On Distillation of Guided Diffusion Models

Chenlin Meng¹

Robin Rombach²

Ruigi Gao³

Diederik Kingma³

chenlin@cs.stanford.edu

robin@stability.ai

ruiqig@google.com

durk@google.com

Stefano Ermon¹

Jonathan Ho³

Tim Salimans³

ermon@cs.stanford.edu

jonathanho@google.com

salimans@google.com

¹Stanford University

²Stability AI & LMU Munich

³ Google Research, Brain Team

Figure 1. Distilled Stable Diffusion samples generated by our method. Our two-stage distillation approach is able to generate realistic images using only 1 to 4 denoising steps on various tasks. Compared to standard classifier-free guided diffusion models, we reduce the total number of sampling steps by at least $20 \times$.

Abstract

Classifier-free guided diffusion models have recently been shown to be highly effective at high-resolution image generation, and they have been widely used in large-scale diffusion frameworks including DALL·E 2, Stable Diffusion and Imagen. However, a downside of classifier-free guided diffusion models is that they are computationally expensive at inference time since they require evaluating two diffusion models, a class-conditional model and an unconditional model, tens to hundreds of times. To deal with this limitation, we pro-

^{*}Work partially done during an internship at Google