-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustomDataGen.py
66 lines (47 loc) · 2.06 KB
/
customDataGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import numpy as np
from tensorflow.python.keras.utils.data_utils import Sequence
class DataGenerator(Sequence):
"""Generates data for Keras"""
"""This structure guarantees that the network will only train once on each sample per epoch"""
def __init__(self, list_IDs, im_path, batch_size=4,
img_dim=(128, 128, 128), dim=(256, 256, 256), n_channels=1,
n_classes=2, testing=False):
'Initialization'
self.img_dim = img_dim
self.dim = dim
self.batch_size = batch_size
self.list_IDs = list_IDs
self.im_path = im_path
self.n_channels = n_channels
self.n_classes = n_classes
self.on_epoch_end()
self.testing = testing
print('Found %d image stacks belonging to %d classes.' %
(len(self.list_IDs), self.n_classes))
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X = self.__data_generation(list_IDs_temp)
return X, X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
def __data_generation(self, list_IDs_temp):
X = load_tensors(self, list_IDs_temp)
return X, X
def load_tensors(self, list_IDs_temp):
img_inVol = np.empty([self.batch_size, self.n_channels, self.dim[0],
self.dim[1], self.dim[2]], dtype='float32')
for i, ID in enumerate(list_IDs_temp):
img_in_path = os.path.join(self.im_path, ID)
imgs_in = os.path.join(img_in_path, ID+"_input.npy")
img_inVol[i, 0,] = np.load(imgs_in)
return img_inVol