forked from gatk-workflows/gatk4-rnaseq-germline-snps-indels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgatk4-rna-best-practices.wdl
820 lines (677 loc) · 20.1 KB
/
gatk4-rna-best-practices.wdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
## Copyright Broad Institute, 2019
##
## Workflows for processing RNA data for germline short variant discovery with GATK (v4) and related tools
##
## Requirements/expectations :
## - BAM
##
## Output :
## - A BAM file and its index.
## - A VCF file and its index.
## - A Filtered VCF file and its index.
##
## Runtime parameters are optimized for Broad's Google Cloud Platform implementation.
## For program versions, see docker containers.
##
## LICENSING :
## This script is released under the WDL source code license (BSD-3) (see LICENSE in
## https://github.com/broadinstitute/wdl). Note however that the programs it calls may
## be subject to different licenses. Users are responsible for checking that they are
## authorized to run all programs before running this script. Please see the docker
## page at https://hub.docker.com/r/broadinstitute/genomes-in-the-cloud/ for detailed
## licensing information pertaining to the included programs.
workflow RNAseq {
File inputBam
String sampleName = basename(inputBam,".bam")
File refFasta
File refFastaIndex
File refDict
String? gatk4_docker_override
String gatk4_docker = select_first([gatk4_docker_override, "broadinstitute/gatk:latest"])
String? gatk_path_override
String gatk_path = select_first([gatk_path_override, "/gatk/gatk"])
String? star_docker_override
String star_docker = select_first([star_docker_override, "quay.io/humancellatlas/secondary-analysis-star:v0.2.2-2.5.3a-40ead6e"])
Array[File] knownVcfs
Array[File] knownVcfsIndices
File dbSnpVcf
File dbSnpVcfIndex
Int? minConfidenceForVariantCalling
## Inputs for STAR
Int? readLength
File? zippedStarReferences
File annotationsGTF
## Optional user optimizations
Int? haplotypeScatterCount
Int scatterCount = select_first([haplotypeScatterCount, 6])
Int? preemptible_tries
Int preemptible_count = select_first([preemptible_tries, 3])
call gtfToCallingIntervals {
input:
gtf = annotationsGTF,
ref_dict = refDict,
preemptible_count = preemptible_count,
gatk_path = gatk_path,
docker = gatk4_docker
}
call RevertSam {
input:
input_bam = inputBam,
base_name = sampleName + ".reverted",
sort_order = "queryname",
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
call SamToFastq {
input:
unmapped_bam = RevertSam.output_bam,
base_name = sampleName,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
if (!defined(zippedStarReferences)) {
call StarGenerateReferences {
input:
ref_fasta = refFasta,
ref_fasta_index = refFastaIndex,
annotations_gtf = annotationsGTF,
read_length = readLength,
preemptible_count = preemptible_count,
docker = star_docker
}
}
File starReferences = select_first([zippedStarReferences,StarGenerateReferences.star_genome_refs_zipped,""])
call StarAlign {
input:
star_genome_refs_zipped = starReferences,
fastq1 = SamToFastq.fastq1,
fastq2 = SamToFastq.fastq2,
base_name = sampleName + ".star",
read_length = readLength,
preemptible_count = preemptible_count,
docker = star_docker
}
call MergeBamAlignment {
input:
unaligned_bam = RevertSam.output_bam,
star_bam = StarAlign.output_bam,
base_name = ".merged",
ref_fasta = refFasta,
ref_dict = refDict,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
call MarkDuplicates {
input:
input_bam = MergeBamAlignment.output_bam,
base_name = sampleName + ".dedupped",
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
call SplitNCigarReads {
input:
input_bam = MarkDuplicates.output_bam,
input_bam_index = MarkDuplicates.output_bam_index,
base_name = sampleName + ".split",
ref_fasta = refFasta,
ref_fasta_index = refFastaIndex,
ref_dict = refDict,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
call BaseRecalibrator {
input:
input_bam = SplitNCigarReads.output_bam,
input_bam_index = SplitNCigarReads.output_bam_index,
recal_output_file = sampleName + ".recal_data.csv",
dbSNP_vcf = dbSnpVcf,
dbSNP_vcf_index = dbSnpVcfIndex,
known_indels_sites_VCFs = knownVcfs,
known_indels_sites_indices = knownVcfsIndices,
ref_dict = refDict,
ref_fasta = refFasta,
ref_fasta_index = refFastaIndex,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
call ApplyBQSR {
input:
input_bam = SplitNCigarReads.output_bam,
input_bam_index = SplitNCigarReads.output_bam_index,
base_name = sampleName + ".aligned.duplicates_marked.recalibrated",
ref_fasta = refFasta,
ref_fasta_index = refFastaIndex,
ref_dict = refDict,
recalibration_report = BaseRecalibrator.recalibration_report,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
call ScatterIntervalList {
input:
interval_list = gtfToCallingIntervals.interval_list,
scatter_count = scatterCount,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
scatter (interval in ScatterIntervalList.out) {
call HaplotypeCaller {
input:
input_bam = ApplyBQSR.output_bam,
input_bam_index = ApplyBQSR.output_bam_index,
base_name = sampleName + ".hc",
interval_list = interval,
ref_fasta = refFasta,
ref_fasta_index = refFastaIndex,
ref_dict = refDict,
dbSNP_vcf = dbSnpVcf,
dbSNP_vcf_index = dbSnpVcfIndex,
stand_call_conf = minConfidenceForVariantCalling,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
File HaplotypeCallerOutputVcf = HaplotypeCaller.output_vcf
File HaplotypeCallerOutputVcfIndex = HaplotypeCaller.output_vcf_index
}
call MergeVCFs {
input:
input_vcfs = HaplotypeCallerOutputVcf,
input_vcfs_indexes = HaplotypeCallerOutputVcfIndex,
output_vcf_name = sampleName + ".g.vcf.gz",
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
call VariantFiltration {
input:
input_vcf = MergeVCFs.output_vcf,
input_vcf_index = MergeVCFs.output_vcf_index,
base_name = sampleName + ".variant_filtered.vcf.gz",
ref_fasta = refFasta,
ref_fasta_index = refFastaIndex,
ref_dict = refDict,
preemptible_count = preemptible_count,
docker = gatk4_docker,
gatk_path = gatk_path
}
output {
File recalibrated_bam = ApplyBQSR.output_bam
File recalibrated_bam_index = ApplyBQSR.output_bam_index
File merged_vcf = MergeVCFs.output_vcf
File merged_vcf_index = MergeVCFs.output_vcf_index
File variant_filtered_vcf = VariantFiltration.output_vcf
File variant_filtered_vcf_index = VariantFiltration.output_vcf_index
}
}
task gtfToCallingIntervals {
File gtf
File ref_dict
String output_name = basename(gtf, ".gtf") + ".exons.interval_list"
String docker
String gatk_path
Int preemptible_count
command <<<
set -e
Rscript --no-save -<<'RCODE'
gtf = read.table("${gtf}", sep="\t")
gtf = subset(gtf, V3 == "exon")
write.table(data.frame(chrom=gtf[,'V1'], start=gtf[,'V4'], end=gtf[,'V5']), "exome.bed", quote = F, sep="\t", col.names = F, row.names = F)
RCODE
awk '{print $1 "\t" ($2 - 1) "\t" $3}' exome.bed > exome.fixed.bed
${gatk_path} \
BedToIntervalList \
-I exome.fixed.bed \
-O ${output_name} \
-SD ${ref_dict}
>>>
output {
File interval_list = "${output_name}"
}
runtime {
docker: docker
preemptible: preemptible_count
}
}
#NOTE: assuming aggregated bams & paired end fastqs
task SamToFastq {
File unmapped_bam
String base_name
String gatk_path
String docker
Int preemptible_count
command <<<
${gatk_path} \
SamToFastq \
--INPUT ${unmapped_bam} \
--VALIDATION_STRINGENCY SILENT \
--FASTQ ${base_name}.1.fastq.gz \
--SECOND_END_FASTQ ${base_name}.2.fastq.gz
>>>
output {
File fastq1 = "${base_name}.1.fastq.gz"
File fastq2 = "${base_name}.2.fastq.gz"
}
runtime {
docker: docker
memory: "4 GB"
disks: "local-disk " + sub(((size(unmapped_bam,"GB")+1)*5),"\\..*","") + " HDD"
preemptible: preemptible_count
}
}
task StarGenerateReferences {
File ref_fasta
File ref_fasta_index
File annotations_gtf
Int? read_length ## Should this be an input, or should this always be determined by reading the first line of a fastq input
Int? num_threads
Int threads = select_first([num_threads, 8])
Int? additional_disk
Int add_to_disk = select_first([additional_disk, 0])
Int disk_size = select_first([100 + add_to_disk, 100])
Int? mem_gb
Int mem = select_first([100, mem_gb])
String docker
Int preemptible_count
command <<<
set -e
mkdir STAR2_5
STAR \
--runMode genomeGenerate \
--genomeDir STAR2_5 \
--genomeFastaFiles ${ref_fasta} \
--sjdbGTFfile ${annotations_gtf} \
${"--sjdbOverhang "+(read_length-1)} \
--runThreadN ${threads}
ls STAR2_5
tar -zcvf star-HUMAN-refs.tar.gz STAR2_5
>>>
output {
Array[File] star_logs = glob("*.out")
File star_genome_refs_zipped = "star-HUMAN-refs.tar.gz"
}
runtime {
docker: docker
disks: "local-disk " + disk_size + " HDD"
cpu: threads
memory: mem +" GB"
preemptible: preemptible_count
}
}
task StarAlign {
File star_genome_refs_zipped
File fastq1
File fastq2
String base_name
Int? read_length
Int? num_threads
Int threads = select_first([num_threads, 8])
Int? star_mem_max_gb
Int star_mem = select_first([star_mem_max_gb, 45])
#Is there an appropriate default for this?
Int? star_limitOutSJcollapsed
Int? additional_disk
Int add_to_disk = select_first([additional_disk, 0])
String docker
Int preemptible_count
command <<<
set -e
tar -xvzf ${star_genome_refs_zipped}
STAR \
--genomeDir STAR2_5 \
--runThreadN ${threads} \
--readFilesIn ${fastq1} ${fastq2} \
--readFilesCommand "gunzip -c" \
${"--sjdbOverhang "+(read_length-1)} \
--outSAMtype BAM SortedByCoordinate \
--twopassMode Basic \
--limitBAMsortRAM ${star_mem+"000000000"} \
--limitOutSJcollapsed ${default=1000000 star_limitOutSJcollapsed} \
--outFileNamePrefix ${base_name}.
>>>
output {
File output_bam = "${base_name}.Aligned.sortedByCoord.out.bam"
File output_log_final = "${base_name}.Log.final.out"
File output_log = "${base_name}.Log.out"
File output_log_progress = "${base_name}.Log.progress.out"
File output_SJ = "${base_name}.SJ.out.tab"
}
runtime {
docker: docker
disks: "local-disk " + sub(((size(fastq1,"GB")+size(fastq2,"GB")*10)+30+add_to_disk),"\\..*","") + " HDD"
memory: (star_mem+1) + " GB"
cpu: threads
preemptible: preemptible_count
}
}
task MergeBamAlignment {
File ref_fasta
File ref_dict
File unaligned_bam
File star_bam
String base_name
String gatk_path
String docker
Int preemptible_count
#Using default for max_records_in_ram
command <<<
${gatk_path} \
MergeBamAlignment \
--REFERENCE_SEQUENCE ${ref_fasta} \
--UNMAPPED_BAM ${unaligned_bam} \
--ALIGNED_BAM ${star_bam} \
--OUTPUT ${base_name}.bam \
--INCLUDE_SECONDARY_ALIGNMENTS false \
--VALIDATION_STRINGENCY SILENT
>>>
output {
File output_bam="${base_name}.bam"
}
runtime {
docker: docker
disks: "local-disk " + sub(((size(unaligned_bam,"GB")+size(star_bam,"GB")+1)*5),"\\..*","") + " HDD"
memory: "4 GB"
preemptible: preemptible_count
}
}
task MarkDuplicates {
File input_bam
String base_name
String gatk_path
String docker
Int preemptible_count
command <<<
${gatk_path} \
MarkDuplicates \
--INPUT ${input_bam} \
--OUTPUT ${base_name}.bam \
--CREATE_INDEX true \
--VALIDATION_STRINGENCY SILENT \
--METRICS_FILE ${base_name}.metrics
>>>
output {
File output_bam = "${base_name}.bam"
File output_bam_index = "${base_name}.bai"
File metrics_file = "${base_name}.metrics"
}
runtime {
disks: "local-disk " + sub(((size(input_bam,"GB")+1)*3),"\\..*","") + " HDD"
docker: docker
memory: "4 GB"
preemptible: preemptible_count
}
}
task SplitNCigarReads {
File input_bam
File input_bam_index
String base_name
File ref_fasta
File ref_fasta_index
File ref_dict
String gatk_path
String docker
Int preemptible_count
command <<<
${gatk_path} \
SplitNCigarReads \
-R ${ref_fasta} \
-I ${input_bam} \
-O ${base_name}.bam
>>>
output {
File output_bam = "${base_name}.bam"
File output_bam_index = "${base_name}.bai"
}
runtime {
disks: "local-disk " + sub(((size(input_bam,"GB")+1)*5 + size(ref_fasta,"GB")),"\\..*","") + " HDD"
docker: docker
memory: "4 GB"
preemptible: preemptible_count
}
}
task BaseRecalibrator {
File input_bam
File input_bam_index
String recal_output_file
File dbSNP_vcf
File dbSNP_vcf_index
Array[File] known_indels_sites_VCFs
Array[File] known_indels_sites_indices
File ref_dict
File ref_fasta
File ref_fasta_index
String gatk_path
String docker
Int preemptible_count
command <<<
${gatk_path} --java-options "-XX:GCTimeLimit=50 -XX:GCHeapFreeLimit=10 -XX:+PrintFlagsFinal \
-XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+PrintGCDetails \
-Xloggc:gc_log.log -Xms4000m" \
BaseRecalibrator \
-R ${ref_fasta} \
-I ${input_bam} \
--use-original-qualities \
-O ${recal_output_file} \
-known-sites ${dbSNP_vcf} \
-known-sites ${sep=" --known-sites " known_indels_sites_VCFs}
>>>
output {
File recalibration_report = recal_output_file
}
runtime {
memory: "6 GB"
disks: "local-disk " + sub((size(input_bam,"GB")*3)+30, "\\..*", "") + " HDD"
docker: docker
preemptible: preemptible_count
}
}
task ApplyBQSR {
File input_bam
File input_bam_index
String base_name
File recalibration_report
File ref_dict
File ref_fasta
File ref_fasta_index
String gatk_path
String docker
Int preemptible_count
command <<<
${gatk_path} \
--java-options "-XX:+PrintFlagsFinal -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps \
-XX:+PrintGCDetails -Xloggc:gc_log.log \
-XX:GCTimeLimit=50 -XX:GCHeapFreeLimit=10 -Xms3000m" \
ApplyBQSR \
--add-output-sam-program-record \
-R ${ref_fasta} \
-I ${input_bam} \
--use-original-qualities \
-O ${base_name}.bam \
--bqsr-recal-file ${recalibration_report}
>>>
output {
File output_bam = "${base_name}.bam"
File output_bam_index = "${base_name}.bai"
}
runtime {
memory: "3500 MB"
disks: "local-disk " + sub((size(input_bam,"GB")*4)+30, "\\..*", "") + " HDD"
preemptible: preemptible_count
docker: docker
}
}
task HaplotypeCaller {
File input_bam
File input_bam_index
String base_name
File interval_list
File ref_dict
File ref_fasta
File ref_fasta_index
File dbSNP_vcf
File dbSNP_vcf_index
String gatk_path
String docker
Int preemptible_count
Int? stand_call_conf
command <<<
${gatk_path} --java-options "-Xms6000m -XX:GCTimeLimit=50 -XX:GCHeapFreeLimit=10" \
HaplotypeCaller \
-R ${ref_fasta} \
-I ${input_bam} \
-L ${interval_list} \
-O ${base_name}.vcf.gz \
-dont-use-soft-clipped-bases \
--standard-min-confidence-threshold-for-calling ${default=20 stand_call_conf} \
--dbsnp ${dbSNP_vcf}
>>>
output {
File output_vcf = "${base_name}.vcf.gz"
File output_vcf_index = "${base_name}.vcf.gz.tbi"
}
runtime {
docker: docker
memory: "6.5 GB"
disks: "local-disk " + sub((size(input_bam,"GB")*2)+30, "\\..*", "") + " HDD"
preemptible: preemptible_count
}
}
task VariantFiltration {
File input_vcf
File input_vcf_index
String base_name
File ref_dict
File ref_fasta
File ref_fasta_index
String gatk_path
String docker
Int preemptible_count
command <<<
${gatk_path} \
VariantFiltration \
--R ${ref_fasta} \
--V ${input_vcf} \
--window 35 \
--cluster 3 \
--filter-name "FS" \
--filter "FS > 30.0" \
--filter-name "QD" \
--filter "QD < 2.0" \
-O ${base_name}
>>>
output {
File output_vcf = "${base_name}"
File output_vcf_index = "${base_name}.tbi"
}
runtime {
docker: docker
memory: "3 GB"
disks: "local-disk " + sub((size(input_vcf,"GB")*2)+30, "\\..*", "") + " HDD"
preemptible: preemptible_count
}
}
task MergeVCFs {
Array[File] input_vcfs
Array[File] input_vcfs_indexes
String output_vcf_name
Int? disk_size = 5
String gatk_path
String docker
Int preemptible_count
# Using MergeVcfs instead of GatherVcfs so we can create indices
# See https://github.com/broadinstitute/picard/issues/789 for relevant GatherVcfs ticket
command <<<
${gatk_path} --java-options "-Xms2000m" \
MergeVcfs \
--INPUT ${sep=' --INPUT ' input_vcfs} \
--OUTPUT ${output_vcf_name}
>>>
output {
File output_vcf = output_vcf_name
File output_vcf_index = "${output_vcf_name}.tbi"
}
runtime {
memory: "3 GB"
disks: "local-disk " + disk_size + " HDD"
docker: docker
preemptible: preemptible_count
}
}
task ScatterIntervalList {
File interval_list
Int scatter_count
String gatk_path
String docker
Int preemptible_count
command <<<
set -e
mkdir out
${gatk_path} --java-options "-Xms1g" \
IntervalListTools \
--SCATTER_COUNT ${scatter_count} \
--SUBDIVISION_MODE BALANCING_WITHOUT_INTERVAL_SUBDIVISION_WITH_OVERFLOW \
--UNIQUE true \
--SORT true \
--INPUT ${interval_list} \
--OUTPUT out
python3 <<CODE
import glob, os
# Works around a JES limitation where multiples files with the same name overwrite each other when globbed
intervals = sorted(glob.glob("out/*/*.interval_list"))
for i, interval in enumerate(intervals):
(directory, filename) = os.path.split(interval)
newName = os.path.join(directory, str(i + 1) + filename)
os.rename(interval, newName)
print(len(intervals))
if len(intervals) == 0:
raise ValueError("Interval list produced 0 scattered interval lists. Is the gtf or input interval list empty?")
f = open("interval_count.txt", "w+")
f.write(str(len(intervals)))
f.close()
CODE
>>>
output {
Array[File] out = glob("out/*/*.interval_list")
Int interval_count = read_int("interval_count.txt")
}
runtime {
disks: "local-disk 1 HDD"
memory: "2 GB"
docker: docker
preemptible: preemptible_count
}
}
task RevertSam {
File input_bam
String base_name
String sort_order
String gatk_path
String docker
Int preemptible_count
command <<<
${gatk_path} \
RevertSam \
--INPUT ${input_bam} \
--OUTPUT ${base_name}.bam \
--VALIDATION_STRINGENCY SILENT \
--ATTRIBUTE_TO_CLEAR FT \
--ATTRIBUTE_TO_CLEAR CO \
--SORT_ORDER ${sort_order}
>>>
output {
File output_bam = "${base_name}.bam"
}
runtime {
docker: docker
disks: "local-disk " + sub(((size(input_bam,"GB")+1)*5),"\\..*","") + " HDD"
memory: "4 GB"
preemptible: preemptible_count
}
}