-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreptile_glue.py
354 lines (313 loc) · 11.3 KB
/
reptile_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Callable, Dict, List, Optional
import numpy as np
import torch
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import RandomSampler, SequentialSampler
from tqdm.auto import tqdm, trange
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
EvalPrediction,
GlueDataset,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
glue_compute_metrics,
glue_output_modes,
glue_tasks_num_labels,
set_seed,
)
from transformers.data.processors.glue import (
ColaProcessor,
MnliProcessor,
MrpcProcessor,
QnliProcessor,
QqpProcessor,
RteProcessor,
Sst2Processor,
StsbProcessor,
WnliProcessor,
)
from transformers.trainer import SequentialDistributedSampler
from core.meta import MetaTrainer
sys.path.append("..")
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
data_dir: str = field(default=None, metadata={"help": "GLUE directory"})
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization."
" Sequences longer than this will be truncated, sequences"
" shorter will be padded."
)
},
)
# compatibility with Hf
task_name: str = field(default=None)
overwrite_cache: bool = field(default=False)
@dataclass
class MetaTrainingArguments(TrainingArguments):
output_dir: str = field(metadata={"help": "Output directory to save models"})
task_list: str = field(default=None)
eval_task_list: str = field(default=None)
total_task_list: str = field(default=None)
target_task: str = field(default="mrpc", metadata={"help": "Target Task"})
task_shared: bool = field(default=True)
num_update_steps: int = field(default=5)
num_sample_tasks: int = field(default=5)
eval_steps: int = field(
default=100, metadata={"help": "Steps after which evaluation will be run"},
)
output_file_name: str = field(default=None)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={
"help": (
"Path to pretrained model or model identifier from"
" huggingface.co/models"
)
}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": (
"Where do you want to store the pretrained models downloaded from s3"
)
},
)
def main():
# py_parser = argparse.ArgumentParser()
# py_parser.add_argument("--task_list", nargs="*", type=str)
# py_parser, _ = py_parser.parse_known_args()
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, MetaTrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
(model_args, data_args, training_args,) = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and"
" is not empty. Use --overwrite_output_dir to overcome."
)
# Parsing string arguments to list
training_args.task_list = list(map(str, training_args.task_list.split(",")))
training_args.eval_task_list = list(
map(str, training_args.eval_task_list.split(","))
)
training_args.total_task_list = (
training_args.task_list + training_args.eval_task_list
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s,"
" 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
logging.info("Training datasets %s", training_args.task_list)
logging.info("Evaluation datasets %s (no training)", training_args.eval_task_list)
# Set seed
set_seed(training_args.seed)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
def build_compute_metrics_fn(task_name: str,) -> Callable[[EvalPrediction], Dict]:
def compute_metrics_fn(p: EvalPrediction) -> Dict:
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
return glue_compute_metrics(data_args.task_name, preds, p.label_ids)
return compute_metrics_fn
processor_dict = {
"mrpc": MrpcProcessor,
"cola": ColaProcessor,
"mnli": MnliProcessor,
"sst-2": Sst2Processor,
"rte": RteProcessor,
"wnli": WnliProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"sts-b": StsbProcessor,
}
processors = [processor_dict[task]() for task in training_args.task_list]
dataset_dict = {
"mrpc": data_args.data_dir + "/MRPC",
"cola": data_args.data_dir + "/CoLA",
"mnli": data_args.data_dir + "/MNLI",
"sst-2": data_args.data_dir + "/SST-2",
"rte": data_args.data_dir + "/RTE",
"wnli": data_args.data_dir + "/WNLI",
"qqp": data_args.data_dir + "/QQP",
"qnli": data_args.data_dir + "/QNLI",
"sts-b": data_args.data_dir + "/STS-B",
}
data_dirs = [dataset_dict[task] for task in training_args.task_list]
task_cluster_dict = {
"mrpc": 0,
"cola": 1,
"mnli": 0,
"sst-2": 1,
"rte": 0,
"wnli": 0,
"qqp": 0,
"qnli": 2,
"sts-b": 3,
}
task_clusters = (
[task_cluster_dict[task] for task in training_args.task_list]
if training_args.task_shared
else None
)
label_lists = [processor.get_labels() for processor in processors]
if not training_args.task_shared:
num_labels = [len(label_list) for label_list in label_lists]
else:
cluster_num_labels = {0: 3, 1: 2, 2: 2, 3: 1}
num_labels = [
cluster_num_labels[task_cluster] for task_cluster in task_clusters
]
train_dataset_list, eval_dataset_list = [], []
seen_eval_data = []
for task, data_dir in zip(training_args.task_list, data_dirs):
data_args.task_name = task
data_args.data_dir = dataset_dict[task]
seen_eval_data.append(task)
train_dataset_list.append(GlueDataset(data_args, tokenizer))
eval_dataset_list.append(GlueDataset(data_args, tokenizer, mode="dev"))
# Run evaluation on unseen data
if training_args.eval_task_list:
for task, data_dir in zip(training_args.eval_task_list, data_dirs):
data_args.task_name = task
data_args.data_dir = dataset_dict[task]
if task not in seen_eval_data:
eval_dataset_list.append(GlueDataset(data_args, tokenizer, mode="dev"))
assert len(eval_dataset_list) == len(training_args.total_task_list)
# TODO: Make it work on variable number of classes
try:
num_labels = glue_tasks_num_labels[training_args.task_list[0]]
output_mode = glue_output_modes[training_args.task_list[0]]
except KeyError:
raise ValueError("Task not found")
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Samplers for each train and eval datasets
train_sampler_list, eval_sampler_list = [], []
for dataset in train_dataset_list:
train_sampler_list.append(RandomSampler(dataset))
for dataset in eval_dataset_list:
if training_args.local_rank != -1:
eval_sampler_list.append(SequentialDistributedSampler(dataset))
else:
eval_sampler_list.append(SequentialSampler(dataset))
# Dataloader for each train and eval datasets
train_dataloader_list, eval_dataloader_list = [], []
data_collator = default_data_collator
for train_dataset, train_sampler in tqdm(
zip(train_dataset_list, train_sampler_list)
):
train_dataloader_list.append(
DataLoader(
train_dataset,
batch_size=training_args.train_batch_size,
sampler=train_sampler,
collate_fn=data_collator,
drop_last=True,
)
)
for eval_dataset, eval_sampler in tqdm(zip(eval_dataset_list, eval_sampler_list)):
eval_dataloader_list.append(
DataLoader(
eval_dataset,
batch_size=training_args.train_batch_size,
sampler=eval_sampler,
collate_fn=data_collator,
drop_last=True,
)
)
train_examples = [
processor.get_train_examples(data_dir)
for processor, data_dir in tqdm(zip(processors, data_dirs))
]
train_steps_per_task = [
math.floor(
(len(train_example) / training_args.per_device_train_batch_size)
/ (training_args.num_update_steps + 1)
)
for train_example in train_examples
]
total_steps = sum(train_steps_per_task) * training_args.num_train_epochs
logging.info("***** Total steps: {} *****".format(total_steps))
trainer = MetaTrainer(
model,
training_args,
train_dataloader_list,
eval_dataloader_list,
compute_metrics=build_compute_metrics_fn,
train_steps_per_task=train_steps_per_task,
)
trainer.train()
if __name__ == "__main__":
main()