-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparticlealg.py
277 lines (234 loc) · 9.59 KB
/
particlealg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
"""A Particle Swarm Optimization library. /n
Lucas Nakano 30/10/2018 /n
Version 1.0 - First fully working version."""
from particle import Particle
import numpy as np
from copy import copy
import random
##TO IMPROVE: IMPLEMENT WRAPAROUND,
class ParticleOptimizer:
"""Base optimizer class./n
Arguments:/n
n_dims number of optimizeable paramenters/n
n_particles number of particles/n
fitness the fitness function/n
value_ranges (optional) array of shape (n_dims, 2) with the range of each parameter/n
for other arguments, check documentation for Particle class"""
def __init__(self, n_dims, n_particles, fitness, **kwargs):
self.speedscale=1
self.fitness=fitness
self.make_particles(n_dims, n_particles, **kwargs)
self.gbest=None
self._uptodate=False
def make_particles(self, n_dims, n_particles, **kwargs):
self.particles=[]
pos = np.random.random((n_particles, n_dims))
spd = self.speedscale*(np.random.random((n_particles, n_dims))-0.5)
if "value_ranges" in kwargs:
assert kwargs["value_ranges"].shape==(n_dims, 2)
kwargs["value_ranges"]=np.asarray(kwargs["value_ranges"])
pos = pos*(kwargs["value_ranges"][:,1]-kwargs["value_ranges"][:,0])+kwargs["value_ranges"][:,0]
else:
kwargs["value_ranges"]=None
for i in range(n_particles):
self.particles.append(Particle(pos[i], spd[i], self.fitness, **kwargs))
def get(self):
return random.choice(self.gbest)
def get_all(self):
positions=[]
for particle in self.particles:
positions.append(particle.get())
return positions
def get_speeds(self):
speeds=[]
for particle in self.particles:
speeds.append(particle.speed)
return speeds
def _get_best(self):
best=[self.particles[0].get()]
for i in range(1, len(self.particles)):
position=self.particles[i].get()
fitness=self.fitness(position)
best_fit=self.fitness(best[0])
if fitness>best_fit:
best=[position]
elif fitness==best_fit:
best.append(position)
return best
def gbestprop():
doc = "The gbest property."
def fget(self):
if self._uptodate:
return self._gbest
else:
current_best=self._get_best()
if not(self._gbest) or self.fitness(current_best[0])>self.fitness(self._gbest[0]):
self._gbest=current_best
self._uptodate=True
return self._gbest
def fset(self, value):
if value==None:
self._gbest=None
else:
raise Exception("Dont mess with gbest manually")
def fdel(self):
del self._gbest
return locals()
gbest = property(**gbestprop())
def step(self):
gbest_fit=self.fitness(self.gbest[0])
for particle in self.particles:
particle.step(random.choice(self.gbest), gbest_fit)
self._uptodate=False
def get_fitness(self):
return self.fitness(self.gbest[0])
def scatter(self):
for particle in self.particles:
particle.scatter()
class PermutationOptimizer(ParticleOptimizer):
def __init__(self, n_particles, valuearray, mass=1.1, decoding="sort",
lrate=(1,1), **kwargs):
"""Valuearray should be n_dims by n_dims, with the value at (x,y) representing
the value of element y if in position x."""
assert valuearray.shape[0]==valuearray.shape[1]
if decoding=="ordered":
self.decode=self.ordereddecode
elif decoding=="sort":
self.decode=self.sortdecode
else:
raise Exception()
self.valuearray=valuearray
self.fitness=self.make_fitness()
self.speedscale=0.5
n_dims=self.valuearray.shape[0]
kwargs["mass"]=mass
kwargs["value_ranges"]=np.asarray([(0, 0.9999)]*n_dims)
kwargs["lrate"]=lrate
if not("n_particles" in kwargs):
kwargs["n_particles"]=n_dims*3
if not ("smoothing" in kwargs):
kwargs["smoothing"]=(3, 0.1)
self.make_particles(n_dims, **kwargs)
self.smooth(*kwargs["smoothing"])
self.gbest=None
self._uptodate=False
def get(self):
return self.decode(self.gbest[0])
def get_raw(self):
return self.gbest[0]
def get_all(self):
positions=[]
for particle in self.particles:
positions.append(self.decode(particle.get()))
return positions
def get_all_raw(self):
positions=[]
for particle in self.particles:
positions.append((particle.get()))
return positions
def ordereddecode(self, positions, **kwargs):
slots = list(range(len(self.valuearray)))
permutation = []
for i in range(len(self.valuearray)):
index = int(positions[i]*(len(self.valuearray)-i))
permutation.append(slots.pop(index))
return permutation
def sortdecode(self, positions, **kwargs):
values=list(zip(positions, range(len(self.valuearray))))
values.sort(key=lambda x: x[0])
permutation=list(map(lambda x: x[1], values))
return permutation
def evaluate(self, permutation):
value=0
for i in range(len(permutation)):
value+=self.valuearray[i, permutation[i]]
return value
def make_fitness(self):
def fitnessfunc(positions):
permutation=self.decode(positions)
return self.evaluate(permutation)
return fitnessfunc
def _smooth(self, iterations=1, c=0.1):
n_dims=self.valuearray.shape[0]
for i in range(iterations):
newarray=np.zeros((n_dims, n_dims))
for row in range(n_dims):
for column in range(n_dims):
toadd=0
if row>0:
toadd+=self.valuearray[row-1, column]*c
if row<n_dims-1:
toadd+=self.valuearray[row+1, column]*c
newarray[row, column] = self.valuearray[row, column] + toadd
self.valuearray = newarray
def smooth(self, iterations=1, c=0.2):
n_dims=self.valuearray.shape[0]
newarray=np.zeros((n_dims, n_dims))
for row in range(n_dims):
for column in range(n_dims):
newvalue=0
for offset in range(-iterations-1, iterations):
currow=row+offset
if currow>=0 and currow<n_dims:
newvalue+=self.valuearray[currow, column]**2*c**abs(offset)
newarray[row, column] = newvalue
self.valuearray = newarray
class PermutationOptimizerEX(PermutationOptimizer):
def __init__(self, n_particles, valuearray, mass=1.1, decoding="sort",
lrate=(1,1), **kwargs):
"""Valuearray should be n_dims by n_dims, with the value at (x,y) representing
the value of element y if in position x."""
assert valuearray.shape[0]==valuearray.shape[1]
if decoding=="ordered":
self.decode=self.ordereddecode
elif decoding=="sort":
self.decode=self.sortdecode
else:
raise Exception()
self.true_valuearray=valuearray
cleared_array=self.prelocate(valuearray)
self.valuearray=cleared_array
super().__init__(n_particles, valuearray, mass, decoding, lrate, **kwargs)
def prelocate(self, valuearray):
self.instant_matches(valuearray)
cleared_array=valuearray[self.exclusion_mask]
cleared_array=cleared_array[:, self.exclusion_mask]
return cleared_array
def instant_matches(self, valuearray):
"included gives positions, excluded gives values"
rowmax = np.argmax(valuearray, axis=1)
columnmax = np.argmax(valuearray, axis=0)
matches=[]
n_dims=valuearray.shape[0]
self.exclusion_mask=np.ones((n_dims), dtype="bool")
self.excluded=[]
self.unknown_positions=[]
for dim in range(n_dims):
if columnmax[rowmax[dim]]==dim:
self.exclusion_mask[dim]=False
self.excluded.append(rowmax[dim])
else:
self.unknown_positions.append(dim)
def reinclude(self, array, excluded):
reconstructed=np.zeros(len(self.exclusion_mask))
array_index=0
excluded_index=0
for i, included in enumerate(self.exclusion_mask):
if included :
reconstructed[i]=array[array_index]
array_index+=1
else:
reconstructed[i]=excluded[excluded_index]
excluded_index+=1
assert array_index==len(array)
assert excluded_index==len(excluded)
return reconstructed
def get(self):
true_positions=[self.unknown_positions[i] for i in self.decode(self.gbest[0])]
return self.reinclude(true_positions, self.excluded)
def get_all(self):
positions=[]
for particle in self.particles:
true_positions=[self.unknown_positions[i] for i in self.decode(particle.get())]
positions.append(self.reinclude(true_positions, self.excluded))
return positions