-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathresnet_building_blocks.py
280 lines (224 loc) · 11.4 KB
/
resnet_building_blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""Building blocks for resnet models.
Based on github.com/tensorflow/models/blob/master/official/resnet"""
import tensorflow as tf
BATCH_NORM_DECAY = 0.997
BATCH_NORM_EPSILON = 1e-5
def channels_axis(inputs, data_format):
"""Return the axis index which houses the channels."""
if data_format == 'channels_first':
axis = 1
else:
axis = len(inputs.get_shape()) - 1
return axis
def batch_norm(inputs, data_format):
"""Performs a batch normalization using a standard set of parameters."""
return tf.keras.layers.BatchNormalization(
axis=channels_axis(inputs, data_format), momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON, center=True, scale=True, fused=True,
name='batch_normalization')(inputs)
def fixed_padding(inputs, kernel_size, data_format):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, (seq,) channels, height_in, width_in] or
[batch, (seq,) height_in, width_in, channels] depending on data_format.
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
A tensor with the same format as the input with the data either intact
(if kernel_size == 1) or padded (if kernel_size > 1).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
paddings = [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]]
else:
paddings = [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]
if len(inputs.get_shape()) == 5:
paddings.insert(1, [0, 0])
padded_inputs = tf.pad(tensor=inputs, paddings=paddings)
return padded_inputs
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
"""Strided 2-D convolution with explicit padding."""
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format)
return tf.keras.layers.Conv2D(
filters=filters, kernel_size=kernel_size, strides=strides,
padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),
data_format=data_format)(inputs)
def conv3d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
"""Strided 3-D convolution with explicit padding."""
if (isinstance(strides, list) and max(strides) > 1) or \
(isinstance(strides, int) and strides > 1):
padding = 'valid'
padding_kernel_size = max(kernel_size) if isinstance(kernel_size, list) else kernel_size
inputs = fixed_padding(inputs, padding_kernel_size, data_format)
else:
padding = 'same'
return tf.keras.layers.Conv3D(
filters=filters, kernel_size=kernel_size, strides=strides,
padding=padding, use_bias=False,
kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),
data_format=data_format)(inputs)
def conv2d_bottleneck_block_v2(inputs, filters, is_training, projection_shortcut,
strides, data_format):
"""A single block for ResNet v2 with bottleneck
Convolution then batch normalization then ReLU as described by:
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.
Adapted to the ordering conventions of: Batch normalization then ReLU
then convolution as described by:
Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1603.05027.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in]
or [batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for convolutions.
is_training: Boolean indicating training or inference mode.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block; shape should match inputs.
"""
shortcut = inputs
inputs = batch_norm(inputs, data_format)
inputs = tf.nn.relu(inputs)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm(inputs, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm(inputs, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4*filters, kernel_size=1, strides=1,
data_format=data_format)
return inputs + shortcut
def conv3d_bottleneck_block_v2(inputs, filters, is_training, projection_shortcut,
strides, temporal_kernel_size, data_format):
"""A single block for ResNet v2 with bottleneck - adapted for 3D
Convolution then batch normalization then ReLU as described by:
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.
Adapted to the ordering conventions of: Batch normalization then ReLU
then convolution as described by:
Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1603.05027.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016.
Adapted for frame sequences (own work)
Args:
inputs: A tensor of size [batch, seq, channels, height_in, width_in]
or [batch, seq, height_in, width_in, channels] depending on data_format.
filters: The number of filters for convolutions.
is_training: Boolean indicating training or inference mode.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride.
temporal_kernel_size: Size of the temporal kernel in the first conv
layer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block; shape should match inputs.
"""
shortcut = inputs
inputs = batch_norm(inputs, data_format)
inputs = tf.nn.relu(inputs)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv3d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=[temporal_kernel_size, 1, 1],
strides=1, data_format=data_format)
inputs = batch_norm(inputs, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv3d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=[1, 3, 3],
strides=strides, data_format=data_format)
inputs = batch_norm(inputs, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv3d_fixed_padding(
inputs=inputs, filters=4*filters, kernel_size=1, strides=1,
data_format=data_format)
return inputs + shortcut
def conv2d_block_layer(inputs, filters, blocks, strides, is_training, name,
data_format):
"""Create one layer of blocks for a 2D ResNet model.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first convolution of the layer.
blocks: The number of blocks contained in the layer.
strides: The stride to use for the first convolution of the layer. If
greater than 1, this layer will ultimately downsample the input.
is_training: Are we currently training the model?
name: A string name for the tensor output of the block layer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block layer.
"""
# Bottleneck blocks end with 4x the number of filters as they start with
filters_out = filters * 4
def _projection_shortcut(inputs):
return conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = conv2d_bottleneck_block_v2(
inputs=inputs, filters=filters, is_training=is_training,
projection_shortcut=_projection_shortcut, strides=strides,
data_format=data_format)
for _ in range(1, blocks):
inputs = conv2d_bottleneck_block_v2(
inputs=inputs, filters=filters, is_training=is_training,
projection_shortcut=None, strides=1, data_format=data_format)
return tf.identity(inputs, name)
def conv3d_block_layer(inputs, filters, blocks, strides, temporal_kernel_size,
is_training, name, data_format):
"""Create one layer of blocks for a 3D ResNet model.
Args:
inputs: A tensor of size [batch, seq, channels, height_in, width_in] or
[batch, seq, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first convolution of the layer.
blocks: The number of blocks contained in the layer.
strides: The stride to use for the first convolution of the layer. If
greater than 1, this layer will ultimately downsample the input.
temporal_kernel_size: Size of the temporal kernel in the first conv
layer of each block.
is_training: Are we currently training the model?
name: A string name for the tensor output of the block layer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block layer.
"""
# Bottleneck blocks end with 4x the number of filters as they start with
filters_out = filters * 4
def _projection_shortcut(inputs):
return conv3d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1,
strides=strides, data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = conv3d_bottleneck_block_v2(
inputs=inputs, filters=filters, is_training=is_training,
projection_shortcut=_projection_shortcut, strides=strides,
temporal_kernel_size=temporal_kernel_size, data_format=data_format)
for _ in range(1, blocks):
inputs = conv3d_bottleneck_block_v2(
inputs=inputs, filters=filters, is_training=is_training,
projection_shortcut=None, strides=1,
temporal_kernel_size=temporal_kernel_size, data_format=data_format)
return tf.identity(inputs, name)