-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
basic_seq2seq.py
420 lines (316 loc) · 17.5 KB
/
basic_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#鸡鸣万户晓 鹤舞一年春
#戌岁祝福万事顺 狗年兆丰五谷香
import tensorflow as tf
from tensorflow.python.layers.core import Dense
import numpy as np
import time
# 超参数
# Number of Epochs
epochs = 1000
# Batch Size
batch_size = 50
# RNN Size
rnn_size = 50
# Number of Layers
num_layers = 2
# Embedding Size
encoding_embedding_size = 15
decoding_embedding_size = 15
# Learning Rate
learning_rate = 0.001
source = open("data/source.txt",'w')
target = open("data/target.txt",'w')
with open("data/对联.txt",'r') as f:
lines = f.readlines()
for line in lines:
line = line.strip().split(" ")
source.write(line[0]+'\n')
target.write(line[1]+'\n')
source.close()
target.close()
with open('data/source.txt','r',encoding='utf-8') as f:
source_data = f.read()
with open('data/target.txt','r',encoding='utf-8') as f:
target_data = f.read()
print(source_data.split('\n')[:10])
print(target_data.split('\n')[:10])
def extract_character_vocab(data):
"""
:param data:
:return: 字符映射表
"""
special_words = ['<PAD>','<UNK>','<GO>','<EOS>']
set_words = list(set([character for line in data.split('\n') for character in line]))
int_to_vocab = {idx:word for idx,word in enumerate(special_words + set_words)}
vocab_to_int = {word:idx for idx,word in int_to_vocab.items()}
return int_to_vocab,vocab_to_int
# 得到输入和输出的字符映射表
source_int_to_letter,source_letter_to_int = extract_character_vocab(source_data+target_data)
target_int_to_letter,target_letter_to_int = extract_character_vocab(source_data+target_data)
# 将每一行转换成字符id的list
source_int = [[source_letter_to_int.get(letter,source_letter_to_int['<UNK>'])
for letter in line] for line in source_data.split('\n')]
target_int = [[target_letter_to_int.get(letter, target_letter_to_int['<UNK>'])
for letter in line] + [target_letter_to_int['<EOS>']] for line in target_data.split('\n')]
print(source_int)
print(target_int)
# 输入层
def get_inputs():
inputs = tf.placeholder(tf.int32,[None,None],name='inputs')
targets = tf.placeholder(tf.int32,[None,None],name='targets')
learning_rate = tf.placeholder(tf.float32,name='learning_rate')
# 定义target序列最大长度(之后target_sequence_length和source_sequence_length会作为feed_dict的参数)
target_sequence_length = tf.placeholder(tf.int32,(None,),name='target_sequence_length')
max_target_sequence_length = tf.reduce_max(target_sequence_length,name='max_target_len')
source_sequence_length = tf.placeholder(tf.int32,(None,),name='source_sequence_length')
return inputs,targets,learning_rate,target_sequence_length,max_target_sequence_length,source_sequence_length
# Encoder
"""
在Encoder端,我们需要进行两步,第一步要对我们的输入进行Embedding,再把Embedding以后的向量传给RNN进行处理。
在Embedding中,我们使用tf.contrib.layers.embed_sequence,它会对每个batch执行embedding操作。
"""
def get_encoder_layer(input_data,rnn_size,num_layers,source_sequence_length,source_vocab_size,encoding_embedding_size):
"""
构造Encoder层
参数说明:
- input_data: 输入tensor
- rnn_size: rnn隐层结点数量
- num_layers: 堆叠的rnn cell数量
- source_sequence_length: 源数据的序列长度
- source_vocab_size: 源数据的词典大小
- encoding_embedding_size: embedding的大小
"""
# https://www.tensorflow.org/versions/r1.4/api_docs/python/tf/contrib/layers/embed_sequence
"""
embed_sequence(
ids,
vocab_size=None,
embed_dim=None,
unique=False,
initializer=None,
regularizer=None,
trainable=True,
scope=None,
reuse=None
)
ids: [batch_size, doc_length] Tensor of type int32 or int64 with symbol ids.
return : Tensor of [batch_size, doc_length, embed_dim] with embedded sequences.
"""
encoder_embed_input = tf.contrib.layers.embed_sequence(input_data,source_vocab_size,encoding_embedding_size)
def get_lstm_cell(rnn_size):
lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
return lstm_cell
cell = tf.contrib.rnn.MultiRNNCell([get_lstm_cell(rnn_size) for _ in range(num_layers)])
encoder_output , encoder_state = tf.nn.dynamic_rnn(cell,encoder_embed_input,sequence_length=source_sequence_length,dtype=tf.float32)
return encoder_output,encoder_state
def process_decoder_input(data,vocab_to_int,batch_size):
ending = tf.strided_slice(data,[0,0],[batch_size,-1],[1,1])
decoder_input = tf.concat([tf.fill([batch_size,1],vocab_to_int['<GO>']),ending],1)
return decoder_input
def decoding_layer(target_letter_to_int,decoding_embedding_size,num_layers,rnn_size,
target_sequence_length,max_target_sequence_length,encoder_state,decoder_input):
'''
构造Decoder层
参数:
- target_letter_to_int: target数据的映射表
- decoding_embedding_size: embed向量大小
- num_layers: 堆叠的RNN单元数量
- rnn_size: RNN单元的隐层结点数量
- target_sequence_length: target数据序列长度
- max_target_sequence_length: target数据序列最大长度
- encoder_state: encoder端编码的状态向量
- decoder_input: decoder端输入
'''
# 1. Embedding
target_vocab_size = len(target_letter_to_int)
decoder_embeddings = tf.Variable(tf.random_uniform([target_vocab_size,decoding_embedding_size]))
decoder_embed_input = tf.nn.embedding_lookup(decoder_embeddings,decoder_input)
# 构造Decoder中的RNN单元
def get_decoder_cell(rnn_size):
decoder_cell = tf.contrib.rnn.LSTMCell(rnn_size,initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
return decoder_cell
cell = tf.contrib.rnn.MultiRNNCell([get_decoder_cell(rnn_size) for _ in range(num_layers)])
# Output全连接层
# target_vocab_size定义了输出层的大小
output_layer = Dense(target_vocab_size,kernel_initializer=tf.truncated_normal_initializer(mean=0.1,stddev=0.1))
# 4. Training decoder
with tf.variable_scope("decode"):
training_helper = tf.contrib.seq2seq.TrainingHelper(inputs = decoder_embed_input,
sequence_length = target_sequence_length,
time_major = False)
training_decoder = tf.contrib.seq2seq.BasicDecoder(cell,training_helper,encoder_state,output_layer)
training_decoder_output,_,_ = tf.contrib.seq2seq.dynamic_decode(training_decoder,impute_finished=True,
maximum_iterations = max_target_sequence_length)
# 5. Predicting decoder
# 与training共享参数
with tf.variable_scope("decode",reuse=True):
# 创建一个常量tensor并复制为batch_size的大小
start_tokens = tf.tile(tf.constant([target_letter_to_int['<GO>']],dtype=tf.int32),[batch_size],name='start_token')
predicting_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(decoder_embeddings,start_tokens,target_letter_to_int['<EOS>'])
predicting_decoder = tf.contrib.seq2seq.BasicDecoder(cell,
predicting_helper,
encoder_state,
output_layer)
predicting_decoder_output,_,_ = tf.contrib.seq2seq.dynamic_decode(predicting_decoder,impute_finished = True,
maximum_iterations = max_target_sequence_length)
return training_decoder_output,predicting_decoder_output
# 上面已经构建完成Encoder和Decoder,下面将这两部分连接起来,构建seq2seq模型
def seq2seq_model(input_data,targets,lr,target_sequence_length,max_target_sequence_length,
source_sequence_length,source_vocab_size,target_vocab_size,encoder_embedding_size,
decoder_embedding_size,rnn_size,num_layers):
_,encoder_state = get_encoder_layer(input_data,
rnn_size,
num_layers,
source_sequence_length,
source_vocab_size,
encoding_embedding_size)
decoder_input = process_decoder_input(targets,target_letter_to_int,batch_size)
training_decoder_output,predicting_decoder_output = decoding_layer(target_letter_to_int,
decoding_embedding_size,
num_layers,
rnn_size,
target_sequence_length,
max_target_sequence_length,
encoder_state,
decoder_input)
return training_decoder_output,predicting_decoder_output
# 构造graph
train_graph = tf.Graph()
with train_graph.as_default():
input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length = get_inputs()
training_decoder_output, predicting_decoder_output = seq2seq_model(input_data,
targets,
lr,
target_sequence_length,
max_target_sequence_length,
source_sequence_length,
len(source_letter_to_int),
len(target_letter_to_int),
encoding_embedding_size,
decoding_embedding_size,
rnn_size,
num_layers)
training_logits = tf.identity(training_decoder_output.rnn_output,'logits')
predicting_logits = tf.identity(predicting_decoder_output.sample_id,name='predictions')
#mask是权重的意思
#tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False],
# [True, True, True, False, False],
# [True, True, False, False, False]]
masks = tf.sequence_mask(target_sequence_length,max_target_sequence_length,dtype=tf.float32,name="masks")
# logits: A Tensor of shape [batch_size, sequence_length, num_decoder_symbols] and dtype float.
# The logits correspond to the prediction across all classes at each timestep.
#targets: A Tensor of shape [batch_size, sequence_length] and dtype int.
# The target represents the true class at each timestep.
#weights: A Tensor of shape [batch_size, sequence_length] and dtype float.
# weights constitutes the weighting of each prediction in the sequence. When using weights as masking,
# set all valid timesteps to 1 and all padded timesteps to 0, e.g. a mask returned by tf.sequence_mask.
with tf.name_scope("optimization"):
cost = tf.contrib.seq2seq.sequence_loss(
training_logits,
targets,
masks
)
optimizer = tf.train.AdamOptimizer(lr)
# minimize函数用于添加操作节点,用于最小化loss,并更新var_list.
# 该函数是简单的合并了compute_gradients()与apply_gradients()函数返回为一个优化更新后的var_list,
# 如果global_step非None,该操作还会为global_step做自增操作
#这里将minimize拆解为了以下两个部分:
# 对var_list中的变量计算loss的梯度 该函数为函数minimize()的第一部分,返回一个以元组(gradient, variable)组成的列表
gradients = optimizer.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gradients if grad is not None]
# 将计算出的梯度应用到变量上,是函数minimize()的第二部分,返回一个应用指定的梯度的操作Operation,对global_step做自增操作
train_op = optimizer.apply_gradients(capped_gradients)
def pad_sentence_batch(sentence_batch,pad_int):
'''
对batch中的序列进行补全,保证batch中的每行都有相同的sequence_length
参数:
- sentence batch
- pad_int: <PAD>对应索引号
'''
max_sentence = max([len(sentence) for sentence in sentence_batch])
return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch]
def get_batches(targets,sources,batch_size,source_pad_int,target_pad_int):
for batch_i in range(0,len(sources)//batch_size):
start_i = batch_i * batch_size
sources_batch = sources[start_i : start_i + batch_size]
targets_batch = targets[start_i : start_i + batch_size]
pad_sources_batch = np.array(pad_sentence_batch(sources_batch,source_pad_int))
pad_targets_batch = np.array(pad_sentence_batch(targets_batch,target_pad_int))
targets_lengths = []
for target in targets_batch:
targets_lengths.append(len(target))
source_lengths = []
for source in sources_batch:
source_lengths.append(len(source))
yield pad_targets_batch,pad_sources_batch,targets_lengths,source_lengths
# Train
train_source = source_int[batch_size:]
train_target = target_int[batch_size:]
# 留出一个batch进行验证
valid_source = source_int[:batch_size]
valid_target = target_int[:batch_size]
(valid_targets_batch, valid_sources_batch, valid_targets_lengths, valid_sources_lengths) = next(get_batches(valid_target, valid_source, batch_size,
source_letter_to_int['<PAD>'],
target_letter_to_int['<PAD>']))
display_step = 50
checkpoint = "data/trained_model.ckpt"
with tf.Session(graph=train_graph) as sess:
sess.run(tf.global_variables_initializer())
print()
for epoch_i in range(1,epochs+1):
for batch_i,(targets_batch, sources_batch, targets_lengths, sources_lengths) in enumerate(get_batches(
train_target,train_source,batch_size,source_letter_to_int['<PAD>'],
target_letter_to_int['<PAD>']
)):
_,loss = sess.run([train_op,cost],feed_dict={
input_data:sources_batch,
targets:targets_batch,
lr:learning_rate,
target_sequence_length:targets_lengths,
source_sequence_length:sources_lengths
})
if batch_i % display_step == 0:
# 计算validation loss
validation_loss = sess.run(
[cost],
{input_data: valid_sources_batch,
targets: valid_targets_batch,
lr: learning_rate,
target_sequence_length: valid_targets_lengths,
source_sequence_length: valid_sources_lengths})
print('Epoch {:>3}/{} Batch {:>4}/{} - Training Loss: {:>6.3f} - Validation loss: {:>6.3f}'
.format(epoch_i,
epochs,
batch_i,
len(train_source) // batch_size,
loss,
validation_loss[0]))
saver = tf.train.Saver()
saver.save(sess, checkpoint)
print('Model Trained and Saved')
# 预测
def source_to_seq(text):
sequence_length = 7
return [source_letter_to_int.get(word,source_letter_to_int['<UNK>']) for word in text] + [source_letter_to_int['<PAD>']] * (sequence_length - len(text))
input_word = '戌岁祝福万事顺'
text = source_to_seq(input_word)
checkpoint = "data/trained_model.ckpt"
loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
loader = tf.train.import_meta_graph(checkpoint+'.meta')
loader.restore(sess,checkpoint)
input_data = loaded_graph.get_tensor_by_name('inputs:0')
logits = loaded_graph.get_tensor_by_name('predictions:0')
source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0')
target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0')
answer_logits = sess.run(logits, {input_data: [text] * batch_size,
target_sequence_length: [len(input_word)] * batch_size,
source_sequence_length: [len(input_word)] * batch_size})[0]
pad = source_letter_to_int["<PAD>"]
print('原始输入:', input_word)
print('\nSource')
print(' Word 编号: {}'.format([i for i in text]))
print(' Input Words: {}'.format(" ".join([source_int_to_letter[i] for i in text])))
print('\nTarget')
print(' Word 编号: {}'.format([i for i in answer_logits if i != pad]))
print(' Response Words: {}'.format(" ".join([target_int_to_letter[i] for i in answer_logits if i != pad])))