-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc.py
52 lines (37 loc) · 941 Bytes
/
c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
'''
MODEL TRAINER
'''
import os
import cv2
import numpy as np
import pickle
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
image_dir = os.path.join(BASE_DIR,"images")
print(image_dir)
recognizer = cv2.face.LBPHFaceRecognizer_create()
current_id = 0
label_ids = {}
x_train = []
y_labels = []
for root, dirs, files in os.walk(image_dir):
for file in files:
path = os.path.join(root, file)
label = os.path.basename(root).lower()
if label in label_ids:
pass
else:
label_ids[label] = current_id
current_id+=1
id_ = label_ids[label]
print(label_ids)
img = cv2.imread(path,cv2. cv2.IMREAD_GRAYSCALE)
image_array = np.array(img, "uint8")
x_train.append(image_array)
y_labels.append(id_)
#print(x_train)
#print(y_labels)
with open("labels.pickle", 'wb') as f:
pickle.dump(label_ids, f)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("trainer.yml")
print("Training Complete")