-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathheuristics_get_examples.py
192 lines (151 loc) · 7.86 KB
/
heuristics_get_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import sys
import os
sys.path.append('..')
import json
from dataclasses import dataclass, field
from typing import Optional
from collections import Counter
import re
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoConfig, AutoModel, AutoModelForSequenceClassification, AutoTokenizer
from transformers import GlueDataTrainingArguments as DataTrainingArguments, TrainingArguments
from transformers import GlueDataset, default_data_collator, Trainer, glue_compute_metrics
from tqdm import trange
import nlpaug.augmenter.word as naw
import nlpaug.augmenter.char as nac
import nlpaug.augmenter.sentence as nas
os.environ["WANDB_DISABLED"] = "true"
model_id = 'bert_base'
model_path = '/home/nlp/experiments/big_small/bert_base/epoch_4'
aug_op = 'insert'
config = AutoConfig.from_pretrained(model_path,
num_labels=3)
# output_attentions=True)
model = AutoModelForSequenceClassification.from_pretrained(model_path,
config=config)
tokenizer = AutoTokenizer.from_pretrained(model_path)
training_args = TrainingArguments(output_dir='/home/nlp/experiments/aug', per_device_eval_batch_size=16)
mnli_hard_data_args = DataTrainingArguments(task_name = 'mnli',
max_seq_length= 96,
data_dir = '/home/nlp/cartography/filtered/' + model_id + '_hard_mnli/cartography_confidence_0.05/MNLI',
overwrite_cache=True)
def build_compute_metrics_fn(task_name):
def compute_metrics_fn(p):
preds = np.argmax(p.predictions, axis=1)
return glue_compute_metrics('mnli', preds, p.label_ids)
return compute_metrics_fn
# mnli_easy_dataset = GlueDataset(mnli_easy_data_args, tokenizer, mode="train")
mnli_hard_dataset = GlueDataset(mnli_hard_data_args, tokenizer, mode="train")
aug = nac.RandomCharAug(action=aug_op)
# aug = naw.WordEmbsAug(
# model_type='word2vec', model_path='/home/nlp/data/'+'GoogleNews-vectors-negative300.bin',
# action="substitute", aug_p=0.1)
# aug = naw.WordEmbsAug(
# model_type='fasttext', model_path='/home/nlp/data/'+'wiki-news-300d-1M.vec',
# action="substitute", aug_p=0.1)
# aug = naw.WordEmbsAug(
# model_type='glove', model_path='/home/nlp/data/'+'glove.6B.300d.txt',
# action="substitute", aug_p=0.1)
# aug = naw.ContextualWordEmbsAug(model_path='bert-base-uncased', action='substitute')
# aug = naw.SynonymAug(aug_src='wordnet')
# aug = naw.AntonymAug()
def roberta_augment_dataset(aug, dataset):
modified_dataset = []
for i in trange(len(dataset)):
text = tokenizer.decode(dataset[i].input_ids, skip_special_tokens=False)
hypothesis = re.search('<s>(.+?)</s>', text).group(1)
premise = re.search('</s>(.+?)</s>', text).group(1).replace('</s>', '')
modified_hypothesis = aug.augment(hypothesis)
modified_premise = aug.augment(premise)
dict_output = tokenizer(modified_hypothesis, modified_premise, padding='max_length', max_length=128, truncation=True)
dict_output['label'] = dataset[i].label
modified_dataset.append(dict_output)
return modified_dataset
def bert_augment_dataset(aug, dataset):
modified_dataset = []
for i in trange(len(dataset)):
text = tokenizer.decode(dataset[i].input_ids, skip_special_tokens=False)
hypothesis = re.search('[CLS](.+?)[PAD]', text).group(1).replace('LS] ', '').replace(' [SE', '')
premise = re.search('[PAD](.+?)[PAD]', text).group(1).replace('] ', '').replace(' [SE', '')
modified_hypothesis = aug.augment(hypothesis)
modified_premise = aug.augment(premise)
dict_output = tokenizer(modified_hypothesis, modified_premise, padding='max_length', max_length=128, truncation=True)
dict_output['label'] = dataset[i].label
modified_dataset.append(dict_output)
return modified_dataset
augmented_dataset = bert_augment_dataset(aug, mnli_hard_dataset)
label_dict = {0: 'entailment', 1: 'neutral', 2: 'contradiction'}
trainer = Trainer(model=model,
args=training_args,
eval_dataset=augmented_dataset,
tokenizer=tokenizer,
data_collator=default_data_collator,
compute_metrics=build_compute_metrics_fn('mnli'))
original_preds = trainer.predict(mnli_hard_dataset)
augmented_preds = trainer.predict(augmented_dataset)
flipped_labels = []
all_original_preds = []
all_augmented_preds = []
all_gts = []
for i in trange(len(augmented_dataset)):
original_pr = np.argmax(original_preds.predictions[i])
augmented_pr = np.argmax(augmented_preds.predictions[i])
ground = original_preds.label_ids[i]
all_original_preds.append(original_pr)
all_augmented_preds.append(augmented_pr)
all_gts.append(ground)
if original_pr != ground:
if augmented_pr == ground:
flipped_labels.append(i)
print('Ground: ', Counter(all_gts))
print('Original Preds: ', Counter(all_original_preds))
print('Augmented: ', Counter(all_augmented_preds))
print(len(flipped_labels))
e_n, n_e, e_c, c_e, n_c, c_n = [],[],[],[],[],[]
for i in range(len(flipped_labels)):
idx = flipped_labels[i]
aug_sent = tokenizer.decode(augmented_dataset[idx].input_ids, skip_special_tokens=True)
orig_sent = tokenizer.decode(mnli_hard_dataset[idx].input_ids, skip_special_tokens=True)
val = {}
diff = list(set(aug_sent.split())-set(orig_sent.split()))
val['augmented'] = aug_sent
for mod_token in diff:
val['augmented'] = val['augmented'].replace(mod_token, mod_token.upper())
val['original'] = orig_sent
if label_dict[np.argmax(original_preds.predictions[idx])] == "entailment" and label_dict[mnli_hard_dataset[idx].label] == "neutral":
val['direction'] = "entailment->neutral"
e_n.append(val)
if label_dict[np.argmax(original_preds.predictions[idx])] == "neutral" and label_dict[mnli_hard_dataset[idx].label] == "entailment":
val['direction'] = "neutral->entailment"
n_e.append(val)
if label_dict[np.argmax(original_preds.predictions[idx])] == "entailment" and label_dict[mnli_hard_dataset[idx].label] == "contradiction":
val['direction'] = "entailment->contradiction"
e_c.append(val)
if label_dict[np.argmax(original_preds.predictions[idx])] == "contradiction" and label_dict[mnli_hard_dataset[idx].label] == "entailment":
val['direction'] = "contradiction->entailment"
c_e.append(val)
if label_dict[np.argmax(original_preds.predictions[idx])] == "neutral" and label_dict[mnli_hard_dataset[idx].label] == "contradiction":
val['direction'] = "neutral->contradiciton"
n_c.append(val)
if label_dict[np.argmax(original_preds.predictions[idx])] == "contradiction" and label_dict[mnli_hard_dataset[idx].label] == "neutral":
val['direction'] = "contradiction->neutral"
c_n.append(val)
with open(aug_op + '/e_n.json', 'w') as json_file:
json.dump(e_n, json_file, indent=4)
with open(aug_op + '/n_e.json', 'w') as json_file:
json.dump(n_e, json_file, indent=4)
with open(aug_op + '/e_c.json', 'w') as json_file:
json.dump(e_c, json_file, indent=4)
with open(aug_op + '/c_e.json', 'w') as json_file:
json.dump(c_e, json_file, indent=4)
with open(aug_op + '/n_c.json', 'w') as json_file:
json.dump(n_c, json_file, indent=4)
with open(aug_op + '/c_n.json', 'w') as json_file:
json.dump(c_n, json_file, indent=4)
# print(tokenizer.decode(augmented_dataset[idx].input_ids, skip_special_tokens=True))
# print(tokenizer.decode(mnli_hard_dataset[idx].input_ids, skip_special_tokens=True))
# print(label_dict[np.argmax(original_preds.predictions[idx])], '-> ', label_dict[mnli_hard_dataset[idx].label])
# print()