEuXLurZs6e6d+/uMn+UJP373/9WRESErrvuOt1111169NFHFRoaquDgYElmEumLL77Qddddp4EDB6pJkyZ64IEH9PvvvysiIqJEr3vAgAFKTk5Wy5YtXYZ+A4A3mjNnjmJiYlyG6GW75557tGHDBv38889FOlavXr00bdo0TZ48WS1bttQ777yjefPmqWvXrpLMqT6WLl2qc+fO6corr9QjjzyiCRMmuByjYsWK+u6771S/fn3dfffdat68uQYNGqTz588X2nNq4sSJevrpp9WhQwclJibq008/dfZSKkrb8/LLL2v//v26/PLLnSNAWrdurW+//Va7du3Stddeq3bt2mns2LEu7VphAgIC9M9//lPvvPOO6tSpozvvvDNXHT8/Py1atEgbN25Uq1at9Mwzz+iNN94o8jmK4pprrlHTpk2VkpKi2NjYUj02vJ/NcMdM0QBKzf79+9WgQQNt3rxZbdu2LdEx5s+fr+HDh+vUqVOlGhsAoHT88ccfioyM1Ndff62bbrqpRMegvQAA75KQkKAbbrhBJ0+eLNF8gGVJVFSUhg8fruHDh5do/9Jo4+Cd6CkF+IguXbqoS5cuxd7PbrcXebw9AMAzvvnmG/3vf//Tvn37tGrVKj3wwAOKiorSddddd8nHpr0AAHijkSNHym635zlMsCC33nqrWrZs6aaoYDUmOge8XL169bR7925JUlBQULH3z57QPb9JegEAnpeRkaEXXnhBv/32m0JDQ9WlSxe9//77uVZJKg7aCwCAt/r222+dq5+HhoYWa993331X586dk+S6siDKBobvAQAAAAAAwOMYvgcAAAAAAACPIykFAAAAAAAAjyMpBQAAAMCjvvvuO/Xs2VN16tSRzWbTJ598Uug+CQkJat++vYKCgtSoUSPNnz/f7XECANzLqyc6dzgcOnz4sEJDQ2Wz2awOBwDKNMMwdPr0adWpU0d+fr71mwXtBQB4Tmm0F6mpqWrTpo0efvhh3X333YXW37dvn2677TY98cQTev/99xUfH69HHnlEtWvXVvfu3Yt0TtoKAPCcorYVXj3R+R9//KHIyEirwwCAcuXgwYOqV6+e1WEUC+0FAHheabUXNptNS5cuVa9evfKtM3LkSH3++efatm2bs+yBBx7QqVOntGzZsiKdh7YCADyvsLbCq3tKZS8VefDgQYWFhVkcDQCUbSkpKYqMjCz2Mr3egPYCADzHivZi9erViomJcSnr3r27hg8fnu8+aWlpSktLcz7O/i2etgIA3K+obYVXJ6Wyu9UGBATQcACAh/jikAbaCwDwPE+2F4mJiYqIiHApi4iIUEpKis6dO6eQkJBc+8TFxWn8+PG5ymkrAMBzCmsrfGLSEC8eYQgA8CK0FwCAbKNHj1ZycrJzO3jwoCTaCgDwJh5JSs2YMUNRUVEKDg5W586dtW7dOk+cFgAAAEAZUKtWLR09etSl7OjRowoLC8uzl5QkBQUFKSwszGUDAHgXtyelFi9erBEjRmjcuHHatGmT2rRpo+7duyspKcndpwYAAABQBkRHRys+Pt6lbMWKFYqOjrYoIgBAaXB7UurNN9/Uo48+qoEDB6pFixZ6++23VbFiRc2dO9fdpwYAAADghc6cOaMtW7Zoy5YtkqR9+/Zpy5YtOnDggCRz6F1sbKyz/hNPPKHffvtNf/vb37Rjxw699dZb+uCDD/TMM89YET4AoJS4NSmVnp6ujRs3uqyU4efnp5iYGK1evdqdpwYAAADgpTZs2KB27dqpXbt2kqQRI0aoXbt2Gjt2rCTpyJEjzgSVJDVo0ECff/65VqxYoTZt2mjKlCl699131b17d0viBwCUDreuvnf8+HFlZWXluVLGjh07ctW/eNnWlJQUd4YHAAAAwAJdu3YtcMLx+fPn57nP5s2b3RgVAMDTvGr1vbi4OIWHhzu3yMhISb65PDkAwPNoLwAAhaGtAADv4dakVPXq1eXv75/nShm1atXKVT+/ZVsrVqzozjABAG4yceJE2Ww2DR8+PN86s2fP1rXXXqsqVaqoSpUqiomJKfEqrbQXAIDC0FYAgPdwa1IqMDBQHTp0cFkpw+FwKD4+Ps+VMli2FQDKjvXr1+udd95R69atC6yXkJCgPn36aOXKlVq9erUiIyPVrVs3HTp0yEORAgAAALCCW+eUksxJC/v376+OHTvqyiuv1NSpU5WamqqBAwe6+9QAAIucOXNGDz74oGbPnq1XX321wLrvv/++y+N3331XH3/8seLj411WXiqK1NRUhYaGOodmpKenKyMjQwEBAQoKCnKpJ0khISHy8zN/n8nIyFB6err8/f0VHBxcorpnz56VYRgKDg6Wv7+/JCkzM1NpaWny8/NTSEhIieqeO3dODodDQUFBCggwm+6srCydP3++WHVtNptLD4Hz588rKytLgYGBqlChQrHrOhwOnTt3TpJUqVIlZ920tDRlZmaqQoUKCgwMLHZdwzB09uxZSWaPhovfz+LULcp7Xxqfk7zez9L4nGS/n5f6Obn4/bzUz0l+7+elfk5yvp+X+jnJ7/0s6eeE74gL3xHZrxkAgEvl9jml7r//fk2ePFljx45V27ZttWXLFi1btizX5OcFyf5DBgBQSgxDSkqSfvxRmjdPGj1aeuihUjv8kCFDdNttt7msvlpUZ8+eVUZGhqpWrZpvnbS0NKWkpLhsklSnTh0dP37cWe+NN96Q3W7X0KFDXfavWbOm7Ha7y8pOM2bMkN1u16BBg1zqRkVFyW63a/v27c6y+fPny26364EHHnCp26JFC9ntdm3atMlZtnjxYtntdt1xxx0udTt16iS73a7vv//eWfbZZ5/Jbrfn+ne77rrrZLfbtXz5cmfZN998I7vdnqvn8a233iq73a6lS5c6y9asWSO73a42bdq41L3nnntkt9tdEoNbt26V3W5X48aNXer269dPdrtds2bNcpbt3btXdrtddevWdan7+OOPy263a9q0ac6yI0eOyG63q3Llyi51R4wYIbvdrtdee81ZlpycLLvdLrvdrszMTGf5iy++KLvdrhdffNFZlpmZ6aybnJzsLH/ttddkt9s1YsQIl/NVrlxZdrtdR44ccZZNmzZNdrtdjz/+uEvdunXrym63a+/evc6yWbNmyW63q1+/fi51GzduLLvdrq1btzrL3n//fdntdt1zzz0uddu0aSO73a41a9Y4y5YuXSq73a5bb73VpW50dLTsdru++eYbZ9ny5ctlt9t13XXXudSNiYmR3W7XZ5995iz7/vvvZbfb1alTJ5e6d9xxh+x2uxYvXuws27Rpk+x2u1q0aOFS94EHHpDdbneZeHr79u2y2+2KiopyqTto0CDZ7XbNmDHDWXbgwAHZ7XbVrFnTpe7QoUNlt9v1xhtvOMuOHz/ufD8lSX/+Kb36qkY2aSK73a7xTZtKMTFSTIzO3nijs+7ZG290lo9v2lR2u10jGzd2lumvfxu73a7j11/vLHujeXPzO6JhQ5e6NcPCzO+Ia691ls1o2dL8joiKcqkbVaWK+R3RpYuzbH7r1uZ3RGSkS90W1aqZ3xHR0c6yxW3bmt8R9eq51O301/fU91de6Sz7rEMH8zuidm2XutdFRJjfER07Osu+6djR/I6oWdOl7q116pjfEe3aOcvWdO5sfkdUr+5S95569czviDZtnGVbu3RRnTp15MvOlXCIOACg9Lm9p5Rk/tFx8QVBcTgcjlKMBgDKkcxMac8e6eefpe3bpd27pV27zC3HBXxpWrRokTZt2qT169eXaP+RI0eqTp06BSa04uLiNH78+JKGCMAXDBsmzZ0r/dUbSpK0f7+5XSwhIXfZwYPmdrEciWCnw4fN7WKrVuUuO3rU3C62dm3usuPHpRzTWDjl9f144kTedXMkuZ2Sk/Ou+9NPucvOnMm77rZt5pbTuXN5192+3dzKCMeff1odAgDgLzajoLVYLZaSkqLw8HAdPnxYtWvXtjocAPBux49LmzebCaitW83bX3+V0tLyrm+zSfXrS02aSE2aKCUyUuGjRik5ObnEc/odPHhQHTt21IoVK5xzSXXt2lVt27bV1KlTC91/4sSJev3115WQkFDgXFRpaWlKy/G6UlJSFBkZqT179qhhw4YMzWH4HsP3fHH4XmamjC++0NmZM6Xly1Up+0/Utm2VNnCgMkNDVSEgQIF/xWsYhs7+9T1QMSjownufmamMzEwF+Psr6K8YJCn1/Pli1w0JDLzw3mdmKj0zU/5+fgr+6/NX3Lpn09LM9z4wUP5/1c3MylJaRob5fpaw7rn0dPP9rFBBAX99TrIcDp1PTy9WXZvNpoo5/g+cT09XlsOhwIAAVcj+nDgcSkpOVp0hQy6pvbCC89ri/fdVu29fq8MBgDIt+zu3sLaCpBQA+KIzZ8xfz9evl9atM2/37cu7bsWK0hVXSC1bSk2bSo0bm4moyy+XclwoF7XhKMgnn3yiu+66y3nxLJkXujabTX5+fkpLS3N5LqfJkyfr1Vdf1ddff62OHTsW67y0F4AP27/f7BE1Z45rb6VbbpGee0668UYziQ6vURrthRWcbcWCBapdzDkLAQDFU9S2wiPD9wAAl+jIEenbb83txx+lX36R8hra3Lix1KaNmYRq3dq8bdBA8nP7FIKSpJtuusllTh1JGjhwoJo1a6aRI0fmm5B6/fXXNWHCBC1fvrzYCSkAPuj336WPPpI+/NB12Fv16tKAAdIjj5hJdMAdcsxVBwCwFkkpAPBGBw9eSEJ9+605F9TF6taVrrxS6tTJvO3QQbpoEmlPCw0NVatWrVzKKlWqpGrVqjnLY2NjVbduXcXFxUmSJk2apLFjx2rhwoWKiopSYmKiJLlOdgzAt2VlSRs2SCtWSJ9+avbwzGazmb2hHntMuvNOKcfwMcAtsrKsjgAA8BeSUgDgDTIyzB5Qn38uffGFORdUTjab1LatdP310nXXSVddJfnoMLUDBw44512RpJkzZyo9PV333nuvS71x48bp73//u4ejA4opJUV6913JbjeTKjBlZppz261ZY06c/c030smTF5632czvsvvuk+6+W6pVy7pYUf7QUwoAvAZJKQCwypEj0pdfmkmoFSvMi9tsfn5mz6frrze3a66xvBdUSSVctCrWxY/357WSFuDt0tOld96Rxo+X/vzTTLL06SOFhlodmeedPSvt2GEOK96yxewFtXGjuZJbTpUrmz2ibr5Z6tWLRBSsQ1IKALyGTySlcq7UAgA+7dChC/Oo/Pij63M1aki33irddpt50ValijUx+jDaC7idYZj/f194Qdq717U8I8O6uNzJMMzE28GD5oIK+/ebt7/9Jm3fbj7Oa92c8HBzaPG115rfaR07SgE+8acnyrhKfA4BwGvwjQwA7vbnn9L//Z+0aFHuRFTHjmYS6rbbzJ5RHpqQHEAJbNkiPfHEhYm5IyKkMWOkYcMsDavEzp+XEhPN7ciR3Pezb48eLTzhVqOG1KKF1KqVmYi68kpzlU++0+CN6CkFAF6DpBQAuENGhjk0b8ECc1LfnBd0V18t9e4t3XOPVK+edTECKJrUVHOY3ptvmhMk2+3S889LI0ZIISHel5RKSZEOHMidXLr4/qlTxTtujRrmap7ZW1SU1KyZmYyqUcMdrwRwD5JSAOA1fCIpde7cOYWFhVkdBgAUbv9+c56ZuXOlpKQL5e3bS/36mcmounUtC6+so71AqVu2TBo82Py/LZn/h6dNu7DQgBWreGVmSnv2mEPn9u2Tfv/djO/3382tOMmmoCBzbqfatc3bnPdzlkVESIGB7npFgEedO3dOtBQA4B18IinlcDisDgEA8udwSF99Jb31lvTZZxfmVomIkB56SOrfX7riCmtjLCdoL1BqUlKkp54yeztKUmSk+X/89ts9F0NGhpl8+uUXc0XO7NudOwsfTle1qlSnjmti6eJEU61a5uTjNptHXg7gLRxldf43APBBPpGUAgCvlJYm/fvf0uTJ0q5dF8pjYqQnn5R69mRSX8AXff+9FBtr9j7y85Oeflp6+WVz2F5ebDYzGf3TT9INNxT/fOnp0u7dromnX381v1fyu3iuWFFq3lxq1Ei67DJzKN1ll13Y8osVAMP3AMCLcLUEAMWVkmIO0fvHP8z5WSRzlakBA8xhPk2bWhoegBJKT5fGjZMmTTKTTA0aSO+9Z84Dlx9/f+mBB8zFDO69V1qzRmrcOO+6Z86Yyaddu1wTULt353+RbLebcza1aCG1bHnhfv36TCIOlBRJKQDwGiSlAKCoUlLMRNQ//iElJ5tldeuakx0/+qgUGmptfABKbs8e6f77pU2bzMcDBphzRxVljrJ33zX3X79euvlms5dktWpmEurYMbPH1a5d5uTi+QkNdU08Zd9GRjK8DihtVswFBwDIE0kpACjMuXPmXDJxcdKff5plzZtLf/ub1Lcvk/8Cvu7jj6WBA6XTp825mGbPlu6+u+j7V6xorrJ51VVmAmr69PzrVq9u9qS6uOdTvXoknwBPoacUAHgNklIAkJ+sLHMVvfHjpUOHzLKmTc25Ze69l6EzgK9LT5dGjpSmTjUfX3ONtGhRyVbIjIiQ1q6VFi82e0T9+afZ+6laNbO3U+PG5lalSqm+BAAlQFIKALwGSSkAyMsPP0jDhklbtpiP69eX/v53qV8/Ji8HyoKDB6X77jPngJKk55+XJkyQKlQo+TFr1jS/NwB4N5JSAOA1fOLKqlKlSlaHAKC8OHzYHJb3/vvm48qVzYmPBw+WgoIsDQ2Fo71AkSxbJj30kNmbqXJlacEC6Y47rI4KgIdUoqczAHgNvpEBQJIcDnNS46ZNzYSUzSY98og5OfHw4SSkgLIgK0saO1bq0cNMSHXoYE5sTkIKKF/oKQUAXsMnekoBgFvt3i09/LA5ZE+SOnc2Jyru2NHauACUnuPHzYUJVqwwHw8eLL35phQcbG1cADyP1fcAwGv4RE+p8+fPWx0CgLLI4TAnOG7TxkxI2e3SzJnSqlUkpHwU7QXytG6d1L69mZCqWNHsDfnWWySkgHKKtgIAvIdP9JTK4tcMAKXt99/NOWWye0fddJP07rtSVJSlYeHS0F7AhWFI77wjPf20udJekybSxx9LrVpZHRkAC2VlZFgdAgDgLz7RUwoAStVnn0nt2l3oHfX222YPChJSQNlx9qw0YIA5TC89XbrrLmn9ehJSABi+BwBexCd6SgFAqcjMlMaMkSZNMh936iQtXiw1aGBtXABK19690t13Sz//LPn5SRMnSs89Zy5gAAAkpQDAa5CUAlA+HDok9ekjff+9+XjYMOmNN1hVDyhrFi6UnnhCOn1aqlnTTDx37Wp1VAC8CcP3AMBrkJQCUPZt3CjdfruUmCiFhkpz5ki9e1sdFYDSlJIiDR0qvfee+fjqq82EVN261sYFwPtkZlodAQDgL8wpBaBs+/RT6brrzIRUq1ZmgoqEFFC2rFtnzhP33nvmcL2//11KSCAhBSBvJKUAwGuQlAJQdv3rX1KvXuaExzffbE5s3rix1VEBKC3p6dL48WavqN9+k+rXl779Vho3TgqgMziAfDCnFAB4DZ/4i61SpUpWhwDAl2RlSSNGSP/8p/n4kUekt96SKlSwNi64He1FObJli7m63k8/mY/vu0965x2pcmULgwLgC2gpAMB70FMKQNmSkSE99NCFhFRcnDRrFgkpoKxITzeH53XqZCakqlWT/u//pEWLSEgBKBqG7wGA1/CJnlIAUCRpadIDD0iffGIO3XnvPfMxgLJhzRrp8celn382H999t9kLMiLC2rgA+BaSUgDgNXyip9T58+etDgGAt0tPl+6910xIBQVJS5eSkCqHaC/KqJMnpSeekLp0MRNS1aqZK+t99BEJKQDFdj493eoQAAB/8YmkVBaTEQIoSGam1KeP9NlnUnCwueLe7bdbHRUkTZw4UTabTcOHDy+w3ocffqhmzZopODhYV1xxhb744osSnY/2oowxDOk//5GaNTPnizIMcx6pHTvMOaRsNqsjBOCDsugpBQBewyeSUgCQL4dD6t9fWrJECgyU/vtfc6U9WG79+vV655131Lp16wLrrVq1Sn369NGgQYO0efNm9erVS7169dK2bds8FCm80ubNUteuUr9+UlKS1Ly5lJAgzZsnVa9udXQAfBlJKQDwGiSlAPguw5CefVZauNCcQ+rjj6Vu3ayOCpLOnDmjBx98ULNnz1aVKlUKrDtt2jTdcsstev7559W8eXO98sorat++vaZPn+6haOFVkpKkRx+VOnSQvvtOCgmRXnvNXG3v+uutjg5AWUCvWgDwGiSlAPiuKVOkqVPN+//+N0P2vMiQIUN02223KSYmptC6q1evzlWve/fuWr16db77pKWlKSUlxWWDj0tPlyZPlho3lt5910w69+kj7dwpjR5t9oQEgNJATykA8BqsvgfAN334ofT88+b9yZPNi1d4hUWLFmnTpk1av359keonJiYq4qLJqiMiIpSYmJjvPnFxcRo/fvwlxQkvYRjmfHDPPivt3m2WdeggTZsmXX21tbEBKJvoKQUAXoOeUgB8z6ZN5jxSkvTUU+bFLLzCwYMH9fTTT+v9999XcHCw284zevRoJScnO7eDBw+67Vxwo7VrpRtvlO64w0xI1aolzZ0rrVtHQgqA+2RkWB0BAOAv9JQC4FsSE6U775TOnZNuucUcwgevsXHjRiUlJal9+/bOsqysLH333XeaPn260tLS5O/v77JPrVq1dPToUZeyo0ePqlatWvmeJygoSEFBQaUbPDxnxw7pxRfNBQokKShIGj7cLAsNtTQ0AOUAw/cAwGv4RE+pihUrWh0CAG+QmSk98ID0xx/mEvGLFpkTnMNr3HTTTdq6dau2bNni3Dp27KgHH3xQW7ZsyZWQkqTo6GjFx8e7lK1YsULR0dHFPj/thZc7dMicxLxVKzMh5ecnDRwo7dolTZxIQgqAR1Rk+B4AeA2fuJqz2WxWhwDAG4wbJ337rWS3S//9rxQebnVEuEhoaKhatWrlUlapUiVVq1bNWR4bG6u6desqLi5OkvT000/r+uuv15QpU3Tbbbdp0aJF2rBhg2bNmlXs89NeeKmTJ82k0z//KZ0/b5bdcYe5ql7LltbGBqDcsZGUAgCv4RM9pQBAX35pXsBK5spcTZpYGw9K7MCBAzpy5IjzcZcuXbRw4ULNmjVLbdq00UcffaRPPvkkV3ILPujcOWnSJKlhQ+n1182E1DXXSD/8YCaWSUgBsAJJKQDwGj6RlEpLS7M6BABWOnpUio017w8ZIt1/v7XxoFgSEhI0depUl8fz5893qdO7d2/t3LlTaWlp2rZtm3r06FGic9FeeInMTGn2bKlRI2nUKOnUKXPI3qefSt99xyTmACRJM2bMUFRUlIKDg9W5c2etW7euwPpTp05V06ZNFRISosjISD3zzDM6n937shjSmOgcALyGTySlMpmMECi/DMOcg+b4cal1ayY2R4FoLyxmGOZcUa1aSY89Jh0+LNWvLy1YIG3ZIt1+u8QQSwCSFi9erBEjRmjcuHHatGmT2rRpo+7duyspKSnP+gsXLtSoUaM0btw4bd++XXPmzNHixYv1wgsvFPvctBUA4D18IikFoBybN8/sXREYKL33nrlKFwDvk5AgRUdL99wj7dwpVasm/eMf5iTmsbFSHpPcAyi/3nzzTT366KMaOHCgWrRoobffflsVK1bU3Llz86y/atUqXX311erbt6+ioqLUrVs39enTp9DeVXkiKQUAXoOkFADvdfCg9PTT5v1XXjF7SgHlmcMhPfec9OyzVkdywU8/SbfeKt1wg7R2rVSxojRmjLR3rzR8OIlkALmkp6dr48aNiomJcZb5+fkpJiZGq1evznOfLl26aOPGjc4k1G+//aYvvviiZMO9HQ6zZycAwHJuW31vwoQJ+vzzz7VlyxYFBgbq1KlT7joVgLJq2DDpzBmpSxfvuggHrPLqqxeGsI4ZI1WpYl0s+/ZJL70kLVxoXtwFBJhD9l56SapVy7q4AHi948ePKysrSxERES7lERER2rFjR5779O3bV8ePH9c111wjwzCUmZmpJ554osDhe2lpaS5zDaakpFx40uGgBycAeAG39ZRKT09X7969NXjwYHedAkBZ9skn5upcAQHSrFn84QgsWyb9/e8XHjsc1sSRlCQ99ZTUtKn0/vtmQuqBB6Tt26UZM0hIAXCLhIQEvfbaa3rrrbe0adMmLVmyRJ9//rleeeWVfPeJi4tTeHi4c4uMjLzwJEP4AMAruK2n1Pjx4yUp1wpLAFCo06fNXlKS9PzzLBsPHDggPfigtcNNTp+W3nxTmjzZ7MEoSd26SXFxUvv21sUFwOdUr15d/v7+Onr0qEv50aNHVSufxPZLL72kfv366ZFHHpEkXXHFFUpNTdVjjz2mF198UX5+uX9rHz16tEaMGOF8nJKSciExlZnJ8GIA8ALMKQXA+8TFSX/8ITVoYA5RAsqzjAzp/vulEyekDh08f/70dOlf/5Iuv9zsqXXmjNSxo/T119Ly5SSkABRbYGCgOnTooPj4eGeZw+FQfHy8oqOj89zn7NmzuRJP/n/1ojbySdgHBQUpLCzMZXOipxQAeAW39ZQqifzGfVesWNGqkAB42oED5opdknnL/38UQ5lsL158UVqzRgoPlxYvlho18sx5HQ5p0SIzMbxvn1nWuLE0YYJ0772SzeaZOACUSSNGjFD//v3VsWNHXXnllZo6dapSU1M1cOBASVJsbKzq1q2ruLg4SVLPnj315ptvql27durcubP27Nmjl156ST179nQmp4qqomQm/AEAlitWUmrUqFGaNGlSgXW2b9+uZs2alSiYuLg457C/nGz84QuUHy++KJ0/L11/vXTHHVZHAx9T5tqLzz+X3njDvD93rtl70N0Mw+wBNXq0tGWLWVa7tjRunPTww1KFCu6PAUCZd//99+vYsWMaO3asEhMT1bZtWy1btsw5+fmBAwdcekaNGTNGNptNY8aM0aFDh1SjRg317NlTEyZMKPa5bRI9pQDAS9iM/Pq75uHYsWP6888/C6zTsGFDBQYGOh/Pnz9fw4cPL9Lqe3n1lIqMjFRycrJrd1sAZdPGjeawIElav/7CfXhESkqKwsPDffI715djz9cff0ht20p//ikNHWoOocu5WtTx41K1aqV7zrVrpVGjpIQE83FYmDRypPT001KlSqV7LgA+y1e/c51xSwo7eFCqV8/qkACgzCpqW1GsnlI1atRQjRo1Ljm4/AQFBSkojwkHcyaqAJRh2cs6P/QQCSmUSJlpLzIzpT59zIRU+/bm5OLutHOn+f9vyRLzcVCQmQgbPbr0E18AYLE0iZ5SAOAl3Dan1IEDB3TixAkdOHBAWVlZ2vLXEIBGjRrJbrcX61iZNBpA2bd+vfTVV2YvkJdftjoa+Kgy016MHSv98IMUGmrOI+WuFaIOHDD/v82fL2VlSX5+Uv/+5oTm9eu755wAYLFMiaQUAHgJtyWlxo4dqwULFjgft2vXTpK0cuVKde3a1V2nBeCrsueEePBBz8ybA3ir5cvNFSgl6d13XSc2t9nMYXSpqdKuXVI+q1QVKjFReu016Z13zNX1JHMOt9dek1q2vLT4AcAXkJQCAK/gV3iVkpk/f74Mw8i1kZACkMvWrdJ//2tecI8ebXU0gHUOH5b69TPvP/GEdN99rs/bbNJdd5n333uv+Mc/ccKcM+ryy805qtLTpRtvlFavNv8PkpACUF6QlAIAr+C2pBQAFFl2r5B77pFKuHon4POyssyegseOSa1bS2++mXe9/v3N20WLpKLOoXXihPTKK2YvxEmTpLNnpauukuLjze2qq0rnNQCAryApBQBegaQUAGslJUkffGDez57oHCiPXn3VXPWuUiXz/0RISN71brhBqltXOnlS+uyzgo+5e7c5YXlkpDlPVUqKmfD69FNp1SqzlxQAlEckpQDAK5CUAmCtDz80e4h07Cj9NfccUO58++2FCf7ffltq2jT/uv7+F4b45Zi70Skz01w0oFcv8zgzZpg9o9q2NXtXbd4s3X67ORQQAMorklIA4BXcNtE5ABTJwoXmbd++1sYBWOX4cfPz73CYQ/MeeqjwfWJjpYkTpS+/lObONSdD371bWrNG+t//zB6I2W67TXr2WalrVxJRAJCNpBQAeAWfSEqF5DeEAYBv27fPHEJks0kPPGB1NCgDfK69MAxpwABzgvOmTaXp04u2X/Pm0pVXSuvWSYMG5X6+WjXp/vulYcOYpw0ALhIikZQCAC/hE0kpPz9GGQJl0v/9n3l7441S7drWxoIywefai2nTpM8/l4KCpMWLJbu96PsuWCC99Zb0yy/S3r3mJOadOpn/n266SapQwX1xA4AP85NISgGAl/CJpBRgmUOHpNOnS+dYpTFsprSG3nhLLO+/b94ydA/l0YYN0t/+Zt5/802pTZvi7d+smfTPf5Z+XABQHmRkWB0BAEA+kpRKT0+3OgSURx9+KN13n9VRlH2BgdLdd1sdBcoIn2kvUlLMIasZGdJdd0mDB1sdEQCUG+kSPaUAwEv4RFIqg18yYIWffzZvAwPNJdpLm2GU/jHddVx3xWqzSUOGSJUru+f4KHd8or0wDOmJJ8whd/XrS3PmMAE5AHhQhkRSCgC8hE8kpQBLPf44Q2QAlJ5588z51Pz9zdsqVayOCADKH5JSAOAVfGxGWAAAfNj27dLQoeb9V16RunSxNh4AKK9ISgGAVyApBQAoNTNnzlTr1q0VFhamsLAwRUdH68svvyxwn6lTp6pp06YKCQlRZGSknnnmGZ0/f95DEXvQuXPS/febtzEx0siRVkcEAOUXSSkA8AoM3wMAlJp69epp4sSJaty4sQzD0IIFC3TnnXdq8+bNatmyZa76Cxcu1KhRozR37lx16dJFu3bt0oABA2Sz2fTmm29a8ArcaMQIaetWqWZN6b33JD9+FwIAy5CUAgCvQFIKAFBqevbs6fJ4woQJmjlzptasWZNnUmrVqlW6+uqr1bdvX0lSVFSU+vTpo7Vr13okXo/56CPp7bfN+//5j1SrlrXxAEB5R1IKALwCP9MCANwiKytLixYtUmpqqqKjo/Os06VLF23cuFHr1q2TJP3222/64osv1KNHD0+G6l7790uPPGLeHzVKuvlmS8MBAIikFAB4CZ/oKRUSEmJ1CACAItq6dauio6N1/vx52e12LV26VC1atMizbt++fXX8+HFdc801MgxDmZmZeuKJJ/TCCy8UeI60tDSlpaU5H6ekpEjywvYiI0Pq00dKTpaio6WXX7Y6IgAo90IkklIA4CV8oqeUH/NuAIDPaNq0qbZs2aK1a9dq8ODB6t+/v3799dc86yYkJOi1117TW2+9pU2bNmnJkiX6/PPP9corrxR4jri4OIWHhzu3yMhISV7YXrz0krRmjVS5srRwoVShgtURAUC55yeRlAIAL+ETPaUAAL4jMDBQjRo1kiR16NBB69ev17Rp0/TOO+/kqvvSSy+pX79+euSv4W1XXHGFUlNT9dhjj+nFF1/MN8k0evRojRgxwvk4JSXFmZjyGsuXS5MmmffnzJGioiwNBwCQA0kpAPAKPpGUSk9PtzoEAEAJORwOl6F2OZ09ezZX4snf31+SZBhGvscMCgpSUFBQrnKvaS+OHJH69TPvP/mkdPfd1sYDAHBKl0hKAYCX8ImkVEZGhtUhAACKYPTo0br11ltVv359nT59WgsXLlRCQoKWL18uSYqNjVXdunUVFxcnyVyt780331S7du3UuXNn7dmzRy+99JJ69uzpTE4Vh1e0Fw6HmZA6dkxq3VqaMsXqiAAAOWRI5px/AADL+URSCgDgG5KSkhQbG6sjR44oPDxcrVu31vLly3XzXyvOHThwwKVn1JgxY2Sz2TRmzBgdOnRINWrUUM+ePTVhwgSrXsKlmzhRio+XKlaUFi+WgoOtjggAcDF6SgGAVyApBQAoNXPmzCnw+YSEBJfHAQEBGjdunMaNG+fGqDzoxx+lsWPN+zNmSM2aWRsPACBvJKUAwCt42TJFAAD4qD//lPr2lbKypAcflPr3tzoiAEB+SEoBgFcgKQUAwKXKnkfqwAGpcWNp5kzJZrM6KgBAfkhKAYBXICkFAMCleu016csvzfmjPvpICg21OiIAQEFISgGAVyApBQDApfj66wvzSM2caa64BwDwbiSlAMAr+ERSKpiViwAAReDx9uLQIXMeKcOQBg2SBgzw7PkBAMUWLJGUAgAv4RNJKX9/f6tDAAD4AI+2FxkZ0v33S8eOSW3aSP/6l+fODQAoMX+JpBQAeAmfSEoBAOB1nn1W+vFHKSzMnEcqJMTqiAAARUVSCgC8gk8kpdLT060OAQDgAzzWXsyceaFn1Pz5UqNGnjkvAOCSpUskpQDAS/hEUiojI8PqEAAAPsAj7cVXX0nDhpn3J0yQ7rrL/ecEAJSaDImkFAB4CZ9ISgEA4BV+/VXq3VvKypL69ZNGj7Y6IgBASZCUAgCvQFIKAICiOHZMuv12KSVFuuYaafZsyWazOioAQEkwEgMAvAJJKQAACpOWZg7T27dPathQWrpUCgqyOioAQEnRUwoAvAJJKQAACmIY0qOPmivthYdLn30mVa9udVQAgEtBUgoAvAJJKQAAChIXJ733nuTvL334odS8udURAQAuFUkpAPAKJKUAAMjPkiXSiy+a96dPl26+2dp4AAClg6QUAHgFn0hKBQcHWx0CAMAHlGp78euvUv/+5v2nnpKeeKL0jg0AsEywRFIKALyETySl/P39rQ4BAOADSq29SE42JzY/c0bq2lWaMqV0jgsAsJy/RFIKALyETySlAADwqMcfl3btkurVkxYvlgICrI4IAFCaSEoBgFfwiaRURkaG1SEAAHxAqbQXy5ebiSh/f+njj6WaNS/9mAAAr5EhkZQCAC/hE0mp9PR0q0MAAPiAS24vzp+Xhg417w8bJl155aUHBQDwKukSSSkA8BI+kZQCAMAjXn9d2rNHql1bGj/e6mgAAO5CUgoAvAJJKQAAJOn4cSkuzrz/j39IYWHWxgMAcB+SUgDgFUhKAQAgSfPnm8P32reX7rvP6mgAAO5EUgoAvAJJKQAAHA7pnXfM+088Idls1sYDAOXAjBkzFBUVpeDgYHXu3Fnr1q0rsP6pU6c0ZMgQ1a5dW0FBQWrSpIm++OKLkp2chZQAwCu4LSm1f/9+DRo0SA0aNFBISIguv/xyjRs3jknLAQDeZ+VKcy6p0FCpTx+rowGAMm/x4sUaMWKExo0bp02bNqlNmzbq3r27kpKS8qyfnp6um2++Wfv379dHH32knTt3avbs2apbt27JAqCnFAB4hQB3HXjHjh1yOBx655131KhRI23btk2PPvqoUlNTNXnyZHedFgCA4svuJfXQQ5Ldbm0sAFAOvPnmm3r00Uc1cOBASdLbb7+tzz//XHPnztWoUaNy1Z87d65OnDihVatWqUKFCpKkqKiokgdAUgoAvILbekrdcsstmjdvnrp166aGDRvqjjvu0HPPPaclS5YU+1hBQUFuiBAAUNpmzpyp1q1bKywsTGFhYYqOjtaXX35Z4D6lORyjRO3F0aPS0qXm/ccfL9F5AQBFl56ero0bNyomJsZZ5ufnp5iYGK1evTrPff73v/8pOjpaQ4YMUUREhFq1aqXXXntNWVlZ+Z4nLS1NKSkpLpskBUkkpQDAS7itp1RekpOTVbVq1WLvFxDg0TABACVUr149TZw4UY0bN5ZhGFqwYIHuvPNObd68WS1btsxVP3s4Rs2aNfXRRx+pbt26+v3331W5cuUSnb9E7cXHH5sXJ1deKbVpU6LzAgCK7vjx48rKylJERIRLeUREhHbs2JHnPr/99pu++eYbPfjgg/riiy+0Z88ePfnkk8rIyNC4cePy3CcuLk7jx4/PVR4gkZQCAC/hsWzPnj179K9//avAoXtpaWlKS0tzPs7+NQMA4Bt69uzp8njChAmaOXOm1qxZk2dSqtSHY5TE8uXmba9enj0vAKDIHA6HatasqVmzZsnf318dOnTQoUOH9MYbb+SblBo9erRGjBjhfJySkqLIyEjzAUkpAPAKxR6+N2rUKNlstgK3i3/hOHTokG655Rb17t1bjz76aL7HjouLU3h4uHPLbjQyWB0DAHxOVlaWFi1apNTUVEVHR+dZpyTDMaT8h2QUu71IT5e++ca837178fYFAJRI9erV5e/vr6NHj7qUHz16VLVq1cpzn9q1a6tJkyby9/d3ljVv3lyJiYn5LqQUFBTkHE6evUlShiRlZUmGUSqvBwBQcsVOSj377LPavn17gVvDhg2d9Q8fPqwbbrhBXbp00axZswo89ujRo5WcnOzcDh48KEms2AcAPmTr1q2y2+0KCgrSE088oaVLl6pFixZ51v3tt9/00UcfKSsrS1988YVeeuklTZkyRa+++mqB58jvR4xitxerV0tnzkg1akht2xZvXwBAiQQGBqpDhw6Kj493ljkcDsXHx+f7I8bVV1+tPXv2yOFwOMt27dql2rVrKzAwsFjnd7YUhfwAAgBwv2IP36tRo4Zq1KhRpLqHDh3SDTfcoA4dOmjevHny8ys4BxYUFMSk5gDg45o2baotW7YoOTlZH330kfr3769vv/02z8RUSYZjSIUMySiO7KF7N98sFdJGAQBKz4gRI9S/f3917NhRV155paZOnarU1FTnanyxsbGqW7eu4uLiJEmDBw/W9OnT9fTTT2vYsGHavXu3XnvtNT311FMlDyIzU2LuWgCwlNu+hQ8dOqSuXbvqsssu0+TJk3Xs2DHnc/l1ywUA+L7AwEA1atRIktShQwetX79e06ZN0zvvvJOrbu3atVWhQoV8h2Pk9+t3qf2IkZ2UYugeAHjU/fffr2PHjmns2LFKTExU27ZttWzZMufk5wcOHHD5QTsyMlLLly/XM888o9atW6tu3bp6+umnNXLkyJIHwbxSAGA5tyWlVqxYoT179mjPnj2qV6+ey3MG47cBoNxwOBwui1jkdPXVV2vhwoVyOBzOi4+SDscotqQkadMm8363bu49FwAgl6FDh2ro0KF5PpeQkJCrLDo6WmvWrCm9AEhKAYDl3DZWYcCAATIMI88NAFA2jR49Wt99953279+vrVu3avTo0UpISNCDDz4oyRyOMXr0aGf9wYMH68SJE3r66ae1a9cuff7553rttdc0ZMgQ9wf79dfmbZs2Ej14AaD8ISkFAJZjEDUAoNQkJSUpNjZWR44cUXh4uFq3bq3ly5fr5ptvluSh4RhFlZ2UYugeAJRPJKUAwHIkpQAApWbOnDkFPu+R4RhF9cMP5m3Xrp4/NwDAOgEBZkIqI8PqSACg3POJpYZYkQ8AUBRFbi+OHZN27zbvX3WV+wICAHidoOwV9+gpBQCW84mkVABLtQIAiqDI7cWqVeZtixZSlSruCwgA4HUCKlQw75CUAgDL+URSCgCAUpWdlLr6amvjAAB4Hj2lAMBr+ERSKpMGAwBQBEVuL3780bzt0sV9wQAAvFJm9oIbXGMAgOV8IimVlpZmdQgAAB9QpPYiLU3asMG8T1IKAMqdNHpKAYDX8ImkFAAApWbzZjMxVb261Lix1dEAADyNpBQAeA2SUgCA8iXn0D2bzdpYAACeR1IKALwGSSkAQPmSPck5Q/cAoHzy9zdvSUoBgOVISgEAyg/DICkFAOUdPaUAwGuQlAIAlB8HDkiJieYFSceOVkcDALACPaUAwGuQlAIAlB9r1pi3bdtKISGWhgIAsAg9pQDAa/hEUiowMNDqEAAAPqDQ9iI7KXXVVe4PBgDglQIrVDDvkJQCAMv5RFKqQnbDAQBAAQptL0hKAUC552wrMjKsDQQA4BtJKQAALllamrRpk3mfpBQAlF8M3wMAr+ETSalMGgwAQBEU2F5s2SKlp0vVq0sNG3osJgCAd8n0++sSiGsMALCcTySl0tLSrA4BAOADCmwvcg7ds9k8ExAAwOukkZQCAK/hE0kpAAAuGfNJAQAkhu8BgBchKQUAKB9ISgEAJMnf37wlKQUAliMpBQAo+xITpf37zWF7nTpZHQ0AwErZq++RlAIAywVYHQD+snmzNHCglJJidSTIduKE1REAKC1r15q3LVtKYWHWxgIAsBbD9wDAa5CU8haffCL99JPVUSAvTZpYHQGAS8XQPQBANpJSAOA1SEp5C8Mwb++9V3ruOWtjwQV2u9SihdVRALhUJKUAANmYUwoAvIZPJKUCAwOtDsFzatWSOne2OgoA8El5theZmdL69eZ9klIAUO452wqSUgBgOZ+Y6LxC9mSEAAAUIM/24pdfpNRUcy6p5s09HxQAwKtUICkFAF7DJ5JSAACUWPbQvSuvlPxo9gCg3GNOKQDwGj7x13lWVpbVIQAAfECe7QXzSQEAcsiy2cw7GRnWBgIA8I2k1Pnz560OAQBQBDNnzlTr1q0VFhamsLAwRUdH68svvyzSvosWLZLNZlOvXr1KfP482wuSUgCAHJwtBUkpALCcTySlAAC+oV69epo4caI2btyoDRs26MYbb9Sdd96pX375pcD99u/fr+eee07XXntt6QZ08qS0Y4d5n0UkAACSFBpq3p4+bW0cAACSUgCA0tOzZ0/16NFDjRs3VpMmTTRhwgTZ7Xatye6tlIesrCw9+OCDGj9+vBo2bFi6Aa1bZ942aiRVr166xwYA+KbKlc3bEycsDQMAQFIKAOAmWVlZWrRokVJTUxUdHZ1vvZdfflk1a9bUoEGDinzstLQ0paSkuGx5yk5K0UsKAJCNpBQAeI0AqwMAAJQtW7duVXR0tM6fPy+73a6lS5eqRYsWedb94YcfNGfOHG3ZsqVY54iLi9P48eMLr7htm3nbpk2xjg8AKMOyk1InT1oaBgCAnlIAgFLWtGlTbdmyRWvXrtXgwYPVv39//frrr7nqnT59Wv369dPs2bNVvZhD60aPHq3k5GTndvDgwbwrZs9l1bJlcV8GAKCsoqcUAHgNekoBAEpVYGCgGjVqJEnq0KGD1q9fr2nTpumdd95xqbd3717t379fPXv2dJY5HA5JUkBAgHbu3KnLL788z3MEBQUpKCio4EDS06WdO837rVqV8NUAAMocklIA4DV8IilVoUIFq0MAAJSQw+FQWlparvJmzZpp69atLmVjxozR6dOnNW3aNEVGRhb7XC7txe7dUmamucpSCY4FACibKtSoYd45fVrKyJC41gAAy/hEUiowMNDqEAAARTB69Gjdeuutql+/vk6fPq2FCxcqISFBy5cvlyTFxsaqbt26iouLU3BwsFpd1IOp8l+/Xl9cXlQu7UX20L0WLSSbrUTHAwCUPYHZSSlJOnVKyvkYAOBRPpGUAgD4hqSkJMXGxurIkSMKDw9X69attXz5ct18882SpAMHDsjPz0PTGWYnpRi6BwDIyd9fCg+XkpPNIXwkpQDAMj6RlMrKyrI6BABAEcyZM6fA5xMSEgp8fv78+Zd0fpf2InvlPSY5BwDkkJWVJVWtaialWIEPACzlE6vvnT9/3uoQAAA+wKW9YOU9AEAezp8/L1WpYj5gsnMAsJRPJKUAACiW8+fNic4lhu8BAHKrWtW8JSkFAJYiKQUAKHt27pQcDnPZ79q1rY4GAOBtspNSDN8DAEuRlAIAlD05Jzln5T0AwMUYvgcAXoGkFACg7GGScwBAQRi+BwBegaQUAKDsYZJzAEBBSEoBgFcgKQUAKHt+/928bdTI2jgAAN4pe/gec0oBgKXcmpS64447VL9+fQUHB6t27drq16+fDh8+XOzjVKhQwQ3RAQDKGmd7ceSIecsk5wCAi1SoUIGeUgDgJdyalLrhhhv0wQcfaOfOnfr444+1d+9e3XvvvcU+TmBgoBuiAwCUNYGBgVJmpnTsmFlAUgoAvNqMGTMUFRWl4OBgde7cWevWrSvSfosWLZLNZlOvXr2Kfc7AwECSUgDgJdyalHrmmWd01VVX6bLLLlOXLl00atQorVmzRhkZGe48LQCgPDt6VDIMyd9fqlHD6mgAAPlYvHixRowYoXHjxmnTpk1q06aNunfvrqSkpAL3279/v5577jlde+21JT85w/cAwCt4bE6pEydO6P3331eXLl2KPRzP4XC4KSoAQFnicDikxETzQUSE5MfUiQDgrd588009+uijGjhwoFq0aKG3335bFStW1Ny5c/PdJysrSw8++KDGjx+vhg0blui8DofDtaeUYZToOACAS+f2v9ZHjhypSpUqqVq1ajpw4ID++9//5ls3LS1NKSkpLpsknTt3zt1hAgDKgHPnzl2YT6pWLWuDAQDkKz09XRs3blRMTIyzzM/PTzExMVq9enW++7388suqWbOmBg0aVOJznzt37kJSKjNTOnOmxMcCAFyaYielRo0aJZvNVuC2Y8cOZ/3nn39emzdv1ldffSV/f3/FxsbKyOfXiLi4OIWHhzu3yMjIkr8yAED5xCTnAOD1jh8/rqysLEVERLiUR0REKDG7x+tFfvjhB82ZM0ezZ88u0jny+8FbkhQSImXPW8sQPgCwTEBxd3j22Wc1YMCAAuvk7EpbvXp1Va9eXU2aNFHz5s0VGRmpNWvWKDo6Otd+o0eP1ogRI5yPU1JSSEwBAIqHpBQAlDmnT59Wv379NHv2bFWvXr1I+8TFxWn8+PF5P2mzmb2lEhPNIXz165ditACAoip2UqpGjRqqUcKJY7PnhkpLS8vz+aCgIAUFBZXo2AAASLowpxRJKQDwWtWrV5e/v7+OHj3qUn706FHVymP49d69e7V//3717NnTWZZ9bREQEKCdO3fq8ssvd9mn0B+8cyalAACWKHZSqqjWrl2r9evX65prrlGVKlW0d+9evfTSS7r88svz7CUFAECpYE4pAPB6gYGB6tChg+Lj49WrVy9JZpIpPj5eQ4cOzVW/WbNm2rp1q0vZmDFjdPr0aU2bNi3P0RWF/uCdPa8Uw/cAwDJuS0pVrFhRS5Ys0bhx45SamqratWvrlltu0ZgxY+gNBQBwH4bvAYBPGDFihPr376+OHTvqyiuv1NSpU5WamqqBAwdKkmJjY1W3bl3FxcUpODhYrVq1ctm/cuXKkpSrvMiqVDFv6SkFAJZxW1Lqiiuu0DfffOOuwwMAkDeSUgDgE+6//34dO3ZMY8eOVWJiotq2batly5Y5Jz8/cOCA/PzcuFh4dk8pklIAYBm3JaVKU4UKFawOAQDgAyoEBDCnFAD4kKFDh+Y5XE+SEhISCtx3/vz5JTqn89qC4XsAYDk3/vRQegKzl2sFAKAAgampUnq6+YA5pQAAeXBeWzB8DwAs5xNJKQAAiiR7FacqVSTmLwQAFIThewBgOZ9ISmUv9woAQEEchw+bdxi6BwDIh/PagqQUAFjOJ5JS586dszoEAIAPOPfHH+YdklIAgHw4ry0YvgcAlvOJpBQAAEWSlGTekpQCABSmbl3z9uBBa+MAgHKMpBQAoOzITkoxyTkAoDBRUebtiRNSSoqloQBAeUVSCgBQambOnKnWrVsrLCxMYWFhio6O1pdffplv/dmzZ+vaa69VlSpVVKVKFcXExGjdunUlDyB7onN6SgEAChMaKlWrZt7fv9/SUACgvCIpBQAoNfXq1dPEiRO1ceNGbdiwQTfeeKPuvPNO/fLLL3nWT0hIUJ8+fbRy5UqtXr1akZGR6tatmw4dOlSyAEhKAQCKI7u31L59loYBAOUVSSkAQKnp2bOnevToocaNG6tJkyaaMGGC7Ha71qxZk2f9999/X08++aTatm2rZs2a6d1335XD4VB8fHzJAmBOKQBAcTRoYN7SUwoALBFgdQAAgLIpKytLH374oVJTUxUdHV2kfc6ePauMjAxVzV6mu7iYUwoAUBzZSSl6SgGAJXwiKRUQ4BNhAgAkbd26VdHR0Tp//rzsdruWLl2qFi1aFGnfkSNHqk6dOoqJiSmwXlpamtLS0pyPU/6aoDbgzBmzICKiZMEDAMo8l2uL7OF79JQCAEv4xPC9oKAgq0MAABRR06ZNtWXLFq1du1aDBw9W//799euvvxa638SJE7Vo0SItXbpUwcHBBdaNi4tTeHi4c4uMjJQkOVuLSpUu8VUAAMoql2sLekoBgKV8IikFAPAdgYGBatSokTp06KC4uDi1adNG06ZNK3CfyZMna+LEifrqq6/UunXrQs8xevRoJScnO7eDBw+6VqhQ4VJeAgCgvMg50blhWBoKAJRHPjEuzqCBAACf5XA4XIbaXez111/XhAkTtHz5cnXs2LFIxwwKCsqzF60hmQkpm62E0QIAyjqXa4vspNTp09LJk1JJ5zQEAJSITySlzp49q/DwcKvDAAAUYvTo0br11ltVv359nT59WgsXLlRCQoKWL18uSYqNjVXdunUVFxcnSZo0aZLGjh2rhQsXKioqSomJiZIku90uu91e7POflRQeGFhqrwcAUPa4XFuEhJjzEB49avaWIikFAB7F8D0AQKlJSkpSbGysmjZtqptuuknr16/X8uXLdfPNN0uSDhw4oCNHjjjrz5w5U+np6br33ntVu3Zt5zZ58uSSB0FSCgBQHNnzSjHZOQB4nE/0lAIA+IY5c+YU+HxCQoLL4/3uuAAgKQUAKI4GDaQ1a5jsHAAsQE8pAEDZQlIKAFAc2fNK0VMKADyOpBQAoGwhKQUAKI7s4Xv0lAIAjyMpBQAoW0hKAQCKI7unFEkpAPA4klIAgLIlKMjqCAAAviTnROeGYWkoAFDe+ERSKiCA+dgBAIULkOgpBQAoUK5ri/r1JZtNOndOOnrUmqAAoJzyiaRUEL96AwCKIEgiKQUAKFCua4vAwAu9pbZv93xAAFCO+URSCgCAIiMpBQAorpYtzdtffrE2DgAoZ3wiKWUwthsAUASGRFIKAFCgPK8tspNSv/7q2WAAoJzziaTU2bNnrQ4BAOADzkokpQAABcrz2qJFC/OWnlIA4FE+kZQCAKDISEoBAIor5/A9RmkAgMeQlAIAlC0kpQAAxdWsmbkC359/SklJVkcDAOUGSSkAQNlCUgoAUFwVK0oNG5r3GcIHAB5DUgoAULaQlAIAlASTnQOAx5GUAgCULSSlAAAlwWTnAOBxJKUAAGULSSkAQEnknOwcAOARPpGU8vf3tzoEAIAP8JdISgEACpTvtQUr8AGAx/lEUio4ONjqEAAAPiBYkoKCrA4DAODF8r22aNZM8vOTTpyQjh71bFAAUE75RFIKAIAio6cUAKAkQkIurMDHZOcA4BEkpQAAZQtJKQBASTGvFAB4lE8kpVJTU60OAQDgA1IlklIAgAIVeG3BCnwA4FE+kZQCAKDISEoBAEqKnlIA4FEkpQAAZQtJKQBASbECHwB4FEkpAEDZQlIKAFBS2SvwnTwpJSZaHQ0AlHkkpQAAZQtJKQBASQUHS5dfbt5nBT4AcDuSUgCAsoWkFADgUjDZOQB4DEkpAEDZQlIKAHApmOwcADzGJ5JS/v7+VocAACiCmTNnqnXr1goLC1NYWJiio6P15ZdfFrjPhx9+qGbNmik4OFhXXHGFvvjiixKf318iKQUAKFCh1xYkpQDAY3wiKRUcHGx1CACAIqhXr54mTpyojRs3asOGDbrxxht155136pd8/rBftWqV+vTpo0GDBmnz5s3q1auXevXqpW3btpXo/MESSSkAQIEKvbZgBT4A8BiPJKXS0tLUtm1b2Ww2bdmyxROnBABYoGfPnurRo4caN26sJk2aaMKECbLb7VqzZk2e9adNm6ZbbrlFzz//vJo3b65XXnlF7du31/Tp00seRFBQyfcFAKBpU3MFvlOnWIEPANzMI0mpv/3tb6pTp44nTgUA8BJZWVlatGiRUlNTFR0dnWed1atXKyYmxqWse/fuWr16dclPTE8pAMClyLkCH0P4AMCt3J6U+vLLL/XVV19p8uTJJT5GampqKUYEAHCnrVu3ym63KygoSE888YSWLl2qFtkrGV0kMTFRERERLmURERFKLOSX6bS0NKWkpLhskpQqkZQCABSoSNcWzCsFAB7h1qTU0aNH9eijj+q9995TxYoV3XkqAICXaNq0qbZs2aK1a9dq8ODB6t+/v3799ddSPUdcXJzCw8OdW2Rk5IUnSUoBAC4VSSkA8Ai3JaUMw9CAAQP0xBNPqGPHjkXaJ79fvgEAviMwMFCNGjVShw4dFBcXpzZt2mjatGl51q1Vq5aOHj3qUnb06FHVqlWrwHOMHj1aycnJzu3gwYM5A7jk1wAA8IwZM2YoKipKwcHB6ty5s9atW5dv3dmzZ+vaa69VlSpVVKVKFcXExBRY/5K0amXekpQCALcqdlJq1KhRstlsBW47duzQv/71L50+fVqjR48u8rEL/OUbAOCTHA6H0tLS8nwuOjpa8fHxLmUrVqzIdw6qbEFBQQoLC3PZnEhKAYBPWLx4sUaMGKFx48Zp06ZNatOmjbp3766kpKQ86yckJKhPnz5auXKlVq9ercjISHXr1k2HDh0q/eCyk1LbtrECHwC4kc0wivcte+zYMf35558F1mnYsKHuu+8+ffrpp7LZbM7yrKws+fv768EHH9SCBQty7ZeWluZy4ZKSkqLIyEgdPnxYtWvXLk6YvmfsWOmVV6ShQ6V//cvqaACUQykpKQoPD1dycrJrkqcYRo8erVtvvVX169fX6dOntXDhQk2aNEnLly/XzTffrNjYWNWtW1dxcXGSpFWrVun666/XxIkTddttt2nRokV67bXXtGnTJrXKviAoRuyHJdU+flyqVq1E8QMAClca7YUkde7cWZ06dXKuuOpwOBQZGalhw4Zp1KhRhe6flZWlKlWqaPr06YqNjS1y3EW6tkhPlypVkjIzpd9/l+rXL9JrAgCYitpWBBT3wDVq1FCNGjUKrffPf/5Tr776qvPx4cOH1b17dy1evFidO3fOc5+goCAFsZQ3APispKQkxcbG6siRIwoPD1fr1q2dCSlJOnDggPz8LnTS7dKlixYuXKgxY8bohRdeUOPGjfXJJ58UKyGVCz2lAMDrpaena+PGjS6jKvz8/BQTE1PkFVjPnj2rjIwMVa1aNc/n8/rBu8gCA6WmTc3he9u2kZQCADcpdlKqqOpf9MVtt9slSZdffrnq1avnrtMCACw0Z86cAp9PSEjIVda7d2/17t279IIgKQUAXu/48ePKysrKcwXWHTt2FOkYI0eOVJ06dRQTE5Pn83FxcRo/fnzJg2zV6kJSqkePkh8HAJAvt66+V1py/qoOAEB+/CSpQgWrwwAAuNnEiRO1aNEiLV26VMHBwXnWyW9RjCJfW+ScVwoA4BZu6yl1saioKBVz+iqnkJCQUo4GAFAWhfj7S/yQAQBer3r16vL39y/RCqyTJ0/WxIkT9fXXX6t169b51stvapAiX1tccYV5S1IKANyGv9wBAGUHQ/cAwCcEBgaqQ4cOLiuwOhwOxcfHF7gC6+uvv65XXnlFy5YtU8eOHd0bZHZPqV9/lbKy3HsuACinSEoBAMoOFssAAJ8xYsQIzZ49WwsWLND27ds1ePBgpaamauDAgZKk2NhYl4nQJ02apJdeeklz585VVFSUEhMTlZiYqDNnzrgnwAYNpJAQKS1N2rPHPecAgHLOJ5JSqampVocAAPABqQEeG5UOALhE999/vyZPnqyxY8eqbdu22rJli5YtW+ac/PzAgQM6cuSIs/7MmTOVnp6ue++9V7Vr13ZukydPLtZ5i3xt4ecntWxp3mcIHwC4BX+9AwDKDiY5BwCfMnToUA0dOjTP5y5esXX//v3uD+hirVpJGzaYSal77vH8+QGgjPOJnlIAABQJc0oBAEoTK/ABgFuRlAIAlB30lAIAlCZW4AMAtyIpBQAoO0hKAQBKU3ZSatcuyV0TqgNAOUZSCgBQdjB8DwBQmmrXlurVkxwOc24pAECpIikFACg76CkFAChtV11l3q5da20cAFAG+URSys/PJ8IEAFjMj55SAIBCFPvaIjsptWZN6QcDAOWcT2R7QkJCrA4BAOADaC8AAIUpdlvRubN5u2aNZBilHxAAlGM+kZQCAKBIGL4HACht7dtLAQFSYqJ08KDV0QBAmUJSCgBQdjB8DwBQ2ipWlFq3Nu8zrxQAlCqfSEqdPXvW6hAAAD7gLHMQAgAKUaJrC+aVAgC38Im/3g3GbgMAisCgpxQAoBAlurZgBT4AcAufSEoBAFAkzCkFAHCH7MnON26UMjKsjQUAyhCSUgCAsoOeUgAAd2jcWKpSRTp/3kxMAQBKBUkpAEDZQVIKAOAONpvUrZt5/4MPrI0FAMoQklIAgLIjIMDqCAAAZVXfvubtokVSVpa1sQBAGUFSCgBQdtBTCgDgLrfcIlWtKh05Iq1caXU0AFAm+ERSymazWR0CAMAH2EhKAQAKUeJri8BAqXdv8/7775deQABQjvlEUqpixYpWhwAA8AEVK1WyOgQAgJe7pGuLBx80bz/+WDp3rnQCAoByzCeSUgAAFAk9pQAA7nT11VL9+tLp09L//md1NADg80hKAQDKjgoVrI4AAFCW+flJsbHm/VGjpDNnrI0HAHycTySlzp49a3UIAIAiiIuLU6dOnRQaGqqaNWuqV69e2rlzZ6H7TZ06VU2bNlVISIgiIyP1zDPP6Pz588U+/1nDKEnYAIBy5JKvLf72N+myy6T9+837AIAS84mklMFFBgD4hG+//VZDhgzRmjVrtGLFCmVkZKhbt25KTU3Nd5+FCxdq1KhRGjdunLZv3645c+Zo8eLFeuGFF4p9foPhewCAQlzytUVoqDRnjnl/5kwpPv7SgwKAcirA6gAAAGXHsmXLXB7Pnz9fNWvW1MaNG3Xdddfluc+qVat09dVXq2/fvpKkqKgo9enTR2vXri1+ACSlAACecNNN0hNPSG+/ba7I99lnUpcuVkcFAD7HJ3pKAQB8U3JysiSpatWq+dbp0qWLNm7cqHXr1kmSfvvtN33xxRfq0aNHvvukpaUpJSXFZZPEnFIAAM95/XWpc2fp5EkpJkb69FOrIwIAn0NSCgDgFg6HQ8OHD9fVV1+tVq1a5Vuvb9++evnll3XNNdeoQoUKuvzyy9W1a9cCh+/FxcUpPDzcuUVGRppP0FMKAOApoaHm0L0ePaRz56Q775ReflnKyrI6MgDwGSSlAABuMWTIEG3btk2LFi0qsF5CQoJee+01vfXWW9q0aZOWLFmizz//XK+88kq++4wePVrJycnO7eDBg+YT9JQCAHhSpUrSJ59Ijz4qGYY0bpyZpDp2zOrIAMAzsrKk06elo0fNBSB+/VXasEH68cci7c6cUgCAUjd06FB99tln+u6771SvXr0C67700kvq16+fHnnkEUnSFVdcodTUVD322GN68cUX5eeX+/eToKAgBQUF5T4YSSkAgKdVqCDNmiVdfbU0eLD01VdSu3bSokXSNddYHR0AXJCRIaWkmNvp065bQWVnzkhnz7pu586Zt+nplxSSTySlbDab1SEAAIrAMAwNGzZMS5cuVUJCgho0aFDoPmfPns2VePL393cerzhseSWqAADIwW3XFv37Sx06mBOf79ghde0qTZkiPfWUxPUMgNKUkSEdP272Tjp2TDpxwpzfLvs25/2cZWfOuDeuihUvbIGB0p49he7iE0mpihUrWh0CAKAIhgwZooULF+q///2vQkNDlZiYKEkKDw9XSEiIJCk2NlZ169ZVXFycJKlnz55688031a5dO3Xu3Fl79uzRSy+9pJ49ezqTU0VVMTS0dF8QAKDMceu1RatW0vr10uOPSwsXSsOHm0NZpk+nNy+AgmVmSomJ0h9/SEeOSElJ5nb06IX72Y9PnLi0c4WEmPPihYWZt9nbxY+zy+x2c7hyzqRTSIjr46Ag1wR8SooUHl5oKD6RlAIA+IaZM2dKkrp27epSPm/ePA0YMECSdODAAZeeUWPGjJHNZtOYMWN06NAh1ahRQz179tSECROKHwATnQMArGa3S//5j9lr6rnnzKF9v/0mLV1qPgeg/HE4zITTb79JBw+aiaeLt8REs15R+flJNWqYW9Wq5lalSuG3YWFSgPekgrwnEgCAzyvKcLuEhASXxwEBARo3bpzGjRt36QGQlAIAeAObTRoxQmrSRHrgAenrr6Wbb5a++MK8KARQ9pw9K+3bZyaecm5795rl588XfoyAAKlOHal2bSkiQqpZ88LtxferVpWKOarAG/lEUurcuXMKCwuzOgwAgJc753CI1gIAUBCPXlvcfrv0zTfSLbdIa9aY80x99ZV5YekpW7eaQwqTkqS0NLOXRM4tPNy8rVpVql7dq3pQAF7p2DFz3rjt280t+/7vvxe8n5+fVL++uUVGSvXquW5165rJpjKQaCoOn/jGcRSnCxsAoNxylLNGHABQfB6/trjySum778yeUj//LF17rdlzqn5995/7f/+TevWSirNwSNWqF3pi1Khx4X52L426dc0L6Fq1SGChbMvKknbtkjZvlrZsubAdO5b/PlWqSA0b5t4aNDD/zzO3XC58iwAAyg4aegCAN2rVSvr+eykmRtq9W7rmGik+Xmrc2H3nTEyUBg0yE1KdOkktWkjBwReWeU9OvrA0fHKydOqUOZ/NiRPmtmNHwcf38zOTVNk9PLJvs+/Xq2f2BgkOdt9rBEqLYZhD7FatMreNG81ehufO5a5rs0mXXSY1b25uzZpduK1e3fOx+ziSUgCAsoM5pQAA3qpRIzMxdfPN0s6d0nXXmYmpFi1K/1wOhzRggLlkfNu25nmDggreJyvLTEYlJZk9QXKu9nXsmLniV2KidOiQdPiwuVLYkSPmtn59/setXVuKisp7u+yywuMC3CE9Xdqw4UISatUq8zN+sUqVpDZtzP9H7dqZty1amKvNoVSQlAIAlB0kpQAA3iwy0nUo3/XXSytWmBe6pemDD6Tly81eSu+/X7TEj7//hZW8CuNwmMmqQ4fMVcNy3mbf/+MPKTX1QuJq9eq8j1WnjpmgatjQ7DnWuLE5QXzjxuZcV2WRw2H2WDt9WsrIMHt6BwaaW/b9gACzRw5Kh2GYvf+++srcvv3W/HzmVKGCuWpmly5S585mEuryy81egXAbklIAgLKD4XsAAG9Xs6a0cqXUrZs5ROiGG8yL5E6dSu8cv/5q3vbr556eWH5+5pxStWqZF/F5MQzpzz+l/fvz31JTzV5Xhw+bPVUuFhFxIVGVM1nVqJFv9lQxDDNJ+OyzZlKvMHklq3JuQUEXbgvaCqtT3GP4yhyeDoeZDP3gA2npUungQdfna9SQrr7aTEJ16WJ+lhlu6nEkpQAAZQe/ZAEAfEHVqubQvVtvNS+ab7pJ+vJL8wK5NFk5NM5mM+fXqV5d6tgx9/M5k1b79kl795rzbe3aZd4ePXph++GH3Mdu2FBq2dKcryt7a9LEe4cDnjhhDqn89NMLZQEBZrIpI8McDnmxjAxzu7hHj9X8/aWQEDMxWNLbvMpCQyW7/cJtSf+u27hReu896aOPzJ572YKCzGGz3bqZ2xVX0BvNC5CUAgAAAABPCw83h9j17GkOJbr5ZmnhQnO1vPKgsKRVSoqZnMqZqMq+f/KkmcTau9dcYTCbv7852XTHjubWqZM5H5A39H55+20zIVWhgjRunPTMM2YyJjspYhgXklDp6eaW3/3sLS3NdcurrDjPF1Qnp6ws6cwZc3OnSpUuJKlyJqzyemy3m+//f/5jzqGWLSxMuuMOqXdv8/9YSIh7Y0ax+URSqlKlSlaHAADwAbQXAIDCeFVbERoqffGFdO+9Zk+pu++W3nhDGjGCHhxhYeZwqryGByYlSb/8Im3bduF22zZzFcFffjG3BQvMugEBZo+YTp2kq64yh0tGRXn0pUi6sIrbY49JL76Y+3mb7cKwPG/6jEoXEmY5k1Tnz0tnz5qvq6DbotQ5d87sDZY9z5bDYZ43NdXc8pqAvCAVKpj/px54wOwR5Q1JSeTLJ5JSAAAAAFAmVaxo9vZ56ilp5kzpueektWuld96RqlSxOjrvVLOmud1ww4UywzCHam3ZYq4GmL0dPy5t3mxus2aZdaOipK5dpRtvlGJizBUCPcUXpxrImTALDXXvuQzDTHidOXMhSVXU+6mpZg+5J580J9CHTyApBQAAAABWCgiQZsyQmjY1k1IffiitWSPNni117251dL7BZpPq1TO32283ywxDOnDgQoLq++/N2/37pfnzzU0yh/jdcou5denCar5WstnMIXYhIUVbCRI+z61p2qioKNlsNpdt4sSJxT7OueyujgAAFID2AgBQGK9tK2w26emnzVXoGjUyVwq75RbpttvMoWkoPptNuuwycyjXpEnmv+3Jk+ZQyZEjzV41Npv000/m8zfcIFWrZs7r9fbb5gTsANzK7T2lXn75ZT366KPOx6El6O7nyB5TCgBAAWgvAACF8fq2olMnadMmaexYafp0c86pL74wV+gbPNhcsa9iRauj9F12+4VeUZJ07Ji0YoW0bJk58XxSkvTf/5qbZK7od9115vvSqZO5yl+FCtbFD5Qxbk9KhYaGqlatWu4+DQAAAACUDaGh0j/+YSahXnxRWrJEio83t5AQcx6k664zJ+5u2ZK5py5FjRpS377m5nCYc1ItX24mqX780Vztb9cu6d13zfrBwVLr1uZQy0aNLmz165vH8ve39OUAvsbtSamJEyfqlVdeUf369dW3b18988wzCggo5mm//lqqWtU9AXqL3butjgAAAAAo886ePSvDMGT7a3W79PR0ZWRkKCAgQEFBQc56qampkqSQkBD5/TU5dUZGhtLT0+Xv76/gHCt6Fadu9vmDg4Pl/1cCIzMzU2lpafLz81NIjiXrz9arJ2P+fAVPmiT/2bOl//s/Zf7+u9I+/VR+n34qZ80qVXSuQQM5GjRQUKNGCti0SZKU5XDofGpqruOeO3dODodDQUFBzmuzrKwsnT9/XjabTRVz9MQ6f/68srKyFBgYqAp/9RAqTl2Hw+EcMplz5cO0tDRlZmaqQoUKCvxrDqfi1DUMQ2fPnpUkVaxYMdf7WZy6zvfez09q316pTZtKTz2lkPR0+X33nbR2rdLXrlXGxo0KSE5W0Lp10rp15nv/V4whkvne16ihjIgIpdeoIf/atRVct66ZrNq8WWclGRkZCs7Kcr73pfE5yX4/i1O3KO/9pX5O8ns/L/VzkvP9vNTPSX7/74tT19LviBJ8TvJ6P93xHZH9mgtluNGUKVOMlStXGj/99JMxc+ZMo3LlysYzzzyTb/3z588bycnJzu3gwYOGJOOwOUVd+dieftqdbwkA5Cs5OdmQZCQnJ1sdSrFlx3748GGrQwGAMs9X24vsuCUZSUlJzvJXX33VkGQ88sgjLvUrVqxoSDL27dvnLPvHP/5hSDL69u3rUrd69eqGJGPbtm3OslmzZhmSjDvvvNOl7mWXXWZIMtatW+cs+89//mNIMmJiYlzqtmjRwpBkrFy50ixwOIylb75pSDK6VK1qGHXqOK8jOv712j7LcW3xVa9ehiSjTZs2Lse9/vrrDUnGBx984Cz74YcfDElGo0aNXOr26NHDkGTMmzfPWbZ582ZDklGnTh2Xuvfee68hyZg+fbqzbNeuXYYkIzw83KVu//79DUnG66+/7iz7448/DElGQECAS90nn3zSkGSMGzfOWXby5Enn+5menu4sf+655wxJxnPPPecsS09Pd9Y9efKks3zcuHGGJOPJJ590OV9AQIAhyfjjjz+cZa+//rohyeh/112G8eGHhhEXZxiDBhnh/v6GJGNXjn/36X+d696LrvXq/FW+efNm53HnzZtnSDJ69OjhEkOjRo0MScYPP/zgLPvggw8MScb111/vUrdNmzaGJOOrr75yln322WeGJKNjx44udbt06WJIMpYuXeosW7lypSHJaNGihUvdmJgYQ5Lxn//8x1m2bt06Q5Jx2WWXudS98847DUnGrFmznGXbtm0zJBnVq1d3qdu3b19DkvGPf/zDWbZv3z5DklGxYkWXuo888oghyXj11VedZUlJSc73M6enn37akGS88MILzrIzZ8446545c8ZZ/sILLxiSjKcvuv72+e8IwzCWLl1qfkd06eJSt2PHjuZ3xGefOcu++uort35HFKWtKHZPqVGjRmnSpEkF1tm+fbuaNWumESNGOMtat26twMBAPf7444qLi3PJMGaLi4vT+PHjcx+wdevysQJCpUpSbKzVUQAAAADwRjab1KCBeb9ZM3N42Zkz5oTcd98t7dljrjwXECCdPSt16yZ98omlIZc5YWHmxOnZPvpISk6Wfv3VHEaZmGiumvjWW+b8UzfdJB0/Lv35p7RypZSWZl3sgBeyGYZhFGeHY8eO6c8//yywTsOGDZ3d5XL65Zdf1KpVK+3YsUNNmzbN9XxaWprScvwnTUlJUWRkpA4fPqzatWsXJ0wAQDGlpKQoPDxcycnJCgsLszqcYsmOnfYCANyvNNuLGTNm6I033lBiYqLatGmjf/3rX7ryyivzrf/hhx/qpZde0v79+9W4cWNNmjRJPXr0KFbce/bsUcOGDRmaw/C9Yr33pfE5yev9ZPgew/fK6ndEUlKS6tSpU2hbUeyk1KV4//33FRsbq+PHj6tKESbj4yIDADyHpBQAoChKq71YvHixYmNj9fbbb6tz586aOnWqPvzwQ+3cuVM1a9bMVX/VqlW67rrrFBcXp9tvv10LFy7UpEmTtGnTJrVq1arIcdNWAID7FbWtcFtSavXq1Vq7dq1uuOEGhYaGavXq1XrmmWd06623asGCBUU6hi9fIAGAr/Hl71xfjh0AfE1pfed27txZnTp10vTp0yWZPSUiIyM1bNgwjRo1Klf9+++/X6mpqfrss8+cZVdddZXatm2rt99+22NxAwAKV9TvXD93BRAUFKRFixbp+uuvV8uWLTVhwgQ988wzmjVrlrtOCQAAAMAHpKena+PGjYqJiXGW+fn5KSYmRqtXr85zn9WrV7vUl6Tu3bvnWx8A4P2KPdF5UbVv315r1qxx1+EBAAAA+Kjjx48rKytLERERLuURERHasWNHnvskJibmWT8xMTHP+nnNVwsA8C5u6ylVms6fP291CAAAH0B7AQDIFhcXp/DwcOcWGRkpibYCALyJTySlsrKyrA4BAOADaC8AwDdUr15d/v7+Onr0qEv50aNHVatWrTz3qVWrVrHqjx49WsnJyc7t4MGDkmgrAMCb+ERSCgAAAEDZERgYqA4dOig+Pt5Z5nA4FB8fr+jo6Dz3iY6OdqkvSStWrMi3flBQkMLCwlw2AIB3cducUgAAAACQnxEjRqh///7q2LGjrrzySk2dOlWpqakaOHCgJCk2NlZ169ZVXFycJOnpp5/W9ddfrylTpui2227TokWLtGHDBhZSAgAfRlIKAAAAgMfdf//9OnbsmMaOHavExES1bdtWy5Ytc05mfuDAAfn5XRjY0aVLFy1cuFBjxozRCy+8oMaNG+uTTz5Rq1atrHoJAIBLZDMMw7A6iPykpKQoPDxchw8fVu3ata0OBwDKtOzv3OTkZJ8b4kB7AQCe46vtBW0FAHhOUdsK5pQCAAAAAACAx3n18L3sTlynT59WpUqVLI4GAMq2lJQUSRe+e30J7QUAeI6vthe0FQDgOUVtK7w6KfXnn39Kkpo2bWpxJABQfpw+fVrh4eFWh1EstBcA4Hm+1l7QVgCA5xXWVnh1Uqpq1aqSzEkOfanBg+ekpKQoMjJSBw8e9Kk5DeA5fEaKzjAMnT59WnXq1LE6lGKjvUBh+C5AYfiMFJ2vthe0FSgM3wMoDJ+RoitqW+HVSans1TbCw8N5w1GgsLAwPiMoEJ+RovHVP9JpL1BUfBegMHxGisYX2wvaChQV3wMoDJ+RoilKW8FE5wAAAAAAAPA4klIAAAAAAADwOK9OSgUFBWncuHEKCgqyOhR4KT4jKAyfkfKB9xmF4TOCwvAZKft4j1EYPiMoDJ+R0mczfG0tVwAAAAAAAPg8r+4pBQAAAAAAgLKJpBQAAAAAAAA8jqQUAAAAAAAAPM6rk1IzZsxQVFSUgoOD1blzZ61bt87qkOAlvvvuO/Xs2VN16tSRzWbTJ598YnVI8DJxcXHq1KmTQkNDVbNmTfXq1Us7d+60Oiy4AW0FCkJ7gYLQVpQvtBfID20FCkN74T5em5RavHixRowYoXHjxmnTpk1q06aNunfvrqSkJKtDgxdITU1VmzZtNGPGDKtDgZf69ttvNWTIEK1Zs0YrVqxQRkaGunXrptTUVKtDQymirUBhaC9QENqK8oP2AgWhrUBhaC/cx2tX3+vcubM6deqk6dOnS5IcDociIyM1bNgwjRo1yuLo4E1sNpuWLl2qXr16WR0KvNixY8dUs2ZNffvtt7ruuuusDgelhLYCxUF7gcLQVpRdtBcoKtoKFAXtRenxyp5S6enp2rhxo2JiYpxlfn5+iomJ0erVqy2MDICvSk5OliRVrVrV4khQWmgrAJQ22oqyifYCQGmjvSg9XpmUOn78uLKyshQREeFSHhERocTERIuiAuCrHA6Hhg8frquvvlqtWrWyOhyUEtoKAKWJtqLsor0AUJpoL0pXgNUBAIC7DRkyRNu2bdMPP/xgdSgAAC9FWwEAKArai9LllUmp6tWry9/fX0ePHnUpP3r0qGrVqmVRVAB80dChQ/XZZ5/pu+++U7169awOB6WItgJAaaGtKNtoLwCUFtqL0ueVw/cCAwPVoUMHxcfHO8scDofi4+MVHR1tYWQAfIVhGBo6dKiWLl2qb775Rg0aNLA6JJQy2goAl4q2onygvQBwqWgv3Mcre0pJ0ogRI9S/f3917NhRV155paZOnarU1FQNHDjQ6tDgBc6cOaM9e/Y4H+/bt09btmxR1apVVb9+fQsjg7cYMmSIFi5cqP/+978KDQ11zhkRHh6ukJAQi6NDaaGtQGFoL1AQ2oryg/YCBaGtQGFoL9zHZhiGYXUQ+Zk+fbreeOMNJSYmqm3btvrnP/+pzp07Wx0WvEBCQoJuuOGGXOX9+/fX/PnzPR8QvI7NZsuzfN68eRowYIBng4Fb0VagILQXKAhtRflCe4H80FagMLQX7uPVSSkAAAAAAACUTV45pxQAAAAAAADKNpJSAAAAAAAA8DiSUgAAAAAAAPA4klIAAAAAAADwOJJSAAAAAAAA8DiSUgAAAAAAAPA4klIAAAAAAADwOJJSAAAAAAAA8DiSUsBfBgwYoF69enn8vPPnz5fNZpPNZtPw4cOd5VFRUZo6dWqB+2bvV7lyZbfGCAAw0VYAAIqC9gIomgCrAwA8wWazFfj8uHHjNG3aNBmG4aGIXIWFhWnnzp2qVKlSsfY7cuSIFi9erHHjxrkpMgAoP2grAABFQXsBlB6SUigXjhw54ry/ePFijR07Vjt37nSW2e122e12K0KTZDZstWrVKvZ+tWrVUnh4uBsiAoDyh7YCAFAUtBdA6WH4HsqFWrVqObfw8HDnF3X2Zrfbc3Wx7dq1q4YNG6bhw4erSpUqioiI0OzZs5WamqqBAwcqNDRUjRo10pdffulyrm3btunWW2+V3W5XRESE+vXrp+PHj5co7rNnz+rhhx9WaGio6tevr1mzZl3KPwMAoAC0FQCAoqC9AEoPSSmgAAsWLFD16tW1bt06DRs2TIMHD1bv3r3VpUsXbdq0Sd26dVO/fv109uxZSdKpU6d04403ql27dtqwYYOWLVumo0eP6r777ivR+adMmaKOHTtq8+bNevLJJzV48GCXX2EAANajrQAAFAXtBZAbSSmgAG3atNGYMWPUuHFjjR49WsHBwapevboeffRRNW7cWGPHjtWff/6pn3/+WZI0ffp0tWvXTq+99pqaNWumdu3aae7cuVq5cqV27dpV7PP36NFDTz75pBo1aqSRI0eqevXqWrlyZWm/TADAJaCtAAAUBe0FkBtzSgEFaN26tfO+v7+/qlWrpiuuuMJZFhERIUlKSkqSJP30009auXJlnmPI9+7dqyZNmpT4/NndgrPPBQDwDrQVAICioL0AciMpBRSgQoUKLo9tNptLWfbKGw6HQ5J05swZ9ezZU5MmTcp1rNq1a5fK+bPPBQDwDrQVAICioL0AciMpBZSi9u3b6+OPP1ZUVJQCAvjvBQDIjbYCAFAUtBcoD5hTCihFQ4YM0YkTJ9SnTx+tX79ee/fu1fLlyzVw4EBlZWVZHR4AwAvQVgAAioL2AuUBSSmgFNWpU0c//vijsrKy1K1bN11xxRUaPny4KleuLD8//rsBAGgrAABFQ3uB8sBmGIZhdRBAeTZ//nwNHz5cp06dsmR/AID3o60AABQF7QV8DelVwAskJyfLbrdr5MiRxdrPbrfriSeecFNUAABvQlsBACgK2gv4EnpKARY7ffq0jh49KkmqXLmyqlevXuR99+zZI8lcUrZBgwZuiQ8AYD3aCgBAUdBewNeQlAIAAAAAAIDHMXwPAAAAAAAAHkdSCgAAAAAAAB5HUgoAAAAAAAAeR1IKAAAAAAAAHkdSCgAAAAAAAB5HUgoAAAAAAAAeR1IKAAAAAAAAHkdSCgAAAAAAAB5HUgoAAAAAAAAe9/+e5fvfCrx71QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Plot\n", + "plot = pybamm.QuickPlot(\n", + " sim.solution,\n", + " [\n", + " \"Current [A]\",\n", + " \"Voltage [V]\",\n", + " \"Anode potential [V]\",\n", + " ]\n", + ")\n", + "plot.plot(0)\n", + "\n", + "# Plot the limits used in the termination events to check they are not surpassed\n", + "plot.axes.by_variable(\"Voltage [V]\").axhline(4.2, color=\"k\", linestyle=\":\")\n", + "plot.axes.by_variable(\"Anode potential [V]\").axhline(0.02, color=\"k\", linestyle=\":\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check which events were reached by each step" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Step 0: event: Anode potential cut-off [V] [experiment]\n", + "Step 1: event: Anode potential cut-off [V] [experiment]\n", + "Step 2: event: Charge voltage cut-off [V] [experiment]\n", + "Step 3: event: C-rate cut-off [experiment]\n" + ] + } + ], + "source": [ + "for i, step in enumerate(sim.solution.cycles[0].steps):\n", + " print(f\"Step {i}: {step.termination}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl. CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, 11(1):1–36, 2019. doi:10.1007/s12532-018-0139-4.\n", + "[2] Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.\n", + "[3] Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical society, 140(6):1526–1533, 1993. doi:10.1149/1.2221597.\n", + "[4] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, and others. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi:10.1038/s41586-020-2649-2.\n", + "[5] Peyman Mohtat, Suhak Lee, Jason B Siegel, and Anna G Stefanopoulou. Towards better estimability of electrode-specific state of health: decoding the cell expansion. Journal of Power Sources, 427:101–111, 2019.\n", + "[6] Valentin Sulzer, Scott G. Marquis, Robert Timms, Martin Robinson, and S. Jon Chapman. Python Battery Mathematical Modelling (PyBaMM). Journal of Open Research Software, 9(1):14, 2021. doi:10.5334/jors.309.\n", + "[7] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, and others. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3):261–272, 2020. doi:10.1038/s41592-019-0686-2.\n", + "[8] Andrew Weng, Jason B Siegel, and Anna Stefanopoulou. Differential voltage analysis for battery manufacturing process control. arXiv preprint arXiv:2303.07088, 2023.\n", + "\n" + ] + } + ], + "source": [ + "pybamm.print_citations()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pybamm", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/examples/notebooks/experiments-start-time.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/experiments-start-time.ipynb similarity index 100% rename from docs/source/examples/notebooks/experiments-start-time.ipynb rename to docs/source/examples/notebooks/simulations_and_experiments/experiments-start-time.ipynb diff --git a/docs/source/examples/notebooks/rpt-experiment.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/rpt-experiment.ipynb similarity index 100% rename from docs/source/examples/notebooks/rpt-experiment.ipynb rename to docs/source/examples/notebooks/simulations_and_experiments/rpt-experiment.ipynb diff --git a/docs/source/examples/notebooks/simulating-long-experiments.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/simulating-long-experiments.ipynb similarity index 100% rename from docs/source/examples/notebooks/simulating-long-experiments.ipynb rename to docs/source/examples/notebooks/simulations_and_experiments/simulating-long-experiments.ipynb diff --git a/docs/source/examples/notebooks/simulation-class.ipynb b/docs/source/examples/notebooks/simulations_and_experiments/simulation-class.ipynb similarity index 96% rename from docs/source/examples/notebooks/simulation-class.ipynb rename to docs/source/examples/notebooks/simulations_and_experiments/simulation-class.ipynb index bb93ec207a..df82fa8175 100644 --- a/docs/source/examples/notebooks/simulation-class.ipynb +++ b/docs/source/examples/notebooks/simulations_and_experiments/simulation-class.ipynb @@ -6,7 +6,7 @@ "metadata": {}, "source": [ "# A step-by-step look at the Simulation class\n", - "The simplest way to solve a model is to use the `Simulation` class. This automatically processes the model (setting of parameters, setting up the mesh and discretisation, etc.) for you, and provides built-in functionality for solving and plotting. Changing things such as parameters in handled by passing options to the `Simulation`, as shown in the [Getting Started](getting_started/tutorial-1-how-to-run-a-model.ipynb) guides, [example notebooks](../index.rst) and [documentation](https://docs.pybamm.org/en/latest/source/api/simulation.html).\n", + "The simplest way to solve a model is to use the `Simulation` class. This automatically processes the model (setting of parameters, setting up the mesh and discretisation, etc.) for you, and provides built-in functionality for solving and plotting. Changing things such as parameters in handled by passing options to the `Simulation`, as shown in the [Getting Started](../getting_started/tutorial-1-how-to-run-a-model.ipynb) guides, [example notebooks](../../index.rst) and [documentation](https://docs.pybamm.org/en/latest/source/api/simulation.html).\n", "\n", "In this notebook we show how to solve a model using a `Simulation` and compare this to manually handling the different stages of the process, such as setting parameters, ourselves step-by-step." ] @@ -152,7 +152,7 @@ "metadata": {}, "source": [ "## Processing the model step-by-step\n", - "One way of gaining more control over the simulation processing is by passing options, as outlined in the [documentation](https://docs.pybamm.org/en/latest/source/api/simulation.html). However, you can also process the model step-by-step yourself. A detailed example of this can be found in the [SPM notebook](./models/SPM.ipynb), but here we outline the basic steps.\n", + "One way of gaining more control over the simulation processing is by passing options, as outlined in the [documentation](https://docs.pybamm.org/en/latest/source/api/simulation.html). However, you can also process the model step-by-step yourself. A detailed example of this can be found in the [SPM notebook](../models/SPM.ipynb), but here we outline the basic steps.\n", "\n", "First we pick a model" ] @@ -171,7 +171,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Next we must set up the geometry. We'll use the default geometry for the SPM. In all of the following steps we will also use the default settings provided by the model. For a look at changing these options, see the [change settings](./change-settings.ipynb) notebook." + "Next we must set up the geometry. We'll use the default geometry for the SPM. In all of the following steps we will also use the default settings provided by the model. For a look at changing these options, see the [change settings](../change-settings.ipynb) notebook." ] }, { diff --git a/pybamm/__init__.py b/pybamm/__init__.py index f9b809d121..00c596314a 100644 --- a/pybamm/__init__.py +++ b/pybamm/__init__.py @@ -228,12 +228,13 @@ # from .experiment.experiment import Experiment from . import experiment +from .experiment import step # # Plotting # -from .plotting.quick_plot import QuickPlot, close_plots +from .plotting.quick_plot import QuickPlot, close_plots, QuickPlotAxes from .plotting.plot import plot from .plotting.plot2D import plot2D from .plotting.plot_voltage_components import plot_voltage_components diff --git a/pybamm/experiment/experiment.py b/pybamm/experiment/experiment.py index 9b02e3a20f..898d9b0f79 100644 --- a/pybamm/experiment/experiment.py +++ b/pybamm/experiment/experiment.py @@ -3,7 +3,7 @@ # import pybamm -from pybamm.step._steps_util import ( +from .step._steps_util import ( _convert_time_to_seconds, _convert_temperature_to_kelvin, ) diff --git a/pybamm/step/__init__.py b/pybamm/experiment/step/__init__.py similarity index 58% rename from pybamm/step/__init__.py rename to pybamm/experiment/step/__init__.py index eea47a54a7..e3b9ff8bd0 100644 --- a/pybamm/step/__init__.py +++ b/pybamm/experiment/step/__init__.py @@ -1,2 +1,3 @@ from .steps import * from .steps import _Step +from .step_termination import * diff --git a/pybamm/step/_steps_util.py b/pybamm/experiment/step/_steps_util.py similarity index 96% rename from pybamm/step/_steps_util.py rename to pybamm/experiment/step/_steps_util.py index e524bc6064..f44cf52113 100644 --- a/pybamm/step/_steps_util.py +++ b/pybamm/experiment/step/_steps_util.py @@ -4,6 +4,7 @@ import pybamm import numpy as np from datetime import datetime +from .step_termination import _read_termination _examples = """ @@ -136,8 +137,10 @@ def __init__( termination = [termination] self.termination = [] for term in termination: - typ, value = _convert_electric(term) - self.termination.append({"type": typ, "value": value}) + if isinstance(term, str): + term = _convert_electric(term) + term = _read_termination(term) + self.termination.append(term) self.temperature = _convert_temperature_to_kelvin(temperature) @@ -193,10 +196,7 @@ def to_dict(self): } def __eq__(self, other): - return ( - isinstance(other, _Step) - and self.hash_args == other.hash_args - ) + return isinstance(other, _Step) and self.hash_args == other.hash_args def __hash__(self): return hash(self.basic_repr()) diff --git a/pybamm/experiment/step/step_termination.py b/pybamm/experiment/step/step_termination.py new file mode 100644 index 0000000000..082711a305 --- /dev/null +++ b/pybamm/experiment/step/step_termination.py @@ -0,0 +1,164 @@ +import pybamm +import numpy as np + + +class BaseTermination: + """ + Base class for a termination event for an experiment step. To create a custom + termination, a class must implement `get_event` to return a :class:`pybamm.Event` + corresponding to the desired termination. In most cases the class + :class:`pybamm.step.CustomTermination` can be used to assist with this. + + Parameters + ---------- + value : float + The value at which the event is triggered + """ + + def __init__(self, value): + self.value = value + + def get_event(self, variables, step_value): + """ + Return a :class:`pybamm.Event` object corresponding to the termination event + + Parameters + ---------- + variables : dict + Dictionary of model variables, to be used for selecting the variable(s) that + determine the event + step_value : float or :class:`pybamm.Symbol` + Value of the step for which this is a termination event, to be used in some + cases to determine the sign of the event. + """ + raise NotImplementedError + + def __eq__(self, other): + # objects are equal if they have the same type and value + if isinstance(other, self.__class__): + return self.value == other.value + else: + return False + + +class CrateTermination(BaseTermination): + """ + Termination based on C-rate, created when a string termination of the C-rate type + (e.g. "C/10") is provided + """ + + def get_event(self, variables, step_value): + """ + See :meth:`BaseTermination.get_event` + """ + event = pybamm.Event( + "C-rate cut-off [experiment]", + abs(variables["C-rate"]) - self.value, + ) + return event + + +class CurrentTermination(BaseTermination): + """ + Termination based on current, created when a string termination of the current type + (e.g. "1A") is provided + """ + + def get_event(self, variables, step_value): + """ + See :meth:`BaseTermination.get_event` + """ + event = pybamm.Event( + "Current cut-off [A] [experiment]", + abs(variables["Current [A]"]) - self.value, + ) + return event + + +class VoltageTermination(BaseTermination): + """ + Termination based on voltage, created when a string termination of the voltage type + (e.g. "4.2V") is provided + """ + + def get_event(self, variables, step_value): + """ + See :meth:`BaseTermination.get_event` + """ + # The voltage event should be positive at the start of charge/ + # discharge. We use the sign of the current or power input to + # figure out whether the voltage event is greater than the starting + # voltage (charge) or less (discharge) and set the sign of the + # event accordingly + if isinstance(step_value, pybamm.Symbol): + inpt = {"start time": 0} + init_curr = step_value.evaluate(t=0, inputs=inpt).flatten()[0] + else: + init_curr = step_value + sign = np.sign(init_curr) + if sign > 0: + name = "Discharge" + else: + name = "Charge" + if sign != 0: + # Event should be positive at initial conditions for both + # charge and discharge + event = pybamm.Event( + f"{name} voltage cut-off [V] [experiment]", + sign * (variables["Battery voltage [V]"] - self.value), + ) + return event + + +class CustomTermination(BaseTermination): + """ + Define a custom termination event using a function. This can be used to create an + event based on any variable in the model. + + Parameters + ---------- + name : str + Name of the event + event_function : callable + A function that takes in a dictionary of variables and evaluates the event + value. Must be positive before the event is triggered and zero when the + event is triggered. + + Example + ------- + Add a cut-off based on negative electrode stoichiometry. The event will trigger + when the negative electrode stoichiometry reaches 10%. + + >>> def neg_stoich_cutoff(variables): + ... return variables["Negative electrode stoichiometry"] - 0.1 + + >>> neg_stoich_termination = pybamm.step.CustomTermination( + ... name="Negative stoichiometry cut-off", event_function=neg_stoich_cutoff + ... ) + """ + + def __init__(self, name, event_function): + if not name.endswith(" [experiment]"): + name += " [experiment]" + self.name = name + self.event_function = event_function + + def get_event(self, variables, step_value): + """ + See :meth:`BaseTermination.get_event` + """ + return pybamm.Event(self.name, self.event_function(variables)) + + +def _read_termination(termination): + if isinstance(termination, tuple): + typ, value = termination + else: + return termination + + termination_class = { + "current": CurrentTermination, + "voltage": VoltageTermination, + "C-rate": CrateTermination, + }[typ] + return termination_class(value) diff --git a/pybamm/step/steps.py b/pybamm/experiment/step/steps.py similarity index 100% rename from pybamm/step/steps.py rename to pybamm/experiment/step/steps.py diff --git a/pybamm/plotting/quick_plot.py b/pybamm/plotting/quick_plot.py index f731a58e0e..686c58f3c5 100644 --- a/pybamm/plotting/quick_plot.py +++ b/pybamm/plotting/quick_plot.py @@ -486,14 +486,14 @@ def plot(self, t, dynamic=False): self.plots = {} self.time_lines = {} self.colorbars = {} - self.axes = [] + self.axes = QuickPlotAxes() # initialize empty handles, to be created only if the appropriate plots are made solution_handles = [] for k, (key, variable_lists) in enumerate(self.variables.items()): ax = self.fig.add_subplot(self.gridspec[k]) - self.axes.append(ax) + self.axes.add(key, ax) x_min, x_max, y_min, y_max = self.axis_limits[key] ax.set_xlim(x_min, x_max) if y_min is not None and y_max is not None: @@ -803,3 +803,40 @@ def create_gif(self, number_of_images=80, duration=0.1, output_filename="plot.gi # remove the generated images for image in images: os.remove(image) + + +class QuickPlotAxes: + """ + Class to store axes for the QuickPlot + """ + + def __init__(self): + self._by_variable = {} + self._axes = [] + + def add(self, keys, axis): + """ + Add axis + + Parameters + ---------- + keys : iter + Iterable of keys of variables being plotted on the axis + axis : matplotlib Axis object + The axis object + """ + self._axes.append(axis) + for k in keys: + self._by_variable[k] = axis + + def __getitem__(self, index): + """ + Get axis by index + """ + return self._axes[index] + + def by_variable(self, key): + """ + Get axis by variable name + """ + return self._by_variable[key] diff --git a/pybamm/simulation.py b/pybamm/simulation.py index 46ef3f330d..5c2cf0bff1 100644 --- a/pybamm/simulation.py +++ b/pybamm/simulation.py @@ -192,16 +192,6 @@ def set_up_and_parameterise_experiment(self): op_conds.type = "current" op_conds.value = op_conds.value * capacity - # Update terminations - termination = op_conds.termination - for term in termination: - term_type = term["type"] - if term_type == "C-rate": - # Change type to current - term["type"] = "current" - # Scale C-rate with capacity to obtain current - term["value"] = term["value"] * capacity - # Add time to the experiment times dt = op_conds.duration if dt is None: @@ -294,46 +284,9 @@ def set_up_and_parameterise_model_for_experiment(self): def update_new_model_events(self, new_model, op): for term in op.termination: - if term["type"] == "current": - new_model.events.append( - pybamm.Event( - "Current cut-off [A] [experiment]", - abs(new_model.variables["Current [A]"]) - term["value"], - ) - ) - - # add voltage events to the model - if term["type"] == "voltage": - # The voltage event should be positive at the start of charge/ - # discharge. We use the sign of the current or power input to - # figure out whether the voltage event is greater than the starting - # voltage (charge) or less (discharge) and set the sign of the - # event accordingly - if isinstance(op.value, pybamm.Interpolant) or isinstance( - op.value, pybamm.Multiplication - ): - inpt = {"start time": 0} - init_curr = op.value.evaluate(t=0, inputs=inpt).flatten()[0] - sign = np.sign(init_curr) - else: - sign = np.sign(op.value) - if sign > 0: - name = "Discharge" - else: - name = "Charge" - if sign != 0: - # Event should be positive at initial conditions for both - # charge and discharge - new_model.events.append( - pybamm.Event( - f"{name} voltage cut-off [V] [experiment]", - sign - * ( - new_model.variables["Battery voltage [V]"] - - term["value"] - ), - ) - ) + event = term.get_event(new_model.variables, op.value) + if event is not None: + new_model.events.append(event) # Keep the min and max voltages as safeguards but add some tolerances # so that they are not triggered before the voltage limits in the diff --git a/tests/unit/test_experiments/test_experiment_step_termination.py b/tests/unit/test_experiments/test_experiment_step_termination.py new file mode 100644 index 0000000000..ee45bcc9f8 --- /dev/null +++ b/tests/unit/test_experiments/test_experiment_step_termination.py @@ -0,0 +1,18 @@ +# +# Test the experiment step termination classes +# +import pybamm +import unittest + + +class TestExperimentStepTermination(unittest.TestCase): + def test_base_termination(self): + term = pybamm.step.BaseTermination(1) + self.assertEqual(term.value, 1) + + with self.assertRaises(NotImplementedError): + term.get_event(None, None) + + self.assertEqual(term, pybamm.step.BaseTermination(1)) + self.assertNotEqual(term, pybamm.step.BaseTermination(2)) + self.assertNotEqual(term, pybamm.step.CurrentTermination(1)) diff --git a/tests/unit/test_experiments/test_experiment_steps.py b/tests/unit/test_experiments/test_experiment_steps.py index 53b61d637f..b99ae22395 100644 --- a/tests/unit/test_experiments/test_experiment_steps.py +++ b/tests/unit/test_experiments/test_experiment_steps.py @@ -34,7 +34,7 @@ def test_step(self): self.assertEqual(step.type, "voltage") self.assertEqual(step.value, 1) self.assertEqual(step.duration, 3600) - self.assertEqual(step.termination, [{"type": "voltage", "value": 2.5}]) + self.assertEqual(step.termination, [pybamm.step.VoltageTermination(2.5)]) self.assertEqual(step.period, 60) self.assertEqual(step.temperature, 298.15) self.assertEqual(step.tags, ["test"]) @@ -155,25 +155,25 @@ def test_step_string(self): "type": "C-rate", "value": -1, "duration": None, - "termination": [{"type": "voltage", "value": 4.1}], + "termination": [pybamm.step.VoltageTermination(4.1)], }, { "value": 4.1, "type": "voltage", "duration": None, - "termination": [{"type": "current", "value": 0.05}], + "termination": [pybamm.step.CurrentTermination(0.05)], }, { "value": 3, "type": "voltage", "duration": None, - "termination": [{"type": "C-rate", "value": 0.02}], + "termination": [pybamm.step.CrateTermination(0.02)], }, { "type": "C-rate", "value": 1 / 3, "duration": 7200.0, - "termination": [{"type": "voltage", "value": 2.5}], + "termination": [pybamm.step.VoltageTermination(2.5)], }, ] @@ -264,6 +264,18 @@ def test_start_times(self): with self.assertRaisesRegex(TypeError, "`start_time` should be"): pybamm.step._Step("current", 1, duration=3600, start_time="bad start_time") + def test_custom_termination(self): + def neg_stoich_cutoff(variables): + return variables["Negative electrode stoichiometry"] - 1 + + neg_stoich_termination = pybamm.step.CustomTermination( + name="Negative stoichiometry cut-off", event_function=neg_stoich_cutoff + ) + variables = {"Negative electrode stoichiometry": 3} + event = neg_stoich_termination.get_event(variables, None) + self.assertEqual(event.name, "Negative stoichiometry cut-off [experiment]") + self.assertEqual(event.expression, 2) + if __name__ == "__main__": print("Add -v for more debug output") diff --git a/tests/unit/test_experiments/test_simulation_with_experiment.py b/tests/unit/test_experiments/test_simulation_with_experiment.py index 6688fae5b1..cc04177ba2 100644 --- a/tests/unit/test_experiments/test_simulation_with_experiment.py +++ b/tests/unit/test_experiments/test_simulation_with_experiment.py @@ -765,6 +765,28 @@ def test_experiment_start_time_identical_steps(self): # Check that there are only 3 built models (unique steps + padding rest) self.assertEqual(len(sim.op_conds_to_built_models), 3) + def test_experiment_custom_termination(self): + def neg_stoich_cutoff(variables): + return variables["Negative electrode stoichiometry"] - 0.5 + + neg_stoich_termination = pybamm.step.CustomTermination( + name="Negative stoichiometry cut-off", event_function=neg_stoich_cutoff + ) + + model = pybamm.lithium_ion.SPM() + experiment = pybamm.Experiment( + [pybamm.step.c_rate(1, termination=neg_stoich_termination)] + ) + sim = pybamm.Simulation(model, experiment=experiment) + sol = sim.solve(calc_esoh=False) + self.assertEqual( + sol.cycles[0].steps[0].termination, + "event: Negative stoichiometry cut-off [experiment]", + ) + + neg_stoich = sol["Negative electrode stoichiometry"].data + self.assertAlmostEqual(neg_stoich[-1], 0.5, places=4) + if __name__ == "__main__": print("Add -v for more debug output") diff --git a/tests/unit/test_plotting/test_quick_plot.py b/tests/unit/test_plotting/test_quick_plot.py index f569f00152..7e2a088de6 100644 --- a/tests/unit/test_plotting/test_quick_plot.py +++ b/tests/unit/test_plotting/test_quick_plot.py @@ -294,8 +294,9 @@ def test_spm_simulation(self): with TemporaryDirectory() as dir_name: test_stub = os.path.join(dir_name, "spm_sim_test") test_file = f"{test_stub}.gif" - quick_plot.create_gif(number_of_images=3, duration=3, - output_filename=test_file) + quick_plot.create_gif( + number_of_images=3, duration=3, output_filename=test_file + ) assert not os.path.exists(f"{test_stub}*.png") assert os.path.exists(test_file) pybamm.close_plots() @@ -508,6 +509,15 @@ def test_model_with_inputs(self): pybamm.close_plots() +class TestQuickPlotAxes(unittest.TestCase): + def test_quick_plot_axes(self): + axes = pybamm.QuickPlotAxes() + axes.add(("test 1", "test 2"), 1) + self.assertEqual(axes[0], 1) + self.assertEqual(axes.by_variable("test 1"), 1) + self.assertEqual(axes.by_variable("test 2"), 1) + + if __name__ == "__main__": print("Add -v for more debug output") import sys