-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
91 lines (68 loc) · 2.29 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import PIL
import tensorflow as tf
import pathlib
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
data_dir = '/home/praem90/packages/EachOneTeachOne/ImageClassification/Grapevine_Leaves_Image_Dataset';
batch_size = 8
img_height = 511
img_width = 511
train_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.utils.image_dataset_from_directory(
'/home/praem90/packages/EachOneTeachOne/ImageClassification/Training set Oneplus8',
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)
val_batches = tf.data.experimental.cardinality(val_ds)
test_dataset = val_ds.take(val_batches // 5)
validation_dataset = val_ds.skip(val_batches // 5)
AUTOTUNE = tf.data.AUTOTUNE
train_dataset = train_ds.prefetch(buffer_size=AUTOTUNE)
validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE)
test_dataset = test_dataset.prefetch(buffer_size=AUTOTUNE)
data_augmentation = tf.keras.Sequential([
layers.RandomFlip("horizontal_and_vertical"),
layers.RandomRotation(0.2),
])
resize_and_rescale = tf.keras.Sequential([
layers.Resizing(img_width, img_height),
layers.Rescaling(1./255)
])
num_classes = len(class_names)
model = Sequential([
layers.Rescaling(1./127.5, offset=-1, input_shape=(img_height, img_width, 3)),
layers.RandomFlip("horizontal_and_vertical"),
layers.RandomRotation(0.2),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
base_learning_rate = 0.0001
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
epochs=5
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
model.save('./model');