-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathkeras_train.py
210 lines (174 loc) · 7.81 KB
/
keras_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#from keras.models import Sequential, Model
#from keras.layers import Dense, Dropout, Flatten, Input
#from keras.layers import Conv2D, MaxPooling2D, Reshape, Concatenate
from keras.optimizers import Adam
#import tensorflow as tf
import numpy as np
import sys
import os
import cv2
import keras.backend as K
import math
if len(sys.argv) == 2:
dataset = sys.argv[1]
else:
print('usage: python3 test.py A(or B)')
exit()
print('dataset:', dataset)
train_path = './data/formatted_trainval/shanghaitech_part_' + dataset + '_patches_9/train/'
train_den_path = './data/formatted_trainval/shanghaitech_part_' + dataset + '_patches_9/train_den/'
val_path = './data/formatted_trainval/shanghaitech_part_' + dataset + '_patches_9/val/'
val_den_path = './data/formatted_trainval/shanghaitech_part_' + dataset + '_patches_9/val_den/'
img_path = './data/original/shanghaitech/part_' + dataset + '_final/test_data/images/'
den_path = './data/original/shanghaitech/part_' + dataset + '_final/test_data/ground_truth_csv/'
def data_pre_train():
print('loading data from dataset ', dataset, '...')
train_img_names = os.listdir(train_path)
img_num = len(train_img_names)
train_data = []
for i in range(img_num):
if i % 100 == 0:
print(i, '/', img_num)
name = train_img_names[i]
#print(name + '****************************')
img = cv2.imread(train_path + name, 0)
img = np.array(img)
img = (img - 127.5) / 128
#print(img.shape)
den = np.loadtxt(open(train_den_path + name[:-4] + '.csv'), delimiter = ",")
den_quarter = np.zeros((int(den.shape[0] / 4), int(den.shape[1] / 4)))
#print(den_quarter.shape)
for i in range(len(den_quarter)):
for j in range(len(den_quarter[0])):
for p in range(4):
for q in range(4):
den_quarter[i][j] += den[i * 4 + p][j * 4 + q]
train_data.append([img, den_quarter])
print('load data finished.')
return train_data
def data_pre_test():
print('loading test data from dataset', dataset, '...')
img_names = os.listdir(img_path)
img_num = len(img_names)
data = []
for i in range(img_num):
if i % 50 == 0:
print(i, '/', img_num)
name = 'IMG_' + str(i + 1) + '.jpg'
#print(name + '****************************')
img = cv2.imread(img_path + name, 0)
img = np.array(img)
img = (img - 127.5) / 128
#print(img.shape)
den = np.loadtxt(open(den_path + name[:-4] + '.csv'), delimiter = ",")
den_quarter = np.zeros((int(den.shape[0] / 4), int(den.shape[1] / 4)))
#print(den_quarter.shape)
for i in range(len(den_quarter)):
for j in range(len(den_quarter[0])):
for p in range(4):
for q in range(4):
den_quarter[i][j] += den[i * 4 + p][j * 4 + q]
#print(den.shape)
data.append([img, den_quarter])
print('load data finished.')
return data
data = data_pre_train()
data_test = data_pre_test()
np.random.shuffle(data)
x_train = []
y_train = []
for d in data:
x_train.append(np.reshape(d[0], (d[0].shape[0], d[0].shape[1], 1)))
y_train.append(np.reshape(d[1], (d[1].shape[0], d[1].shape[1], 1)))
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = []
y_test = []
for d in data_test:
x_test.append(np.reshape(d[0], (d[0].shape[0], d[0].shape[1], 1)))
y_test.append(np.reshape(d[1], (d[1].shape[0], d[1].shape[1], 1)))
x_test = np.array(x_test)
y_test = np.array(y_test)
def maaae(y_true, y_pred):
return abs(K.sum(y_true) - K.sum(y_pred))
def mssse(y_true, y_pred):
return (K.sum(y_true) - K.sum(y_pred)) * (K.sum(y_true) - K.sum(y_pred))
inputs = Input(shape = (None, None, 1))
conv_m = Conv2D(20, (7, 7), padding = 'same', activation = 'relu')(inputs)
conv_m = MaxPooling2D(pool_size = (2, 2))(conv_m)
conv_m = (conv_m)
conv_m = Conv2D(40, (5, 5), padding = 'same', activation = 'relu')(conv_m)
conv_m = MaxPooling2D(pool_size = (2, 2))(conv_m)
conv_m = Conv2D(20, (5, 5), padding = 'same', activation = 'relu')(conv_m)
conv_m = Conv2D(10, (5, 5), padding = 'same', activation = 'relu')(conv_m)
#conv_m = Conv2D(1, (1, 1), padding = 'same', activation = 'relu')(conv_m)
conv_s = Conv2D(24, (5, 5), padding = 'same', activation = 'relu')(inputs)
conv_s = MaxPooling2D(pool_size = (2, 2))(conv_s)
conv_s = (conv_s)
conv_s = Conv2D(48, (3, 3), padding = 'same', activation = 'relu')(conv_s)
conv_s = MaxPooling2D(pool_size = (2, 2))(conv_s)
conv_s = Conv2D(24, (3, 3), padding = 'same', activation = 'relu')(conv_s)
conv_s = Conv2D(12, (3, 3), padding = 'same', activation = 'relu')(conv_s)
#conv_s = Conv2D(1, (1, 1), padding = 'same', activation = 'relu')(conv_s)
conv_l = Conv2D(16, (9, 9), padding = 'same', activation = 'relu')(inputs)
conv_l = MaxPooling2D(pool_size = (2, 2))(conv_l)
conv_l = (conv_l)
conv_l = Conv2D(32, (7, 7), padding = 'same', activation = 'relu')(conv_l)
conv_l = MaxPooling2D(pool_size = (2, 2))(conv_l)
conv_l = Conv2D(16, (7, 7), padding = 'same', activation = 'relu')(conv_l)
conv_l = Conv2D(8, (7, 7), padding = 'same', activation = 'relu')(conv_l)
#conv_l = Conv2D(1, (1, 1), padding = 'same', activation = 'relu')(conv_l)
conv_merge = Concatenate(axis = 3)([conv_m, conv_s, conv_l])
result = Conv2D(1, (1, 1), padding = 'same')(conv_merge)
'''
inputs = Input(shape = (None, None, 1))
conv_m = Conv2D(20, (7, 7), padding = 'same', activation = 'relu')(inputs)
conv_m = MaxPooling2D(pool_size = (2, 2))(conv_m)
conv_m = (conv_m)
conv_m = Conv2D(40, (5, 5), padding = 'same', activation = 'relu')(conv_m)
conv_m = MaxPooling2D(pool_size = (2, 2))(conv_m)
conv_m = Conv2D(20, (5, 5), padding = 'same', activation = 'relu')(conv_m)
conv_m = Conv2D(10, (5, 5), padding = 'same', activation = 'relu')(conv_m)
#conv_m = Conv2D(1, (1, 1), padding = 'same', activation = 'relu')(conv_m)
conv_s = Conv2D(24, (5, 5), padding = 'same', activation = 'relu')(inputs)
conv_s = MaxPooling2D(pool_size = (2, 2))(conv_s)
conv_s = (conv_s)
conv_s = Conv2D(48, (3, 3), padding = 'same', activation = 'relu')(conv_s)
conv_s = MaxPooling2D(pool_size = (2, 2))(conv_s)
conv_s = Conv2D(24, (3, 3), padding = 'same', activation = 'relu')(conv_s)
conv_s = Conv2D(12, (3, 3), padding = 'same', activation = 'relu')(conv_s)
#conv_s = Conv2D(1, (1, 1), padding = 'same', activation = 'relu')(conv_s)
conv_l = Conv2D(16, (9, 9), padding = 'same', activation = 'relu')(inputs)
conv_l = MaxPooling2D(pool_size = (2, 2))(conv_l)
conv_l = (conv_l)
conv_l = Conv2D(32, (7, 7), padding = 'same', activation = 'relu')(conv_l)
conv_l = MaxPooling2D(pool_size = (2, 2))(conv_l)
conv_l = Conv2D(16, (7, 7), padding = 'same', activation = 'relu')(conv_l)
conv_l = Conv2D(8, (7, 7), padding = 'same', activation = 'relu')(conv_l)
#conv_l = Conv2D(1, (1, 1), padding = 'same', activation = 'relu')(conv_l)
conv_merge = Concatenate(axis = 3)([conv_m, conv_s, conv_l])
result = Conv2D(1, (1, 1), padding = 'same')(conv_merge)
'''
model = Model(inputs = inputs, outputs = result)
adam = Adam(lr = 1e-4)
model.compile(loss = 'mse', optimizer = adam, metrics = [maaae, mssse])
best_mae = 10000
best_mae_mse = 10000
best_mse = 10000
best_mse_mae = 10000
for i in range(200):
model.fit(x_train, y_train, epochs = 3, batch_size = 1, validation_split = 0.2)
score = model.evaluate(x_test, y_test, batch_size = 1)
score[2] = math.sqrt(score[2])
print(score)
if score[1] < best_mae:
best_mae = score[1]
best_mae_mse = score[2]
json_string = model.to_json()
open('model.json', 'w').write(json_string)
model.save_weights('weights.h5')
if score[2] < best_mse:
best_mse = score[2]
best_mse_mae = score[1]
print('best mae: ', best_mae, '(', best_mae_mse, ')')
print('best mse: ', '(', best_mse_mae, ')', best_mse)