-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnnCar.py
130 lines (98 loc) · 4.45 KB
/
cnnCar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import cv2 # working with, mainly resizing, images
import numpy as np
import os
from random import shuffle
from tqdm import tqdm
class CarCNN_Count:
global TRAIN_DIR1
global TRAIN_DIR2
global IMG_SIZE
global LR
def __init__(self,AreaCode, Blockcode):
TRAIN_DIR1 = './nohouse'
TRAIN_DIR2 = './house'
IMG_SIZE = 50
LR = 1e-3
MODEL_NAME = 'car_detection-{}-{}.model'.format(LR, '2conv-basic')
def label_img1(img):
return [0,1] #for no house images
def label_img2(img):
return [1,0] #for house images
def create_train_data2():
training_data = []
for img in tqdm(os.listdir(TRAIN_DIR1)):
label = label_img1(img)
path = os.path.join(TRAIN_DIR1,img)
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img),np.array(label)])
for img in tqdm(os.listdir(TRAIN_DIR2)):
label = label_img2(img)
path = os.path.join(TRAIN_DIR2,img)
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img),np.array(label)])
shuffle(training_data)
np.save('train_data2.npy', training_data)
return training_data
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
import tensorflow as tf
tf.reset_default_graph()
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation='sigmoid')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log')
if os.path.exists('{}.meta'.format(MODEL_NAME)):
model.load(MODEL_NAME)
print('model loaded!')
train_data = create_train_data2()
train = train_data[:-20]
test = train_data[-20:]
X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
Y = [i[1] for i in train]
test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
test_y = [i[1] for i in test]
model.fit({'input': X}, {'targets': Y}, n_epoch=3, validation_set=({'input': test_x}, {'targets': test_y}),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)
model.save(MODEL_NAME)
from PIL import Image
x = input('please enter the zip code of your areaS')
y = input('please enter the block code of your area')
img_data = cv2.imread("./area_zip" +str(x) + "/" + "img"+str(y)+".jpg",cv2.IMREAD_GRAYSCALE)
k = IMG_SIZE/3
l = IMG_SIZE/3
count = 0
for i in range(0,IMG_SIZE-l,l):
for j in range(0,IMG_SIZE-k,k):
img2 = img_data[i: i + l, j : j + k]
img2 = cv2.resize(img2, (IMG_SIZE,IMG_SIZE))
img2 = img2.reshape(IMG_SIZE,IMG_SIZE,1)
model_out = model.predict([img2])[0]
if np.argmax(model_out) == 1:
count = count + 1
print count
data = cv2.resize(img_data, (IMG_SIZE,IMG_SIZE))
data = data.reshape(IMG_SIZE,IMG_SIZE,1)
#model_out = model.predict([data])[0]
model_out = model.predict([data])[0]
str_label = 'p'
if np.argmax(model_out) == 1:
str_label='House'
else:
str_label='NoHouse'
print str_label