-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomotopy.tex
812 lines (542 loc) · 24.2 KB
/
homotopy.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
\documentclass[10pt]{article}
% \usepackage{parskip}
\usepackage{tikz-cd}
\usepackage{amsmath}
%\usepackage{tocloft}
\tikzcdset{labels={font=\everymath\expandafter{\the\everymath\textstyle}}}
\input{style}
\input{macros}
\input{macros-logic}
\title{Introduction to Homotopy Theory \\
\large (Notes based on lectures by Sergiy Maksymenko)
}
\author{}
\date{}
%\newcommand{\listofdefinitionsname}{List of definitions}
%\newlistof[section]{defns}{dfn}{\listofdefinitionsname}
\begin{document}
\maketitle
\thispagestyle{fancy}
\begin{abstract}
Homotopy theory studies spaces up to a homotopy, which is a continuous deformation of one
continuous function to another. This documents is a work in progress done during a course audit.
These notes are taken purposefully in English to strenghten intuition
and simplify lookup of concepts in related literature.
Warning: this document may be edited live during audit so watch out for incorrect statements!
\end{abstract}
\tableofcontents
\newcommand{\integer}[0]{\mathbb{Z}}
\newrobustcmd{\builder}[2]{\{ #1 \bigm| #2 \}}
\newrobustcmd{\angled}[1]{\langle #1 \rangle}
% forward declarations
\newcommand{\wedgesum}{\hyperref[def:wedgesum]{\vee}}
\newcommand{\glue}{\hyperref[def:glueing]{\bigcup}}
\newcommand{\cwcomplex}{\nameref{def:cw-complex}}
\section{Set-theoretic Definitions}
\defn{Binary relation}{
A binary relation R on a set $X$ is a set of ordered pairs of elements of $X$.
}
\let\OldSim\sim
\renewcommand{\sim}{\hyperref[def:equivalence]{\OldSim}}
\defn{Equivalence relation}{\label{def:equivalence}
An equivalence relation $\sim$ is a binary relation that is reflexive, symmetric and transitive.
}
\defn{Equivalence class of an element}{\label{def:eqclass}
Given a set $X$ and an equivalence relation $\sim$, an
equivalence class of $a \in X$, denoted $[a]$ is a set $\{ x \in S \mid x \sim a \}$
}
\newcommand{\eqclass}[1]{\hyperref[def:eqclass]{[#1]}}
\newrobustcmd{\upto}[1]{\hyperref[def:quotient-set]{#1}}
\defn{Quotient Set}{\label{def:quotient-set}
A quotient set $X/{\sim}$ (also said ``$X$ \textit{modulo} $\sim$'' or ``$X$ up to $\sim$``) is a set of all \hyperref[def:eqclass]{equivalence
classes} of $X$ with respect to $\sim$.
$$
X/{\sim} = \{ \eqclass{x} : x \in X \}
$$
}
\newcommand{\quot}[2]{\hyperref[def:quotient-set]{#1\diagup{}{#2}}}
\defn{Quotient Map, Projection}{\label{def:quotient-map}
A surjective mapping that sends a point in $X$ to its equivalence class, containing it.
$$\pi: X \to \quot{X}{\sim}$$
}
\newcommand{\quotmemb}[2]{\hyperref[def:quotient-set]{#1\diagup{}{#2}}}
\defn{Quotient by Subset Membership}{\label{def:quotmemb}
Given a set $X$ and subset $A \subset X$, $\quot{X}{A}$ is a notation that assumes an implicit equivalence relation:
\[
\forall \alpha \beta \in X,\; \alpha \sim \beta =
\begin{cases}
\top, \alpha \in A \conj \beta \in A \\
\bot, \text{otherwise}
\end{cases}
\]
For example:
\begin{align*}
X & = \{a, b, c, d, e\} \\
A & = \{a, e\} \subset X \\
\quot{X}{A} & = \{ b, c, d, \eqclass{a} \} \\
\eqclass{a} & = \{a, e\}
\end{align*}
One can say {\it identification of all points in $A$ with each other}.
}
\section{Group-theoretic Definitions}
\defn{Presentation}{
$$ \langle S\mid R\rangle$$
Where $S$ is a generator and $R$ is a relation.
}
\defn{Commutator}{
That one for groups: \url{https://en.wikipedia.org/wiki/Commutator}
}
\defn{Kernel (group)}{
Analog of a null space of a linear map (turns out it's also often called a kernel in linear algebra)
}
\begin{example}
$$ \mathbb{Z}_5 = {0,1,2,3,4} (\mod 5) $$
%<
$$ \{e,a,a^2,a^3,a^4\} = \langle a \mid a^5 = e \rangle $$
\end{example}
\defn{Free Group}{
Syntax for groups! $F_2$ if the free group has two generators.
}
\defn{Free Group by Universal Property}{
See \url{https://en.wikipedia.org/wiki/Free_group\#Universal_property}.
}
\begin{example} $F_1 = \integer $ (free cyclic group)
\end{example}
\begin{theorem}
Let group G be generated $g_1 \ldots g_k$, so every $h\in G$ is a product of some of its generators.
$$ F_k \xrightarrow{\phi} G $$
$$ G \cong F_k \diagup \ker \phi $$
$\ker \phi$ is a list of things on the right.
\end{theorem}
\begin{example}
{Dihedral group $\mathcal{D}_5$ --- symmetries of the pentagon.}
$r$ {\it rotates} the pentagon, $s$ {\it flips} it along the vertical axis.
$\mathcal{D}_5 = \angled{r, s \mid r^5 = 1, s^2 = 1, rs = sr^{-1}} $
See also: \url{https://en.wikipedia.org/wiki/Dihedral_group#Other_definitions}
\end{example}
\defn{Free Product with Amalgamation}{\label{def:amalgamatedfp}
}
\section{Geometry Definitions}
Most of these constructions are the same \upto{up to} homotopy.
\newrobustcmd{\ndisk}[1]{\hyperref[def:ndisk]{\mathcal{D}^{#1}}}
\newrobustcmd{\nrball}[2]{\hyperref[def:ndisk]{\mathcal{B}_{#1}^{#2}}}
\newrobustcmd{\nsphere}[1]{\hyperref[def:nsphere]{\mathcal{S}^{#1}}}
\newrobustcmd{\ntorus}[1]{\hyperref[def:ntorus]{\mathcal{T}^{#1}}}
\defn{n-sphere, hypersphere}{\label{def:nsphere}
$\nsphere{n}$. Generalizes a unit circle ($\nsphere{1}$ --- a circle in $\vr{2}$) and a unit sphere ($\nsphere{2}$ --- a sphere in $\vr{3}$). Given $\|\cdot\|$ is a norm,
$$\nsphere{n} = \builder{x}{\|x \in \vr{n+1}\| = 1} $$
A unit 0-sphere is a pair of endpoints of an interval $[-1, 1]$ of the real line.
}
\defn{n-disk, n-ball}{\label{def:ndisk}\label{def:ball}
$\ndisk{n}$. A disk (a closed ball) is a region contained inside $\nsphere{n}$. $\ndisk{1}$ is a line segment (in $\vr{1}$).
$$\ndisk{n} = \builder{x}{\|x \in \vr{n}\| \leq 1} $$
A {\bf ball} usually refers to a disk minus its boundary, an {\bf open ball}, which can be defined using $<$ instead of $\leq$.
$$\nrball{r}{n} = \builder{x}{\|x \in \vr{n}\| < r} $$
}
\defn{sphere modulo disk}{\label{def:spheremod}
$$
\nsphere{n} = \quotmemb{\ndisk{n}}{\nsphere{n-1}} = \quotmemb{\ndisk{n}}{\partial\ndisk{n}}
$$
For example, identifying the ends (a boundary, which in this case is a zero-dimensional sphere) of a line segment ($\ndisk{1}$) as one point produces a circle ($\nsphere{1}$) --- an object embeddable in $\vr{2}$:
$$ \nsphere{1} = \quotmemb{\ndisk{1}}{\nsphere{0}} $$
For a 2-sphere, imagine making a dumpling from a disk-shaped piece of dough. It's not exactly a sphere, but topologically we don't care.
\[
\nsphere{2} = \quotmemb{\ndisk{2}}{\nsphere{1}}
\]
}
\defn{torus}{\label{def:ntorus}
$\ntorus{n}$.
A 2-torus is a product of two circles. You can also build it my glueing two opposite sides of a square. Remember that a square is homeomophic to a $\ndisk{2}$. Let $B$ be a thickened bouquet $\nsphere{1} \wedgesum \nsphere{1}$ (so $\nsphere{1} \wedgesum \nsphere{1}$ is a \nameref{def:deformation-retraction} of $B$).
$$\ntorus{2} = \nsphere{1} \times \nsphere{1} = \ndisk{2} \glue_{f:\; \partial\ndisk{2} \;\to\; \nsphere{1} \wedgesum \nsphere{1}} B $$
}
\defn{double torus}{\label{def:double-torus}
A donut with two holes. Also known as a \href{https://en.wikipedia.org/wiki/Genus_(mathematics)}{genus}-two surface.
Can be constructed by folding a hexagon.
}
\section{Point-set Topology}
\newcommand{\interval}{\ensuremath{[0..1]}}
\defn{Unit interval}{A unit interval (or just an interval) $I$ is a subset $\interval \subset \vr{}$ of a real line, which is a popular notation in further homotopy buildup.}
\defn{A graph of a function}{$\Gamma(f)$ - a subset of $\vr{} \times \vr{}$}
\defn{Topological space}{\label{def:topology}
A topological space is a pair $\langle X, \tau \rangle$, where $X$ is a set
and $\tau$, a topology on X, is a collection of subsets ($\tau \subseteq \mathcal{P}(X)$)
called open sets, such that:
\begin{itemize}
\item $\emptyset \in \tau$.
\item $X \in \tau$.
\item $\tau$ is closed under arbitrary finite intersections.
\item $\tau$ is closed under arbitrary unions. \todo{Maybe find cute notation for this.}
\end{itemize}
}
\todo{Posets}.
\newcommand{\topX}{\hyperref[def:topology]{X}}
\renewcommand{\top}[2]{\hyperref[def:topology]{\pair{#1}{#2}}}
\defn{Trivial Topology}{
A topological space is called trivial, when the topology on $X$
consists only of $\emptyset$ and $X$.
}
\defn{Discrete Topology}{
A topological space is called discrete, when $\tau = \mathcal{P}(X)$.
}
\defn{Continuous map}{
Let $\langle X, \tau \rangle$ and $\langle Y, \sigma \rangle$ be topological spaces.
A map $f: X \to Y$ is \textbf{continuous} if:
$$
\forall s \in \sigma, \inv{f}(s) \in \tau
$$
In plain English, a map is continuous when a preimage of an open set in $Y$ is an open set in $X$.
$C(X,Y)$ denotes a set of all continuous maps between $X$ and $Y$.
}
\defn{Homeomorphism}{
A mapping $f: X \to Y$ is a homeomorphism if $\exists g: Y \to X$ s.t. $X \xrightarrow{f} Y \xrightarrow{g} X \xrightarrow{f} Y$,
when $g \circ f = id_x$ and $f \circ g = id_Y$. It is a continuous map that has a continuous inverse.
}
\begin{example}
\textit{How to see that a map $h: \interval \to \interval$ is a homeomorphism?}
\begin{itemize}
\item At least it needs to be monotonous.
\item Preserves boundaries.
\end{itemize}
$H((\interval, 0, 1), (\interval, 0, 1))_\text{increasing} \bigcup H((\interval, 0, 1), (\interval, 1, 0))_\text{decreasing}$
\end{example}
\todo{Base of topology and methods of inducing topologies on sets were discussed during Lecture 2.}
\todo{Bonus. Compare topology to a field of sets to a $\sigma$-algebra to a Borel $\sigma$-algebra. Discussed during Lecture 5.}
\subsection{Topology Restrictions}
\defn{$T_1$ space}{}
\defn{Hausdorff space}{}
\subsection{Quotient Topology}
\todo{Gluing.}
Let $\top{X}{\tau}$ be a topological space and $\sim$ be an equivalence relation on $X$.
\defn{Quotient Topogical Space}{
By analogy of a set and given $q: \top{X}{\tau} \to \top{\quot{X}{\sim}}{\tau_{\quot{X}{\sim}}}$,
\begin{align*}
\quot{X}{\sim} & = \{ \eqclass{x} : x \in X \} \\
\tau_{\quot{X}{\sim}} & = \{ U \subseteq \quot{X}{\sim} \mid \inv{q}(U) \in \tau \}
\end{align*}
$\tau_{\quot{X}{\sim}}$ is constructed this way to ensure $q$ is continuous.
}
\begin{theorem}
Given $Z$ is a topological space, $g$ is a surjective map, $p$ is a quotient map and the following diagram,
% \[
% \begin{tikzcd}[font=\large, row sep=huge, column sep=huge]
% \topX \arrow[swap]{d}{p} \arrow{dr}{g \circ p} &
% \\
% \quot{X}{\sim} \arrow[swap]{r}{g} & Z
% \end{tikzcd}
% \]
\[
\begin{tikzcd}[font=\large, row sep=huge, column sep=huge]
\topX \arrow{dr}{p} \arrow{rr}{f = g \circ p} && Z \\
& \quot{X}{\sim} \arrow{ur}{g}
\end{tikzcd}
\]
$g$ is continuous $\iff$ $f = g \circ p$ is continuous.
\end{theorem}
\defn{Bouqet of spaces, wedge sum}{\label{def:wedgesum}
Glue two spaces by one point. $A \vee B$.
}
% BAD
% \begin{example}
% Have $z \in \mathbb{C}$, $\mathbb{S}^1 = \{ \abs{z} = 1 \}$, $I = [0..1] \subset \vr{1}$.
% \[
% \begin{tikzcd}[font=\large, row sep=huge, column sep=huge]
% I \arrow{dr}{p} \arrow{rr}{f(t\in I) = \e{2i\pi{}t}} && \mathbb{S}^1 \\
% & {\quot{I}{\Delta} = \{0,1\}} \arrow{ur}{g}
% \end{tikzcd}
% \]
% \end{example}
\section{Homotopies Between Continuous Maps}
\defn{Homotopy}{
Two continuous maps $f, g: X \to Y$ are homotopic if there is a
map called homotopy $H: X \times [0,1] \to Y$ that \textit{continuously deforms} $f$ to $g$,
denoted $f \simeq g$ or $f \homotopic{H} g$.
In general:
\begin{align*}
X \times [0,1] &\xrightarrow{H} Y \\
H(x, 0) &= f(x) \\
H(x, 1) &= g(x) \\
H(x, t) &= tf(x) + (1-t)g(x)
\end{align*}
}
\begin{example}
$1 \homotopic{x^t} x$ when viewed as $x^0$ and $x^1$.
\begin{align*}
X \times [0,1] &\xrightarrow{H} Y \\
H(x, 0) &= x^0 \\
H(x, 1) &= x^1 \\
H(x, t) &= x^t
\end{align*}
Another possible homotopy between the same functions is $t\cdot{}x + (1-t)\cdot{}1$, which suggsts that there may be many more of them.
\todo{Plots?}
\end{example}
\begin{example}
$\{\cdot\} \times [0,1] \to \mathbb{C}$ with $H(x,t) = e^{2\pi{}it}$
\end{example}
\begin{theorem}
A homotopy between continuous maps is an \nameref{def:equivalence}.
\end{theorem}
\begin{proof}
\ldots
\end{proof}
\subsection{Contractible Spaces}
\defn{Contractibility}{
A space is contractible if it is homotopically equivalent to a point (a constant map).
Extra definitions:
\begin{itemize}
\item \todo{$X\times 0$ is a retraction of CX (cone over X)}
\item \todo{homotopic equivalence to a point}
\end{itemize}
}
\begin{example}
$\vr{n}$ is contractible to a point.
\begin{align*}
\vr{n} \times [0,1] &\xrightarrow{H} \vr{n} \\
H(x, 0) &= 0 \\
H(x, 1) &= x \\
H(x, t) &= tx
\end{align*}
\end{example}
\defn{Path-connectedness}{
}
\begin{theorem}
Any convex set is contractible.
\end{theorem}
\begin{elemma}
Contractibility does not depend on a choice of a point.
\end{elemma}
\defn{Star-convex Set}{}
\begin{theorem}
A star-convex set is contractible to a point.
\begin{align*}
A \subset \vr{n} &\text{\;is (star-)convex} \\
a \in A \\
A \times [0,1] &\xrightarrow{H} A \\
H(x, 0) &= 0 \\
H(x, 1) &= x \\
H(x, t) &= at + x(1-t)
\end{align*}
\end{theorem}
\begin{theorem}
Assuming we know how to build topologies on trees (as in graph theory trees), every finite tree is a contractible topological space.
\end{theorem}
\section{Quotient Spaces and Maps}
\todo{See lectures 2 and 3. Most of this stuff}
\subsection{Quotients and Groups}
\subsection{Cones of Topological Spaces}
\todo{Brouwer's Fixed Point Theorem was mentioned around here. Bring up the context?}.
\section{Retractions, Deformations and Deformation Retractions}
\defn{Retraction}{}
\todo{Bring up the example with ${x \over \norm{x}} - discussed along with retractions$}
\defn{Deformation}{
A continuous mapping is a deformation into a subspace $A \subset X$ when
\begin{itemize}
\item $H_0 = id_X$
\item $\forall t \in \interval, H_t(A) \subset A$
\end{itemize}
}
\defn{Deformation Retraction}{\label{def:deformation-retraction}}
\section{Classes of Homotopy Maps}
\todo{See lectures 4 and 5}.
% {
% % \medskip
% \includegraphics[width=0.4\textwidth]{Z}
% % \medskip
% }
\subsection{Mappings of $\mathbb{S}^1$ to Itself}
$$ \pi_1 \mathcal{S}^1 = [ (\mathcal{S}^1, \cdot), (\mathcal{S}^1, \cdot) ] $$
\section{Homotopy Types}
\attr{Lecture 7.}
\textit{Let $\top{X}{\tau}$ $\top{Y}{\sigma}$.}
A Homotopy Type is a synonym to homotopy equivalences between spaces. It is {\bf \large not} the homotopy type as in Homotopy Type Theory.
\claim{Homeomorphisms and topological spaces form a category.}
\claim{Homeomorphisms and topological spaces form a group (for all morphisms with one side fixed).}
$Homeo(X)$ group of all identity maps of X
\texttt{g} is a retraction of $Y$ to $X$ on $g(x)$ , g is also left inverse of f
$ g \circ f \homotopic{} id_x $
\defn{Homotopic Equivalence}{
A mapping $f: X \to Y$ is a homotopic equivalence when $\exists g: Y \to X$ such that $ g \circ f \homotopic{} id_X $ and $ f \circ g \homotopic{} id_Y $
}.
\begin{theorem}
Homotopy equivalence between spaces is an \nameref{def:equivalence}.
\end{theorem}
\begin{proof}
\ldots
\end{proof}
\let\point\cdot
\begin{example}
$f: X \to \point $ is a homotopic equivalence to a point $\iff$ X is contractible.
$H_0 = id \homotopic{} H_1 = f$
\end{example}
% \[
% \begin{tikzcd}[font=\large, row sep=huge, column sep=huge]
% X \arrow{r}{$f$} Y \arrow{r}{$g$} X
% \end{tikzcd}
% \]
\claim{Holes matter! $\infty \homotopic{} \texttt{B} \homotopic{} \textit{o\_O}$,look at this graphically, not symbolically.}
\begin{example}
Glueing of a disk to some space using quotienting.
\textit{expanding/reducing?}
\end{example}
\claim{Homotopy Theory cares only about spaces glued from a finite number of $\mathcal{S}^n$ spaces, see Shape Theory.}
\defn{Simple Homotopy Type}{A homotopy type is simple if you use a finite number of expansions and reductions}
%foreshadowing
\claim{This is a cue to working with simplicial complexes.}
\subsection*{\ldots Interlude \ldots}
$f: X\to Y$, $f$ is a proper mapping, $\inv{f}(\text{compact})$ is a compact
\todo{Define compact}
Defining proper homotopy equivalences.
$\vr{n} \to \point$ is an improper homotopy. Compactness is a bitch.
\section{Homeomorphisms}
A fact about a group of homeomorphisms of an interval: homotopy $h_t = tf + (1-t)g$ monotonicity $\iff H^+, H^-$ are convex subset in a vector space $C(I, I)$ of all continuous functions. \textit{Prove it}.
\begin{example}
Given curves $\gamma$ and $\delta$ that each enclose some surface.
Is there a homeomorphism $h: \vr{2} \to \vr{2}$ s.t. $h(\gamma) = \delta$?
\[
\begin{tikzcd}[font=\large, row sep=huge, column sep=huge]
\vr{2} \arrow{rr}{\exists h?} && \vr{2} \\
& \arrow{ul}{\gamma} I \arrow{ur}{\delta}
\end{tikzcd}
\]
\end{example}
\begin{example}
Given $f(x) = x^2$. Build a homeomorphism $h: \vr{2} \to \vr{2}$ s.t. $h(y = 0) = \Gamma(f)$.
$$h(x,y) \mapsto (x, x^2 + y)$$
$$\inv{h}(x,y) \mapsto (x, -x^2 + y)$$
$$\inv{h} \circ h = id_{\vr{2}}$$
Generalizing,
$$h(x,y) \mapsto (x, f(x) + y)$$
$$\inv{h}(x,y) \mapsto (x, -f(x) + y)$$
$$\inv{h} \circ h = id_{\vr{2}}$$
\end{example}
\begin{example}
Given a graph of a continuous function $f: [a,b] \to \vr{},\, f(a) = f(b) = 0,\, m = \min f(x),\, M = \max f(x),\, \epsilon > 0$ that lies within a known rectangle $K = [a,b] \times [m - \epsilon, M + \epsilon]$.
Prove, $\exists h: \vr{2} \to \vr{2}$ ($h$ is a homeomorphism), s.t.
\begin{itemize}
\item $h([a,b] \times 0) = \Gamma(f)$
\item $h(z) = z \; \forall z \in \vr{2} \setminus K$.
\end{itemize}
This is how we get to locally deform curves on a plane.
\end{example}
\defn{Isotopy}{
A homotopy $H: X \times \interval \to X$ s.t. $\forall t,\, H_t$ is a homeomorphism is an isotopy.
}
\lemma{Alexander's Theorem}{
Any homeomorphism of a unit interval (or a disk, or any convex set) which is fixed on its boundary $\quot{h}{\partial\mathcal{D}^2} = id_{\mathcal{D}^2}$ is isotopic to $id_I$ with an isotopy that is also fixed on is boundary.
E.g. there is a homeomorphism that maps a rendering of a letter A inside a disk to rendering of a letter R.
}{\textsc{\href{https://en.wikipedia.org/wiki/Alexander's_trick}{Alexander's Trick}}.
$H: \mathcal{D}^2 \times [0,1] \to \mathcal{D}^2$ is an isotopy.
}
Important result: if you have two continuous deformations of a unit disk, you can have a third continuous deformations between them.
It is possible to use differentiability.
See also, Cerf's theorem, \url{https://en.wikipedia.org/wiki/Cerf_theory} and Smale's theorem (don't confuse with Poincare conjecture).
\section{Glueing and Complexes}
We were building up Homotopy Theory definitions to work with CW complexes.
\defn{CW complex}{\label{def:cw-complex}
Also called a {\bf cell complex}. A space, created by glueing simple spaces together.
}
Quotienting is the workhorse of glueing. Use quotient topology to set up topologies after glueing two spaces.
\begin{example}
Identifying all points from a boundary of a disk (set $X$) and a single point from set $Y$ as a single equivalence class.
\end{example}
\defn{Glueing}{\label{def:glueing}
Notation: $ X \glue_{f} A $
}
Big idea: geometric objects have combinatorial structure, there is a lot of machinery that lets you ``dumb down'' to those structures to simplify working with objects equivalent \upto{up to} a homotopy.
Foreshadowing: \href{https://en.wikipedia.org/wiki/Whitehead_theorem}{Whitehead theorem}.
\begin{example}
Let's build a cube.
Its vertices are 8 zero-dimensional disks: $\mathcal{D}^0$, edges are 1-dimensional disks, faces are 2-dimensional disks.
(NB spaces like $K^1$ are enough to model graphs in topology)
\begin{align*}
K^0 &= \bigsqcup \mathcal{D}_i^0\\
K^1 &= \left(\bigsqcup \mathcal{D}_i^1\right) \glue_{\phi_i} K^0\\
K^2 &= \left(\bigsqcup \mathcal{D}_i^2\right) \glue_{\psi_i} K^1
\end{align*}
$K^i$ is an i-th skeleton. \textit{Interiors} of disks are called {\bf cells}.
\end{example}
\claim{An integer line is a cell complex.}
\defn{CW complex}{
\begin{itemize}
\item C is for closure-finite (closure of each cell is contained in a union of finitely many cells)
\item W is for weak topology (roughly, every $K^i$ has a quotient topology)
\end{itemize}
}
\section{Homotopy Groups}
% April 3.
Notation abuse: there's actually a difference between $\circ$ (map composition) and $\star$ (group operation, which is denoted as $\circ$ instead!)
% TODO: generalize
\let\oldpi\pi
\renewcommand{\pi}{\hyperref[def:fundamental-group]{\oldpi}}
\defn{Fundamental group}{\label{def:fundamental-group}
\url{https://en.wikipedia.org/wiki/Homotopy_group}
$$ \pi_1(\topX, x_0) = [(\nsphere{1}, \cdot), (\topX, x_0)] = [(I, \partial I), (\topX, x_0)]$$ %
\todo{where [A, B] are homotopy classes.}
The group multiplication is defined as homotopy composition for {\bf spaces equivalent up to a homotopy}:
$$ (\alpha \circ \beta)(t) = \alpha(2t) t \in [0, {1\over 2}, \beta(2t - 1) t \in [{1\over 2}, 1]] $$
Neutral element suggestions: constant mapping doesn't work.
Let's use deformations up to a homotopy:
$$ [\alpha] \circ [\beta] = [\alpha \circ \beta] $$
$$[\alpha] = [\alpha^\prime] \implies \alpha \homotopic{} \alpha^\prime$$
}
\todo{Now prove it's actually a group}
\begin{theorem}
$$
[\alpha] \circ [\epsilon] = [\epsilon] \circ [\alpha] = [\alpha]
$$
\end{theorem}
\begin{proof}
In other words, $\alpha \circ \epsilon \simeq \alpha$
\end{proof}
Big idea: we're handling an equivalence class by introducing an extra parameter for a class deformation, and defining operations as parametrized homotopies. Lesson: paying for definitions is hard.
\ldots
% (get-buffer-window "monkey")
% (delete-window nil)
%%
\begin{theorem}
\todo{This has been discussed earlier}
$$ \pi_1 (\nsphere{1}) \cong \mathbb{Z} $$
\end{theorem}
\subsection{Homotopy Groups of Spheres}
The i-th homotopy group $\pi_i(\nsphere{n})$ summarizes the different ways in which the i-dimensional sphere $\nsphere{i}$
can be mapped continuously (in homotopical sense, i.e. maps up to a homotopy) into the n-dimensional sphere $\nsphere{n}$.
\subsection{Computing the Fundamental Group}
% April 10.
Problems: given a space, compute its group. Given a group, compute its space.
% For any finite group $G$, build a 2-dimensional CW-complex $X$, s.t. $\pi_1(X, x) = G$.
% Gave birth to combinatorial group theory (see also: word problem).
Two instruments: Cover (a special case of a fibration) and van Kampen's Theorem
\begin{theorem}
{van Kampen}
\url{https://en.wikipedia.org/wiki/Seifert-van_Kampen_theorem} \todo{we were discussing the combinatorial definition}
Big idea: express the structure of the fundamental group through the fundamental groups of two open, path-connected subspaces $A$ and $B$ that cover $X$.
Let $X$ is a path connected space, and $A, B$ are its subspaces such that $X = A \bigcup B$ and $A \bigcap B$ are
path connected. ($\bigcup$ is generalizable by a product, $\times$)
\[
\pi_1 (A \times B) = \pi_1 A \times \pi_1 B
\]
where $\times$ is an amalgamated free product.
\end{theorem}
Categorically: the fundamental group is a terminal object in some category.
\begin{example}
$$ \pi_1 (\nsphere{1} \wedgesum \nsphere{1}) = \integer \times \integer = \mathcal{F}_2 $$
\end{example}
\begin{example}
A 2-disk is path connected.
$$ \pi_1 (\ndisk{2}) = 0 $$
\end{example}
\begin{example}
$$ \pi_1(\nsphere{2}) = 0 $$
$A$ and $B$ are both $\ndisk{2}$.
\end{example}
\subsubsection{Computing Fundamental Groups of Surfaces}
\begin{example}
{\nameref{def:fundamental-group} of $\ntorus{2}$}
This is solvable if you look at the torus as a \cwcomplex --- note there are multiple ways to compute a complex for a torus. For example, try using a diagonal of a square.
$$ \pi_1{\ntorus{2}} = \angled{a,b \mid aba^{-1}b^{-1}} = \integer \oplus \integer $$
\end{example}
% In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is often written
\section{Resources}
Course page: \url{https://sites.google.com/site/kafedramatematikikau/products-services/homotopy-theory}
\bibliography{references}{}
\bibliographystyle{apalike}
\end{document}