forked from silq-lang/silq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.d
254 lines (248 loc) · 8.7 KB
/
backend.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/+// Written in the D programming language
// License: http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0
import options,declaration,distrib,error,dexpr,util;
import symbolic,dp;
import std.stdio, std.path, std.algorithm;
Distribution getCDF(Distribution dist){
dist=dist.dup;
auto vars=dist.freeVars.dup;
foreach(var;vars){
auto nvar=dist.getVar("c"~var.name);
dist.distribute(dLe(var,nvar));
dist.marginalize(var);
dist.distribution=dist.distribution.substitute(nvar,var);
dist.freeVars.remove(nvar);
dist.freeVars.insert(var);
}
dist.simplify();
return dist;
}
abstract class Backend{
static Backend create(string source){
final switch(opt.backend){
case InferenceMethod.symbolic:
return new Symbolic(source);
case InferenceMethod.dp:
return new Bruteforce(source);
case InferenceMethod.simulate:
return new Bruteforce(source);
}
}
abstract Distribution analyze(FunctionDef fd,ErrorHandler err);
}
void printResult(Backend be,string path,FunctionDef fd,ErrorHandler err,bool isMain){
import type, std.conv : text;
if(opt.expectation||opt.cdf){
bool check(Expression ty){
if(isSubtype(ty,ℂ(true))) return true;
if(auto tpl=ty.isTupleTy)
return iota(tpl.length).all!(i=>check(tpl[i]));
return false;
}
if(!check(fd.ret)){
err.error(text("with ",opt.expectation?"--expectation":"--cdf"," switch, '",fd.name,"' should return numbers (not '",fd.ret,"')"),fd.loc);
return;
}
}
static DExpr computeExpectation(Distribution dist, DExpr e,Expression ty){
if(opt.backend!=InferenceMethod.simulate){
if(auto tpl=ty.isTupleTy){
DExpr[] r;
foreach(i;0..tpl.length) r~=computeExpectation(dist,e[i.dℚ],tpl[i]);
return dTuple(r);
}
}
auto r=e*dist.distribution/(one-dist.error);
foreach_reverse(v;dist.orderedFreeVars) r=dIntSmp(v,r,one);
return r;
}
static void printDist(Distribution dist){
final switch(opt.outputForm){
case OutputForm.default_:
writeln(dist.toString(opt.formatting));
break;
case OutputForm.raw:
writeln(dist.distribution.toString(opt.formatting));
break;
case OutputForm.rawError:
writeln(dist.error.toString(opt.formatting));
break;
}
}
if(opt.backend==InferenceMethod.simulate){
DExprSet samples;
DExpr expectation;
auto distrib=new Distribution();
distrib.distribution=zero;
foreach(i;0..opt.numSimulations){
auto dist=be.analyze(fd,err).dup;
auto exp=!dist.isTuple?dist.orderedFreeVars[0]:dTuple(cast(DExpr[])dist.orderedFreeVars);
if(!opt.expectation && opt.cdf){
distrib.distribution=distrib.distribution+dist.distribution;
distrib.error=distrib.error+dist.error;
if(!distrib.freeVarsOrdered){
distrib.freeVars=dist.freeVars.dup;
foreach(arg;dist.args) distrib.freeVars.insert(arg);
distrib.addArgs(dist.args,dist.argsIsTuple,dist.context);
distrib.orderFreeVars(dist.orderedFreeVars,dist.isTuple);
}
continue;
}
expectation = computeExpectation(dist,exp,fd.ret).simplify(one);
if(opt.expectation) DPlus.insert(samples, expectation);
else if(dist.error==one){
writeln("⊥");
}else{
DExpr toLiteral()(DArray e){
auto n=e.length.isInteger();
if(!n||n.c.num>=size_t.max) return e;
assert(n.c.den==1);
import std.range, std.algorithm;
return dArrayLiteral(iota(cast(size_t)n.c.num).map!(i=>readableArrays(e[i.dℚ].simplify(one))).array).simplify(one);
}
DExpr readableArrays(DExpr e){
auto h=e.getHoles!(x=>cast(DArray)x,DArray);
auto r=h.expr;
foreach(hole;h.holes){
r=r.substitute(hole.var,toLiteral(hole.expr));
}
return r.simplify(one);
}
writeln(readableArrays(expectation).toString(opt.formatting));
}
}
if(opt.expectation){
expectation=(dPlus(samples)/opt.numSimulations).simplify(one);
writeln(expectation.toString(opt.formatting));
}else if(opt.cdf){
distrib.distribution=distrib.distribution/opt.numSimulations;
distrib.error=distrib.error/opt.numSimulations;
distrib.simplify();
distrib=distrib.getCDF();
printDist(distrib);
expectation=distrib.distribution;
}
if(opt.expectation||opt.cdf||opt.numSimulations==1){
auto varset=expectation.freeVars.setx;
if(opt.plot && (varset.length==1||varset.length==2)){
writeln("plotting... ");
import hashtable;
//matlabPlot(expectation.toString(Format.matlab),varset.element.toString(Format.matlab));
gnuplot(expectation,cast(SetX!DNVar)varset,"expectation",opt.plotRange,opt.plotFile);
}
}
return;
}
auto dist=be.analyze(fd,err).dup;
if(isMain&&!opt.noNormalize) dist.renormalize();
import dparse;
if(opt.expectation){ // TODO: deal with non-convergent expectations
auto exp=!dist.isTuple?dist.orderedFreeVars[0]:dTuple(cast(DExpr[])dist.orderedFreeVars);
// TODO: do not compute full distribution with --expectation switch
auto expectation = computeExpectation(dist,exp,fd.ret).simplify(one);
final switch(opt.outputForm){
case OutputForm.default_:
auto astr=dist.argsToString(opt.formatting);
if(dist.error!=zero && opt.formatting!=Format.mathematica)
astr=astr.length?"¬error,"~astr:"¬error";
writeln(opt.formatting==Format.mathematica?"E[":"𝔼[",dist.varsToString(opt.formatting),astr.length?"|"~astr:"","] = ",expectation.toString(opt.formatting));
if(dist.error != zero) writeln("Pr[error] = ",dist.error.toString(opt.formatting));
break;
case OutputForm.raw:
if(dist.error==one){
writeln("⊥");
break;
}
writeln(expectation.toString(opt.formatting));
break;
case OutputForm.rawError:
writeln(dist.error.toString(opt.formatting));
break;
}
auto varset=expectation.freeVars.setx;
if(opt.plot && (varset.length==1||varset.length==2)){
writeln("plotting... ");
import hashtable;
//matlabPlot(expectation.toString(Format.matlab),varset.element.toString(Format.matlab));
gnuplot(expectation,cast(SetX!DNVar)varset,"expectation",opt.plotRange,opt.plotFile);
}
return;
}
if(opt.cdf) dist=getCDF(dist);
if(expected.exists) with(expected){
writeln(ex==dist.distribution.toString()?todo?"FIXED":"PASS":todo?"TODO":"FAIL");
}
printDist(dist);
bool plotCDF=opt.cdf;
if(!dist.distribution.isContinuousMeasure()) plotCDF=true;
import hashtable;
SetX!DNVar varset=dist.freeVars.dup;
foreach(a;dist.args) varset.insert(a);
if(opt.plot && (varset.length==1||varset.length==2)){
if(plotCDF&&!opt.cdf) dist=getCDF(dist);
writeln("plotting... ",(plotCDF?"(CDF)":"(PDF)"));
//matlabPlot(dist.distribution.toString(Format.matlab),dist.freeVars.element.toString(Format.matlab));
gnuplot(dist.distribution,varset,plotCDF?"probability":"density",opt.plotRange,opt.plotFile);
}
}
void matlabPlot(string expression,string variable){
import std.process,std.file;
auto input=pipe();
auto output=File("/dev/null","w");
auto error=File("/dev/null","w");
// TODO: make plot configurable from the outside
auto id=spawnProcess(["octave"],input.readEnd,output,stderr);
scope(exit) wait(id);
string command=
"fixNaN=@(x) [0,x]((x==x)+1);\n"~
variable~"=-20:0.001:20;\n"~
variable~"Dist="~expression~";\n"~
"plot("~variable~","~variable~"Dist);\n";
if(command.length<1000){
writeln("command: ");
writeln(command);
}
input.writeEnd.writeln(command);
input.writeEnd.writeln("sleep(5);exit");
input.writeEnd.flush();
//writeln(input.readEnd.readln());
//foreach(i;0..100) writeln(error.readEnd.readln());
}
void gnuplot(DExpr expr,SetX!DNVar varset,string label,string range="[-1:3]",string outfile=""){
DVar[] vars;
foreach(var;varset) vars~=var;
assert(vars.length==1||vars.length==2);
import std.process,std.file;
auto input=pipe();
auto output=File("/dev/null","w");
auto error=File("/dev/null","w");
// TODO: make plot configurable from the outside
auto id=spawnProcess(["gnuplot","-"],input.readEnd,output,stderr);
scope(success) wait(id);
expr=expr.substituteAll(vars,[cast(DExpr)"x".dVar,"y".dVar][0..vars.length]);
import std.string;
if(outfile.length){
input.writeEnd.writeln("set terminal postscript eps\nset output \"",outfile,"\"");
}
auto str=expr.toString(Format.gnuplot).replace("`q()","1");
string command=
//"set enhanced color lw 2 \"Times\" 30\n"~
"set pointsize 20\n"
~"set xlabel \""~vars[0].toString(Format.gnuplot)~"\"\n"
~(vars.length==2?"set ylabel \""~vars[1].toString(Format.gnuplot)~"\"\n":"")
~"set "~(vars.length==1?"y":"z")~"label \""~label~"\"\n"
~"set samples 500, 500\n"
~"set isosample 200\n"
~"unset key\n";
if(vars.length==1) command~="plot "~range~" "~str~"\n";
else command~="splot "~range~" "~range~" "~str~"\n";
if(command.length<10000){
writeln("command: ");
writeln(command);
}
input.writeEnd.writeln(command);
if(outfile.length) input.writeEnd.writeln("exit");
else input.writeEnd.writeln("bind \"x\" \"exit\"\n");
input.writeEnd.flush();
}
+/