-
Notifications
You must be signed in to change notification settings - Fork 12
/
utils.py
175 lines (152 loc) · 6.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from config import *
import os
import pickle
import matplotlib.pyplot as plt
import sklearn.metrics as metrics
import seaborn as sns
import pandas as pd
import numpy as np
import torch.nn as nn
import sys
from sklearn.model_selection import GridSearchCV
import json
def save_model_results_to_log(model=None, model_params=None,
train_losses=None, train_accuracy=None,
predicted=None, ground_truth=None, best_params=None,
misc_data=None, log_dir=None):
print('Saving model results', end='')
experiment_name = model_params['experiment_name']
model_name = model_params['model_name']
num_of_classes = model_params['num_of_classes']
class_names = model_params['class_names']
model_log_dir = os.path.join(log_dir, experiment_name)
os.makedirs(model_log_dir, exist_ok=True)
model_log_file = os.path.join(model_log_dir, MODEL_INFO_LOG)
model_train_losses_log_file = os.path.join(model_log_dir, MODEL_LOSS_INFO_LOG)
model_train_accuracy_log_file = os.path.join(model_log_dir, MODEL_ACC_INFO_LOG)
model_save_path = os.path.join(model_log_dir, model_name + '.pt')
model_conf_mat_csv = os.path.join(model_log_dir, MODEL_CONF_MATRIX_CSV)
model_conf_mat_png = os.path.join(model_log_dir, MODEL_CONF_MATRIX_PNG)
model_conf_mat_normalized_csv = os.path.join(model_log_dir, MODEL_CONF_MATRIX_NORMALIZED_CSV)
model_conf_mat_normalized_png = os.path.join(model_log_dir, MODEL_CONF_MATRIX_NORMALIZED_PNG)
model_loss_png = os.path.join(model_log_dir, MODEL_LOSS_PNG)
model_accuracy_png = os.path.join(model_log_dir, MODEL_ACCURACY_PNG)
grid_cv_filepath = os.path.join(model_log_dir,GRID_CV_EXPERIMENT_RESULTS)
print('.', end='')
# generate and save confusion matrix
plot_x_label = "Predictions"
plot_y_label = "Actual"
cmap = plt.cm.Blues
pred_class_indexes = sorted(np.unique(predicted))
pred_num_classes = len(pred_class_indexes)
target_class_names = [class_names[i] for i in pred_class_indexes]
cm = metrics.confusion_matrix(ground_truth, predicted)
print('.', end='')
df_confusion = pd.DataFrame(cm)
df_confusion.index = target_class_names
df_confusion.columns = target_class_names
df_confusion.round(2)
df_confusion.to_csv(model_conf_mat_csv)
fig = plt.figure(figsize=(20, 20))
sns.heatmap(df_confusion, annot=True, cmap=cmap)
plt.xlabel(plot_x_label)
plt.ylabel(plot_y_label)
plt.title('Confusion Matrix')
plt.savefig(model_conf_mat_png)
plt.close(fig)
print('.', end='')
cm = metrics.confusion_matrix(ground_truth, predicted, normalize='all')
df_confusion = pd.DataFrame(cm)
df_confusion.index = target_class_names
df_confusion.columns = target_class_names
df_confusion.round(2)
df_confusion.to_csv(model_conf_mat_normalized_csv)
fig = plt.figure(figsize=(20, 20))
sns.heatmap(df_confusion, annot=True, cmap=cmap)
plt.xlabel(plot_x_label)
plt.ylabel(plot_y_label)
plt.title('Normalized Confusion Matrix')
plt.savefig(model_conf_mat_normalized_png)
plt.close(fig)
if train_losses is not None:
print('.', end='')
fig = plt.figure(figsize=(8, 8))
plt.plot(train_losses, label='Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.legend()
plt.savefig(model_loss_png)
plt.close(fig)
print('.', end='')
# save model training stats
with open(model_train_losses_log_file, 'wb') as file:
pickle.dump(train_losses, file)
file.flush()
if train_accuracy is not None:
print('.', end='')
fig = plt.figure(figsize=(8, 8))
plt.plot(train_accuracy, label='Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Training Accuracy')
plt.legend()
plt.savefig(model_accuracy_png)
plt.close(fig)
print('.', end='')
with open(model_train_accuracy_log_file, 'wb') as file:
pickle.dump(train_accuracy, file)
file.flush()
print('.', end='')
report = metrics.classification_report(ground_truth, predicted, target_names=list(target_class_names))
if not isinstance(model, nn.Module):
cv_df = pd.DataFrame(model.cv_results_)
cv_df.to_csv(grid_cv_filepath)
# save model arch and params
with open(model_log_file, 'a') as file:
file.write('-' * LINE_LEN + '\n')
file.write('model architecture' + '\n')
file.write('-' * LINE_LEN + '\n')
file.write(str(model) + '\n')
file.write('-' * LINE_LEN + '\n')
file.write('model params' + '\n')
file.write('-' * LINE_LEN + '\n')
file.write(str(model_params) + '\n')
file.write('-' * LINE_LEN + '\n')
if not isinstance(model, nn.Module):
file.write('GridSearchCV results' + '\n')
if isinstance(model, GridSearchCV):
file.write(str(model.cv_results_) + '\n')
file.write('-' * LINE_LEN + '\n')
if misc_data:
file.write('misc data: ' + misc_data + '\n')
file.write('-' * LINE_LEN + '\n')
if best_params is not None:
file.write('best params of the grid search' + '\n')
file.write('-' * LINE_LEN + '\n')
file.write(str(best_params) + '\n')
file.write('-' * LINE_LEN + '\n')
file.write('classification report' + '\n')
file.write('-' * LINE_LEN + '\n')
file.write(report + '\n')
file.write('-' * LINE_LEN + '\n')
file.flush()
print('.', end='')
# save model as pytorch state dict
if isinstance(model, nn.Module):
torch.save(model.state_dict(), model_save_path)
else:
# save model to file
pickle.dump(model, open(model_save_path, "wb"))
print('Done')
sys.stdout.flush()
def save_models_metadata_to_log(list_of_model_params, LOG_DIR, logfile=MODEL_META_INFO_LOG):
logfile = os.path.join(LOG_DIR, logfile)
with open(logfile, 'a') as file:
file.write('-' * LINE_LEN + '\n')
for i in list_of_model_params:
file.write(str(i) + '\n')
file.write('-' * LINE_LEN + '\n')
file.flush()
def print_line(print_len=LINE_LEN):
print('-' * print_len)