-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscrape_accession_rules.py
executable file
·138 lines (115 loc) · 6.03 KB
/
scrape_accession_rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
"""Script for parsing accession description page and saving to JSON.
Usage: scrape_accession_rules.py <output file>
e.g.
scrape_accession_rules.py accession_rules.json
"""
# Copyright (c) 2019, Peter van Heusden <pvh@sanbi.ac.za>
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the <organization> nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL Peter van Heusden BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import print_function
import argparse
import json
from typing import List, Tuple, TextIO
RulesData = List[Tuple[List[str], str, str, str]]
from bs4 import BeautifulSoup
import requests
def parse_rules(text: str) -> RulesData:
"""parse_rules(text: str) -> RulesData:
parse the rules from the NCBI webpage, returns a list of lists, which each inner list having the
elements:
prefix - a list of accession prefixes that this rule applies to
database - name of the database or databases associated with this rule
type_description - description of the type of data associated with this rule
"""
soup = BeautifulSoup(text, 'html.parser')
data = []
for table in soup.find_all('table', cellpadding='3'):
for row in table.find_all('tr'):
(prefix, database, type_description, _) = row.text.split('\n')
if prefix.strip() == 'Prefix':
continue
if ',' in prefix:
prefix = [p.strip() for p in prefix.split(',')]
else:
prefix = [prefix]
data.append((prefix, database, 'unknown', type_description))
return data
def parse_refseq_rules(text: str) -> RulesData:
"""parse_refseq_rules(text: str) -> RulesData
Parse the rules for NCBI RefSeq (thanks to Torsten Seemann for pointing them out)"""
database = 'NCBI'
soup = BeautifulSoup(text, 'html.parser')
table = soup.find('div', id='ch18.T.refseq_accession_numbers_and_mole').table
data = []
for row in table.tbody.find_all('tr'):
prefix = row.td.text
molecule_type = row.td.next_sibling.text
type_description = row.td.next_sibling.next_sibling.text
data.append(([prefix], database, molecule_type, type_description))
return data
def parse_sra_rules(text: str) -> RulesData:
"""parse_sra_rules(text: str) -> RulesData
Parse the rules for SRA, ENA and DDBJ equivalent (thanks to Torsten Seemann for pointing them out)"""
soup = BeautifulSoup(text, 'html.parser')
sra_table = soup.find('h4', id='search.what_do_the_different_sra_accessi').next_sibling.table
data = []
for row in sra_table.tbody.find_all('tr'):
prefix = row.td.text
database = 'NCBI'
type_description = row.td.next_sibling.text.strip()
type_description += ': ' + row.td.next_sibling.next_sibling.text
accession_type = 'SRA'
data.append(([prefix], database, accession_type, type_description))
ena_table = soup.find('h4', id='search.what_do_the_different_sra_accessi').next_sibling.contents[4].table
embl_ddbj_data = []
for database in ('EMBL', 'DDBJ'):
prefix_start = database[0]
for old_prefix, _, accession_type, old_type_description in data:
prefix = prefix_start + old_prefix[0][1:]
type_description = prefix_start + old_type_description[1:]
embl_ddbj_data.append(([prefix], database, accession_type, type_description))
data.extend(embl_ddbj_data)
return data
def fetch(url: str = 'https://www.ncbi.nlm.nih.gov/Sequin/acc.html') -> str:
"""fetch(url:str) -> str
Fetches the accession type description page (by default from https://www.ncbi.nlm.nih.gov/Sequin/acc.html)"""
response = requests.get(url)
if response.status_code != requests.codes['ok']:
raise requests.exceptions.RequestException(f'Failed to download {url}', response=response)
return response.text
def save_data(data: RulesData, output: TextIO) -> None:
"""save_data(data: RulesData, str, str], output: TextIO)
Saves the data from parsing the accession description page to a JSON format file. output must be a
file open for writing."""
json.dump(data, output, indent=2)
output.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Save rules from NCBI website')
parser.add_argument('output_file', type=argparse.FileType('w'))
args = parser.parse_args()
data = parse_rules(fetch())
refseq_data = parse_refseq_rules(fetch(url='https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_accession_numbers_and_mole/?report=objectonly'))
data.extend(refseq_data)
sra_data = parse_sra_rules(fetch(url='https://www.ncbi.nlm.nih.gov/books/NBK56913'))
data.extend(sra_data)
save_data(data, args.output_file)