
CHAPTER 12

Process Sets and Groups

PMIx supports two slightly related, but functionally di�erent concepts known as process sets and1

process groups. This chapter describes the two definitions and how they are utilized, along with2

their corresponding APIs.3

12.1 Process Sets4

A PMIx Process Set is a user-provided label associated with a given set of application processes.5

Definition of a PMIx process set typically occurs at time of application execution - e.g., on a6

PRRTE command line:7

C

$ prun -n 4 --pset ocean myoceanapp : -n 3 --pset ice myiceapp8

C

In this example, the processes in the first application will be labeled with a PMIX_PSET_NAME9

attribute of ocean while those in the second application will be labeled with an ice value. During10

the execution, application processes could lookup the process set attribute for any other process11

using PMIx_Get . Alternatively, other executing applications could utilize the12

PMIx_Query_info_nb API to obtain the number of declared process sets in the system, a list13

of their names, and other information about them. In other words, the process set identifier provides14

a label by which an application can derive information about a process and its application - it does15

not, however, confer any operational function.16

Thus, process sets di�er from process groups in several key ways:17

• Process sets have no implied relationship between their members - i.e., a process in a process set18

has no concept of a “pset rank” as it would in a process group19

• Processes can only have one process set identifier, but can simultaneously belong to multiple20

process groups21

• Process set identifiers are considered job-level information set at launch. No PMIx API is22

provided by which a user can change the process set value of a process on-the-fly. In contrast,23

PMIx process groups can only be defined dynamically by the application.24

302

• Process groups can be used in calls to PMIx operations. Members of process groups that are1

involved in an operation are translated by their PMIx server into their native identifier prior to the2

operation being passed to the host environment. For example, an application can define a process3

group to consist of ranks 0 and 1 from the host-assigned namespace of 210456, identified by the4

group id of foo. If the application subsequently calls the PMIx_Fence API with a process5

identifier of {foo, PMIX_RANK_WILDCARD}, the PMIx server will replace that identifier6

with an array consisting of {210456, 0} and {210456, 1} - the host-assigned identifers of the7

participating processes - prior to passing the request up to the host environment8

The two concepts do, however, overlap in one specific area. Process groups are included in the9

process set information returned by calls to PMIx_Query_info_nb . Thus, a process group can10

e�ectively be considered an extended version of a process set that adds dynamic definition and11

operational context to the process set concept.12

Advice to PMIx library implementers

PMIx implementations are required to include all active group identifiers in the returned list of13

process set names provided in response to the appropriate PMIx_Query_info_nb call.14

12.2 Process Groups15

PMIx Groups are defined as a collection of processes desiring a common, unique identifier for16

purposes such as passing events or participating in PMIx fence operations. As with processes that17

assemble via PMIx_Connect , each member of the group is provided with both the job-level18

information of any other namespace represented in the group, and the contact information for all19

group members. However, groups di�er from PMIx_Connect assemblages in the following key20

areas:21

• Relation to the host environment22

– Calls to PMIx_Connect are relayed to the host environment. This means that the host RM23

should treat the failure of any process in the specified assemblage as a reportable event and24

take appropriate action. However, the environment is not required to define a new identifier for25

the connected assemblage or any of its member processes, nor does it define a new rank for26

each process within that assemblage. In addition, the PMIx server does not provide any27

tracking support for the assemblage. Thus, the caller is responsible for addressing members of28

the connected assemblage using their RM-provided identifiers.29

CHAPTER 12. PROCESS SETS AND GROUPS 303

– Calls to PMIx Group APIs are first processed within the local PMIx server. When constructed,1

the server creates a tracker that associates the specified processes with the user-provided group2

identifier, and assigns a new group rank based on their relative position in the array of3

processes provided in the call to PMIx_Group_construct . Members of the group can4

subsequently utilize the group identifier in PMIx function calls to address the group’s5

members, using either PMIX_RANK_WILDCARD to refer to all of them or the group-level6

rank of specific members. The PMIx server will translate the specified processes into their7

RM-assigned identifiers prior to passing the request up to its host. Thus, the host environment8

has no visibility into the group’s existence or membership.9

Advice to users

User-provided group identifiers must be distinct from anything provided by the RM so as to10

avoid collisions between group identifiers and RM-assigned namespaces. This can usually be11

accomplished through the use of an application-specific prefix – e.g., “myapp-foo”12

• Construction procedure13

– PMIx_Connect calls require that every process call the API before completing – i.e., it is14

modeled upon the bulk synchronous traditional MPI connect/accept methodology. Thus, a15

given application thread can only be involved in one connect/accept operation at a time, and is16

blocked in that operation until all specified processes participate. In addition, there is no17

provision for replacing processes in the assemblage due to failure to participate, nor a18

mechanism by which a process might decline participation.19

– PMIx Groups are designed to be more flexible in their construction procedure by relaxing20

these constraints. While a standard blocking form of constructing groups is provided, the event21

notification system is utilized to provide a designated group leader with the ability to replace22

participants that fail to participate within a given timeout period. This provides a mechanism23

by which the application can, if desired, replace members on-the-fly or allow the group to24

proceed with partial membership. In such cases, the final group membership is returned to all25

participants upon completion of the operation.26

Additionally, PMIx supports dynamic definition of group membership based on an invite/join27

model. A process can asynchronously initiate construction of a group of any processes via the28

PMIx_Group_invite function call. Invitations are delivered via a PMIx event (using the29

PMIX_GROUP_INVITED event) to the invited processes which can then either accept or30

decline the invitation using the PMIx_Group_join API. The initiating process tracks31

responses by registering for the events generated by the call to PMIx_Group_join ,32

timeouts, or process terminations, optionally replacing processes that decline the invitation,33

fail to respond in time, or terminate without responding. Upon completion of the operation,34

the final list of participants is communicated to each member of the new group.35

• Destruct procedure36

304 PMIx Standard – Version 4.0 (Draft) – 1H2019

– Processes that assemble via PMIx_Connect must all depart the assemblage together – i.e.,1

no member can depart the assemblage while leaving the remaining members in it. Even the2

non-blocking form of PMIx_Disconnect retains this requirement in that members remain3

a part of the assemblage until all members have called PMIx_Disconnect_nb4

– Members of a PMIx Group may depart the group at any time via the PMIx_Group_leave5

API. Other members are notified of the departure via the PMIX_GROUP_LEFT event to6

distinguish such events from those reporting process termination. This leaves the remaining7

members free to continue group operations. The PMIx_Group_destruct operation o�ers8

a collective method akin to PMIx_Disconnect for deconstructing the entire group.9

Note that applications supporting dynamic group behaviors such as asynchronous departure10

take responsibility for ensuring global consistency in the group definition prior to executing11

group collective operations - i.e., it is the application’s responsibility to either ensure that12

knowledge of the current group membership is globally consistent across the participants, or to13

register for appropriate events to deal with the lack of consistency during the operation.14

In other words, members of PMIx Groups are loosely coupled as opposed to tightly connected15

when constructed via PMIx_Connect . The relevant APIs are explained below.16

Advice to users

The reliance on PMIx events in the PMIx Group concept dictates that processes utilizing these APIs17

must register for the corresponding events. Failure to do so will likely lead to operational failures.18

Users are recommended to utilize the PMIX_TIMEOUT directive (or retain an internal timer) on19

calls to PMIx Group APIs (especially the blocking form of those functions) as processes that have20

not registered for required events will never respond.21

12.2.1 PMIx_Group_construct22

Summary23

Construct a PMIx process group24

CHAPTER 12. PROCESS SETS AND GROUPS 305

Format1

PMIx v4.0 C

pmix_status_t2

PMIx_Group_construct(const char grp[],3

const pmix_proc_t procs[], size_t nprocs,4

const pmix_info_t directives[], size_t ndirs,5

pmix_info_t **results, size_t *nresults)6

C

IN grp7

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the8

group identifier (string)9

IN procs10

Array of pmix_proc_t structures containing the PMIx identifiers of the member11

processes (array of handles)12

IN nprocs13

Number of elements in the procs array (size_t)14

IN directives15

Array of pmix_info_t structures (array of handles)16

IN ndirs17

Number of elements in the directives array (size_t)18

INOUT results19

Pointer to a location where the array of pmix_info_t describing the results of the20

operation is to be returned (pointer to handle)21

INOUT nresults22

Pointer to a size_t location where the number of elements in results is to be returned23

(memory reference)24

Returns one of the following:25

• PMIX_SUCCESS , indicating that the request has been successfully completed26

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this27

operation28

• a PMIx error constant indicating either an error in the input or that the request failed to be29

completed30

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this31

operation:32

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)33

This process is the leader of the group34

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)35

306 PMIx Standard – Version 4.0 (Draft) – 1H2019

Participation is optional - do not return an error if any of the specified processes terminate1

without having joined. The default is false2

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)3

Group operation only involves local processes. PMIx implementations are required to4

automatically scan an array of group members for local vs remote processes - if only local5

processes are detected, the implementation need not execute a global collective for the6

operation unless a context ID has been requested from the host environment. This can result7

in significant time savings. This attribute can be used to optimize the operation by indicating8

whether or not only local processes are represented, thus allowing the implementation to9

bypass the scan. The default is false10

Host environments that support this operation are required to provide the following attributes:11

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)12

Notify remaining members when another member terminates without first leaving the group.13

The default is false14

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)15

Notify remaining members when another member terminates without first leaving the group.16

The default is false17

Optional Attributes

The following attributes are optional for host environments that support this operation:18

PMIX_TIMEOUT "pmix.timeout" (int)19

Time in seconds before the specified operation should time out (0 indicating infinite) in20

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent21

the target process from ever exposing its data.22

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host23

environment due to race condition considerations between completion of the operation versus24

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT25

directly in the PMIx server library must take care to resolve the race condition and should avoid26

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not27

created.28

CHAPTER 12. PROCESS SETS AND GROUPS 307

Description1

Construct a new group composed of the specified processes and identified with the provided group2

identifier. The group identifier is a user-defined, NULL-terminated character array of length less3

than or equal to PMIX_MAX_NSLEN . Only characters accepted by standard string comparison4

functions (e.g., strncmp) are supported. Processes may engage in multiple simultaneous group5

construct operations so long as each is provided with a unique group ID. The directives array can be6

used to pass user-level directives regarding timeout constraints and other options available from the7

PMIx server.8

If the PMIX_GROUP_NOTIFY_TERMINATION attribute is provided and has a value of true,9

then either the construct leader (if PMIX_GROUP_LEADER is provided) or all participants who10

register for the PMIX_GROUP_MEMBER_FAILED event will receive events whenever a process11

fails or terminates prior to calling PMIx_Group_construct – i.e. if a group leader is12

declared, only that process will receive the event. In the absence of a declared leader, all specified13

group members will receive the event.14

The event will contain the identifier of the process that failed to join plus any other information that15

the host RM provided. This provides an opportunity for the leader or the collective members to16

react to the event – e.g., to decide to proceed with a smaller group or to abort the operation. The17

decision is communicated to the PMIx library in the results array at the end of the event handler.18

This allows PMIx to properly adjust accounting for procedure completion. When construct is19

complete, the participating PMIx servers will be alerted to any change in participants and each20

group member will receive an updated group membership (marked with the21

PMIX_GROUP_MEMBERSHIP attribute) as part of the results array returned by this API.22

Failure of the declared leader at any time will cause a PMIX_GROUP_LEADER_FAILED event to23

be delivered to all participants so they can optionally declare a new leader. A new leader is24

identified by providing the PMIX_GROUP_LEADER attribute in the results array in the return of25

the event handler. Only one process is allowed to return that attribute, thereby declaring itself as the26

new leader. Results of the leader selection will be communicated to all participants via a27

PMIX_GROUP_LEADER_SELECTED event identifying the new leader. If no leader was selected,28

then the pmix_info_t provided to that event handler will include that information so the29

participants can take appropriate action.30

Any participant that returns PMIX_GROUP_CONSTRUCT_ABORT from either the31

PMIX_GROUP_MEMBER_FAILED or the PMIX_GROUP_LEADER_FAILED event handler will32

cause the construct process to abort, returning from the call with a33

PMIX_GROUP_CONSTRUCT_ABORT status.34

If the PMIX_GROUP_NOTIFY_TERMINATION attribute is not provided or has a value of35

false, then the PMIx_Group_construct operation will simply return an error whenever a36

proposed group member fails or terminates prior to calling PMIx_Group_construct .37

Providing the PMIX_GROUP_OPTIONAL attribute with a value of true directs the PMIx library38

to consider participation by any specified group member as non-required - thus, the operation will39

return PMIX_SUCCESS if all members participate, or PMIX_ERR_PARTIAL_SUCCESS if40

308 PMIx Standard – Version 4.0 (Draft) – 1H2019

some members fail to participate. The results array will contain the final group membership in the1

latter case. Note that this use-case can cause the operation to hang if the PMIX_TIMEOUT2

attribute is not specified and one or more group members fail to call PMIx_Group_construct3

while continuing to execute. Also, note that no leader or member failed events will be generated4

during the operation.5

Processes in a group under construction are not allowed to leave the group until group construction6

is complete. Upon completion of the construct procedure, each group member will have access to7

the job-level information of all namespaces represented in the group plus any information posted8

via PMIx_Put (subject to the usual scoping directives) for every group member.9

Advice to PMIx library implementers

At the conclusion of the construct operation, the PMIx library is required to ensure that job-related10

information from each participating namespace plus any information posted by group members via11

PMIx_Put (subject to scoping directives) is available to each member via calls to PMIx_Get .12

Advice to PMIx server hosts

The collective nature of this API generally results in use of a fence-like operation by the backend13

host environment. Host environments that utilize the array of process participants as a signature for14

such operations may experience potential conflicts should both a PMIx_Group_construct15

and a PMIx_Fence operation involving the same participants be simultaneously executed. As16

PMIx allows for such use-cases, it is therefore the responsibility of the host environment to resolve17

any potential conflicts.18

12.2.2 PMIx_Group_construct_nb19

Summary20

Non-blocking form of PMIx_Group_construct21

CHAPTER 12. PROCESS SETS AND GROUPS 309

Format1

PMIx v4.0 C

pmix_status_t2

PMIx_Group_construct_nb(const char grp[],3

const pmix_proc_t procs[], size_t nprocs,4

const pmix_info_t directives[], size_t ndirs,5

pmix_info_cbfunc_t cbfunc, void *cbdata)6

C

IN grp7

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the8

group identifier (string)9

IN procs10

Array of pmix_proc_t structures containing the PMIx identifiers of the member11

processes (array of handles)12

IN nprocs13

Number of elements in the procs array (size_t)14

IN directives15

Array of pmix_info_t structures (array of handles)16

IN ndirs17

Number of elements in the directives array (size_t)18

IN cbfunc19

Callback function pmix_info_cbfunc_t (function reference)20

IN cbdata21

Data to be passed to the callback function (memory reference)22

Returns one of the following:23

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided24

callback function will be executed upon completion of the operation. Note that the library must25

not invoke the callback function prior to returning from the API.26

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and27

returned success - the cbfunc will not be called28

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc29

will not be called30

• a non-zero PMIx error constant indicating a reason for the request to have been rejected - the31

cbfunc will not be called32

If executed, the status returned in the provided callback function will be one of the following33

constants:34

• PMIX_SUCCESS The operation succeeded and all specified members participated.35

310 PMIx Standard – Version 4.0 (Draft) – 1H2019

• PMIX_ERR_PARTIAL_SUCCESS The operation succeeded but not all specified members1

participated - the final group membership is included in the callback function2

• PMIX_ERR_NOT_SUPPORTED While the PMIx server supports this operation, the host RM3

does not.4

• a non-zero PMIx error constant indicating a reason for the request’s failure5

Required Attributes

PMIx libraries that choose not to support this operation must return6

PMIX_ERR_NOT_SUPPORTED when the function is called.7

The following attributes are required to be supported by all PMIx libraries that support this8

operation:9

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)10

This process is the leader of the group11

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)12

Participation is optional - do not return an error if any of the specified processes terminate13

without having joined. The default is false14

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)15

Group operation only involves local processes. PMIx implementations are required to16

automatically scan an array of group members for local vs remote processes - if only local17

processes are detected, the implementation need not execute a global collective for the18

operation unless a context ID has been requested from the host environment. This can result19

in significant time savings. This attribute can be used to optimize the operation by indicating20

whether or not only local processes are represented, thus allowing the implementation to21

bypass the scan. The default is false22

Host environments that support this operation are required to provide the following attributes:23

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)24

Notify remaining members when another member terminates without first leaving the group.25

The default is false26

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)27

Notify remaining members when another member terminates without first leaving the group.28

The default is false29

CHAPTER 12. PROCESS SETS AND GROUPS 311

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2

Time in seconds before the specified operation should time out (0 indicating infinite) in3

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4

the target process from ever exposing its data.5

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host6

environment due to race condition considerations between completion of the operation versus7

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT8

directly in the PMIx server library must take care to resolve the race condition and should avoid9

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not10

created.11

Description12

Non-blocking version of the PMIx_Group_construct operation. The callback function will13

be called once all group members have called either PMIx_Group_construct or14

PMIx_Group_construct_nb .15

12.2.3 PMIx_Group_destruct16

Summary17

Destruct a PMIx process group18

312 PMIx Standard – Version 4.0 (Draft) – 1H2019

Format1

PMIx v4.0 C

pmix_status_t2

PMIx_Group_destruct(const char grp[],3

const pmix_info_t directives[], size_t ndirs)4

C

IN grp5

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the6

identifier of the group to be destructed (string)7

IN directives8

Array of pmix_info_t structures (array of handles)9

IN ndirs10

Number of elements in the directives array (size_t)11

Returns one of the following:12

• PMIX_SUCCESS , indicating that the request has been successfully completed13

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this14

operation15

• a PMIx error constant indicating either an error in the input or that the request failed to be16

completed17

Required Attributes

For implementations and host environments that support the operation, there are no identified18

required attributes for this API.19

Optional Attributes

The following attributes are optional for host environments that support this operation:20

PMIX_TIMEOUT "pmix.timeout" (int)21

Time in seconds before the specified operation should time out (0 indicating infinite) in22

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent23

the target process from ever exposing its data.24

CHAPTER 12. PROCESS SETS AND GROUPS 313

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1

environment due to race condition considerations between completion of the operation versus2

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3

directly in the PMIx server library must take care to resolve the race condition and should avoid4

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5

created.6

Description7

Destruct a group identified by the provided group identifier. Processes may engage in multiple8

simultaneous group destruct operations so long as each involves a unique group ID. The directives9

array can be used to pass user-level directives regarding timeout constraints and other options10

available from the PMIx server.11

The destruct API will return an error if any group process fails or terminates prior to calling12

PMIx_Group_destruct or its non-blocking version unless the13

PMIX_GROUP_NOTIFY_TERMINATION attribute was provided (with a value of false) at14

time of group construction. If notification was requested, then the15

PMIX_GROUP_MEMBER_FAILED event will be delivered for each process that fails to call16

destruct and the destruct tracker updated to account for the lack of participation. The17

PMIx_Group_destruct operation will subsequently return PMIX_SUCCESS when the18

remaining processes have all called destruct – i.e., the event will serve in place of return of an error.19

Advice to PMIx server hosts

The collective nature of this API generally results in use of a fence-like operation by the backend20

host environment. Host environments that utilize the array of process participants as a signature for21

such operations may experience potential conflicts should both a PMIx_Group_destruct and22

a PMIx_Fence operation involving the same participants be simultaneously executed. As PMIx23

allows for such use-cases, it is therefore the responsibility of the host environment to resolve any24

potential conflicts.25

12.2.4 PMIx_Group_destruct_nb26

Summary27

Non-blocking form of PMIx_Group_destruct28

314 PMIx Standard – Version 4.0 (Draft) – 1H2019

Format1

PMIx v4.0 C

pmix_status_t2

PMIx_Group_destruct_nb(const char grp[],3

const pmix_info_t directives[], size_t ndirs,4

pmix_op_cbfunc_t cbfunc, void *cbdata)5

C

IN grp6

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the7

identifier of the group to be destructed (string)8

IN directives9

Array of pmix_info_t structures (array of handles)10

IN ndirs11

Number of elements in the directives array (size_t)12

IN cbfunc13

Callback function pmix_op_cbfunc_t (function reference)14

IN cbdata15

Data to be passed to the callback function (memory reference)16

Returns one of the following:17

• PMIX_SUCCESS , indicating that the request is being processed - result will be returned in the18

provided cbfunc. Note that the library must not invoke the callback function prior to returning19

from the API.20

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and21

returned success - the cbfunc will not be called22

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc23

will not be called24

• a PMIx error constant indicating either an error in the input or that the request was immediately25

processed and failed - the cbfunc will not be called26

If executed, the status returned in the provided callback function will be one of the following27

constants:28

• PMIX_SUCCESS The operation was successfully completed29

• PMIX_ERR_NOT_SUPPORTED While the PMIx server supports this operation, the host RM30

does not.31

• a non-zero PMIx error constant indicating a reason for the request’s failure32

CHAPTER 12. PROCESS SETS AND GROUPS 315

Required Attributes

PMIx libraries that choose not to support this operation must return1

PMIX_ERR_NOT_SUPPORTED when the function is called. For implementations and host2

environments that support the operation, there are no identified required attributes for this API.3

Optional Attributes

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5

Time in seconds before the specified operation should time out (0 indicating infinite) in6

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent7

the target process from ever exposing its data.8

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host9

environment due to race condition considerations between completion of the operation versus10

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT11

directly in the PMIx server library must take care to resolve the race condition and should avoid12

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not13

created.14

Description15

Non-blocking version of the PMIx_Group_destruct operation. The callback function will be16

called once all members of the group have executed either PMIx_Group_destruct or17

PMIx_Group_destruct_nb .18

12.2.5 PMIx_Group_invite19

Summary20

Asynchronously construct a PMIx process group21

316 PMIx Standard – Version 4.0 (Draft) – 1H2019

Format1

PMIx v4.0 C

pmix_status_t2

PMIx_Group_invite(const char grp[],3

const pmix_proc_t procs[], size_t nprocs,4

const pmix_info_t directives[], size_t ndirs,5

pmix_info_t **results, size_t *nresult)6

C

IN grp7

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the8

group identifier (string)9

IN procs10

Array of pmix_proc_t structures containing the PMIx identifiers of the processes to be11

invited (array of handles)12

IN nprocs13

Number of elements in the procs array (size_t)14

IN directives15

Array of pmix_info_t structures (array of handles)16

IN ndirs17

Number of elements in the directives array (size_t)18

INOUT results19

Pointer to a location where the array of pmix_info_t describing the results of the20

operation is to be returned (pointer to handle)21

INOUT nresults22

Pointer to a size_t location where the number of elements in results is to be returned23

(memory reference)24

Returns one of the following:25

• PMIX_SUCCESS , indicating that the request has been successfully completed26

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this27

operation28

• a PMIx error constant indicating either an error in the input or that the request failed to be29

completed30

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this31

operation:32

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)33

Participation is optional - do not return an error if any of the specified processes terminate34

without having joined. The default is false35

CHAPTER 12. PROCESS SETS AND GROUPS 317

Host environments that support this operation are required to provide the following attributes:1

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)2

Notify remaining members when another member terminates without first leaving the group.3

The default is false4

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)5

Notify remaining members when another member terminates without first leaving the group.6

The default is false7

Optional Attributes

The following attributes are optional for host environments that support this operation:8

PMIX_TIMEOUT "pmix.timeout" (int)9

Time in seconds before the specified operation should time out (0 indicating infinite) in10

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent11

the target process from ever exposing its data.12

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host13

environment due to race condition considerations between completion of the operation versus14

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT15

directly in the PMIx server library must take care to resolve the race condition and should avoid16

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not17

created.18

318 PMIx Standard – Version 4.0 (Draft) – 1H2019

Description1

Explicitly invite the specified processes to join a group. The process making the2

PMIx_Group_invite call is automatically declared to be the group leader. Each invited3

process will be notified of the invitation via the PMIX_GROUP_INVITED event - the processes4

being invited must therefore register for the PMIX_GROUP_INVITED event in order to be notified5

of the invitation. Note that the PMIx event notification system caches events - thus, no ordering of6

invite versus event registration is required.7

The invitation event will include the identity of the inviting process plus the name of the group.8

When ready to respond, each invited process provides a response using either the blocking or9

non-blocking form of PMIx_Group_join . This will notify the inviting process that the10

invitation was either accepted (via the PMIX_GROUP_INVITE_ACCEPTED event) or declined11

(via the PMIX_GROUP_INVITE_DECLINED event). The PMIX_GROUP_INVITE_ACCEPTED12

event is captured by the PMIx client library of the inviting process – i.e., the application itself does13

not need to register for this event. The library will track the number of accepting processes and14

alert the inviting process (by returning from the blocking form of PMIx_Group_invite or15

calling the callback function of the non-blocking form) when group construction completes.16

The inviting process should, however, register for the PMIX_GROUP_INVITE_DECLINED if the17

application allows invited processes to decline the invitation. This provides an opportunity for the18

application to either invite a replacement, declare “abort”, or choose to remove the declining19

process from the final group. The inviting process should also register to receive20

PMIX_GROUP_INVITE_FAILED events whenever a process fails or terminates prior to21

responding to the invitation. Actions taken by the inviting process in response to these events must22

be communicated at the end of the event handler by returning the corresponding result so that the23

PMIx library can adjust accordingly.24

Upon completion of the operation, all members of the new group will receive access to the job-level25

information of each other’s namespaces plus any information posted via PMIx_Put by the other26

members.27

The inviting process is automatically considered the leader of the asynchronous group construction28

procedure and will receive all failure or termination events for invited members prior to completion.29

The inviting process is required to provide a PMIX_GROUP_CONSTRUCT_COMPLETE event30

once the group has been fully assembled – this event is used by the PMIx library as a trigger to31

release participants from their call to PMIx_Group_join and provides information (e.g., the32

final group membership) to be returned in the results array.33

Advice to users

Applications are not allowed to use the group in any operations until group construction is34

complete. This is required in order to ensure consistent knowledge of group membership across all35

participants.36

CHAPTER 12. PROCESS SETS AND GROUPS 319

Failure of the inviting process at any time will cause a PMIX_GROUP_LEADER_FAILED event to1

be delivered to all participants so they can optionally declare a new leader. A new leader is2

identified by providing the PMIX_GROUP_LEADER attribute in the results array in the return of3

the event handler. Only one process is allowed to return that attribute, declaring itself as the new4

leader. Results of the leader selection will be communicated to all participants via a5

PMIX_GROUP_LEADER_SELECTED event identifying the new leader. If no leader was selected,6

then the status code provided in the event handler will provide an error value so the participants can7

take appropriate action.8

12.2.6 PMIx_Group_invite_nb9

Summary10

Non-blocking form of PMIx_Group_invite11

Format12

PMIx v4.0 C

pmix_status_t13

PMIx_Group_invite_nb(const char grp[],14

const pmix_proc_t procs[], size_t nprocs,15

const pmix_info_t directives[], size_t ndirs,16

pmix_info_cbfunc_t cbfunc, void *cbdata)17

C

IN grp18

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the19

group identifier (string)20

IN procs21

Array of pmix_proc_t structures containing the PMIx identifiers of the processes to be22

invited (array of handles)23

IN nprocs24

Number of elements in the procs array (size_t)25

IN directives26

Array of pmix_info_t structures (array of handles)27

IN ndirs28

Number of elements in the directives array (size_t)29

IN cbfunc30

Callback function pmix_info_cbfunc_t (function reference)31

IN cbdata32

Data to be passed to the callback function (memory reference)33

320 PMIx Standard – Version 4.0 (Draft) – 1H2019

Returns one of the following:1

• PMIX_SUCCESS , indicating that the request is being processed - result will be returned in the2

provided cbfunc. Note that the library must not invoke the callback function prior to returning3

from the API.4

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and5

returned success - the cbfunc will not be called6

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc7

will not be called8

• a PMIx error constant indicating either an error in the input or that the request was immediately9

processed and failed - the cbfunc will not be called10

If executed, the status returned in the provided callback function will be one of the following11

constants:12

• PMIX_SUCCESS The operation succeeded and all specified members participated.13

• PMIX_ERR_PARTIAL_SUCCESS The operation succeeded but not all specified members14

participated - the final group membership is included in the callback function15

• PMIX_ERR_NOT_SUPPORTED While the PMIx server supports this operation, the host RM16

does not.17

• a non-zero PMIx error constant indicating a reason for the request’s failure18

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this19

operation:20

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)21

Participation is optional - do not return an error if any of the specified processes terminate22

without having joined. The default is false23

Host environments that support this operation are required to provide the following attributes:24

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)25

Notify remaining members when another member terminates without first leaving the group.26

The default is false27

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)28

Notify remaining members when another member terminates without first leaving the group.29

The default is false30

CHAPTER 12. PROCESS SETS AND GROUPS 321

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2

Time in seconds before the specified operation should time out (0 indicating infinite) in3

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4

the target process from ever exposing its data.5

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host6

environment due to race condition considerations between completion of the operation versus7

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT8

directly in the PMIx server library must take care to resolve the race condition and should avoid9

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not10

created.11

Description12

Non-blocking version of the PMIx_Group_invite operation. The callback function will be13

called once all invited members of the group (or their substitutes) have executed either14

PMIx_Group_join or PMIx_Group_join_nb .15

12.2.7 PMIx_Group_join16

Summary17

Accept an invitation to join a PMIx process group18

322 PMIx Standard – Version 4.0 (Draft) – 1H2019

Format1

PMIx v4.0 C

pmix_status_t2

PMIx_Group_join(const char grp[],3

const pmix_proc_t *leader,4

pmix_group_opt_t opt,5

const pmix_info_t directives[], size_t ndirs,6

pmix_info_t **results, size_t *nresult)7

C

IN grp8

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the9

group identifier (string)10

IN leader11

Process that generated the invitation (handle)12

IN opt13

Accept or decline flag (pmix_group_opt_t)14

IN directives15

Array of pmix_info_t structures (array of handles)16

IN ndirs17

Number of elements in the directives array (size_t)18

INOUT results19

Pointer to a location where the array of pmix_info_t describing the results of the20

operation is to be returned (pointer to handle)21

INOUT nresults22

Pointer to a size_t location where the number of elements in results is to be returned23

(memory reference)24

Returns one of the following:25

• PMIX_SUCCESS , indicating that the request has been successfully completed26

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this27

operation28

• a PMIx error constant indicating either an error in the input or that the request failed to be29

completed30

Required Attributes

There are no identified required attributes for implementers.31

CHAPTER 12. PROCESS SETS AND GROUPS 323

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2

Time in seconds before the specified operation should time out (0 indicating infinite) in3

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4

the target process from ever exposing its data.5

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host6

environment due to race condition considerations between completion of the operation versus7

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT8

directly in the PMIx server library must take care to resolve the race condition and should avoid9

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not10

created.11

Description12

Respond to an invitation to join a group that is being asynchronously constructed. The process must13

have registered for the PMIX_GROUP_INVITED event in order to be notified of the invitation.14

When called, the event information will include the pmix_proc_t identifier of the process that15

generated the invitation along with the identifier of the group being constructed. When ready to16

respond, the process provides a response using either form of PMIx_Group_join .17

Advice to users

Since the process is alerted to the invitation in a PMIx event handler, the process must not use the18

blocking form of this call unless it first “thread shifts” out of the handler and into its own thread19

context. Likewise, while it is safe to call the non-blocking form of the API from the event handler,20

the process must not block in the handler while waiting for the callback function to be called.21

324 PMIx Standard – Version 4.0 (Draft) – 1H2019

Calling this function causes the inviting process (aka the group leader) to be notified that the1

process has either accepted or declined the request. The blocking form of the API will return once2

the group has been completely constructed or the group’s construction has failed (as described3

below) – likewise, the callback function of the non-blocking form will be executed upon the same4

conditions.5

Failure of the leader during the call to PMIx_Group_join will cause a6

PMIX_GROUP_LEADER_FAILED event to be delivered to all invited participants so they can7

optionally declare a new leader. A new leader is identified by providing the8

PMIX_GROUP_LEADER attribute in the results array in the return of the event handler. Only one9

process is allowed to return that attribute, declaring itself as the new leader. Results of the leader10

selection will be communicated to all participants via a PMIX_GROUP_LEADER_SELECTED11

event identifying the new leader. If no leader was selected, then the status code provided in the12

event handler will provide an error value so the participants can take appropriate action.13

Any participant that returns PMIX_GROUP_CONSTRUCT_ABORT from the leader failed event14

handler will cause all participants to receive an event notifying them of that status. Similarly, the15

leader may elect to abort the procedure by either returning PMIX_GROUP_CONSTRUCT_ABORT16

from the handler assigned to the PMIX_GROUP_INVITE_ACCEPTED or17

PMIX_GROUP_INVITE_DECLINED codes, or by generating an event for the abort code. Abort18

events will be sent to all invited participants.19

12.2.8 PMIx_Group_join_nb20

Summary21

Non-blocking form of PMIx_Group_join22

Format23

PMIx v4.0 C

pmix_status_t24

PMIx_Group_join_nb(const char grp[],25

const pmix_proc_t *leader,26

pmix_group_opt_t opt,27

const pmix_info_t directives[], size_t ndirs,28

pmix_info_cbfunc_t cbfunc, void *cbdata)29

C

IN grp30

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the31

group identifier (string)32

CHAPTER 12. PROCESS SETS AND GROUPS 325

IN leader1

Process that generated the invitation (handle)2

IN opt3

Accept or decline flag (pmix_group_opt_t)4

IN directives5

Array of pmix_info_t structures (array of handles)6

IN ndirs7

Number of elements in the directives array (size_t)8

IN cbfunc9

Callback function pmix_info_cbfunc_t (function reference)10

IN cbdata11

Data to be passed to the callback function (memory reference)12

Returns one of the following:13

• PMIX_SUCCESS , indicating that the request is being processed - result will be returned in the14

provided cbfunc. Note that the library must not invoke the callback function prior to returning15

from the API.16

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and17

returned success - the cbfunc will not be called18

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc19

will not be called20

• a PMIx error constant indicating either an error in the input or that the request was immediately21

processed and failed - the cbfunc will not be called22

If executed, the status returned in the provided callback function will be one of the following23

constants:24

• PMIX_SUCCESS The operation succeeded and group membership is in the callback function25

parameters26

• PMIX_ERR_NOT_SUPPORTED While the PMIx server supports this operation, the host RM27

does not.28

• a non-zero PMIx error constant indicating a reason for the request’s failure29

Required Attributes

There are no identified required attributes for implementers.30

326 PMIx Standard – Version 4.0 (Draft) – 1H2019

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2

Time in seconds before the specified operation should time out (0 indicating infinite) in3

error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4

the target process from ever exposing its data.5

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host6

environment due to race condition considerations between completion of the operation versus7

internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT8

directly in the PMIx server library must take care to resolve the race condition and should avoid9

passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not10

created.11

Description12

Non-blocking version of the PMIx_Group_join operation. The callback function will be called13

once all invited members of the group (or their substitutes) have executed either14

PMIx_Group_join or PMIx_Group_join_nb .15

12.2.9 PMIx_Group_leave16

Summary17

Leave a PMIx process group18

CHAPTER 12. PROCESS SETS AND GROUPS 327

Format1

PMIx v4.0 C

pmix_status_t2

PMIx_Group_leave(const char grp[],3

const pmix_info_t directives[], size_t ndirs)4

C

IN grp5

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the6

group identifier (string)7

IN directives8

Array of pmix_info_t structures (array of handles)9

IN ndirs10

Number of elements in the directives array (size_t)11

Returns one of the following:12

• PMIX_SUCCESS , indicating that the request has been communicated to the local PMIx server13

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this14

operation15

• a PMIx error constant indicating either an error in the input or that the request is unsupported16

Required Attributes

There are no identified required attributes for implementers.17

Description18

Leave a PMIx Group. Calls to PMIx_Group_leave (or its non-blocking form) will cause a19

PMIX_GROUP_LEFT event to be generated notifying all members of the group of the caller’s20

departure. The function will return (or the non-blocking function will execute the specified callback21

function) once the event has been locally generated and is not indicative of remote receipt. All22

PMIx-based collectives such as PMIx_Fence in action across the group will automatically be23

adjusted if the collective was called with the PMIX_GROUP_FT_COLLECTIVE attribute (default24

is false) – otherwise, the standard error return behavior for that collective will be executed.25

Advice to users

The PMIx_Group_leave API is intended solely for asynchronous departures of individual processes26

from a group as it is not a scalable operation – i.e., when a process determines it should no longer27

be a part of a defined group, but the remainder of the group retains a valid reason to continue in28

existence. Developers are advised to use PMIx_Group_destruct (or its non-blocking form) for all29

other scenarios as it represents a more scalable operation.30

328 PMIx Standard – Version 4.0 (Draft) – 1H2019

12.2.10 PMIx_Group_leave_nb1

Summary2

Non-blocking form of PMIx_Group_leave3

Format4

PMIx v4.0 C

pmix_status_t5

PMIx_Group_leave_nb(const char grp[],6

const pmix_info_t directives[], size_t ndirs,7

pmix_op_cbfunc_t cbfunc, void *cbdata)8

C

IN grp9

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the10

group identifier (string)11

IN directives12

Array of pmix_info_t structures (array of handles)13

IN ndirs14

Number of elements in the directives array (size_t)15

IN cbfunc16

Callback function pmix_op_cbfunc_t (function reference)17

IN cbdata18

Data to be passed to the callback function (memory reference)19

Returns one of the following:20

• PMIX_SUCCESS , indicating that the request is being processed - result will be returned in the21

provided cbfunc. Note that the library must not invoke the callback function prior to returning22

from the API.23

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and24

returned success - the cbfunc will not be called25

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc26

will not be called27

• a PMIx error constant indicating either an error in the input or that the request was immediately28

processed and failed - the cbfunc will not be called29

If executed, the status returned in the provided callback function will be one of the following30

constants:31

• PMIX_SUCCESS The operation succeeded - i.e., the PMIX_GROUP_LEFT event was32

generated33

CHAPTER 12. PROCESS SETS AND GROUPS 329

• PMIX_ERR_NOT_SUPPORTED While the PMIx library supports this operation, the host RM1

does not.2

• a non-zero PMIx error constant indicating a reason for the request’s failure3

Required Attributes

There are no identified required attributes for implementers.4

Description5

Non-blocking version of the PMIx_Group_leave operation. The callback function will be6

called once the event has been locally generated and is not indicative of remote receipt.7

330 PMIx Standard – Version 4.0 (Draft) – 1H2019

