diff --git a/docs/source/example_notebooks/counterfactual_fairness_dowhy.ipynb b/docs/source/example_notebooks/counterfactual_fairness_dowhy.ipynb
index 6cf50e14f..44d07c424 100644
--- a/docs/source/example_notebooks/counterfactual_fairness_dowhy.ipynb
+++ b/docs/source/example_notebooks/counterfactual_fairness_dowhy.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "ef2e40dc",
"metadata": {},
"outputs": [],
@@ -52,7 +52,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "46026b9b",
"metadata": {},
"outputs": [],
@@ -247,7 +247,6 @@
" plt.show()\n",
"\n",
"\n",
- "\n",
"def _wrapper_lambda_fn(val):\n",
" return lambda x: val"
]
@@ -279,97 +278,10 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "37212ae1",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Race | \n",
- " Gender | \n",
- " GPA | \n",
- " LSAT | \n",
- " avg_grade | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2.9 | \n",
- " 43.0 | \n",
- " 0.59 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2.7 | \n",
- " 31.0 | \n",
- " 0.25 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 3.9 | \n",
- " 34.0 | \n",
- " 0.57 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2.7 | \n",
- " 42.0 | \n",
- " -0.67 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 1.0 | \n",
- " 1.0 | \n",
- " 2.9 | \n",
- " 14.0 | \n",
- " 0.04 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Race Gender GPA LSAT avg_grade\n",
- "0 0.0 0.0 2.9 43.0 0.59\n",
- "1 0.0 0.0 2.7 31.0 0.25\n",
- "2 0.0 1.0 3.9 34.0 0.57\n",
- "3 0.0 0.0 2.7 42.0 -0.67\n",
- "4 1.0 1.0 2.9 14.0 0.04"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"df = pd.read_csv(\"datasets/law_data.csv\")\n",
"\n",
@@ -442,7 +354,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"id": "2280c2df",
"metadata": {},
"outputs": [],
@@ -475,7 +387,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"id": "d70d0187",
"metadata": {},
"outputs": [],
@@ -498,32 +410,10 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"id": "6fdaa7be",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Fitting causal mechanism of node Gender: 100%|██████████| 5/5 [00:00<00:00, 347.95it/s]\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOIAAAAQCAYAAAALSqPFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAABJ0AAASdAHeZh94AAAIF0lEQVR4nO2bfbCXRRXHP1fxFZUKSnpVsSgz89I4YmXmDYcKpKSynOaSOCPmGIOojBllh6+NAWOioL0AOpDE1DimVL4QqIyGms6ojDmoEG9KJgkoXXkJBfrj7CPPfe7z/H7P/n7Pvf5zvzO/2fvs7tk9Z/fsnrNn97bs27ePXvSiF+8s+lTdoKQPAdcAXwH6A/8GFgEys9ci2lkPHFNQvMnMBmbq9wdGAyOBk4APAruBfwDzgHlmtrcKniV9C/gi0AqcDBwJLDSz9hryjAQuBT6Z6uNJYIaZPZapOzbwXAt7zezAZmRpUI4W4MLwOxFoAZ4DbgHm5I2xpOnAKcBgYACwE9gQ+LrZzLY0S9OAvkTLkcNjO7AgfI4zs1tSZWOJmMMD6nUWA0nH48p1AfAEcAOwFlfAx8JiicE2QDm/X+TUPReYCwwFHgduBP4IfAof3NvD4FfB80+A8bgC/6ueEEGp7gY+AywGZgJPAV8HHgkTmsaKArkFPBjq3FeBLFFyBPwOmAMcC/weH9vDgV8D8wtoLgP6Aktx2RcCbwFTgGckfbgimhh9aUSOtxH6vxl4o6DKigJecuewaov4K+B9wAQzuynF9Ax8YK8FLo5o73Uzm1Ky7irga8A96d1M0mRcKb8JfANfnM3yfBmwEfgnblGWFTElaSAwCdgEfNrM/pMqa8Mn5RpcMQAwsxX4ROa1l1jPOTnFsbKUliO0Mxr4LrAOONXMNof8g/FxHSNpkZndmSE9ysx25bR3LTAZ+BFwSQU0pfSlCTkS+hbc2m0B7sTntxNi57Ayixh24+HAeuCXWb6A7biAfavqs1MHZg+a2V+yLoWZvQL8JnyeWQXPZrbMzFabWZkD9jH4OD+eXoRJO0AH8N4S7SDpJOA03Hrd06wskXKAu/4A1yfKG9rZDVwdPsdnifIWVMDtIf1YFTQRaEiOFCYAX8I9j+0xHRfNYZWuaVtIl+Qshg7gEdz0nxbR5iGS2iVNlnSppDZJXc5FJfBmSN/qAZ6zWI2fVU+VNCBdIOkM/Fx2f8m2LgrprWa2J1PWE7Ik56y1OWVJ3heCZSmDUSF9JoKHWjRl9aVhOSSdAEwDZprZwxF8J8idwypd04+HdFVB+Wp8xx4MPFCyzYHsPwwnWCfpAjN7qEwDkvoA3wufizPF3cFzJ5jZVkk/BGYAKyUtwl2a43FXeinw/XrtSDoMaAf24OeZLLpdFiCxHsfllA0KaZ/w9/PZCpImAUcA/fBAzOn4gppW1GEkTVl9aUiOoEsLgBdx9zgKteawSovYL6TbCsqT/HeVbG8eMAwf3L54JHQ2fri+T9LJJduZhgds7jWzv2bKquY5F2Z2I34+7QOMA67Cg0svAfOzLmsBvh34WGxmL+WU94QsiSt1uaT3JJmSDsKDEAneXUA/CXeTJ+ILajEw3MxerdFnWZoYfWlUjp8CQ4CxZrazBs9FKJzDThaxTgg4DzVD3c3AzJTJeha4WNIbwBV49Gx0li4NSRNC3eeBMd3AZilIuhL4OTALj7S9AnwCmAoslNRqZlfWaSZxaWZ3G6P18Qd8HL+MW/c/AbuAs4D345biI0Bu6D+5QpB0NPA5fJN8WtLZZvZUMzSR+hIth6ShuBW8PnvdFIHCOcxaxDXACxG/l1O0yY7bj3wk+a9Hsd4VSeDljFqVJI3Hw94rgTYz25pTrdt5lnQmMB34s5ldbmZrzWxHUKLR+KH9CkmDarRxIq6EG4F7C6p1uyzhTDMKt+ivAueH3+rAX0eoWtPCm9kmM7sLd5X7A7eV6DuaJqCLvsTKEVzS23C3PwnmRKHeHHayiGY2rJFOAl4I6eCC8iTKVXSGKYvEJSmMvkqaiN+hPQsMq+H69QTPZ4e0y9WAme2Q9AS+IIeQHzyA2kGaBD0y/mb2Jr6xTE/nSzo09LHZzNaVbGuDpJVAq6QB6QhmhTS5+hIpxxHsH9ddUtb4AjBX0lw8iDMxp7zmHFZ5RkwUbbikTu1KOhL4PLAD+HuT/SRRv1ylDYGRG/A7nLY656+e4PmQkBZdUST5u/MKg2KMwQ/4t9bop6fGvwjnAQfjl+Mx+EBIizaYZmlq6ksO8uT4Hz72eb+nQ53l4buL21pmDiuLmprZGklLcNfhB8BNqWLhO9JsM+t07xLuvw4C1oRdKgkRv5hT91j8jAWpC/BU+dX45fiT+IE+zx1tmudI/A2/k7pI0mwze/sFi6Sv4gtkF/BoAf25eNDg7oIgTU/KgqSjzOy/mbxW4DrgNTLRTEmD8Sdm2zL5BwA/wx8gPJp+fhdL04i+xMgRAjMXFozHFNyb+W36iVsGdeew6pc1l+AKNUvSMPzt3lD8jmsV8OMcmgfwANFx+GU0wHfwc9PD+PvCDjzcPxI4FPexOz1bknQ+vgj34Mo/IceFWG9m85vlWdI5wDnhM7mT+qykpO3NZpa8trgDvyc8C3hO0l14sOYE3G1tAa7Ke28ZkLg0eS9psoiSJVKOBEsl7cTd/o4gx0j8LegoM3s5U38EMFXScvwlyxbgaPwlzyB8LMY1SROtLw3I0QzqzmGlCzHsyqew/9HxCPzR8UziHn0vw+/FhuAWoy8eZFiO3+MsyHkNktwJHYiHuvPwEJl3hA3y3Iof7tMYxP47qA2EZ09mtlfSCNxKnYefBw8HtuIKMsvMluQxG3b606kdpGlGltJypHBHkKMdOAwPNs0BpprZxhy27gc+GuQYgofvt+MbwwJc/qznEkvTiL7EytEQys5hS++/QfWiF+88/g/edmmbCQaAlQAAAABJRU5ErkJggg==\n",
- "text/latex": [
- "$\\displaystyle -0.520187019335947$"
- ],
- "text/plain": [
- "-0.5201870193359467"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"config = {\n",
" \"df\": df_sample,\n",
@@ -550,103 +440,10 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"id": "79c2a233",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Race | \n",
- " Gender | \n",
- " GPA | \n",
- " LSAT | \n",
- " avg_grade | \n",
- " preds | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2.9 | \n",
- " 43.0 | \n",
- " 0.59 | \n",
- " 0.315093 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2.7 | \n",
- " 31.0 | \n",
- " 0.25 | \n",
- " -0.262915 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 3.9 | \n",
- " 34.0 | \n",
- " 0.57 | \n",
- " 0.227097 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2.7 | \n",
- " 42.0 | \n",
- " -0.67 | \n",
- " 0.211845 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 1.0 | \n",
- " 1.0 | \n",
- " 2.9 | \n",
- " 14.0 | \n",
- " 0.04 | \n",
- " -0.936546 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Race Gender GPA LSAT avg_grade preds\n",
- "0 0.0 0.0 2.9 43.0 0.59 0.315093\n",
- "1 0.0 0.0 2.7 31.0 0.25 -0.262915\n",
- "2 0.0 1.0 3.9 34.0 0.57 0.227097\n",
- "3 0.0 0.0 2.7 42.0 -0.67 0.211845\n",
- "4 1.0 1.0 2.9 14.0 0.04 -0.936546"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"df_obs.head()"
]
@@ -661,124 +458,20 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"id": "56d88825",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Race | \n",
- " Gender | \n",
- " GPA | \n",
- " LSAT | \n",
- " avg_grade | \n",
- " preds_cf | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 2.544718 | \n",
- " 35.134519 | \n",
- " -0.275034 | \n",
- " 0.153322 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 2.344718 | \n",
- " 23.134519 | \n",
- " -0.538674 | \n",
- " 0.021344 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 1.0 | \n",
- " 1.0 | \n",
- " 3.544718 | \n",
- " 26.134519 | \n",
- " -0.749413 | \n",
- " 0.192129 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 1.0 | \n",
- " 0.0 | \n",
- " 2.344718 | \n",
- " 34.134519 | \n",
- " -1.466707 | \n",
- " 0.120357 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 0.0 | \n",
- " 1.0 | \n",
- " 3.255282 | \n",
- " 21.865481 | \n",
- " 1.132647 | \n",
- " 0.119023 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Race Gender GPA LSAT avg_grade preds_cf\n",
- "0 1.0 0.0 2.544718 35.134519 -0.275034 0.153322\n",
- "1 1.0 0.0 2.344718 23.134519 -0.538674 0.021344\n",
- "2 1.0 1.0 3.544718 26.134519 -0.749413 0.192129\n",
- "3 1.0 0.0 2.344718 34.134519 -1.466707 0.120357\n",
- "4 0.0 1.0 3.255282 21.865481 1.132647 0.119023"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"df_cf.head()"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"id": "a1176177",
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHvCAYAAADJvElfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzbElEQVR4nO3dd3xO9///8eeVHSNiJyGIvUftLZUKJTWK0rRojfZT1C5q01ZbVdTqtFoao0VVUVJpjdh7ljQEFTshQZCc3x9+rq9LhsRJRHncb7dzu+Wc9zivc851XTmv65z3uSyGYRgCAAAAABPsMjsAAAAAAP99JBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgCQjs6dO6e2bdsqd+7cslgsmjx5cmaHZEqRIkXUpUuXp3Z9AID0Q2IBIN2EhYXprbfeUtGiReXi4iI3NzfVrVtXU6ZM0Y0bNzI7PEnSjBkzNGfOnAzrv1+/flqzZo2GDh2q77//Xk2bNk3X/q9fv67Ro0crJCQkXfs1y2KxJDl5eHhkdmhPvISEBH366afy8fGRi4uLKlasqB9//DFVbefMmZPsvo+MjLTWu3TpkiZMmKAGDRoob968cnd3V61atbRw4cKM2iwAzyCHzA4AwNNh5cqVateunZydndWpUyeVL19et27d0saNGzVo0CAdPHhQX3/9dWaHqRkzZihPnjwZ9q34H3/8oZYtW2rgwIEZ0v/169c1ZswYSVKjRo0yZB2P6oUXXlCnTp1slrm6uqapj6NHj8rO7tn6zmvYsGH6+OOP1b17d1WvXl3Lly/Xq6++KovFog4dOqSqj7Fjx8rHx8dmmbu7u/Xv0NBQDRs2TC+++KKGDx8uBwcH/fTTT+rQoYMOHTpkfU0BgBkkFgBMCw8PV4cOHVS4cGH98ccf8vT0tJb17NlTx48f18qVKzMxwox1584dJSQkyMnJSefPn7c5oXuWlCxZUq+99pqpPpydnR9aJzY2VlmzZjW1nifFmTNnNHHiRPXs2VPTpk2TJHXr1k0NGzbUoEGD1K5dO9nb2z+0n2bNmqlatWrJlpcrV07Hjh1T4cKFrcveeecd+fn56ZNPPtF777331OxTAJnn2fpaCECG+PTTTxUTE6PvvvvOJqm4p3jx4urTp491/s6dOxo3bpyKFSsmZ2dnFSlSRO+//77i4uJs2lksFo0ePTpRfw/eh3/vdpBNmzapf//+yps3r7JmzarWrVvrwoULNu0OHjyoP//803q7yP3f+kdFRalv377y9vaWs7Ozihcvrk8++UQJCQnWOidOnJDFYtFnn32myZMnW7dhxowZslgsMgxD06dPt/YvSZcvX9bAgQNVoUIFZcuWTW5ubmrWrJn27t2baNtu3ryp0aNHq2TJknJxcZGnp6fatGmjsLAwnThxQnnz5pUkjRkzxrqOe/uoUaNGSV7F6NKli4oUKWKz7LPPPlOdOnWUO3duubq6qmrVqlqyZEmitukltetL7tj++eefeuedd5QvXz4VLFhQ0t3tLV++vA4dOiRfX19lyZJFBQoU0Keffpqo37i4OI0aNUrFixeXs7OzvL299d577yV6za1du1b16tWTu7u7smXLplKlSun999+3qTN16lSVK1dOWbJkUc6cOVWtWjUtWLDgkfbL8uXLdfv2bb3zzjvWZRaLRf/73/90+vRphYaGprqva9euKT4+PskyHx8fm6Ti3npatWqluLg4/fPPP48UPwDcjysWAExbsWKFihYtqjp16qSqfrdu3TR37ly1bdtWAwYM0NatWzV+/HgdPnxYS5cufeQ4evfurZw5c2rUqFE6ceKEJk+erF69elnvI588ebJ69+6tbNmyadiwYZKk/PnzS7p7i1HDhg115swZvfXWWypUqJA2b96soUOH6uzZs4kGYc+ePVs3b95Ujx495OzsrOeee07ff/+9Xn/99US3BP3zzz9atmyZ2rVrJx8fH507d05fffWVGjZsqEOHDsnLy0uSFB8frxYtWig4OFgdOnRQnz59dO3aNa1du1YHDhyQn5+fZs6cqf/9739q3bq12rRpI0mqWLFimvfVlClT9NJLLykwMFC3bt1SUFCQ2rVrp19//VXNmzdPc3/S3aTo4sWLNsuyZ88uZ2dn0+t75513lDdvXo0cOVKxsbHW5VeuXFHTpk3Vpk0btW/fXkuWLNHgwYNVoUIFNWvWTNLdMQwvvfSSNm7cqB49eqhMmTLav3+/Jk2apL///lvLli2TJB08eFAtWrRQxYoVNXbsWDk7O+v48ePatGmTdX3ffPON3n33XbVt21Z9+vTRzZs3tW/fPm3dulWvvvpqmvfZ7t27lTVrVpUpU8ZmeY0aNazl9erVe2g/vr6+iomJkZOTk/z9/TVx4kSVKFHioe3ujcPIkydPmmMHgEQMADAhOjrakGS0bNkyVfX37NljSDK6detms3zgwIGGJOOPP/6wLpNkjBo1KlEfhQsXNjp37mydnz17tiHJ8PPzMxISEqzL+/XrZ9jb2xtRUVHWZeXKlTMaNmyYqM9x48YZWbNmNf7++2+b5UOGDDHs7e2NiIgIwzAMIzw83JBkuLm5GefPn0/UjySjZ8+eNstu3rxpxMfH2ywLDw83nJ2djbFjx1qXzZo1y5BkfP7554n6vbddFy5cSHa/NGzYMMlt69y5s1G4cGGbZdevX7eZv3XrllG+fHnj+eeft1n+4L5OjqQkp9mzZ5ta371jW69ePePOnTuJtleSMW/ePOuyuLg4w8PDw3j55Zety77//nvDzs7O2LBhg037L7/80pBkbNq0yTAMw5g0aZIhybhw4UKy29myZUujXLlyD90fqdW8eXOjaNGiiZbHxsYakowhQ4ak2H7hwoVGly5djLlz5xpLly41hg8fbmTJksXIkyeP9TWbnEuXLhn58uUz6tevb2obAOAeboUCYMrVq1cl3f1mOjV+++03SVL//v1tlg8YMECSTI3F6NGjh/X2I0mqX7++4uPjdfLkyYe2Xbx4serXr6+cOXPq4sWL1snPz0/x8fH666+/bOq//PLL1tuSHsbZ2dk6IDk+Pl6XLl2y3maza9cua72ffvpJefLkUe/evRP1cf92pYf7B1VfuXJF0dHRql+/vk08adWyZUutXbvWZvL390+X9XXv3j3JsQbZsmWzGdfh5OSkGjVq2Nzas3jxYpUpU0alS5e2ObbPP/+8JGn9+vWS/m+w8/Lly21uf7ufu7u7Tp8+re3bt6cq7oe5ceNGkuNKXFxcrOUpad++vWbPnq1OnTqpVatWGjdunNasWaNLly7pww8/TLZdQkKCAgMDFRUVpalTp5rbCAD4/7gVCoApbm5uku7e350aJ0+elJ2dnYoXL26z3MPDQ+7u7qlKApJTqFAhm/mcOXNKunsi+zDHjh3Tvn37kk0Wzp8/bzP/4BN4UpKQkKApU6ZoxowZCg8Pt7kPPnfu3Na/w8LCVKpUKTk4ZPxH86+//qoPPvhAe/bssRlnYCaBKViwoPz8/DJkfcnt74IFCybqI2fOnNq3b591/tixYzp8+PBDj+0rr7yib7/9Vt26ddOQIUPUuHFjtWnTRm3btrUmhoMHD9a6detUo0YNFS9eXE2aNNGrr76qunXrphj//Y9+laQcOXLI1dVVrq6uicZ5SHdvK5PS/lQtSapXr55q1qypdevWJVund+/eWr16tebNm6dKlSqleR0AkBQSCwCmuLm5ycvLSwcOHEhTOzMnsMkNUE3u6TmGYTy0z4SEBL3wwgt67733kiwvWbKkzXxaTvg++ugjjRgxQm+++abGjRunXLlyyc7OTn379k32m/FHcW/w+IMe3F8bNmzQSy+9pAYNGmjGjBny9PSUo6OjZs+e/ciDkFOSHutLbn+n5pgnJCSoQoUK+vzzz5Os6+3tbV3HX3/9pfXr12vlypVavXq1Fi5cqOeff16///677O3tVaZMGR09elS//vqrVq9erZ9++kkzZszQyJEjU3xk64MPNZg9e7a6dOkiT09PrV+/XoZh2Lwnzp49K0nW8Tdp5e3traNHjyZZNmbMGM2YMUMff/yxXn/99UfqHwCSQmIBwLQWLVro66+/VmhoqGrXrp1i3cKFCyshIUHHjh2zGbB67tw5RUVF2Ty5JmfOnIqKirJpf+vWLetJ16NILqEpVqyYYmJikv3G3YwlS5bI19dX3333nc3yqKgom0GzxYoV09atW3X79m05Ojom2VdKCVnOnDmTfLrPg1eBfvrpJ7m4uGjNmjU2t+HMnj07VduTVo97fQ8qVqyY9u7dq8aNGz80obWzs1Pjxo3VuHFjff755/roo480bNgwrV+/3vrayJo1q1555RW98sorunXrltq0aaMPP/xQQ4cOtd7C9KC1a9fazJcrV06SVLlyZX377bc6fPiwypYtay3funWrtfxR/PPPP0leoZk+fbpGjx6tvn37avDgwY/UNwAkhzEWAEy79wz8bt266dy5c4nKw8LCNGXKFEnSiy++KEmJnrJ079vk+58QVKxYsURjG77++utkr1ikRtasWRMlK9Lde9VDQ0O1Zs2aRGVRUVG6c+fOI6/T3t4+0ZWExYsX68yZMzbLXn75ZV28eNH6ewb3u9c+S5Ys1pgeVKxYMR05csTmEbt79+61earRvXgsFovNfjxx4oT16Ujp7XGv70Ht27fXmTNn9M033yQqu3HjhvUpU5cvX05Ufu/E/t7tSpcuXbIpd3JyUtmyZWUYhm7fvp1sDH5+fjbTvSsYLVu2lKOjo2bMmGGtaxiGvvzySxUoUMDmSWtnz57VkSNHbNZz/7G+57ffftPOnTsT/er7woUL9e677yowMDDZqzcAYAZXLACYVqxYMS1YsECvvPKKypQpY/PL25s3b9bixYutv01QqVIlde7cWV9//bWioqLUsGFDbdu2TXPnzlWrVq3k6+tr7bdbt256++239fLLL+uFF17Q3r17tWbNGlOPxqxatapmzpypDz74QMWLF1e+fPn0/PPPa9CgQfrll1/UokULdenSRVWrVlVsbKz279+vJUuW6MSJE4+83hYtWmjs2LF64403VKdOHe3fv1/z589X0aJFbep16tRJ8+bNU//+/bVt2zbVr19fsbGxWrdund555x21bNlSrq6uKlu2rBYuXKiSJUsqV65cKl++vMqXL68333xTn3/+ufz9/dW1a1edP39eX375pcqVK2cdZC/dTd4+//xzNW3aVK+++qrOnz+v6dOnq3jx4jZjE9LL417fg15//XUtWrRIb7/9ttavX6+6desqPj5eR44c0aJFi7RmzRpVq1ZNY8eO1V9//aXmzZurcOHCOn/+vGbMmKGCBQtaH/napEkTeXh4qG7dusqfP78OHz6sadOmqXnz5ql+gMH9ChYsqL59+2rChAm6ffu2qlevrmXLlmnDhg2aP3++za1eQ4cO1dy5cxUeHm79XZI6deqoSpUqqlatmnLkyKFdu3Zp1qxZ8vb2tvn9jW3btqlTp07KnTu3GjdurPnz59vEUadOnUSvRwBIs8x7IBWAp83ff/9tdO/e3ShSpIjh5ORkZM+e3ahbt64xdepU4+bNm9Z6t2/fNsaMGWP4+PgYjo6Ohre3tzF06FCbOoZhGPHx8cbgwYONPHnyGFmyZDH8/f2N48ePJ/tI0u3bt9u0X79+vSHJWL9+vXVZZGSk0bx5cyN79uyGJJvHs167ds0YOnSoUbx4ccPJycnIkyePUadOHeOzzz4zbt26ZRjG/z1udsKECUnuAyXzuNkBAwYYnp6ehqurq1G3bl0jNDQ0ycfDXr9+3Rg2bJh133h4eBht27Y1wsLCrHU2b95sVK1a1XByckr06NkffvjBKFq0qOHk5GRUrlzZWLNmTZKPm/3uu++MEiVKGM7Ozkbp0qWN2bNnG6NGjTIe/LeQlsfNPrjd6bG+5I6tYdx93GxSj35Nantv3bplfPLJJ0a5cuUMZ2dnI2fOnEbVqlWNMWPGGNHR0YZhGEZwcLDRsmVLw8vLy3BycjK8vLyMjh072jyC+KuvvjIaNGhg5M6d23B2djaKFStmDBo0yNrHo4iPjzc++ugjo3DhwoaTk5NRrlw544cffkhyuyQZ4eHh1mXDhg0zKleubOTIkcNwdHQ0ChUqZPzvf/8zIiMjbdre24/JTfceCwwAZlgMIxWjGgEAAAAgBYyxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0EgsAAAAAppFYAAAAADCNxAIAAACAaSQWAAAAAEwjsQAAAABgGokFAAAAANNILAAAAACYRmIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYA8B9jsVg0evToDOk7JCREFotFS5YsyZD+nwRdunRRtmzZUlU3I/c1ADxtSCwAIJPNmTNHFovFZsqXL598fX21atWqzA7viREfHy83Nze1bNkyUdmkSZNksVjUuXPnRGUjR46UxWLR33//bTqGzZs3a/To0YqKijLdFwA8bRwyOwAAwF1jx46Vj4+PDMPQuXPnNGfOHL344otasWKFWrRokdnhZTp7e3vVqlVLmzdvTlS2adMmOTg4aNOmTUmW5cuXTyVLlkzzOm/cuCEHh//7V7l582aNGTNGXbp0kbu7e5r7A4CnGVcsAOAJ0axZM7322mt6/fXXNXDgQG3YsEGOjo768ccfMzs0U2JjY/XPP/+kS1/16tXTxYsXdfjwYZvlmzZtUvv27RUWFqbIyEjr8jt37mjr1q2qW7fuI63PxcXFJrEAACSPxAIAnlDu7u5ydXV96IntyZMn9c4776hUqVJydXVV7ty51a5dO504cSJR3aioKPXr109FihSRs7OzChYsqE6dOunixYvJ9h8XF6cWLVooR44cSV4teJgLFy6oePHiev7557VgwQLdvHkzzX3cU69ePUmyuTLxzz//KDIyUr169ZKLi4tN2Z49exQbG2ttd78zZ86oVatWypYtm/LmzauBAwcqPj7eps79YyxGjx6tQYMGSZJ8fHyst63dv59/+OEHVa1aVa6ursqVK5c6dOigU6dOPfL2AsB/CYkFADwhoqOjdfHiRV24cEEHDx7U//73P8XExOi1115Lsd327du1efNmdejQQV988YXefvttBQcHq1GjRrp+/bq1XkxMjOrXr6+pU6eqSZMmmjJlit5++20dOXJEp0+fTrLvGzduKCAgQJs3b9a6detUp06dNG+Xp6enPvvsM124cEGBgYHy9PRUr169tHv37jT3VatWLTk4OGjjxo3WZZs2bVLWrFlVvXp1VatWzSaxuPf3g4lFfHy8/P39lTt3bn322Wdq2LChJk6cqK+//jrZdbdp00YdO3aUdHdMx/fff6/vv/9eefPmlSR9+OGH6tSpk0qUKKHPP/9cffv2VXBwsBo0aMCYDADPBgMAkKlmz55tSEo0OTs7G3PmzElUX5IxatQo6/z169cT1QkNDTUkGfPmzbMuGzlypCHJ+PnnnxPVT0hIMAzDMNavX29IMhYvXmxcu3bNaNiwoZEnTx5j9+7d5jfUMIxt27YZb7/9tuHu7m5IMqpUqWJMnz7duHLlSqr7qF69ulGsWDHr/FtvvWX4+voahmEY7733nlG9enVrWdu2bY0sWbIYt2/fti7r3LmzIckYO3asTb9VqlQxqlatarPswX09YcIEQ5IRHh5uU+/EiROGvb298eGHH9os379/v+Hg4JBoOQA8jbhiAQBPiOnTp2vt2rVau3atfvjhB/n6+qpbt276+eefU2zn6upq/fv27du6dOmSihcvLnd3d+3atcta9tNPP6lSpUpq3bp1oj4sFovNfHR0tJo0aaIjR44oJCRElStXNrdx/1/16tU1c+ZMnT17VvPnz1euXLnUq1cveXp66rXXXlNERMRD+6hXr57NWIpNmzZZr6TUrVtXu3fvtl6p2bRpk2rWrJnk7WRvv/22zXz9+vUfeSzIzz//rISEBLVv314XL160Th4eHipRooTWr1//SP0CwH8JiQUAPCFq1KghPz8/+fn5KTAwUCtXrlTZsmXVq1cv3bp1K9l2N27c0MiRI+Xt7S1nZ2flyZNHefPmVVRUlKKjo631wsLCVL58+VTF0rdvX23fvl3r1q1TuXLlUtUmMjLSZrpx40aydV1cXPTqq69q9erVmjJlihISEjR//nybRCg594+ziIqK0sGDB62Ds+vUqaM7d+5o27ZtCg8P19mzZ5McX+Hi4mK9hemenDlz6sqVK6na1gcdO3ZMhmGoRIkSyps3r810+PBhnT9//pH6BYD/Eh51AQBPKDs7O/n6+mrKlCk6duxYsif4vXv31uzZs9W3b1/Vrl1bOXLkkMViUYcOHZSQkPBI627ZsqWCgoL08ccfa968ebKze/j3UJ6enjbzs2fPVpcuXZKse/jwYc2ePVvff/+9IiMjVa5cOXXt2lW+vr4PXc+9RGHjxo3KkiWLJKl27dqSpDx58qhEiRLauHGjddB0UomFvb39Q9eTFgkJCbJYLFq1alWSfaf2B/kA4L+MxAIAnmB37tyRdHfgdXKWLFmizp07a+LEidZlN2/eTDRguFixYjpw4ECq1tuqVSs1adJEXbp0Ufbs2TVz5syHtlm7dq3N/IOJUHR0tBYuXKhZs2Zp69atypYtm1555RV169ZNtWrVSlVckpQvXz5r8pA1a1aVLVvW5jcl6tSpo02bNun06dOyt7e3Jh3p4cFbxu4pVqyYDMOQj4/PI/1eBgA8DbgVCgCeULdv39bvv/8uJycnlSlTJtl69vb2MgzDZtnUqVMTPTr15Zdf1t69e7V06dJEfTzYXpI6deqkL774Ql9++aUGDx780Hjv3cZ1b7p3BePatWt67bXX5OnpqbfeeksWi0Xffvutzp49q2+//TZNScU99erV0549e/T7778nelJVnTp1FBoaqg0bNqhixYrKnj17mvtPTtasWSUpUdLWpk0b2dvba8yYMYn2pWEYunTpUrrFAABPKq5YAMATYtWqVTpy5Igk6fz581qwYIGOHTumIUOGyM3NLdl2LVq00Pfff68cOXKobNmyCg0N1bp165Q7d26beoMGDdKSJUvUrl07vfnmm6pataouX76sX375RV9++aUqVaqUqO9evXrp6tWrGjZsmHLkyKH3338/zdt16dIlrVmzRm+//ba6du2a6jEbKalXr55mz56t7du3q2fPnjZlderUUXR0tKKjo9W7d2/T67pf1apVJUnDhg1Thw4d5OjoqICAABUrVkwffPCBhg4dqhMnTqhVq1bKnj27wsPDtXTpUvXo0UMDBw5M11gA4ElDYgEAT4iRI0da/3ZxcVHp0qU1c+ZMvfXWWym2mzJliuzt7TV//nzdvHlTdevW1bp16+Tv729TL1u2bNqwYYNGjRqlpUuXau7cucqXL58aN26sggULJtv/+++/r+joaGty8eCJ/MMUKFBAZ86ckZOTU5rapeT+cRMPXrEoV66c3N3dFRUVleT4CjOqV6+ucePG6csvv9Tq1auVkJCg8PBwZc2aVUOGDFHJkiU1adIkjRkzRpLk7e2tJk2a6KWXXkrXOADgSWQxkrr+DQAAAABpwBgLAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTnorfsUhISNC///6r7Nmzy2KxZHY4AAAAwFPBMAxdu3ZNXl5esrNL+ZrEU5FY/Pvvv/L29s7sMAAAAICn0qlTp1L8MVXpKUkssmfPLunuBru5uWVyNAAAAMDT4erVq/L29raeb6fkqUgs7t3+5ObmRmIBAAAApLPUDDdg8DYAAAAA00gsAAAAAJhGYgEAAADAtKdijEVqxcfH6/bt25kdBgBkKEdHR9nb22d2GACAZ8wzkVgYhqHIyEhFRUVldigA8Fi4u7vLw8OD3/YBADw2z0RicS+pyJcvn7JkycI/WgBPLcMwdP36dZ0/f16S5OnpmckRAQCeFU99YhEfH29NKnLnzp3Z4QBAhnN1dZUknT9/Xvny5eO2KADAY/HUD96+N6YiS5YsmRwJADw+9z7zGFcGAHhcnvrE4h5ufwLwLOEzDwDwuD0ziQUAAACAjENi8ZQoUqSIJk+enNlhpJv/+vY8jviDg4NVpkwZxcfHZ+h6ngQnTpyQxWLRnj170q1Pi8WiZcuWJVteq1Yt/fTTT+m2PgAAnnZpGrw9fvx4/fzzzzpy5IhcXV1Vp04dffLJJypVqpS1zs2bNzVgwAAFBQUpLi5O/v7+mjFjhvLnz59sv4ZhaNSoUfrmm28UFRWlunXraubMmSpRosSjb1kqBARkaPeJrFiR9janTp3SqFGjtHr1al28eFGenp5q1aqVRo4c+UwPRr9+/brGjRunRYsW6cyZM8qePbvKli2r/v37q2XLlpkd3mPx3nvvafjw4daBuXPmzNEbb7wh6e5Jc/78+dWgQQNNmDBBhQoVysxQU9SlSxfNnTvXOp8rVy5Vr15dn376qSpWrJhpcQ0fPlz9+vVT69atZWfHdzAAADxMmv5b/vnnn+rZs6e2bNmitWvX6vbt22rSpIliY2Otdfr166cVK1Zo8eLF+vPPP/Xvv/+qTZs2Kfb76aef6osvvtCXX36prVu3KmvWrPL399fNmzcfbaueEv/884+qVaumY8eO6ccff9Tx48f15ZdfKjg4WLVr19bly5czLbb4+HglJCRk2vrffvtt/fzzz5o6daqOHDmi1atXq23btrp06VKmxfQ4bdy4UWFhYXr55Zdtlru5uens2bM6c+aMfvrpJx09elTt2rXLpChTr2nTpjp79qzOnj2r4OBgOTg4qEWLFpkaU7NmzXTt2jWtWrUqU+MAAOC/Ik2JxerVq9WlSxeVK1dOlSpV0pw5cxQREaGdO3dKkqKjo/Xdd9/p888/1/PPP6+qVatq9uzZ2rx5s7Zs2ZJkn4ZhaPLkyRo+fLhatmypihUrat68efr3339TvE3hWdCzZ085OTnp999/V8OGDVWoUCE1a9ZM69at05kzZzRs2DCb+teuXVPHjh2VNWtWFShQQNOnT7eWGYah0aNHq1ChQnJ2dpaXl5feffdda3lcXJwGDhyoAgUKKGvWrKpZs6ZCQkKs5XPmzJG7u7t++eUXlS1bVs7Ozvr222/l4uKS6IcH+/Tpo+eff946v3HjRtWvX1+urq7y9vbWu+++a5OMnj9/XgEBAXJ1dZWPj4/mz5//0H3zyy+/6P3339eLL76oIkWKqGrVqurdu7fefPNNa53vv/9e1apVU/bs2eXh4aFXX33V+mx/SQoJCZHFYtGaNWtUpUoVubq66vnnn9f58+e1atUqlSlTRm5ubnr11Vd1/fp1a7tGjRqpV69e6tWrl3LkyKE8efJoxIgRMgwj2XijoqLUrVs35c2bV25ubnr++ee1d+9ea/nevXvl6+ur7Nmzy83NTVWrVtWOHTuS7S8oKEgvvPCCXFxcbJZbLBZ5eHjI09NTderUUdeuXbVt2zZdvXrVWmfw4MEqWbKksmTJoqJFi2rEiBGJnhy0YsUKVa9eXS4uLsqTJ49at25tLXvYa+VRODs7y8PDQx4eHqpcubKGDBmiU6dO6cKFC0nWj4+PV9euXeXj4yNXV1eVKlVKU6ZMSVRv1qxZKleunJydneXp6alevXolG8OoUaPk6empffv2SZLs7e314osvKigoyNS2AQDwrDB1fT86OlrS3VsXJGnnzp26ffu2/Pz8rHVKly6tQoUKKTQ0NMk+wsPDFRkZadMmR44cqlmzZrJt4uLidPXqVZvpaXP58mWtWbNG77zzjvWZ9Pd4eHgoMDBQCxcutDmZnTBhgipVqqTdu3dryJAh6tOnj9auXStJ+umnnzRp0iR99dVXOnbsmJYtW6YKFSpY2/bq1UuhoaEKCgrSvn371K5dOzVt2lTHjh2z1rl+/bo++eQTffvttzp48KACAwPl7u5ucx96fHy8Fi5cqMDAQElSWFiYmjZtqpdffln79u3TwoULtXHjRpsTvC5duujUqVNav369lixZohkzZtgkAEnx8PDQb7/9pmvXriVb5/bt2xo3bpz27t2rZcuW6cSJE+rSpUuieqNHj9a0adO0efNmnTp1Su3bt9fkyZO1YMECrVy5Ur///rumTp1q02bu3LlycHDQtm3bNGXKFH3++ef69ttvk42lXbt21oRl586deu6559S4cWPrVafAwEAVLFhQ27dv186dOzVkyBA5Ojom29+GDRtUrVq1FPfR+fPntXTpUtnb29v8jkH27Nk1Z84cHTp0SFOmTNE333yjSZMmWctXrlyp1q1b68UXX9Tu3bsVHBysGjVqWMsf9lqJiIhQtmzZUpw++uijZOOOiYnRDz/8oOLFiyd7u19CQoIKFiyoxYsX69ChQxo5cqTef/99LVq0yFpn5syZ6tmzp3r06KH9+/frl19+UfHixRP1ZRiGevfurXnz5mnDhg02t1/VqFFDGzZsSHE/AwCAux75B/ISEhLUt29f1a1bV+XLl5d09xeunZyc5O7ublM3f/78ioyMTLKfe8sfHIORUpvx48drzJgxjxr6f8KxY8dkGIbKlCmTZHmZMmV05coVXbhwQfny5ZMk1a1bV0OGDJEklSxZUps2bdKkSZP0wgsvKCIiQh4eHvLz85Ojo6MKFSpkPVmMiIjQ7NmzFRERIS8vL0nSwIEDtXr1as2ePdt6Enj79m3NmDFDlSpVssbRoUMHLViwQF27dpV0d0BxVFSU9Rad8ePHKzAwUH379pUklShRQl988YUaNmyomTNnKiIiQqtWrdK2bdtUvXp1SdJ3332X7Hbf8/XXXyswMFC5c+dWpUqVVK9ePbVt21Z169a11rn/6kXRokX1xRdfqHr16oqJiVG2bNmsZR988IG1XdeuXTV06FCFhYWpaNGikqS2bdtq/fr1Gjx4sLWNt7e3Jk2aJIvFolKlSmn//v2aNGmSunfvnijWjRs3atu2bTp//rycnZ0lSZ999pmWLVumJUuWqEePHoqIiNCgQYNUunRp635KycmTJ63H6n7R0dHKli2b9deXJendd99V1qxZrXWGDx9u/btIkSIaOHCggoKC9N5770mSPvzwQ3Xo0MHmPXbvmKfmteLl5fXQQdb3voy459dff7Uek9jYWHl6eurXX39NdmyDo6OjTXw+Pj4KDQ3VokWL1L59e0l3j+uAAQPUp08fa717r7F77ty5o9dee027d+/Wxo0bVaBAAZtyLy8vnTp1SgkJCc/MOItHGXv2KOPHADwBQlL5hm/Emxyp88iJRc+ePXXgwAFt3LgxPeNJlaFDh6p///7W+atXr8rb2/uxx/E4pHR7zYNq166daP7ek4natWunyZMnq2jRomratKlefPFFBQQEyMHBQfv371d8fLxKlixp0z4uLs7mG2MnJ6dEg2kDAwNVq1Yt/fvvv/Ly8tL8+fPVvHlza3K5d+9e7du3z+b2JsMwlJCQoPDwcP39999ycHBQ1apVreWlS5dOlJw+qEGDBvrnn3+0ZcsWbd68WcHBwZoyZYrGjBmjESNGSLp7BW306NHau3evrly5Yh0TEhERobJly1r7un+b8ufPb71F6P5l27Zts1l/rVq1bH4noHbt2po4caLi4+MT/crx3r17FRMTk+jb9xs3bigsLEyS1L9/f3Xr1k3ff/+9/Pz81K5dOxUrVizZ7b9x40ai26Cku1cjdu3apdu3b2vVqlWaP3++PvzwQ5s6Cxcu1BdffKGwsDDFxMTozp07cnNzs5bv2bMnyQRJUqpeKw4ODkleGUiJr6+vZs6cKUm6cuWKZsyYoWbNmmnbtm0qXLhwkm2mT5+uWbNmKSIiQjdu3NCtW7dUuXJlSXev1vz7779q3Lhxiuvt16+fnJ2dtWXLFuXJkydRuaurqxISEhQXF5foyiEAALD1SF/B9erVS7/++qvWr1+vggULWpd7eHjo1q1bie65P3funDw8PJLs697yc+fOpbqNs7Oz3NzcbKanTfHixWWxWHT48OEkyw8fPqycOXMqb968qerP29tbR48e1YwZM+Tq6qp33nlHDRo00O3btxUTEyN7e3vt3LlTe/bssU6HDx+2uW/d1dU10Y9uVa9eXcWKFVNQUJBu3LihpUuXWm+Dku7e1vLWW2/Z9Lt3714dO3YsxRPn1HB0dFT9+vU1ePBg/f777xo7dqzGjRunW7duKTY2Vv7+/nJzc9P8+fO1fft2LV26VJJ069atRP3cY7FYEt2CZLFYTA1Uj4mJkaenp80+2LNnj44ePapBgwZJuns71sGDB9W8eXP98ccfKlu2rDXepOTJk0dXrlxJtNzOzk7FixdXmTJl1L9/f9WqVUv/+9//rOWhoaEKDAzUiy++qF9//VW7d+/WsGHDbPZJSifQqXmtPMqtUFmzZlXx4sVVvHhxVa9eXd9++61iY2P1zTffJBlHUFCQBg4cqK5du+r333/Xnj179MYbb1i3I7VJwAsvvKAzZ85ozZo1SZZfvnxZWbNmJakAACAV0nTF4t69yEuXLlVISIh8fHxsyqtWrSpHR0cFBwdbb4U5evSoIiIiEn2bfo+Pj488PDwUHBxs/bbx6tWr2rp1q80J0bMmd+7ceuGFFzRjxgz169fP5sQmMjJS8+fPV6dOnWxO9B8cIL9lyxabW4pcXV0VEBCggIAA9ezZU6VLl9b+/ftVpUoVxcfH6/z586pfv36aYw0MDNT8+fNVsGBB2dnZqXnz5tay5557TocOHUr2G+zSpUvrzp072rlzp/U2laNHjyZKTlOjbNmyunPnjm7evKljx47p0qVL+vjjj61Xs1IaDJ1WW7dutZnfsmWLSpQokehqhXR3H0RGRsrBwUFFihRJts+SJUuqZMmS6tevnzp27KjZs2fbDJq+X5UqVXTo0KGHxjlkyBAVK1ZM/fr103PPPafNmzercOHCNgP/T548adOmYsWKCg4Otj669sH1Puy18ii3Qj3IYrHIzs5ON27cSLJ806ZNqlOnjt555x3rsntXf6S7V26KFCmi4OBg+fr6Jruel156SQEBAXr11Vdlb2+vDh062JQfOHBAVapUSTFWAABwV5oSi549e2rBggVavny5smfPbh0DkSNHDrm6uipHjhzq2rWr+vfvr1y5csnNzU29e/dW7dq1VatWLWs/pUuX1vjx49W6dWtZLBb17dtXH3zwgUqUKCEfHx+NGDFCXl5eatWqVbpu7H/NtGnTVKdOHfn7++uDDz6Qj4+PDh48qEGDBqlAgQKJbnHZtGmTPv30U7Vq1Upr167V4sWLtXLlSkl3n+oUHx+vmjVrKkuWLPrhhx/k6uqqwoULK3fu3AoMDFSnTp00ceJEValSRRcuXFBwcLAqVqxokygkJTAwUKNHj9aHH36otm3bWscRSHefQFSrVi316tVL3bp1U9asWXXo0CGtXbtW06ZNU6lSpdS0aVO99dZbmjlzphwcHNS3b9+HfkPcqFEjdezYUdWqVVPu3Ll16NAhvf/++/L19ZWbm5sKFSokJycnTZ06VW+//bYOHDigcePGPeKRSCwiIkL9+/fXW2+9pV27dmnq1KmaOHFiknX9/PxUu3ZttWrVSp9++qlKliypf//91zpIuly5cho0aJDatm0rHx8fnT59Wtu3b0/0KNn7+fv72/z2Q3K8vb3VunVrjRw5Ur/++qtKlCihiIgIBQUFqXr16lq5cmWiKyOjRo1S48aNVaxYMXXo0EF37tzRb7/9Zn2a1MNeK49yK1RcXJz18+TKlSuaNm2aYmJiFJDMDf8lSpTQvHnztGbNGvn4+Oj777/X9u3bbb7sGD16tN5++23ly5fP+ujYTZs2qXfv3jZ9tW7dWt9//71ef/11OTg4qG3bttayDRs2qEmTJmnaFgAAnlVpuhVq5syZio6OVqNGjeTp6WmdFi5caK0zadIktWjRQi+//LIaNGggDw8P/fzzzzb9HD161PpEKenuD3317t1bPXr0sA6uXb16dZL3kD9LSpQooR07dqho0aJq3769ihUrph49esjX11ehoaGJvvUdMGCAduzYoSpVquiDDz7Q559/Ln9/f0mSu7u7vvnmG9WtW1cVK1bUunXrtGLFCut98bNnz1anTp00YMAAlSpVSq1atdL27dtT9cNqxYsXV40aNbRv3z6b26Cku99+//nnn/r7779Vv359ValSRSNHjrQZeDx79mx5eXmpYcOGatOmjXr06GEdkJ6ceyfWTZo0UZkyZdS7d2/5+/tbnwqUN29ezZkzR4sXL1bZsmX18ccf67PPPnv4Tk+lTp066caNG6pRo4Z69uypPn36qEePHknWtVgs+u2339SgQQO98cYbKlmypDp06KCTJ08qf/78sre316VLl9SpUyeVLFlS7du3V7NmzVJ8QEFgYKAOHjyoo0ePPjTWfv36aeXKldq2bZteeukl9evXT7169VLlypW1efNm65iUexo1aqTFixfrl19+UeXKlfX888/bjDEx81pJzurVq62fJzVr1tT27du1ePFiNWrUKMn6b731ltq0aaNXXnlFNWvW1KVLl2yuXkhS586dNXnyZM2YMUPlypVTixYtbJ5ydr+2bdtq7ty5ev31162fV2fOnNHmzZuTvHIDAAASsxhpGR38hLp69apy5Mih6OjoROMtbt68qfDwcPn4+DzziQrSR6NGjVS5cmXrwPjMMmjQIF29elVfffVVpsbxtBo8eLCuXLmir7/+OrNDeSSP+tnHU6GAZwhPhUIqpHSe/aBn4/mJwFNo2LBhKly4cKb+AvrTLF++fOl6+xwAAE+7R37cLIDM5e7urvfffz+zw3hqDRgwILNDAADgP4XEAkijkJCQzA4BAADgicOtUAAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0EgsAAAAAppFYINNs2rRJFSpUkKOjo1q1apXZ4aToxIkTslgs2rNnT2aH8kgeV/wjRoxQjx49MnQdT6qQkBBZLBZFRUUlW2f06NGqXLmy6XUNGTJEvXv3Nt0PAADp6dn+HYvU/pR9emm0Is1NIiMj9eGHH2rlypU6c+aM8uXLp8qVK6tv375q3LhxBgSZPIvFoqVLl6ZbEtC/f39VrlxZq1atUrZs2dKlz/SOMS3Cw8M1bNgwhYSE6PLly8qTJ4+qVq2qTz75RKVLl37s8TxukZGRmjJlivbv329d1qVLF82dO1eS5ODgoIIFC6pdu3YaO3asXFxcMivUFHXo0EFRUVFavXq1ddnq1avVrFkzjRo1SqNHj7YuHz16tGbNmqWIiIhU9T1w4ECbhKBLly6KiorSsmXL0hTjwIEDVbRoUfXr109FixZNU1sAADIKVyyeYCdOnFDVqlX1xx9/aMKECdq/f79Wr14tX19f9ezZM7PDe2S3b9+WJIWFhen5559XwYIF5e7unrlBmXT79m298MILio6O1s8//6yjR49q4cKFqlChQorfYD9Nvv32W9WpU0eFCxe2Wd60aVOdPXtW//zzjyZNmqSvvvpKo0aNyqQoH87X11ebNm3SnTt3rMvWr18vb2/vRD+OuH79evn6+qa672zZsil37tymY8yTJ4/8/f01c+ZM030BAJBeSCyeYO+8844sFou2bduml19+WSVLllS5cuXUv39/bdmyxVovIiJCLVu2VLZs2eTm5qb27dvr3Llz1vIuXbok+ga/b9++atSokXW+UaNGevfdd/Xee+8pV65c8vDwsPlmtkiRIpKk1q1by2KxWOclafny5Xruuefk4uKiokWLasyYMTYnZRaLRTNnztRLL72krFmzqnv37rJYLLp06ZLefPNNWSwWzZkzR/Hx8eratat8fHzk6uqqUqVKacqUKYn2y6xZs1SuXDk5OzvL09NTvXr1SjHG1Gz/6tWrVa9ePbm7uyt37txq0aKFwsLCkjkyiR08eFBhYWGaMWOGatWqpcKFC6tu3br64IMPVKtWLWu9wYMHq2TJksqSJYuKFi2qESNGWBMt6f9ulZk1a5YKFSqkbNmy6Z133lF8fLw+/fRTeXh4KF++fPrwww9t1n9vHzdr1kyurq4qWrSolixZkmLMBw4cULNmzZQtWzblz59fr7/+ui5evGgtX7JkiSpUqCBXV1flzp1bfn5+io2NTba/oKAgBQQkvgro7OwsDw8PeXt7q1WrVvLz89PatWut5ZcuXVLHjh1VoEABZcmSRRUqVNCPP/5o00dCQoI+/fRTFS9eXM7OzipUqJDNPjh16pTat28vd3d35cqVSy1bttSJEydS3P7k+Pr6KiYmRjt27LAuCwkJ0ZAhQ7R161bdvHlTknTz5k1t3bo1UWKxc+dOVatWTVmyZFGdOnV09OhRa9n9t0KNHj1ac+fO1fLly2WxWGSxWKyJS2q2JyAgQEFBQY+0jQAAZAQSiyfU5cuXtXr1avXs2VNZs2ZNVH7vG/6EhAS1bNlSly9f1p9//qm1a9fqn3/+0SuvvJLmdc6dO1dZs2bV1q1b9emnn2rs2LHWE8Dt27dLkmbPnq2zZ89a5zds2KBOnTqpT58+OnTokL766ivNmTMn0Ynv6NGj1bp1a+3fv19jxozR2bNn5ebmpsmTJ+vs2bN65ZVXlJCQoIIFC2rx4sU6dOiQRo4cqffff1+LFi2y9jNz5kz17NlTPXr00P79+/XLL7+oePHiKcaYGrGxserfv7927Nih4OBg2dnZqXXr1kpISEhV+7x588rOzk5LlixRfHx8svWyZ8+uOXPm6NChQ5oyZYq++eYbTZo0yaZOWFiYVq1apdWrV+vHH3/Ud999p+bNm+v06dP6888/9cknn2j48OHaunWrTbsRI0bo5Zdf1t69exUYGKgOHTro8OHDScYRFRWl559/XlWqVNGOHTu0evVqnTt3Tu3bt5cknT17Vh07dtSbb76pw4cPKyQkRG3atJFhGEn2d/nyZR06dEjVqlVLcT8dOHBAmzdvlpOTk3XZzZs3VbVqVa1cuVIHDhxQjx499Prrr2vbtm3WOkOHDtXHH3+sESNG6NChQ1qwYIHy588v6e7VIn9/f2XPnl0bNmzQpk2blC1bNjVt2lS3bt2SJM2fP1/ZsmVLcdqwYYMkqWTJkvLy8tL69eslSdeuXdOuXbvUrl07FSlSRKGhoZKkzZs3Ky4uLlFiMWzYME2cOFE7duyQg4OD3nzzzST3xcCBA9W+fXvrFZ2zZ8+qTp06qdoeSapRo4ZOnz79yAkUAADp7dkeY/EEO378uAzDeOi9+cHBwdq/f7/Cw8Pl7e0tSZo3b57KlSun7du3q3r16qleZ8WKFa23qJQoUULTpk1TcHCwXnjhBeXNm1fS3YTGw8PD2mbMmDEaMmSIOnfuLEkqWrSoxo0bp/fee8/mdpdXX31Vb7zxhs36LBaLcuTIkai/e3x8fBQaGqpFixZZT3g/+OADDRgwQH369LHWu7eNycWYGi+//LLN/KxZs5Q3b14dOnRI5cuXf2j7AgUK6IsvvtB7772nMWPGqFq1avL19VVgYKDNPfDDhw+3/l2kSBENHDhQQUFBeu+996zLExISNGvWLGXPnl1ly5aVr6+vjh49qt9++012dnYqVaqUPvnkE61fv141a9a0tmvXrp26desmSRo3bpzWrl2rqVOnasaMGYninTZtmqpUqaKPPvrIZpu9vb31999/KyYmRnfu3FGbNm2stzZVqFAh2e2PiIiQYRjy8vJKVPbrr78qW7ZsunPnjuLi4mRnZ6dp06bZ7LuBAwda53v37q01a9Zo0aJFqlGjhq5du6YpU6Zo2rRp1tdZsWLFVK9ePUnSwoULlZCQoG+//VYWi0XS3eTS3d1dISEhatKkiV566SWbfZWUAgUKWP/29fVVSEiIhg4dqg0bNqhkyZLKmzevGjRooJCQEGu5j49Polu/PvzwQzVs2FDS3UHWzZs3182bNxONKcmWLZtcXV0VFxdn83r94YcfHro9kqz7+uTJkzZXEAEAyCwkFk+o5L4ZftDhw4fl7e1tTSokqWzZsnJ3d9fhw4fTnFjcz9PTU+fPn0+xzd69e7Vp0yabKxTx8fG6efOmrl+/rixZskjSQ7/Jvmf69OnWwbA3btzQrVu3rLeOnD9/Xv/++2+GDFo/duyYRo4cqa1bt+rixYvWKxURERGpSiwkqWfPnurUqZNCQkK0ZcsWLV68WB999JF++eUXvfDCC5LungR/8cUXCgsLs568u7m52fRTpEgRZc+e3TqfP39+2dvby87OzmbZg8emdu3aieaTewrU3r17tX79+iQHzYeFhalJkyZq3LixKlSoIH9/fzVp0kRt27ZVzpw5k+zvxo0bkpTkgGxfX1/NnDlTsbGxmjRpkhwcHGwSufj4eH300UdatGiRzpw5o1u3bikuLs762jl8+LDi4uKSPe579+7V8ePHbfaZdPdKyL3b2bJnz56oPCWNGjVS3759dfv2bYWEhFhvm2vYsKG++uorSbImGA+6/33k6ekp6e5rt1ChQqlad2q2R5JcXV0lSdevX0/1dgEAkJFILJ5QJUqUkMVi0ZEjR0z3ZWdnlyhRuf++/nscHR1t5i0Wy0NvBYqJidGYMWPUpk2bRGX3n2QmdTvXg4KCgjRw4EBNnDhRtWvXVvbs2TVhwgTrLT/3TqTSKjXbHxAQoMKFC+ubb76Rl5eXEhISVL58eZtbT1Ije/bsCggIUEBAgD744AP5+/vrgw8+0AsvvKDQ0FAFBgZqzJgx8vf3V44cORQUFKSJEyfa9JHUcXiUY5OSmJgYBQQE6JNPPklU5unpKXt7e61du1abN2/W77//rqlTp2rYsGHaunWrfHx8ErXJkyePJOnKlSvWK0f3ZM2a1Xq72qxZs1SpUiV999136tq1qyRpwoQJmjJliiZPnqwKFSooa9as6tu3r3XfP+y4x8TEqGrVqpo/f36isnuxzJ8/X2+99VaK/axatUr169eXdDcZio2N1fbt27V+/XoNGjRI0t3E4s0339Tly5e1devWJPu8/1jdu+KQlmOVmu2R7t5+9uAyAAAyE4nFEypXrlzy9/fX9OnT9e677yY6MY+KipK7u7vKlCmjU6dO6dSpU9arFocOHVJUVJTKli0r6e6Jx4EDB2za79mzJ9HJ6sM4OjomGj/w3HPP6ejRo9YTRzM2bdqkOnXq6J133rEuu/8b2uzZs6tIkSIKDg5O9kk8ScX4sO2/dOmSjh49qm+++cZ6Yrlx40bT22OxWFS6dGlt3rxZ0t178gsXLqxhw4ZZ65w8edL0eu7ZsmWLOnXqZDNfpUqVJOs+99xz+umnn1SkSBE5OCT9MWCxWFS3bl3VrVtXI0eOVOHChbV06VL1798/Ud1ixYrJzc1Nhw4dUsmSJZON0c7OTu+//7769++vV199Va6urtq0aZNatmyp1157TdLdk/C///7b+votUaKEXF1dFRwcbL3V68FtWbhwofLly5fo6s89ab0VqlixYvL29tYvv/yiPXv2WG9tKlCggAoUKKCJEyfq1q1baXoiVFKcnJySfE89bHuku+NVHB0dVa5cOVMxAACQXhi8/QSbPn264uPjVaNGDf300086duyYDh8+rC+++MJ624ufn58qVKigwMBA7dq1S9u2bVOnTp3UsGFD6+1Hzz//vHbs2KF58+bp2LFjGjVqVKIT7dS4d1IfGRmpK1euSJJGjhypefPmacyYMTp48KAOHz6soKAgm7EEqVWiRAnt2LFDa9as0d9//60RI0YkGoA9evRoTZw4UV988YWOHTumXbt2aerUqSnG+LDtz5kzp3Lnzq2vv/5ax48f1x9//JHkyXNK9uzZo5YtW2rJkiU6dOiQjh8/ru+++06zZs1Sy5YtrdsXERGhoKAghYWF6YsvvtDSpUvTvJ+Ss3jxYs2aNUt///23Ro0apW3btlmfmPWgnj176vLly+rYsaO2b9+usLAwrVmzRm+88Ybi4+O1detWffTRR9qxY4ciIiL0888/68KFCypTpkyS/dnZ2cnPzy9VCVm7du1kb2+v6dOnS7q7X+5dHTl8+LDeeustm6eaubi4aPDgwXrvvfc0b948hYWFacuWLfruu+8kSYGBgcqTJ49atmypDRs2KDw8XCEhIXr33Xd1+vRpSXeT0uLFi6c4PXhlxNfXVzNmzFDx4sWtA8Wlu1ctpk6dah3kbUaRIkW0b98+HT16VBcvXtTt27dTtT3S3Qcn1K9f/5Gv5AEAkN5ILJ5gRYsW1a5du+Tr66sBAwaofPnyeuGFFxQcHGx9fr3FYtHy5cuVM2dONWjQQH5+fipatKgWLlxo7cff318jRozQe++9p+rVq+vatWs232yn1sSJE7V27Vp5e3tbvwn39/fXr7/+qt9//13Vq1dXrVq1NGnSpEQDWlPjrbfeUps2bfTKK6+oZs2aunTpks3VC0nq3LmzJk+erBkzZqhcuXJq0aKFjh079tAYU9p+Ozs7BQUFaefOnSpfvrz69eunCRMmpCn2ggULqkiRIhozZoxq1qyp5557TlOmTNGYMWOsVyheeukl9evXT7169VLlypW1efNmjRgxIs37KTljxoxRUFCQKlasqHnz5unHH3+0fuv/IC8vL23atEnx8fFq0qSJKlSooL59+8rd3V12dnZyc3PTX3/9pRdffFElS5bU8OHDNXHiRDVr1izZ9Xfr1k1BQUEPve3HwcFBvXr10qeffqrY2FgNHz5czz33nPz9/dWoUSN5eHgkejzwiBEjNGDAAI0cOVJlypTRK6+8Yh1jkiVLFv31118qVKiQ2rRpozJlyqhr1666efNmit/4P4yvr6+uXbtm81hi6W5ice3aNdNXKySpe/fuKlWqlKpVq6a8efNq06ZNqd6eoKAgde/e3XQMAACkF4uR2lHCT7CrV68qR44cio6OTnQicfPmTYWHh8vHx+eJ/aVfwKzM/MXxewzDUM2aNdWvXz917Ngx0+J4FqxatUoDBgzQvn37kr2V7VE/+5L4KZKHWrEi7W0APAFCUvmGb8Sb/FmW0nn2g7hiASBdWCwWff311zY/joiMERsbq9mzZyebVAAAkBn4rwQg3VSuXNn6eGBknLZt22Z2CAAAJEJiATwFnoI7GgEAwH8ct0IBAAAAMI3EAgAAAIBpz0xiYeZXigHgv4bPPADA4/bUj7FwcnKSnZ2d/v33X+XNm1dOTk6yWCyZHRYAZAjDMHTr1i1duHBBdnZ2cnJyyuyQAADPiKc+sbCzs5OPj4/Onj2rf//9N7PDAYDHIkuWLCpUqJDs7J7MC9OP8nsZ0qP9Zga/zQEAj8dTn1hId69aFCpUSHfu3FF8fHxmhwMAGcre3l4ODg5cnQUAPFbPRGIh3f3xLkdHRzk6OmZ2KAAAAMBT58m8Rg4AAADgP4XEAgAAAIBpaU4s/vrrLwUEBMjLy0sWi0XLli2zKbdYLElOEyZMSLbP0aNHJ6pfunTpNG8MAAAAgMyR5sQiNjZWlSpV0vTp05MsP3v2rM00a9YsWSwWvfzyyyn2W65cOZt2GzduTGtoAAAAADJJmgdvN2vWTM2aNUu23MPDw2Z++fLl8vX1VdGiRVMOxMEhUVsAAAAA/w0ZOsbi3LlzWrlypbp27frQuseOHZOXl5eKFi2qwMBARUREJFs3Li5OV69etZkAAAAAZJ4MTSzmzp2r7Nmzq02bNinWq1mzpubMmaPVq1dr5syZCg8PV/369XXt2rUk648fP145cuSwTt7e3hkRPgAAAIBUytDEYtasWQoMDJSLi0uK9Zo1a6Z27dqpYsWK8vf312+//aaoqCgtWrQoyfpDhw5VdHS0dTp16lRGhA8AAAAglTLsB/I2bNigo0ePauHChWlu6+7urpIlS+r48eNJljs7O8vZ2dlsiAAAAADSSYZdsfjuu+9UtWpVVapUKc1tY2JiFBYWJk9PzwyIDAAAAEB6S3NiERMToz179mjPnj2SpPDwcO3Zs8dmsPXVq1e1ePFidevWLck+GjdurGnTplnnBw4cqD///FMnTpzQ5s2b1bp1a9nb26tjx45pDQ8AAABAJkjzrVA7duyQr6+vdb5///6SpM6dO2vOnDmSpKCgIBmGkWxiEBYWposXL1rnT58+rY4dO+rSpUvKmzev6tWrpy1btihv3rxpDQ8AAABAJkhzYtGoUSMZhpFinR49eqhHjx7Jlp84ccJmPigoKK1hAAAAAHiCZOhToQAAAAA8G0gsAAAAAJiWYY+bBQAAwGMWEmA732hF5sSBZxJXLAAAAACYRmIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmOaQ2QEAAADAhJCA1JU1WpHxseCZxhULAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0EgsAAAAAppFYAAAAADCNxAIAAACAaSQWAAAAAExLc2Lx119/KSAgQF5eXrJYLFq2bJlNeZcuXWSxWGympk2bPrTf6dOnq0iRInJxcVHNmjW1bdu2tIYGAAAAIJOkObGIjY1VpUqVNH369GTrNG3aVGfPnrVOP/74Y4p9Lly4UP3799eoUaO0a9cuVapUSf7+/jp//nxawwMAAACQCRzS2qBZs2Zq1qxZinWcnZ3l4eGR6j4///xzde/eXW+88YYk6csvv9TKlSs1a9YsDRkyJK0hAgAAAHjMMmSMRUhIiPLly6dSpUrpf//7ny5dupRs3Vu3bmnnzp3y8/P7v6Ds7OTn56fQ0NAk28TFxenq1as2EwAAAIDMk+YrFg/TtGlTtWnTRj4+PgoLC9P777+vZs2aKTQ0VPb29onqX7x4UfHx8cqfP7/N8vz58+vIkSNJrmP8+PEaM2ZMeocOAE+NgIDMjgBIm0d5za5Ykf5xIB2FPHBQG3HAnnbpnlh06NDB+neFChVUsWJFFStWTCEhIWrcuHG6rGPo0KHq37+/df7q1avy9vZOl74BAAAApF2GP262aNGiypMnj44fP55keZ48eWRvb69z587ZLD937lyy4zScnZ3l5uZmMwEAAADIPBmeWJw+fVqXLl2Sp6dnkuVOTk6qWrWqgoODrcsSEhIUHBys2rVrZ3R4AAAAANJBmhOLmJgY7dmzR3v27JEkhYeHa8+ePYqIiFBMTIwGDRqkLVu26MSJEwoODlbLli1VvHhx+fv7W/to3Lixpk2bZp3v37+/vvnmG82dO1eHDx/W//73P8XGxlqfEgUAAADgyZbmMRY7duyQr6+vdf7eWIfOnTtr5syZ2rdvn+bOnauoqCh5eXmpSZMmGjdunJydna1twsLCdPHiRev8K6+8ogsXLmjkyJGKjIxU5cqVtXr16kQDugEAAAA8mdKcWDRq1EiGYSRbvmbNmof2ceLEiUTLevXqpV69eqU1HAAAAABPgAwfYwEAAADg6UdiAQAAAMA0EgsAAAAAppFYAAAAADCNxAIAAACAaSQWAAAAAEwjsQAAAABgGokFAAAAANNILAAAAACYRmIBAAAAwDQSCwAAAACmOWR2AADwLAkISHubFSvSP4709CjbBOAhQh54YzV6wj8IHsX92/g0bt8ziCsWAAAAAEwjsQAAAABgGokFAAAAANNILAAAAACYRmIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMc8jsAAAgswUEPFq7FSvSNw483KMeq8eB1xGeWiEPvLgb8aJF0rhiAQAAAMA0EgsAAAAAppFYAAAAADAtzYnFX3/9pYCAAHl5eclisWjZsmXWstu3b2vw4MGqUKGCsmbNKi8vL3Xq1En//vtvin2OHj1aFovFZipdunSaNwYAAABA5khzYhEbG6tKlSpp+vTpicquX7+uXbt2acSIEdq1a5d+/vlnHT16VC+99NJD+y1XrpzOnj1rnTZu3JjW0AAAAABkkjQ/FapZs2Zq1qxZkmU5cuTQ2rVrbZZNmzZNNWrUUEREhAoVKpR8IA4O8vDwSGs4AAAAAJ4AGT7GIjo6WhaLRe7u7inWO3bsmLy8vFS0aFEFBgYqIiIio0MDAAAAkE4y9Hcsbt68qcGDB6tjx45yc3NLtl7NmjU1Z84clSpVSmfPntWYMWNUv359HThwQNmzZ09UPy4uTnFxcdb5q1evZkj8AAAAAFInwxKL27dvq3379jIMQzNnzkyx7v23VlWsWFE1a9ZU4cKFtWjRInXt2jVR/fHjx2vMmDHpHjMAAACAR5Mht0LdSypOnjyptWvXpni1Iinu7u4qWbKkjh8/nmT50KFDFR0dbZ1OnTqVHmEDAAAAeETpnljcSyqOHTumdevWKXfu3GnuIyYmRmFhYfL09Eyy3NnZWW5ubjYTAAAAgMyT5sQiJiZGe/bs0Z49eyRJ4eHh2rNnjyIiInT79m21bdtWO3bs0Pz58xUfH6/IyEhFRkbq1q1b1j4aN26sadOmWecHDhyoP//8UydOnNDmzZvVunVr2dvbq2PHjua3EAAAAECGS/MYix07dsjX19c6379/f0lS586dNXr0aP3yyy+SpMqVK9u0W79+vRo1aiRJCgsL08WLF61lp0+fVseOHXXp0iXlzZtX9erV05YtW5Q3b960hgcAAAAgE6Q5sWjUqJEMw0i2PKWye06cOGEzHxQUlNYwAAAAADxBMvx3LAAAAAA8/UgsAAAAAJiWoT+QBwAwLyAgsyN49rDPkSlCMviFl9H9P+nrR4bjigUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0EgsAAAAAppFYAAAAADCNxAIAAACAaSQWAAAAAEwjsQAAAABgGokFAAAAANMcMjsAAACQNgEBj2c9K1Y8WrvHFd8zJeS+ndroEQ8MkMG4YgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0EgsAAAAAppFYAAAAADCNxAIAAACAaWlOLP766y8FBATIy8tLFotFy5Ytsyk3DEMjR46Up6enXF1d5efnp2PHjj203+nTp6tIkSJycXFRzZo1tW3btrSGBgAAACCTpDmxiI2NVaVKlTR9+vQkyz/99FN98cUX+vLLL7V161ZlzZpV/v7+unnzZrJ9Lly4UP3799eoUaO0a9cuVapUSf7+/jp//nxawwMAAACQCdKcWDRr1kwffPCBWrdunajMMAxNnjxZw4cPV8uWLVWxYkXNmzdP//77b6IrG/f7/PPP1b17d73xxhsqW7asvvzyS2XJkkWzZs1Ka3gAAAAAMkG6jrEIDw9XZGSk/Pz8rMty5MihmjVrKjQ0NMk2t27d0s6dO23a2NnZyc/PL9k2AAAAAJ4sDunZWWRkpCQpf/78Nsvz589vLXvQxYsXFR8fn2SbI0eOJNkmLi5OcXFx1vmrV6+aCRsAAACASemaWDwu48eP15gxYzI7DAAZLCAg7W1WrEj/OICM9CivcwB4EqXrrVAeHh6SpHPnztksP3funLXsQXny5JG9vX2a2gwdOlTR0dHW6dSpU+kQPQAAAIBHla6JhY+Pjzw8PBQcHGxddvXqVW3dulW1a9dOso2Tk5OqVq1q0yYhIUHBwcHJtnF2dpabm5vNBAAAACDzpPlWqJiYGB0/ftw6Hx4erj179ihXrlwqVKiQ+vbtqw8++EAlSpSQj4+PRowYIS8vL7Vq1crapnHjxmrdurV69eolSerfv786d+6satWqqUaNGpo8ebJiY2P1xhtvmN9CAAAAABkuzYnFjh075Ovra53v37+/JKlz586aM2eO3nvvPcXGxqpHjx6KiopSvXr1tHr1arm4uFjbhIWF6eLFi9b5V155RRcuXNDIkSMVGRmpypUra/Xq1YkGdAMAAAB4MqU5sWjUqJEMw0i23GKxaOzYsRo7dmyydU6cOJFoWa9evaxXMAAAAAD8t6TrGAsAAAAAzyYSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwzSGzAwCA9BQQ8HSuCwCeKSH3fcA2WpF5cSBNuGIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0h8wOAAAAPJkCAjI7gidHWvbFiAZ3K9eoLqnRiuQrhiTudNv2VKxgu227GtVTH1u6SCJuq5S291H7xH8GVywAAAAAmEZiAQAAAMA0EgsAAAAApqV7YlGkSBFZLJZEU8+ePZOsP2fOnER1XVxc0jssAAAAABko3Qdvb9++XfHx8db5AwcO6IUXXlC7du2SbePm5qajR49a5y0WS3qHBQAAACADpXtikTdvXpv5jz/+WMWKFVPDhg2TbWOxWOTh4ZHeoQAAAAB4TDJ0jMWtW7f0ww8/6M0330zxKkRMTIwKFy4sb29vtWzZUgcPHszIsAAAAACkswxNLJYtW6aoqCh16dIl2TqlSpXSrFmztHz5cv3www9KSEhQnTp1dPr06WTbxMXF6erVqzYTAAAAgMyToYnFd999p2bNmsnLyyvZOrVr11anTp1UuXJlNWzYUD///LPy5s2rr776Ktk248ePV44cOayTt7d3RoQPAAAAIJUyLLE4efKk1q1bp27duqWpnaOjo6pUqaLjx48nW2fo0KGKjo62TqdOnTIbLgAAAAATMiyxmD17tvLly6fmzZunqV18fLz2798vT0/PZOs4OzvLzc3NZgIAAACQeTIksUhISNDs2bPVuXNnOTjYPniqU6dOGjp0qHV+7Nix+v333/XPP/9o165deu2113Ty5Mk0X+kAAAAAkHnS/XGzkrRu3TpFRETozTffTFQWEREhO7v/y2euXLmi7t27KzIyUjlz5lTVqlW1efNmlS1bNiNCAwAAAJABMiSxaNKkiQzDSLIsJCTEZn7SpEmaNGlSRoQBAAAA4DHJ0KdCAQAAAHg2kFgAAAAAMI3EAgAAAIBpGTLGAsDTKyAgsyMAgP+QkAc+NButyJw40sm27Q+psD3xP4ka1dM5iPv36X98fz5tuGIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0h8wOAAAAAMhwIQH/93ejFZkXx1OMKxYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmJbuicXo0aNlsVhsptKlS6fYZvHixSpdurRcXFxUoUIF/fbbb+kdFgAAAIAMlCFXLMqVK6ezZ89ap40bNyZbd/PmzerYsaO6du2q3bt3q1WrVmrVqpUOHDiQEaEBAAAAyAAZklg4ODjIw8PDOuXJkyfZulOmTFHTpk01aNAglSlTRuPGjdNzzz2nadOmZURoAAAAADJAhiQWx44dk5eXl4oWLarAwEBFREQkWzc0NFR+fn42y/z9/RUaGppsm7i4OF29etVmAgAAAJB5HNK7w5o1a2rOnDkqVaqUzp49qzFjxqh+/fo6cOCAsmfPnqh+ZGSk8ufPb7Msf/78ioyMTHYd48eP15gxY9I7dOA/LSAg7W1WrEj/OAAAd23bnnjZuIn/9/eIBhm3ntSoUT191g/ck+5XLJo1a6Z27dqpYsWK8vf312+//aaoqCgtWrQo3dYxdOhQRUdHW6dTp06lW98AAAAA0i7dr1g8yN3dXSVLltTx48eTLPfw8NC5c+dslp07d04eHh7J9uns7CxnZ+d0jRMAAADAo8vw37GIiYlRWFiYPD09kyyvXbu2goODbZatXbtWtWvXzujQAAAAAKSTdE8sBg4cqD///FMnTpzQ5s2b1bp1a9nb26tjx46SpE6dOmno0KHW+n369NHq1as1ceJEHTlyRKNHj9aOHTvUq1ev9A4NAAAAQAZJ91uhTp8+rY4dO+rSpUvKmzev6tWrpy1btihv3rySpIiICNnZ/V8+U6dOHS1YsEDDhw/X+++/rxIlSmjZsmUqX758eocGAAAAIIOke2IRFBSUYnlISEiiZe3atVO7du3SOxQAAAAAj0mGj7EAAAAA8PQjsQAAAABgGokFAAAAANNILAAAAACYRmIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA0xwyOwAAAIBnxYgGAZkdwn9PSAr7LKWyRivSPxakiCsWAAAAAEwjsQAAAABgGokFAAAAANNILAAAAACYRmIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMc8jsAIDMEBDweNazYsXjWQ8APIsy+rN8RIP7V7Ai2bJxf/03P+y3bX+y11OjuskVh6TwAnmwrNF/8xg+abhiAQAAAMA0EgsAAAAAppFYAAAAADAt3ROL8ePHq3r16sqePbvy5cunVq1a6ejRoym2mTNnjiwWi83k4uKS3qEBAAAAyCDpnlj8+eef6tmzp7Zs2aK1a9fq9u3batKkiWJjY1Ns5+bmprNnz1qnkydPpndoAAAAADJIuj8VavXq1Tbzc+bMUb58+bRz5041aNAg2XYWi0UeHh7pHQ4AAACAxyDDx1hER0dLknLlypVivZiYGBUuXFje3t5q2bKlDh48mGzduLg4Xb161WYCAAAAkHkyNLFISEhQ3759VbduXZUvXz7ZeqVKldKsWbO0fPly/fDDD0pISFCdOnV0+vTpJOuPHz9eOXLksE7e3t4ZtQkAAAAAUiFDE4uePXvqwIEDCgoKSrFe7dq11alTJ1WuXFkNGzbUzz//rLx58+qrr75Ksv7QoUMVHR1tnU6dOpUR4QMAAABIpQz75e1evXrp119/1V9//aWCBQumqa2jo6OqVKmi48ePJ1nu7OwsZ2fn9AgTAAAAQDpI9ysWhmGoV69eWrp0qf744w/5+PikuY/4+Hjt379fnp6e6R0eAAAAgAyQ7lcsevbsqQULFmj58uXKnj27IiMjJUk5cuSQq6urJKlTp04qUKCAxo8fL0kaO3asatWqpeLFiysqKkoTJkzQyZMn1a1bt/QODwAAAEAGSPfEYubMmZKkRo0a2SyfPXu2unTpIkmKiIiQnd3/XSy5cuWKunfvrsjISOXMmVNVq1bV5s2bVbZs2fQODwAAAEAGSPfEwjCMh9YJCQmxmZ80aZImTZqU3qEAAAAAeEwy/HcsAAAAADz9SCwAAAAAmJZhj5sF8OgCAp6u9QDAoxjRwPZDatxfKzJ0HRnRPx7dtu1pb1OjevrHoZAU/lk24jVzP65YAAAAADCNxAIAAACAaSQWAAAAAEwjsQAAAABgGokFAAAAANNILAAAAACYRmIBAAAAwDQSCwAAAACmkVgAAAAAMI3EAgAAAIBpJBYAAAAATCOxAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwzSGzA3jaBASkvc2KFekfR1IeJbYn3ePad4/qadznAPAkGtHg/z5wx/21ItVlydVLrzL8R4TcdwwbPeLJRcgDr4Mk+nmSzxPTA1csAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0EgsAAAAAppFYAAAAADAtwxKL6dOnq0iRInJxcVHNmjW1bdu2FOsvXrxYpUuXlouLiypUqKDffvsto0IDAAAAkM4yJLFYuHCh+vfvr1GjRmnXrl2qVKmS/P39df78+STrb968WR07dlTXrl21e/dutWrVSq1atdKBAwcyIjwAAAAA6SxDEovPP/9c3bt31xtvvKGyZcvqyy+/VJYsWTRr1qwk60+ZMkVNmzbVoEGDVKZMGY0bN07PPfecpk2blhHhAQAAAEhn6Z5Y3Lp1Szt37pSfn9//rcTOTn5+fgoNDU2yTWhoqE19SfL390+2PgAAAIAni0N6d3jx4kXFx8crf/78Nsvz58+vI0eOJNkmMjIyyfqRkZFJ1o+Li1NcXJx1Pjo6WpJ09epVM6Gni9u3097mcYX9KLE96R513z2N+wIAnjYxN20/rG/fTv5D//66D9ZLbRn++67GpkcnD7zOYlN4jdxf98F6SZykPMnnicmv/24AhmE8tG66JxaPw/jx4zVmzJhEy729vTMhGvNy5MjsCP672HcA8PRas+bBJcl/6NvWzfGIZYCU0ussbXXT5yTlSTnXuXbtmnI8JJh0Tyzy5Mkje3t7nTt3zmb5uXPn5OHhkWQbDw+PNNUfOnSo+vfvb51PSEjQ5cuXlTt3blksFpNbgAddvXpV3t7eOnXqlNzc3DI7nGcex+PJwzF58nBMniwcjycPx+TJ86QeE8MwdO3aNXl5eT20bronFk5OTqpataqCg4PVqlUrSXdP/IODg9WrV68k29SuXVvBwcHq27evddnatWtVu3btJOs7OzvL2dnZZpm7u3t6hI8UuLm5PVEv9Gcdx+PJwzF58nBMniwcjycPx+TJ8yQek4ddqbgnQ26F6t+/vzp37qxq1aqpRo0amjx5smJjY/XGG29Ikjp16qQCBQpo/PjxkqQ+ffqoYcOGmjhxopo3b66goCDt2LFDX3/9dUaEBwAAACCdZUhi8corr+jChQsaOXKkIiMjVblyZa1evdo6QDsiIkJ2dv/3QKo6depowYIFGj58uN5//32VKFFCy5YtU/ny5TMiPAAAAADpLMMGb/fq1SvZW59CQkISLWvXrp3atWuXUeHABGdnZ40aNSrR7WfIHByPJw/H5MnDMXmycDyePByTJ8/TcEwsRmqeHQUAAAAAKciQX94GAAAA8GwhsQAAAABgGokFAAAAANNILKAPP/xQderUUZYsWVL9eyCGYWjkyJHy9PSUq6ur/Pz8dOzYMZs6ly9fVmBgoNzc3OTu7q6uXbsqJiYmA7bg6ZPWfXfixAlZLJYkp8WLF1vrJVUeFBT0ODbpP+1RXsuNGjVKtK/ffvttmzoRERFq3ry5smTJonz58mnQoEG6c+dORm7KUyOtx+Ty5cvq3bu3SpUqJVdXVxUqVEjvvvuuoqOjberxHkm96dOnq0iRInJxcVHNmjW1bdu2FOsvXrxYpUuXlouLiypUqKDffvvNpjw1/1eQsrQck2+++Ub169dXzpw5lTNnTvn5+SWq36VLl0Tvh6ZNm2b0Zjw10nI85syZk2hfu7i42NT5T7xHDDzzRo4caXz++edG//79jRw5cqSqzccff2zkyJHDWLZsmbF3717jpZdeMnx8fIwbN25Y6zRt2tSoVKmSsWXLFmPDhg1G8eLFjY4dO2bQVjxd0rrv7ty5Y5w9e9ZmGjNmjJEtWzbj2rVr1nqSjNmzZ9vUu/+YIWmP8lpu2LCh0b17d5t9HR0dbS2/c+eOUb58ecPPz8/YvXu38dtvvxl58uQxhg4dmtGb81RI6zHZv3+/0aZNG+OXX34xjh8/bgQHBxslSpQwXn75ZZt6vEdSJygoyHBycjJmzZplHDx40Ojevbvh7u5unDt3Lsn6mzZtMuzt7Y1PP/3UOHTokDF8+HDD0dHR2L9/v7VOav6vIHlpPSavvvqqMX36dGP37t3G4cOHjS5duhg5cuQwTp8+ba3TuXNno2nTpjbvh8uXLz+uTfpPS+vxmD17tuHm5mazryMjI23q/BfeIyQWsJo9e3aqEouEhATDw8PDmDBhgnVZVFSU4ezsbPz444+GYRjGoUOHDEnG9u3brXVWrVplWCwW48yZM+ke+9MkvfZd5cqVjTfffNNmmSRj6dKl6RXqM+FRj0fDhg2NPn36JFv+22+/GXZ2djb/OGbOnGm4ubkZcXFx6RL70yq93iOLFi0ynJycjNu3b1uX8R5JnRo1ahg9e/a0zsfHxxteXl7G+PHjk6zfvn17o3nz5jbLatasabz11luGYaTu/wpSltZj8qA7d+4Y2bNnN+bOnWtd1rlzZ6Nly5bpHeozIa3H42HnYP+V9wi3QiHNwsPDFRkZKT8/P+uyHDlyqGbNmgoNDZUkhYaGyt3dXdWqVbPW8fPzk52dnbZu3frYY/4vSY99t3PnTu3Zs0ddu3ZNVNazZ0/lyZNHNWrU0KxZs2TwxOkUmTke8+fPV548eVS+fHkNHTpU169ft+m3QoUK1h8OlSR/f39dvXpVBw8eTP8NeYqk1+dLdHS03Nzc5OBg+5NOvEdSduvWLe3cudPmf4CdnZ38/Pys/wMeFBoaalNfuvt6v1c/Nf9XkLxHOSYPun79um7fvq1cuXLZLA8JCVG+fPlUqlQp/e9//9OlS5fSNfan0aMej5iYGBUuXFje3t5q2bKlzf+C/8p7JMN+IA9Pr8jISEmyOSG6N3+vLDIyUvny5bMpd3BwUK5cuax1kLT02HffffedypQpozp16tgsHzt2rJ5//nllyZJFv//+u9555x3FxMTo3XffTbf4nzaPejxeffVVFS5cWF5eXtq3b58GDx6so0eP6ueff7b2m9R76F4Zkpce75GLFy9q3Lhx6tGjh81y3iMPd/HiRcXHxyf5+j1y5EiSbZJ7vd//P+PesuTqIHmPckweNHjwYHl5edmcuDZt2lRt2rSRj4+PwsLC9P7776tZs2YKDQ2Vvb19um7D0+RRjkepUqU0a9YsVaxYUdHR0frss89Up04dHTx4UAULFvzPvEdILJ5SQ4YM0SeffJJincOHD6t06dKPKSKk9piYdePGDS1YsEAjRoxIVHb/sipVqig2NlYTJkx4Jk+aMvp43H/CWqFCBXl6eqpx48YKCwtTsWLFHrnfp9njeo9cvXpVzZs3V9myZTV69GibMt4jeBZ9/PHHCgoKUkhIiM2A4Q4dOlj/rlChgipWrKhixYopJCREjRs3zoxQn1q1a9dW7dq1rfN16tRRmTJl9NVXX2ncuHGZGFnakFg8pQYMGKAuXbqkWKdo0aKP1LeHh4ck6dy5c/L09LQuP3funCpXrmytc/78eZt2d+7c0eXLl63tnzWpPSZm992SJUt0/fp1derU6aF1a9asqXHjxikuLk7Ozs4Prf80eVzH456aNWtKko4fP65ixYrJw8Mj0RNCzp07J0m8R1Jg9phcu3ZNTZs2Vfbs2bV06VI5OjqmWP9Zfo8kJ0+ePLK3t7e+Xu85d+5csvvfw8Mjxfqp+b+C5D3KMbnns88+08cff6x169apYsWKKdYtWrSo8uTJo+PHj5NYpMDM8bjH0dFRVapU0fHjxyX9h94jmT3IA0+OtA7e/uyzz6zLoqOjkxy8vWPHDmudNWvWMHg7Fczuu4YNGyZ60k1yPvjgAyNnzpyPHOuzIL1eyxs3bjQkGXv37jUM4/8Gb9//hJCvvvrKcHNzM27evJl+G/AUetRjEh0dbdSqVcto2LChERsbm6p18R5JWo0aNYxevXpZ5+Pj440CBQqkOHi7RYsWNstq166daPB2Sv9XkLK0HhPDMIxPPvnEcHNzM0JDQ1O1jlOnThkWi8VYvny56Xifdo9yPO53584do1SpUka/fv0Mw/jvvEdILGCcPHnS2L17t/XxpLt37zZ2795t85jSUqVKGT///LN1/uOPPzbc3d2N5cuXG/v27TNatmyZ5ONmq1SpYmzdutXYuHGjUaJECR43m0oP23enT582SpUqZWzdutWm3bFjxwyLxWKsWrUqUZ+//PKL8c033xj79+83jh07ZsyYMcPIkiWLMXLkyAzfnv+6tB6P48ePG2PHjjV27NhhhIeHG8uXLzeKFi1qNGjQwNrm3uNmmzRpYuzZs8dYvXq1kTdvXh43m0ppPSbR0dFGzZo1jQoVKhjHjx+3eaTjnTt3DMPgPZIWQUFBhrOzszFnzhzj0KFDRo8ePQx3d3frU85ef/11Y8iQIdb6mzZtMhwcHIzPPvvMOHz4sDFq1KgkHzf7sP8rSF5aj8nHH39sODk5GUuWLLF5P9z733/t2jVj4MCBRmhoqBEeHm6sW7fOeO6554wSJUrw5UcqpPV4jBkzxlizZo0RFhZm7Ny50+jQoYPh4uJiHDx40Frnv/AeIbGA0blzZ0NSomn9+vXWOvr/z3a/JyEhwRgxYoSRP39+w9nZ2WjcuLFx9OhRm34vXbpkdOzY0ciWLZvh5uZmvPHGGzbJCpL3sH0XHh6e6BgZhmEMHTrU8Pb2NuLj4xP1uWrVKqNy5cpGtmzZjKxZsxqVKlUyvvzyyyTrwlZaj0dERITRoEEDI1euXIazs7NRvHhxY9CgQTa/Y2EYhnHixAmjWbNmhqurq5EnTx5jwIABNo8+RfLSekzWr1+f5OecJCM8PNwwDN4jaTV16lSjUKFChpOTk1GjRg1jy5Yt1rKGDRsanTt3tqm/aNEio2TJkoaTk5NRrlw5Y+XKlTblqfm/gpSl5ZgULlw4yffDqFGjDMMwjOvXrxtNmjQx8ubNazg6OhqFCxc2unfvnui3FZC8tByPvn37Wuvmz5/fePHFF41du3bZ9PdfeI9YDIPn6AEAAAAwh9+xAAAAAGAaiQUAAAAA00gsAAAAAJhGYgEAAADANBILAAAAAKaRWAAAAAAwjcQCAAAAgGkkFgAAAABMI7EAADyVGjVqpL59+2Z2GADwzCCxAAAAAGAaiQUA4Il1+/btzA4BAJBKJBYA8IxYvXq16tWrJ3d3d+XOnVstWrRQWFiYJKlOnToaPHiwTf0LFy7I0dFRf/31lyTp7Nmzat68uVxdXeXj46MFCxaoSJEimjx5cqrWf+TIEdWrV08uLi4qW7as1q1bJ4vFomXLlkmSTpw4IYvFooULF6phw4ZycXHR/PnzdenSJXXs2FEFChRQlixZVKFCBf344482fcfGxqpTp07Kli2bPD09NXHixETrj4uL08CBA1WgQAFlzZpVNWvWVEhISNp2IgAgWSQWAPCMiI2NVf/+/bVjxw4FBwfLzs5OrVu3VkJCggIDAxUUFCTDMKz1Fy5cKC8vL9WvX1+S1KlTJ/37778KCQnRTz/9pK+//lrnz59P1brj4+PVqlUrZcmSRVu3btXXX3+tYcOGJVl3yJAh6tOnjw4fPix/f3/dvHlTVatW1cqVK3XgwAH16NFDr7/+urZt22ZtM2jQIP35559avny5fv/9d4WEhGjXrl02/fbq1UuhoaEKCgrSvn371K5dOzVt2lTHjh1L664EACTFAAA8ky5cuGBIMvbv32+cP3/ecHBwMP766y9ree3atY3BgwcbhmEYhw8fNiQZ27dvt5YfO3bMkGRMmjTpoetatWqV4eDgYJw9e9a6bO3atYYkY+nSpYZhGEZ4eLghyZg8efJD+2vevLkxYMAAwzAM49q1a4aTk5OxaNEia/mlS5cMV1dXo0+fPoZhGMbJkycNe3t748yZMzb9NG7c2Bg6dOhD1wcAeDiHTM1qAACPzbFjxzRy5Eht3bpVFy9eVEJCgiQpIiJC5cuXV5MmTTR//nzVr19f4eHhCg0N1VdffSVJOnr0qBwcHPTcc89Z+ytevLhy5syZqnUfPXpU3t7e8vDwsC6rUaNGknWrVatmMx8fH6+PPvpIixYt0pkzZ3Tr1i3FxcUpS5YskqSwsDDdunVLNWvWtLbJlSuXSpUqZZ3fv3+/4uPjVbJkSZu+4+LilDt37lRtAwAgZSQWAPCMCAgIUOHChfXNN9/Iy8tLCQkJKl++vG7duiVJCgwM1LvvvqupU6dqwYIFqlChgipUqPDY48yaNavN/IQJEzRlyhRNnjxZFSpUUNasWdW3b19r3KkRExMje3t77dy5U/b29jZl2bJlS5e4AeBZxxgLAHgGXLp0SUePHtXw4cPVuHFjlSlTRleuXLGp07JlS928eVOrV6/WggULFBgYaC0rVaqU7ty5o927d1uXHT9+PFEfySlVqpROnTqlc+fOWZdt3749VW03bdqkli1b6rXXXlOlSpVUtGhR/f3339byYsWKydHRUVu3brUuu3Llik2dKlWqKD4+XufPn1fx4sVtpvuvogAAHh2JBQA8A3LmzKncuXPr66+/1vHjx/XHH3+of//+NnWyZs2qVq1aacSIETp8+LA6duxoLStdurT8/PzUo0cPbdu2Tbt371aPHj3k6uoqi8Xy0PW/8MILKlasmDp37qx9+/Zp06ZNGj58uCQ9tH2JEiW0du1abd68WYcPH9Zbb71lk6Bky5ZNXbt21aBBg/THH3/owIED6tKli+zs/u9fXMmSJRUYGKhOnTrp559/Vnh4uLZt26bx48dr5cqVqdqHAICUkVgAwDPAzs5OQUFB2rlzp8qXL69+/fppwoQJieoFBgZq7969ql+/vgoVKmRTNm/ePOXPn18NGjRQ69at1b17d2XPnl0uLi4PXb+9vb2WLVummJgYVa9eXd26dbM+Feph7YcPH67nnntO/v7+atSokTw8PNSqVSubOhMmTFD9+vUVEBAgPz8/1atXT1WrVrWpM3v2bHXq1EkDBgxQqVKl1KpVK23fvj3RdgIAHo3FMO57tiAAAKl0+vRpeXt7a926dWrcuHGa22/atEn16tXT8ePHVaxYsQyIEADwOJFYAABS5Y8//lBMTIwqVKigs2fP6r333tOZM2f0999/y9HR8aHtly5dqmzZsqlEiRI6fvy4+vTpo5w5c2rjxo2PIXoAQEbjVigAQKrcvn1b77//vsqVK6fWrVsrb968CgkJkaOjo+bPn69s2bIlOZUrV06SdO3aNfXs2VOlS5dWly5dVL16dS1fvjyTtwoAkF64YgEAMO3atWs2A6rv5+joqMKFCz/miAAAjxuJBQAAAADTuBUKAAAAgGkkFgAAAABMI7EAAAAAYBqJBQAAAADTSCwAAAAAmEZiAQAAAMA0EgsAAAAAppFYAAAAADDt/wGlrWh/niuXQwAAAABJRU5ErkJggg==",
- "text/plain": [
- "