-
Notifications
You must be signed in to change notification settings - Fork 0
/
shakespeare_utils.py
165 lines (130 loc) · 4.82 KB
/
shakespeare_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Load Packages
from __future__ import print_function
from keras.callbacks import LambdaCallback
from keras.models import Model, load_model, Sequential
from keras.layers import Dense, Activation, Dropout, Input, Masking
from keras.layers import LSTM
from keras.utils.data_utils import get_file
from keras.preprocessing.sequence import pad_sequences
import numpy as np
import random
import sys
import io
def build_data(text, Tx = 40, stride = 3):
"""
Create a training set by scanning a window of size Tx over the text corpus, with stride 3.
Arguments:
text -- string, corpus of Shakespearian poem
Tx -- sequence length, number of time-steps (or characters) in one training example
stride -- how much the window shifts itself while scanning
Returns:
X -- list of training examples
Y -- list of training labels
"""
X = []
Y = []
### START CODE HERE ### (≈ 3 lines)
for i in range(0, len(text) - Tx, stride):
X.append(text[i: i + Tx])
Y.append(text[i + Tx])
### END CODE HERE ###
print('number of training examples:', len(X))
return X, Y
def vectorization(X, Y, n_x, char_indices, Tx = 40):
"""
Convert X and Y (lists) into arrays to be given to a recurrent neural network.
Arguments:
X --
Y --
Tx -- integer, sequence length
Returns:
x -- array of shape (m, Tx, len(chars))
y -- array of shape (m, len(chars))
"""
m = len(X)
x = np.zeros((m, Tx, n_x), dtype=np.bool)
y = np.zeros((m, n_x), dtype=np.bool)
for i, sentence in enumerate(X):
for t, char in enumerate(sentence):
x[i, t, char_indices[char]] = 1
y[i, char_indices[Y[i]]] = 1
return x, y
def sample(preds, temperature=1.0):
# helper function to sample an index from a probability array
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
out = np.random.choice(range(len(chars)), p = probas.ravel())
return out
#return np.argmax(probas)
def on_epoch_end(epoch, logs):
# Function invoked at end of each epoch. Prints generated text.
None
#start_index = random.randint(0, len(text) - Tx - 1)
#generated = ''
#sentence = text[start_index: start_index + Tx]
#sentence = '0'*Tx
#usr_input = input("Write the beginning of your poem, the Shakespearian machine will complete it.")
# zero pad the sentence to Tx characters.
#sentence = ('{0:0>' + str(Tx) + '}').format(usr_input).lower()
#generated += sentence
#
#sys.stdout.write(usr_input)
#for i in range(400):
"""
#x_pred = np.zeros((1, Tx, len(chars)))
for t, char in enumerate(sentence):
if char != '0':
x_pred[0, t, char_indices[char]] = 1.
preds = model.predict(x_pred, verbose=0)[0]
next_index = sample(preds, temperature = 1.0)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
if next_char == '\n':
continue
# Stop at the end of a line (4 lines)
print()
"""
print("Loading text data...")
text = io.open('shakespeare.txt', encoding='utf-8').read().lower()
#print('corpus length:', len(text))
Tx = 40
chars = sorted(list(set(text)))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
#print('number of unique characters in the corpus:', len(chars))
print("Creating training set...")
X, Y = build_data(text, Tx, stride = 3)
print("Vectorizing training set...")
x, y = vectorization(X, Y, n_x = len(chars), char_indices = char_indices)
print("Loading model...")
model = load_model('models/model_shakespeare_kiank_350_epoch.h5')
def generate_output():
generated = ''
#sentence = text[start_index: start_index + Tx]
#sentence = '0'*Tx
usr_input = input("Your input is: ")
# zero pad the sentence to Tx characters.
sentence = ('{0:0>' + str(Tx) + '}').format(usr_input).lower()
generated += usr_input
sys.stdout.write("\n\nHere is your poem: \n\n")
sys.stdout.write(usr_input)
for i in range(400):
x_pred = np.zeros((1, Tx, len(chars)))
for t, char in enumerate(sentence):
if char != '0':
x_pred[0, t, char_indices[char]] = 1.
preds = model.predict(x_pred, verbose=0)[0]
next_index = sample(preds, temperature = 1.0)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
if next_char == '\n':
continue