-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtest.py
202 lines (167 loc) · 10 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import os
import random
import time
from collections import defaultdict
from pathlib import Path
import colored_traceback
import gin
import imageio
import numpy as np
import pandas as pd
import torch
from gin.torch import external_configurables
from lietorch import SE3
from crops import crop_inputs
from detector import PandasTensorCollection, concatenate, load_detector
from pose_models import load_efficientnet
from train import (create_dataloader, gin_globals, load_raft_model,
make_datasets, format_gin_override)
from utils import Pytorch3DRenderer, get_perturbations, transform_pts
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def align_pointclouds_to_boxes(boxes_2d, model_points_3d, K):
assert boxes_2d.shape[-1] == 4
assert boxes_2d.dim() == 2
bsz = boxes_2d.shape[0]
z_guess = 1.0
fxfy = K[:, [0, 1], [0, 1]]
cxcy = K[:, [0, 1], [2, 2]]
TCO = torch.tensor([
[0, 1, 0, 0],
[0, 0, -1, 0],
[-1, 0, 0, z_guess],
[0, 0, 0, 1]
]).to(torch.float).to(boxes_2d.device).repeat(bsz, 1, 1)
bb_xy_centers = (boxes_2d[:, [0, 1]] + boxes_2d[:, [2, 3]]) / 2
xy_init = ((bb_xy_centers - cxcy) * z_guess) / fxfy
TCO[:, :2, 3] = xy_init
C_pts_3d = transform_pts(TCO, model_points_3d)
deltax_3d = C_pts_3d[:, :, 0].max(dim=1).values - C_pts_3d[:, :, 0].min(dim=1).values
deltay_3d = C_pts_3d[:, :, 1].max(dim=1).values - C_pts_3d[:, :, 1].min(dim=1).values
bb_deltax = (boxes_2d[:, 2] - boxes_2d[:, 0]) + 1
bb_deltay = (boxes_2d[:, 3] - boxes_2d[:, 1]) + 1
z_from_dx = fxfy[:, 0] * deltax_3d / bb_deltax
z_from_dy = fxfy[:, 1] * deltay_3d / bb_deltay
z = (z_from_dy.unsqueeze(1) + z_from_dx.unsqueeze(1)) / 2
xy_init = ((bb_xy_centers - cxcy) * z) / fxfy
TCO[:, :2, 3] = xy_init
TCO[:, 2, 3] = z.flatten()
return TCO
@gin.configurable
def generate_pose_from_detections(renderer, detections, K):
K = K[detections.infos['batch_im_id'].values]
boxes = detections.bboxes
points_3d = renderer.get_pointclouds(detections.infos['label'])
TCO_init = align_pointclouds_to_boxes(boxes, points_3d, K)
return PandasTensorCollection(infos=detections.infos, poses=TCO_init)
def format_results(predictions):
df = defaultdict(list)
df = pd.DataFrame(df)
results = dict(summary=dict(), summary_txt='',
predictions=predictions, metrics=dict(),
summary_df=df, dfs=dict())
return results
@torch.no_grad()
def main():
colored_traceback.add_hook()
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--override', nargs='+', type=str, default=[], help="gin-config settings to override")
parser.add_argument('--start_index', type=int, default=0)
parser.add_argument('--num_images', type=int, default=None)
parser.add_argument('--load_weights', type=str, default=None, help='path to the model weights to load')
parser.add_argument('--num_outer_loops', type=int, default=4, help="number of outer-loops in each forward pass")
parser.add_argument('--num_inner_loops', type=int, default=40, help="number of inner-loops in each forward pass")
parser.add_argument('--num_solver_steps', type=int, default=10, help="number of BD-PnP solver steps per inner-loop (doesn't affect Modified BD-PnP)")
parser.add_argument('--save_dir', type=Path, default="test_evaluation")
parser.add_argument('--dataset', required=True, choices=['ycbv', 'tless', 'lmo', 'hb', 'tudl', 'icbin', 'itodd'], help="dataset for training (and evaluation)")
parser.add_argument('--rgb_only', action='store_true', help="use the RGB-only model")
args = parser.parse_args()
args.override = format_gin_override(args.override)
gin.parse_config_files_and_bindings(["configs/base.gin", f"configs/test_{args.dataset}_{'rgb' if args.rgb_only else 'rgbd'}.gin"], args.override)
test_dataset = make_datasets(gin_globals().test_splits)
print(f"The entire dataset is of length {len(test_dataset)}")
if 'SLURM_ARRAY_TASK_MIN' in os.environ: # array job
assert int(os.environ['SLURM_ARRAY_TASK_MIN']) == 0
num_jobs = int(os.environ['SLURM_ARRAY_TASK_COUNT'])
assert len(test_dataset)%num_jobs == 0
num_images = len(test_dataset) // num_jobs
start_index = int(os.environ['SLURM_ARRAY_TASK_ID']) * num_images
else:
num_images = args.num_images if (args.num_images is not None) else len(test_dataset)
start_index = args.start_index
print(f"Processing images in range [{start_index}, {start_index+num_images})")
detector = load_detector()
test_dataset = torch.utils.data.Subset(test_dataset, list(range(start_index, start_index+num_images)))
assert len(test_dataset) == num_images, len(test_dataset)
args.save_dir.mkdir(exist_ok=True)
qual_output = args.save_dir / "qual_output"
qual_output.mkdir(exist_ok=True)
test_loader = create_dataloader(test_dataset, 1, 1, 0, num_workers=0, training=False)
run_efficientnet = load_efficientnet()
model = load_raft_model(args.load_weights)
model.eval()
all_preds = []
for image_index, (images, _, obs) in enumerate(test_loader):
print(f"Processing image {image_index+1}/{num_images}")
images = images.to('cuda', torch.float).permute(0,3,1,2) / 255
obs['camera'] = {k:(v.to('cuda') if torch.is_tensor(v) else v) for k,v in obs['camera'].items()}
# Warning: Does not handle 0 detections
detections = detector.get_detections(images=images)
data_TCO_init = generate_pose_from_detections(detections=detections, K=obs['camera']['K'])
scene_id, view_id = obs['frame_info']['scene_id'][0], obs['frame_info']['view_id'][0]
data_TCO_init.infos.loc[:,"scene_id"] = scene_id
data_TCO_init.infos.loc[:,"view_id"] = view_id
data_TCO_init.infos.loc[:,"time"] = -1.0
for obj_idx, (_, obj_label, _) in detections.infos.iterrows():
should_save_img = (random.random() < gin_globals().save_img_prob)
mrcnn_mask = detections.masks[[obj_idx]]
mrcnn_pose = data_TCO_init.poses[[obj_idx]]
basename = f"{scene_id}_{view_id}_{obj_label}_{obj_idx+1}"
if 'SLURM_ARRAY_JOB_ID' in os.environ:
with Path(f"slurm_outputs/{os.environ['SLURM_ARRAY_JOB_ID']}_{os.environ['SLURM_ARRAY_TASK_ID']}_log.txt").open("a") as f:
f.write(f"{basename}/{len(detections.infos)} || {time.strftime('%l:%M:%S %p on %b %d, %Y')}\n")
print(f"{basename}/{len(detections.infos)} || {time.strftime('%l:%M:%S %p on %b %d, %Y')}\n")
images_cropped, K_cropped, _, _, masks_cropped, depths_cropped = crop_inputs(images=images, K=obs['camera']['K'], TCO=mrcnn_pose, \
labels=[obj_label], masks=mrcnn_mask, sce_depth=obs['camera']['interpolated_depth'], render_size=(240,320))
mrcnn_rendered_rgb, _, _ = Pytorch3DRenderer()([obj_label], mrcnn_pose, K_cropped, obs['camera']['resolution'].div(2))
assert (mrcnn_rendered_rgb.shape == images_cropped.shape)
images_input = torch.cat((images_cropped, mrcnn_rendered_rgb), dim=1)
current_pose_est = run_efficientnet(images_input, mrcnn_pose, K_cropped)
for outer_loop_idx in range(args.num_outer_loops):
images_cropped, K_cropped, _, _, masks_cropped, depths_cropped = crop_inputs(images=images, K=obs['camera']['K'], TCO=current_pose_est, \
labels=[obj_label], masks=mrcnn_mask, sce_depth=obs['camera']['interpolated_depth'], render_size=(240,320))
input_pose_multiview = get_perturbations(current_pose_est).flatten(0,1)
Nr = input_pose_multiview.shape[0]
label_rep = np.repeat([obj_label], Nr)
K_rep = K_cropped.repeat_interleave(Nr, dim=0)
res_rep = obs['camera']['resolution'].div(2).repeat_interleave(Nr, dim=0)
rendered_rgb, rendered_depth, _ = Pytorch3DRenderer()(label_rep, input_pose_multiview, K_rep, res_rep)
if should_save_img:
imageio.imwrite(qual_output / f"{basename}_B{outer_loop_idx}.png", rendered_rgb[0].permute(1,2,0).mul(255).byte().cpu())
# Forward pass
combine = lambda a, b: torch.cat((a.unflatten(0, (1, Nr)), b.unsqueeze(1)), dim=1)
images_input = combine(rendered_rgb, images_cropped)
depths_input = combine(rendered_depth, depths_cropped)
masks_input = combine(rendered_depth > 1e-3, masks_cropped)
pose_input = combine(input_pose_multiview, current_pose_est)
K_input = combine(K_rep, K_cropped)
outputs = model(Gs=pose_input, images=images_input, depths_fullres=depths_input, \
masks_fullres=masks_input, intrinsics_mat=K_input, labels=[obj_label], \
num_solver_steps=args.num_solver_steps, num_inner_loops=args.num_inner_loops)
current_pose_est = SE3(outputs['Gs'][-1].contiguous()[:, -1]).matrix()
batch_preds = PandasTensorCollection(data_TCO_init.infos[obj_idx:obj_idx+1], poses=current_pose_est.cpu())
all_preds.append(batch_preds)
# Saving qualitative output
if should_save_img:
final_rendered_rgb, _, _ = Pytorch3DRenderer()([obj_label], current_pose_est, K_cropped, obs['camera']['resolution'].div(2))
imageio.imwrite(qual_output / f"{basename}_A.png", mrcnn_rendered_rgb[0].permute(1,2,0).mul(255).byte().cpu())
imageio.imwrite(qual_output / f"{basename}_C.png", final_rendered_rgb[0].permute(1,2,0).mul(255).byte().cpu())
imageio.imwrite(qual_output / f"{basename}_D.png", images_cropped[0].permute(1,2,0).mul(255).byte().cpu())
all_preds = {f'maskrcnn_detections/refiner': concatenate(all_preds)}
results = format_results(all_preds)
output_filepath = args.save_dir / f'{gin_globals().dataset_name}_{start_index}_{start_index+num_images}_results.pth.tar'
torch.save(results, output_filepath)
print("Done.")
if __name__ == '__main__':
main()