-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdb.py
496 lines (373 loc) · 16.5 KB
/
db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#!/usr/bin/env python
import hashlib
import heapq
import itertools
import os
from collections import defaultdict
import cbor2
import sys
import json
SLICE_EXTENSION = '.slices'
def md5(b):
m = hashlib.md5()
m.update(b)
return m.digest()[:6]
def btoh(b):
""" Convert bytes to hex """
return ''.join(format(x, f'02x') for x in b)
class ID:
def __init__(self):
self.values = {}
self.max_id = 1
def get(self, key):
if key in self.values:
return self.values[key]
current_id = self.max_id
self.max_id += 1
self.values[key] = current_id
return current_id
def getIDList(self):
return [
dict(
ID = id,
value = value
) for value, id in self.values.items()
]
def load_cbor_file(path, include_detail=False):
file_ids = ID()
func_ids = ID()
entries = []
with open(path, 'rb') as fd:
try:
while True:
line = cbor2.load(fd)
text = line['canonicalText']
slice_hash = md5(text.encode('ascii'))
if include_detail:
entry = (slice_hash, line)
else:
path = line['file']['path']
func_address = line['function']['address']
file_id = file_ids.get(path)
func_id = func_ids.get(func_address)
entry = (slice_hash, file_id, func_id)
entries.append(entry)
except cbor2.CBORDecodeEOF:
pass
header = dict(
files=[dict(id=fid, path=path) for path, fid in file_ids.values.items()]
)
return header, sorted(entries, key=lambda x:x[0])
def convert_to_counts(entries):
entry_groups = []
for k, g in itertools.groupby(entries, lambda x: x[0]):
entry_groups.append(list(g))
counts = []
for group in entry_groups:
slice_hash = group[0][0]
funcs = set()
instance_counts = len(group)
func_counts = len(set(func_id for h, fid, func_id in group))
fids = set(fid for h, fid, func_id in group)
file_counts = len(fids)
file_list = sorted(fids)
count_entry = [slice_hash, file_counts, func_counts, instance_counts, sorted(fids)]
counts.append(count_entry)
return counts
def merge(iterators):
iters = [iter(it) for it in iterators]
items = []
for i, it in enumerate(iters):
try:
items.append((next(it), i))
except StopIteration:
pass
heapq.heapify(items)
while items:
value, index = heapq.heappop(items)
# Produce the index as well for later lookups (e.g. when doing ID number thunks)
yield value, index
try:
heapq.heappush(items, (next(iters[index]), index))
except StopIteration:
pass
class DBMain:
def __init__(self, args):
self.all_counts = []
self.headers = []
self.db_header = {}
self.args = args
if self.args.search:
search_results = self.search()
if len(self.args.files) > 1:
self.generateMatchSetCorrelationMatrix(search_results)
else:
self.ingest_files()
def base_file_name(self, path):
return os.path.basename(path).replace(SLICE_EXTENSION, '')
def generateMatchSetCorrelationMatrix(self, match_results):
''' This may look like a confusion matrix, but it isn't. It counts the number of match sets that only
contain files in the search list.
'''
search_filenames = self.getSearchFilenames()
confusion_matrix = {}
for filename, match_results in match_results.items():
row = defaultdict(int)
for result in match_results:
fileNames = result['otherFiles']['fileNames']
good_match = all(fname in search_filenames for fname in fileNames)
if good_match:
for fname in fileNames:
row[fname] += 1
confusion_matrix[filename] = row
matrix_order = confusion_matrix.keys()
for row_index in matrix_order:
row = confusion_matrix[row_index]
row_txt = ' '.join(f'{row.get(col_index,""):4}' for col_index in matrix_order)
print(f'{row_index:16} {row_txt}')
print(f',{",".join(matrix_order)}')
for row_index in matrix_order:
row = confusion_matrix[row_index]
row_txt = ','.join(str(row.get(col_index, 0)) for col_index in matrix_order)
print(f'{row_index},{row_txt}')
def getSearchFilenames(self):
return [self.base_file_name(path) for path in self.args.files]
def search(self):
search_filenames = self.getSearchFilenames()
all_results = {}
last_n = 100 if len(self.args.files) == 1 else 10
for path in self.args.files:
filename = self.base_file_name(path)
match_results = self.search_file(path)
# match_results = sorted(match_results, key=lambda result:result['thisFile']['funcNames'])
match_results = sorted(match_results,
key=lambda result:
(result['otherFiles']['fileCount'],
result['otherFiles']['fileNames'],
)
)
#filter_match_results = [result for result in match_results if len(result['canonicalText'].split('\n')) > 5]
# self.display_search_results(filter_match_results)
match_set_groups = self.group_match_sets(match_results)
print()
self.summarize_match_sets(match_set_groups, last_n)
if self.args.detail:
self.output_match_set_groups(self.args.detail, match_set_groups)
all_results[filename] = match_results
return all_results
def read_db_header(self):
with open(self.args.db, 'rb') as fd:
self.db_header = cbor2.load(fd)
def read_db(self):
with open(self.args.db, 'rb') as fd:
try:
self.db_header = cbor2.load(fd)
while True:
yield cbor2.load(fd)
except cbor2.CBORDecodeEOF:
pass
def group_match_sets(self, match_results) -> list:
groups = []
for matchSetHash, group in itertools.groupby(match_results, key=lambda x:x['otherFiles']['matchSetHash']):
group = list(group)
otherFiles = group[0]['otherFiles']
fids = otherFiles['fileIDs']
fileNames = otherFiles['fileNames']
groups.append((matchSetHash, fids, fileNames, group))
return groups
def output_match_set_groups(self, output_dir, match_set_groups):
os.makedirs(output_dir, exist_ok=True)
def formatFuncAddress(funcAddress):
addrs = [f'{addr:x}' for addr in sorted(funcAddress['addressSet'])]
return f'{funcAddress["funcName"]:20} {",".join(addrs)}'
for matchSetHash, fids, fileNames, matchResults in match_set_groups:
names = (' '.join(fileNames))[:50]
out_path = os.path.join(output_dir, f'{btoh(matchSetHash)} {names}.txt')
with open(out_path, 'w') as fd:
print(f'Match set {btoh(matchSetHash)} has {len(fileNames)} files', file=fd)
for name in fileNames:
print(f' {name}', file=fd)
print(f'\nSlices with the match set:', file=fd)
for result in matchResults:
slice_hash = result['hash']
dfilText = result['canonicalText']
thisFile = result['thisFile']
funcAddresses = thisFile['funcAddresses']
otherFiles = result['otherFiles']
fileCount = otherFiles['fileCount']
funcCount = otherFiles['funcCount']
instanceCount = otherFiles['instanceCount']
count_txt = f'{fileCount} {funcCount} {instanceCount}'
single_func = formatFuncAddress(funcAddresses[0]) if len(funcAddresses) == 1 else ''
print(f'Slice {btoh(slice_hash)} {count_txt:10} {single_func}', file=fd)
if len(funcAddresses) > 1:
for funcAddress in funcAddresses:
print(f' {formatFuncAddress(funcAddress)}', file=fd)
for result in matchResults:
slice_hash = result['hash']
dfilText = result['canonicalText']
otherFiles = result['otherFiles']
fileCount = otherFiles['fileCount']
funcCount = otherFiles['funcCount']
instanceCount = otherFiles['instanceCount']
count_txt = f'{fileCount} {funcCount} {instanceCount}'
single_func = formatFuncAddress(funcAddresses[0]) if len(funcAddresses) == 1 else ''
# Indent DFIL text block
dfilText = '\n'.join(f' {line}' for line in dfilText.split('\n'))
print(f'\nSlice {btoh(slice_hash)} {count_txt} {single_func}', file=fd)
print(dfilText, file=fd)
def summarize_match_sets(self, match_set_groups, last_n=50):
# Sort by number of slices, then by the list of file names.
groups = sorted(match_set_groups, key=lambda x: (len(x[3]), x[2]))
for matchSetHash, fids, fileNames, matchResults in groups[-last_n:]:
names = (' '.join(fileNames))[:150].rstrip()
print(f'{len(matchResults):6} {btoh(matchSetHash)} {len(fids):3} {names}')
'''
for result in matchResults[:5]:
canonicalText = result['canonicalText']
n_lines = len(canonicalText.split('\n'))
dfil_summary = canonicalText.replace('DFIL_', '').replace('DECLARE_', '').replace('\n', ' ')
print(f' DFIL {n_lines:3} {dfil_summary[:100]}')
'''
def display_search_results(self, match_results):
for result in match_results:
sliceHash = result['hash']
thisFile = result['thisFile']
otherFiles = result['otherFiles']
canonicalText = result['canonicalText']
fileCount = otherFiles['fileCount']
funcCount = otherFiles['funcCount']
instanceCount = otherFiles['instanceCount']
fileIDs = otherFiles['fileIDs']
fileNames = otherFiles['fileNames']
funcNames = thisFile['funcNames']
addressSet = thisFile['allAddresses']
func_name_txt = ",".join(funcNames)[:30]
count_txt = f'{fileCount:4} {funcCount:6} {instanceCount:6} '
count_txt += f'{len(funcNames):4} '
dfil_exprs = canonicalText.split('\n')
addrSetText = ','.join(f'{addr:x}' for addr in sorted(addressSet))[:30]
file_name_txt = ' '.join(sorted(fileNames))[:50]
dfil_summary = ' '.join(dfil_exprs).replace('DFIL_', '').replace('DECLARE_', '')
print(f'{btoh(sliceHash)} {count_txt} {func_name_txt:30} ' +
f'{len(fileNames):5} {file_name_txt:50} ' +
f'{len(addressSet):3} {addrSetText:30} ' +
f'{len(dfil_exprs):3} {dfil_summary[:100]}')
#print(ctext)
def search_file(self, path: str):
header, hash_data = load_cbor_file(path, include_detail=True)
self.read_db_header()
db_stream = self.read_db()
h, fileCount, funcCount, instCount, fids = next(db_stream)
fid_lookup = {
file['id']: file['path'] for file in self.db_header['files']
}
print(f'hash_data = {str(hash_data)[:100]}')
match_results = []
for slice_hash, group in itertools.groupby(hash_data, key=lambda x:x[0]):
group = list(group)
# Advance DB cursor until its hash is not less than the slice hash
while h < slice_hash:
h, fileCount, funcCount, instCount, fids = next(db_stream)
if h != slice_hash:
continue
# Combine the list of this file's addresses
allAddresses = set()
for _, line in group:
aset = line['addressSet']
allAddresses |= set(line['addressSet'])
funcAddresses = [
dict(
funcName = line['function']['name'],
addressSet = sorted(line['addressSet'])
)
]
matchSetHash = md5(','.join(str(fid) for fid in fids).encode('ascii'))
result = dict(
hash=slice_hash,
canonicalText=group[0][1]['canonicalText'],
thisFile=dict(
funcNames=sorted([line['function']['name'] for _, line in group]),
allAddresses=sorted(allAddresses),
funcAddresses=funcAddresses,
),
otherFiles=dict(
fileCount=fileCount,
funcCount=funcCount,
instanceCount=instCount,
fileIDs=fids,
matchSetHash=matchSetHash,
fileNames=[os.path.basename(fid_lookup[fid]) for fid in fids],
)
)
match_results.append(result)
return match_results
def ingest_files(self) -> None:
file_count = 0
for path in self.args.files:
if os.path.isdir(path):
file_count += self.process_folder(path)
else:
self.process_file(path)
file_count += 1
merged_counts = list(merge(self.all_counts))
print(f'Merged counts {len(merged_counts)}')
grouped_db = self.thunk_groups(merged_counts)
items_written = self.write_to_file(self.args.db, self.db_header, grouped_db)
print(f'Wrote {items_written} items from {file_count} files to {self.args.db}')
def process_file(self, path: str) -> None:
header, entries = load_cbor_file(path)
counts = convert_to_counts(entries)
self.headers.append(header)
self.all_counts.append(counts)
for hash, file_counts, func_counts, instance_counts, fids in counts:
fids_txt = ','.join(str(fid) for fid in sorted(fids))
# print(f'{btoh(hash)} {file_counts:3} {func_counts:3} {len(counts):3} {fids_txt}')
print(f'{len(entries):6} slices, {len(counts):6} unique {path}')
def process_folder(self, path: str) -> int:
file_count = 0
for root, dirs, files in os.walk(path):
for file in files:
if not file.endswith(SLICE_EXTENSION):
continue
file_path = os.path.join(root, file)
self.process_file(file_path)
file_count += 1
return file_count
def _thunk_group_gen(self, merged_counts, id_thunks):
for slice_hash, group in itertools.groupby(merged_counts, lambda x: x[0][0]):
file_counts = 0
func_counts = 0
instance_counts = 0
file_ids = set()
for counts, index in group:
_, fileCount, funcCount, instCount, fids = counts
file_counts += fileCount
func_counts += funcCount
instance_counts += instCount
thunk = id_thunks[index]
file_ids |= set(thunk[fid] for fid in fids)
yield [slice_hash, file_counts, func_counts, instance_counts, sorted(file_ids)]
def thunk_groups(self, merged_counts):
new_id = ID()
id_thunks = []
for header in self.headers:
current_thunk = {}
files = header['files']
for document in files:
id = document['id']
path = document['path']
current_thunk[id] = new_id.get(path)
id_thunks.append(current_thunk)
self.db_header = dict(
files=[dict(id=fid, path=path) for path, fid in new_id.values.items()]
)
return self._thunk_group_gen(merged_counts, id_thunks)
def write_to_file(self, path, header, items):
n_written = 0
with open(path, 'wb') as fd:
cbor2.dump(header, fd)
for item in items:
cbor2.dump(item, fd)
n_written += 1
return n_written