-
Notifications
You must be signed in to change notification settings - Fork 802
/
Copy pathmetrics.py
753 lines (599 loc) · 26.8 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import os
from threading import Lock
import time
import types
from typing import (
Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple,
Type, TypeVar, Union,
)
import warnings
from . import values # retain this import style for testability
from .context_managers import ExceptionCounter, InprogressTracker, Timer
from .metrics_core import Metric
from .registry import Collector, CollectorRegistry, REGISTRY
from .samples import Exemplar, Sample
from .utils import floatToGoString, INF
from .validation import (
_validate_exemplar, _validate_labelnames, _validate_metric_name,
)
T = TypeVar('T', bound='MetricWrapperBase')
F = TypeVar("F", bound=Callable[..., Any])
def _build_full_name(metric_type, name, namespace, subsystem, unit):
if not name:
raise ValueError('Metric name should not be empty')
full_name = ''
if namespace:
full_name += namespace + '_'
if subsystem:
full_name += subsystem + '_'
full_name += name
if metric_type == 'counter' and full_name.endswith('_total'):
full_name = full_name[:-6] # Munge to OpenMetrics.
if unit and not full_name.endswith("_" + unit):
full_name += "_" + unit
if unit and metric_type in ('info', 'stateset'):
raise ValueError('Metric name is of a type that cannot have a unit: ' + full_name)
return full_name
def _get_use_created() -> bool:
return os.environ.get("PROMETHEUS_DISABLE_CREATED_SERIES", 'False').lower() not in ('true', '1', 't')
_use_created = _get_use_created()
def disable_created_metrics():
"""Disable exporting _created metrics on counters, histograms, and summaries."""
global _use_created
_use_created = False
def enable_created_metrics():
"""Enable exporting _created metrics on counters, histograms, and summaries."""
global _use_created
_use_created = True
class MetricWrapperBase(Collector):
_type: Optional[str] = None
_reserved_labelnames: Sequence[str] = ()
def _is_observable(self):
# Whether this metric is observable, i.e.
# * a metric without label names and values, or
# * the child of a labelled metric.
return not self._labelnames or (self._labelnames and self._labelvalues)
def _raise_if_not_observable(self):
# Functions that mutate the state of the metric, for example incrementing
# a counter, will fail if the metric is not observable, because only if a
# metric is observable will the value be initialized.
if not self._is_observable():
raise ValueError('%s metric is missing label values' % str(self._type))
def _is_parent(self):
return self._labelnames and not self._labelvalues
def _get_metric(self):
return Metric(self._name, self._documentation, self._type, self._unit)
def describe(self) -> Iterable[Metric]:
return [self._get_metric()]
def collect(self) -> Iterable[Metric]:
metric = self._get_metric()
for suffix, labels, value, timestamp, exemplar, native_histogram_value in self._samples():
metric.add_sample(self._name + suffix, labels, value, timestamp, exemplar, native_histogram_value)
return [metric]
def __str__(self) -> str:
return f"{self._type}:{self._name}"
def __repr__(self) -> str:
metric_type = type(self)
return f"{metric_type.__module__}.{metric_type.__name__}({self._name})"
def __init__(self: T,
name: str,
documentation: str,
labelnames: Iterable[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
) -> None:
self._name = _build_full_name(self._type, name, namespace, subsystem, unit)
self._labelnames = _validate_labelnames(self, labelnames)
self._labelvalues = tuple(_labelvalues or ())
self._kwargs: Dict[str, Any] = {}
self._documentation = documentation
self._unit = unit
_validate_metric_name(self._name)
if self._is_parent():
# Prepare the fields needed for child metrics.
self._lock = Lock()
self._metrics: Dict[Sequence[str], T] = {}
if self._is_observable():
self._metric_init()
if not self._labelvalues:
# Register the multi-wrapper parent metric, or if a label-less metric, the whole shebang.
if registry:
registry.register(self)
def labels(self: T, *labelvalues: Any, **labelkwargs: Any) -> T:
"""Return the child for the given labelset.
All metrics can have labels, allowing grouping of related time series.
Taking a counter as an example:
from prometheus_client import Counter
c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint'])
c.labels('get', '/').inc()
c.labels('post', '/submit').inc()
Labels can also be provided as keyword arguments:
from prometheus_client import Counter
c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint'])
c.labels(method='get', endpoint='/').inc()
c.labels(method='post', endpoint='/submit').inc()
See the best practices on [naming](http://prometheus.io/docs/practices/naming/)
and [labels](http://prometheus.io/docs/practices/instrumentation/#use-labels).
"""
if not self._labelnames:
raise ValueError('No label names were set when constructing %s' % self)
if self._labelvalues:
raise ValueError('{} already has labels set ({}); can not chain calls to .labels()'.format(
self,
dict(zip(self._labelnames, self._labelvalues))
))
if labelvalues and labelkwargs:
raise ValueError("Can't pass both *args and **kwargs")
if labelkwargs:
if sorted(labelkwargs) != sorted(self._labelnames):
raise ValueError('Incorrect label names')
labelvalues = tuple(str(labelkwargs[l]) for l in self._labelnames)
else:
if len(labelvalues) != len(self._labelnames):
raise ValueError('Incorrect label count')
labelvalues = tuple(str(l) for l in labelvalues)
with self._lock:
if labelvalues not in self._metrics:
self._metrics[labelvalues] = self.__class__(
self._name,
documentation=self._documentation,
labelnames=self._labelnames,
unit=self._unit,
_labelvalues=labelvalues,
**self._kwargs
)
return self._metrics[labelvalues]
def remove(self, *labelvalues: Any) -> None:
if 'prometheus_multiproc_dir' in os.environ or 'PROMETHEUS_MULTIPROC_DIR' in os.environ:
warnings.warn(
"Removal of labels has not been implemented in multi-process mode yet.",
UserWarning)
if not self._labelnames:
raise ValueError('No label names were set when constructing %s' % self)
"""Remove the given labelset from the metric."""
if len(labelvalues) != len(self._labelnames):
raise ValueError('Incorrect label count (expected %d, got %s)' % (len(self._labelnames), labelvalues))
labelvalues = tuple(str(l) for l in labelvalues)
with self._lock:
if labelvalues in self._metrics:
del self._metrics[labelvalues]
def clear(self) -> None:
"""Remove all labelsets from the metric"""
if 'prometheus_multiproc_dir' in os.environ or 'PROMETHEUS_MULTIPROC_DIR' in os.environ:
warnings.warn(
"Clearing labels has not been implemented in multi-process mode yet",
UserWarning)
with self._lock:
self._metrics = {}
def _samples(self) -> Iterable[Sample]:
if self._is_parent():
return self._multi_samples()
else:
return self._child_samples()
def _multi_samples(self) -> Iterable[Sample]:
with self._lock:
metrics = self._metrics.copy()
for labels, metric in metrics.items():
series_labels = list(zip(self._labelnames, labels))
for suffix, sample_labels, value, timestamp, exemplar, native_histogram_value in metric._samples():
yield Sample(suffix, dict(series_labels + list(sample_labels.items())), value, timestamp, exemplar, native_histogram_value)
def _child_samples(self) -> Iterable[Sample]: # pragma: no cover
raise NotImplementedError('_child_samples() must be implemented by %r' % self)
def _metric_init(self): # pragma: no cover
"""
Initialize the metric object as a child, i.e. when it has labels (if any) set.
This is factored as a separate function to allow for deferred initialization.
"""
raise NotImplementedError('_metric_init() must be implemented by %r' % self)
class Counter(MetricWrapperBase):
"""A Counter tracks counts of events or running totals.
Example use cases for Counters:
- Number of requests processed
- Number of items that were inserted into a queue
- Total amount of data that a system has processed
Counters can only go up (and be reset when the process restarts). If your use case can go down,
you should use a Gauge instead.
An example for a Counter:
from prometheus_client import Counter
c = Counter('my_failures_total', 'Description of counter')
c.inc() # Increment by 1
c.inc(1.6) # Increment by given value
There are utilities to count exceptions raised:
@c.count_exceptions()
def f():
pass
with c.count_exceptions():
pass
# Count only one type of exception
with c.count_exceptions(ValueError):
pass
You can also reset the counter to zero in case your logical "process" restarts
without restarting the actual python process.
c.reset()
"""
_type = 'counter'
def _metric_init(self) -> None:
self._value = values.ValueClass(self._type, self._name, self._name + '_total', self._labelnames,
self._labelvalues, self._documentation)
self._created = time.time()
def inc(self, amount: float = 1, exemplar: Optional[Dict[str, str]] = None) -> None:
"""Increment counter by the given amount."""
self._raise_if_not_observable()
if amount < 0:
raise ValueError('Counters can only be incremented by non-negative amounts.')
self._value.inc(amount)
if exemplar:
_validate_exemplar(exemplar)
self._value.set_exemplar(Exemplar(exemplar, amount, time.time()))
def reset(self) -> None:
"""Reset the counter to zero. Use this when a logical process restarts without restarting the actual python process."""
self._value.set(0)
self._created = time.time()
def count_exceptions(self, exception: Union[Type[BaseException], Tuple[Type[BaseException], ...]] = Exception) -> ExceptionCounter:
"""Count exceptions in a block of code or function.
Can be used as a function decorator or context manager.
Increments the counter when an exception of the given
type is raised up out of the code.
"""
self._raise_if_not_observable()
return ExceptionCounter(self, exception)
def _child_samples(self) -> Iterable[Sample]:
sample = Sample('_total', {}, self._value.get(), None, self._value.get_exemplar())
if _use_created:
return (
sample,
Sample('_created', {}, self._created, None, None)
)
return (sample,)
class Gauge(MetricWrapperBase):
"""Gauge metric, to report instantaneous values.
Examples of Gauges include:
- Inprogress requests
- Number of items in a queue
- Free memory
- Total memory
- Temperature
Gauges can go both up and down.
from prometheus_client import Gauge
g = Gauge('my_inprogress_requests', 'Description of gauge')
g.inc() # Increment by 1
g.dec(10) # Decrement by given value
g.set(4.2) # Set to a given value
There are utilities for common use cases:
g.set_to_current_time() # Set to current unixtime
# Increment when entered, decrement when exited.
@g.track_inprogress()
def f():
pass
with g.track_inprogress():
pass
A Gauge can also take its value from a callback:
d = Gauge('data_objects', 'Number of objects')
my_dict = {}
d.set_function(lambda: len(my_dict))
"""
_type = 'gauge'
_MULTIPROC_MODES = frozenset(('all', 'liveall', 'min', 'livemin', 'max', 'livemax', 'sum', 'livesum', 'mostrecent', 'livemostrecent'))
_MOST_RECENT_MODES = frozenset(('mostrecent', 'livemostrecent'))
def __init__(self,
name: str,
documentation: str,
labelnames: Iterable[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
multiprocess_mode: Literal['all', 'liveall', 'min', 'livemin', 'max', 'livemax', 'sum', 'livesum', 'mostrecent', 'livemostrecent'] = 'all',
):
self._multiprocess_mode = multiprocess_mode
if multiprocess_mode not in self._MULTIPROC_MODES:
raise ValueError('Invalid multiprocess mode: ' + multiprocess_mode)
super().__init__(
name=name,
documentation=documentation,
labelnames=labelnames,
namespace=namespace,
subsystem=subsystem,
unit=unit,
registry=registry,
_labelvalues=_labelvalues,
)
self._kwargs['multiprocess_mode'] = self._multiprocess_mode
self._is_most_recent = self._multiprocess_mode in self._MOST_RECENT_MODES
def _metric_init(self) -> None:
self._value = values.ValueClass(
self._type, self._name, self._name, self._labelnames, self._labelvalues,
self._documentation, multiprocess_mode=self._multiprocess_mode
)
def inc(self, amount: float = 1) -> None:
"""Increment gauge by the given amount."""
if self._is_most_recent:
raise RuntimeError("inc must not be used with the mostrecent mode")
self._raise_if_not_observable()
self._value.inc(amount)
def dec(self, amount: float = 1) -> None:
"""Decrement gauge by the given amount."""
if self._is_most_recent:
raise RuntimeError("dec must not be used with the mostrecent mode")
self._raise_if_not_observable()
self._value.inc(-amount)
def set(self, value: float) -> None:
"""Set gauge to the given value."""
self._raise_if_not_observable()
if self._is_most_recent:
self._value.set(float(value), timestamp=time.time())
else:
self._value.set(float(value))
def set_to_current_time(self) -> None:
"""Set gauge to the current unixtime."""
self.set(time.time())
def track_inprogress(self) -> InprogressTracker:
"""Track inprogress blocks of code or functions.
Can be used as a function decorator or context manager.
Increments the gauge when the code is entered,
and decrements when it is exited.
"""
self._raise_if_not_observable()
return InprogressTracker(self)
def time(self) -> Timer:
"""Time a block of code or function, and set the duration in seconds.
Can be used as a function decorator or context manager.
"""
return Timer(self, 'set')
def set_function(self, f: Callable[[], float]) -> None:
"""Call the provided function to return the Gauge value.
The function must return a float, and may be called from
multiple threads. All other methods of the Gauge become NOOPs.
"""
self._raise_if_not_observable()
def samples(_: Gauge) -> Iterable[Sample]:
return (Sample('', {}, float(f()), None, None),)
self._child_samples = types.MethodType(samples, self) # type: ignore
def _child_samples(self) -> Iterable[Sample]:
return (Sample('', {}, self._value.get(), None, None),)
class Summary(MetricWrapperBase):
"""A Summary tracks the size and number of events.
Example use cases for Summaries:
- Response latency
- Request size
Example for a Summary:
from prometheus_client import Summary
s = Summary('request_size_bytes', 'Request size (bytes)')
s.observe(512) # Observe 512 (bytes)
Example for a Summary using time:
from prometheus_client import Summary
REQUEST_TIME = Summary('response_latency_seconds', 'Response latency (seconds)')
@REQUEST_TIME.time()
def create_response(request):
'''A dummy function'''
time.sleep(1)
Example for using the same Summary object as a context manager:
with REQUEST_TIME.time():
pass # Logic to be timed
"""
_type = 'summary'
_reserved_labelnames = ['quantile']
def _metric_init(self) -> None:
self._count = values.ValueClass(self._type, self._name, self._name + '_count', self._labelnames,
self._labelvalues, self._documentation)
self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues, self._documentation)
self._created = time.time()
def observe(self, amount: float) -> None:
"""Observe the given amount.
The amount is usually positive or zero. Negative values are
accepted but prevent current versions of Prometheus from
properly detecting counter resets in the sum of
observations. See
https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
for details.
"""
self._raise_if_not_observable()
self._count.inc(1)
self._sum.inc(amount)
def time(self) -> Timer:
"""Time a block of code or function, and observe the duration in seconds.
Can be used as a function decorator or context manager.
"""
return Timer(self, 'observe')
def _child_samples(self) -> Iterable[Sample]:
samples = [
Sample('_count', {}, self._count.get(), None, None),
Sample('_sum', {}, self._sum.get(), None, None),
]
if _use_created:
samples.append(Sample('_created', {}, self._created, None, None))
return tuple(samples)
class Histogram(MetricWrapperBase):
"""A Histogram tracks the size and number of events in buckets.
You can use Histograms for aggregatable calculation of quantiles.
Example use cases:
- Response latency
- Request size
Example for a Histogram:
from prometheus_client import Histogram
h = Histogram('request_size_bytes', 'Request size (bytes)')
h.observe(512) # Observe 512 (bytes)
Example for a Histogram using time:
from prometheus_client import Histogram
REQUEST_TIME = Histogram('response_latency_seconds', 'Response latency (seconds)')
@REQUEST_TIME.time()
def create_response(request):
'''A dummy function'''
time.sleep(1)
Example of using the same Histogram object as a context manager:
with REQUEST_TIME.time():
pass # Logic to be timed
The default buckets are intended to cover a typical web/rpc request from milliseconds to seconds.
They can be overridden by passing `buckets` keyword argument to `Histogram`.
"""
_type = 'histogram'
_reserved_labelnames = ['le']
DEFAULT_BUCKETS = (.005, .01, .025, .05, .075, .1, .25, .5, .75, 1.0, 2.5, 5.0, 7.5, 10.0, INF)
def __init__(self,
name: str,
documentation: str,
labelnames: Iterable[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
buckets: Sequence[Union[float, str]] = DEFAULT_BUCKETS,
):
self._prepare_buckets(buckets)
super().__init__(
name=name,
documentation=documentation,
labelnames=labelnames,
namespace=namespace,
subsystem=subsystem,
unit=unit,
registry=registry,
_labelvalues=_labelvalues,
)
self._kwargs['buckets'] = buckets
def _prepare_buckets(self, source_buckets: Sequence[Union[float, str]]) -> None:
buckets = [float(b) for b in source_buckets]
if buckets != sorted(buckets):
# This is probably an error on the part of the user,
# so raise rather than sorting for them.
raise ValueError('Buckets not in sorted order')
if buckets and buckets[-1] != INF:
buckets.append(INF)
if len(buckets) < 2:
raise ValueError('Must have at least two buckets')
self._upper_bounds = buckets
def _metric_init(self) -> None:
self._buckets: List[values.ValueClass] = []
self._created = time.time()
bucket_labelnames = self._labelnames + ('le',)
self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues, self._documentation)
for b in self._upper_bounds:
self._buckets.append(values.ValueClass(
self._type,
self._name,
self._name + '_bucket',
bucket_labelnames,
self._labelvalues + (floatToGoString(b),),
self._documentation)
)
def observe(self, amount: float, exemplar: Optional[Dict[str, str]] = None) -> None:
"""Observe the given amount.
The amount is usually positive or zero. Negative values are
accepted but prevent current versions of Prometheus from
properly detecting counter resets in the sum of
observations. See
https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
for details.
"""
self._raise_if_not_observable()
self._sum.inc(amount)
for i, bound in enumerate(self._upper_bounds):
if amount <= bound:
self._buckets[i].inc(1)
if exemplar:
_validate_exemplar(exemplar)
self._buckets[i].set_exemplar(Exemplar(exemplar, amount, time.time()))
break
def time(self) -> Timer:
"""Time a block of code or function, and observe the duration in seconds.
Can be used as a function decorator or context manager.
"""
return Timer(self, 'observe')
def _child_samples(self) -> Iterable[Sample]:
samples = []
acc = 0.0
for i, bound in enumerate(self._upper_bounds):
acc += self._buckets[i].get()
samples.append(Sample('_bucket', {'le': floatToGoString(bound)}, acc, None, self._buckets[i].get_exemplar()))
samples.append(Sample('_count', {}, acc, None, None))
if self._upper_bounds[0] >= 0:
samples.append(Sample('_sum', {}, self._sum.get(), None, None))
if _use_created:
samples.append(Sample('_created', {}, self._created, None, None))
return tuple(samples)
class Info(MetricWrapperBase):
"""Info metric, key-value pairs.
Examples of Info include:
- Build information
- Version information
- Potential target metadata
Example usage:
from prometheus_client import Info
i = Info('my_build', 'Description of info')
i.info({'version': '1.2.3', 'buildhost': 'foo@bar'})
Info metrics do not work in multiprocess mode.
"""
_type = 'info'
def _metric_init(self):
self._labelname_set = set(self._labelnames)
self._lock = Lock()
self._value = {}
def info(self, val: Dict[str, str]) -> None:
"""Set info metric."""
if self._labelname_set.intersection(val.keys()):
raise ValueError('Overlapping labels for Info metric, metric: {} child: {}'.format(
self._labelnames, val))
if any(i is None for i in val.values()):
raise ValueError('Label value cannot be None')
with self._lock:
self._value = dict(val)
def _child_samples(self) -> Iterable[Sample]:
with self._lock:
return (Sample('_info', self._value, 1.0, None, None),)
class Enum(MetricWrapperBase):
"""Enum metric, which of a set of states is true.
Example usage:
from prometheus_client import Enum
e = Enum('task_state', 'Description of enum',
states=['starting', 'running', 'stopped'])
e.state('running')
The first listed state will be the default.
Enum metrics do not work in multiprocess mode.
"""
_type = 'stateset'
def __init__(self,
name: str,
documentation: str,
labelnames: Sequence[str] = (),
namespace: str = '',
subsystem: str = '',
unit: str = '',
registry: Optional[CollectorRegistry] = REGISTRY,
_labelvalues: Optional[Sequence[str]] = None,
states: Optional[Sequence[str]] = None,
):
super().__init__(
name=name,
documentation=documentation,
labelnames=labelnames,
namespace=namespace,
subsystem=subsystem,
unit=unit,
registry=registry,
_labelvalues=_labelvalues,
)
if name in labelnames:
raise ValueError(f'Overlapping labels for Enum metric: {name}')
if not states:
raise ValueError(f'No states provided for Enum metric: {name}')
self._kwargs['states'] = self._states = states
def _metric_init(self) -> None:
self._value = 0
self._lock = Lock()
def state(self, state: str) -> None:
"""Set enum metric state."""
self._raise_if_not_observable()
with self._lock:
self._value = self._states.index(state)
def _child_samples(self) -> Iterable[Sample]:
with self._lock:
return [
Sample('', {self._name: s}, 1 if i == self._value else 0, None, None)
for i, s
in enumerate(self._states)
]